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■ TA B L E 1 . 4

Approximate Physical Properties of Some Common Liquids (BG Units)

Specific Dynamic Kinematic Surface Vapor Bulk
Density, Weight, Viscosity, Viscosity, Pressure,

Temperature pvv Evv
Liquid ( ) ( ) ( ) ( 2) ( ) ( ) [ .2 (abs)] ( )

Carbon tetrachloride 68 3.09 99.5
Ethyl alcohol 68 1.53 49.3

60 1.32 42.5
Glycerin 68 2.44 78.6
Mercury 68 26.3 847
SAE 30 60 1.77 57.0 —
Seawater 60 1.99 64.0
Water 60 1.94 62.4

aIn contact with air.
bIsentropic bulk modulus calculated from speed of sound.
cTypical values. Properties of petroleum products vary.

3.12 E � 52.26 E � 15.03 E � 31.21 E � 52.34 E � 5
3.39 E � 52.26 E � 15.03 E � 31.26 E � 52.51 E � 5
2.2  E � 52.5  E � 34.5  E � 38.0  E � 3oilc

4.14 E � 62.3  E � 53.19 E � 21.25 E � 63.28 E � 5
6.56 E � 52.0  E � 64.34 E � 31.28 E � 23.13 E � 2
1.9  E � 58.0  E � 01.5  E � 34.9  E � 66.5  E � 6Gasolinec

1.54 E � 58.5  E � 11.56 E � 31.63 E � 52.49 E � 5
1.91 E � 51.9  E � 01.84 E � 36.47 E � 62.00 E � 5

lb�in.2lb�inlb�ftft2�slb � s�ftlb�ft3slugs�ft3�F
SNM��

Modulus,bTension,a

■ TA B L E 1 . 5

Approximate Physical Properties of Some Common Liquids (SI Units)

Specific Dynamic Kinematic Surface Vapor Bulk
Density, Weight, Viscosity, Viscosity, Pressure,

Temperature pvv Evv

Liquid ( ) ( ) ( ) ( ) ( ) ( ) [ (abs)] ( )

Carbon tetrachloride 20 1,590 15.6
Ethyl alcohol 20 789 7.74

15.6 680 6.67
Glycerin 20 1,260 12.4
Mercury 20 13,600 133
SAE 30 15.6 912 8.95 —
Seawater 15.6 1,030 10.1
Water 15.6 999 9.80

aIn contact with air.
bIsentropic bulk modulus calculated from speed of sound.
cTypical values. Properties of petroleum products vary.

2.15 E � 91.77 E � 37.34 E � 21.12 E � 61.12 E � 3
2.34 E � 91.77 E � 37.34 E � 21.17 E � 61.20 E � 3
1.5  E � 93.6  E � 24.2  E � 43.8  E � 1oilc

2.85 E � 101.6  E � 14.66 E � 11.15 E � 71.57 E � 3
4.52 E � 91.4  E � 26.33 E � 21.19 E � 31.50 E � 0
1.3  E � 95.5  E � 42.2  E � 24.6  E � 73.1  E � 4Gasolinec

1.06 E � 95.9  E � 32.28 E � 21.51 E � 61.19 E � 3
1.31 E � 91.3  E � 42.69 E � 26.03 E � 79.58 E � 4

N�m2N�m2N�mm2�sN � s�m2kN�m3kg�m3�C
SNMGR

Modulus,bTension,a
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■ TA B L E 1 . 6

Approximate Physical Properties of Some Common Gases at Standard Atmospheric Pressure (BG Units)

Specific Dynamic Kinematic Gas
Density, Weight, Viscosity, Viscosity, Specific

Temperature R
Gas ( ) ( ) ( ) ( ) ( ) ( ) k

Air (standard) 59 1.40
Carbon dioxide 68 1.30
Helium 68 1.66
Hydrogen 68 1.41
Methane (natural gas) 68 1.31
Nitrogen 68 1.40
Oxygen 68 1.40

aValues of the gas constant are independent of temperature.
bValues of the specific heat ratio depend only slightly on temperature.

1.554 E � 31.65 E � 44.25 E � 78.31 E � 22.58 E � 3
1.775 E � 31.63 E � 43.68 E � 77.28 E � 22.26 E � 3
3.099 E � 31.78 E � 42.29 E � 74.15 E � 21.29 E � 3
2.466 E � 41.13 E � 31.85 E � 75.25 E � 31.63 E � 4
1.242 E � 41.27 E � 34.09 E � 71.04 E � 23.23 E � 4 
1.130 E � 38.65 E � 53.07 E � 71.14 E � 13.55 E � 3
1.716 E � 31.57 E � 43.74 E � 77.65 E � 22.38 E � 3

ft � lb�slug � �Rft2�slb � s�ft2lb�ft3slugs�ft3�F
Heat Ratio,bNMGR

Constant,a

■ TA B L E 1 . 7

Approximate Physical Properties of Some Common Gases at Standard Atmospheric Pressure (SI Units)

Specific Dynamic Kinematic Gas
Density, Weight, Viscosity, Viscosity, Specific

Temperature R
Gas ( ) ( ) ( ) ( ) ( ) ( ) k

Air (standard) 15 1.40
Carbon dioxide 20 1.30
Helium 20 1.66
Hydrogen 20 1.41
Methane (natural gas) 20 1.31
Nitrogen 20 1.40
Oxygen 20 1.40

aValues of the gas constant are independent of temperature.
bValues of the specific heat ratio depend only slightly on temperature.

2.598 E � 21.53 E � 52.04 E � 51.30 E � 11.33 E � 0
2.968 E � 21.52 E � 51.76 E � 51.14 E � 11.16 E � 0
5.183 E � 21.65 E � 51.10 E � 56.54 E � 06.67 E � 1
4.124 E � 31.05 E � 48.84 E � 68.22 E � 18.38 E � 2
2.077 E � 31.15 E � 41.94 E � 51.63 E � 01.66 E � 1
1.889 E � 28.03 E � 61.47 E � 51.80 E � 11.83 E � 0
2.869 E � 21.46 E � 51.79 E � 51.20 E � 11.23 E � 0

J�kg � Km2�sN � s�m2N�m3kg�m3�C
Heat Ratio,bNMGR

Constant,a
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Preface

A Brief Introduction to Fluid Mechanics, fifth edition, is an abridged version of a more com-
prehensive treatment found in Fundamentals of Fluid Mechanics by Munson, Young, Okiishi,
and Huebsch. Although this latter work continues to be successfully received by students and
colleagues, it is a large volume containing much more material than can be covered in a typi-
cal one-semester undergraduate fluid mechanics course. A consideration of the numerous
fluid mechanics texts that have been written during the past several decades reveals that there
is a definite trend toward larger and larger books. This trend is understandable because the
knowledge base in fluid mechanics has increased, along with the desire to include a broader
scope of topics in an undergraduate course. Unfortunately, one of the dangers in this trend is
that these large books can become intimidating to students who may have difficulty, in a be-
ginning course, focusing on basic principles without getting lost in peripheral material. It is
with this background in mind that the authors felt that a shorter but comprehensive text, cov-
ering the basic concepts and principles of fluid mechanics in a modern style, was needed. In
this abridged version there is still more than ample material for a one-semester undergraduate
fluid mechanics course. We have made every effort to retain the principal features of the orig-
inal book while presenting the essential material in a more concise and focused manner that
will be helpful to the beginning student.

This fifth edition has been prepared by the authors after several years of using the pre-
vious editions for an introductory course in fluid mechanics. Based on this experience, along
with suggestions from reviewers, colleagues, and students, we have made a number of
changes and additions in this new edition.

New to This Edition

In addition to the continual effort of updating the scope of the material presented and improv-
ing the presentation of all of the material, the following items are new to this edition.

With the widespread use of new technologies involving the web, DVDs, digital cameras,
and the like, there are increasing use and appreciation of the variety of visual tools available
for learning. After all, fluid mechanics can be a very visual topic. This fact has been addressed
in the new edition by the inclusion of numerous new illustrations, graphs, photographs, and
videos.
Illustrations: The book contains 148 new illustrations and graphs, bringing the total number
to 890. These illustrations range from simple ones that help illustrate a basic concept or
equation to more complex ones that illustrate practical applications of fluid mechanics in our
everyday lives.
Photographs: The book contains 224 new photographs, bringing the total number to 240.
Some photos involve situations that are so common to us that we probably never stop to realize
how fluids are involved in them. Others involve new and novel situations that are still baffling
to us. The photos are also used to help the reader better understand the basic concepts and
examples discussed.

ix
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Videos: The video library for the book has been significantly enhanced by the addition of
76 new videos directly related to the text material, bringing the total number to 152. They
illustrate many of the interesting and practical applications of real-world fluid phenomena.
In addition to being located at the appropriate places within the text, they are all listed, each
with an appropriate thumbnail photo, in a new video index. In the electronic version of the
book, the videos can be selected directly from this index.
Examples: The book contains several new example problems that involve various fluid
flow fundamentals. These examples also incorporate PtD (Prevention through Design) dis-
cussion material. The PtD project, under the direction of the National Institute for Occupa-
tional Safety and Health, involves, in part, the use of textbooks to encourage the proper design
and use of workday equipment and material so as to reduce accidents and injuries in the
workplace.
List of equations: Each chapter ends with a new summary of the most important equations in
the chapter.
Problems: The book contains approximately 273 new homework problems, bringing the total
number to 919. The print version of the book contains all the even-numbered problems; all the
problems (even and odd numbered) are contained on the book’s web site, www.wiley.com/
college/young, or WileyPLUS. There are several new problems in which the student is asked
to find a photograph or image of a particular flow situation and write a paragraph describing
it. In addition, each chapter contains new Lifelong Learning Problems (i.e., one aspect of the
lifelong learning as interpreted by the authors) that ask the student to obtain information about
a given new flow concept and to write about it.

Key Features

Illustrations, Photographs, and Videos

Fluid mechanics has always been a “visual” subject—much can be learned by viewing various
aspects of fluid flow. In this new edition we have made several changes to reflect the fact that
with new advances in technology, this visual component is becoming easier to incorporate into
the learning environment, for both access and delivery, and is an important component to the
learning of fluid mechanics. Thus, approximately 372 new photographs and illustrations have
been added to the book. Some of these are within the text material; some are used to enhance
the example problems; and some are included as marginal figures of the type shown in the left
margin to more clearly illustrate various points discussed in the text. In addition, 76 new video
segments have been added, bringing the total number of video segments to 152. These video
segments illustrate many interesting and practical applications of real-world fluid phenomena.
Many involve new CFD (computational fluid dynamics) material. Each video segment is iden-
tified at the appropriate location in the text material by a video icon and thumbnail photograph
of the type shown in the left margin. Each video segment has a separate associated text 
description of what is shown in the video. There are many homework problems that are directly
related to the topics in the videos.

Examples

One of our aims is to represent fluid mechanics as it really is—an exciting and useful discipline.
To this end, we include analyses of numerous everyday examples of fluid-flow phenomena to
which students and faculty can easily relate. In the fifth edition 163 examples are presented
that provide detailed solutions to a variety of problems. Several of the examples are new to this
edition. Many of the examples have been extended to illustrate what happens if one or more
of the parameters is changed. This gives the user a better feel for some of the basic principles

x Preface
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Preface xi

involved. In addition, many of the examples contain new photographs of the actual device
or item involved in the example. Also, all the examples are outlined and carried out with
the problem-solving methodology of “Given, Find, Solution, and Comment” as discussed
in the “Note to User” before Example 1.1. This edition contains several new example problems
that incorporate PtD (Prevention through Design) discussion material as indicated on the
previous page.

Fluids in the News

A set of 63 short “Fluids in the News” stories that reflect some of the latest important and
novel ways that fluid mechanics affects our lives is provided. Many of these problems have
homework problems associated with them.

Homework Problems

A set of 919 homework problems is provided. This represents an increase of approximately
42% more problems than in the previous edition. The even-numbered problems are in the
print version of the book; all of the problems (even and odd) are at the book’s web site,
www.wiley.com/college/young, or WileyPLUS. These problems stress the practical applica-
tion of principles. The problems are grouped and identified according to topic. An effort has
been made to include several easier problems at the start of each group. The following types
of problems are included:
1) “standard” problems
2) computer problems
3) discussion problems
4) supply-your-own-data problems
5) review problems with solutions
6) problems based on the “Fluids in the
News” topics
7) problems based on the fluid videos
8) Excel-based lab problems

9) new “Lifelong Learning” problems
10) problems that require the user to obtain a
photograph or image of a given flow situation
and write a brief paragraph to describe it
11) simple CFD problems to be solved using
FlowLab
12) Fundamental of Engineering (FE) exam
questions available on book web site

Lab Problems—There are 30 extended, laboratory-type problems that involve actual experi-
mental data for simple experiments of the type that are often found in the laboratory portion
of many introductory fluid mechanics courses. The data for these problems are provided in
Excel format.
Lifelong Learning Problems—There are 33 new lifelong learning problems that involve
obtaining additional information about various new state-of-the-art fluid mechanics topics
and writing a brief report about this material.
Review Problems—There is a set of 186 review problems covering most of the main topics in
the book. Complete, detailed solutions to these problems can be found in the Student Solution
Manual and Study Guide for A Brief Introduction to Fluid Mechanics, by Young et al. (© 2011
John Wiley and Sons, Inc.).

Well-Paced Concept and Problem-Solving Development

Since this is an introductory text, we have designed the presentation of material to allow for
the gradual development of student confidence in fluid problem solving. Each important con-
cept or notion is considered in terms of simple and easy-to-understand circumstances before
more complicated features are introduced.
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Several brief components have been added to each chapter to help the user obtain the
“big picture” idea of what key knowledge is to be gained from the chapter. A brief Learning
Objectives section is provided at the beginning of each chapter. It is helpful to read through
this list prior to reading the chapter to gain a preview of the main concepts presented. Upon
completion of the chapter, it is beneficial to look back at the original learning objectives to en-
sure that a satisfactory level of understanding has been acquired for each item. Additional re-
inforcement of these learning objectives is provided in the form of a Chapter Summary and
Study Guide at the end of each chapter. In this section a brief summary of the key concepts and
principles introduced in the chapter is included along with a listing of important terms with
which the student should be familiar. These terms are highlighted in the text. A new list of the
main equations in the chapter is included in the chapter summary.

System of Units

Two systems of units continue to be used throughout most of the text: the International Sys-
tem of Units (newtons, kilograms, meters, and seconds) and the British Gravitational System
(pounds, slugs, feet, and seconds). About one-half of the examples and homework problems
are in each set of units.

Topical Organization

In the first four chapters the student is made aware of some fundamental aspects of fluid mo-
tion, including important fluid properties, regimes of flow, pressure variations in fluids at rest
and in motion, fluid kinematics, and methods of flow description and analysis. The Bernoulli
equation is introduced in Chapter 3 to draw attention, early on, to some of the interesting ef-
fects of fluid motion on the distribution of pressure in a flow field. We believe that this timely
consideration of elementary fluid dynamics increases student enthusiasm for the more com-
plicated material that follows. In Chapter 4 we convey the essential elements of kinematics, in-
cluding Eulerian and Lagrangian mathematical descriptions of flow phenomena, and indicate
the vital relationship between the two views. For teachers who wish to consider kinematics in
detail before the material on elementary fluid dynamics, Chapters 3 and 4 can be interchanged
without loss of continuity.

Chapters 5, 6, and 7 expand on the basic analysis methods generally used to solve or to
begin solving fluid mechanics problems. Emphasis is placed on understanding how flow phe-
nomena are described mathematically and on when and how to use infinitesimal and finite
control volumes. The effects of fluid friction on pressure and velocity distributions are also
considered in some detail. A formal course in thermodynamics is not required to understand
the various portions of the text that consider some elementary aspects of the thermodynamics
of fluid flow. Chapter 7 features the advantages of using dimensional analysis and similitude
for organizing test data and for planning experiments and the basic techniques involved.

Owing to the growing importance of computational fluid dynamics (CFD) in engineer-
ing design and analysis, material on this subject is included in Appendix A. This material may
be omitted without any loss of continuity to the rest of the text. This introductory CFD
overview includes examples and problems of various interesting flow situations that are to be
solved using FlowLab software.

Chapters 8 through 11 offer students opportunities for the further application of the prin-
ciples learned early in the text. Also, where appropriate, additional important notions such as
boundary layers, transition from laminar to turbulent flow, turbulence modeling, and flow sep-
aration are introduced. Practical concerns such as pipe flow, open-channel flow, flow mea-
surement, drag and lift, and the fluid mechanics fundamentals associated with turbomachines
are included.

xii Preface
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Students who study this text and who solve a representative set of the exercises
provided should acquire a useful knowledge of the fundamentals of fluid mechanics.
Faculty who use this text are provided with numerous topics to select from in order to
meet the objectives of their own courses. More material is included than can be reason-
ably covered in one term. All are reminded of the fine collection of supplementary mate-
rial. We have cited throughout the text various articles and books that are available for
enrichment.

Student and Instructor Resources

Student Solution Manual and Study Guide, by Young et al. (© 2011 John Wiley and Sons,
Inc.)—This short paperback book is available as a supplement for the text. It provides detailed
solutions to the Review Problems and a concise overview of the essential points of most of the
main sections of the text, along with appropriate equations, illustrations, and worked exam-
ples. This supplement is available through your local bookstore, or you may purchase it on the
Wiley web site at www.wiley.com/college/young.

Student Companion Site—The student section of the book web site at www.wiley.com/college/
young contains the assets that follow. Access is free of charge with the registration code in-
cluded in the front of every new book.
Video Library CFD-Driven Cavity Example
Review Problems with Answers FlowLab Tutorial and User’s Guide
Lab Problems FlowLab Problems
Comprehensive Table of Conversion Factors

Instructor Companion Site—The instructor section of the book web site at www.wiley
.com/college/young contains the assets in the Student Companion Site, as well as the following,
which are available only to professors who adopt this book for classroom use:

Instructor Solutions Manual, containing complete, detailed solutions to all of the prob-
lems in the text.

Figures from the text, appropriate for use in lecture slides.

These instructor materials are password-protected. Visit the Instructor Companion Site to reg-
ister for a password.

FlowLab®—In cooperation with Wiley, Ansys Inc. is offering to instructors who adopt this
text the option to have FlowLab software installed in their department lab free of charge.
(This offer is available in the Americas only; fees vary by geographic region outside the
Americas.) FlowLab is a CFD package that allows students to solve fluid dynamics problems
without requiring a long training period. This software introduces CFD technology to under-
graduates and uses CFD to excite students about fluid dynamics and learning more about
transport phenomena of all kinds. To learn more about FlowLab and request installation in
your department, visit the Instructor Companion Site at www.wiley.com/college/young, or
WileyPLUS.

WileyPLUS—WileyPLUS combines the complete, dynamic online text with all of the teach-
ing and learning resources you need in one easy-to-use system. The instructor assigns 
WileyPLUS, but students decide how to buy it: They can buy the new, printed text packaged
with a WileyPLUS registration code at no additional cost or choose digital delivery of Wiley-
PLUS, use the online text and integrated read, study, and practice tools, and save off the cost
of the new book.
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Featured in This Book

FLUIDS IN THE NEWS

Throughout the book are many brief
news stories involving current, sometimes
novel, applications of fluid phenomena.
Many of these stories have homework
problems associated with them.

F l u i d s  i n  t h e  N e w s

Incorrect raindrop shape The incorrect representation that

raindrops are teardrop shaped is found nearly everywhere—

from children’s books to weather maps on the Weather Chan-

nel. About the only time raindrops possess the typical teardrop

shape is when they run down a windowpane. The actual shape

of a falling raindrop is a function of the size of the drop and re-

sults from a balance between surface tension forces and the air

pressure exerted on the falling drop. Small drops with a radius

less than about 0.5 mm have a spherical shape because the sur-

face tension effect (which is inversely proportional to drop

size) wins over the increased pressure, caused by the

motion of the drop and exerted on its bottom. With increasing

size, the drops fall faster and the increased pressure causes the

drops to flatten. A 2-mm drop, for example, is flattened into a

hamburger bun shape. Slightly larger drops are actually con-

cave on the bottom. When the radius is greater than about 4 mm,

the depression of the bottom increases and the drop takes on

the form of an inverted bag with an annular ring of water

around its base. This ring finally breaks up into smaller drops.

(See Problem 3.22.)

�V 2
0/2,

CHAPTER SUMMARY AND 
STUDY GUIDE

At the end of each chapter is a brief
summary of key concepts and principles in-
troduced in the chapter along with key terms
involved and a list of important equations.

field representation
velocity field
Eulerian method
Lagrangian method
one-, two-, and 

three-dimensional 
flow

steady and 
unsteady flow

streamline
streakline
pathline
acceleration field
material derivative
local acceleration
convective acceleration
system
control volume
Reynolds transport 

theorem

4.5 Chapter Summary and Study Guide

This chapter considered several fundamental concepts of fluid kinematics. That is, various

aspects of fluid motion are discussed without regard to the forces needed to produce this motion.

The concepts of a field representation of a flow and the Eulerian and Lagrangian approaches

to describing a flow are introduced, as are the concepts of velocity and acceleration fields.

The properties of one-, two-, or three-dimensional flows and steady or unsteady flows

are introduced along with the concepts of streamlines, streaklines, and pathlines. Streamlines,

which are lines tangent to the velocity field, are identical to streaklines and pathlines if the

flow is steady. For unsteady flows, they need not be identical.

As a fluid particle moves about, its properties (i.e., velocity, density, temperature) may

change. The rate of change of these properties can be obtained by using the material deriva-

tive, which involves both unsteady effects (time rate of change at a fixed location) and convec-

tive effects (time rate of change due to the motion of the particle from one location to another).

The concepts of a control volume and a system are introduced, and the Reynolds trans-

port theorem is developed. By using these ideas, the analysis of flows can be carried out

using a control volume (a fixed volume through which the fluid flows), whereas the gov-

erning principles are stated in terms of a system (a flowing portion of fluid).

The following checklist provides a study guide for this chapter. When your study of

the entire chapter and end-of-chapter exercises has been completed you should be able to

write out the meanings of the terms listed here in the margin and understand each of

the related concepts. These terms are particularly important and are set in color and

bold type in the text.

understand the concept of the field representation of a flow and the difference between

Eulerian and Lagrangian methods of describing a flow.

3.6 Examples of Use of the Bernoulli Equation

Between any two points, (1) and (2), on a streamline in steady, inviscid, incompressible
flow the Bernoulli equation (Eq. 3.6) can be applied in the form

(3.14)

The use of this equation is discussed in this section.

3.6.1 Free Jets

Consider flow of a liquid from a large reservoir as is shown in Fig. 3.7 or from a coffee urn as
indicated by the figure in the margin. A jet of liquid of diameter d flows from the nozzle with

p1 � 1
2 �V2

1 � �z1 � p2 � 1
2 �V2

2 � �z2

V

BOXED EQUATIONS

Important equations are boxed to help the
user identify them.

MARGINAL FIGURES

A set of simple figures and
photographs in the margins is provided
to help the students visualize concepts
being described.

FLUID VIDEOS

A set of videos illustrating interesting
and practical applications of fluid phe-
nomena is provided on the book web
site. An icon in the margin identifies
each video. Many homework problems
are tied to the videos.

4.1 The Velocity Field

The infinitesimal particles of a fluid are tightly packed together (as is implied by the contin-
uum assumption). Thus, at a given instant in time, a description of any fluid property (such as
density, pressure, velocity, and acceleration) may be given as a function of the fluid’s location.
This representation of fluid parameters as functions of the spatial coordinates is termed a field
representation of the flow. Of course, the specific field representation may be different at dif-
ferent times, so that to describe a fluid flow we must determine the various parameters not only
as a function of the spatial coordinates (x, y, z, for example) but also as a function of time, t.

One of the most important fluid variables is the velocity field,

where u, y, and w are the x, y, and z components of the velocity vector. By definition, the
velocity of a particle is the time rate of change of the position vector for that particle. As
is illustrated in Fig. 4.1, the position of particle A relative to the coordinate system is given
by its position vector, rA, which (if the particle is moving) is a function of time. The time
derivative of this position gives the velocity of the particle, drA/dt � VA.

V � u1x, y, z, t2 î � y1x, y, z, t2 ĵ � w1x, y, z, t2k̂

V4.3 Cylinder-
velocity vectors
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EXAMPLE PROBLEMS

A set of example problems provides the
student detailed solutions and comments
for interesting, real-world situations.

xvi Featured in This Book

GIVEN An airplane flies 200 mph at an elevation of 10,000 ft

in a standard atmosphere as shown in Fig. E3.6a. 

FIND Determine the pressure at point (1) far ahead of the

airplane, the pressure at the stagnation point on the nose of the

airplane, point (2), and the pressure difference indicated by a

Pitot-static probe attached to the fuselage.

SOLUTION

Pitot-Static Tube

It was assumed that the flow is incompressible—the den-

sity remains constant from (1) to (2). However, because

� � p/RT, a change in pressure (or temperature) will cause a

change in density. For this relatively low speed, the ratio of the

absolute pressures is nearly unity [i.e., p1/p2 � (10.11

psia)/(10.11 � 0.524 psia) � 0.951] so that the density change

is negligible. However, by repeating the calculations for vari-

ous values of the speed, , the results shown in Fig. E3.6b are

obtained. Clearly at the 500- to 600-mph speeds normally flown

by commercial airliners, the pressure ratio is such that density

changes are important. In such situations it is necessary to use

compressible flow concepts to obtain accurate results. 

V1

EXAMPLE 3.6

From Table C.1 we find that the static pressure at the altitude

given is

(Ans)

Also the density is � � 0.001756 slug/ft3.

If the flow is steady, inviscid, and incompressible and ele-

vation changes are neglected, Eq. 3.6 becomes

With V1 � 200 mph � 293 ft/s and V2 � 0 (since the coordi-

nate system is fixed to the airplane) we obtain

Hence, in terms of gage pressure

(Ans)

Thus, the pressure difference indicated by the Pitot-static tube is

(Ans)

COMMENTS Note that it is very easy to obtain incorrect

results by using improper units. Do not add lb/in.2 and lb/ft2.

Note that (slug/ft3)(ft2/s2) � (slug�ft/s2)/(ft2) � lb/ft2.

p2 � p1 �
�V 2

1

2
� 0.524 psi

p2 � 75.4 lb/ft2 � 0.524 psi

� 11456 � 75.42 lb/ft2 1abs2

p2 � 1456 lb/ft2 � 10.001756 slugs/ft32 1293 ft/s22/2

p2 � p1 �
�V 2

1

2

p1 � 1456 lb/ft2 1abs2 � 10.11psia

F I G U R E  E3.6a (Photo
courtesy of Hawker Beechcraft.)

(2)

(1)

Pitot-static tube
V1 = 200 mph

F I G U R E  E3.6b

(200 mph, 0.951)
1

0.8

0.6

0.4

0.2

0
0 100 200 300

V1, mph

p 1
/p

2

400 500 600

REVIEW PROBLEMS

On the book web site are nearly 200 Review Problems
covering most of the main topics in the book.
Complete, detailed solutions to these problems are
found in the supplement Student Solutions Manual for
A Brief Introduction to Fundamentals of Fluid
Mechanics, by Young et al. (© 2011 John Wiley and
Sons, Inc.)

LAB PROBLEMS

On the book web site is a set of lab problems
in Excel format involving actual data for 
experiments of the type found in many 
introductory fluid mechanics labs.

CHAPTER EQUATIONS

At the end of each chapter is a
summary of the most important
equations.

Section 5.3 The Energy and Linear Momentum
Equations

5.94 Two water jets collide and form one homogeneous jet as
shown in Fig. P5.94. (a) Determine the speed, V, and direc-
tion, of the combined jet. (b) Determine the loss for a fluid
particle flowing from (1) to (3), from (2) to (3). Gravity is
negligible.

�,

5.96 Water flows steadily in a pipe and exits as a free jet
through an end cap that contains a filter as shown in Fig. P5.96.
The flow is in a horizontal plane. The axial component, , ofRy

� Lab Problems

5.98 This problem involves the force that a jet of air exerts on
a flat plate as the air is deflected by the plate. To proceed with
this problem, go to the book’s web site, www.wiley.com/college/
young, or WileyPLUS.

5.100 This problem involves the force that a jet of water exerts
on a vane when the vane turns the jet through a given angle. To
proceed with this problem, go to the book’s web site, www.wiley
.com/college/young, or WileyPLUS.

� Lifelong Learning Problems

5.102 What are typical efficiencies associated with swimming
and how can they be improved?

5.104 Discuss the main causes of loss of available energy in a
turbo-pump and how they can be minimized. What are typical
turbo-pump efficiencies?

� FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for
fluid mechanics are provided on the book’s web site, www
.wiley.com/college/young, or WileyPLUS.

174 Chapter 5 � Finite Control Volume Analysis

F I G U R E  P5.92

Fan

10 ft

Air curtain 
(0.5-ft thickness)

Open door

V = 30 ft/s

F I G U R E  P5.94

V2 = 6 m/s

V

V1 = 4 m/s

θ

0.12 m

0.10 m
(1)

(2)

(3)

90°

F I G U R E  P5.96

Area = 0.10 ft2

Area = 0.12 ft2

Ry = 60 lb

V = 10 ft/s

Rx

Pipe

Filter
30°

the anchoring force needed to keep the end cap stationary is 
60 lb. Determine the head loss for the flow through the end cap.

Equation for streamlines (4.1)

Acceleration (4.3)

Material derivative (4.6)

Streamwise and normal 
components of acceleration (4.7)

Reynolds transport theorem (4.14)
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dian Journal of Physics, Vol. 42, 1964.
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Review Problems

Go to Appendix F for a set of review problems with answers.
Detailed solutions can be found in Student Solution Manual for

a Brief Introduction to Fluid Mechanics, by Young et al. (©
2010 John Wiley and Sons, Inc.).

Problems

Note: Unless otherwise indicated use the values of fluid
properties found in the tables on the inside of the front
cover. Problems designated with an (*) are intended to be
solved with the aid of a programmable calculator or a com-
puter. Problems designated with a (†) are “open-ended”
problems and require critical thinking in that to work them
one must make various assumptions and provide the neces-
sary data. There is not a unique answer to these problems.

The even-numbered problems are included in the
hard copy version of the book, and the answers to these
even-numbered problems are listed at the end of the book.
Odd-numbered problems are provided in WileyPLUS, or
in Appendix L on the book’s web site, www.wiley.com/

college/young. The lab-type problems, FE problems, FlowLab
problems, and the videos that accompany problems can also
be accessed on these web sites.

Section 4.1 The Velocity Field

4.2 The components of a velocity field are given by 
and . Determine the location of any stag-

nation points in the flow field.

4.4 A flow can be visualized by plotting the velocity field as
velocity vectors at representative locations in the flow as shown
in Video V4.2 and Fig. E4.1. Consider the velocity field given in
polar coordinates by yr � �10/r and y� � 10/r. This flow

1V � 02
w � 0y � xy3 � 16,

u � x � y,
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Featured in This Book xvii

STUDENT SOLUTIONS MANUAL

A brief paperback book titled Student Solutions
Manual for A Brief Introduction to Fluid Mechanics,
by Young et al. (© 2011 John Wiley and Sons,
Inc.), is available. It contains detailed solutions to
the Review Problems.

PROBLEMS

A generous set of homework problems
at the end of each chapter stresses the
practical applications of fluid mechan-
ics principles. This set contains 919
homework problems.

Axial Velocity (m/s) Legend

Axial Velocity

Full

Done Legend Freeze

XLog YLog Lines X Grid Y Grid Legend ManagerSymbols

Auto Raise Export DataPrint

0.0442

0.0395

0.0347

0.03

0.0253

0.0205

0.0158

0.0111

0.00631

0.00157
0
Position (n)

0.1

inlet

outlet

x = 0.5d

x = 5d
x = 1d

x = 10d
x = 25d

CFD AND FlowLab

For those who wish to become familiar with the
basic concepts of computational fluid dynamics,
an overview to CFD is provided in Appendices 
A and I. In addition, the use of FlowLab software
to solve interesting flow problems is described in
Appendices J and K.

hose, what pressure must be maintained just upstream of the
nozzle to deliver this flowrate?

3.37 Air is drawn into a wind tunnel used for testing automo-
biles as shown in Fig. P3.37. (a) Determine the manometer
reading, h, when the velocity in the test section is 60 mph. Note
that there is a 1-in. column of oil on the water in the manometer.
(b) Determine the difference between the stagnation pressure on
the front of the automobile and the pressure in the test section.

3.39 Water (assumed inviscid and incompressible) flows
steadily in the vertical variable-area pipe shown in Fig. P3.39.
Determine the flowrate if the pressure in each of the gages reads
50 kPa.

3.41 Water flows through the pipe contraction shown in Fig.
P3.41. For the given 0.2-m difference in the manometer level,
determine the flowrate as a function of the diameter of the small
pipe, D.

3.43 Water flows steadily with negligible viscous effects
through the pipe shown in Fig. P3.43. Determine the diame-
ter, D, of the pipe at the outlet (a free jet) if the velocity there is
20 ft/s.

3.45 Water is siphoned from the tank shown in Fig. P3.45. The
water barometer indicates a reading of 30.2 ft. Determine the
maximum value of h allowed without cavitation occurring. Note
that the pressure of the vapor in the closed end of the barometer
equals the vapor pressure.

3.47 An inviscid fluid flows steadily through the contraction
shown in Fig. P3.47. Derive an expression for the fluid velocity
at (2) in terms of D1, D2, �, �m, and h if the flow is assumed 
incompressible.

3.49 Carbon dioxide flows at a rate of 1.5 ft3/s from a 3-in. pipe
in which the pressure and temperature are 20 psi (gage) and 120 �F,
respectively, into a 1.5-in. pipe. If viscous effects are neglected
and incompressible conditions are assumed, determine the pres-
sure in the smaller pipe.

Wind tunnel

Fan

60 mph

h

Water

Open

1 in.

Oil (SG = 0.9)

F I G U R E  P3.37

Q

10 m

1 m

2 m

p = 50 kPa

F I G U R E  P3.39

0.2 m

Q
0.1 m D

F I G U R E  P3.41

V = 20 ft/s

D

10 ft
15 ft

Open

1.5-in. diameter

F I G U R E  P3.43

30.2 ft

6 ft

3 in.
diameter

h

Closed end

5-in. diameter

F I G U R E  P3.45

h

D2D1

ρ
Q

Density   mρ
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CHAPTER OPENING PHOTO: The nature of air bubbles rising in a liquid is a function of fluid proper-
ties such as density, viscosity, and surface tension. (Air in soap.) (Photograph copyright 2007 by
Andrew Davidhazy, Rochester Institute of Technology.)

11IntroductionIntroduction

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ determine the dimensions and units of physical quantities.

■ identify the key fluid properties used in the analysis of fluid behavior.

■ calculate common fluid properties given appropriate information.

■ explain effects of fluid compressibility.

■ use the concepts of viscosity, vapor pressure, and surface tension.

1
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Fluid mechanics is the discipline within the broad field of applied mechanics that is con-
cerned with the behavior of liquids and gases at rest or in motion. It covers a vast array of
phenomena that occur in nature (with or without human intervention), in biology, and in
numerous engineered, invented, or manufactured situations. There are few aspects of our
lives that do not involve fluids, either directly or indirectly.

The immense range of different flow conditions is mind-boggling and strongly depen-
dent on the value of the numerous parameters that describe fluid flow. Among the long list
of parameters involved are (1) the physical size of the flow, ; (2) the speed of the flow,
V; and (3) the pressure, p, as indicated in the figure in the margin for a light aircraft para-
chute recovery system. These are just three of the important parameters that, along with
many others, are discussed in detail in various sections of this book. To get an inkling of
the range of some of the parameter values involved and the flow situations generated, con-
sider the following.

Size,
Every flow has a characteristic (or typical) length associated with it. For example,
for flow of fluid within pipes, the pipe diameter is a characteristic length. Pipe flows
include the flow of water in the pipes in our homes, the blood flow in our arteries
and veins, and the airflow in our bronchial tree. They also involve pipe sizes that are
not within our everyday experiences. Such examples include the flow of oil across
Alaska through a 4-foot-diameter, 799-mile-long pipe and, at the other end of the size
scale, the new area of interest involving flow in nanoscale pipes whose diameters are

/

/
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V1.1 Mt. St. Helens
eruption

�

p

V

(Photograph courtesy
of CIRRUS Design
Corporation.)
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Jupiter red spot diameter
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Pressure change causing
ears to “pop” in elevator

Atmospheric pressure on
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(a) (b) (c)

F I G U R E  1.1 Characteristic values of some fluid flow parameters for a variety of flows: 
(a) object size, (b) fluid speed, (c) fluid pressure.

V1.2 E. coli
swimming
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1.2 Dimensions, Dimensional Homogeneity, and Units 3

on the order of 10�8 m. Each of these pipe flows has important characteristics that are
not found in the others.

Characteristic lengths of some other flows are shown in Fig. 1.1a.

Speed, V
As we note from The Weather Channel, on a given day the wind speed may cover what
we think of as a wide range, from a gentle 5-mph breeze to a 100-mph hurricane or
a 250-mph tornado. However, this speed range is small compared to that of the almost
imperceptible flow of the fluid-like magma below the Earth’s surface that drives the
continental drift motion of the tectonic plates at a speed of about 2 � 10�8 m/s or the hyper-
sonic airflow past a meteor as it streaks through the atmosphere at 3 � 104 m/s.

Characteristic speeds of some other flows are shown in Fig. 1.1b.

Pressure, P
Characteristic pressures of some flows are shown in Fig. 1.1c.

1.1 Some Characteristics of Fluids

One of the first questions we need to explore is—what is a fluid? Or we might ask—
what is the difference between a solid and a fluid? We have a general, vague idea of the
difference. A solid is “hard” and not easily deformed, whereas a fluid is “soft” and is
easily deformed (we can readily move through air). Although quite descriptive, these
casual observations of the differences between solids and fluids are not very satisfactory
from a scientific or engineering point of view. A more specific distinction is based on
how materials deform under the action of an external load. A fluid is defined as a sub-
stance that deforms continuously when acted on by a shearing stress of any magnitude.
A shearing stress (force per unit area) is created whenever a tangential force acts on a
surface as shown by the figure in the margin. When common solids such as steel or other
metals are acted on by a shearing stress, they will initially deform (usually a very small
deformation), but they will not continuously deform (flow). However, common fluids such
as water, oil, and air satisfy the definition of a fluid—that is, they will flow when acted
on by a shearing stress. Some materials, such as slurries, tar, putty, toothpaste, and so on,
are not easily classified since they will behave as a solid if the applied shearing stress is
small, but if the stress exceeds some critical value, the substance will flow. The study of
such materials is called rheology and does not fall within the province of classical fluid
mechanics.

Although the molecular structure of fluids is important in distinguishing one fluid
from another, because of the large number of molecules involved, it is not possible to study
the behavior of individual molecules when trying to describe the behavior of fluids at rest
or in motion. Rather, we characterize the behavior by considering the average, or macro-
scopic, value of the quantity of interest, where the average is evaluated over a small vol-
ume containing a large number of molecules.

We thus assume that all the fluid characteristics we are interested in (pressure, veloc-
ity, etc.) vary continuously throughout the fluid—that is, we treat the fluid as a continuum.
This concept will certainly be valid for all the circumstances considered in this text.

1.2 Dimensions, Dimensional Homogeneity, and Units

Since we will be dealing with a variety of fluid characteristics in our study of fluid mechan-
ics, it is necessary to develop a system for describing these characteristics both qualitatively
and quantitatively. The qualitative aspect serves to identify the nature, or type, of the

F

Surface
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characteristics (such as length, time, stress, and velocity), whereas the quantitative aspect
provides a numerical measure of the characteristics. The quantitative description requires
both a number and a standard by which various quantities can be compared. A standard for
length might be a meter or foot, for time an hour or second, and for mass a slug or kilo-
gram. Such standards are called units, and several systems of units are in common use as
described in the following section. The qualitative description is conveniently given in terms
of certain primary quantities, such as length, L, time, T, mass, M, and temperature, . These
primary quantities can then be used to provide a qualitative description of any other sec-
ondary quantity, for example, area � L2, velocity � LT�1, density � ML�3, and so on, where
the symbol � is used to indicate the dimensions of the secondary quantity in terms of the
primary quantities. Thus, to describe qualitatively a velocity, V, we would write

and say that “the dimensions of a velocity equal length divided by time.” The primary quan-
tities are also referred to as basic dimensions.

For a wide variety of problems involving fluid mechanics, only the three basic dimen-
sions, L, T, and M, are required. Alternatively, L, T, and F could be used, where F is the
basic dimension of force. Since Newton’s law states that force is equal to mass times accel-
eration, it follows that F � MLT�2 or M � FL�1T 2. Thus, secondary quantities expressed in
terms of M can be expressed in terms of F through the relationship just given. For example,
stress, �, is a force per unit area, so that � � FL�2, but an equivalent dimensional equation
is � � ML�1T�2. Table 1.1 provides a list of dimensions for a number of common physical
quantities.

All theoretically derived equations are dimensionally homogeneous—that is, the
dimensions of the left side of the equation must be the same as those on the right side, and
all additive separate terms must have the same dimensions. We accept as a fundamental

V � LT 
�1

™
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TA B L E 1 . 1

Dimensions Associated with Common Physical Quantities

FLT MLT
System System

Acceleration LT�2 LT�2

Angle F0L0T 0 M0L0T 0

Angular acceleration T�2 T�2

Angular velocity T�1 T�1

Area L2 L2

Density FL�4T 2 ML�3

Energy FL ML2T�2

Force F MLT�2

Frequency T�1 T�1

Heat FL ML2T�2

Length L L
Mass FL�1T 2 M
Modulus of elasticity FL�2 ML�1T �2

Moment of a force FL ML2T�2

Moment of inertia (area) L4 L4

Moment of inertia (mass) FLT 2 ML2

Momentum FT MLT�1

Power FLT�1 ML2T�3

Pressure FL�2 ML�1T�2

Specific heat L2T�2 �1 L2T�2 �1

Specific weight FL�3 ML�2T�2

Strain F0L 0T 0 M0L0T 0

Stress FL�2 ML�1T�2

Surface tension FL�1 MT�2

Temperature
Time T T
Torque FL ML 2T�2

Velocity LT�1 LT�1

Viscosity (dynamic) FL�2T ML�1T�1

Viscosity (kinematic) L2T�1 L2T�1

Volume L3 L3

Work FL ML2T�2

™™

™™

FLT MLT
System System
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1.2 Dimensions, Dimensional Homogeneity, and Units 5

premise that all equations describing physical phenomena must be dimensionally homoge-
neous. For example, the equation for the velocity, V, of a uniformly accelerated body is

(1.1)

where V0 is the initial velocity, a the acceleration, and t the time interval. In terms of dimen-
sions the equation is

and thus Eq. 1.1 is dimensionally homogeneous.
Some equations that are known to be valid contain constants having dimensions. The

equation for the distance, d, traveled by a freely falling body can be written as

(1.2)

and a check of the dimensions reveals that the constant must have the dimensions of LT�2

if the equation is to be dimensionally homogeneous. Actually, Eq. 1.2 is a special form of
the well-known equation from physics for freely falling bodies,

(1.3)

in which g is the acceleration of gravity. Equation 1.3 is dimensionally homogeneous and
valid in any system of units. For g � 32.2 ft/s2 the equation reduces to Eq. 1.2, and thus
Eq. 1.2 is valid only for the system of units using feet and seconds. Equations that are
restricted to a particular system of units can be denoted as restricted homogeneous equa-
tions, as opposed to equations valid in any system of units, which are general homogeneous
equations. The concept of dimensions also forms the basis for the powerful tool of dimen-
sional analysis, which is considered in detail in Chapter 7.

Note to the users of this text. All of the examples in the text use a consistent problem-
solving methodology, which is similar to that in other engineering courses such as statics.
Each example highlights the key elements of analysis: Given, Find, Solution, and Comment.

The Given and Find are steps that ensure the user understands what is being asked
in the problem and explicitly list the items provided to help solve the problem.

The Solution step is where the equations needed to solve the problem are formulated
and the problem is actually solved. In this step, there are typically several other tasks that
help to set up the solution and are required to solve the problem. The first is a drawing of
the problem; where appropriate, it is always helpful to draw a sketch of the problem. Here
the relevant geometry and coordinate system to be used as well as features such as control
volumes, forces and pressures, velocities, and mass flow rates are included. This helps in
gaining a visual understanding of the problem. Making appropriate assumptions to solve
the problem is the second task. In a realistic engineering problem-solving environment, the
necessary assumptions are developed as an integral part of the solution process. Assump-
tions can provide appropriate simplifications or offer useful constraints, both of which can
help in solving the problem. Throughout the examples in this text, the necessary assump-
tions are embedded within the Solution step, as they are in solving a real-world problem.
This provides a realistic problem-solving experience.

The final element in the methodology is the Comment. For the examples in the text,
this section is used to provide further insight into the problem or the solution. It can also
be a point in the analysis at which certain questions are posed. For example: Is the answer
reasonable, and does it make physical sense? Are the final units correct? If a certain pa-
rameter were changed, how would the answer change? Adopting this type of methodology
will aid in the development of problem-solving skills for fluid mechanics, as well as other
engineering disciplines.

d �
gt2

2

d � 16.1t 
2

LT 
�1 � LT 

�1 � LT 
�1

V � V0 � at
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6 Chapter 1 ■ Introduction

GIVEN A commonly used equation for determining the
volume rate of flow, Q, of a liquid through an orifice located in
the side of a tank as shown in Fig. E1.1 is

where A is the area of the orifice, g is the acceleration of grav-
ity, and h is the height of the liquid above the orifice.

FIND Investigate the dimensional homogeneity of this
formula.

Q � 0.61A12gh

SOLUTION

Restricted and General Homogeneous Equations

A quick check of the dimensions reveals that

and, therefore, the equation expressed as Eq. 1 can only be
dimensionally correct if the number, 4.90, has the dimensions
of L1/ 2T�1. Whenever a number appearing in an equation or
formula has dimensions, it means that the specific value of
the number will depend on the system of units used. Thus,
for the case being considered with feet and seconds used as
units, the number 4.90 has units of ft1/ 2/s. Equation 1 will only
give the correct value for Q (in ft3/s) when A is expressed in
square feet and h in feet. Thus, Eq. 1 is a restricted homoge-
neous equation, whereas the original equation is a general ho-
mogeneous equation that would be valid for any consistent
system of units. A quick check of the dimensions of the vari-
ous terms in an equation is a useful practice and will often be
helpful in eliminating errors—that is, as noted previously, all
physically meaningful equations must be dimensionally ho-
mogeneous. We have briefly alluded to units in this example,
and this important topic will be considered in more detail in
the next section.

L3T 
�1 � 14.902 1L5/2 2

EXAMPLE 1.1

The dimensions of the various terms in the equation are

These terms, when substituted into the equation, yield the
dimensional form

or

It is clear from this result that the equation is dimensionally ho-
mogeneous (both sides of the formula have the same dimensions
of L3T�1), and the number (0.61 ) is dimensionless.

COMMENT If we were going to use this relationship re-
peatedly, we might be tempted to simplify it by replacing g
with its standard value of 32.2 ft/s2 and rewriting the formula as

(1)Q � 4.90 A1h

12

1L3T 
�12 � 3 10.61212 4 1L3 T 

�12

1L3T 
�12 � 10.612 1L22 1122 1LT 

�221/21L21/2

 h � height � L

 g � acceleration of gravity � LT 
�2

 A � area � L2

 Q � volume/time � L3T 
�1

(a)

h

A
Q

(b)

F I G U R E  E1.1

1.2.1 Systems of Units

In addition to the qualitative description of the various quantities of interest, it is generally
necessary to have a quantitative measure of any given quantity. For example, if we measure
the width of this page in the book and say that it is 10 units wide, the statement has no
meaning until the unit of length is defined. If we indicate that the unit of length is a meter,
and define the meter as some standard length, a unit system for length has been established
(and a numerical value can be given to the page width). In addition to length, a unit must
be established for each of the remaining basic quantities (force, mass, time, and tempera-
ture). There are several systems of units in use and we shall consider two systems that are
commonly used in engineering.

c01Introduction.qxd  9/24/10  11:11 AM  Page 6



1.2 Dimensions, Dimensional Homogeneity, and Units 7

F l u i d s  i n  t h e  N e w s

How long is a foot? Today, in the United States, the common
length unit is the foot, but throughout antiquity the unit used to
measure length has quite a history. The first length units were
based on the lengths of various body parts. One of the earliest
units was the Egyptian cubit, first used around 3000 B.C. and
defined as the length of the arm from elbow to extended fin-
gertips. Other measures followed with the foot simply taken
as the length of a man’s foot. Since this length obviously
varies from person to person it was often “standardized” by
using the length of the current reigning royalty’s foot. In 1791

a special French commission proposed that a new universal
length unit called a meter (metre) be defined as the distance
of one-quarter of the earth’s meridian (north pole to the equa-
tor) divided by 10 million. Although controversial, the meter
was accepted in 1799 as the standard. With the development
of advanced technology, the length of a meter was redefined
in 1983 as the distance traveled by light in a vacuum during
the time interval of 1/299,792,458 s. The foot is now defined
as 0.3048 meter. Our simple rulers and yardsticks indeed
have an intriguing history.

International System (SI). In 1960, the Eleventh General Conference on Weights
and Measures, the international organization responsible for maintaining precise uniform stan-
dards of measurements, formally adopted the International System of Units as the interna-
tional standard. This system, commonly termed SI, has been adopted worldwide and is widely
used (although certainly not exclusively) in the United States. It is expected that the long-term
trend will be for all countries to accept SI as the accepted standard, and it is imperative that
engineering students become familiar with this system. In SI the unit of length is the meter
(m), the time unit is the second (s), the mass unit is the kilogram (kg), and the temperature
unit is the kelvin (K). Note that there is no degree symbol used when expressing a tempera-
ture in kelvin units. The Kelvin temperature scale is an absolute scale and is related to the
Celsius (centigrade) scale (�C) through the relationship

Although the Celsius scale is not in itself part of SI, it is common practice to specify tem-
peratures in degrees Celsius when using SI units.

K � °C � 273.15

British Gravitational (BG) System. In the BG system the unit of length is the
foot (ft), the time unit is the second (s), the force unit is the pound (lb), and the temperature
unit is the degree Fahrenheit (�F), or the absolute temperature unit is the degree Rankine (�R),
where

The mass unit, called the slug, is defined from Newton’s second law (force � mass �
acceleration) as

This relationship indicates that a 1-lb force acting on a mass of 1 slug will give the mass
an acceleration of 1 ft/s2.

The weight, w (which is the force due to gravity, g), of a mass, m, is given by the
equation

w � mg

and in BG units

w

Since Earth’s standard gravity is taken as g � 32.174 ft/s2 (commonly approximated as
32.2 ft/s2), it follows that a mass of 1 slug weighs 32.2 lb under standard gravity.

1lb2 � m 1slugs2 g 1ft/s22

1 lb � 11 slug2 11 ft/s22

°R � °F � 459.67
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The force unit, called the newton (N), is defined from Newton’s second law as

Thus, a 1-N force acting on a 1-kg mass will give the mass an acceleration of 1 m/s2. Stan-
dard gravity in SI is 9.807 m/s2 (commonly approximated as 9.81 m/s2) so that a 1-kg mass
weighs 9.81 N under standard gravity. Note that weight and mass are different, both qual-
itatively and quantitatively! The unit of work in SI is the joule (J), which is the work done
when the point of application of a 1-N force is displaced through a 1-m distance in the
direction of the force. Thus,

The unit of power is the watt (W) defined as a joule per second. Thus,

Prefixes for forming multiples and fractions of SI units are commonly used. For exam-
ple, the notation kN would be read as “kilonewtons” and stands for 103 N. Similarly, mm
would be read as “millimeters” and stands for 10�3 m. The centimeter is not an accepted
unit of length in the SI system, and for most problems in fluid mechanics in which SI units
are used, lengths will be expressed in millimeters or meters.

In this text we will use the BG system and SI for units. Approximately one-half the
problems and examples are given in BG units and one-half in SI units. Tables 1.2 and 1.3
provide conversion factors for some quantities that are commonly encountered in fluid
mechanics, and these tables are located on the inside of the back cover. Note that in these
tables (and others) the numbers are expressed by using computer exponential notation. For
example, the number 5.154 E � 2 is equivalent to 5.154 � 102 in scientific notation, and
the number 2.832 E � 2 is equivalent to 2.832 � 10�2. More extensive tables of conver-
sion factors for a large variety of unit systems can be found in Appendix E.

1 W � 1 J/s � 1 N.m/s

1 J � 1 N.m

1 N � 11 kg2 11 m/s22

8 Chapter 1 ■ Introduction

TA B L E 1 . 2

Conversion Factors from BG Units to SI Units

(See inside of back cover.)

TA B L E 1 . 3

Conversion Factors from SI Units to BG Units

(See inside of back cover.)

F l u i d s  i n  t h e  N e w s

Units and space travel A NASA spacecraft, the Mars Climate
Orbiter, was launched in December 1998 to study the Martian
geography and weather patterns. The spacecraft was slated to
begin orbiting Mars on September 23, 1999. However, NASA
officials lost communication with the spacecraft early that
day, and it is believed that the spacecraft broke apart or over-
heated because it came too close to the surface of Mars. Errors

in the maneuvering commands sent from Earth caused the
Orbiter to sweep within 37 miles of the surface rather than the
intended 93 miles. The subsequent investigation revealed that
the errors were due to a simple mix-up in units. One team con-
trolling the Orbiter used SI units whereas another team used
BG units. This costly experience illustrates the importance of
using a consistent system of units.
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1.4 Measures of Fluid Mass and Weight 9

1.3 Analysis of Fluid Behavior

The study of fluid mechanics involves the same fundamental laws you have encountered in
physics and other mechanics courses. These laws include Newton’s laws of motion, conser-
vation of mass, and the first and second laws of thermodynamics. Thus, there are strong
similarities between the general approach to fluid mechanics and to rigid-body and
deformable-body solid mechanics.

The broad subject of fluid mechanics can be generally subdivided into fluid statics,
in which the fluid is at rest, and fluid dynamics, in which the fluid is moving. In subse-
quent chapters we will consider both of these areas in detail. Before we can proceed, how-
ever, it will be necessary to define and discuss certain fluid properties that are intimately
related to fluid behavior. In the following several sections, the properties that play an impor-
tant role in the analysis of fluid behavior are considered.

1.4 Measures of Fluid Mass and Weight

1.4.1 Density

The density of a fluid, designated by the Greek symbol � (rho), is defined as its mass per
unit volume. Density is typically used to characterize the mass of a fluid system. In the BG
system, � has units of slugs/ft3 and in SI the units are kg/m3.

The value of density can vary widely between different fluids, but for liquids, varia-
tions in pressure and temperature generally have only a small effect on the value of �. The
small change in the density of water with large variations in temperature is illustrated in
Fig. 1.2. Tables 1.4 and 1.5 list values of density for several common liquids. The density
of water at 60 �F is 1.94 slugs/ft3 or 999 kg/m3. The large difference between those two val-
ues illustrates the importance of paying attention to units! Unlike liquids, the density of a
gas is strongly influenced by both pressure and temperature, and this difference is discussed
in the next section.

The specific volume, y, is the volume per unit mass and is therefore the reciprocal of
the density—that is,

(1.4)

This property is not commonly used in fluid mechanics but is used in thermodynamics.

y �
1
�

F I G U R E  1.2 Density of water as a function of temperature.
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1.4.2 Specific Weight

The specific weight of a fluid, designated by the Greek symbol � (gamma), is defined
as its weight per unit volume. Thus, specific weight is related to density through the
equation

(1.5)

where g is the local acceleration of gravity. Just as density is used to characterize the mass
of a fluid system, the specific weight is used to characterize the weight of the system. In
the BG system, � has units of lb/ft3 and in SI the units are N/m3. Under conditions of stan-
dard gravity (g � 32.174 ft/s2 � 9.807 m/s2), water at 60 �F has a specific weight of 62.4 lb/ft3

and 9.80 kN/m3. Tables 1.4 and 1.5 list values of specific weight for several common liquids
(based on standard gravity). More complete tables for water can be found in Appendix B
(Tables B.1 and B.2).

1.4.3 Specific Gravity

The specific gravity of a fluid, designated as SG, is defined as the ratio of the density of
the fluid to the density of water at some specified temperature. Usually the specified temper-
ature is taken as 4 �C (39.2 �F), and at this temperature the density of water is 1.94 slugs/ft3

or 1000 kg/m3. In equation form specific gravity is expressed as

(1.6)

and since it is the ratio of densities, the value of SG does not depend on the system of units
used. For example, the specific gravity of mercury at 20 �C is 13.55. This is illustrated by
the figure in the margin. Thus, the density of mercury can thus be readily calculated in
either BG or SI units through the use of Eq. 1.6 as

or

It is clear that density, specific weight, and specific gravity are all interrelated, and from
a knowledge of any one of the three the others can be calculated.

�Hg � 113.552 11000 kg/m32 � 13.6 � 103 kg/m3

�Hg � 113.552 11.94 slugs/ft32 � 26.3 slugs/ft3

SG �
�

�H2O@4°C

� � �g

10 Chapter 1 ■ Introduction

TA B L E 1 . 4

Approximate Physical Properties of Some Common Liquids (BG Units)

(See inside of front cover.)

TA B L E 1 . 5

Approximate Physical Properties of Some Common Liquids (SI Units)

(See inside of front cover.)

13.55

1

Water

Mercury
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1.5 Ideal Gas Law 11

1.5 Ideal Gas Law

Gases are highly compressible in comparison to liquids, with changes in gas density directly
related to changes in pressure and temperature through the equation

(1.7)

where p is the absolute pressure, � the density, T the absolute temperature,1 and R is a gas
constant. Equation 1.7 is commonly termed the perfect or ideal gas law, or the equation of
state for an ideal gas. It is known to closely approximate the behavior of real gases under
normal conditions when the gases are not approaching liquefaction.

Pressure in a fluid at rest is defined as the normal force per unit area exerted on a
plane surface (real or imaginary) immersed in a fluid and is created by the bombardment
of the surface with the fluid molecules. From the definition, pressure has the dimension of
FL�2 and in BG units is expressed as lb/ft2 (psf) or lb/in.2 (psi) and in SI units as N/m2.
In SI, 1 N/m2 is defined as a pascal, abbreviated as Pa, and pressures are commonly spec-
ified in pascals. The pressure in the ideal gas law must be expressed as an absolute pres-
sure, which means that it is measured relative to absolute zero pressure (a pressure that
would only occur in a perfect vacuum). Standard sea-level atmospheric pressure (by inter-
national agreement) is 14.696 psi (abs) or 101.33 kPa (abs). For most calculations, these
pressures can be rounded to 14.7 psi and 101 kPa, respectively. In engineering, it is com-
mon practice to measure pressure relative to the local atmospheric pressure; when measured
in this fashion it is called gage pressure. Thus, the absolute pressure can be obtained from
the gage pressure by adding the value of the atmospheric pressure. For example, as shown
by the figure in the margin, a pressure of 30 psi (gage) in a tire is equal to 44.7 psi (abs)
at standard atmospheric pressure. Pressure is a particularly important fluid characteristic,
and it will be discussed more fully in the next chapter.

The gas constant, R, which appears in Eq. 1.7, depends on the particular gas and is
related to the molecular weight of the gas. Values of the gas constant for several common
gases are listed in Tables 1.6 and 1.7. Also in these tables the gas density and specific weight
are given for standard atmospheric pressure and gravity and for the temperature listed. More
complete tables for air at standard atmospheric pressure can be found in Appendix B (Tables
B.3 and B.4).

� �
p

RT

1We will use T to represent temperature in thermodynamic relationships, although T is also used to denote the basic dimension
of time.

TA B L E 1 . 6

Approximate Physical Properties of Some Common Gases at Standard 
Atmospheric Pressure (BG Units)

(See inside of front cover.)

TA B L E 1 . 7

Approximate Physical Properties of Some Common Gases at Standard 
Atmospheric Pressure (SI Units)

(See inside of front cover.)

44.7

14.7 0

0 –14.7

30

(abs) (gage)
p, psi

c01Introduction.qxd  9/24/10  11:11 AM  Page 11



12 Chapter 1 ■ Introduction

GIVEN The compressed air tank shown in Fig. E1.2a has a
volume of 0.84 ft3. The tank is filled with air at a gage pressure
of 50 psi and a temperature of 70 �F. The atmospheric pressure
is 14.7 psi (abs).

FIND Determine the density of the air and the weight of air
in the tank.

SOLUTION

Ideal Gas Law

pressure does. Thus, a scuba diving tank at a gage pressure of
100 psi does not contain twice the amount of air as when the
gage reads 50 psi.

EXAMPLE 1.2

The air density can be obtained from the ideal gas law (Eq. 1.7)

so that

(Ans)

COMMENT Note that both the pressure and the tempera-
ture were changed to absolute values.
The weight,w, of the air is equal to

so that

(Ans)

since 1 lb � 1 slug�ft/s2.

COMMENT By repeating the calculations for various
values of the pressure, p, the results shown in Fig. E1.2b are
obtained. Note that doubling the gage pressure does not dou-
ble the amount of air in the tank, but doubling the absolute

 w � 0.276 lb

 � 0.276 slug..ft/s2

 � 10.0102 slugs/ft32 132.2 ft/s22 10.84 ft32

 w � �g � 1volume2

� 0.0102 slugs/ft3

� �
150 lb/in.2 � 14.7 lb/in.22 1144 in.2/ft22

11716 ft.lb/slug.°R2 3 170 � 4602°R 4

� �
p

RT

F I G U R E  E1.2a (Photograph 
courtesy of Jenny Products, Inc.)

10080604020–20 0
p, psi (gage)

w
, l

b

(50 psi, 0.276 lb)

0.4

0.3

0.2

0.1

0

0.5

F I G U R E  E1.2b

V1.3 Viscous fluids

1.6 Viscosity

The properties of density and specific weight are measures of the “heaviness” of a fluid. It
is clear, however, that these properties are not sufficient to uniquely characterize how flu-
ids behave, as two fluids (such as water and oil) can have approximately the same value of
density but behave quite differently when flowing. There is apparently some additional prop-
erty that is needed to describe the “fluidity” of the fluid (i.e., how easily it flows).

To determine this additional property, consider a hypothetical experiment in which a
material is placed between two very wide parallel plates as shown in Fig. 1.3. The bottom
plate is rigidly fixed, but the upper plate is free to move.

When the force P is applied to the upper plate, it will move continuously with a veloc-
ity U (after the initial transient motion has died out) as illustrated in Fig. 1.3. This behavior
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1.6 Viscosity 13

is consistent with the definition of a fluid—that is, if a shearing stress is applied to a fluid
it will deform continuously. A closer inspection of the fluid motion between the two plates
would reveal that the fluid in contact with the upper plate moves with the plate velocity, U,
and the fluid in contact with the bottom fixed plate has a zero velocity. The fluid between the
two plates moves with velocity u � u(y) that would be found to vary linearly, u � Uy/b, as
illustrated in Fig. 1.3. Thus, a velocity gradient, du/dy, is developed in the fluid between the
plates. In this particular case the velocity gradient is a constant, as du/dy � U/b, but in more
complex flow situations this would not be true. The experimental observation that the fluid
“sticks” to the solid boundaries is a very important one in fluid mechanics and is usually
referred to as the no-slip condition. All fluids, both liquids and gases, satisfy this condition.

In a small time increment �t, an imaginary vertical line AB in the fluid (see Fig. 1.3)
would rotate through an angle, ��, so that

Since �a � U �t, it follows that

Note that in this case, �� is a function not only of the force P (which governs U) but also of
time. We consider the rate at which �� is changing and define the rate of shearing strain, as

which in this instance is equal to

A continuation of this experiment would reveal that as the shearing stress, �, is
increased by increasing P (recall that � � P/A), the rate of shearing strain is increased in
direct proportion—that is,

or

This result indicates that for common fluids, such as water, oil, gasoline, and air, the shearing
stress and rate of shearing strain (velocity gradient) can be related with a relationship of the form

(1.8)� � � 

du

dy

� r
du

dy

� r �
#

�
#

�
U

b
�

du

dy

�
#

� lim
�tS0

 

��

�t

�
#
,

�� �
U �t

b

tan �� � �� �
�a

b

V1.4 No-slip 
condition

V1.5 Capillary tube
viscometer

F I G U R E  1.3 Behavior of a fluid 
placed between two parallel plates.

b

U

δβ

B'B

P

u

Fixed plate

y

δ

A

a
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where the constant of proportionality is designated by the Greek symbol � (mu) and is
called the absolute viscosity, dynamic viscosity, or simply the viscosity of the fluid. In accor-
dance with Eq. 1.8, plots of � versus du/dy should be linear with the slope equal to the vis-
cosity as illustrated in Fig. 1.4. The actual value of the viscosity depends on the particular
fluid, and for a particular fluid the viscosity is also highly dependent on temperature as
illustrated in Fig. 1.4 with the two curves for water. Fluids for which the shearing stress is
linearly related to the rate of shearing strain (also referred to as rate of angular deforma-
tion) are designated as Newtonian fluids. Fortunately, most common fluids, both liquids
and gases, are Newtonian. A more general formulation of Eq. 1.8, which applies to more
complex flows of Newtonian fluids, is given in Section 6.8.1.

Fluids for which the shearing stress is not linearly related to the rate of shearing strain
are designated as non-Newtonian fluids. It is beyond the scope of this book to consider the
behavior of such fluids, and we will only be concerned with Newtonian fluids.

14 Chapter 1 ■ Introduction

V1.6 Non-
Newtonian behavior

F I G U R E  1.4 Linear varia-
tion of shearing stress with rate of shear-
ing strain for common fluids.

S
he

ar
in

g 
st

re
ss

, 
 

Crude oil (60 °F)

μ

1
Water (60 °F)

Water (100 °F)

Air (60 °F)

Rate of shearing strain, du__
dy

τ

F l u i d s  i n  t h e  N e w s

A vital fluid In addition to air and water, another fluid that is
essential for human life is blood. Blood is an unusual fluid con-
sisting of red blood cells that are disk-shaped, about 8 microns
in diameter, suspended in plasma. As you would suspect, since
blood is a suspension, its mechanical behavior is that of a non-
Newtonian fluid. Its density is only slightly higher than that of
water, but its typical apparent viscosity is significantly higher
than that of water at the same temperature. It is difficult to mea-
sure the viscosity of blood since it is a non-Newtonian fluid
and the viscosity is a function of the shear rate. As the shear

rate is increased from a low value, the apparent viscosity de-
creases and approaches asymptotically a constant value at high
shear rates. The “asymptotic” value of the viscosity of normal
blood is three to four times the viscosity of water. The viscos-
ity of blood is not routinely measured like some biochemical
properties such as cholesterol and triglycerides, but there is
some evidence indicating that the viscosity of blood may play
a role in the development of cardiovascular disease. If this
proves to be true, viscosity could become a standard variable to
be routinely measured. (See Problem 1.38.)

From Eq. 1.8 it can be readily deduced that the dimensions of viscosity are FTL�2.
Thus, in BG units viscosity is given as lb�s/ft2 and in SI units as N�s/m2. Values of viscos-
ity for several common liquids and gases are listed in Tables 1.4 through 1.7. A quick glance
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1.6 Viscosity 15

at these tables reveals the wide variation in viscosity among fluids. Viscosity is only mildly
dependent on pressure, and the effect of pressure is usually neglected. However, as men-
tioned previously, and as illustrated in Appendix B (Figs. B.1 and B.2), viscosity is very
sensitive to temperature.

Quite often viscosity appears in fluid flow problems combined with the density in the
form

This ratio is called the kinematic viscosity and is denoted with the Greek symbol 	 (nu). The
dimensions of kinematic viscosity are L2/T, and the BG units are ft2/s and SI units are m2/s.
Values of kinematic viscosity for some common liquids and gases are given in Tables 1.4
through 1.7. More extensive tables giving both the dynamic and kinematic viscosities for
water and air can be found in Appendix B (Tables B.1 through B.4), and graphs showing
the variation in both dynamic and kinematic viscosity with temperature for a variety of flu-
ids are also provided in Appendix B (Figs. B.1 and B.2).

Although in this text we are primarily using BG and SI units, dynamic viscosity is often
expressed in the metric CGS (centimeter-gram-second) system with units of dyne�s/cm2. This
combination is called a poise, abbreviated P. In the CGS system, kinematic viscosity has units
of cm2/s, and this combination is called a stoke, abbreviated St.

� �
�

�

F l u i d s  i n  t h e  N e w s

An extremely viscous fluid Pitch is a derivative of tar once
used for waterproofing boats. At elevated temperatures it
flows quite readily. At room temperature it feels like a solid—
it can even be shattered with a blow from a hammer. How-
ever, it is a liquid. In 1927 Professor Parnell heated some
pitch and poured it into a funnel. Since that time it has been
allowed to flow freely (or rather, drip slowly) from the funnel.

The flowrate is quite small. In fact, to date only seven drops
have fallen from the end of the funnel, although the eighth
drop is poised ready to fall “soon.” While nobody has actually
seen a drop fall from the end of the funnel, a beaker below the
funnel holds the previous drops that fell over the years. It is
estimated that the pitch is about 100 billion times more vis-
cous than water.

GIVEN A dimensionless combination of variables that
is important in the study of viscous flow through pipes is
called the Reynolds number, Re, defined as �VD/� where,
as indicated in Fig. E1.3, � is the fluid density, V the mean
fluid velocity, D the pipe diameter, and � the fluid viscosity.
A Newtonian fluid having a viscosity of 0.38 N�s/m2 and a
specific gravity of 0.91 flows through a 25-mm-diameter
pipe with a velocity of 2.6 m/s.

FIND Determine the value of the Reynolds number using

(a) SI units and

(b) BG units.

Viscosity and Dimensionless QuantitiesEXAMPLE 1.3

F I G U R E  E1.3

V

D

r, m
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16 Chapter 1 ■ Introduction

SOLUTION

and the value of the Reynolds number is

(Ans)

since 1 lb � 1 slug�ft/s2.

COMMENT The values from part (a) and part (b) are the
same, as expected. Dimensionless quantities play an important
role in fluid mechanics, and the significance of the Reynolds
number, as well as other important dimensionless combina-
tions, will be discussed in detail in Chapter 7. It should be
noted that in the Reynolds number it is actually the ratio �/�
that is important, and this is the property that we have defined
as the kinematic viscosity.

 � 156 1slug.ft/s22/lb � 156

 Re �
11.77 slugs/ft32 18.53 ft/s2 18.20 � 10�2 ft2

7.94 � 10�3 lb.s/ft2

 � � 10.38 N.s/m22 12.089 � 10�22 � 7.94 � 10�3 lb.s/ft2

 D � 10.025 m2 13.2812 � 8.20 � 10�2 ft

 V � 12.6 m/s2 13.2812 � 8.53 ft/s

 � � 1910 kg/m32 11.940 � 10�32 � 1.77 slugs/ft3(a) The fluid density is calculated from the specific gravity as

and from the definition of the Reynolds number

However, since 1 N � 1 kg�m/s2 it follows that the Reynolds
number is unitless (dimensionless)—that is,

(Ans)

COMMENT The value of any dimensionless quantity does
not depend on the system of units used if all variables that make
up the quantity are expressed in a consistent set of units. To check
this we will calculate the Reynolds number using BG units.

(b) We first convert all the SI values of the variables appear-
ing in the Reynolds number to BG values by using the conver-
sion factors from Table 1.3. Thus,

Re � 156

 � 156 1kg.m/s22/N

 Re �
�VD

�
�
1910 kg/m32 12.6 m/s2 125 mm2 110�3 m/mm 2

0.38 N.s/m2

� � SG �H2O@4°C � 0.91 11000 kg/m32 � 910 kg/m3

GIVEN The velocity distribution for the flow of a Newto-
nian fluid between two fixed wide, parallel plates (see Fig.
E1.4a) is given by the equation

where V is the mean velocity. The fluid has a viscosity of
0.04 lb�s/ft2. Also, V � 2 ft/s and h � 0.2 in. 

u �
3V

2
c1 � a

y

h
b

2

d

SOLUTION

Newtonian Fluid Shear Stress

(a) Along the bottom wall y � �h so that (from Eq. 2)

du

dy
�

3V

h

FIND Determine

(a) the shearing stress acting on the bottom wall and

(b) the shearing stress acting on a plane parallel to the walls
and passing through the centerline (midplane).

EXAMPLE 1.4

For this type of parallel flow the shearing stress is obtained
from Eq. 1.8.

(1)

Thus, if the velocity distribution, u � u(y), is known, the shearing
stress can be determined at all points by evaluating the velocity
gradient, du/dy. For the distribution given

(2)
du

dy
� �

3Vy

h2

� � � 

du

dy

F I G U R E  E1.4a

h

h

y u
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1.7 Compressibility of Fluids 17

and therefore the shearing stress is

(Ans)

COMMENT This stress creates a drag on the wall. Since
the velocity distribution is symmetrical, the shearing stress
along the upper wall would have the same magnitude and 
direction.

(b) Along the midplane where y � 0, it follows from Eq. 2 that

and thus the shearing stress is

(Ans)

COMMENT From Eq. 2 we see that the velocity gradi-
ent (and therefore the shearing stress) varies linearly with y

�midplane � 0

du

dy
� 0

 � 14.4 lb/ft2 1in direction of flow2

 �bottom wall � � a
3V

h
b �

10.04 lb.s/ft22 132 12 ft/s2

10.2 in.2 11 ft/12 in.2

and in this particular example varies from 0 at the center of the
channel to 14.4 lb/ft2 at the walls. This is shown in Fig. E1.4b.
For the more general case the actual variation will, of course,
depend on the nature of the velocity distribution.

F I G U R E  E1.4b

1.7 Compressibility of Fluids

1.7.1 Bulk Modulus

An important question to answer when considering the behavior of a particular fluid
is how easily can the volume (and thus the density) of a given mass of the fluid be
changed when there is a change in pressure? That is, how compressible is the fluid? A
property that is commonly used to characterize compressibility is the bulk modulus,
Ey, defined as

(1.9)

where dp is the differential change in pressure needed to create a differential change in vol-
ume, of a volume , as shown by the figure in the margin. The negative sign is included
since an increase in pressure will cause a decrease in volume. Because a decrease in vol-
ume of a given mass, m � will result in an increase in density, Eq. 1.9 can also be
expressed as

(1.10)

The bulk modulus (also referred to as the bulk modulus of elasticity) has dimensions
of pressure, FL�2. In BG units values for Ey are usually given as lb/in.2 (psi) and in
SI units as N/m2 (Pa). Large values for the bulk modulus indicate that the fluid is rel-
atively incompressible—that is, it takes a large pressure change to create a small
change in volume. As expected, values of Ey for common liquids are large (see Tables 1.4
and 1.5).

Ey �
dp

d�/�

�V,

VdV,

Ey � �
dp

dV/V

p

V

p + dp

V – dV

V1.7 Water balloon
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1.7.2 Compression and Expansion of Gases

When gases are compressed (or expanded), the relationship between pressure and density
depends on the nature of the process. If the compression or expansion takes place under
constant temperature conditions (isothermal process), then from Eq. 1.7

(1.11)

If the compression or expansion is frictionless and no heat is exchanged with the surround-
ings (isentropic process), then

(1.12)

where k is the ratio of the specific heat at constant pressure, cp, to the specific heat at con-
stant volume, cy (i.e., k � cp /cy). The two specific heats are related to the gas constant, R,
through the equation R � cp � cy. The pressure–density variations for isothermal and isen-
tropic conditions are illustrated in the margin figure. As was the case for the ideal gas law,
the pressure in both Eqs. 1.11 and 1.12 must be expressed as an absolute pressure. Values
of k for some common gases are given in Tables 1.6 and 1.7 and for air over a range of
temperatures in Appendix B (Tables B.3 and B.4). It is clear that in dealing with gases
greater attention will need to be given to the effect of compressibility on fluid behavior.
However, as discussed in Section 3.8, gases can often be treated as incompressible fluids if
the changes in pressure are small.

p

�k
� constant

p

�
� constant

Since such large pressures are required to effect a change in volume, we conclude
that liquids can be considered as incompressible for most practical engineering applications.
As liquids are compressed the bulk modulus increases, but the bulk modulus near atmo-
spheric pressure is usually the one of interest. The use of bulk modulus as a property describ-
ing compressibility is most prevalent when dealing with liquids, although the bulk modulus
can also be determined for gases.

18 Chapter 1 ■ Introduction

F l u i d s  i n  t h e  N e w s

This water jet is a blast Usually liquids can be treated as in-
compressible fluids. However, in some applications the com-
pressibility of a liquid can play a key role in the operation of a
device. For example, a water pulse generator using compressed
water has been developed for use in mining operations. It can
fracture rock by producing an effect comparable to a conven-
tional explosive such as gunpowder. The device uses the energy
stored in a water-filled accumulator to generate an ultrahigh-
pressure water pulse ejected through a 10- to 25-mm-diameter
discharge valve. At the ultrahigh pressures used (300 to 400 MPa,

or 3000 to 4000 atmospheres), the water is compressed (i.e., the
volume reduced) by about 10 to 15%. When a fast-opening
valve within the pressure vessel is opened, the water expands
and produces a jet of water that upon impact with the target ma-
terial produces an effect similar to the explosive force from con-
ventional explosives. Mining with the water jet can eliminate
various hazards that arise with the use of conventional chemical
explosives such as those associated with the storage and use of
explosives and the generation of toxic gas by-products that 
require extensive ventilation. (See Problem 1.63.)

p

Isothermal

Isentropic 
(k = 1.4)

ρ

GIVEN A cubic foot of air at an absolute pressure of 14.7 psi
is compressed isentropically to ft3 by the tire pump shown in
Fig. E1.5a.

1
2

FIND What is the final pressure?

Isentropic Compression of a GasEXAMPLE 1.5
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1.7 Compressibility of Fluids 19

1.7.3 Speed of Sound

Another important consequence of the compressibility of fluids is that disturbances introduced
at some point in the fluid propagate at a finite velocity. For example, if a fluid is flowing in
a pipe and a valve at the outlet is suddenly closed (thereby creating a localized disturbance),
the effect of the valve closure is not felt instantaneously upstream. It takes a finite time for
the increased pressure created by the valve closure to propagate to an upstream location.
Similarly, a loudspeaker diaphragm causes a localized disturbance as it vibrates, and the small
change in pressure created by the motion of the diaphragm is propagated through the air with
a finite velocity. The velocity at which these small disturbances propagate is called the
acoustic velocity or the speed of sound, c. It can be shown that the speed of sound is related
to changes in pressure and density of the fluid medium through the equation

(1.13)c �
B

dp

d�

SOLUTION

even though air is often considered to be easily compressed (at
least compared to liquids), it takes considerable pressure to sig-
nificantly reduce a given volume of air as is done in an auto-
mobile engine where the compression ratio is on the order of

� 1/8 � 0.125.Vf 
Vi

For an isentropic compression

where the subscripts i and f refer to initial and final states, re-
spectively. Since we are interested in the final pressure, pf, it
follows that

As the volume, is reduced by one-half, the density must
double, since the mass, of the gas remains constant.
Thus, with k � 1.40 for air 

(Ans)

COMMENT By repeating the calculations for various
values of the ratio of the final volume to the initial volume,

the results shown in Fig. E1.5b are obtained. Note thatVf 
Vi,

pf � 1221.40114.7 psi2 � 38.8 psi 1abs2

m � � V,
V,

pf � a
�f

�i
b

k

pi

pi

�k
i

�
pf

�k
f

F I G U R E  E1.5a

F I G U R E  E1.5b
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V1.8 As fast as a
speeding bullet

c01Introduction.qxd  9/24/10  11:12 AM  Page 19



or in terms of the bulk modulus defined by Eq. 1.10

(1.14)

Because the disturbance is small, there is negligible heat transfer and the process is assumed
to be isentropic. Thus, the pressure–density relationship used in Eq. 1.13 is that for an isen-
tropic process.

For gases undergoing an isentropic process, Ey � kp, so that

and making use of the ideal gas law, it follows that

(1.15)

Thus, for ideal gases the speed of sound is proportional to the square root of the absolute
temperature. The speed of sound in air at various temperatures can be found in Appendix
B (Tables B.3 and B.4). Equation 1.14 is also valid for liquids, and values of Ey can be
used to determine the speed of sound in liquids. As shown by the figure in the margin, the speed
of sound in water is much higher than in air. If a fluid were truly incompressible (Ey � q) the
speed of sound would be infinite. The speed of sound in water for various temperatures can
be found in Appendix B (Tables B.1 and B.2).

c � 2kRT

c �
B

kp

�

c �
B

Ey
�
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GIVEN A jet aircraft flies at a speed of 550 mph at an alti-
tude of 35,000 ft, where the temperature is �66 �F and the
specific heat ratio is k � 1.4.

FIND Determine the ratio of the speed of the aircraft, V, to
that of the speed of sound, c, at the specified altitude.

SOLUTION

Speed of Sound and Mach Number

By repeating the calculations for different temperatures,
the results shown in Fig. E1.6 are obtained. Because the speed
of sound increases with increasing temperature, for a constant
airplane speed, the Mach number decreases as the temperature
increases.

EXAMPLE 1.6

From Eq. 1.15 the speed of sound can be calculated as

Since the air speed is

the ratio is

(Ans)

COMMENT This ratio is called the Mach number, Ma. If
Ma � 1.0 the aircraft is flying at subsonic speeds, whereas for
Ma � 1.0 it is flying at supersonic speeds. The Mach number
is an important dimensionless parameter used in the study of
the flow of gases at high speeds and will be further discussed
in Chapters 7 and 9.

V

c
�

807 ft/s

973 ft/s
� 0.829

V �
1550 mi/hr2 15280 ft/mi2

13600 s/hr2
� 807 ft/s

 � 973 ft/s

 � 211.402 11716 ft.lb/slug.°R2 1�66 � 4602  °R

 c � 2kRT

F I G U R E  E1.6
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1.9 Surface Tension 21

1.8 Vapor Pressure

It is a common observation that liquids such as water and gasoline will evaporate if they
are simply placed in a container open to the atmosphere. Evaporation takes place because
some liquid molecules at the surface have sufficient momentum to overcome the intermo-
lecular cohesive forces and escape into the atmosphere. As shown in the figure in the mar-
gin, if the lid on a completely liquid-filled, closed container is raised (without letting any
air in), a pressure will develop in the space as a result of the vapor that is formed by the
escaping molecules. When an equilibrium condition is reached so that the number of mol-
ecules leaving the surface is equal to the number entering, the vapor is said to be saturated
and the pressure the vapor exerts on the liquid surface is termed the vapor pressure, py.

Since the development of a vapor pressure is closely associated with molecular activ-
ity, the value of vapor pressure for a particular liquid depends on temperature. Values of
vapor pressure for water at various temperatures can be found in Appendix B (Tables B.1
and B.2), and the values of vapor pressure for several common liquids at room tempera-
tures are given in Tables 1.4 and 1.5. Boiling, which is the formation of vapor bubbles within
a fluid mass, is initiated when the absolute pressure in the fluid reaches the vapor pressure.

An important reason for our interest in vapor pressure and boiling lies in the com-
mon observation that in flowing fluids it is possible to develop very low pressure due to
the fluid motion, and if the pressure is lowered to the vapor pressure, boiling will occur.
For example, this phenomenon may occur in flow through the irregular, narrowed passages
of a valve or pump. When vapor bubbles are formed in a flowing liquid, they are swept
along into regions of higher pressure where they suddenly collapse with sufficient intensity
to actually cause structural damage. The formation and subsequent collapse of vapor bub-
bles in a flowing liquid, called cavitation, is an important fluid flow phenomenon to be
given further attention in Chapters 3 and 7.

1.9 Surface Tension

At the interface between a liquid and a gas, or between two immiscible liquids, forces
develop in the liquid surface that cause the surface to behave as if it were a “skin” or “mem-
brane” stretched over the fluid mass. Although such a skin is not actually present, this con-
ceptual analogy allows us to explain several commonly observed phenomena. For example,
a steel needle or razor blade will float on water if placed gently on the surface because the
tension developed in the hypothetical skin supports these objects. Small droplets of mer-
cury will form into spheres when placed on a smooth surface because the cohesive forces
in the surface tend to hold all the molecules together in a compact shape. Similarly, dis-
crete water droplets will form when placed on a newly waxed surface.

These various types of surface phenomena are due to the unbalanced cohesive forces
acting on the liquid molecules at the fluid surface. Molecules in the interior of the fluid
mass are surrounded by molecules that are attracted to each other equally. However, mol-
ecules along the surface are subjected to a net force toward the interior. The apparent
physical consequence of this unbalanced force along the surface is to create the hypothet-
ical skin or membrane. A tensile force may be considered to be acting in the plane of the
surface along any line in the surface. The intensity of the molecular attraction per unit
length along any line in the surface is called the surface tension and is designated by the
Greek symbol � (sigma). Surface tension is a property of the liquid and depends on tem-
perature as well as the other fluid it is in contact with at the interface. The dimensions
of surface tension are FL�1 with BG units of lb/ft and SI units of N/m. Values of surface
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tension for some common liquids (in contact with air) are given in Tables 1.4 and 1.5
and in Appendix B (Tables B.1 and B.2) for water at various temperatures. As indicated
by the figure in the margin of the previous page, the value of the surface tension decreases
as the temperature increases.

Among common phenomena associated with surface tension is the rise (or fall) of a
liquid in a capillary tube. If a small open tube is inserted into water, the water level in the
tube will rise above the water level outside the tube as is illustrated in Fig. 1.5a. In this sit-
uation we have a liquid–gas–solid interface. For the case illustrated there is an attraction
(adhesion) between the wall of the tube and liquid molecules, which is strong enough to
overcome the mutual attraction (cohesion) of the molecules and pull them up to the wall.
Hence, the liquid is said to wet the solid surface.

The height, h, is governed by the value of the surface tension, �, the tube radius, R,
the specific weight of the liquid, �, and the angle of contact, between the fluid and tube.
From the free-body diagram of Fig. 1.5b we see that the vertical force due to the surface
tension is equal to 2
R� cos � and the weight is 
R2h and these two forces must balance
for equilibrium. Thus,

so that the height is given by the relationship

(1.16)h �
2� cos �

�R

�
R2h � 2
R� cos �

�,
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F l u i d s  i n  t h e  N e w s

Walking on water Water striders are insects commonly found
on ponds, rivers, and lakes that appear to “walk” on water. A
typical length of a water strider is about 0.4 in., and they can
cover 100 body lengths in one second. It has long been recog-
nized that it is surface tension that keeps the water strider from
sinking below the surface. What has been puzzling is how they
propel themselves at such a high speed. They can’t pierce the
water surface or they would sink. A team of mathematicians and
engineers from the Massachusetts Institute of Technology
(MIT) applied conventional flow visualization techniques and

high-speed video to examine in detail the movement of the wa-
ter striders. They found that each stroke of the insect’s legs cre-
ates dimples on the surface with underwater swirling vortices
sufficient to propel it forward. It is the rearward motion of the
vortices that propels the water strider forward. To further sub-
stantiate their explanation the MIT team built a working model
of a water strider, called Robostrider, which creates surface rip-
ples and underwater vortices as it moves across a water surface.
Waterborne creatures, such as the water strider, provide an inter-
esting world dominated by surface tension. (See Problem 1.71.)

V1.10 Capillary
rise

π

h
R2h

2  R  

θ

2R

θ

(a) (b) (c)

γπ

σ

h

F I G U R E  1.5 Effect of capillary action in small tubes. (a) Rise of
column for a liquid that wets the tube. (b) Free-body diagram for calculating
column height. (c) Depression of column for a nonwetting liquid.
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1.9 Surface Tension 23

The angle of contact is a function of both the liquid and the surface. For water in contact
with clean glass It is clear from Eq. 1.16 (and shown by the figure in the margin)
that the height is inversely proportional to the tube radius. Therefore, the rise of a liquid in a
tube as a result of capillary action becomes increasingly pronounced as the tube radius is
decreased.

� � 0°.

If adhesion of molecules to the solid surface is weak compared to the cohesion
between molecules, the liquid will not wet the surface and the level in a tube placed in a
nonwetting liquid will actually be depressed, as shown in Fig. 1.5c. Mercury is a good
example of a nonwetting liquid when it is in contact with a glass tube. For nonwetting liq-
uids the angle of contact is greater than 90�, and for mercury in contact with clean glass

Surface tension effects play a role in many mechanics problems, including the move-
ment of liquids through soil and other porous media, flow of thin films, formation of drops
and bubbles, and the breakup of liquid jets. For example, surface tension is a main factor
in the formation of drops from a leaking faucet, as shown in the photograph in the margin.
Surface phenomena associated with liquid–gas, liquid–liquid, and liquid–gas–solid inter-
faces are exceedingly complex, and a more detailed and rigorous discussion of them is
beyond the scope of this text. Fortunately, in many fluid mechanics problems, surface phe-
nomena, as characterized by surface tension, are not important, as inertial, gravitational, and
viscous forces are much more dominant.

� � 130°.

GIVEN Pressures are sometimes determined by measuring
the height of a column of liquid in a vertical tube.

FIND What diameter of clean glass tubing is required so
that the rise of water at 20 �C in a tube due to a capillary action
(as opposed to pressure in the tube) is less than 1.0 mm?

SOLUTION

Capillary Rise in a Tube

COMMENT By repeating the calculations for various
values of the capillary rise, h, the results shown in Fig. E1.7
are obtained. Note that as the allowable capillary rise is de-
creased, the diameter of the tube must be significantly in-
creased. There is always some capillarity effect, but it can be
minimized by using a large enough diameter tube.

EXAMPLE 1.7

From Eq. 1.16

so that

For water at 20 �C (from Table B.2), � � 0.0728 N/m and � �
9.789 kN/m3. Since � 0� it follows that for h � 1.0 mm,

and the minimum required tube diameter, D, is

(Ans)D � 2R � 0.0298 m � 29.8 mm

 � 0.0149 m

 R �
210.0728 N/m2 112

19.789 � 103 N/m32 11.0 mm2 110�3 m/mm2

�

R �
2� cos �

�h

h �
2� cos �

�R

F I G U R E  E1.7
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F l u i d s  i n  t h e  N e w s

Spreading of oil spills. With the large traffic in oil tankers there
is great interest in the prevention of and response to oil spills. As
evidenced by the famous Exxon Valdez oil spill in Prince William
Sound in 1989, oil spills can create disastrous environmental
problems. A more recent example of this type of catastrophe is
the oil spill that occurred in the Gulf of Mexico in 2010. It is not
surprising that much attention is given to the rate at which an oil
spill spreads. When spilled, most oils tend to spread horizon-
tally into a smooth and slippery surface, called a slick. There are

many factors that influence the ability of an oil slick to spread,
including the size of the spill, wind speed and direction, and the
physical properties of the oil. These properties include surface
tension, specific gravity, and viscosity. The higher the surface
tension the more likely a spill will remain in place. Since the
specific gravity of oil is less than one it floats on top of the wa-
ter, but the specific gravity of an oil can increase if the lighter
substances within the oil evaporate. The higher the viscosity of
the oil the greater the tendency to stay in one place. 

1.10 A Brief Look Back in History

Before proceeding with our study of fluid mechanics, we should pause for a moment to
consider the history of this important engineering science. As is true of all basic scientific and
engineering disciplines, their actual beginnings are only faintly visible through the haze of
early antiquity. But we know that interest in fluid behavior dates back to the ancient civiliza-
tions. Through necessity there was a practical concern about the manner in which spears and
arrows could be propelled through the air, in the development of water supply and irrigation
systems, and in the design of boats and ships. These developments were, of course, based on
trial-and-error procedures without any knowledge of mathematics or mechanics. However, it
was the accumulation of such empirical knowledge that formed the basis for further develop-
ment during the emergence of the ancient Greek civilization and the subsequent rise of the
Roman Empire. Some of the earliest writings that pertain to modern fluid mechanics are those
of Archimedes (287–212 B.C.), a Greek mathematician and inventor who first expressed the
principles of hydrostatics and flotation. Elaborate water supply systems were built by the
Romans during the period from the fourth century B.C. through the early Christian period, and
Sextus Julius Frontinus (A.D. 40–103), a Roman engineer, described these systems in detail.
However, for the next 1000 years during the Middle Ages (also referred to as the Dark Ages),
there appears to have been little added to further understanding of fluid behavior.

As shown in Fig. 1.6, beginning with the Renaissance period (about the fifteenth century)
a rather continuous series of contributions began that forms the basis of what we consider to be
the science of fluid mechanics. Leonardo da Vinci (1452–1519) described through sketches

Year

200019001800170016001500140013001200

Geoffrey Taylor

Theodor von Karman

Ludwig Prandtl

Osborne Reynolds

Ernst Mach

George Stokes

Leonardo da Vinci

Galileo Galilei

Isaac Newton

Daniel Bernoulli

Leonhard Euler

Louis Navier

Jean Poiseuille

F I G U R E  1.6 Time line of some contributors to the science of fluid mechanics.
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1.10 A Brief Look Back in History 25

and writings many different types of flow phenomena. The work of Galileo Galilei
(1564–1642) marked the beginning of experimental mechanics. Following the early Renais-
sance period and during the seventeenth and eighteenth centuries, numerous significant con-
tributions were made. These include theoretical and mathematical advances associated with
the famous names of Newton, Bernoulli, Euler, and d’Alembert. Experimental aspects of
fluid mechanics were also advanced during this period, but unfortunately the two different
approaches, theoretical and experimental, developed along separate paths. Hydrodynamics
was the term associated with the theoretical or mathematical study of idealized, frictionless
fluid behavior, with the term hydraulics being used to describe the applied or experimental
aspects of real fluid behavior, particularly the behavior of water. Further contributions and
refinements were made to both theoretical hydrodynamics and experimental hydraulics dur-
ing the nineteenth century, with the general differential equations describing fluid motions
that are used in modern fluid mechanics being developed in this period. Experimental
hydraulics became more of a science, and many of the results of experiments performed
during the nineteenth century are still used today.

At the beginning of the twentieth century, both the fields of theoretical hydrodynam-
ics and experimental hydraulics were highly developed, and attempts were being made to
unify the two. In 1904 a classic paper was presented by a German professor, Ludwig Prandtl
(1875–1953), who introduced the concept of a “fluid boundary layer,” which laid the foun-
dation for the unification of the theoretical and experimental aspects of fluid mechanics.
Prandtl’s idea was that for flow next to a solid boundary a thin fluid layer (boundary layer)
develops in which friction is very important, but outside this layer the fluid behaves very
much like a frictionless fluid. This relatively simple concept provided the necessary impe-
tus for the resolution of the conflict between the hydrodynamicists and the hydraulicists.
Prandtl is generally accepted as the founder of modern fluid mechanics.

Also, during the first decade of the twentieth century, powered flight was first success-
fully demonstrated with the subsequent vastly increased interest in aerodynamics. Because
the design of aircraft required a degree of understanding of fluid flow and an ability to make
accurate predictions of the effect of airflow on bodies, the field of aerodynamics provided a
great stimulus for the many rapid developments in fluid mechanics that took place during
the twentieth century.

As we proceed with our study of the fundamentals of fluid mechanics, we will con-
tinue to note the contributions of many of the pioneers in the field. Table 1.8 provides a
chronological listing of some of these contributors and reveals the long journey that makes

ARCHIMEDES 1287–212 B.C.2
Established elementary principles of buoyancy
and flotation.

SEXTUS JULIUS FRONTINUS 1A.D. 40–1032
Wrote treatise on Roman methods of water
distribution.

LEONARDO da VINCI 11452–15192
Expressed elementary principle of continuity;
observed and sketched many basic flow phenomena;
suggested designs for hydraulic machinery.

GALILEO GALILEI 11564–16422
Indirectly stimulated experimental hydraulics;
revised Aristotelian concept of vacuum.

EVANGELISTA TORRICELLI 11608–16472
Related barometric height to weight of atmosphere,
and form of liquid jet to trajectory of free fall.

BLAISE PASCAL 11623–16622
Finally clarified principles of barometer,
hydraulic press, and pressure transmissibility.

ISAAC NEWTON 11642–17272
Explored various aspects of fluid resistance—
inertial, viscous, and wave; discovered jet
contraction.

HENRI de PITOT 11695–17712
Constructed double-tube device to indicate water
velocity through differential head.

TA B L E 1 . 8

Chronological Listing of Some Contributors to the Science of Fluid Mechanics Noted in the Texta

Leonardo da Vinci

Isaac Newton (continued )
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26 Chapter 1 ■ Introduction

DANIEL BERNOULLI 11700–17822
Experimented and wrote on many phases of fluid
motion, coining name “hydrodynamics”; devised
manometry technique and adapted primitive
energy principle to explain velocity-head
indication; proposed jet propulsion.

LEONHARD EULER 11707–17832
First explained role of pressure in fluid flow;
formulated basic equations of motion and so-
called Bernoulli theorem; introduced concept of
cavitation and principle of centrifugal
machinery.

JEAN le ROND d’ALEMBERT 11717–17832
Originated notion of velocity and acceleration
components, differential expression of continuity,
and paradox of zero resistance to steady
nonuniform motion.

ANTOINE CHEZY 11718–17982
Formulated similarity parameter for predicting
flow characteristics of one channel from
measurements on another.

GIOVANNI BATTISTA VENTURI 11746–18222
Performed tests on various forms of
mouthpieces—in particular, conical contractions
and expansions.

LOUIS MARIE HENRI NAVIER 11785–18362
Extended equations of motion to include
“molecular” forces.

AUGUSTIN LOUIS de CAUCHY 11789–18572
Contributed to the general field of theoretical
hydrodynamics and to the study of wave motion.

GOTTHILF HEINRICH LUDWIG HAGEN
11797–18842
Conducted original studies of resistance in and
transition between laminar and turbulent flow.

JEAN LOUIS POISEUILLE 11799–18692
Performed meticulous tests on resistance of flow
through capillary tubes.

HENRI PHILIBERT GASPARD DARCY 
11803–18582
Performed extensive tests on filtration and pipe
resistance; initiated open-channel studies carried
out by Bazin.

JULIUS WEISBACH 11806–18712
Incorporated hydraulics in treatise on engineering
mechanics, based on original experiments;
noteworthy for flow patterns, nondimensional
coefficients, weir, and resistance equations.

WILLIAM FROUDE 11810–18792
Developed many towing-tank techniques, in
particular the conversion of wave and boundary
layer resistance from model to prototype scale.

ROBERT MANNING 11816–18972
Proposed several formulas for open-channel
resistance.

GEORGE GABRIEL STOKES 11819–19032
Derived analytically various flow relationships
ranging from wave mechanics to viscous
resistance—particularly that for the settling of
spheres.

ERNST MACH 11838–19162
One of the pioneers in the field of supersonic
aerodynamics.

OSBORNE REYNOLDS 11842–19122
Described original experiments in many fields—
cavitation, river model similarity, pipe
resistance—and devised two parameters for
viscous flow; adapted equations of motion of a
viscous fluid to mean conditions of turbulent
flow.

JOHN WILLIAM STRUTT, LORD RAYLEIGH
11842–19192
Investigated hydrodynamics of bubble collapse,
wave motion, jet instability, laminar flow
analogies, and dynamic similarity.

VINCENZ STROUHAL 11850–19222
Investigated the phenomenon of “singing wires.”

EDGAR BUCKINGHAM 11867–19402
Stimulated interest in the United States in the
use of dimensional analysis.

MORITZ WEBER 11871–19512
Emphasized the use of the principles of
similitude in fluid flow studies and formulated a
capillarity similarity parameter.

LUDWIG PRANDTL 11875–19532
Introduced concept of the boundary layer and is
generally considered to be the father of present-
day fluid mechanics.

LEWIS FERRY MOODY 11880–19532
Provided many innovations in the field of
hydraulic machinery. Proposed a method of
correlating pipe resistance data that is widely
used.

THEODOR VON KÁRMÁN 11881–19632
One of the recognized leaders of twentieth
century fluid mechanics. Provided major
contributions to our understanding of surface
resistance, turbulence, and wake phenomena.

PAUL RICHARD HEINRICH BLASIUS
11883–19702
One of Prandtl’s students who provided an
analytical solution to the boundary layer
equations. Also demonstrated that pipe resistance
was related to the Reynolds number.

TA B L E 1 . 8  (continued)

aAdapted from Rouse, H. and Ince, S., History of Hydraulics, Iowa Institute of Hydraulic Research, Iowa City, 1957, Dover, New
York, 1963. Used by permission of the Iowa Institute of Hydraulic Research, University of Iowa.

Daniel Bernoulli

Ernst Mach

Osborne Reynolds

Ludwig Prandtl
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up the history of fluid mechanics. This list is certainly not comprehensive with regard to
all past contributors but includes those who are mentioned in this text. As mention is made
in succeeding chapters of the various individuals listed in Table 1.8, a quick glance at this
table will reveal where they fit into the historical chain.

fluid
units
basic dimensions
dimensionally 

homogeneous
density
specific weight
specific gravity
ideal gas law
absolute pressure
gage pressure
no-slip condition
absolute viscosity
Newtonian fluid
kinematic viscosity
bulk modulus
speed of sound
vapor pressure
surface tension

1.11 Chapter Summary and Study Guide

This introductory chapter discussed several fundamental aspects of fluid mechanics. Meth-
ods for describing fluid characteristics both quantitatively and qualitatively are considered.
For a quantitative description, units are required, and in this text, two systems of units are
used: the British Gravitational (BG) System (pounds, slugs, feet, and seconds) and the Inter-
national (SI) System (newtons, kilograms, meters, and seconds). For the qualitative descrip-
tion the concept of dimensions is introduced in which basic dimensions such as length, L,
time, T, and mass, M, are used to provide a description of various quantities of interest. The
use of dimensions is helpful in checking the generality of equations, as well as serving as
the basis for the powerful tool of dimensional analysis discussed in detail in Chapter 7.

Various important fluid properties are defined, including fluid density, specific weight,
specific gravity, viscosity, bulk modulus, speed of sound, vapor pressure, and surface ten-
sion. The ideal gas law is introduced to relate pressure, temperature, and density in com-
mon gases, along with a brief discussion of the compression and expansion of gases. The
distinction between absolute and gage pressure is introduced, and this important idea is
explored more fully in Chapter 2.

The following checklist provides a study guide for this chapter. When your study of
the entire chapter and end-of-chapter exercises has been completed, you should be able to

write out meanings of the terms listed here in the margin and understand each of the
related concepts. These terms are particularly important and are set in color and bold type
in the text.

determine the dimensions of common physical quantities.

determine whether an equation is a general or restricted homogeneous equation.

use both BG and SI systems of units.

calculate the density, specific weight, or specific gravity of a fluid from a knowledge
of any two of the three.

calculate the density, pressure, or temperature of an ideal gas (with a given gas con-
stant) from a knowledge of any two of the three.

relate the pressure and density of a gas as it is compressed or expanded using Eqs. 1.11
and 1.12.

use the concept of viscosity to calculate the shearing stress in simple fluid flows.

calculate the speed of sound in fluids using Eq. 1.14 for liquids and Eq. 1.15 for gases.

determine whether boiling or cavitation will occur in a liquid using the concept of
vapor pressure.

use the concept of surface tension to solve simple problems involving liquid–gas or
liquid–solid–gas interfaces.

Some of the important equations in this chapter are

Specific weight (1.5)

Specific gravity (1.6)SG �
r

rH2O@4 °C

g � rg
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Ideal gas law (1.7)

Newtonian fluid shear stress (1.8)

Bulk modulus (1.9)

Speed of sound in an ideal gas (1.15)

Capillary rise in a tube
(1.16)

h �
2s cos u

gR

c � 1kRT

Ev � �
dp

dV��V�

� � � 
du

dy

r �
p

RT
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Review Problems

Go to Appendix G for a set of review problems with answers.
Detailed solutions can be found in Student Solution Manual for

a Brief Introduction to Fluid Mechanics, by Young et al. (© 2011
John Wiley and Sons, Inc.).

Problems

Note: Unless specific values of required fluid properties are
given in the statement of the problem, use the values found
in the tables on the inside of the front cover. Problems desig-
nated with an (*) are intended to be solved with the aid of a
programmable calculator or a computer. Problems desig-
nated with a (†) are “open-ended” problems and require
critical thinking in that to work them one must make vari-
ous assumptions and provide the necessary data. There is
not a unique answer to these problems.

The even-numbered problems are included in the
hard copy version of the book, and the answers to these
even-numbered problems are listed at the end of the book.
Odd-numbered problems are provided in WileyPLUS, or
in Appendix L on the book’s web site, www.wiley.com/
college/young. The lab-type problems, FE problems, FlowLab
problems, and the videos that accompany problems can also
be accessed on these web sites.

Section 1.2 Dimensions, Dimensional Homogeneity,
and Units

1.2 Determine the dimensions, in both the FLT system and
MLT system, for (a) the product of force times volume, (b) the
product of pressure times mass divided by area, and (c) moment
of a force divided by velocity.

1.4 The force, F, of the wind blowing against a building is given
by where V is the wind speed, the density of
the air, A the cross-sectional area of the building, and CD is a con-
stant termed the drag coefficient. Determine the dimensions of the
drag coefficient.

1.6 Dimensionless combinations of quantities (commonly
called dimensionless parameters) play an important role in fluid
mechanics. Make up five possible dimensionless parameters by
using combinations of some of the quantities listed in Table 1.1.

rF � CDrV
2 A�2,

1.8 The pressure difference, across a partial blockage in an
artery 1called a stenosis2 is approximated by the equation

where V is the blood velocity, the blood viscosity 
the blood density the artery diameter, the area of

the unobstructed artery, and the area of the stenosis. Determine
the dimensions of the constants Kv and Would this equation be
valid in any system of units?

1.10 Assume that the speed of sound, c, in a fluid depends on
an elastic modulus, , with dimensions and the fluid
density, in the form If this is to be a dimen-
sionally homogeneous equation, what are the values for a and
b? Is your result consistent with the standard formula for the
speed of sound? 1See Eq. 1.14.2

†1.12 Cite an example of a restricted homogeneous equation
contained in a technical article found in an engineering journal
in your field of interest. Define all terms in the equation, explain
why it is a restricted equation, and provide a complete journal
citation (title, date, etc.).

1.14 Make use of Table 1.3 to express the following quantities
in BG units: (a) 14.2 km, (b) 8.14 N/m3, (c) 1.61 kg/m3,
(d) 0.0320 N�m/s, (e) 5.67 mm/hr.

1.16 An important dimensionless parameter in certain types of
fluid flow problems is the Froude number defined as 
where V is a velocity, g the acceleration of gravity, and a
length. Determine the value of the Froude number for V � 10 ft/s,
g � 32.2 ft/s2, and � 2 ft. Recalculate the Froude number us-
ing SI units for V, g, and . Explain the significance of the
results of these calculations.

�
�

�
V/1g�,

c � 1Ev2
a1r2b.r,

FL�2,Ev

Ku.
A1

A01ML�32, D�
1FL�2T 2,�

¢p � Kv 
�V

D
� Ku a

A0

A1
� 1b

2

�V 
2

¢p,
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Section 1.6 Viscosity (also see Lab Problems 1.74
and 1.75)

1.36 For flowing water, what is the magnitude of the velocity
gradient needed to produce a shear stress of 1.0 N/m2?

1.38 (See Fluids in the News article titled “A vital fluid,” Section
1.6.) Some measurements on a blood sample at 37 �C (98.6 �F)
indicate a shearing stress of for a corresponding rate of
shearing strain of . Determine the apparent viscosity of
the blood and compare it with the viscosity of water at the same
temperature.

1.40 SAE 30 oil at 60 �F flows through a 2-in.-diameter pipe with
a mean velocity of 5 ft/s. Determine the value of the Reynolds
number (see Example 1.3).

1.42 Make use of the data in Appendix B to determine the dy-
namic viscosity of glycerin at Express your answer in
both SI and BG units.

1.44 A Newtonian fluid having a specific gravity of 0.92 and
a kinematic viscosity of 4 � 10�4 m2/s flows past a fixed sur-
face. Due to the no-slip condition, the velocity at the fixed
surface is zero (as shown in Video V1.4), and the velocity
profile near the surface is shown in Fig. P1.44. Determine the
magnitude and direction of the shearing stress developed on
the plate. Express your answer in terms of U and �, with U
and � expressed in units of meters per second and meters,
respectively.

85 °F.

200 s�1
0.52 N/m2

1.46 When a viscous fluid flows past a thin sharp-edged plate,
a thin layer adjacent to the plate surface develops in which the
velocity, u, changes rapidly from zero to the approach velocity,
U, in a small distance, �. This layer is called a boundary layer.
The thickness of this layer increases with the distance x along
the plate as shown in Fig. P1.46. Assume that u � Uy/� and

where 	 is the kinematic viscosity of the fluid.
Determine an expression for the force (drag) that would be de-
veloped on one side of the plate of length and width b. Ex-
press your answer in terms of , b, and �, where � is the fluid
density.

�/
/

� � 3.51�x/U

Problems 29

Section 1.4 Measures of Fluid Mass and Weight

1.18 Clouds can weigh thousands of pounds due to their liquid
water content. Often this content is measured in grams per cubic
meter (g/m3). Assume that a cumulus cloud occupies a volume
of one cubic kilometer, and its liquid water content is 0.2 g/m3.
(a) What is the volume of this cloud in cubic miles? (b) How
much does the water in the cloud weigh in pounds?

1.20 A hydrometer is used to measure the specific gravity of
liquids. (See Video V2.8.) For a certain liquid a hydrometer
reading indicates a specific gravity of 1.15. What is the liquid’s
density and specific weight? Express your answer in SI units.

1.22 The information on a can of pop indicates that the can
contains 355 mL. The mass of a full can of pop is 0.369 kg while
an empty can weighs 0.153 N. Determine the specific weight,
density, and specific gravity of the pop and compare your results
with the corresponding values for water at Express your
results in SI units.

1.24 When poured into a graduated cylinder, a liquid is found
to weigh 6 N when occupying a volume of 500 ml (milliliters).
Determine its specific weight, density, and specific gravity.

†1.26 Estimate the number of kilograms of water consumed
per day for household purposes in your city. List all assump-
tions and show all calculations.

1.28 If 1 cup of cream having a density of 1005 kg/m3 is turned
into 3 cups of whipped cream, determine the specific gravity
and specific weight of the whipped cream.

Section 1.5 Ideal Gas Law

1.30 A closed tank having a volume of 2 ft3 is filled with 0.30 lb
of a gas. A pressure gage attached to the tank reads 12 psi when
the gas temperature is 80 �F. There is some question as to
whether the gas in the tank is oxygen or helium. Which do you
think it is? Explain how you arrived at your answer.

†1.32 Estimate the volume of car exhaust produced per day by
automobiles in the United States. List all assumptions and show
calculations.

1.34 The helium-filled blimp shown in Fig. P1.34 is used at
various athletic events. Determine the number of pounds of he-
lium within it if its volume is 68,000 ft3 and the temperature and
pressure are 80 �F and 14.2 psia, respectively.

20 °C.

F I G U R E  P1.34

u__
U

3__
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1__
2

3y__

y

u

U

= – δδ
δ

( )y–

F I G U R E  P1.44
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x
δ
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width = b

U

u = U

u = U y_
δ

Boundary layer

F I G U R E  P1.46
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1.48 A 40-lb, 0.8-ft-diameter, 1-ft-tall cylindrical tank slides
slowly down a ramp with a constant speed of 0.1 ft/s as shown
in Fig. P1.48. The uniform-thickness oil layer on the ramp has a
viscosity of 0.2 lb�s/ft2. Determine the angle, , of the ramp.�

1.50 Water flows near a flat surface, and some measurements of
the water velocity, u, parallel to the surface, at different heights,
y, above the surface are obtained. At the surface y� 0. After an
analysis of data, the lab technician reports that the velocity distri-
bution in the range 0 � y � 0.1 ft is given by the equation

with u in ft/s when y is in ft. (a) Do you think that this equation
would be valid in any system of units? Explain. (b) Do you
think this equation is correct? Explain. You may want to look at
Video 1.4 to help you arrive at your answer.

1.52 The viscosity of liquids can be measured through the
use of a rotating cylinder viscometer of the type illustrated in
Fig. P1.52. In this device the outer cylinder is fixed and the in-
ner cylinder is rotated with an angular velocity, �. The torque t
required to develop � is measured, and the viscosity is calculated
from these two measurements. Develop an equation relating 
�, �,t, , Ro and Ri. Neglect end effects and assume the velocity
distribution in the gap is linear.

/

u � 0.81 � 9.2y � 4.1 � 103y3

that depends only on the geometry (including the liquid depth) of
the viscometer. The value of K is usually determined by using a
calibration liquid (a liquid of known viscosity).

(a) Some data for a particular Stormer viscometer, obtained us-
ing glycerin at 20 �C as a calibration liquid, are given below.
Plot values of the weight as ordinates and values of the angular
velocity as abscissae. Draw the best curve through the plotted
points and determine K for the viscometer.

w(lb) 0.22 0.66 1.10 1.54 2.20
� (rev/s) 0.53 1.59 2.79 3.83 5.49

(b) A liquid of unknown viscosity is placed in the same vis-
cometer used in part (a), and the following data are obtained.
Determine the viscosity of this liquid.

w(lb) 0.04 0.11 0.22 0.33 0.44
� (rev/s) 0.72 1.89 3.73 5.44 7.42

1.56 A pivot bearing used on the shaft of an electrical instru-
ment is shown in Fig. P1.56. An oil with a viscosity of 
� � 0.010 lb�s/ft2 fills the 0.001-in. gap between the rotating

30 Chapter 1 ■ Introduction
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1.54 One type of rotating cylinder viscometer, called a
Stormer viscometer, uses a falling weight,w, to cause the cylin-
der to rotate with an angular velocity, �, as illustrated in 
Fig. P1.54. For this device the viscosity, �, of the liquid is related
to w and � through the equation w� K��, where K is a constant

F I G U R E  P1.54
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Problems 31

shaft and the stationary base. Determine the frictional torque on
the shaft when it rotates at 5000 rpm.

Section 1.7 Compressibility of Fluids

1.58 Obtain a photograph/image of a situation in which the
compressibility of a fluid is important. Print this photo and write
a brief paragraph that describes the situation involved.

1.60 An important dimensionless parameter concerned with
very high speed flow is the Mach number, defined as V/c, where
V is the speed of the object, such as an airplane or projectile,
and c is the speed of sound in the fluid surrounding the object.
For a projectile traveling at 800 mph through air at 50 �F and
standard atmospheric pressure, what is the value of the Mach
number?

1.62 Oxygen at 30 �C and 300 kPa absolute pressure expands
isothermally to an absolute pressure of 140 kPa. Determine the
final density of the gas.

1.64 Determine the speed of sound at 20 �C in (a) air, (b) helium,
and (c) natural gas. Express your answer in m/s.

Section 1.8 Vapor Pressure

1.66 When a fluid flows through a sharp bend, low pressures
may develop in localized regions of the bend. Estimate the min-
imum absolute pressure (in psi) that can develop without caus-
ing cavitation if the fluid is water at 

1.68 At what atmospheric pressure will water boil at 
Express your answer in both SI and BG units.

Section 1.9 Surface Tension

1.70 An open, clean glass tube is inserted vertically into
a pan of water. What tube diameter is needed if the water level in
the tube is to rise one tube diameter (due to surface tension)?

1.72 As shown in Video V1.9, surface tension forces can be
strong enough to allow a double-edge steel razor blade to
“float” on water, but a single-edge blade will sink. Assume that
the surface tension forces act at an angle relative to the water
surface as shown in Fig. P1.72. (a) The mass of the double-edge
blade is 0.64 � 10�3 kg, and the total length of its sides is 206 mm.

�

1� � 0°2

35 °C?

160 °F.

Determine the value of required to maintain equilibrium be-
tween the blade weight and the resultant surface tension force.
(b) The mass of the single-edge blade is 2.61 � 10�3 kg, and the
total length of its sides is 154 mm. Explain why this blade sinks.
Support your answer with the necessary calculations.

�

■ Lab Problems

1.74 This problem involves the use of a Stormer viscometer to
determine whether a fluid is a Newtonian or a non-Newtonian
fluid. To proceed with this problem, go to the book’s web site,
www.wiley.com/college/young, or WileyPLUS.

■ Lifelong Learning Problems

1.76 Although there are numerous non-Newtonian fluids that
occur naturally (quicksand and blood among them), with the ad-
vent of modern chemistry and chemical processing, many new
manufactured non-Newtonian fluids are now available for a
variety of novel applications. Obtain information about the
discovery and use of newly developed non-Newtonian fluids.
Summarize your findings in a brief report.

1.78 It is predicted that nanotechnology and the use of nano-
sized objects will allow many processes, procedures, and prod-
ucts that, as of now, are difficult for us to comprehend. Among
new nanotechnology areas is that of nanoscale fluid mechanics.
Fluid behavior at the nanoscale can be entirely different than
that for the usual everyday flows with which we are familiar.
Obtain information about various aspects of nanofluid mechan-
ics. Summarize your findings in a brief report.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions
for fluid mechanics are provided on the book’s web site,
www.wiley.com/college/young, or WileyPLUS.

Surface tension
force

Blade θ

F I G U R E  P1.72
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32

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ determine the pressure at various locations in a fluid at rest.

■ explain the concept of manometers and apply appropriate equations to
determine pressures.

■ calculate the hydrostatic pressure force on a plane or curved submerged
surface.

■ calculate the buoyant force and discuss the stability of floating or
submerged objects.

In this chapter we will consider an important class of problems in which the fluid is either at
rest or moving in such a manner that there is no relative motion between adjacent particles.
In both instances there will be no shearing stresses in the fluid, and the only forces that
develop on the surfaces of the particles will be due to the pressure. Thus, our principal con-
cern is to investigate pressure and its variation throughout a fluid and the effect of pressure
on submerged surfaces.

22Fluid StaticsFluid Statics

CHAPTER OPENING PHOTO: Floating iceberg: An iceberg is a large piece of freshwater ice that origi-
nated as snow in a glacier or ice shelf and then broke off to float in the ocean. Although the fresh-
water ice is lighter than the salt water in the ocean, the difference in densities is relatively small.
Hence, only about one-ninth of the volume of an iceberg protrudes above the ocean’s surface, so that
what we see floating is literally “just the tip of the iceberg.” (Photograph courtesy of Corbis Digital
Stock/Corbis Images.)
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2.1 Pressure at a Point 33
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2.1 Pressure at a Point

As discussed briefly in Chapter 1, the term pressure is used to indicate the normal force
per unit area at a given point acting on a given plane within the fluid mass of interest. A
question that immediately arises is how the pressure at a point varies with the orientation
of the plane passing through the point. To answer this question, consider the free-body dia-
gram, illustrated in Fig. 2.1, that was obtained by removing a small triangular wedge of
fluid from some arbitrary location within a fluid mass. Since we are considering the situa-
tion in which there are no shearing stresses, the only external forces acting on the wedge
are due to the pressure and the weight. For simplicity the forces in the x direction are not
shown, and the z axis is taken as the vertical axis so the weight acts in the negative z direc-
tion. Although we are primarily interested in fluids at rest, to make the analysis as general
as possible, we will allow the fluid element to have accelerated motion. The assumption of
zero shearing stresses will still be valid so long as the fluid element moves as a rigid body;
that is, there is no relative motion between adjacent elements.

The equations of motion (Newton’s second law, F � ma) in the y and z directions
are, respectively,

where px, py, and pz are the average pressures on the faces, � and � are the fluid specific
weight and density, respectively, and ay, az the accelerations. It follows from the geometry that

so that the equations of motion can be rewritten as

Since we are really interested in what is happening at a point, we take the limit as �x, �y,
and �z approach zero (while maintaining the angle �), and it follows that

py � ps  pz � ps

 pz � ps � 1�az � �2  
�z

2

 py � ps � �ay 

�y

2

�y � �s cos �  �z � �s sin �

 ©Fz � pz �x �y � ps �x �s cos � � � 

�x �y �z

2
� � 

�x �y �z

2
 az

 ©Fy � py �x �z � ps �x �s sin � � � 

�x �y �z

2
 ay

F I G U R E  2.1 Forces on an arbitrary wedged-shaped element of fluid.
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34 Chapter 2 ■ Fluid Statics

or ps � py � pz. The angle � was arbitrarily chosen so we can conclude that the pressure
at a point in a fluid at rest, or in motion, is independent of direction as long as there are
no shearing stresses present. This important result is known as Pascal’s law. Thus, as shown
by the photograph in the margin, at the junction of the side and bottom of the beaker, the
pressure is the same on the side as it is on the bottom.

In Chapter 6 it will be shown that for moving fluids in which there is relative motion
between particles (so that shearing stresses develop) the normal stress at a point, which cor-
responds to pressure in fluids at rest, is not necessarily the same in all directions. In such
cases the pressure is defined as the average of any three mutually perpendicular normal
stresses at the point.

2.2 Basic Equation for Pressure Field

Although we have answered the question of how the pressure at a point varies with direc-
tion, we are now faced with an equally important question—how does the pressure in a
fluid in which there are no shearing stresses vary from point to point? To answer this ques-
tion, consider a small rectangular element of fluid removed from some arbitrary position
within the mass of fluid of interest as illustrated in Fig. 2.2. There are two types of forces
acting on this element: surface forces due to the pressure and a body force equal to the
weight of the element.

If we let the pressure at the center of the element be designated as p, then the aver-
age pressure on the various faces can be expressed in terms of p and its derivatives as shown
in Fig. 2.2 and the figure in the margin. For simplicity the surface forces in the x direction
are not shown. The resultant surface force in the y direction is

�Fy � ap �
0p

0y
 
�y

2
b �x �z � ap �

0p

0y
 
�y

2
b �x �z

py � pz

pz

py

p

y

∂ δ
∂y

p
––– –––

2
y

δ
–––
2
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z
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xγδ yδ zδ
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F I G U R E  2.2 Surface and body forces acting on small fluid element.
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or

Similarly, for the x and z directions the resultant surface forces are

The resultant surface force acting on the element can be expressed in vector form as

or

(2.1)

where and are the unit vectors along the coordinate axes shown in Fig. 2.2. The group
of terms in parentheses in Eq. 2.1 represents in vector form the pressure gradient and can
be written as

where

and the symbol is the gradient or “del” vector operator. Thus, the resultant surface force
per unit volume can be expressed as

Because the z axis is vertical, the weight of the element is

where the negative sign indicates that the force due to the weight is downward (in the neg-
ative z direction). Newton’s second law, applied to the fluid element, can be expressed as

where � �F represents the resultant force acting on the element, a is the acceleration of
the element, and �m is the element mass, which can be written as � �x �y �z. It follows
that

or

and, therefore,

(2.2)

Equation 2.2 is the general equation of motion for a fluid in which there are no shearing
stresses. Although Eq. 2.2 applies to both fluids at rest and moving fluids, we will primar-
ily restrict our attention to fluids at rest.

�§p � � k̂ � �a

�§p �x �y �z � � �x �y �z k̂ � � �x �y �z a

© �F � �Fs � �� k̂ � �m a

© �F � �m a

��� k̂ � � � �x �y �z k̂

�Fs

�x �y �z
� �§p

§

§ 1 2 �
0 1 2
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0 1 2
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�Fs � � a
0p

0x
 î �
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36 Chapter 2 ■ Fluid Statics

2.3 Pressure Variation in a Fluid at Rest

For a fluid at rest a � 0 and Eq. 2.2 reduces to

or in component form

(2.3)

These equations show that the pressure does not depend on x or y. Thus, as we move from
point to point in a horizontal plane (any plane parallel to the x � y plane), the pressure
does not change. Since p depends only on z, the last of Eqs. 2.3 can be written as the ordi-
nary differential equation

(2.4)

Equation 2.4 is the fundamental equation for fluids at rest and can be used to determine
how pressure changes with elevation. This equation and the figure in the margin indicate that
the pressure gradient in the vertical direction is negative; that is, the pressure decreases as we
move upward in a fluid at rest. There is no requirement that � be a constant. Thus, it is valid
for fluids with constant specific weight, such as liquids, as well as fluids whose specific weight
may vary with elevation, such as air or other gases. However, to proceed with the integration
of Eq. 2.4 it is necessary to stipulate how the specific weight varies with z.

2.3.1 Incompressible Fluid

Since the specific weight is equal to the product of fluid density and acceleration of grav-
ity (� � �g), changes in � are caused by a change in either � or g. For most engineering
applications the variation in g is negligible, so our main concern is with the possible vari-
ation in the fluid density. In general, a fluid with constant density is called an incompress-
ible fluid. For liquids the variation in density is usually negligible, even over large vertical
distances, so that the assumption of constant specific weight when dealing with liquids is
a good one. For this instance, Eq. 2.4 can be directly integrated

to yield

(2.5)

where p1 and p2 are pressures at the vertical elevations z1 and z2, as is illustrated in Fig. 2.3.
Equation 2.5 can be written in the compact form

(2.6)

or
(2.7)

where h is the distance, z2 � z1, which is the depth of fluid measured downward from the
location of p2. This type of pressure distribution is commonly called a hydrostatic pres-
sure distribution, and Eq. 2.7 shows that in an incompressible fluid at rest the pressure
varies linearly with depth. The pressure must increase with depth to “hold up” the fluid
above it.

p1 � �h � p2
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V2.1 Pressure on a
car
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It can also be observed from Eq. 2.6 that the pressure difference between two points
can be specified by the distance h since

In this case h is called the pressure head and is interpreted as the height of a column
of fluid of specific weight � required to give a pressure difference p1 � p2. For exam-
ple, a pressure difference of 10 psi can be specified in terms of pressure head as 23.1 ft
of water (� � 62.4 lb/ft3), or 518 mm of Hg (� � 133 kN/m3). As illustrated by the fig-
ure in the margin, a 23.1-ft-tall column of water with a coss-sectional area of 1 in.2

weighs 10 lb.
When one works with liquids there is often a free surface, as is illustrated in Fig. 2.3,

and it is convenient to use this surface as a reference plane. The reference pressure p0 would
correspond to the pressure acting on the free surface (which would frequently be atmo-
spheric pressure), and thus, if we let p2 � p0 in Eq. 2.7, it follows that the pressure p at
any depth h below the free surface is given by the equation:

(2.8)

As is demonstrated by Eq. 2.7 or 2.8, the pressure in a homogeneous, incompressible
fluid at rest depends on the depth of the fluid relative to some reference plane, and it is not
influenced by the size or shape of the tank or container in which the fluid is held. Thus,
for the containers shown in the figure in the margin, the pressure is the same at all points
along the line AB even though the containers have very irregular shapes. The actual value
of the pressure along AB depends only on the depth, h, the surface pressure, and the
specific weight, of the liquid in the container.�,

p0,

p � �h � p0

h �
p1 � p2

�
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z

x

y

z1

z2 p1

p2

h = z2 – z1

Free surface
(pressure = p0)

F I G U R E  2.3 Notation for 
pressure variation in a fluid at rest with a 
free surface.

pA = 0

pA = 10 lb

A = 1 in.2

� = 10 lb

23.1 ft

A B

F l u i d s  i n  t h e  N e w s

Giraffe’s blood pressureA giraffe’s long neck allows it to graze
up to 6 m above the ground. It can also lower its head to drink at
ground level. Thus, in the circulatory system there is a significant
hydrostatic pressure effect due to this elevation change. To main-
tain blood to its head throughout this change in elevation, the gi-
raffe must maintain a relatively high blood pressure at heart
level—approximately two and a half times that in humans. To
prevent rupture of blood vessels in the high-pressure lower leg

regions, giraffes have a tight sheath of thick skin over their lower
limbs that acts like an elastic bandage in exactly the same way as
do the g-suits of fighter pilots. In addition, valves in the upper
neck prevent backflow into the head when the giraffe lowers its
head to ground level. It is also thought that blood vessels in the
giraffe’s kidney have a special mechanism to prevent large
changes in filtration rate when blood pressure increases or 
decreases with its head movement. (See Problem 2.11.)
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38 Chapter 2 ■ Fluid Statics

GIVEN Because of a leak in a buried gasoline storage tank,
water has seeped in to the depth shown in Fig. E2.1. The spe-
cific gravity of the gasoline is SG � 0.68.

FIND Determine the pressure at the gasoline–water inter-
face and at the bottom of the tank. Express the pressure in
units of lb/ft2, lb/in.2, and as a pressure head in feet of water.

SOLUTION

Pressure–Depth Relationship

We can now apply the same relationship to determine the
pressure at the tank bottom; that is,

(Ans) � 908 lb/ft2
 � 162.4 lb/ft32 13 ft2 � 721 lb/ft2

 p2 � �H2OhH2O � p1

(Ans) p2 �
908 lb/ft2

144 in.2/ft2
� 6.31 lb/in.2

(Ans)

COMMENT Observe that if we wish to express these
pressures in terms of absolute pressure, we would have to add
the local atmospheric pressure (in appropriate units) to the
previous results. A further discussion of gage and absolute
pressure is given in Section 2.5.

 
p2

�H2O
�

908 lb/ft2

62.4 lb/ft3
� 14.6 ft

EXAMPLE 2.1

Since we are dealing with liquids at rest, the pressure distribu-
tion will be hydrostatic and, therefore, the pressure variation
can be found from the equation

With p0 corresponding to the pressure at the free surface of the
gasoline, then the pressure at the interface is

If we measure the pressure relative to atmospheric pressure
(gage pressure), it follows that p0 � 0, and therefore

(Ans) p1 �   721 lb/ft2

 � 721 � p0 1lb/ft22

 � 10.682 162.4 lb/ft32 117 ft2 � p0

 p1 � SG�H2Oh � p0

p � �h � p0

(1)

(2)
Water

Gasoline

Open

17 ft

3 ft

F I G U R E  E2.1

(Ans) p1 �
721 lb/ft2

144 in.2/ft2
� 5.01 lb/in.2

(Ans)

It is noted that a rectangular column of water 11.6 ft tall and 1 ft2

in cross section weighs 721 lb. A similar column with a 1-in.2

cross section weighs 5.01 lb.

 
p1

�H2O
�

721 lb/ft2

62.4 lb/ft3
� 11.6 ft

2.3.2 Compressible Fluid

We normally think of gases such as air, oxygen, and nitrogen as being compressible fluids
because the density of the gas can change significantly with changes in pressure and tem-
perature. Thus, although Eq. 2.4 applies at a point in a gas, it is necessary to consider the pos-
sible variation in � before the equation can be integrated. However, as discussed in Chapter 1,
the specific weights of common gases are small when compared with those of liquids. For
example, the specific weight of air at sea level and 60 �F is 0.0763 lb/ft3, whereas the spe-
cific weight of water under the same conditions is 62.4 lb/ft3. Since the specific weights of
gases are comparatively small, it follows from Eq. 2.4 that the pressure gradient in the ver-
tical direction is correspondingly small, and even over distances of several hundred feet the
pressure will remain essentially constant for a gas. This means we can neglect the effect of
elevation changes on the pressure in stationary gases in tanks, pipes, and so forth in which
the distances involved are small.
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For those situations in which the variations in heights are large, on the order of thou-
sands of feet, attention must be given to the variation in the specific weight. As is described
in Chapter 1, the equation of state for an ideal (or perfect) gas is

where p is the absolute pressure, R is the gas constant, and T is the absolute temperature.
This relationship can be combined with Eq. 2.4 to give

and by separating variables

(2.9)

where g and R are assumed to be constant over the elevation change from z1 to z2.
Before completing the integration, one must specify the nature of the variation of tem-

perature with elevation. For example, if we assume that the temperature has a constant value
T0 over the range z1 to z2 (isothermal conditions), it then follows from Eq. 2.9 that

(2.10)

This equation provides the desired pressure–elevation relationship for an isothermal layer.
As shown in the margin figure, even for a 10,000-ft altitude change, the difference between
the constant temperature (isothermal) and the constant density (incompressible) results is
relatively minor. For nonisothermal conditions a similar procedure can be followed if the
temperature–elevation relationship is known.

p2 � p1 exp c� 

g1z2 � z12

RT0
d

�
p2

p1

 
dp

p
� ln  

p2

p1
� � 

g

R �
z2

z1

dz

T

dp

dz
� � 

gp

RT

p � �RT
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1

0.8

0.6
0 5000 10,000

z2 – z1,ft

p 2
/p

1

Isothermal

Incompressible

2.4 Standard Atmosphere

An important application of Eq. 2.9 relates to the variation in pressure in the Earth’s atmo-
sphere. Ideally, we would like to have measurements of pressure versus altitude over the spe-
cific range for the specific conditions (temperature, reference pressure) for which the pressure
is to be determined. However, this type of information is usually not available. Thus, a “stan-
dard atmosphere” has been determined that can be used in the design of aircraft, missiles,
and spacecraft and in comparing their performance under standard conditions.

The currently accepted standard atmosphere is based on a report published in 1962
and updated in 1976 (see Refs. 1 and 2), defining the so-called U.S. standard atmosphere,
which is an idealized representation of middle-latitude, year-round mean conditions of the
earth’s atmosphere. Several important properties for standard atmospheric conditions at sea
level are listed in Table 2.1.

Tabulated values for temperature, acceleration of gravity, pressure, density, and vis-
cosity for the U.S. standard atmosphere are given in Tables C.1 and C.2 in Appendix C.

2.5 Measurement of Pressure

Since pressure is a very important characteristic of a fluid field, it is not surprising that
numerous devices and techniques are used in its measurement. As noted briefly in Chapter 1,
the pressure at a point within a fluid mass will be designated as either an absolute pressure
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40 Chapter 2 ■ Fluid Statics

TA B L E 2 . 1

Properties of U.S. Standard Atmosphere at Sea Levela

Property SI Units BG Units

Temperature, T 288.15 K (15 �C) 518.67 �R (59.00 �F)
Pressure, p 101.33 kPa (abs) 2116.2 lb/ft2 (abs)

[14.696 lb/in.2 (abs)]
Density, � 1.225 kg/m3 0.002377 slugs/ft3

Specific weight, � 12.014 N/m3 0.07647 lb/ft3

Viscosity, � 1.789 � 10�5 N�s/m2 3.737 � 10�7 lb�s/ft2

aAcceleration of gravity at sea level � 9.807 m/s2 � 32.174 ft/s2.

F I G U R E  2.4 Graphical representation of
gage and absolute pressure.

1

2

Absolute pressure
@ 2

Absolute pressure
@ 1

Gage pressure @ 1

P
re

ss
ur

e

Absolute zero reference

Local atmospheric
pressure reference

Gage pressure @ 2
(suction or vacuum)

or a gage pressure. Absolute pressure is measured relative to a perfect vacuum (absolute
zero pressure), whereas gage pressure is measured relative to the local atmospheric pressure.
Thus, a gage pressure of zero corresponds to a pressure that is equal to the local atmospheric
pressure. Absolute pressures are always positive, but gage pressure can be either positive or
negative depending on whether the pressure is above atmospheric pressure (a positive value)
or below atmospheric pressure (a negative value). A negative gage pressure is also referred
to as a suction or vacuum pressure. For example, 10 psi (abs) could be expressed as �4.7 psi
(gage), if the local atmospheric pressure is 14.7 psi, or alternatively 4.7 psi suction or 4.7 psi
vacuum. The concept of gage and absolute pressure is illustrated graphically in Fig. 2.4 for
two typical pressures located at points 1 and 2.

In addition to the reference used for the pressure measurement, the units used to
express the value are obviously of importance. As described in Section 1.5, pressure is a
force per unit area, and the units in the BG system are lb/ft2 or lb/in.2, commonly abbre-
viated psf or psi, respectively. In the SI system the units are N/m2; this combination is
called the pascal and is written as Pa (1 N/m2 � 1 Pa). As noted earlier, pressure can also
be expressed as the height of a column of liquid. Then the units will refer to the height
of the column (in., ft, mm, m, etc.), and in addition, the liquid in the column must be speci-
fied (H2O, Hg, etc.). For example, standard atmospheric pressure can be expressed as 760 mm
Hg (abs). In this text, pressures will be assumed to be gage pressures unless specifically
designated absolute. For example, 10 psi or 100 kPa would be gage pressures, whereas
10 psia or 100 kPa (abs) would refer to absolute pressures. It is to be noted that because
pressure differences are independent of the reference, no special notation is required in
this case.
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The measurement of atmospheric pressure is usually accomplished with a mercury
barometer, which in its simplest form consists of a glass tube closed at one end with the
open end immersed in a container of mercury as shown in Fig. 2.5. The tube is initially
filled with mercury (inverted with its open end up) and then turned upside down (open end
down) with the open end in the container of mercury. The column of mercury will come
to an equilibrium position where its weight plus the force due to the vapor pressure (which
develops in the space above the column) balances the force due to the atmospheric pres-
sure. Thus,

(2.11)

where � is the specific weight of mercury. For most practical purposes the contribution of
the vapor pressure can be neglected since it is very small [for mercury, the fluid most com-
monly used in barometers, pvapor � 0.000023 lb/in.2 (abs) at a temperature of 68 �F] so that
patm � �h. It is convenient to specify atmospheric pressure in terms of the height, h, in
millimeters or inches of mercury. Note that if water were used instead of mercury, the
height of the column would have to be approximately 34 ft rather than 29.9 in. of mer-
cury for an atmospheric pressure of 14.7 psia! This is shown to scale in the figure in the
margin.

patm � �h � pvapor

2.5 Measurement of Pressure 41

pvapor

A

h

patm

B

Mercury
F I G U R E  2.5 Mercury barometer.

Water

Mercury

F l u i d s  i n  t h e  N e w s

Weather, barometers, and bars One of the most important
indicators of weather conditions is atmospheric pressure. In
general, a falling or low pressure indicates bad weather; ris-
ing or high pressure, good weather. During the evening TV
weather report in the United States, atmospheric pressure is
given as so many inches (commonly around 30 in.). This
value is actually the height of the mercury column in a mer-
cury barometer adjusted to sea level. To determine the true 
atmospheric pressure at a particular location, the elevation
relative to sea level must be known. Another unit used by me-
teorologists to indicate atmospheric pressure is the bar, first

used in weather reporting in 1914, and defined as 105 N/m2.
The definition of a bar is probably related to the fact that stan-
dard sea-level pressure is 1.0133 � 105 N/m2, that is, only
slightly larger than one bar. For typical weather patterns “sea-
level equivalent” atmospheric pressure remains close to one
bar. However, for extreme weather conditions associated with
tornadoes, hurricanes, or typhoons, dramatic changes can
occur. The lowest atmospheric pressure ever recorded was
associated with a typhoon, Typhoon Tip, in the Pacific Ocean
on October 12, 1979. The value was 0.870 bar (25.8 in. Hg).
(See Problem 2.15.)
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42 Chapter 2 ■ Fluid Statics

2.6 Manometry

A standard technique for measuring pressure involves the use of liquid columns in vertical or
inclined tubes. Pressure-measuring devices based on this technique are called manometers.
The mercury barometer is an example of one type of manometer, but there are many other
configurations possible depending on the particular application. Three common types of
manometers include the piezometer tube, the U-tube manometer, and the inclined-tube
manometer.

2.6.1 Piezometer Tube

The simplest type of manometer, called a piezometer tube, consists of a vertical tube, open
at the top, and attached to the container in which the pressure is desired, as illustrated in
Fig. 2.6. The figure in the margin shows an important device whose operation is based on
this principle. It is a sphygmomanometer, the traditional instrument used to measure blood
pressure. Because manometers involve columns of fluids at rest, the fundamental equation
describing their use is Eq. 2.8

which gives the pressure at any elevation within a homogeneous fluid in terms of a refer-
ence pressure p0 and the vertical distance h between p and p0. Remember that in a fluid at
rest pressure will increase as we move downward and will decrease as we move upward.
Application of this equation to the piezometer tube of Fig. 2.6 indicates that the pressure
pA can be determined by a measurement of h1 through the relationship

where �1 is the specific weight of the liquid in the container. Note that since the tube is
open at the top, the pressure p0 can be set equal to zero (we are now using gage pressure),
with the height h1 measured from the meniscus at the upper surface to point (1). Because
point (1) and point A within the container are at the same elevation, pA � p1.

pA � �1h1

p � �h � p0

Column of
mercury

Tube open at top

Container of
mercury

Arm cuff

Open

h1

1

(1)

γ

A

F I G U R E  2.6 Piezometer tube.

V2.2 Blood pres-
sure measurement

c02FluidStatics.qxd  9/24/10  11:39 AM  Page 42



Although the piezometer tube is a very simple and accurate pressure-measuring
device, it has several disadvantages. It is only suitable if the pressure in the container is
greater than atmospheric pressure (otherwise air would be sucked into the system), and the
pressure to be measured must be relatively small so the required height of the column is
reasonable. Also the fluid in the container in which the pressure is to be measured must be
a liquid rather than a gas.

2.6.2 U-Tube Manometer

To overcome the difficulties noted previously, another type of manometer that is widely used
consists of a tube formed into the shape of a U as is shown in Fig. 2.7. The fluid in the
manometer is called the gage fluid. To find the pressure pA in terms of the various column
heights, we start at one end of the system and work our way around to the other end, simply
utilizing Eq. 2.8. Thus, for the U-tube manometer shown in Fig. 2.7, we will start at point A
and work around to the open end. The pressure at points A and (1) are the same, and as we
move from point (1) to (2) the pressure will increase by �1h1. The pressure at point (2) is
equal to the pressure at point (3), since the pressures at equal elevations in a continuous mass
of fluid at rest must be the same. Note that we could not simply “jump across” from point
(1) to a point at the same elevation in the right-hand tube since these would not be points
within the same continuous mass of fluid. With the pressure at point (3) specified we now
move to the open end where the pressure is zero. As we move vertically upward the pressure
decreases by an amount �2h2. In equation form these various steps can be expressed as

and, therefore, the pressure pA can be written in terms of the column heights as

(2.12)

A major advantage of the U-tube manometer lies in the fact that the gage fluid can be dif-
ferent from the fluid in the container in which the pressure is to be determined. For exam-
ple, the fluid in A in Fig. 2.7 can be either a liquid or a gas. If A does contain a gas, the
contribution of the gas column, �1h1, is almost always negligible so that pA p2 and, in this
instance, Eq. 2.12 becomes

pA � �2h2

�

pA � �2h2 � �1h1

pA � �1h1 � �2h2 � 0

2.6 Manometry 43

h1

h2

Open

(1)

(3)(2)

A

 
(gage
fluid)

1γ

2γ

F I G U R E  2.7 Simple U-tube manometer.

pA

γ2h2

γ1h1

γ3h3

pA − pB

pB
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44 Chapter 2 ■ Fluid Statics

GIVEN A closed tank contains compressed air and oil
(SGoil � 0.90) as is shown in Fig. E2.2. A U-tube manometer
using mercury (SGHg � 13.6) is connected to the tank as shown.
The column heights are h1 � 36 in., h2 � 6 in., and h3 � 9 in.

FIND Determine the pressure reading (in psi) of the gage.

SOLUTION

Simple U-Tube Manometer

Because the specific weight of the air above the oil is much
smaller than the specific weight of the oil, the gage should
read the pressure we have calculated; that is,

(Ans)

COMMENT Assume that the gage pressure remains at
3.06 psi, but the manometer is altered so that it contains only
oil. That is, the mercury is replaced by oil. A simple calcula-
tion shows that in this case the vertical oil-filled tube would
need to be h3 � 11.3 ft tall, rather than the original h3 � 9 in.
There is an obvious advantage of using a heavy fluid such as
mercury in manometers.

pgage �
440 lb/ft2

144 in.2/ft2
� 3.06 psi

EXAMPLE 2.2

Following the general procedure of starting at one end of the
manometer system and working around to the other, we will
start at the air–oil interface in the tank and proceed to the open
end where the pressure is zero. The pressure at level (1) is

This pressure is equal to the pressure at level (2), as these two
points are at the same elevation in a homogeneous fluid at rest.
As we move from level (2) to the open end, the pressure must
decrease by �Hgh3, and at the open end the pressure is zero.
Thus, the manometer equation can be expressed as

or

For the values given

pair � �10.92 162.4 lb/ft32 a
36 � 6

12
 ftb

pair � 1SGoil2 1�H2O2 1h1 � h22 � 1SGHg2 1�H2O2h3 � 0

pair � �oil1h1 � h22 � �Hgh3 � 0

p1 � pair � �oil1h1 � h22
F I G U R E  E2.2

� 113.62 162.4 lb/ft32 a
9

12
 ftb

so that

pair � 440 lb/ft2

Pressure
gage

Air

Oil

Open

Hg

(1) (2)

h1

h2

h3

The U-tube manometer is also widely used to measure the difference in pressure between
two containers or two points in a given system. Consider a manometer connected between
containers A and B as is shown in Fig. 2.8. The difference in pressure between A and B can
be found by again starting at one end of the system and working around to the other end. For
example, at A the pressure is pA, which is equal to p1, and as we move to point (2) the pres-
sure increases by �1h1. The pressure at p2 is equal to p3, and as we move upward to point (4)
the pressure decreases by �2h2. Similarly, as we continue to move upward from point (4) to
(5) the pressure decreases by �3h3. Finally, p5 � pB, as they are at equal elevations. Thus,

Or, as indicated in the figure in the margin on the previous page, we could start at B and work
our way around to A to obtain the same result. In either case, the pressure difference is 

pA � pB � �2h2 � �3h3 � �1h1

pA � �1h1 � �2h2 � �3h3 � pB

c02FluidStatics.qxd  9/24/10  11:39 AM  Page 44



2.6 Manometry 45

(1)

(2) (3)

(4)

(5)

A

B

h1

h2

h3

2γ

3γ

1γ

F I G U R E  2.8 Differential U-tube
manometer.

GIVEN As is discussed in Chapter 3, the volume rate of flow,
Q, through a pipe can be determined by a means of a flow noz-
zle located in the pipe as illustrated in Fig. E2.3a. The nozzle
creates a pressure drop, pA � pB, along the pipe, which is 
related to the flow through the equation, ,
where K is a constant depending on the pipe and nozzle size.
The pressure drop is frequently measured with a differential
U-tube manometer of the type illustrated.

FIND
(a) Determine an equation for pA � pB in terms of the spe-
cific weight of the flowing fluid, �1, the specific weight of the
gage fluid, �2, and the various heights indicated.

Q � K1pA � pB

U-Tube Manometer

(b) For �1 � 9.80 kN/m3, �2 � 15.6 kN/m3, h1 � 1.0 m, and
h2 � 0.5 m, what is the value of the pressure drop, pA � pB?

EXAMPLE 2.3

SOLUTION

F I G U R E  E2.3a

A B

Flow nozzle

(1)

h1

(2) (3)

(4)
h2

(5)

Flow

γ1

γ2

γ1

8

3

2

1

0
10 12 14 16

p A
 –

 p
B
,  

kP
a

�2, kN/m3

�2 = �1

(15.6 kN/m3, 2.90 kPa)

(a) Although the fluid in the pipe is moving, fluids in the
columns of the manometer are at rest so that the pressure vari-
ation in the manometer tubes is hydrostatic. If we start at point
A and move vertically upward to level (1), the pressure will
decrease by �1h1 and will be equal to the pressure at (2) and at
(3). We can now move from (3) to (4) where the pressure has
been further reduced by �2h2. The pressures at levels (4) and
(5) are equal, and as we move from (5) to B the pressure will
increase by �1(h1 � h2). Thus, in equation form

or
(Ans)

COMMENT It is to be noted that the only column height
of importance is the differential reading, h2. The differential

pA � pB � h21�2 � �12

pA � �1h1 � �2h2 � �11h1 � h22 � pB

F I G U R E  E2.3b
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2.6.3 Inclined-Tube Manometer

To measure small pressure changes, a manometer of the type shown in Fig. 2.9 is fre-
quently used. One leg of the manometer is inclined at an angle �, and the differential read-
ing /2 is measured along the inclined tube. The difference in pressure pA � pB can be
expressed as

or

(2.13)

where it is to be noted the pressure difference between points (1) and (2) is due to the ver-
tical distance between the points, which can be expressed as /2 sin �. Thus, for relatively
small angles the differential reading along the inclined tube can be made large even for
small pressure differences. The inclined-tube manometer is often used to measure small dif-
ferences in gas pressures so that if pipes A and B contain a gas, then

or

(2.14)

where the contributions of the gas columns h1 and h3 have been neglected. As shown by Eq. 2.14
and the figure in the margin, the differential reading /2 (for a given pressure difference) of the
inclined-tube manometer can be increased over that obtained with a conventional U-tube
manometer by the factor 1/sin �. Recall that sin � → 0 as � → 0.

/2 �
pA � pB

�2 sin �

pA � pB � �2/2 sin �

pA � pB � �2/2 sin � � �3h3 � �1h1

pA � �1h1 � �2/2 sin � � �3h3 � pB

COMMENT By repeating the calculations for manometer
fluids with different specific weights, �2, the results shown in
Fig. E2.3b are obtained. Note that relatively small pressure
differences can be measured if the manometer fluid has nearly
the same specific weight as the flowing fluid. It is the differ-
ence in the specific weights, �2��1, that is important.

manometer could be placed 0.5 or 5.0 m above the pipe (h1 �
0.5 m or h1 � 5.0 m), and the value of h2 would remain the
same.

(b) The specific value of the pressure drop for the data given is

(Ans) � 2.90 kPa

 pA � pB � 10.5 m2 115.6 kN/m3 � 9.80 kN/m32

h1

h3

�2

(2)

γ3

γ2

γ1

A

B

θ
(1)

�
2

300 60 90

θ  , deg

~�
2 sin  

1
θ

F I G U R E  2.9 Inclined-tube manometer.
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2.7 Mechanical and Electronic Pressure-Measuring Devices

Although manometers are widely used, they are not well suited for measuring very high
pressures or pressures that are changing rapidly with time. In addition, they require the mea-
surement of one or more column heights, which, although not particularly difficult, can be
time consuming. To overcome some of these problems, numerous other types of pressure-
measuring instruments have been developed. Most of these make use of the idea that when
a pressure acts on an elastic structure, the structure will deform, and this deformation can
be related to the magnitude of the pressure. Probably the most familiar device of this kind
is the Bourdon pressure gage, which is shown in Fig. 2.10a. The essential mechanical ele-
ment in this gage is the hollow, elastic curved tube (Bourdon tube), which is connected to
the pressure source as shown in Fig. 2.10b. As the pressure within the tube increases, the
tube tends to straighten, and although the deformation is small, it can be translated into the
motion of a pointer on a dial as illustrated. Since it is the difference in pressure between
the outside of the tube (atmospheric pressure) and the inside of the tube that causes the
movement of the tube, the indicated pressure is gage pressure. The Bourdon gage must be
calibrated so that the dial reading can directly indicate the pressure in suitable units such
as psi, psf, or pascals. A zero reading on the gage indicates that the measured pressure is
equal to the local atmospheric pressure. This type of gage can be used to measure a nega-
tive gage pressure (vacuum) as well as positive pressures.

For many applications in which pressure measurements are required, the pressure must
be measured with a device that converts the pressure into an electrical output. For example,
it may be desirable to continuously monitor a pressure that is changing with time. This type
of pressure-measuring device is called a pressure transducer, and many different designs are
used. A diaphragm-type electrical pressure transducer is shown in the figure in the margin.

V2.3 Bourdon gage

F I G U R E  2.10 (a) Liquid-filled Bourdon pressure gages for various pressure ranges.
(b) Internal elements of Bourdon gages. The “C-shaped” Bourdon tube is shown on the left, and the
“coiled spring” Bourdon tube for high pressures of 1000 psi and above is shown on the right.
(Photographs courtesy of Weiss Instruments, Inc.)

Electrical 
input 
output

Lead

Diaphragm

Diaphragm-type 
electrical pressure 

transducer

wires

Resistance 
strain gages

p2

p1

2.8 Hydrostatic Force on a Plane Surface

When a surface is submerged in a fluid, forces develop on the surface due to the fluid. The
determination of these forces is important in the design of storage tanks, ships, dams, and
other hydraulic structures. For fluids at rest we know that the force must be perpendicular
to the surface since there are no shearing stresses present. We also know that the pressure
will vary linearly with depth if the fluid is incompressible. For a horizontal surface, such
as the bottom of a liquid-filled tank (Fig. 2.11a), the magnitude of the resultant force is
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simply FR � pA, where p is the uniform pressure on the bottom and A is the area of the
bottom. For the open tank shown, p � �h. Note that if atmospheric pressure acts on both
sides of the bottom, as is illustrated, the resultant force on the bottom is simply due to the
liquid in the tank. Because the pressure is constant and uniformly distributed over the bot-
tom, the resultant force acts through the centroid of the area as shown in Fig. 2.11a. As
shown in Fig. 2.11b, the pressure on the ends of the tank is not uniformly distributed. Deter-
mination of the resultant force for situations such as this is presented below.

For the more general case in which a submerged plane surface is inclined, as is illus-
trated in Fig. 2.12, the determination of the resultant force acting on the surface is more

48 Chapter 2 ■ Fluid Statics

V2.4 Hoover Dam

F I G U R E  2.11 (a) Pressure distribution and resultant hydrostatic force on the 
bottom of an open tank. (b) Pressure distribution on the ends of an open tank.

Free surface
p = 0

Specific weight = γ

FR
h

p = 0

p =   hγ

(a) Pressure on tank bottom

Free surface
p = 0

Specific weight = γ

p = 0

p =   hγ

(b) Pressure on tank ends

y

yc
yR

xR

xc

c

CP Centroid, c

Location of
resultant force

(center of pressure, CP)

dA

A

x

x

y

θ

0Free surface

h
hc

FR

dF

F I G U R E  2.12 Notation for hydrostatic force on an inclined plane
surface of arbitrary shape.
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2.8 Hydrostatic Force on a Plane Surface 49

involved. For the present we will assume that the fluid surface is open to the atmosphere.
Let the plane in which the surface lies intersect the free surface at 0 and make an angle
� with this surface as in Fig. 2.12. The x–y coordinate system is defined so that 0 is the
origin and y � 0 (i.e., the x axis) is directed along the surface as shown. The area can
have an arbitrary shape as shown. We wish to determine the direction, location, and mag-
nitude of the resultant force acting on one side of this area due to the liquid in contact
with the area. At any given depth, h, the force acting on dA (the differential area of Fig. 2.12)
is dF � �h dA and is perpendicular to the surface. Thus, the magnitude of the resultant
force can be found by summing these differential forces over the entire surface. In equa-
tion form

where h � y sin �. For constant � and �

(2.15)

Because the integral appearing in Eq. 2.15 is the first moment of the area with respect to
the x axis, we can write

where yc is the y coordinate of the centroid of the area A measured from the x axis, which
passes through 0. Equation 2.15 can thus be written as

or more simply as

(2.16)

where, as shown by the figure in the margin, hc is the vertical distance from the fluid
surface to the centroid of the area. Note that the magnitude of the force is independent
of the angle � and depends only on the specific weight of the fluid, the total area, and
the depth of the centroid of the area below the surface. In effect, Eq. 2.16 indicates that
the magnitude of the resultant force is equal to the pressure at the centroid of the area
multiplied by the total area. Since all the differential forces that were summed to obtain
FR are perpendicular to the surface, the resultant FR must also be perpendicular to the
surface.

Although our intuition might suggest that the resultant force should pass through the
centroid of the area, this is not actually the case. The y coordinate, yR, of the resultant force
can be determined by the summation of moments around the x axis. That is, the moment
of the resultant force must equal the moment of the distributed pressure force, or

and, therefore, since FR � �Ayc sin �

yR �

�
 

A
 y

2 dA

ycA

FRyR � �
 

A
 y dF � �

 

A
 � sin � y2 dA

FR � �hcA

FR � �Ayc sin �

�
 

A

y dA � ycA

FR � � sin ��
 

A

y dA

FR � �
 

A

�h dA � �
 

A

�y sin � dA

γ

A

hc

c
FR = γhcA
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The integral in the numerator is the second moment of the area (moment of inertia), Ix, with
respect to an axis formed by the intersection of the plane containing the surface and the
free surface (x axis). Thus, we can write

Use can now be made of the parallel axis theorem to express Ix as

where Ixc is the second moment of the area with respect to an axis passing through its cen-
troid and parallel to the x axis. Thus,

(2.17)

As shown by Eq. 2.17 and the figure in the margin, the resultant force does not
pass through the centroid but rather for nonhorizontal surfaces is always below it,
since Ixc /ycA 	 0.

The x coordinate, xR, for the resultant force can be determined in a similar manner
by summing moments about the y axis. It follows that

(2.18)

where Ixyc is the product of inertia with respect to an orthogonal coordinate system passing
through the centroid of the area and formed by a translation of the x–y coordinate system.
If the submerged area is symmetrical with respect to an axis passing through the centroid
and parallel to either the x or y axis, the resultant force must lie along the line x � xc, since
Ixyc is identically zero in this case. The point through which the resultant force acts is called
the center of pressure. It is to be noted from Eqs. 2.17 and 2.18 that, as yc increases, the
center of pressure moves closer to the centroid of the area. Because yc � hc/sin �, the dis-
tance yc will increase if the depth of submergence, hc, increases, or, for a given depth, the
area is rotated so that the angle, �, decreases. Thus, the hydrostatic force on the right-hand
side of the gate shown in the margin figure acts closer to the centroid of the gate than the
force on the left-hand side. Centroidal coordinates and moments of inertia for some common
areas are given in Fig. 2.13.

xR �
Ixyc

ycA
� xc

yR �
Ixc

ycA
� yc

Ix � Ixc � Ay2
c

yR �
Ix

ycA
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F l u i d s  i n  t h e  N e w s

The Three Gorges Dam The Three Gorges Dam being con-
structed on China’s Yangtze River will contain the world’s
largest hydroelectric power plant when in full operation. The
dam is of the concrete gravity type having a length of 2309 me-
ters with a height of 185 meters. The main elements of the pro-
ject include the dam, two power plants, and navigation facilities
consisting of a ship lock and lift. The power plants will contain
26 Francis-type turbines, each with a capacity of 700 megawatts.
The spillway section, which is the center section of the dam, is
483 meters long with 23 bottom outlets and 22 surface sluice

gates. The maximum discharge capacity is 102,500 cubic meters
per second. After more than 10 years of construction, the dam
gates were finally closed, and on June 10, 2003, the reservoir had
been filled to its interim level of 135 meters. Due to the large
depth of water at the dam and the huge extent of the storage pool,
hydrostatic pressure forces have been a major factor considered
by engineers. When filled to its normal pool level of 175 meters,
the total reservoir storage capacity is 39.3 billion cubic meters.
All of the originally planned components of the project (except
for the ship lift) were completed in 2008. (See Problem 2.39.)

c

yc

Ixc

ycA

FR

FRleft

FRright

c

Gate
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2.8 Hydrostatic Force on a Plane Surface 51

F I G U R E  2.13 Geometric properties of some common shapes.
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(a) Rectangle (b) Circle

(c) Semicircle (d) Triangle

(e) Quarter-circle

GIVEN The 4-m-diameter circular gate of Fig. E2.4a is
located in the inclined wall of a large reservoir containing wa-
ter (� � 9.80 kN/m3). The gate is mounted on a shaft along its
horizontal diameter, and the water depth is 10 m above the
shaft.

FIND Determine

(a) the magnitude and location of the resultant force exerted
on the gate by the water and 

(b) the moment that would have to be applied to the shaft to
open the gate. 

Hydrostatic Force on a Plane Circular SurfaceEXAMPLE 2.4

x
y

c

A

A Center of
pressure

FR

�

M

Oy

Ox
c(a)

(c)

(b)

4 m

Shaft

Stop
10 m

60°

0 0

FR
c

y R

y c
 =

 
10

 m
––

––
––

––
–

si
n 

60
°

F I G U R E  E2.4a–c
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SOLUTION

of 0.0866 m (along the gate) below the shaft. The force is per-
pendicular to the gate surface as shown.

By repeating the calculations for various values of the
depth to the centroid, hc, the results shown in Fig. E2.4d are
obtained. Note that as the depth increases the distance be-
tween the center of pressure and the centroid decreases.

(b) The moment required to open the gate can be obtained
with the aid of the free-body diagram of Fig. E2.4c. In this di-
agram,w is the weight of the gate and Ox and Oy are the hor-
izontal and vertical reactions of the shaft on the gate. We can
now sum moments about the shaft

and, therefore,

(Ans) � 1.07 � 105 N.m

 � 11230 � 103 N2 10.0866 m2

 M � FR 
1yR � yc2

©Mc � 0

(a) To find the magnitude of the force of the water we can
apply Eq. 2.16,

and because the vertical distance from the fluid surface to the
centroid of the area is 10 m it follows that

(Ans)

To locate the point (center of pressure) through which FR

acts, we use Eqs. 2.17 and 2.18,

For the coordinate system shown, xR � 0 since the area is sym-
metrical, and the center of pressure must lie along the diame-
ter A–A. To obtain yR, we have from Fig. 2.13

and yc is shown in Fig. E2.4b. Thus,

and the distance (along the gate) below the shaft to the center
of pressure is

(Ans)

COMMENT We can conclude from this analysis that the
force on the gate due to the water has a magnitude of 1.23 MN
and acts through a point along its diameter A–A at a distance

yR � yc � 0.0866 m

 � 0.0866 m � 11.55 m � 11.6 m

 yR �
1�/42 12 m24

110 m/sin  60°2 14� m22
�

10 m

sin 60°

Ixc �
�R4

4

xR �
Ixyc

ycA
� xc  yR �

Ixc

ycA
� yc

 � 1230 � 103 N � 1.23 MN

 FR � 19.80 � 103 N/m32 110 m2 14� m22

FR � �hcA

25 3020151050
0

0.1

0.2

0.3

0.4

0.5

y R
  –

  
y c

,  
m

hc, m

(10 m, 0.0886 m)

F I G U R E  E2.4d

2.9 Pressure Prism

An informative and useful graphical interpretation can be made for the force developed
by a fluid acting on a plane rectangular area. Consider the pressure distribution along a
vertical wall of a tank of constant width b, which contains a liquid having a specific
weight �. Since the pressure must vary linearly with depth, we can represent the varia-
tion as is shown in Fig. 2.14a, where the pressure is equal to zero at the upper surface
and equal to �h at the bottom. It is apparent from this diagram that the average pressure
occurs at the depth h/2 and, therefore, the resultant force acting on the rectangular area
A � bh is

FR � pavA � � a
h

2
b A
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2.9 Pressure Prism 53

which is the same result as obtained from Eq. 2.16. The pressure distribution shown in
Fig. 2.14a applies across the vertical surface so we can draw the three-dimensional repre-
sentation of the pressure distribution as shown in Fig. 2.14b. The base of this “volume” in
pressure–area space is the plane surface of interest, and its altitude at each point is the pres-
sure. This volume is called the pressure prism, and it is clear that the magnitude of the
resultant force acting on the rectangular surface is equal to the volume of the pressure prism.
Thus, for the prism of Fig. 2.14b the fluid force is

where bh is the area of the rectangular surface, A.
The resultant force must pass through the centroid of the pressure prism. For the vol-

ume under consideration the centroid is located along the vertical axis of symmetry of the
surface, and at a distance of h/3 above the base (since the centroid of a triangle is located
at h/3 above its base). This result can readily be shown to be consistent with that obtained
from Eqs. 2.17 and 2.18.

If the surface pressure of the liquid is different from atmospheric pressure (such as
might occur in a closed tank), the resultant force acting on a submerged area, A, will be
changed in magnitude from that caused simply by hydrostatic pressure by an amount ps A,
where ps is the gage pressure at the liquid surface (the outside surface is assumed to be
exposed to atmospheric pressure).

FR � volume �
1

2
 1�h2 1bh2 � � a

h

2
b A

FR

γ h

h

h–3

(a) (b)

γ h

h

FR

h–3

b

CP
p

F I G U R E  2.14 Pressure prism for vertical rectangular area.

GIVEN A pressurized tank contains oil (SG � 0.90) and has
a square, 0.6-m by 0.6-m plate bolted to its side, as is illustrated
in Fig. E2.5a. The pressure gage on the top of the tank reads 
50 kPa, and the outside of the tank is at atmospheric pressure.

SOLUTION

Use of the Pressure Prism Concept

FIND What is the magnitude and location of the resultant
force on the attached plate?

EXAMPLE 2.5

The pressure distribution acting on the inside surface of the
plate is shown in Fig. E2.5b. The pressure at a given point on
the plate is due to the air pressure, ps, at the oil surface and the

pressure due to the oil, which varies linearly with depth as is
shown in the figure. The resultant force on the plate (having an
area A) is due to the components, F1 and F2, where F1 and F2
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does not affect the resultant force (magnitude or location), as
it acts on both sides of the plate, thereby canceling its effect.

are due to the rectangular and triangular portions of the pres-
sure distribution, respectively. Thus,

and

The magnitude of the resultant force, FR, is therefore

(Ans)

The vertical location of FR can be obtained by summing
moments around an axis through point O so that

or

(Ans)

Thus, the force acts at a distance of 0.296 m above the bottom
of the plate along the vertical axis of symmetry.

COMMENT Note that the air pressure used in the calcu-
lation of the force was gage pressure. Atmospheric pressure

 � 0.296 m

 yO �
124.4 � 103 N2 10.3 m2 � 10.954 � 103 N2 10.2 m2

25.4 � 103 N

FRyO � F110.3 m2 � F210.2 m2

FR � F1 � F2 � 25.4 � 103 N � 25.4 kN

 � 0.954 � 103 N

 � 10.902 19.81 � 103 N/m32 a
0.6 m

2
b 10.36 m22

 F2 � � a
h2 � h1

2
b A

 � 24.4 � 103 N

� 10.902 19.81 � 103 N/m32 12 m2 4 10.36 m22
 � 350 � 103 N/m2

 F1 � 1ps � �h12A

p = 50 kPa

Air

2 m

0.6 m

(a)

F1

FR

Plate
O

(h2 – h1)γ

0.2 m

F2

yO
0.3 m

0.6 m

h2 = 2.6 m
h1 = 2 m

h1γ
ps Oil surface

(b)

Oil

F I G U R E  E2.5

2.10 Hydrostatic Force on a Curved Surface

The equations developed in Section 2.8 for the magnitude and location of the resultant
force acting on a submerged surface only apply to plane surfaces. However, many sur-
faces of interest (such as those associated with dams, pipes, and tanks or the bottom of
the beverage bottle shown in the figure in the margin) are nonplanar. Although the resul-
tant fluid force can be determined by integration, as was done for the plane surfaces,
this is generally a rather tedious process and no simple, general formulas can be devel-
oped. As an alternative approach we will consider the equilibrium of the fluid volume
enclosed by the curved surface of interest and the horizontal and vertical projections of
this surface.

For example, consider the swimming pool shown in Fig. 2.15a. We wish to find the
resultant fluid force acting on section BC shown in Fig. 2.15b. This section has a unit length
perpendicular to the plane of the paper. We first isolate a volume of fluid that is bounded
by the surface of interest, in this instance section BC, and the horizontal plane surface
AB and the vertical plane surface AC. The free-body diagram for this volume is shown
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2.10 Hydrostatic Force on a Curved Surface 55

in Fig. 2.15c. The magnitude and location of forces F1 and F2 can be determined from the
relationships for planar surfaces. The weight, w, is simply the specific weight of the fluid
times the enclosed volume and acts through the center of gravity (CG) of the mass of fluid
contained within the volume. Forces FH and FV represent the components of the force that
the tank exerts on the fluid.

In order for this force system to be in equilibrium, the horizontal component FH must
be equal in magnitude and collinear with F2, and the vertical component FV equal in mag-
nitude and collinear with the resultant of the vertical forces F1 and w. This follows since
the three forces acting on the fluid mass (F2, the resultant of F1 and w, and the resultant
force that the tank exerts on the mass) must form a concurrent force system. That is, from
the principles of statics, it is known that when a body is held in equilibrium by three non-
parallel forces they must be concurrent (their lines of action intersect at a common point)
and coplanar. Thus,

and the magnitude of the resultant force is obtained from the equation

The resultant FR passes through the point O, which can be located by summing moments
about an appropriate axis. The resultant force of the fluid acting on the curved surface BC
is equal and opposite in direction to that obtained from the free-body diagram of Fig. 2.15c.
The desired fluid force is shown in Fig. 2.15d.

FR � 21FH2
2 � 1FV2

2

 FV � F1 �w

 FH � F2

F I G U R E  2.15 Hydrostatic force on a curved surface.

CG

O

C

A B

FH

FV

F2

F1

�
A

C

B

(b) (c) (d)

O

B

C

√(FH)2 + (FV)2

(a)

Hydrostatic Pressure Force on a Curved SurfaceEXAMPLE 2.6

GIVEN The 6-ft-diameter drainage conduit of the type
shown in Fig. E2.6a is half full of water at rest, as shown in
Fig. E2.6b.

FIND Determine the magnitude and line of action of the re-
sultant force that the water exerts on the curved portion BC for
a section of the conduit that is 1 ft long.

V2.5 Pop bottle

c02FluidStatics.qxd  9/24/10  11:39 AM  Page 55



56 Chapter 2 ■ Fluid Statics

SOLUTION

We first isolate a volume of fluid bounded by the curved section
BC, the horizontal surface AB, and the vertical surface AC, as
shown in Fig. E2.6c. The volume has a length of 1 ft. Forces act-
ing on the volume are the horizontal force, F1, which acts on the
vertical surface AC, the weight,w, of the fluid contained within
the volume, and the horizontal and vertical components of the
force of the conduit wall on the fluid, FH and FV, respectively.

The magnitude of F1 is found from the equation

and this force acts 1 ft above C as shown. The weight,w, is

and acts through the center of gravity of the mass of fluid,
which according to Fig. 2.13 is located 1.27 ft to the right of
AC as shown. Therefore, to satisfy equilibrium

and the magnitude of the resultant force is

(Ans)

The force the water exerts on the conduit wall is equal, but op-
posite in direction, to the forces FH and FV shown in Fig. E2.6c.
Thus, the resultant force on the conduit wall is shown in Fig.
E2.6d. This force acts through the point O at the angle shown.

COMMENT An inspection of this result will show that
the line of action of the resultant force passes through the cen-
ter of the conduit. In retrospect, this is not a surprising result,
as at each point on the curved surface of the conduit, the ele-
mental force due to the pressure is normal to the surface, and
each line of action must pass through the center of the conduit.
It therefore follows that the resultant of this concurrent force
system must also pass through the center of concurrence of the
elemental forces that make up the system.

 � 21281 lb22 � 1441 lb22 � 523 lb

 FR � 21FH2
2 � 1FV2

2

 FV �w � 441 lb

 FH � F1 � 281 lb

w � � vol � 162.4 lb/ft32 19�/4 ft22 11 ft2 � 441 lb

F1 � �hcA � 162.4 lb/ft32 132 ft2 13 ft22 � 281 lb

B

C

(b)

A B

C

FV

FHF1
1 ft

�

CG

(c)

1 ft

A

1.27 ft

O

FR = 523 lb

32.5°

(d)

3 ft
A

(a)

F I G U R E  E2.6 (Photograph courtesy
of CONTECH Construction Products, Inc.)

F l u i d s  i n  t h e  N e w s

Miniature, exploding pressure vessels Our daily lives are
safer because of the effort put forth by engineers to design
safe, lightweight pressure vessels such as boilers, propane
tanks, and pop bottles. Without proper design, the large 
hydrostatic pressure forces on the curved surfaces of such
containers could cause the vessel to explode with disastrous
consequences. On the other hand, the world is a more friendly
place because of miniature pressure vessels that are designed
to explode under the proper conditions—popcorn kernels.
Each grain of popcorn contains a small amount of water

within the special, impervious hull (pressure vessel) which,
when heated to a proper temperature, turns to steam, causing
the kernel to explode and turn itself inside out. Not all pop-
corn kernels have the proper properties to make them pop
well. First, the kernel must be quite close to 13.5% water.
With too little moisture, not enough steam will build up to
pop the kernel; too much moisture causes the kernel to pop
into a dense sphere rather than the light fluffy delicacy ex-
pected. Second, to allow the pressure to build up, the kernels
must not be cracked or damaged.
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The same general approach can also be used for determining the force on curved sur-
faces of pressurized, closed tanks. If these tanks contain a gas, the weight of the gas is usu-
ally negligible in comparison with the forces developed by the pressure. Thus, the forces
(such as F1 and F2 in Fig. 2.15c) on horizontal and vertical projections of the curved sur-
face of interest can simply be expressed as the internal pressure times the appropriate pro-
jected area.

2.11 Buoyancy, Flotation, and Stability

2.11.1 Archimedes’ Principle

When a body is completely submerged in a fluid, or floating so that it is only partially sub-
merged, the resultant fluid force acting on the body is called the buoyant force. A net
upward vertical force results because pressure increases with depth and the pressure forces
acting from below are larger than the pressure forces acting from above.

It is well known from elementary physics that the buoyant force, FB, is given by the
equation

(2.19)

where � is the specific weight of the fluid and is the volume of the body. Thus, the buoy-
ant force has a magnitude equal to the weight of the fluid displaced by the body and is
directed vertically upward. This result is commonly referred to as Archimedes’ principle.
It is easily derived by using the principles discussed in Section 2.10. The buoyant force
passes through the centroid of the displaced volume, and the point through which the buoy-
ant force acts is called the center of buoyancy.

These same results apply to floating bodies that are only partially submerged, if the
specific weight of the fluid above the liquid surface is very small compared with the liquid
in which the body floats. Because the fluid above the surface is usually air, for practical
purposes this condition is satisfied.

 V

FB � �V

V2.6 Atmospheric
buoyancy

V2.7 Cartesian
diver

F l u i d s  i n  t h e  N e w s

Concrete canoes A solid block of concrete thrown into a pond
or lake will obviously sink. But if the concrete is formed into
the shape of a canoe it can be made to float. Of course, the rea-
son the canoe floats is the development of the buoyant force
due to the displaced volume of water. With the proper design,
this vertical force can be made to balance the weight of the ca-
noe plus passengers—the canoe floats. Each year since 1988 a
National Concrete Canoe Competition for university teams is

jointly sponsored by the American Society of Civil Engineers
and Master Builders Inc. The canoes must be 90% concrete
and are typically designed with the aid of a computer by civil
engineering students. Final scoring depends on four compo-
nents: racing, a design paper, a business presentation, and a
canoe that passes the floatation test. In 2009, the University of
California, Berkeley, won the national championship with its
230-pound, 20-foot-long canoe. (See Problem 2.75.)

Buoyant Force on a Submerged ObjectEXAMPLE 2.7

water. According to U.S. Coast Guard regulations, the life
jacket must provide a minimum 22-lb net upward force on the
user. Consider such a life jacket that uses a foam material with

GIVEN A Type I offshore life jacket (personal flotation de-
vice) of the type worn by commercial fishermen is shown in
Fig. E2.7a. It is designed for extended survival in rough, open
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a specific weight of 2.0 lb/ft3 for the main flotation material.
The remaining material (cloth, straps, fasteners, etc.) weighs
1.3 lb and is of negligible volume.

FIND Determine the minimum volume of foam needed for
this life jacket.

SOLUTION

A free-body diagram of the life jacket is shown in Fig. E2.7b,
where FB is the buoyant force acting on the life jacket,wF is
the weight of the foam, is the weight of the re-
maining material, and is the required force on the
user. For equilibrium it follows that

where from Eq. 2.19

Here is the specific weight of seawater and
is the volume of the foam. Also , where

is the specific weight of the foam. Thus,
from Eq. 1

�water V � �foam V �wS � FU

�foam � 2.0 lb/ft3
wfoam � �foam VV

�water � 64.0 lb/ft3

FB � �water V

FB �wF �wS � FU

FU � 22 lb
wS � 1.3 lb

F I G U R E  E2.7a

F I G U R E  E2.7b

F l u i d s  i n  t h e  N e w s

�F

�S

FU

FB

or

(Ans)

COMMENTS In this example, rather than using difficult-
to-calculate hydrostatic pressure force on the irregularly
shaped life jacket, we have used the buoyant force. The net
effect of the pressure forces on the surface of the life jacket
is equal to the upward buoyant force. Do not include both the
buoyant force and the hydrostatic pressure effects in your
calculations—use one or the other.

There is more to the proper design of a life jacket than
just the volume needed for the required buoyancy. According
to regulations, a Type I life jacket must also be designed so
that it provides proper protection to the user by turning an
unconscious person in the water to a face-up position as
shown in Fig. E2.7a. This involves the concept of the stabil-
ity of a floating object (see Section 2.11.2). The life jacket
should also provide minimum interference under ordinary
working conditions so as to encourage its use by commercial
fishermen.

 � 0.376 ft3
 � 11.3 lb � 22 lb2/ 164.0 lb/ft3 � 2.0 lb/ft32

 V � 1wS � FU2/ 1�water � �foam2

Explosive lake In 1986 a tremendous explosion of carbon
dioxide (CO2) from Lake Nyos, west of Cameroon, killed
more than 1700 people and livestock. The explosion resulted
from a build-up of CO2 that seeped into the high-pressure wa-
ter at the bottom of the lake from warm springs of CO2-bearing
water. The CO2-rich water is heavier than pure water and can

hold a volume of CO2 more than five times the water volume.
As long as the gas remains dissolved in the water, the strati-
fied lake (i.e., pure water on top, CO2 water on the bottom) is
stable. But if some mechanism causes the gas bubbles to nu-
cleate, they rise, grow, and cause other bubbles to form, feed-
ing a chain reaction. A related phenomenon often occurs
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2.11 Buoyancy, Flotation, and Stability 59

2.11.2 Stability

Another interesting and important problem associated with submerged or floating bodies is
concerned with the stability of the bodies. A body is said to be in a stable equilibrium posi-
tion if, when displaced, it returns to its equilibrium position. Conversely, it is in an unsta-
ble equilibrium position if, when displaced (even slightly), it moves to a new equilibrium
position. Stability considerations are particularly important for submerged or floating bod-
ies since the centers of buoyancy and gravity do not necessarily coincide. A small rotation
can result in either a restoring or overturning couple.

For example, for a completely submerged body with a center of gravity below the
center of buoyancy, a rotation from its equilibrium position will create a restoring cou-
ple formed by the weight, w, and the buoyant force, FB, which causes the body to rotate
back to its original position. Thus, for this configuration the body is stable. It is to be
noted that as long as the center of gravity falls below the center of buoyancy, this will
always be true; that is, the body is in a stable equilibrium position with respect to small
rotations. However, if the center of gravity of a completely submerged object is above
the center of buoyancy, the resulting couple formed by the weight and the buoyant force
will cause the body to overturn and move to a new equilibrium position. Thus, a com-
pletely submerged body with its center of gravity above its center of buoyancy is in an
unstable equilibrium position.

For floating bodies the stability problem is more complicated, because as the body
rotates the location of the center of buoyancy (which passes through the centroid of the dis-
placed volume) may change. As is shown in Fig. 2.16, a floating body such as a barge that
rides low in the water can be stable even though the center of gravity lies above the center
of buoyancy. This is true since as the body rotates the buoyant force, FB, shifts to pass through
the centroid of the newly formed displaced volume and, as illustrated, combines with the
weight, , to form a couple, which will cause the body to return to its original equilibrium
position. However, for the relatively tall, slender body shown in Fig. 2.17, a small rotational
displacement can cause the buoyant force and the weight to form an overturning couple as
illustrated.

It is clear from these simple examples that determination of the stability of submerged
or floating bodies can be difficult since the analysis depends in a complicated fashion on the
particular geometry and weight distribution of the body. Thus, although both the relatively

w

V2.8 Hydrometer

�

FB

c
CG

Restoring
couple

c' = centroid of new
displaced volume

c = centroid of original
displaced volume

Stable

�

FB

c'
CG

F I G U R E  2.16 Stability of a floating body—stable configuration.

Marginally stable

Very stable

V2.9 Stability of a
floating cube

when a pop bottle is shaken and then opened. The pop
shoots from the container rather violently. When this set of
events occurred in Lake Nyos, the entire lake overturned
through a column of rising and expanding buoyant bubbles.

The heavier-than-air CO2 then flowed through the long, deep
valleys surrounding the lake and asphyxiated human and animal
life caught in the gas cloud. One victim was 27 km downstream
from the lake.
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narrow kayak and the wide houseboat shown in the figures in the margin of the previous
page are stable, the kayak will overturn much more easily than the houseboat. The prob-
lem can be further complicated by the necessary inclusion of other types of external forces,
such as those induced by wind gusts or currents. Stability considerations are obviously of
great importance in the design of ships, submarines, bathyscaphes, and so forth, and such
considerations play a significant role in the work of naval architects.

60 Chapter 2 ■ Fluid Statics

V2.10 Stability of a
model barge

2.12 Pressure Variation in a Fluid with Rigid-Body Motion

Although in this chapter we have been primarily concerned with fluids at rest,
the general equation of motion (Eq. 2.2)

was developed for both fluids at rest and fluids in motion, with the only stip-
ulation being that there were no shearing stresses present.

A general class of problems involving fluid motion in which there are
no shearing stresses occurs when a mass of fluid undergoes rigid-body motion.
For example, if a container of fluid accelerates along a straight path, the fluid
will move as a rigid mass (after the initial sloshing motion has died out) with
each particle having the same acceleration. Since there is no deformation, there
will be no shearing stresses and, therefore, Eq. 2.2 applies. Similarly, if a fluid
is contained in a tank that rotates about a fixed axis as shown by the figure
in the margin, the fluid will simply rotate with the tank as a rigid body, and
again Eq. 2.2 can be applied to obtain the pressure distribution throughout the
moving fluid and the free surface shape.

�§p � � k̂ � �a

2.13 Chapter Summary and Study Guide

In this chapter the pressure variation in a fluid at rest is considered, along with some impor-
tant consequences of this type of pressure variation. It is shown that for incompressible flu-
ids at rest the pressure varies linearly with depth. This type of variation is commonly referred
to as hydrostatic pressure distribution. For compressible fluids at rest the pressure distribution
will not generally be hydrostatic, but Eq. 2.4 remains valid and can be used to determine the
pressure distribution if additional information about the variation of the specific weight is spec-

ω

(Photograph courtesy of Geno Pawlak.)

� �

CGCG

c c'

FB FB

Overturning
couple

c' = centroid of new
displaced volume

c = centroid of original
displaced volume

Unstable

F I G U R E  2.17 Stability of a floating
body—unstable configuration.
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ified. The distinction between absolute and gage pressure is discussed along with a consid-
eration of barometers for the measurement of atmospheric pressure.

Pressure-measuring devices called manometers, which utilize static liquid columns,
are analyzed in detail. A brief discussion of mechanical and electronic pressure gages is
also included. Equations for determining the magnitude and location of the resultant fluid
force acting on a plane surface in contact with a static fluid are developed. A general
approach for determining the magnitude and location of the resultant fluid force acting
on a curved surface in contact with a static fluid is described. For submerged or float-
ing bodies the concept of the buoyant force and the use of Archimedes’ principle are
reviewed.

The following checklist provides a study guide for this chapter. When your study
of the entire chapter and end-of-chapter exercises has been completed, you should be
able to

write out meanings of the terms listed here in the margin and understand each of the
related concepts. These terms are particularly important and are set in color and bold
type in the text.

calculate the pressure at various locations within an incompressible fluid at rest.

calculate the pressure at various locations within a compressible fluid at rest using
Eq. 2.4 if the variation in the specific weight is specified.

use the concept of a hydrostatic pressure distribution to determine pressures from
measurements using various types of manometers.

determine the magnitude, direction, and location of the resultant hydrostatic force act-
ing on a plane surface.

determine the magnitude, direction, and location of the resultant hydrostatic force act-
ing on a curved surface.

use Archimedes’ principle to calculate the resultant hydrostatic force acting on float-
ing or submerged bodies.

Some of the important equations in this chapter are

Pressure gradient in a stationary fluid (2.4)

Pressure variation in a stationary incompressible fluid (2.7)

Hydrostatic force on a plane surface (2.16)

Location of hydrostatic force on a plane surface (2.17)

(2.18)

Buoyant force (2.19)FB � �V

xR �
Ixyc

ycA
� xc

yR �
Ixc

ycA
� yc

FR � �hcA

p1 � �h � p2

dp

dz
� ��

Pascal’s law
surface force
body force
incompressible 

fluid
hydrostatic 

pressure 
distribution

pressure head
compressible fluid
U.S. standard 

atmosphere
absolute pressure
gage pressure
vacuum pressure
barometer
manometer
Bourdon pressure 

gage
center of pressure
buoyant force
Archimedes’

principle
center of buoyancy
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62 Chapter 2 ■ Fluid Statics

Note: Unless otherwise indicated use the values of fluid
properties found in the tables on the inside of the front
cover. Problems designated with an (*) are intended to be
solved with the aid of a programmable calculator or a
computer. Problems designated with a (†) are “open-
ended” problems and require critical thinking in that to
work them one must make various assumptions and pro-
vide the necessary data. There is not a unique answer to
these problems.

The even-numbered problems are included in the
hard copy version of the book, and the answers to these
even-numbered problems are listed at the end of the book.
Odd-numbered problems are provided in WileyPLUS, or
in Appendix L on the book’s web site, www.wiley.com/
college/young. The lab-type problems, FE problems, FlowLab
problems, and the videos that accompany problems can also
be accessed on these web sites.

Section 2.3 Pressure Variation in a Fluid at Rest

2.2 What pressure, expressed in pascals, will a skin diver be
subjected to at a depth of 50 m in seawater?

2.4 Sometimes when riding an elevator or driving up or down a
hilly road a person’s ears “pop” as the pressure difference be-
tween the inside and outside of the ear is equalized. Determine
the pressure difference (in psi) associated with this phenomenon
if it occurs during a 150-ft elevation change.

2.6 An unknown immiscible liquid seeps into the bottom of an
open oil tank. Some measurements indicate that the depth of the
unknown liquid is 1.5 m and the depth of the oil (specific
weight floating on top is 5.0 m. A pressure gage
connected to the bottom of the tank reads 65 kPa. What is the
specific gravity of the unknown liquid?

2.8 Blood pressure is commonly measured with a cuff placed
around the arm, with the cuff pressure (which is a measure of
the arterial blood pressure) indicated with a mercury manome-
ter (see Video 2.2). A typical value for the maximum value of
blood pressure (systolic pressure) is 120 mm Hg. Why wouldn’t
it be simpler and less expensive to use water in the manometer
rather than mercury? Explain and support your answer with the
necessary calculations.

*2.10 Under normal conditions the temperature of the atmos-
phere decreases with increasing elevation. In some situa-
tions, however, a temperature inversion may exist so that the
air temperature increases with elevation. A series of temper-
ature probes on a mountain give the elevation–temperature
data shown in Table P2.10. If the barometric pressure at the
base of the mountain is 12.1 psia, determine (by means of
numerical integration of Eq. 2.4) the pressure at the top of
the mountain.

� 8.5 kN/m32

Section 2.5 Measurement of Pressure

2.12 Obtain a photograph/image of a situation in which the use
of a manometer is important. Print this photo and write a brief
paragraph that describes the situation involved.

2.14 For an atmospheric pressure of 101 kPa (abs) determine
the heights of the fluid columns in barometers containing one of
the following liquids: (a) mercury, (b) water, and (c) ethyl alco-
hol. Calculate the heights, including the effect of vapor pressure,
and compare the results with those obtained neglecting vapor
pressure. Do these results support the widespread use of mercury
for barometers? Why?

2.16 An absolute pressure of 7 psia corresponds to which gage
pressure for standard atmospheric pressure of 14.7 psia?

2.18 A mercury manometer is connected to a large reservoir of
water as shown in Fig. P2.18. Determine the ratio, hw /hm, of the
distances hw and hm indicated in the figure.

Elevation (ft) Temperature ( )

5000 50.1 (base)
5500 55.2
6000 60.3
6400 62.6
7100 67.0
7400 68.4
8200 70.0
8600 69.5
9200 68.0
9900 67.1 (top)

�F

TA B L E  P2 . 1 0

F I G U R E  P2.18

Mercury

Water hw

hm

hm

Problems

Review Problems

Go to Appendix G for a set of review problems with answers.
Detailed solutions can be found in Student Solution Manual

for a Brief Introduction to Fluid Mechanics, by Young et al.
(© 2011 John Wiley and Sons, Inc.).
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Problems 63

2.24 For the configuration shown in Fig. P2.24 what must be
the value of the specific weight of the unknown fluid? Express
your answer in .

2.26 For the inclined-tube manometer of Fig. P2.26 the pres-
sure in pipe A is 0.8 psi. The fluid in both pipes A and B is
water, and the gage fluid in the manometer has a specific
gravity of 2.6. What is the pressure in pipe B corresponding to
the differential reading shown?

2.28 An inverted U-tube manometer containing oil (SG � 0.8)
is located between two reservoirs as shown in Fig. P2.28.
The reservoir on the left, which contains carbon tetrachlo-

lb/ft3

F I G U R E  P2.20

pA =
60 kPa

Water

B

2 m

4 m

3 m

3 m

SG = 0.8

Water

Hemispherical dome

C

A

F I G U R E  P2.22

Oil

Mercury

Water

B

4 in. 

3 in. 

12 in. 

A

F I G U R E  P2.24

5.5 in.
4.9 in.

1.4 in.

Open

Water

Unknown
fluid

Open

3.3 in.

F I G U R E  P2.28

Carbon tetrachloride

Oil

9 psi

3 ft h1 ft

0.7 ft

1 ft

Water

F I G U R E  P2.26

Water

Water

8 in.

30°
3 in.

3 in.

A

B

SG = 2.6

ride, is closed and pressurized to 9 psi. The reservoir on the
right contains water and is open to the atmosphere. With the
given data, determine the depth of water, h, in the right
reservoir.

2.30 A suction cup is used to support a plate of weight w as
shown in Fig. P2.30. For the conditions shown, determine w.

2.32 The cyclindrical tank with hemispherical ends shown in
Fig. P2.32 contains a volatile liquid and its vapor. The liquid
density is 800 kg/m3, and its vapor density is negligible. The
pressure in the vapor is 120 kPa (abs), and the atmospheric pres-
sure is 101 kPa (abs). Determine (a) the gage pressure reading
on the pressure gage and (b) the height, h, of the mercury
manometer.

2.34 A piston having a cross-sectional area of is lo-
cated in a cylinder containing water as shown in Fig. P2.34. An
open U-tube manometer is connected to the cylinder as shown.

0.09 m2

2.20 A closed cylindrical tank filled with water has a hemispher-
ical dome and is connected to an inverted piping system as shown
in Fig. P2.20. The liquid in the top part of the piping system has a
specific gravity of 0.8, and the remaining parts of the system are
filled with water. If the pressure gage reading at A is 60 kPa, de-
termine (a) the pressure in pipe B and (b) the pressure head, in
millimeters of mercury, at the top of the dome (point C).

2.22 A U-tube manometer contains oil, mercury, and water as
shown in Fig. P2.22. For the column heights indicated, what is
the pressure differential between pipes A and B?
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64 Chapter 2 ■ Fluid Statics

For what is the value of the ap-
plied force, P, acting on the piston? The weight of the piston is
negligible.

h1 � 60 mm and h � 100 mm,

Section 2.8 Hydrostatic Force on a Plane Surface
(also see Lab Problems 2.85, 2.86, 2.87, and 2.88)

2.38 A rectangular gate having a width of 4 ft is located in the
sloping side of a tank as shown in Fig. P2.38. The gate is hinged
along its top edge and is held in position by the force P. Friction
at the hinge and the weight of the gate can be neglected. Deter-
mine the required value of P.

*2.36 An inverted hollow cylinder is pushed into the water as is
shown in Fig. P2.36. Determine the distance, that the water
rises in the cylinder as a function of the depth, d, of the lower
edge of the cylinder. Plot the results for when H is
equal to 1 m. Assume the temperature of the air within the cylin-
der remains constant.

0 
 d 
 H,

/,

F I G U R E  P2.32

Liquid

Vapor
1 m

Open

Mercury

1 m

1 m

h

F I G U R E  P2.34

Piston

Mercury

Water
h

h1

P

F I G U R E  P2.36

Water

Open end

D �

d
H

F I G U R E  P2.38

60°

10 ft

6 ft

Hinge

Gate
P

Water

F I G U R E  P2.40

Plug OpenWater

9 ft

6 ft

2.40 A large, open tank contains water and is connected to a 
6-ft-diameter conduit as shown in Fig. P2.40. A circular plug is
used to seal the conduit. Determine the magnitude, direction,
and location of the force of the water on the plug.

F I G U R E  P2.30

Water

Open

0.5-ft radius

2-ft diameter

0.4 ft

Suction cup
Plate

1.6 ft
SG = 8

2.42 A circular 2-m-diameter gate is located on the sloping side
of a swimming pool. The side of the pool is oriented 60� relative
to the horizontal bottom, and the center of the gate is located 3 m
below the water surface. Determine the magnitude of the water
force acting on the gate and the point through which it acts.

†2.44 A rubber stopper covers the drain in your bathtub. Esti-
mate the force that the water exerts on the stopper. List all
assumptions and show all calculations. Is this the force that is
actually needed to lift the stopper? Explain.
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2.46 Solve Problem 2.45 if the isosceles triangle is replaced
with a right triangle having the same base width and altitude as
the isosceles triangle.

†2.48 Sometimes it is difficult to open an exterior door of a
building because the air distribution system maintains a pres-
sure difference between the inside and outside of the building.
Estimate how big this pressure difference can be if it is “not too
difficult” for an average person to open the door.

2.50 Forms used to make a concrete basement wall are shown
in Fig. P2.50. Each 4-ft-long form is held together by four ties—
two at the top and two at the bottom as indicated. Determine the
tension in the upper and lower ties. Assume concrete acts as a
fluid with a weight of 150 lb/ft3.

2.52 A gate having the cross section shown in Fig. P2.52 closes
an opening 5 ft wide and 4 ft high in a water reservoir. The gate
weighs 400 lb, and its center of gravity is 1 ft to the left of AC
and 2 ft above BC. Determine the horizontal reaction that is de-
veloped on the gate at C.

distance, d, should the frictionless horizontal shaft be located?
(b) What is the magnitude of the force on the gate when it
opens?

F I G U R E  P2.50

Tie

Concrete

Form
10 ft

1 ft

1 ft

10 in.

F I G U R E  P2.52

8 ft

4 ft

Water

Hinge

Gate
CB

A

3 ft

F I G U R E  P2.54

d

4 m

10 m

~~ Water

Shaft

F I G U R E  P2.56

Water

Hinge

Right-angle gate

Width = 4 ft

1-ft-diameter pipe

O

h

3 ft

2.56 A thin 4-ft-wide, right-angle gate with negligible mass
is free to pivot about a frictionless hinge at point O, as shown
in Fig. P2.56. The horizontal portion of the gate covers a 
1-ft-diameter drain pipe, which contains air at atmospheric
pressure. Determine the minimum water depth, h, at which the
gate will pivot to allow water to flow into the pipe.

h (m) � (kN/m3)

0 10.0
0.4 10.1
0.8 10.2
1.2 10.6
1.6 11.3
2.0 12.3
2.4 12.7
2.8 12.9
3.2 13.0
3.6 13.1

*2.58 An open rectangular settling tank contains a liquid sus-
pension that at a given time has a specific weight that varies
approximately with depth according to the following data:

2.54 A rectangular gate that is 2 m wide is located in the ver-
tical wall of a tank containing water as shown in Fig. P2.54. It
is desired to have the gate open automatically when the depth
of water above the top of the gate reaches 10 m. (a) At what
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The depth h � 0 corresponds to the free surface. By means of nu-
merical integration, determine the magnitude and location of the
resultant force that the liquid suspension exerts on a vertical wall
of the tank that is 6 m wide. The depth of fluid in the tank is 3.6 m.

*2.60 Water backs up behind a concrete dam as shown in Fig.
P2.60. Leakage under the foundation gives a pressure distribu-
tion under the dam as indicated. If the water depth, h, is too
great, the dam will topple over about its toe (point A). For the di-
mensions given, determine the maximum water depth for the
following widths of the dam: , and 60 ft. Base
your analysis on a unit length of the dam. The specific weight of
the concrete is 150 lb/ft3.

/ � 20, 30, 40, 50

66 Chapter 2 ■ Fluid Statics

2.66 An open tank containing water has a bulge in its vertical
side that is semicircular in shape as shown in Fig. P2.66. Deter-
mine the horizontal and vertical components of the force that
the water exerts on the bulge. Base your analysis on a 1-ft length
of the bulge.

Section 2.10 Hydrostatic Force on a Curved Surface

2.62 A 3-m-long curved gate is located in the side of a reservoir
containing water as shown in Fig. P2.62. Determine the magni-
tude of the horizontal and vertical components of the force of the
water on the gate. Will this force pass through point A? Explain.

2.70 If the bottom of a pop bottle similar to that shown in
Video V2.5 were changed so that it was hemispherical, as in
Fig. P2.70, what would be the magnitude, line of action, and
direction of the resultant force acting on the hemispherical bot-
tom? The air pressure in the top of the bottle is 40 psi, and the
pop has approximately the same specific gravity as that of
water. Assume that the volume of pop remains at 2 liters.

F I G U R E  P2.60

pB =   hγ

pA =   hTγ

AB
Water

Water

h

hT = 10 ft

80 ft

�

F I G U R E  P2.62

2 m

Water

6 m

A

Gate

F I G U R E  P2.64

P

6 ft

Gate

Hinge

H

Water

F I G U R E  P2.66

6 ft

3 ft

Water Bulge

F I G U R E  P2.68

4 m

1 m

Pivot

F I G U R E  P2.70

4.3-in. diameter

pair = 40 psi

2.64 The 20-ft-long light weight gate of Fig. P2.64 is a quarter
circle and is hinged at H. Determine the horizontal force, P.

2.68 The homogeneous gate shown in Fig. P2.68 consists of
one-quarter of a circular cylinder and is used to maintain a wa-
ter depth of 4 m. That is, when the water depth exceeds 4 m, the
gate opens slightly and lets the water flow under it. Determine
the weight of the gate per meter of length.
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Section 2.11 Buoyancy, Flotation, and Stability

2.72 A freshly cut log floats with one-fourth of its volume pro-
truding above the water surface. Determine the specific weight
of the log.

2.74 A tank of cross-sectional area A is filled with a liquid of
specific weight as shown in Fig. P2.74a. Show that when a
cylinder of specific weight and volume is floated in the
liquid (see Fig. P2.74b), the liquid level rises by an amount
¢h � 1�2/�12V�/A.

V� �2

 �1

open when the water level, h, drops below 2.5 m. Determine the
required value for M. Neglect friction at the gate hinge and the
pulley.

2.76 When the Tucurui Dam was constructed in northern
Brazil, the lake that was created covered a large forest of valu-
able hardwood trees. It was found that even after 15 years un-
derwater the trees were perfectly preserved and underwater log-
ging was started. During the logging process, a tree is selected,
trimmed, and anchored with ropes to prevent it from shooting to
the surface like a missile when cut. Assume that a typical large
tree can be approximated as a truncated cone with a base diam-
eter of 8 ft, a top diameter of 2 ft, and a height of 100 ft. Deter-
mine the resultant vertical force that the ropes must resist when
the completely submerged tree is cut. The specific gravity of the
wood is approximately 0.6.

2.78 An inverted test tube partially filled with air floats in a
plastic water-filled soft-drink bottle as shown in Video V2.7 and
Fig. P2.78. The amount of air in the tube has been adjusted so
that it just floats. The bottle cap is securely fastened. A slight
squeezing of the plastic bottle will cause the test tube to sink to
the bottom of the bottle. Explain this phenomenon.

Section 2.12 Pressure Variation in a Fluid with
Rigid-Body Motion

2.82 A 5-gal, cylindrical open container with a bottom area of
120 in.2 is filled with glycerin and rests on the floor of an eleva-
tor. (a) Determine the fluid pressure at the bottom of the con-
tainer when the elevator has an upward acceleration of 3 ft/s2.
(b) What resultant force does the container exert on the floor of
the elevator during this acceleration? The weight of the con-
tainer is negligible. (Note: 1 gal � 231 in.3)

2.84 A child riding in a car holds a string attached to a floating,
helium-filled balloon. As the car decelerates to a stop, the bal-
loon tilts backward. As the car makes a right-hand turn, the bal-
loon tilts to the right. On the other hand, the child tends to be
forced forward as the car decelerates and to the left as the car
makes a right-hand turn. Explain these observed effects on the
balloon and child.

■ Lab Problems

2.86 This problem involves the use of a cleverly designed ap-
paratus to investigate the hydrostatic pressure force on a sub-
merged rectangle. To proceed with this problem, go to the
book’s web site, www.wiley.com/college/young, or WileyPLUS.

2.88 This problem involves the use of a pressurized air pad to
provide the vertical force to support a given load. To proceed
with this problem, go to the book’s web site, www.wiley.com/
college/young, or WileyPLUS.

■ Lifelong Learning Problems

2.90 Over the years the demand for high-quality, first-growth
timber has increased dramatically. Unfortunately, most of the
trees that supply such lumber have already been harvested. Re-
cently, however, several companies have started to reclaim the
numerous high-quality logs that sank in lakes and oceans during
the logging boom times many years ago. Many of these logs are
still in excellent condition. Obtain information about the use of
fluid mechanics concepts in harvesting sunken logs. Summarize
your findings in a brief report.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for
fluid mechanics are provided on the book’s web site, www.
wiley.com/college/young, or WileyPLUS.

F I G U R E  P2.74

2γ

1γ

V

Δh

(a) (b)

F I G U R E  P2.80

4 m

1 m

1-m 
diameter

Water
h

F I G U R E  P2.78

Air

Plastic bottleWater

Test tube

2.80 A 1-m-diameter cylindrical mass, M, is connected to a 
2-m-wide rectangular gate as shown in Fig. P2.80. The gate is to
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CHAPTER OPENING PHOTO: Flow past a blunt body: On any object placed in a moving fluid there is a
stagnation point on the front of the object where the velocity is zero. This location has a relatively
large pressure and divides the flow field into two portions—one flowing to the left of the body and
one flowing to the right of the body. (Dye in water) (Photograph by B. R. Munson.)

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ discuss the application of Newton’s second law to fluid flows.

■ explain the development, uses, and limitations of the Bernoulli equation.

■ use the Bernoulli equation (stand-alone or in combination with the 
continuity equation) to solve simple flow problems.

■ apply the concepts of static, stagnation, dynamic, and total pressures.

■ calculate various flow properties using the energy and hydraulic grade lines.

In this chapter we investigate some typical fluid motions (fluid dynamics) in an elementary
way. We will discuss in some detail the use of Newton’s second law (F � ma) as it is
applied to fluid particle motion that is “ideal” in some sense. We will obtain the celebrated
Bernoulli equation and apply it to various flows. Although this equation is one of the oldest
in fluid mechanics and the assumptions involved in its derivation are numerous, it can be
used effectively to predict and analyze a variety of flow situations.
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3.1 Newton’s Second Law 69

3.1 Newton’s Second Law

According to Newton’s second law of motion, the net force acting on the fluid particle under
consideration must equal its mass times its acceleration,

In this chapter we consider the motion of inviscid fluids. That is, the fluid is assumed to
have zero viscosity.

We assume that the fluid motion is governed by pressure and gravity forces only and
examine Newton’s second law as it applies to a fluid particle in the form:

The results of the interaction among the pressure, gravity, and acceleration provide numer-
ous applications in fluid mechanics.

We consider two-dimensional motion like that confined to the x–z plane as is shown
in Fig. 3.1a. The motion of each fluid particle is described in terms of its velocity vector,
V, which is defined as the time rate of change of the position of the particle. The particle’s
velocity is a vector quantity with a magnitude (the speed, ) and direction. As the
particle moves about, it follows a particular path, the shape of which is governed by the
velocity of the particle.

If the flow is steady (i.e., nothing changes with time at a given location in the flow
field), each particle slides along its path, and its velocity vector is everywhere tangent to
the path. The lines that are tangent to the velocity vectors throughout the flow field are
called streamlines. The particle motion is described in terms of its distance, s � s(t), along
the streamline from some convenient origin and the local radius of curvature of the stream-
line, r � r(s). The distance along the streamline is related to the particle’s speed by V �
ds/dt, and the radius of curvature is related to the shape of the streamline. In addition to
the coordinate along the streamline, s, the coordinate normal to the streamline, n, as is
shown in Fig. 3.1b, will be of use.

By definition, acceleration is the time rate of change of the velocity of the particle,
a � dV/dt. The acceleration has two components—one along the streamline, as, streamwise
acceleration, and one normal to the streamline, an, normal acceleration.

By use of the chain rule of differentiation, the s component of the acceleration is
given by as � dV/dt � (0V/0s)(ds/dt) � (0V/0s)V, as shown in the figure in the margin.
We have used the fact that the speed is the time rate of change of distance along the
streamline, V � ds/dt. The normal component of acceleration, centrifugal acceleration, is
given in terms of the particle speed and the radius of curvature of its path as an � V 2/r.

V � 0V 0

1particle mass2 � 1particle acceleration2

1Net pressure force on particle2 � 1net gravity force on particle2 �

F � ma

V

s0

s0

as

s0

∂V
∂s

z

x
(a)

(1)

(2)
Fluid particle

V

z

x
(b)

V
s

� = �(s)

n = 0

n = n1

n

Streamlines

F I G U R E  3.1 (a) Flow in the x–z plane. (b) Flow in terms of streamline and normal
coordinates.

V3.1 Streamlines
past an airfoil
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70 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

Thus, the components of acceleration in the s and n directions, as and an, for steady flow are
given by

(3.1)an �
V 2

r
as � V

0V

0s
,

3.2 F � ma Along a Streamline

We consider the free-body diagram of a small fluid particle as is shown in Fig. 3.2. The
small fluid particle is of size �s by �n in the plane of the figure and �y normal to the figure
as shown in the free-body diagram of Fig. 3.3. Unit vectors along and normal to the stream-
line are denoted by and , respectively. For steady flow, the component of Newton’s second
law along the streamline direction, s, can be written as

(3.2)

where � �Fs represents the sum of the s components of all the forces acting on the parti-
cle, which has mass �m � � � , and V ∂V/∂s is the acceleration in the s direction. Here,
� � �s�n�y is the particle volume.

The gravity force (weight) on the particle can be written as �w� � � , where � � �g
is the specific weight of the fluid (lb/ft3 or N/m3). Hence, the component of the weight force
in the direction of the streamline is

If the streamline is horizontal at the point of interest, then � � 0, and there is no component
of the particle weight along the streamline to contribute to its acceleration in that direction.

If the pressure at the center of the particle shown in Fig. 3.3 is denoted as p, then its
average value on the two end faces that are perpendicular to the streamline are p � �ps and
p � �ps. Because the particle is “small,” we can use a one-term Taylor series expansion for
the pressure field to obtain

Thus, if �Fps is the net pressure force on the particle in the streamline direction, it follows that

 � �
0p

0s
 �s �n �y � �

0p

0s
 @V

 �Fps � 1p � �ps2  �n �y � 1p � �ps2  �n �y � �2 �ps �n �y

�ps �
0p

0s
 
�s

2

�ws � ��w sin � � �� �V sin �

V
V

V

a  �Fs � �m as � �m V 
0V

0s
� � �V V 

0V

0s

n̂ŝ

F1
F2F3

F5

θ

Streamline

Fluid particle

g

x

z

F4

F I G U R E  3.2 Isolation of a small fluid particle in a flow field. (Photo courtesy
of Diana Sailplanes.)
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3.2 F � ma Along a Streamline 71

Thus, the net force acting in the streamline direction on the particle shown in Fig. 3.3
is given by

(3.3)

By combining Eqs. 3.2 and 3.3 we obtain the following equation of motion along the stream-
line direction:

(3.4)

The physical interpretation of Eq. 3.4 is that a change in fluid particle speed is
accomplished by the appropriate combination of pressure and particle weight along the
streamline.

�� sin � �
0p

0s
� �V 

0V

0s

a �Fs � �ws � �Fps � a��  sin � �
0p

0s
b @V

GIVEN Consider the inviscid, incompressible, steady flow
along the horizontal streamline A–B in front of the sphere of
radius a as shown in Fig. E3.1a. From a more advanced theory
of flow past a sphere, the fluid velocity along this streamline is

as shown in Fig. E3.1b.

V � V0 a1 �
a3

x3b

FIND Determine the pressure variation along the stream-
line from point A far in front of the sphere (xA � �� and
VA � V0) to point B on the sphere (xB � �a and VB � 0).

Pressure Variation Along a StreamlineEXAMPLE 3.1

Particle thickness =   y

Along streamline
Normal to streamline

g�

(p +   pn)  s   yδ δ δ

δ

(p +   ps)  n   yδ δ δ

(p –   ps)  n   yδ δ δ

(p –   pn)  s   yδ δ δ

  s   yδ δτ = 0

 sδ
 zδθ

 zδ
θ

 nδ

 sδ

 nδ

s

 nδδ

 sδ

θ

θn

��

�

F I G U R E  3.3 Free-body diagram of a fluid particle for
which the important forces are those due to pressure and gravity.

V3.2 Balancing
ball
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72 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

V
A
 = VO i

A

V = V i V
B
 = 0

B
a

z

(a) (b)

x

x

V

–3a

0
–2a –1a 0

1 Vo

0.75 Vo

0.5 Vo

0.25 Vo

ˆˆ

SOLUTION

This variation is indicated in Fig. E3.1c. It is seen that the pres-
sure increases in the direction of flow (∂p/∂x � 0) from point A
to point B. The maximum pressure gradient (0.610�V2

0/a) oc-
curs just slightly ahead of the sphere (x � �1.205a). It is the
pressure gradient that slows the fluid down from VA � V0 to
VB � 0.

The pressure distribution along the streamline can be ob-
tained by integrating Eq. 2 from p � 0 (gage) at x � �� to
pressure p at location x. The result, plotted in Fig. E3.1d, is

(Ans)

COMMENT The pressure at B, a stagnation point since
VB � 0, is the highest pressure along the streamline
(pB � �V2

0 /2). As shown in Chapter 9, this excess pressure on
the front of the sphere (i.e., pB � 0) contributes to the net drag
force on the sphere. Note that the pressure gradient and pres-
sure are directly proportional to the density of the fluid, a rep-
resentation of the fact that the fluid inertia is proportional to
its mass.

p � ��V2
0 c a

a

x
b

3

�
1a/x26

2
d

Since the flow is steady and inviscid, Eq. 3.4 is valid. In addi-
tion, because the streamline is horizontal, sin � � sin 0	 � 0
and the equation of motion along the streamline reduces to

(1)

With the given velocity variation along the streamline, the ac-
celeration term is

where we have replaced s by x since the two coordinates are
identical (within an additive constant) along streamline A–B. It
follows that V∂V/∂s 
 0 along the streamline. The fluid slows
down from V0 far ahead of the sphere to zero velocity on the
“nose” of the sphere (x � �a).

Thus, according to Eq. 1, to produce the given motion the
pressure gradient along the streamline is

(2)
0p

0x
�

3�a3V2
011 � a3/x32

x4

 � �3V2
0 a1 �

a3

x3b 
a3

x4

 V 
0V

0s
� V 

0V

0x
� V0 a1 �

a3

x3b a� 

3V0 
a3

x4 b

0p

0s
� ��V 

0V

0s

F I G U R E S  E3.1a and b

–3a –2a –a 0 x

∂p__
∂x

0.610  V0
2/aρ

(c)
–3a –2a –a 0 x

(d)

p

0.5  V0
2

ρ

F I G U R E S  E3.1c and d
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3.2 F � ma Along a Streamline 73

Equation 3.4 can be rearranged and integrated as follows. First, we note from Fig. 3.3
that along the streamline sin � � dz/ds. Also we can write VdV/ds � 1

—

2d(V2)/ds. Finally,
along the streamline ∂p/∂s � dp/ds. These ideas combined with Eq. 3.4 give the following
result valid along a streamline

This simplifies to

(along a streamline) (3.5)

which, for constant density and specific weight, can be integrated to give

(3.6)

This is the celebrated Bernoulli equation—a very powerful tool in fluid mechanics.

p � 1
2 �V2 � �z � constant along streamline

dp �
1

2
 �d 1V22 � � dz � 0

�� 
dz

ds
�

dp

ds
�

1

2
 � 

d1V22

ds

F l u i d s  i n  t h e  N e w s

Incorrect raindrop shape The incorrect representation that
raindrops are teardrop shaped is found nearly everywhere—
from children’s books to weather maps on the Weather Chan-
nel. About the only time raindrops possess the typical teardrop
shape is when they run down a windowpane. The actual shape
of a falling raindrop is a function of the size of the drop and re-
sults from a balance between surface tension forces and the air
pressure exerted on the falling drop. Small drops with a radius
less than about 0.5 mm have a spherical shape because the sur-
face tension effect (which is inversely proportional to drop

size) wins over the increased pressure, caused by the
motion of the drop and exerted on its bottom. With increasing
size, the drops fall faster and the increased pressure causes the
drops to flatten. A 2-mm drop, for example, is flattened into a
hamburger bun shape. Slightly larger drops are actually con-
cave on the bottom. When the radius is greater than about 4 mm,
the depression of the bottom increases and the drop takes on
the form of an inverted bag with an annular ring of water
around its base. This ring finally breaks up into smaller drops.
(See Problem 3.22.)

�V 2
0/2,

V3.3 Flow past a
biker

GIVEN Consider the flow of air around a bicyclist moving
through still air with velocity V0 as is shown in Fig. E3.2.

FIND Determine the difference in the pressure between
points (1) and (2).

SOLUTION

The Bernoulli Equation

We consider (1) to be in the free stream so that V1 � V0 and (2)
to be at the tip of the bicyclist’s nose and assume that z1 � z2

EXAMPLE 3.2

In a coordinate system fixed to the bike, it appears as
though the air is flowing steadily toward the bicyclist with
speed V0. If the assumptions of Bernoulli’s equation are
valid (steady, incompressible, inviscid flow), Eq. 3.6 can be
applied as follows along the streamline that passes through
(1) and (2).

p1 � 1
2 �V2

1 � �z1 � p2 � 1
2 �V2

2 � �z2

V2 = 0 V1 = V0

(1)(2)

F I G U R E  E3.2
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74 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

velocity distribution is not needed—only the “boundary con-
ditions” at (1) and (2) are required. Of course, knowledge of
the value of V along the streamline is needed to determine
the pressure at points between (1) and (2). Note that if we
measure p2 � p1 we can determine the speed, V0. As dis-
cussed in Section 3.5, this is the principle upon which many
velocity-measuring devices are based.

If the bicyclist were accelerating or decelerating, the flow
would be unsteady (i.e., V0 � constant) and the aforemen-
tioned analysis would be incorrect, as Eq. 3.6 is restricted to
steady flow.

and V2 � 0 (both of which, as is discussed in Section 3.5, are
reasonable assumptions). It follows that the pressure of (2) is
greater than that at (1) by an amount

(Ans)

COMMENTS A similar result was obtained in Example
3.1 by integrating the pressure gradient, which was known
because the velocity distribution along the streamline, V(s),
was known. The Bernoulli equation is a general integration
of F � ma. To determine p2 � p1, knowledge of the detailed

p2 � p1 � 1
2 �V2

1 � 1
2 �V2

0

3.3 F � ma Normal to a Streamline

We again consider the force balance on the fluid particle shown in Fig. 3.3. This time, how-
ever, we consider components in the normal direction, , and write Newton’s second law
in this direction as

(3.7)

where � �Fn represents the sum of the normal components of all the forces acting on the
particle. We assume the flow is steady with a normal acceleration an � V2/r, where r is
the local radius of curvature of the streamlines.

We again assume that the only forces of importance are pressure and gravity. Using
the method of Section 3.2 for determining forces along the streamline, the net force acting
in the normal direction on the particle shown in Fig. 3.3 is determined to be

(3.8)

where ∂p/∂n is the pressure gradient normal to the streamline. By combining Eqs. 3.7 and
3.8 and using the fact that along a line normal to the streamline cos � � dz/dn (see Fig. 3.3),
we obtain the following equation of motion along the normal direction:

(3.9)

The physical interpretation of Eq. 3.9 is that a change in the direction of flow of a
fluid particle (i.e., a curved path, r 
 �) is accomplished by the appropriate combination
of pressure gradient and particle weight normal to the streamline. By integration of Eq. 3.9,
the final form of Newton’s second law applied across the streamlines for steady, inviscid,
incompressible flow is obtained as

(3.10)p � ��V 2

r
 dn � �z � constant across the streamline

�� 
dz

dn
�

0p

0n
�

�V 2

r

a  �Fn � �wn � �Fpn � a�� cos � �
0p

0n
b �V

a  �Fn �
�m V 2

r
�

� �V V 2

r

n̂

V3.5 Aircraft wing
tip vortex

V3.4 Hydrocyclone
separator

V3.6 Free vortex
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3.4 Physical Interpretation 75

GIVEN Shown in Figs. E3.3a,b are two flow fields with
circular streamlines. The velocity distributions are

for case (a)

and

for case (b)

where V0 is the velocity at 

FIND Determine the pressure distributions, p � p(r), for
each, given that p � p0 at r � r0.

r � r0.

V1r2 �
1V0 r02

r

V1r2 � 1V0 /r02r

SOLUTION

Pressure Variation Normal to a Streamline

for case (b). These pressure distributions are shown in Fig.
E3.3c. 

COMMENT The pressure distributions needed to balance
the centrifugal accelerations in cases (a) and (b) are not the
same because the velocity distributions are different. In fact, for
case (a) the pressure increases without bound as r → �,
whereas for case (b) the pressure approaches a finite value as
r → �. The streamline patterns are the same for each case,
however.

Physically, case (a) represents rigid-body rotation (as ob-
tained in a can of water on a turntable after it has been “spun
up”) and case (b) represents a free vortex (an approximation to
a tornado or the swirl of water in a drain, the “bathtub vortex”).

EXAMPLE 3.3

We assume the flows are steady, inviscid, and incompressible
with streamlines in the horizontal plane (dz/dn � 0). Because
the streamlines are circles, the coordinate n points in a
direction opposite that of the radial coordinate, ∂/∂n � �∂/∂r,
and the radius of curvature is given by r � r. Hence, Eq. 3.9
becomes

For case (a) this gives

whereas for case (b) it gives

For either case the pressure increases as r increases since
∂p/∂r � 0. Integration of these equations with respect to r,
starting with a known pressure p � p0 at r � r0, gives

(Ans)

for case (a) and

(Ans)p � p0 � 1�V2
0 �22 31 � 1r0/r22 4

p � p0 � 1�V2
0 �22 3 1r/r02

2 � 1 4

0p

0r
�

�1V0 r02
2

r3

0p

0r
� �1V0 /r02

2r

0p

0r
�

�V2

r

y

r = � n

(a)

V = (V0/r0)r V = (V0r0)/r

y

(b)

xx

(a)

(b)

4

6

2

0

�2

�4

�6
0 0.5 1 1.5 2 2.5

r/r0

p – p0

 V 0
2/2

(c)

ρ

F I G U R E  E3.3

3.4 Physical Interpretation

An alternate but equivalent form of the Bernoulli equation is obtained by dividing each term
of Eq. 3.6 by the specific weight, �, to obtain

(3.11)
p

�
�

V2

2g
� z � constant on a streamline
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76 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

Each of the terms in this equation has the units of length and represents a certain type of
head.

The elevation term, z, is related to the potential energy of the particle and is called the
elevation head. The pressure term, p/�, is called the pressure head and represents the height
of a column of the fluid that is needed to produce the pressure, p. The velocity term, V 2/2g, is
the velocity head and represents the vertical distance needed for the fluid to fall freely (neglect-
ing friction) if it is to reach velocity V from rest. The Bernoulli equation states that the sum
of the pressure head, the velocity head, and the elevation head is constant along a streamline.

GIVEN Consider the flow of water from the syringe shown
in Fig. E3.4a. As indicated in Fig. E3.4b, force applied to the
plunger will produce a pressure greater than atmospheric at
point (1) within the syringe. The water flows from the nee-
dle, point (2), with relatively high velocity and coasts up to
point (3) at the top of its trajectory.

FIND Discuss the energy of the fluid at points (1), (2), and
(3) using the Bernoulli equation.

SOLUTION

Kinetic, Potential, and Pressure Energy

location to another. An alternate way to consider this flow is
as follows. The pressure gradient between (1) and (2) pro-
duces an acceleration to eject the water from the needle.
Gravity acting on the particle between (2) and (3) produces a
deceleration to cause the water to come to a momentary stop
at the top of its flight.

COMMENTS If friction (viscous) effects were important,
there would be an energy loss between (1) and (3) and for the
given p1 the water would not be able to reach the height indi-
cated in Fig. E3.4. Such friction may arise in the needle (see
Chapter 8, pipe flow) or between the water stream and the sur-
rounding air (see Chapter 9, external flow).

EXAMPLE 3.4

If the assumptions (steady, inviscid, incompressible flow) of
the Bernoulli equation are approximately valid, it then fol-
lows that the flow can be explained in terms of the partition of
the total energy of the water. According to Eq. 3.11, the sum
of the three types of energy (kinetic, potential, and pressure)
or heads (velocity, elevation, and pressure) must remain con-
stant. The following table indicates the relative magnitude of
each of these energies at the three points shown in Fig. E3.4b.

The motion results in (or is due to) a change in the mag-
nitude of each type of energy as the fluid flows from one 

Energy Type

Kinetic Potential Pressure
Point p

1 Small Zero Large
2 Large Small Zero
3 Zero Large Zero

GzzRV 2�2

g

F

(1)

(2)

(3)

(b)

F I G U R E  E3.4

(a)

F l u i d s  i n  t h e  N e w s

Armed with a water jet for hunting Archerfish, known for
their ability to shoot down insects resting on foliage, are like
submarine water pistols. With their snout sticking out of the

water, they eject a high-speed water jet at their prey, knock-
ing it onto the water surface where they snare it for their
meal. The barrel of their water pistol is formed by placing

(Ans)
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3.4 Physical Interpretation 77

When a fluid particle travels along a curved path, a net force directed toward the cen-
ter of curvature is required. Under the assumptions valid for Eq. 3.10, this force may be grav-
ity, pressure, or a combination of both. In many instances the streamlines are nearly straight
(r � �) so that centrifugal effects are negligible and the pressure variation across the stream-
lines is merely hydrostatic (because of gravity alone), even though the fluid is in motion.

their tongue against a groove in the roof of their mouth to
form a tube. By snapping shut their gills, water is forced
through the tube and directed with the tip of their tongue.
The archerfish can produce a pressure head within their gills
large enough so that the jet can reach 2 to 3 m. However, it is
accurate to only about 1 m. Recent research has shown that

archerfish are very adept at calculating where their prey will
fall. Within 100 milliseconds (a reaction time twice as fast as
a human’s), the fish has extracted all the information needed
to predict the point where the prey will hit the water. Without
further visual cues it charges directly to that point. (See
Problem 3.28.)

GIVEN Water flows in a curved, undulating waterslide as
shown in Fig. E3.5a. As an approximation to this flow, con-
sider the inviscid, incompressible, steady flow shown in Fig.
E3.5b. From section A to B the streamlines are straight,
whereas from C to D they follow circular paths. 

FIND Describe the pressure variation between 

(a) points (1) and (2) 

(b) and points (3) and (4).

SOLUTION

Pressure Variation in a Flowing Stream

COMMENT To evaluate the integral we must know the
variation of V and r with z. Even without this detailed infor-
mation we note that the integral has a positive value. Thus, the
pressure at (3) is less than the hydrostatic value, �h4�3, by an
amount equal to This lower pressure, caused
by the curved streamline, is necessary in order to accelerate
(centrifugal acceleration) the fluid around the curved path.

�� z4

z3
1V 2/r2   dz.

EXAMPLE 3.5

(a) With the assumptions given in the problem statement and the
fact that r� � for the portion from A to B, Eq. 3.10 becomes

The constant can be determined by evaluating the known vari-
ables at the two locations using p2 � 0 (gage), z1 � 0, and
z2 � h2�1 to give

(Ans)

COMMENT Note that since the radius of curvature of the
streamline is infinite, the pressure variation in the vertical di-
rection is the same as if the fluid were stationary.

(b) If we apply Eq. 3.10 between points (3) and (4), we obtain
(using dn � �dz)

With p4 � 0 and z4 � z3 � h4�3 this becomes

(Ans)p3 � �h4�3 � ��
z4

z3

 

V 2

r
 dz

p4 � ��
z4

z3

 

V 2

r
 1�dz2 � �z4 � p3 � �z3

p1 � p2 � �1z2 � z12 � p2 � �h2�1

p � �z � constant
z

g

(2)

(1)

h2-1

A B

C D
�

Free surface
(p = 0)

n

h4-3

(4)

(3)

^

F I G U R E  E3.5b

F I G U R E  E3.5a (Photo courtesy of
Schlitterbahn® Waterparks.)
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78 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

3.5 Static, Stagnation, Dynamic, and Total Pressure

Each term of the Bernoulli equation, Eq. 3.6, has the dimensions of force per unit
area—psi, lb/ft2, N/m2. The first term, p, is the actual thermodynamic pressure of the
fluid as it flows. To measure its value, one could move along with the fluid, thus
being “static” relative to the moving fluid. Hence, it is normally termed the static
pressure. Another way to measure the static pressure would be to drill a hole in a
flat surface and fasten a piezometer tube as indicated by the location of point (3) in
Fig. 3.4.

The third term in Eq. 3.5, �z, is termed the hydrostatic pressure, in obvious regard to
the hydrostatic pressure variation discussed in Chapter 2. It is not actually a pressure but
does represent the change in pressure possible due to potential energy variations of the fluid
as a result of elevation changes.

The second term in the Bernoulli equation, �V 2/2, is termed the dynamic pressure.
Its interpretation can be seen in Fig. 3.4 by considering the pressure at the end of a small
tube inserted into the flow and pointing upstream. After the initial transient motion has
died out, the liquid will fill the tube to a height of H as shown. The fluid in the tube,
including that at its tip, (2), will be stationary. That is, V2 � 0, or point (2) is a stagnation
point.

If we apply the Bernoulli equation between points (1) and (2), using V2 � 0 and
assuming that z1 � z2, we find that

Hence, the pressure at the stagnation point, termed the stagnation pressure, is greater
than the static pressure, p1, by an amount �V2

1/2, the dynamic pressure. It can be shown
that there is a stagnation point on any stationary body that is placed into a flowing
fluid. Some of the fluid flows “over” and some “under” the object. The dividing line
(or surface for three-dimensional flows) is termed the stagnation streamline and ter-
minates at the stagnation point on the body. (See the photograph at the beginning of
the chapter.) For symmetrical objects (such as a baseball) the stagnation point is
clearly at the tip or front of the object as shown in Fig. 3.5a. For other flows, such
as a water jet against a car as shown in Fig. 3.5b, there is also a stagnation point on
the car.

p2 � p1 � 1
2 �V 2

1

V3.7 Stagnation
point flow

F I G U R E  3.4 Measurement of
static and stagnation pressures.

(1) (2)

(3)

(4)

h3-1

h h4-3

ρ

Open

H

V

V1 = V V2 = 0
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3.5 Static, Stagnation, Dynamic, and Total Pressure 79

The sum of the static pressure, hydrostatic pressure, and dynamic pressure is termed
the total pressure, pT. The Bernoulli equation is a statement that the total pressure remains
constant along a streamline. That is,

(3.12)

Knowledge of the values of the static and stagnation pressures in a fluid implies
that the fluid speed can be calculated. This is the principle on which the Pitot-static tube
is based. As shown in Fig. 3.6, two concentric tubes are attached to two pressure gages.
The center tube measures the stagnation pressure at its open tip. If elevation changes are
negligible,

where p and V are the pressure and velocity of the fluid upstream of point (2). The outer
tube is made with several small holes at an appropriate distance from the tip so that they
measure the static pressure. If the elevation difference between (1) and (4) is negligible, then

These two equations can be rearranged to give

(3.13)V � 221p3 � p42/�

p4 � p1 � p

p3 � p � 1
2 �V 2

p � 1
2 �V2 � �z � pT � constant along a streamline

Stagnation point

(a)

Stagnation streamline

(b)

Stagnation point

F I G U R E  3.5 Stagnation points.

F l u i d s  i n  t h e  N e w s

Pressurized eyes Our eyes need a certain amount of internal
pressure in order to work properly, with the normal range being
between 10 and 20 mm of mercury. The pressure is determined
by a balance between the fluid entering and leaving the eye. If
the pressure is above the normal level, damage may occur to the
optic nerve where it leaves the eye, leading to a loss of the visual
field termed glaucoma. Measurement of the pressure within the
eye can be done by several different noninvasive types of instru-

ments, all of which measure the slight deformation of the eyeball
when a force is put on it. Some methods use a physical probe that
makes contact with the front of the eye, applies a known force,
and measures the deformation. One noncontact method uses a
calibrated “puff” of air that is blown against the eye. The stagna-
tion pressure resulting from the air blowing against the eyeball
causes a slight deformation, the magnitude of which is correlated
with the pressure within the eyeball. (See Problem 3.17.)

V3.8 Airspeed
indicator
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80 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

Four static pressure ports

Heated outer case

Stagnation
pressure port

Stagnation pressure fitting

Heater leads

Mounting flange

Static pressure fitting

(b)

V

p

(1)

(2)

(4)

(3)

(a)

F I G U R E  3.6 (a) Generic Pitot-static tube, (b) Schematic of airplane Pitot-static probe.

GIVEN An airplane flies 200 mph at an elevation of 10,000 ft
in a standard atmosphere as shown in Fig. E3.6a. 

FIND Determine the pressure at point (1) far ahead of the
airplane, the pressure at the stagnation point on the nose of the
airplane, point (2), and the pressure difference indicated by a
Pitot-static probe attached to the fuselage.

SOLUTION

Pitot-Static Tube

It was assumed that the flow is incompressible—the den-
sity remains constant from (1) to (2). However, because
� � p/RT, a change in pressure (or temperature) will cause a
change in density. For this relatively low speed, the ratio of the
absolute pressures is nearly unity [i.e., p1/p2 � (10.11
psia)/(10.11 � 0.524 psia) � 0.951] so that the density change
is negligible. However, by repeating the calculations for vari-
ous values of the speed, , the results shown in Fig. E3.6b are
obtained. Clearly at the 500- to 600-mph speeds normally flown
by commercial airliners, the pressure ratio is such that density
changes are important. In such situations it is necessary to use
compressible flow concepts to obtain accurate results. 

V1

EXAMPLE 3.6

From Table C.1 we find that the static pressure at the altitude
given is

(Ans)

Also the density is � � 0.001756 slug/ft3.
If the flow is steady, inviscid, and incompressible and ele-

vation changes are neglected, Eq. 3.6 becomes

With V1 � 200 mph � 293 ft/s and V2 � 0 (since the coordi-
nate system is fixed to the airplane) we obtain

Hence, in terms of gage pressure

(Ans)

Thus, the pressure difference indicated by the Pitot-static tube is

(Ans)

COMMENTS Note that it is very easy to obtain incorrect
results by using improper units. Do not add lb/in.2 and lb/ft2.
Note that (slug/ft3)(ft2/s2) � (slug�ft/s2)/(ft2) � lb/ft2.

p2 � p1 �
�V 2

1

2
� 0.524 psi

p2 � 75.4 lb/ft2 � 0.524 psi

 � 11456 � 75.42 lb/ft2 1abs2

 p2 � 1456 lb/ft2 � 10.001756 slugs/ft32 1293 ft/s22/2

p2 � p1 �
�V 2

1

2

p1 � 1456 lb/ft2 1abs2 � 10.11 psia

F I G U R E  E3.6a (Photo
courtesy of Hawker Beechcraft.)

(2)

(1)

Pitot-static tube
V1 = 200 mph

F I G U R E  E3.6b

(200 mph, 0.951)
1

0.8

0.6

0.4

0.2

0
0 100 200 300

V1, mph

p 1
/p

2

400 500 600
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3.6 Examples of Use of the Bernoulli Equation 81

F l u i d s  i n  t h e  N e w s

Bugged and plugged Pitot tubes Although a Pitot tube is a
simple device for measuring aircraft airspeed, many air-
plane accidents have been caused by inaccurate Pitot tube
readings. Most of these accidents are the result of having
one or more of the holes blocked and, therefore, not indicat-
ing the correct pressure (speed). Usually this is discovered
during takeoff when time to resolve the issue is short. The
two most common causes for such a blockage are either that
the pilot (or ground crew) has forgotten to remove the pro-
tective Pitot tube cover or that insects have built their nest

within the tube where the standard visual check cannot de-
tect it. The most serious accident (in terms of number of fa-
talities) caused by a blocked Pitot tube involved a Boeing
757 and occurred shortly after takeoff from Puerto Plata in
the Dominican Republic. Incorrect airspeed data were auto-
matically fed to the computer causing the autopilot to
change the angle of attack and the engine power. The flight
crew became confused by the false indications: the aircraft
stalled and then plunged into the Caribbean Sea killing all
aboard. (See Problem 3.18.)

3.6 Examples of Use of the Bernoulli Equation

Between any two points, (1) and (2), on a streamline in steady, inviscid, incompressible
flow the Bernoulli equation (Eq. 3.6) can be applied in the form

(3.14)

The use of this equation is discussed in this section.

3.6.1 Free Jets

Consider flow of a liquid from a large reservoir as is shown in Fig. 3.7 or from a coffee urn as
indicated by the figure in the margin. A jet of liquid of diameter d flows from the nozzle with
velocity V. Application of Eq. 3.14 between points (1) and (2) on the streamline shown gives

We have used the facts that z1 � h, z2 � 0, the reservoir is large (V1 � 0), open to the atmo-
sphere ( p1 � 0 gage), and the fluid leaves as a “free jet” (p2 � 0). Thus, we obtain

(3.15)

This is indicated for the water leaving the spout of the watering can shown in the figure in
the margin.

Be careful when applying Eq. 3.15. It is valid only if the reservoir is large enough so
that the initial fluid speed is negligible (V1 � 0), the beginning and ending pressures are

V �
B

2 
�h

�
� 12gh

�h � 1
2�V 2

p1 � 1
2 �V2

1 � �z1 � p2 � 1
2 �V2

2 � �z2

F I G U R E  3.7
Vertical flow from a tank.

(2) (4)

(1)

(3)

V

d

(5)

 H

�

h z

(2)

V

V = 0

V =  2gh

h

h

(1)

(2)
V = √2gh
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3.6.2 Confined Flows

In many cases the fluid is physically constrained within a device so that its pressure cannot
be prescribed a priori as was done for the free jet examples given earlier. For these situa-
tions it is necessary to use the concept of conservation of mass (the continuity equation)
along with the Bernoulli equation.

Consider a fluid flowing through a fixed volume (such as a tank) that has one inlet
and one outlet as shown in Fig. 3.9. If the flow is steady so that there is no additional
accumulation of fluid within the volume, the rate at which the fluid flows into the vol-
ume must equal the rate at which it flows out of the volume (otherwise mass would not
be conserved).

The mass flowrate from an outlet, (slugs/s or kg/s), is given by where Q
(ft3/s or m3/s) is the volume flowrate. If the outlet area is A and the fluid flows across this
area (normal to the area) with an average velocity V, then the volume of the fluid crossing
this area in a time interval �t is VA �t, equal to that in a volume of length V �t and cross-
sectional area A (see Fig. 3.9). Hence, the volume flowrate (volume per unit time) is Q � VA.
Thus, To conserve mass, the inflow rate must equal the outflow rate. If the inletm

#
� �VA.

m
#

� �Q,m
#

82 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

the same ( p1 � p2), and viscous effects are absent. Note that as shown in the figure in the
margin of the previous page, a ball starting from rest will also obtain a speed of 
after it has dropped through a distance h, provided friction is negligible.

Once outside the nozzle, the stream continues to fall as a free jet with zero pressure
throughout (p5 � 0) and as seen by applying Eq. 3.14 between points (1) and (5), the speed
increases according to

where as shown in Fig. 3.7, H is the distance the fluid has fallen outside the nozzle.
Equation 3.15 could also be obtained by writing the Bernoulli equation between points

(3) and (4) using the fact that z4 � 0, z3 � /. Also, V3 � 0 since it is far from the nozzle,
and from hydrostatics, p3 � �(h � /).

If the exit of the tank shown in Fig. 3.7 is not a smooth, well-contoured nozzle, the
diameter of the jet, dj, will be less than the diameter of the hole, dh. This phenomenon,
called a vena contracta effect, is a result of the inability of the fluid to turn a sharp 90	
corner.

Figure 3.8 shows typical values of the experimentally obtained contraction coefficient,
Cc � Aj/Ah , where Aj and Ah are the areas of the jet at the vena contracta and the area of the
hole, respectively.

V � 12g1h � H2

V � 12gh

V3.9 Flow from a
tank

F l u i d s  i n  t h e  N e w s

Cotton candy, glass wool, and steel wool Although cotton
candy and glass wool insulation are made of entirely different
materials and have entirely different uses, they are made by
similar processes. Cotton candy, invented in 1897, consists of
sugar fibers. Glass wool, invented in 1938, consists of glass
fibers. In a cotton candy machine, sugar is melted and then
forced by centrifugal action to flow through numerous tiny
orifices in a spinning “bowl.” Upon emerging, the thin streams
of liquid sugar cool very quickly and become solid threads
that are collected on a stick or cone. Making glass wool insu-

lation is somewhat more complex, but the basic process is
similar. Liquid glass is forced through tiny orifices and
emerges as very fine glass streams that quickly solidify. The
resulting intertwined flexible fibers, glass wool, form an effec-
tive insulation material because the tiny air “cavities” between
the fibers inhibit air motion. Although steel wool looks similar
to cotton candy or glass wool, it is made by an entirely differ-
ent process. Solid steel wires are drawn over special cutting
blades that have grooves cut into them so that long, thin
threads of steel are peeled off to form the matted steel wool.
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dh

dj

CC = 0.61

CC = 0.61
CC = 0.50

CC = 1.0

CC = Aj /Ah = (dj /dh)
2

F I G U R E  3.8 Typical flow patterns and contraction coefficients
for various round exit configurations.

V1

(1)

Volume = V1   t A1

V2

(2)

Volume = V2   t A2

Same parcel at t =   tFluid parcel at t = 0

V1   tδ

δ δV2    t

δ

δ

(b)

V1

V2

(2)

(1)

(a)

F I G U R E  3.9 (a) Flow through a syringe. (b) Steady flow into
and out of a volume.
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84 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

is designated as (1) and the outlet as (2), it follows that Thus, conservation of mass
requires

If the density remains constant, then �1 � �2 and the above becomes the continuity equa-
tion for incompressible flow

or (3.16)

An example of this principle is shown in the figure in the margin.

Q1 � Q2A1V1 � A2V2,

�1A1V1 � �2A2V2

m
#

1 � m
#

2.

GIVEN A stream of refreshing beverage of diameter d �
0.01 m flows steadily from the cooler of diameter D � 0.20 m
as shown in Figs. E3.7a and b.

FIND Determine the flowrate, Q, from the bottle into the
cooler if the depth of beverage in the cooler is to remain con-
stant at h � 0.20 m.

Flow from a Tank—Gravity DrivenEXAMPLE 3.7

(a) (b)

d = 0.01 m

h = 0.20 m
D = 0.20 m

(1)

(2)

(3)

Q

1.10

1.05

1.00
0 0.2 0.4 0.6 0.8

d/D

Q/Q0

(c)

(0.05, 1.000003)

F I G U R E  E3.7

SOLUTION

Hence,

(3)

Equations 1 and 3 can be combined to give

Thus,

(Ans)

COMMENTS Note that this problem was solved using
points (1) and (2) located at the free surface and the exit of the

� 1.56 � 10�4 m3/s

Q � A1V1 � A2V2 �
�

4
10.01 m2211.98 m/s2

V2 �
B

2gh

1 � 1d/D24
�
B

219.81 m/s22 10.20 m2

1 � 10.01 m/0.20 m24
� 1.98 m/s

V1 � a
d

D
b

2

V2

For steady, inviscid, incompressible flow the Bernoulli equa-
tion applied between points (1) and (2) is

(1)

With the assumptions that p1 � p2 � 0, z1 � h, and z2 � 0,
Eq. 1 becomes

(2)

Although the water level remains constant (h � constant),
there is an average velocity, V1, across section (1) because of
the flow from the tank. From Eq. 3.16 for steady incompress-
ible flow, conservation of mass requires Q1 � Q2, where
Q � AV. Thus, A1V1 � A2V2, or

�

4
 D2V1 �

�

4
 d2V2

1
2V

2
1 � gh � 1

2V
2
2

p1 � 1
2 �V2

1 � �z1 � p2 � 1
2 �V2

2 � �z2

A2

Q

V2 = 2V1

V1

A1 = 2A2 (1)

(2)
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3.6 Examples of Use of the Bernoulli Equation 85

The fact that a kinetic energy change is often accompanied by a change in pressure
is shown by Example 3.8.

and the assumption that would be reason-
able. The error associated with this assumption can be seen
by calculating the ratio of the flowrate assuming de-
noted Q, to that assuming denoted This ratio,
written as

is plotted in Fig. E3.7c. With it follows that
and the error in assuming is less

than 1%. For this example with d/D � 0.01 m/0.20 m � 0.05,
it follows that Q/Q0 � 1.000003. Thus, it is often reasonable
to assume V1 � 0.

V1 � 01 6 Q/Q0  1.01,
0 6 d/D 6 0.4

Q

Q0
�

V2

V2 0 D��

�
22gh� 31 � 1d�D24 4

22gh
�

1

21 � 1d�D24

Q0.V1 � 0,
V1 � 0,

V1 � 0V1 � V2pipe, respectively. Although this was convenient (because
most of the variables are known at those points), other points
could be selected and the same result would be obtained. For
example, consider points (1) and (3) as indicated in Fig.
E3.7b. At (3), located sufficiently far from the tank exit, V3 �
0 and z3 � z2 � 0. Also, p3 � �h since the pressure is hydro-
static sufficiently far from the exit. Use of this information in
the Bernoulli equation applied between (1) and (3) gives the
exact same result as obtained using it between (1) and (2). The
only difference is that the elevation head, z1 � h, has been in-
terchanged with the pressure head at (3), p3/� � h.

In this example we have not neglected the kinetic energy
of the water in the tank If the tank diameter is large
compared to the jet diameter Eq. 3 indicates that1D � d2,

1V1 � 02.

GIVEN Air flows steadily from a tank, through a hose of
diameter D � 0.03 m, and exits to the atmosphere from a nozzle
of diameter d � 0.01 m as shown in Fig. E3.8a. The pressure in
the tank remains constant at 3.0 kPa (gage), and the atmos-
pheric conditions are standard temperature and pressure. 

FIND Determine

(a) the flowrate and 

(b) the pressure in the hose.

SOLUTION

Flow from a Tank—Pressure DrivenEXAMPLE 3.8

p1 = 3.0 kPa
D = 0.03 m d = 0.01 m

Q

(1)
(2)

(3)Air

F I G U R E  E3.8a

Thus, we find that

or

(Ans)

COMMENT Note that the value of V3 is determined
strictly by the value of p1 (and the assumptions involved in
the Bernoulli equation), independent of the “shape” of the
nozzle. The pressure head within the tank, p1/� � (3.0 kPa)/
(9.81 m/s2)(1.26 kg/m3) � 243 m, is converted to the veloc-
ity head at the exit,V 2

2/2g � (69.0 m/s)2/(2 � 9.81 m/s2) � 243 m.
Although we used gage pressure in the Bernoulli equation
(p3 � 0), we had to use absolute pressure in the perfect gas
law when calculating the density.

 � 0.00542 m3/s

 Q � A3V3 �
�

4
 d 2V3 �

�

4
 10.01 m22169.0 m/s2

V3 �
B

213.0 � 103 N/m22

1.26 kg/m3 � 69.0 m/s

(a) If the flow is assumed steady, inviscid, and incompress-
ible, we can apply the Bernoulli equation along the streamline
from (1) to (2) to (3) as

With the assumption that z1 � z2 � z3 (horizontal hose),
V1 � 0 (large tank), and p3 � 0 (free jet) this becomes

and

(1)

The density of the air in the tank is obtained from the perfect
gas law, using standard absolute pressure and temperature, as

 � 1.26 kg/m3

   �
103 N/kN

1286.9 N � m/kg � K2 115 � 2732K

 � 3 13.0 � 1012 kN/m2 4

 � �
p1

RT1

p2 � p1 � 1
2 �V 2

2

V3 �
B

2p1

�

 � p3 � 1
2 �V2

3 � �z3

 p1 � 1
2 �V2

1 � �z1 � p2 � 1
2 �V2

2 � �z2
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In many situations the combined effects of kinetic energy, pressure, and gravity are impor-
tant. Example 3.9 illustrates this.

86 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

flowrate increases as the nozzle is opened (i.e., larger d ). Note
that if the nozzle diameter is the same as that of the hose

the pressure throughout the hose is atmospheric
(zero gage).
1d � 0.03 m2,

(b) The pressure within the hose can be obtained from Eq. 1
and the continuity equation (Eq. 3.16)

Hence,

and from Eq. 1

(Ans)

COMMENTS In the absence of viscous effects, the pres-
sure throughout the hose is constant and equal to p2. Physi-
cally, decreases in pressure from p1 to p2 to p3 accelerate the
air and increase its kinetic energy from zero in the tank to an
intermediate value in the hose and finally to its maximum
value at the nozzle exit. Since the air velocity in the nozzle exit
is nine times that in the hose, most of the pressure drop occurs
across the nozzle (p1 � 3000 N/m2, p2 � 2963 N/m2, and
p3 � 0).

Because the pressure change from (1) to (3) is not too great
[that is, in terms of absolute pressure (p1 � p3)/p1 � 3.0/
101 � 0.03], it follows from the perfect gas law that the
density change is also not significant. Hence, the incom-
pressibility assumption is reasonable for this problem. If
the tank pressure were considerably larger or if viscous ef-
fects were important, application of the Bernoulli equation
to this situation would be incorrect.

By repeating the calculations for various nozzle diame-
ters, d, the results shown in Figs. E3.8b,c are obtained. The

 � 13000 � 37.12 N/m2 � 2963 N/m2

 p2 � 3.0 � 103 N/m2 � 1
2  11.26 kg/m32 17.67 m/s22

 � a
0.01 m

0.03 m
b

2 

169.0 m/s2 � 7.67 m/s

V2 � A3V3 /A2 � a
d

D
b

2

 V3

A2V2 � A3V3

0

1000

2000

3000

0

d, m

p 2
, 

N
/m

2

0.01 0.02 0.03

(0.01 m, 2963 N/m2)

0

0.01

0.03

0.02

0.04

0.05

0

d, m

Q
, 

m
3
/s

(0.01 m, 0.00542 m3/s)

0.01 0.02 0.03

F I G U R E  E3.8b

F I G U R E  E3.8c

F l u i d s  i n  t h e  N e w s

Hi-tech inhaler The term inhaler often brings to mind a treat-
ment for asthma or bronchitis. Work is underway to develop a
family of inhalation devices that can do more than treat respi-
ratory ailments. They will be able to deliver medication for
diabetes and other conditions by spraying it to reach the
bloodstream through the lungs. The concept is to make the spray
droplets fine enough to penetrate to the lungs’ tiny sacs, the
alveoli, where exchanges between blood and the outside world
take place. This is accomplished by use of a laser-machined
nozzle containing an array of very fine holes that cause the liq-

uid to divide into a mist of micron-scale droplets. The device
fits the hand and accepts a disposable strip that contains the
medicine solution sealed inside a blister of laminated plastic
and the nozzle. An electrically actuated piston drives the liq-
uid from its reservoir through the nozzle array and into the res-
piratory system. To take the medicine, the patient breathes
through the device and a differential pressure transducer in the
inhaler senses when the patient’s breathing has reached the best
condition for receiving the medication. At that point, the piston
is automatically triggered.
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In general, an increase in velocity is accompanied by a decrease in pressure. If the
differences in velocity are considerable, the differences in pressure can also be consid-
erable. For flows of liquids, this may result in cavitation, a potentially dangerous situa-
tion that results when the liquid pressure is reduced to the vapor pressure and the liquid
“boils.”

One way to produce cavitation in a flowing liquid is noted from the Bernoulli equa-
tion. If the fluid velocity is increased (for example, by a reduction in flow area as shown
in Fig. 3.10), the pressure will decrease. This pressure decrease (needed to accelerate the
fluid through the constriction) can be large enough so that the pressure in the liquid is
reduced to its vapor pressure.

GIVEN Water flows through a pipe reducer as is shown in
Fig. E3.9. The static pressures at (1) and (2) are measured by
the inverted U-tube manometer containing oil of specific grav-
ity, SG, less than one. 

FIND Determine the manometer reading, h.

SOLUTION

Flow in a Variable Area Pipe

or since V2 � Q/A2

(Ans)

COMMENTS The difference in elevation, z1 � z2, was
not needed because the change in the elevation term in the
Bernoulli equation exactly cancels the elevation term in the
manometer equation. However, the pressure difference,
p1 � p2, depends on the angle � because of the elevation,
z1 � z2, in Eq. 1. Thus, for a given flowrate, the pressure dif-
ference, p1 � p2, as measured by a pressure gage, would
vary with �, but the manometer reading, h, would be inde-
pendent of �.

h � 1Q/A22
2 

1 � 1A2/A12
2

2g11 � SG2

EXAMPLE 3.9

With the assumptions of steady, inviscid, incompressible flow,
the Bernoulli equation can be written as

The continuity equation (Eq. 3.16) provides a second relation-
ship between V1 and V2 if we assume the velocity profiles are
uniform at those two locations and the fluid is incompressible:

By combining these two equations we obtain

(1)

This pressure difference is measured by the manometer and
can be determined using the pressure-depth ideas developed
in Chapter 2. Thus,

or

(2)

As discussed in Chapter 2, this pressure difference is neither
merely �h nor �(h � z1 � z2).

Equations 1 and 2 can be combined to give the desired result
as follows:

11 � SG2�h �
1

2
 �V 2

2 c1 � a
A2

A1
b

2

d

p1 � p2 � �1z2 � z12 � 11 � SG2�h

p1 � �1z2 � z12 � �/ � �h � SG �h � �/ � p2

p1 � p2 � �1z2 � z12 � 1
2 �V 2

2 31 � 1A2/A12
2 4

Q � A1V1 � A2V2

p1 � 1
2 �V2

1 � �z1 � p2 � 1
2 �V2

2 � �z2

F I G U R E  E3.9

�

γ
(1)

z2 – z1

(2)

Water θ

D1

D2

h

SG

V3.10 Venturi
channel
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88 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

F I G U R E  3.10 Pressure
variation and cavitation in a variable
area pipe.

Q

p

(Absolute
pressure)

(1) (2) (3)

Small Q

Moderate Q

Large Q Incipient cavitation

pv

0 x

GIVEN A liquid can be siphoned from a container as
shown in Fig. E3.10a provided the end of the tube, point (3),
is below the free surface in the container, point (1), and the
maximum elevation of the tube, point (2), is “not too great.”
Consider water at 60 °F being siphoned from a large tank
through a constant-diameter hose as shown in Fig. E3.10b.
The end of the siphon is 5 ft below the bottom of the tank, and
the atmospheric pressure is 14.7 psia.

FIND Determine the maximum height of the hill, H, over
which the water can be siphoned without cavitation occurring.

SOLUTION

Siphon and CavitationEXAMPLE 3.10

(2)

(3)

(1)

Water

(1)

(2)

(3)
5 ft

H

15 ft

F I G U R E  E3.10b

F I G U R E  E3.10a

If the flow is steady, inviscid, and incompressible, we can
apply the Bernoulli equation along the streamline from (1) to
(2) to (3) as follows

(1)

With the tank bottom as the datum, we have z1 � 15 ft, z2 � H,
and z3 � �5 ft. Also, V1 � 0 (large tank), p1 � 0 (open tank),
p3 � 0 (free jet), and from the continuity equation A2V2 � A3V3,
or because the hose is constant diameter, V2 � V3. Thus, the
speed of the fluid in the hose is determined from Eq. 1 to be

Use of Eq. 1 between points (1) and (2) then gives the pressure
p2 at the top of the hill as

(2)� �1z1 � z22 � 1
2 �V2

2

p2 � p1 � 1
2 �V2

1 � �z1 � 1
2 �V2

2 � �z2

 � 35.9 ft/s � V2

 V3 � 22g1z1 � z32 � 22132.2 ft/s22 315 � 1�52 4  ft

 � p3 � 1
2 �V2

3 � �z3

p1 � 1
2 �V2

1 � �z1 � p2 � 1
2 �V2

2 � �z2
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3.6 Examples of Use of the Bernoulli Equation 89

3.6.3 Flowrate Measurement

Many types of devices using principles involved in the Bernoulli equation have been devel-
oped to measure fluid velocities and flowrates.

An effective way to measure the flowrate through a pipe is to place some type of
restriction within the pipe as shown in Fig. 3.11 and to measure the pressure difference
between the low-velocity, high-pressure upstream section (1) and the high-velocity, low-
pressure downstream section (2). Three commonly used types of flowmeters are illustrated:
the orifice meter, the nozzle meter, and the Venturi meter. The operation of each is based on
the same physical principles—an increase in velocity causes a decrease in pressure.

We assume the flow is horizontal (z1 � z2), steady, inviscid, and incompressible
between points (1) and (2). The Bernoulli equation becomes

In addition, the continuity equation (Eq. 3.16) can be written as

where A2 is the small (A2 
 A1) flow area at section (2). Combining these two equations
results in the following theoretical flowrate

(3.17)

The actual measured flowrate, Qactual, will be smaller than this theoretical result because of
various differences between the “real world” and the assumptions used in the derivation of

Q � A2
B

21p1 � p22

� 31 � 1A2/A12
2 4

Q � A1V1 � A2V2

p1 � 1
2 �V 2

1 � p2 � 1
2 �V 2

2

The aforementioned results are independent of the di-
ameter and length of the hose (provided viscous effects are
not important). Proper design of the hose (or pipe) is needed
to ensure that it will not collapse due to the large pressure dif-
ference (vacuum) between the inside and the outside of the
hose.

By using the fluid properties listed in Table 1.5 and 
repeating the calculations for various fluids, the results
shown in Fig. E3.10c are obtained. The value of H is a
function of both the specific weight of the fluid, �, and its
vapor pressure, pv.

From Table B.1, the vapor pressure of water at 60 	F is
0.256 psia. Hence, for incipient cavitation the lowest pressure
in the system will be p � 0.256 psia. Careful consideration of
Eq. 2 and Fig. E3.10a will show that this lowest pressure will
occur at the top of the hill. Because we have used gage pressure
at point (1) (p1 � 0), we must use gage pressure at point (2)
also. Thus, p2 � 0.256 � 14.7 � �14.4 psi and Eq. 2 gives

or

(Ans)

For larger values of H, vapor bubbles will form at point (2) and
the siphon action may stop.

COMMENTS Note that we could have used absolute
pressure throughout (p2 � 0.256 psia and p1 � 14.7 psia) and
obtained the same result. The lower the elevation of point (3),
the larger the flowrate and, therefore, the smaller the value of
H allowed.

We could also have used the Bernoulli equation between
(2) and (3), with V2 � V3, to obtain the same value of H. In this
case it would not have been necessary to determine V2 by use
of the Bernoulli equation between (1) and (3).

H � 28.2 ft

� 162.4 lb/ft32 115 � H2ft � 1
2 11.94 slugs/ft32 135.9 ft/s22

1�14.4 lb/in.22 1144 in.2/ft22

F I G U R E  E3.10c
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90 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

Eq. 3.17. These differences (which are quite consistent and may be as small as 1 to 2% or as
large as 40% depending on the geometry used) are discussed in Chapter 8. Note that as
shown in the figure in the margin, the flowrate is proportional to the square root of the pressure
difference.

F I G U R E  3.11 Typical
devices for measuring flowrate in
pipes.

(1) (2)

(1) (2)

Venturi

Nozzle

Orifice

GIVEN Kerosene (SG � 0.85) flows through the Venturi
meter shown in Fig. E3.11a with flowrates between 0.005 and
0.050 m3/s. 

FIND Determine the range in pressure difference, p1 � p2,
needed to measure these flowrates.

SOLUTION

Venturi MeterEXAMPLE 3.11

D1 = 0.1 m

(1)
(2)

0.005 m3/s < Q < 0.050 m3/s

D2 = 0.06 m

Kerosene, SG = 0.85

Q

F I G U R E  E3.11a

If the flow is assumed to be steady, inviscid, and incompress-
ible, the relationship between flowrate and pressure is given
by Eq. 3.17. This can be rearranged to give

With a density of the flowing fluid of

and the area ratio

A2/A1 � 1D2/D12
2 � 10.06 m/0.10 m22 � 0.36

� � SG �H2O � 0.8511000 kg/m32 � 850 kg/m3

p1 � p2 �
Q2� 31 � 1A2/A12

2 4

2A2
2

the pressure difference for the smallest flowrate is

Likewise, the pressure difference for the largest flowrate is

 � 1.16 � 102 N/m2 � 116 kPa

 p1 � p2 � 10.052218502 
11 � 0.3622

2 3 1�/42 10.0622 42

 � 1160 N/m2 � 1.16 kPa

 p1 � p2 � 10.005 m3/s22 1850 kg/m32 
11 � 0.3622

2 3 1�/42 10.06 m22 42

Q

Δp = p1 – p2

Q ~  Δp

c03ElementaryFluidDynamicsTheBernoulliEquation.qxd  9/24/10  4:51 PM  Page 90



3.6 Examples of Use of the Bernoulli Equation 91

Other flowmeters based on the Bernoulli equation are used to measure flowrates in
open channels such as flumes and irrigation ditches. An example of this type of flowmeter
is the set of sluice gates shown in Fig. 3.12a.

We apply the Bernoulli and continuity equations between points on the free surfaces
at (1) and (2), as shown in Fig. 3.12b, to give

and

With the fact that p1 � p2 � 0, these equations can be combined to give the flowrate as

(3.18)

The downstream depth, z2, not the gate opening, a, was used to obtain the result of
Eq. 3.18 since a vena contracta results with a contraction coefficient, Cc � z2/a, less than 1.

Q � z2b 

B

2g1z1 � z22

1 � 1z2/z12
2

Q � A1V1 � bV1z1 � A2V2 � bV2z2

p1 � 1
2 �V2

1 � �z1 � p2 � 1
2 �V2

2 � �z2

parallel—one for the larger and one for the smaller flowrate
ranges.

Thus,

(Ans)

These values represent pressure differences for inviscid,
steady, incompressible conditions. The ideal results presented
here are independent of the particular flowmeter geometry—
an orifice, nozzle, or Venturi meter (see Fig. 3.11).

COMMENT Equation 3.17 shows that the pressure differ-
ence varies as the square of the flowrate. Hence, as indicated
by the numerical results and shown in Fig. E3.11b, a 10-fold
increase in flowrate requires a 100-fold increase in pressure
difference. This nonlinear relationship can cause difficulties
when measuring flowrates over a wide range of values. Such
measurements would require pressure transducers with a wide
range of operation. An alternative is to use two flowmeters in

1.16 kPa � p1 � p2 � 116 kPa

F I G U R E  E3.11b

0
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p 1
 – 

p 2
, 
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a

Q, m3/s

0 0.01 0.02 0.03 0.04 0.05

(0.005 m3/s, 1.16 kPa)

(0.05 m3/s, 116 kPa)

Sluice gate
width = b

(1)

(2)

(4)(3)

V1

z1

a

V2

z2

(b)(a)

Sluice gates

b

aQ

F I G U R E  3.12 Sluice gate geometry. (Photograph courtesy of Plasti-Fab, Inc.)
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Typically Cc is approximately 0.61 over the depth ratio range of 0 
 a/z1 
 0.2. For larger
values of a/z1, the value of Cc increases rapidly.

92 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

GIVEN Water flows under the sluice gate shown in Fig.
E3.12a. 

FIND Determine the approximate flowrate per unit width
of the channel.

SOLUTION

Sluice GateEXAMPLE 3.12

Under the assumptions of steady, inviscid, incompressible
flow, we can apply Eq. 3.18 to obtain Q/b, the flowrate per unit
width, as

In this instance, z1 � 5.0 m and a � 0.80 m so the ratio
a/z1 � 0.16 
 0.20, and we can assume that the contraction co-
efficient is approximately Cc � 0.61. Thus, z2 � Cca � 0.61
(0.80 m) � 0.488 m and we obtain the flowrate

(Ans)

COMMENTS If we consider z1 �� z2 and neglect the ki-
netic energy of the upstream fluid, we would have

In this case the difference in Q with or without including V1 is
not too significant because the depth ratio is fairly large
(z1/z2 � 5.0/0.488 � 10.2). Thus, it is often reasonable to ne-
glect the kinetic energy upstream from the gate compared to
that downstream of it.

 � 4.83 m2/s

 
Q

b
� z222gz1 � 0.488 m2219.81 m/s22 15.0 m2

 � 4.61 m2/s

 
Q

b
� 10.488 m2 

B

219.81 m/s22 15.0 m � 0.488 m2

1 � 10.488 m/5.0 m22

Q

b
� z2
B

2g1z1 � z22

1 � 1z2/z12
2

By repeating the calculations for various flow depths, z1,
the results shown in Fig. E3.12b are obtained. Note that the
flowrate is not directly proportional to the flow depth. Thus,
for example, if during flood conditions the upstream depth
doubled from to the flowrate per unit
width of the channel would not double but would increase
only from 4.61 m2/s to 6.67 m2/s.

z1 � 10 m,z1 � 5 m

Q

5.0 m

6.0 m

0.8 m

F I G U R E  E3.12a

F I G U R E  E3.12b

0
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z
1
, m

Q
/b

, 
m

2
/s

0 5 10 15

(5 m, 4.61 m2/s)

3.7 The Energy Line and the Hydraulic Grade Line

A useful interpretation of the Bernoulli equation can be obtained through the use of the
concepts of the hydraulic grade line (HGL) and the energy line (EL). These ideas repre-
sent a geometrical interpretation of a flow.

For steady, inviscid, incompressible flow the Bernoulli equation states that the sum
of the pressure head, the velocity head, and the elevation head is constant along a stream-
line. This constant, called the total head, H is shown in the figure in the margin.

(3.19)
p

�
�

V 2

2g
� z � constant on a streamline � H

H

V2/2g

p/�

z

c03ElementaryFluidDynamicsTheBernoulliEquation.qxd  9/24/10  12:23 PM  Page 92



3.7 The Energy Line and the Hydraulic Grade Line 93

The energy line is a line that represents the total head available to the fluid. As
shown in Fig. 3.13, elevation of the energy line can be obtained by measuring the stag-
nation pressure with a Pitot tube. The stagnation point at the end of the Pitot tube pro-
vides a measurement of the total head (or energy) of the flow. The static pressure tap
connected to the piezometer tube shown, on the other hand, measures the sum of the
pressure head and the elevation head, p/� � z. This sum is often called the piezometric
head.

A Pitot tube at another location in the flow will measure the same total head, as is
shown in Fig. 3.13. The elevation head, velocity head, and pressure head may vary along
the streamline, however.

The locus of elevations provided by a series of Pitot tubes is termed the energy line,
EL. That provided by a series of piezometer taps is termed the hydraulic grade line, HGL.
Under the assumptions of the Bernoulli equation, the energy line is horizontal. If the fluid
velocity changes along the streamline, the hydraulic grade line will not be horizontal.

The energy line and hydraulic grade line for flow from a large tank are shown in Fig.
3.14. If the flow is steady, incompressible, and inviscid, the energy line is horizontal and
at the elevation of the liquid in the tank. The hydraulic grade line lies a distance of one
velocity head, V2/2g, below the energy line.

The distance from the pipe to the hydraulic grade line indicates the pressure within the
pipe as is shown in Fig. 3.15. If the pipe lies below the hydraulic grade line, the pressure

F I G U R E  3.13 Representation of the energy line and the
hydraulic grade line.

Q

H
Static

Stagnation

z1

p1/  

V1
2/2g

V 2/2g

z

z2

p2/  

V2
2

___
2g

Hydraulic
grade line (HGL)

Energy line (EL)

Datum

p/ γ

γ

γ

F I G U R E  3.14 The energy
line and hydraulic grade line for flow
from a tank.

HGL

EL

(3) 

(2)

(1)

V1 = p1 = 0

H = z1

p2__

V2
2

___
2g

z2
z3

V3
2

___
2g

p3
 = 0

γ
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94 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

within the pipe is positive (above atmospheric). If the pipe lies above the hydraulic grade line,
the pressure is negative (below atmospheric).

F I G U R E  3.15
Use of the energy line and the
hydraulic grade line.

Q

p > 0

p < 0

p/

z
z

V2
__
2g

EL

HGLγ
p/γ

GIVEN Water is siphoned from the tank shown in Fig.
E3.13 through a hose of constant diameter. A small hole is
found in the hose at location (1) as indicated. 

FIND When the siphon is used, will water leak out of the
hose or will air leak into the hose, thereby possibly causing the
siphon to malfunction?

SOLUTION

Energy Line and Hydraulic Grade LineEXAMPLE 3.13

Whether air will leak into or water will leak out of the hose 
depends on whether the pressure within the hose at (1) is less
than or greater than atmospheric. Which happens can be deter-
mined easily by using the energy line and hydraulic grade line
concepts. With the assumption of steady, incompressible, in-
viscid flow it follows that the total head is constant—thus, the
energy line is horizontal.

Because the hose diameter is constant, it follows from the
continuity equation (AV � constant) that the water velocity in
the hose is constant throughout. Thus, the hydraulic grade line
is a constant distance, V2/2g, below the energy line as shown
in Fig. E3.13. Because the pressure at the end of the hose is 
atmospheric, it follows that the hydraulic grade line is at the
same elevation as the end of the hose outlet. The fluid within
the hose at any point above the hydraulic grade line will be at
less than atmospheric pressure.

Thus, air will leak into the hose through 
the hole at point (1). (Ans)

COMMENT In practice, viscous effects may be quite im-
portant, making this simple analysis (horizontal energy line)
incorrect. However, if the hose is “not too small diameter,”
“not too long,” the fluid “not too viscous,” and the flowrate
“not too large,” the aforementioned result may be very accu-
rate. If any of these assumptions are relaxed, a more detailed
analysis is required (see Chapter 8). If the end of the hose
were closed so the flowrate were zero, the hydraulic grade
line would coincide with the energy line (V2/2g � 0 through-
out), the pressure at (1) would be greater than atmospheric,
and water would leak through the hole at (1).

F I G U R E  E3.13

Valve
HGL with valve open

HGL with valve closed and
EL with valve open or closed

(1)

V2__
2g p_

γ

3.8 Restrictions on the Use of the Bernoulli Equation

One of the main assumptions in deriving the Bernoulli equation is that the fluid is incom-
pressible. Although this is reasonable for most liquid flows, it can, in certain instances, intro-
duce considerable errors for gases.

In the previous section we saw that the stagnation pressure is greater than the static
pressure by an amount �V 2/2, provided that the density remains constant. If this dynamic
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3.9 Chapter Summary and Study Guide 95

pressure is not too large compared with the static pressure, the density change between two
points is not very large and the flow can be considered incompressible. However, because
the dynamic pressure varies as V 2, the error associated with the assumption that a fluid is
incompressible increases with the square of the velocity of the fluid.

A rule of thumb is that the flow of a perfect gas may be considered as incompressible
provided the Mach number is less than about 0.3. The Mach number, Ma � V/c, is the ratio
of the fluid speed, V, to the speed of sound in the fluid, c. In standard air (T1 � 59 	F,

) this corresponds to a speed of V1 � c1Ma1 � 0.3 (1117 ft/s) � 335
ft/s � 228 mi/hr. At higher speeds, compressibility may become important.

Another restriction of the Bernoulli equation (Eq. 3.6) is the assumption that the
flow is steady. For such flows, on a given streamline the velocity is a function of only
s, the location along the streamline. That is, along a streamline V � V(s). For unsteady
flows the velocity is also a function of time, so that along a streamline V � V(s, t).
Thus, when taking the time derivative of the velocity to obtain the streamwise acceler-
ation, we obtain as � 0V/0t � V 0V/0s rather than just as � V 0V/0s as is true for steady
flow. The unsteady term, 0V/0t, does not allow the equation of motion to be integrated
easily (as was done to obtain the Bernoulli equation) unless additional assumptions are
made.

Another restriction on the Bernoulli equation is that the flow is inviscid. Recall that
the Bernoulli equation is actually a first integral of Newton’s second law along a stream-
line. This general integration was possible because, in the absence of viscous effects, the
fluid system considered was a conservative system. The total energy of the system remains
constant. If viscous effects are important, the system is nonconservative and energy losses
occur. A more detailed analysis is needed for these cases. Such material is presented in
Chapter 8.

The final basic restriction on use of the Bernoulli equation is that there are no mechan-
ical devices (pumps or turbines) in the system between the two points along the streamline
for which the equation is applied. These devices represent sources or sinks of energy. Since
the Bernoulli equation is actually one form of the energy equation, it must be altered to include
pumps or turbines, if these are present. The inclusion of pumps and turbines is covered in
Chapters 5 and 11.

c1 � 1kRT1 � 1117 ft/s

3.9 Chapter Summary and Study Guide

In this chapter, several aspects of the steady flow of an inviscid, incompressible fluid are
discussed. Newton’s second law, F � ma, is applied to flows for which the only important
forces are those due to pressure and gravity (weight)—viscous effects are assumed negligi-
ble. The result is the often-used Bernoulli equation, which provides a simple relationship
among pressure, elevation, and velocity variations along a streamline. A similar but less
often used equation is also obtained to describe the variations in these parameters normal
to a streamline.

The concept of a stagnation point and the corresponding stagnation pressure is intro-
duced, as are the concepts of static, dynamic, and total pressure and their related heads.

Several applications of the Bernoulli equation are discussed. In some flow situations,
such as the use of a Pitot-static tube to measure fluid velocity or the flow of a liquid as a
free jet from a tank, a Bernoulli equation alone is sufficient for the analysis. In other
instances, such as confined flows in tubes and flowmeters, it is necessary to use both the
Bernoulli equation and the continuity equation, which is a statement of the fact that mass
is conserved as fluid flows.

c03ElementaryFluidDynamicsTheBernoulliEquation.qxd  9/24/10  12:23 PM  Page 95



The following checklist provides a study guide for this chapter. When your study
of the entire chapter and end-of-chapter exercises has been completed, you should be
able to

write out meanings of the terms listed here in the margin and understand each of the
related concepts. These terms are particularly important and are set in color and bold
type in the text.

explain the origin of the pressure, elevation, and velocity terms in the Bernoulli equa-
tion and how they are related to Newton’s second law of motion.

apply the Bernoulli equation to simple flow situations, including Pitot-static tubes,
free jet flows, confined flows, and flowmeters.

use the concept of conservation of mass (the continuity equation) in conjunction with
the Bernoulli equation to solve simple flow problems.

apply Newton’s second law across streamlines for appropriate steady, inviscid, incom-
pressible flows.

use the concepts of pressure, elevation, velocity, and total heads to solve various flow
problems.

explain and use the concepts of static, stagnation, dynamic, and total pressures.

use the energy line and the hydraulic grade line concepts to solve various flow
problems.

Some of the important equations in this chapter are

Streamwise and normal 
acceleration (3.1)

Bernoulli equation (3.6)

Force balance normal to a 
streamline for steady, inviscid, (3.10)
incompressible flow

Velocity measurement for a 
Pitot-static tube

(3.13)

Free jet (3.15)

Continuity equation (3.16)

Flowmeter equation (3.17)

Sluice gate equation (3.18)

Total head (3.19) 
p

�
�

V2

2g
� z � constant on a streamline � H

 Q � z2b 

B

2g1z1 � z22

1 � 1z2/z12
2

 Q � A2 

B

21p1 � p22

� 31 � 1A2/A12
2 4

 A1V1 � A2V2, or Q1 � Q2

 V �
B

2 

�h

�
� 12gh

 V � 22 1p3 � p42/�

 p � ��V 2

r
 dn � �z � constant across the streamline

 p � 1
2�V 2 � �z � constant along streamline

 as � V 

0V

0s
, an �

V2

r
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Review Problems

Go to Appendix G for a set of review problems with answers.
Detailed solutions can be found in Student Solution Manual

for a Brief Introduction to Fluid Mechanics, by Young, et al.
(© 2011 John Wiley and Sons, Inc.).

steady flow
streamline
Bernoulli equation
elevation head
pressure head
velocity head
static pressure
dynamic pressure
stagnation point
stagnation pressure
total pressure
Pitot-static tube
free jet
volume flowrate
continuity equation
flowmeter
hydraulic grade line
energy line
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Problems 97

Problems

Note: Unless otherwise indicated use the values of fluid
properties found in the tables on the inside of the front
cover. Problems designated with an (*) are intended to be
solved with the aid of a programmable calculator or a com-
puter. Problems designated with a (†) are “open-ended”
problems and require critical thinking in that to work them
one must make various assumptions and provide the neces-
sary data. There is not a unique answer to these problems.

The even-numbered problems are included in the
hard copy version of the book, and the answers to these
even-numbered problems are listed at the end of the book.
Odd-numbered problems are provided in WileyPLUS, or
in Appendix L on the book’s web site, www.wiley.com/
college/young. The lab-type problems, FE problems, FlowLab
problems, and the videos that accompany problems can also
be accessed on these web sites.

Section 3.2 F � ma Along a Streamline

3.2 Repeat Problem 3.1 if the pipe is vertical with the flow upward.

3.4 What pressure gradient along the streamline, dp/ds, is re-
quired to accelerate water in a horizontal pipe at a rate of 10 m/s2?

3.6 Air flows steadily along a streamline from point (1) to point
(2) with negligible viscous effects. The following conditions are
measured:At point (1) z1 � 2 m and p1 � 0 kPa; at point (2) z2 � 10
m, p2 � 20 N/m2, and V2 � 0. Determine the velocity at point (1).

3.8 The Bernoulli equation is valid for steady, inviscid, incom-
pressible flows with constant acceleration of gravity. Consider
flow on a planet where the acceleration of gravity varies with
height so that where g0 and c are constants. Inte-
grate “F � ma” along a streamline to obtain the equivalent of
the Bernoulli equation for this flow.

Section 3.3 F � ma Normal to a Streamline

3.10 Air flows along a horizontal, curved streamline with a 20-ft
radius with a speed of 100 ft/s. Determine the pressure gradient
normal to the streamline.

3.12 Water flows around the vertical two-dimensional bend with
circular streamlines and constant velocity as shown in Fig. P3.12. If
the pressure is 40 kPa at point (1), determine the pressures at points
(2) and (3). Assume that the velocity profile is uniform as indicated.

g � g0 � cz,

Section 3.5 Static, Stagnation, Dynamic, and Total
Pressure

3.14 Obtain a photograph/image of a situation in which the
concept of the stagnation pressure is important. Print this photo
and write a brief paragraph that describes the situation involved.

3.16 A person holds her hand out of an open car window while
the car drives through still air at 65 mph. Under standard atmos-
pheric conditions, what is the maximum pressure on her hand?
What would be the maximum pressure if the “car” were an Indy
500 racer traveling 200 mph?

3.18 (See Fluids in the News article titled “Bugged and plugged
Pitot tubes,” Section 3.5.) An airplane’s Pitot tube (see Video
V3.8) used to indicate airspeed is partially plugged by an insect
nest so that it measures 60% of the stagnation pressure rather than
the actual stagnation pressure. If the airspeed indicator indicates
that the plane is flying 150 mph, what is the actual airspeed?

3.20 Some animals have learned to take advantage of the
Bernoulli effect without having read a fluid mechanics book.
For example, a typical prairie dog burrow contains two 
entrances—a flat front door and a mounded back door as shown
in Fig. P3.20. When the wind blows with velocity V0 across the
front door, the average velocity across the back door is greater
than V0 because of the mound. Assume the air velocity across
the back door is 1.07 V0. For a wind velocity of 6 m/s, what pres-
sure differences, p1 � p2, are generated to provide a fresh airflow
within the burrow?

3.22 (See Fluids in the News article titled “Incorrect raindrop
shape,” Section 3.2.) The speed, V, at which a raindrop falls is a
function of its diameter, D, as shown in Fig. P3.22. For what
size raindrop will the stagnation pressure be equal to half the 
internal pressure caused by surface tension? Use the fact that
due to surface tension effects the pressure inside a drop is

(1)

(2)

(3)

1 m
2 m

4 m

g

V = 10 m/s

F I G U R E  P3.12

1.07 V0

(1)
(2)

V0

Q

F I G U R E  P3.20

F I G U R E  P3.22

0

5

10

15

20

25

30

D, in.

V
, 

ft
/s

0 0.05 0.1 0.15 0.2
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98 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

3.36 Water flows into the sink shown in Fig. P3.36 and Video
V5.1 at a rate of 2 gal/min. If the drain is closed, the water will
eventually flow through the overflow drain holes rather than
over the edge of the sink. How many 0.4-in.-diameter drain
holes are needed to ensure that the water does not overflow the
sink? Neglect viscous effects.

3.38 Air flows steadily through a horizontal 4-in.-diameter
pipe and exits into the atmosphere through a 3-in.-diameter noz-
zle. The velocity at the nozzle exit is 150 ft/s. Determine the
pressure in the pipe if viscous effects are negligible.

3.40 Water flows through the pipe contraction shown in Fig.
P3.40. For the given 0.2-m difference in the manometer level,
determine the flowrate as a function of the diameter of the small
pipe, D.

3.42 Water flows through the pipe contraction shown in Fig.
P3.42. For the given 0.2-m difference in the manometer level,
determine the flowrate as a function of the diameter of the small
pipe, D.

greater than the surrounding pressure, where is
the surface tension.

3.24 When an airplane is flying 200 mph at 5000-ft altitude in
a standard atmosphere, the air velocity at a certain point on the
wing is 273 mph relative to the airplane. What suction pressure
is developed on the wing at that point? What is the pressure at
the leading edge (a stagnation point) of the wing?

Section 3.6.1 Free Jets

3.26 Water flows through a hole in the bottom of a large, open
tank with a speed of 8 m/s. Determine the depth of water in the
tank. Viscous effects are negligible.

3.28 (See Fluids in the News article titled “Armed with a water
jet for hunting,” Section 3.4.) Determine the pressure needed in
the gills of an archerfish if it can shoot a jet of water 1 m verti-
cally upward. Assume steady, inviscid flow.

3.30 Water flowing from a pipe or a tank is acted upon by grav-
ity and follows a curved trajectory as shown in Fig. P3.30 and
Videos V3.9 and V4.7. A simple flowmeter can be constructed
as shown in Fig P3.30. A point gage mounted a distance L from
the end of the horizontal pipe is adjusted to indicate that the top
of the water stream is distance x below the outlet of the pipe.
Show that the flowrate from this pipe of diameter D is given by
Q � �D2L g1/2/(25/2 x1/2).

3.32 An inviscid, incompressible liquid flows steadily from the
large pressurized tank shown in Fig. P3.32. The velocity at the exit
is 40 ft/s. Determine the specific gravity of the liquid in the tank.

Section 3.6.2 Confined Flows (also see Lab Problems
3.84 and 3.86)

3.34 Obtain a photograph/image of a situation that involves a
confined flow for which the Bernoulli and continuity equations
are important. Print this photo and write a brief paragraph that
describes the situation involved.

�¢p � 4�/D

F I G U R E  P3.30

Q

L

x

40 ft/s

10 ft

5 ft

10 psi

Liquid

Air

F I G U R E  P3.32

F I G U R E  P3.36

Q = 2 gal/min

1 in.

0.4-in.-diameter
holes

Stopper

0.2 m

Q
0.1 m D

F I G U R E  P3.40

Q
0.1 m

0.2 m

D

F I G U R E  P3.42
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Problems 99

3.44 The circular stream of water from a faucet is observed to
taper from a diameter of 20 to 10 mm in a distance of 50 cm.
Determine the flowrate.

3.46 As shown in Fig. P3.46, water from a large reservoir
flows without viscous effects through a siphon of diameter D
and into a tank. It exits from a hole in the bottom of the tank
as a stream of diameter d. The surface of the reservoir re-
mains H above the bottom of the tank. For steady-state con-
ditions, the water depth in the tank, h, is constant. Plot a
graph of the depth ratio h/H as a function of the diameter ra-
tio d/D.

3.48 A 50-mm-diameter plastic tube is used to siphon water
from the large tank shown in Fig. P3.48. If the pressure on the
outside of the tube is more than 30 kPa greater than the pressure
within the tube, the tube will collapse and the siphon will stop.
If viscous effects are negligible, determine the minimum value
of h allowed without the siphon stopping.

3.50 Carbon tetrachloride flows in a pipe of variable diameter
with negligible viscous effects. At point A in the pipe the pres-
sure and velocity are 20 psi and 30 ft/s, respectively. At location
B the pressure and velocity are 23 psi and 14 ft/s. Which point is
at the higher elevation and by how much?

3.52 Water flows steadily downward through the pipe shown in
Fig. P3.52. Viscous effects are negligible, and the pressure gage
indicates the pressure is zero at point (1). Determine the
flowrate and the pressure at point (2).

3.54 Blood (SG � 1) flows with a velocity of 0.5 m/s in an
artery. It then enters an aneurysm in the artery (i.e., an area of
weakened and stretched artery walls that causes a ballooning of
the vessel) whose cross-sectional area is 1.8 times that of the
artery. Determine the pressure difference between the blood in
the aneurysm and that in the artery. Assume the flow is steady
and inviscid.

3.56 Water flows steadily with negligible viscous effects through
the pipe shown in Fig. 3.56. It is known that the 4-in.-diameter sec-
tion of thin-walled tubing will collapse if the pressure within it
becomes less than 10 psi below atmospheric pressure. Deter-
mine the maximum value that h can have without causing collapse
of the tubing.

3.58 If viscous effects are neglected and the tank is large, de-
termine the flowrate from the tank shown in Fig. P3.58.

3.60 Redo Problem 3.59 if a 1-in.-diameter nozzle is placed at
the end of the tube.

3.62 JP-4 fuel (SG � 0.77) flows through the Venturi meter
shown in Fig. P3.62 with a velocity of 15 ft/s in the 6-in. pipe. If

h
H

d

D

F I G U R E  P3.46

F I G U R E  P3.48

2 m

4 m
h

0.12 ft

0.1 ft

Free jet

2 ft

0.12 ft

3 ft

0

2
34

16

5

(2)

(1)

Q

g

F I G U R E  P3.52

4-in.-diameter thin-walled tubing

6 in.
h

4 ft

F I G U R E  P3.56

F I G U R E  P3.58

Water

Oil,
SG = 0.81

2 m

0.7 m

50-mm
diameter
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3.68 An air cushion vehicle is supported by forcing air into the
chamber created by a skirt around the periphery of the vehicle as
shown in Fig. P3.68. The air escapes through the 3-in. clearance be-
tween the lower end of the skirt and the ground (or water). Assume
the vehicle weighs 10,000 lb and is essentially rectangular in shape,
30 by 50 ft. The volume of the chamber is large enough so that the
kinetic energy of the air within the chamber is negligible. Deter-
mine the flowrate, Q, needed to support the vehicle. If the ground
clearance were reduced to 2 in., what flowrate would be needed? If
the vehicle weight were reduced to 5000 lb and the ground clear-
ance maintained at 3 in., what flowrate would be needed?

*3.70 The surface area, A, of the pond shown in Fig. P3.70
varies with the water depth, h, as shown in the table. At time t � 0
a valve is opened and the pond is allowed to drain through a pipe
of diameter D. If viscous effects are negligible and quasi-steady
conditions are assumed, plot the water depth as a function of
time from when the valve is opened (t � 0) until the pond is
drained for pipe diameters of D � 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0
ft. Assume h � 18 ft at t � 0.

*3.72 Water flows up the ramp shown in Fig. P3.72 with neg-
ligible viscous losses. The upstream depth and velocity are
maintained at and Plot a graph of the
downstream depth, as a function of the ramp height, H, for

Note that for each value of H there are three so-
lutions, not all of which are realistic.
0 � H � 2 m.

h2,
V1 � 6 m/s.h1 � 0.3 m

100 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

viscous effects are negligible, determine the elevation, h, of the
fuel in the open tube connected to the throat of the Venturi meter.

3.64 Oil flows through the system shown in Fig. P3.64 with
negligible losses. Determine the flowrate.

3.66 A long water trough of triangular cross section is formed
from two planks as is shown in Fig. P3.66. A gap of 0.1 in. re-
mains at the junction of the two planks. If the water depth ini-
tially was 2 ft, how long a time does it take for the water depth
to reduce to 1 ft?

V = 15 ft/s

h

6 in.

8 in.
4 in.

JP-4 fuel

6 ft

6 in.

20°

F I G U R E  P3.62

F I G U R E  P3.64

0.8 ft

5 ft

Q A = 50 in.2

A = 20 in.2

Oil
SG = 0.86

SG = 2.5

2 ft

0.1 in.

90°

F I G U R E  P3.66

Skirt

Fan
Vehicle

3 in.

Q

F I G U R E  P3.68

h (ft) A [acres (1 acre � 43,560 ft2)]

0 0
2 0.3
4 0.5
6 0.8
8 0.9

10 1.1
12 1.5
14 1.8
16 2.4
18 2.8

Area A

h

D

3 ft

F I G U R E  P3.70
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Section 3.6.3 Flowrate Measurement (also see Lab
Problems 3.85 and 3.87)

3.74 Obtain a photograph/image of a situation that involves
some type of flowmeter. Print this photo and write a brief para-
graph that describes the situation involved.

3.76 A Venturi meter with a minimum diameter of 3 in. is to be
used to measure the flowrate of water through a 4-in.-diameter
pipe. Determine the pressure difference indicated by the pres-
sure gage attached to the flowmeter if the flowrate is 0.5 ft3/s
and viscous effects are negligible.

3.78 Determine the flowrate through the Venturi meter shown
in Fig. P3.78 if ideal conditions exist.

Section 3.7 The Energy Line and the Hydraulic
Grade Line

3.80 Water flows in a 0.15-m-diameter vertical pipe at a rate of
0.2 m3/s and a pressure of 200 kPa at an elevation of 25 m. De-
termine the velocity head and pressure head at elevations of 20
and 55 m.

3.82 Draw the energy line and hydraulic grade line for the flow
shown in Problem 3.59.

■ Lab Problems

3.84 This problem involves pressure distribution between two
parallel circular plates. To proceed with this problem, go to the
book’s web site, www.wiley.com/college/young, or WileyPLUS.

3.86 This problem involves the pressure distribution in a two-
dimensional channel. To proceed with this problem, go to the
book’s web site, www.wiley.com/college/young, or WileyPLUS.

■ Lifelong Learning Problems

3.88 The concept of the use of a Pitot-static tube to measure
the airspeed of an airplane is rather straightforward. How-
ever, the design and manufacture of reliable, accurate, inex-
pensive Pitot-static tube airspeed indicators is not necessarily
simple. Obtain information about the design and construc-
tion of modern Pitot-static tubes. Summarize your findings
in a brief report.

3.90 Orifice, nozzle, or Venturi flowmeters have been used for
a long time to predict accurately the flowrate in pipes. However,
recently there have been several new concepts suggested or used
for such flowrate measurements. Obtain information about new
methods to obtain pipe flowrate information. Summarize your
findings in a brief report.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for
fluid mechanics are provided on the book’s web site, www
.wiley.com/college/young, or WileyPLUS.

F I G U R E  P3.72

V1 = 6 m/s

V2

H

h2

h1 = 0.3 m

F I G U R E  P3.78

p1 = 735 kPa p2 = 550 kPa

Q
19 mm31 mm

γ = 9.1 kN/m3
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102

V4.1 Streaklines

CHAPTER OPENING PHOTO: A vortex ring: The complex, three-dimensional structure of a smoke ring is
indicated in this cross-sectional view. (Smoke in air.) (Photograph courtesy of R. H. Magarvey and 
C. S. MacLatchy, Ref. 3.)

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ discuss the differences between the Eulerian and Lagrangian descriptions
of fluid motion.

■ identify various flow characteristics based on the velocity field.

■ determine the streamline pattern and acceleration field given a velocity
field.

■ discuss the differences between a system and control volume.

■ apply the Reynolds transport theorem and the material derivative.

In this chapter we will discuss various aspects of fluid motion without being concerned with
the actual forces necessary to produce the motion. That is, we will consider the kinematics
of the motion—the velocity and acceleration of the fluid, and the description and visualiza-
tion of its motion.

Fluid Kinematics4Fluid Kinematics4
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4.1 The Velocity Field

4.1 The Velocity Field 103

The infinitesimal particles of a fluid are tightly packed together (as is implied by the contin-
uum assumption). Thus, at a given instant in time, a description of any fluid property (such as
density, pressure, velocity, and acceleration) may be given as a function of the fluid’s location.
This representation of fluid parameters as functions of the spatial coordinates is termed a field
representation of the flow. Of course, the specific field representation may be different at dif-
ferent times, so that to describe a fluid flow we must determine the various parameters not only
as a function of the spatial coordinates (x, y, z, for example) but also as a function of time, t.

One of the most important fluid variables is the velocity field,

where u, y, and w are the x, y, and z components of the velocity vector. By definition, the
velocity of a particle is the time rate of change of the position vector for that particle. As
is illustrated in Fig. 4.1, the position of particle A relative to the coordinate system is given
by its position vector, rA, which (if the particle is moving) is a function of time. The time
derivative of this position gives the velocity of the particle, drA/dt � VA.

V � u1x, y, z, t2 î � y1x, y, z, t2 ĵ � w1x, y, z, t2k̂

F I G U R E  4.1 Particle
location in terms of its position vector.

F l u i d s  i n  t h e  N e w s

Follow those particles Superimpose two photographs of a
bouncing ball taken a short time apart and draw an arrow be-
tween the two images of the ball. This arrow represents an ap-
proximation of the velocity (displacement/time) of the ball. The
particle image velocimeter (PIV) uses this technique to provide
the instantaneous velocity field for a given cross section of a
flow. The flow being studied is seeded with numerous micron-
sized particles, which are small enough to follow the flow yet
big enough to reflect enough light to be captured by the camera.

The flow is illuminated with a light sheet from a double-pulsed
laser. A digital camera captures both light pulses on the same
image frame, allowing the movement of the particles to be
tracked. By using appropriate computer software to carry out a
pixel-by-pixel interrogation of the double image, it is possible
to track the motion of the particles and determine the two com-
ponents of velocity in the given cross section of the flow. By us-
ing two cameras in a stereoscopic arrangement it is possible to
determine all three components of velocity. (See Problem 4.10.)

z

y

x

Particle A at
time t

rA(t) rA(t +   t)δ

Particle path
Particle A at
time t +   tδ

V4.2 Velocity field

V4.3 Cylinder-
velocity vectors

GIVEN A velocity field is given by 
where and are constants./V0

V � 1V0//2 1� xî � yĵ2

Velocity Field Representation

FIND At what location in the flow field is the speed equal to
Make a sketch of the velocity field for by drawing ar-

rows representing the fluid velocity at representative locations.
x � 0V0?

EXAMPLE 4.1

c04Fluidkinematics.qxd  9/24/10  1:01 PM  Page 103



104 Chapter 4 ■ Fluid Kinematics

SOLUTION

The x, y, and z components of the velocity are given by
and so that the fluid speed, V, is

(1)

The speed is at any location on the circle of radius
centered at the origin as shown in Fig.

E4.1a. (Ans)

The direction of the fluid velocity relative to the x axis is given
in terms of as shown in Fig. E4.1b. For this flow

Thus, along the x axis we see that so that
or Similarly, along the y axis we

obtain so that or Also, for
we find , while for we havex � 0V � 1�V0x//2 îy � 0

� � 270°.� � 90° tan � � �q
1x � 02� � 180°.� � 0°

 tan � � 0,1y � 02

 tan � �
y

u
�

V0 y//
�V0 x//

�
y

�x

1y/u2� � arctan

3 1x2 � y221/2 � / 4/
V � V0

V � 1u2 � y2 � w221/2 �
V0

/
1x2 � y221/2

w � 0u � �V0 x//, y� V0 y//,
, indicating (if that the flow is directed

away from the origin along the y axis and toward the origin
along the x axis as shown in Fig. E4.1a.

By determining V and for other locations in the x–y plane,
the velocity field can be sketched as shown in the figure. For ex-
ample, on the line the velocity is at a 45� angle relative 
to the x axis At the origin

so that This point is a stagnation point. The
farther from the origin the fluid is, the faster it is flowing (as seen
from Eq. 1). By careful consideration of the velocity field it is
possible to determine considerable information about the flow.

COMMENT The velocity field given in this example ap-
proximates the flow in the vicinity of the center of the sign
shown in Fig. E4.1c. When wind blows against the sign, some
air flows over the sign, some under it, producing a stagnation
point as indicated.

V � 0.x � y � 0
1tan � � y/u � �y/x � �12.

y � x

�

V0 7 02V � 1V0y//2ĵ

θ
V

u

(b)

v

(c)

y

V = 0
x

F I G U R E  E4.1

y

2�

2V0

2V0

2V0

V0

V0

V0

V0/2

�

−2�

−�

0 x

(a)
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4.1.1 Eulerian and Lagrangian Flow Descriptions

There are two general approaches in analyzing fluid mechanics problems. The first method,
called the Eulerian method, uses the field concept introduced earlier. In this case, the fluid
motion is given by completely prescribing the necessary properties (pressure, density, veloc-
ity, etc.) as functions of space and time. From this method we obtain information about the
flow in terms of what happens at fixed points in space as the fluid flows past those points.

The second method, called the Lagrangian method, involves following individual
fluid particles as they move about and determining how the fluid properties associated with
these particles change as a function of time. That is, the fluid particles are “tagged” or iden-
tified, and their properties are determined as they move.

The difference between the two methods of analyzing fluid problems can be seen in
the example of smoke discharging from a chimney, as is shown in Fig. 4.2. In the Eulerian
method one may attach a temperature-measuring device to the top of the chimney (point 0)
and record the temperature at that point as a function of time. That is, T � T(x0, y0, z0, t).
The use of numerous temperature-measuring devices fixed at various locations would pro-
vide the temperature field, T � T(x, y, z, t).

In the Lagrangian method, one would attach the temperature-measuring device to a
particular fluid particle (particle A) and record that particle’s temperature as it moves about.
Thus, one would obtain that particle’s temperature as a function of time, TA � TA(t). The
use of many such measuring devices moving with various fluid particles would provide the
temperature of these fluid particles as a function of time. In fluid mechanics it is usually
easier to use the Eulerian method to describe a flow.

Example 4.1 provides an Eulerian description of the flow. For a Lagrangian descrip-
tion we would need to determine the velocity as a function of time for each particle as it
flows along from one point to another.

4.1.2 One-, Two-, and Three-Dimensional Flows

In almost any flow situation, the velocity field actually contains all three velocity compo-
nents (u, y, and w, for example). In many situations the three-dimensional flow characteristics
are important in terms of the physical effects they produce. A feel for the three-dimensional
structure of such flows can be obtained by studying Fig. 4.3, which is a photograph of the
flow past a model airfoil.

In many situations one of the velocity components may be small (in some sense) rel-
ative to the two other components. In situations of this kind it may be reasonable to neglect
the smaller component and assume two-dimensional flow. That is, , where u
and y are functions of x and y (and possibly time, t).

V � uî � yĵ

4.1 The Velocity Field 105

F I G U R E  4.2 Eulerian and
Lagrangian descriptions of temperature of a
flowing fluid.

y0

x0

0

x

Location 0:
T = T(x0, y0, t) Particle A:

TA = TA(t)

y

V4.4 Follow the par-
ticles (experiment)

V4.5 Follow the par-
ticles (computer)
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106 Chapter 4 ■ Fluid Kinematics

It is sometimes possible to further simplify a flow analysis by assuming that two of
the velocity components are negligible, leaving the velocity field to be approximated as a
one-dimensional flow field. That is, . There are many flow fields for which the one-
dimensional flow assumption provides a reasonable approximation. There are also many
flow situations for which use of a one-dimensional flow field assumption will give com-
pletely erroneous results.

4.1.3 Steady and Unsteady Flows

For steady flow the velocity at a given point in space does not vary with time, 0V/0t � 0.
In reality, almost all flows are unsteady in some sense. That is, the velocity does vary with
time. An example of a nonperiodic, unsteady flow is that produced by turning off a faucet
to stop the flow of water. In other flows the unsteady effects may be periodic, occurring time
after time in basically the same manner. The periodic injection of the air–gasoline mixture
into the cylinder of an automobile engine is such an example.

In many situations the unsteady character of a flow is quite random. That is, there is
no repeatable sequence or regular variation to the unsteadiness. This behavior occurs in tur-
bulent flow and is absent from laminar flow. The “smooth” flow of highly viscous syrup onto
a pancake represents a “deterministic” laminar flow. It is quite different from the turbulent
flow observed in the “irregular” splashing of water from a faucet onto the sink below it. The
“irregular” gustiness of the wind represents another random turbulent flow.

V � uî

F l u i d s  i n  t h e  N e w s

New pulsed liquid-jet scalpel High-speed liquid-jet cutters
are used for cutting a wide variety of materials such as leather
goods, jigsaw puzzles, plastic, ceramic, and metal. Typically,
compressed air is used to produce a continuous stream of water
that is ejected from a tiny nozzle. As this stream impacts the
material to be cut, a high pressure (the stagnation pressure) is
produced on the surface of the material, thereby cutting the ma-
terial. Such liquid-jet cutters work well in air but are difficult to
control if the jet must pass through a liquid as often happens in

surgery. Researchers have developed a new pulsed jet cutting
tool that may allow surgeons to perform microsurgery on tis-
sues that are immersed in water. Rather than using a steady water
jet, the system uses unsteady flow. A high-energy electrical dis-
charge inside the nozzle momentarily raises the temperature of
the microjet to approximately 10,000 �C. This creates a rapidly
expanding vapor bubble in the nozzle and expels a tiny fluid jet
from the nozzle. Each electrical discharge creates a single,
brief jet, which makes a small cut in the material.

F I G U R E  4.3
Flow visualization of the
complex three-dimensional
flow past a model airfoil.
(Photograph by M. R. Head.)

V4.6 Flow past a
wing

V4.7 Flow types

V4.8 Jupiter red
spot
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4.1 The Velocity Field 107

4.1.4 Streamlines, Streaklines, and Pathlines

A streamline is a line that is everywhere tangent to the velocity field. If the flow is steady,
nothing at a fixed point (including the velocity direction) changes with time, so the stream-
lines are fixed lines in space.

For two-dimensional flows the slope of the streamline, dy/dx, must be equal to the
tangent of the angle that the velocity vector makes with the x axis or

(4.1)

If the velocity field is known as a function of x and y (and t if the flow is unsteady), this
equation can be integrated to give the equation of the streamlines.

dy

dx
�
y

u

GIVEN Consider the two-dimensional steady flow dis-
cussed in Example 4.1, .V � 1V0 //2 1xî � yĵ2

SOLUTION

Streamlines for a Given Velocity Field

streamlines for the flow with V0 /� � 10 have the same shape
as those for the flow with V0 /� � �10. However, the direction
of the flow is opposite for these two cases. The arrows in Fig.
E4.2 representing the flow direction are correct for V0 /� � 10
since, from Eq. 1, u � 10x and y � �10y. That is, the flow is
“down and to the right.” For V0/� � �10 the arrows are re-
versed. The flow is “up and to the left.”

EXAMPLE 4.2

Since

u � (V0//)x and y� �(V0//)y (1)

it follows that streamlines are given by solution of the equation

in which variables can be separated and the equation inte-
grated to give

or

Thus, along the streamline

where C is a constant (Ans)

By using different values of the constant C, we can plot vari-
ous lines in the x–y plane—the streamlines. The streamlines
in the first quadrant are plotted in Fig. E4.2. A comparison of
this figure with Fig. E4.1a illustrates the fact that streamlines
are lines tangent to the velocity field.

COMMENT Note that a flow is not completely specified
by the shape of the streamlines alone. For example, the

xy � C,

ln y � �ln  x � constant

�dy

y
� ��dx

x

dy

dx
�
y

u
�

�1V0 //2y
1V0 //2x

� �
y

x

FIND Determine the streamlines for this flow.

A streakline consists of all particles in a flow that have previously passed through a com-
mon point. Streaklines are more of a laboratory tool than an analytical tool. They can be obtained
by taking instantaneous photographs of marked particles that all passed through a given location

V4.9 Streamlines

y

4

2

0 2 4 x
= 0CC = 1

C = 4

C = 9

F I G U R E  E4.2
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108 Chapter 4 ■ Fluid Kinematics

in the flow field at some earlier time. Such a line can be produced by continuously injecting
marked fluid (neutrally buoyant smoke in air or dye in water) at a given location (Ref. 1).

A pathline is the line traced out by a given particle as it flows from one point to another.
The pathline is a Lagrangian concept that can be produced in the laboratory by marking a fluid
particle (dyeing a small fluid element) and taking a time exposure photograph of its motion.

Pathlines, streamlines, and streaklines are the same for steady flows. For unsteady flows
none of these three types of lines need be the same (Ref. 2). Often one sees pictures of “stream-
lines” made visible by the injection of smoke or dye into a flow as is shown in Fig. 4.3. Actu-
ally, such pictures show streaklines rather than streamlines. However, for steady flows the two
are identical; only the nomenclature is used incorrectly.

F l u i d s  i n  t h e  N e w s

Winds on Earth and Mars The wind has considerable tempo-
ral and spatial variation. For example, the lowest monthly aver-
age wind speed in Chicago (dubbed “the Windy City,” though
there are several windier cities) occurs in August (8.2 mph); the
highest occurs in April (11.9 mph). The wind speed variation
throughout the day has a shorter time scale. The normally
calm morning wind increases during the day because solar
heating produces a buoyancy-driven vertical motion that
mixes the faster-moving air aloft with the slower-moving air
near the ground. When the sun sets, the vertical motion subsides

and the winds become calm. The quickest variations in the wind
speed are those irregular, turbulent gusts that are nearly always
present (i.e., “The wind is 20 mph with gusts to 35”). Spacecraft
data have shown that the wind on Mars has similar characteris-
tics. These Martian winds are usually fairly light, rarely more
than 15 mph, although during dust storms they can reach 300
mph. Recent photos from spacecraft orbiting Mars show swirling,
corkscrew paths in the dust on the Martian surface (a visualiza-
tion of surface pathlines), indicating that “dust devil” type flows
occur on Mars just as they do on Earth. (See Problem 4.7.)

GIVEN Water flowing from the oscillating slit shown in
Fig. E4.3a produces a velocity field given by V �
u0 sin[�(t � y/v0)]î � v0 ĵ, where u0, v0, and � are constants.
Thus, the y component of velocity remains constant (v � v0)
and the x component of velocity at y � 0 coincides with the
velocity of the oscillating sprinkler head [u � u0 sin(�t) at
y � 0].

FIND (a) Determine the streamline that passes through
the origin at t � 0; at t � �/2�.

(b) Determine the pathline of the particle that was at the ori-
gin at t � 0; at t � �/2�. 

(c) Discuss the shape of the streakline that passes through
the origin.

SOLUTION

(a) Since u � u0 sin [�(t � y/v0)] and v � v0 it follows from
Eq. 4.1 that streamlines are given by the solution of

dy

dx
�

v
u

�
v0

u0 sin 3� 1t � y/v02 4

Comparison of Streamlines, Pathlines, and StreaklinesEXAMPLE 4.3

V4.10 Streaklines

0

y

x

Oscillating
sprinkler head

Q

(a)

2  v0/π ω

  v0/π ωt = 0

t =   /2  ωπ

Streamlines
through origin

y

–2u0/ω 2u0/ω x0

(b)

xx

y

t = 0

Pathlines of
particles at origin

at time t

v0/u0

–1 10

(c) (d)

0

t =   /2π ω Pathline

v0

u0

Streaklines
through origin

at time t

y

F I G U R E  E4.3

c04Fluidkinematics.qxd  9/25/10  4:44 PM  Page 108



4.1 The Velocity Field 109

in which the variables can be separated and the equation inte-
grated (for any given time t) to give

or

(1)

where C is a constant. For the streamline at t � 0 that passes
through the origin (x � y � 0), the value of C is obtained
from Eq. 1 as C � u0v0 /�. Hence, the equation for this
streamline is

(2) (Ans)

Similarly, for the streamline at t � �/2� that passes through
the origin, Eq. 1 gives C � 0. Thus, the equation for this
streamline is

or

(3) (Ans)

COMMENT These two streamlines, plotted in Figure
E4.3b, are not the same because the flow is unsteady. For
example, at the origin (x � y � 0) the velocity is V � v0 ĵ at
t � 0 and V � u0î � v0 ĵ at t � �/2�. Thus, the angle of the
streamline passing through the origin changes with time.
Similarly, the shape of the entire streamline is a function of
time.

(b) The pathline of a particle (the location of the particle as
a function of time) can be obtained from the velocity field and
the definition of the velocity. Since u � dx/dt and v � dy/dt
we obtain

and

The y equation can be integrated (since v0 � constant) to give
the y coordinate of the pathline as

(4)

where C1 is a constant. With this known y � y(t) dependence,
the x equation for the pathline becomes

dx

dt
� u0 sin c� at �

v0 
t � C1

v0
b d � �u0 sin a

C1�

v0
b

y � v0 
t � C1

dy

dt
� v0

dx

dt
� u0 sin c� at �

y

v0
b d

x �
u0

�
 sin a

�y

v0
b

x �
u0

�
 cos c� a

�

2�
�

y

v0
b d �

u0

�
 cos a

�

2
�

�y

v0
b

x �
u0

�
 c cos a

�y

v0
b � 1 d

u01v0 /�2 cos c� at �
y

v0
b d � v0x � C

u0�sin c� at �
y

v0
b ddy � v0�dx,

This can be integrated to give the x component of the path-
line as

(5)

where C2 is a constant. For the particle that was at the origin
(x � y � 0) at time t � 0, Eqs. 4 and 5 give C1 � C2 � 0.
Thus, the pathline is

(6) (Ans)

Similarly, for the particle that was at the origin at t � �/2�,
Eqs. 4 and 5 give C1 � ��v0 /2� and C2 � ��v0 /2�. Thus,
the pathline for this particle is

and (7)

The pathline can be drawn by plotting the locus of x(t), y(t)
values for t � 0 or by eliminating the parameter t from Eq. 7
to give

(8) (Ans)

COMMENT The pathlines given by Eqs. 6 and 8, shown
in Fig. E4.3c, are straight lines from the origin (rays). The
pathlines and streamlines do not coincide because the flow is
unsteady.

(c) The streakline through the origin at time t � 0 is the lo-
cus of particles at t � 0 that previously (t � 0) passed
through the origin. The general shape of the streaklines can
be seen as follows. Each particle that flows through the origin
travels in a straight line (pathlines are rays from the origin),
the slope of which lies between �v0 /u0 as shown in Fig.
E4.3d. Particles passing through the origin at different times
are located on different rays from the origin and at different
distances from the origin. The net result is that a stream of
dye continually injected at the origin (a streakline) would
have the shape shown in Fig. E4.3d. Because of the unsteadi-
ness, the streakline will vary with time, although it will al-
ways have the oscillating, sinuous character shown. Similar
streaklines are given by the stream of water from a garden
hose nozzle that oscillates back and forth in a direction nor-
mal to the axis of the nozzle.

COMMENT In this example streamlines, pathlines, and
streaklines do not coincide. If the flow were steady, all of these
lines would be the same.

y �
v0

u0
 x

y � v0 at �
�

2�
bx � u0 at �

�

2�
b

x � 0  and  y � v0 
t

x � � cu0 sin a
C1�

v0
b d  t � C2
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110 Chapter 4 ■ Fluid Kinematics

4.2 The Acceleration Field

To apply Newton’s second law (F � ma) we must be able to describe the particle acceler-
ation in an appropriate fashion. For the infrequently used Lagrangian method, we describe
the fluid acceleration just as is done in solid body dynamics—a � a(t) for each particle.
For the Eulerian description we describe the acceleration field as a function of position and
time without actually following any particular particle. This is analogous to describing the
flow in terms of the velocity field, V � V(x, y, z, t), rather than the velocity for particular
particles.

4.2.1 The Material Derivative

Consider a fluid particle moving along its pathline as is shown in Fig. 4.4. In general,
the particle’s velocity, denoted VA for particle A, is a function of its location and the
time.

where xA � xA(t), yA � yA(t), and zA � zA(t) define the location of the moving particle. By def-
inition, the acceleration of a particle is the time rate of change of its velocity. Thus, we use the
chain rule of differentiation to obtain the acceleration of particle A, aA, as

(4.2)

Using the fact that the particle velocity components are given by uA � dxA/dt, yA � dyA/dt,
and wA � dzA/dt, Eq. 4.2 becomes

Because the equation just described is valid for any particle, we can drop the reference to
particle A and obtain the acceleration field from the velocity field as

(4.3)a �
0V
0t

� u
0V
0x

� v 
0V
0y

� w 
0V
0z

aA �
0VA

0t
� uA

0VA

0x
� yA

0VA

0y
� wA

0VA

0z

aA1t2 �
dVA

dt
�

0VA

0t
�

0VA

0x

dxA

dt
�

0VA

0y

dyA

dt
�

0VA

0z

dzA

dt

VA � VA1rA, t2 � VA 3xA1t2, yA1t2, zA1t2, t 4

F I G U R E  4.4 Velocity and position of particle A at
time t.

V4.11 Pathlines

Particle A at
time t

rA

VA(rA, t)

Particle path

z

x

y

wA(rA, t)

uA(rA, t)

vA(rA, t)

zA(t)
xA(t)

yA(t)
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This is a vector result whose scalar components can be written as

(4.4)

and

The result given in Eq. 4.4 is often written in shorthand notation as

where the operator

(4.5)

is termed the material derivative or substantial derivative. An often-used shorthand notation
for the material derivative operator is

(4.6)

The dot product of the velocity vector, V, and the gradient operator,
(a vector operator), provides a convenient notation for the spatial derivative

terms appearing in the Cartesian coordinate representation of the material derivative. Note
that the notation represents the operator 

The material derivative concept is very useful in analysis involving various fluid
parameters, not just the acceleration. The material derivative of any variable is the rate at
which that variable changes with time for a given particle (as seen by one moving along
with the fluid—the Lagrangian description). For example, consider a temperature field

associated with a given flow, like the flame shown in the figure in the
margin. It may be of interest to determine the time rate of change of temperature of a
fluid particle (particle A) as it moves through this temperature field. If the velocity,

is known, we can apply the chain rule to determine the rate of change of
temperature as

This can be written as

As in the determination of the acceleration, the material derivative operator,
appears.

D1 2/Dt,

DT

Dt
�

0T

0t
� u

0T

0x
� y

0T

0y
� w

0T

0z
 �

0T

0t
� V . §T

dTA

dt
�

0TA

0t
�

0TA

0x

dxA

dt
�

0TA

0y

dyA

dt
�

0TA

0z

dzA

dt

V � V1x, y, z, t2,

T � T1x, y, z, t2

V . § 1 2 � u0 1 2/0x � y0 1 2/0y � w0 1 2/0z.V . §

0yĵ � 0 1 2/0zk̂
§ 1 2 � 0 1 2/0xî � 0 1 2/

D1 2
Dt

�
0 1 2
0t

� 1V . § 2 1 2

D1 2
Dt

�
0 1 2
0t

� u 
0 1 2
0x

� v 
0 1 2
0y

� w 
0 1 2
0z

a �
DV
Dt

az �
0w

0t
� u

0w

0x
� y

0w

0y
� w

0w

0z

 ay �
0y
0t

� u
0y
0x

� y
0y
0y

� w
0y
0z

 ax �
0u

0t
� u

0u

0x
� y

0u

0y
� w

0u

0z
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V

T = T (x, y, z, t)

Particle A

yx

z
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112 Chapter 4 ■ Fluid Kinematics

4.2.2 Unsteady Effects

As is seen from Eq. 4.5, the material derivative formula contains two types of terms—those
involving the time derivative [0( )/0t] and those involving spatial derivatives [0( )/0x, 0( )/0y,
and 0( )/0z]. The time derivative portions are denoted as the local derivative. They represent

GIVEN An incompressible, inviscid fluid flows steadily
past a tennis ball of radius R, as shown in Fig. E4.4a. Accord-
ing to a more advanced analysis of the flow, the fluid velocity
along streamline A–B is given by

where V0 is the upstream velocity far ahead of the sphere.

FIND Determine the acceleration experienced by fluid par-
ticles as they flow along this streamline.

V � u1x2 î � V0 a1 �
R3

x3 b î

Acceleration Along a StreamlineEXAMPLE 4.4

SOLUTION

of ax, max � �0.610 . Note that this maximum deceleration
increases with increasing velocity and decreasing size. As indi-
cated in the following table, typical values of this deceleration can
be quite large. For example, the 
value for a pitched baseball is a deceleration approximately 1500
times that of gravity.

Object V0 (ft/s) R (ft) ax, max (ft/s2)

Rising weather
balloon 1 4.0 �0.153

Soccer ball 20 0.80 �305
Baseball 90 0.121 �4.08 	 104

Tennis ball 100 0.104 �5.87 	 104

Golf ball 200 0.070 �3.49 	 105

In general, for fluid particles on streamlines other than
A–B, all three components of the acceleration (ax, ay, and az)
will be nonzero.

ax, max � �4.08 	 104 ft/s2

V 2
0 
/R

Along streamline A–B there is only one component of veloc-
ity (v � w � 0) so that from Eq. 4.3

or

Since the flow is steady, the velocity at a given point in space
does not change with time. Thus, 
u/
t � 0. With the given
velocity distribution along the streamline, the acceleration
becomes

or

(Ans)

COMMENT Along streamline A–B (� � x � �a and
y � 0) the acceleration has only an x component and it is neg-
ative (a deceleration). Thus, the fluid slows down from its up-
stream velocity of V � V0î at x � � to its stagnation point
velocity of V � 0 at x � �R, the “nose” of the sphere. The
variation of ax along streamline A–B is shown in Fig. E4.4b. It
is the same result as is obtained in Example 3.1 by using the
streamwise component of the acceleration, ax � V
V/
s. The
maximum deceleration occurs at x � �1.205R and has a value

q

q

ax � �31V 2
0 /R2 

1 � 1R/x23

1x/R24

ax � u 
0u

0x
� V0 a1 �

R3

x3 b  V0 3R
31�3x�42 4

az � 0ay � 0,ax �
0u

0t
� u 

0u

0x
 ,

a �
0V
0t

� u
0V
0x

� a
0u

0t
� u

0u

0x
b î

A x

y

V0VV

(a)

B

A B

(b)

–0.2

–0.4

–0.6

x/xx R//

–1–2–3

ax_______
(V0VV 2/R// )

F I G U R E  E4.4
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4.2 The Acceleration Field 113

effects of the unsteadiness of the flow. If the parameter involved is the acceleration, that
portion given by 0V/0t is termed local acceleration. For steady flow the time derivative is
zero throughout the flow field and the local effect vanishes. Physically, there
is no change in flow parameters at a fixed point in space if the flow is steady.

4.2.3 Convective Effects

The portion of the material derivative (Eq. 4.5) represented by the spatial derivatives is termed
the convective derivative. It represents the fact that a flow property associated with a fluid
particle may vary because of the motion of the particle from one point in space where the
parameter has one value to another point in space where its value is different. For example,
the water velocity at the inlet of the garden hose nozzle shown in the figure in the margin
is different (both in direction and speed) than it is at the exit. This contribution to the time
rate of change of the parameter for the particle can occur whether the flow is steady or
unsteady. It is due to the convection, or motion, of the particle through space in which there
is a gradient in the parameter value. That por-
tion of the acceleration given by the term is termed convective acceleration.

Consider flow in a variable area pipe as shown in Fig. 4.5. It is assumed that the flow
is steady and one-dimensional with velocity that increases and decreases in the flow direc-
tion as indicated. As the fluid flows from section (1) to section (2), its velocity increases
from V1 to V2. Thus, even though 
V/
t � 0 (i.e., the flow is steady), fluid particles expe-
rience an acceleration given by ax � u
u/
x, the convective acceleration. For x1 � x � x2,
it is seen that 
u/
x � 0 so that ax � 0—the fluid accelerates. For x2 � x � x3, it is seen
that 
u/
x � 0 so that ax � 0—the fluid decelerates. This acceleration and deceleration are
shown in the figure in the margin.

1V . § 2V
3§ 1 2 � 0 1 2/0x î � 0 1 2/0y ĵ � 0 1 2/0z k̂ 4

3 0 1 2/0t � 0 4 ,

V4.12 Unsteady
flow

V2 > V1

V1

F I G U R E  4.5 Uniform, steady flow in a variable
area pipe.

x

u = V3 = V1 < V2

x3

x2x1

u = V2 > V1
u = V1

u

x0

ax

x0

GIVEN Consider the steady, two-dimensional flow field
discussed in Example 4.2.

FIND Determine the acceleration field for this flow.

SOLUTION

Acceleration from a Given Velocity Field

dimensional [w � 0 and 
( )/
z � 0] flow, Eq. 1 becomes

 � au 
0u

0x
� v 

0u

0y
b î � au 

0v

0x
� v 

0v

0y
b ĵ

 a � u 
0V
0x

� v 
0V
0y

EXAMPLE 4.5

In general, the acceleration is given by

(1)

where the velocity is given by V � (V0 //)(xî � y ĵ) so that
u � (V0 //)x and v � �(V0 //)y. For steady [
( )/
t � 0], two-

�
0V
0t

� u
0V
0x

� v 
0V
0y

� w 
0V
0z

a �
DV
Dt

�
0V
0t

� 1V . § 2 1V2
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114 Chapter 4 ■ Fluid Kinematics

4.2.4 Streamline Coordinates

In many flow situations it is convenient to use a coordinate system defined in terms of the
streamlines of the flow. An example for steady, two-dimensional flows is illustrated in Fig.
4.6. Such flows can be described in terms of the streamline coordinates involving one coor-
dinate along the streamlines, denoted s, and the second coordinate normal to the stream-
lines, denoted n. Unit vectors in these two directions are denoted by and as shown in
Fig. 4.6.

One of the major advantages of using the streamline coordinate system is that the
velocity is always tangent to the s direction. That is,

For steady, two-dimensional flow we can determine the acceleration as (see Eq. 3.1)

(4.7)

As shown in the figure in the margin, the first term, as � V
V/
s, represents convective
acceleration along the streamline, and the second term, an � V2/r, represents centrifugal
acceleration (one type of convective acceleration) normal to the fluid motion. These forms
of acceleration are probably familiar from previous dynamics or physics considerations.

a � V 
0V

0s
 ŝ �

V 2

r
 n̂   or  as � V 

0V

0s
,     an �

V 2

r

V � V ŝ

n̂ŝ

Hence, for this flow the acceleration is given by

or

(Ans)

COMMENTS The fluid experiences an acceleration in both
the x and y directions. Since the flow is steady, there is no local 
acceleration—the fluid velocity at any given point is constant in
time. However, there is a convective acceleration due to the
change in velocity from one point on the particle’s pathline to an-
other. Recall that the velocity is a vector—it has both a magnitude
and a direction. In this flow both the fluid speed (magnitude) and
the flow direction change with location (see Fig. E4.1a).

For this flow the magnitude of the acceleration is constant
on circles centered at the origin, as is seen from the fact that

(2)

Also, the acceleration vector is oriented at an angle � from the
x axis, where

tan � �
ay

ax
�

y

x

0a 0 � 1a2
x � a2

y � a2
z 2

1/2 � a
V0

/
b

2

 1x2 � y221/2

ax �
V2

0x

/2 ,     ay �
V2

0y

/2

� c a
V0

/
b1x2 102 � a

�V0

/
b1y2a

�V0

/
b d ĵ

a � c a
V0

/
b1x2a

V0

/
b � a

V0

/
b1y2 102 d î

This is the same angle as that formed by a ray from the origin
to point (x, y). Thus, the acceleration is directed along rays
from the origin and has a magnitude proportional to the dis-
tance from the origin. Typical acceleration vectors (from Eq. 2)
and velocity vectors (from Example 4.1) are shown in Fig.
E4.5 for the flow in the first quadrant. Note that a and V are
not parallel except along the x and y axes (a fact that is respon-
sible for the curved pathlines of the flow) and that both the ac-
celeration and velocity are zero at the origin (x � y � 0). An
infinitesimal fluid particle placed precisely at the origin will
remain there, but its neighbors (no matter how close they are
to the origin) will drift away.

V
a

y

x0

F I G U R E  E4.5

V4.13 Streamline
coordinates

an as

a
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4.3 Control Volume and System Representations 115

F I G U R E  4.6
Streamline coordinate system
for two-dimensional flow.

s

n^ s^

V

s = 0

s = s1

s = s2
n = n2

n = n1

n = 0
Streamlines

y

x

4.3 Control Volume and System Representations

A fluid’s behavior is governed by a set of fundamental physical laws, which is approximated
by an appropriate set of equations. The application of laws such as the conservation of mass,
Newton’s laws of motion, and the laws of thermodynamics forms the foundation of fluid
mechanics analyses. There are various ways that these governing laws can be applied to a
fluid, including the system approach and the control volume approach. By definition, a system
is a collection of matter of fixed identity (always the same atoms or fluid particles), which
may move, flow, and interact with its surroundings. A control volume, however, is a volume
in space (a geometric entity, independent of mass) through which fluid may flow.

We may often be more interested in determining the forces put on a fan, airplane, or
automobile by air flowing past the object than we are in the information obtained by fol-
lowing a given portion of the air (a system) as it flows along. Similarly, for the Space Shuttle
launch vehicle shown in the figure in the margin, we may be more interested in determining the
thrust produced than we are in the information obtained by following the highly complex,
irregular path of the exhaust plume from the rocket engine nozzle. For these situations we
often use the control volume approach. We identify a specific volume in space (a volume
associated with the fan, airplane, or automobile, for example) and analyze the fluid flow
within, through, or around that volume.

Examples of control volumes and control surfaces (the surface of the control volume)
are shown in Fig. 4.7. For case (a), fluid flows through a pipe. The fixed control surface
consists of the inside surface of the pipe, the outlet end at section (2), and a section across
the pipe at (1). Fluid flows across part of the control surface but not across all of it.

(Photograph courtesy
of NASA.)
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116 Chapter 4 ■ Fluid Kinematics

Another control volume is the rectangular volume surrounding the jet engine shown
in Fig. 4.7b. The air that was within the engine itself at time t � t1 (a system) has passed
through the engine and is outside of the control volume at a later time t � t2 as indicated.
At this later time other air (a different system) is within the engine.

The deflating balloon shown in Fig. 4.7c provides an example of a deforming control
volume. As time increases, the control volume (whose surface is the inner surface of the
balloon) decreases in size.

All of the laws governing the motion of a fluid are stated in their basic form in terms
of a system approach. For example, “the mass of a system remains constant,” or “the time
rate of change of momentum of a system is equal to the sum of all the forces acting on
the system.” Note the word “system,” not control volume, in these statements. To use the
governing equations in a control volume approach to problem solving, we must rephrase
the laws in an appropriate manner. To this end we introduce the Reynolds transport theorem.

F I G U R E  4.7 Typical control volumes: (a) fixed control volume, (b) fixed or moving
control volume, (c) deforming control volume.

V

Pipe

(1) (2)

(a) (b)

Jet engine

(c)

Balloon

Control volume surface System at time t1 System at time t2 > t1

4.4 The Reynolds Transport Theorem

We need to describe the laws governing fluid motion using both system concepts (consider
a given mass of the fluid) and control volume concepts (consider a given volume). To do
this we need an analytical tool to shift from one representation to the other. The Reynolds
transport theorem provides this tool.

All physical laws are stated in terms of various physical parameters such as velocity,
acceleration, mass, temperature, and momentum. Let B represent any of these (or other)
fluid parameters and b represent the amount of that parameter per unit mass. That is,

where m is the mass of the portion of fluid of interest. For example, as shown by the fig-
ure in the margin, if the mass, it follows that The mass per unit mass is
unity. If B � mV 2/2, the kinetic energy of the mass, then b � V 2/2, the kinetic energy per
unit mass. The parameters B and b may be scalars or vectors. Thus, if B � mV, the momen-
tum of the mass, then b � V. (The momentum per unit mass is the velocity.) The parame-
ter B is termed an extensive property, and the parameter b is termed an intensive property.

4.4.1 Derivation of the Reynolds Transport Theorem

A simple version of the Reynolds transport theorem relating system concepts to control vol-
ume concepts can be obtained easily for the one-dimensional flow through a fixed control vol-
ume as the variable area duct section shown in Figs. 4.8a and 4.8b. We consider the control
volume to be that stationary volume within the pipe or duct between sections (1) and (2) as
indicated. The system that we consider is that fluid occupying the control volume at some 

b � 1.B � m,

B � mb

V

m

V

B b = B/m

1m

mV

1_
2mV 21_
2

1_
2V 21_
2
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initial time t. A short time later, at time t � t, the system has moved slightly to the right.
As indicated by the figure in the margin, the fluid particles that coincided with section (2) of
the control surface at time t have moved a distance ��2 � V2 �t to the right, where V2 is the
velocity of the fluid as it passes section (2). Similarly, the fluid initially at section (1) has
moved a distance ��1 � V1�t, where V1 is the fluid velocity at section (1). We assume the
fluid flows across sections (1) and (2) in a direction normal to these surfaces and that V1 and
V2 are constant across sections (1) and (2).

As is shown in Fig. 4.8c, the outflow from the control volume from time t to is
denoted as volume II, the inflow as volume I, and the control volume itself as CV. Thus, the
system at time t consists of the fluid in section CV ( ), whereas at time

the system consists of the same fluid that now occupies sections That is,
at time The control volume remains as section CV for all time.

If B is an extensive parameter of the system, then the value of it for the system at
time t is the same as that for the control volume Bcv,

since the system and the fluid within the control volume coincide at this time. Its value at
time t � �t is

Thus, the change in the amount of B in the system in the time interval �t divided by this
time interval is given by

By using the fact that at the initial time t we have Bsys(t) � Bcv(t), this ungainly expression
may be rearranged as follows.

(4.8)

In the limit �t → 0, the left-hand side of Eq. 4.8 is equal to the time rate of change of B
for the system and is denoted as DBsys/Dt.

In the limit �t → 0, the first term on the right-hand side of Eq. 4.8 is seen to be the
time rate of change of the amount of B within the control volume

(4.9)lim
�tS0

 
Bcv1t � �t2 � Bcv1t2

�t
�

0Bcv

0t

�Bsys

�t
�

Bcv1t � �t2 � Bcv1t2

�t
�

B11t � �t2

�t
�

BII1t � �t2

�t

�Bsys

�t
�

Bsys1t � �t2 � Bsys1t2

�t
�

Bcv1t � �t2 � BI1t � �t2 � BII1t � �t2 � Bsys1t2

�t

Bsys1t � �t2 � Bcv1t � �t2 � BI1t � �t2 � BII1t � �t2

Bsys1t2 � Bcv1t2

t � dt.“SYS � CV � I � II”
1CV � I2 � II.t � dt

“SYS � CV” at time t

t � dt

4.4 The Reynolds Transport Theorem 117

V1 V2
�1 = V1   tδ δ

(1)
(2)

�2 = V2   tδ δ

Fixed control surface and system
boundary at time t

System boundary at time t +   tδ

(b) (c)

I IICV– I

(2)

(1)

F I G U R E  4.8 Control volume and system for flow through a variable area pipe.

(a)

V2

(2)

t = 0

V2   tδ
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t =   tδ

  VIIδ
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118 Chapter 4 ■ Fluid Kinematics

The third term on the right-hand side of Eq. 4.8 represents the rate at which the extensive
parameter B flows from the control volume across the control surface. This can be seen
from the fact that the amount of B within region II, the outflow region, is its amount per
unit volume, �b, times the volume � II � A2 �/2 � A2(V2�t). Hence,

where b2 and �2 are the constant values of b and � across section (2). Thus, the rate at which
this property flows from the control volume, Ḃout, is given by

(4.10)

Similarly, the inflow of B into the control volume across section (1) during the time
interval �t corresponds to that in region I and is given by the amount per unit volume times
the volume, � I � A1 �/1 � A1(V1 �t). Hence,

where b1 and �1 are the constant values of b and � across section (1). Thus, the rate of
inflow of property B into the control volume, Ḃin, is given by

(4.11)

If we combine Eqs. 4.8, 4.9, 4.10, and 4.11, we see that the relationship between the
time rate of change of B for the system and that for the control volume is given by

(4.12)

or

(4.13)

This is a version of the Reynolds transport theorem valid under the restrictive assumptions
associated with the flow shown in Fig. 4.8—fixed control volume with one inlet and one
outlet having uniform properties (density, velocity, and the parameter b) across the inlet and
outlet with the velocity normal to sections (1) and (2). Note that the time rate of change of
B for the system (the left-hand side of Eq. 4.13) is not necessarily the same as the rate of
change of B within the control volume (the first term on the right-hand side of Eq. 4.13).
This is true because the inflow rate (b1�1V1A1) and the outflow rate (b2�2V2A2) of the prop-
erty B for the control volume need not be the same.

As indicated in Fig. 4.9, a control volume may contain more than one inlet and
one outlet. The complex flow through the human heart illustrated by the figure in the

DBsys

Dt
�

0Bcv

0t
� �2A2V2b2 � �1A1V1b1

DBsys

Dt
�

0Bcv

0t
� B

#
out � B

#
in

B
#

in � lim
�tS0

 
BI1t � �t2

�t
� �1A1V1b1

BI1t � �t2 � 1�1b12 1�V12 � �1b1A1V1 �t

V

B
#

out � lim
�tS0

 
BII1t � �t2

�t
� �2A2V2b2

BII1t � �t2 � 1�2b22 1�VII2 � �2b2A2V2 �t

V

Left
atriumRight

atrium

Right
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Left
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(1)
(2)

(3)

(4)

V1

V2

V4

V3

Control surface
F I G U R E  4.9 Multiple inlet and outlet

control volume.
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margin involves multiple inlets and outlets. In such cases a simple extension of Eq. 4.13
gives.

(4.14)

where summations over the inlets (in) and outlets (out) account for all of the flow through
the control volume.

Equations 4.13 and 4.14 are simplified versions of the Reynolds transport theorem. A
more general form of this theorem, valid for more general flow conditions, is presented in
Appendix D.

DBsys

Dt
�

0Bcv

0t
� a �out AoutVoutbout � a �in AinVinbin

4.4 The Reynolds Transport Theorem 119

GIVEN Consider the flow from the fire extinguisher shown
in Fig. E4.6. Let the extensive property of interest be the sys-
tem mass (B � m, the system mass, so that b � 1). 

FIND Write the appropriate form of the Reynolds transport
theorem for this flow.

SOLUTION

Time Rate of Change for a System and a Control
Volume

constant in time) and Eq. 3 would become

This is one form of the conservation of mass principle—the mass
flowrates into and out of the control volume are equal. Other
more general forms are discussed in Chapter 5 and Appendix D.

�1A1V1 � �2A2V2

EXAMPLE 4.6

We take the control volume to be the fire extinguisher and the
system to be the fluid within it at time t � 0. For this case
there is no inlet, section (1), across which the fluid flows into
the control volume (A1 � 0). There is, however, an outlet, sec-
tion (2). Thus, the Reynolds transport theorem, Eq. 4.13, along
with Eq. 4.9 with b � 1 can be written as

(1) (Ans)

COMMENT If we proceed one step further and use the
basic law of conservation of mass, we may set the left-hand
side of this equation equal to zero (the amount of mass in a
system is constant) and rewrite Eq. 1 in the form:

(2)

The physical interpretation of this result is that the rate at
which the mass in the tank decreases in time is equal in mag-
nitude but opposite to the rate of flow of mass from the exit,
�2A2V2. Note the units for the two terms of Eq. 2 (kg/s or
slugs/s). Note that if there were both an inlet and an outlet to
the control volume shown in Fig. E4.6, Eq. 2 would become

(3)

In addition, if the flow were steady, the left-hand side of Eq. 3
would be zero (the amount of mass in the control would be

0mcv

0t
� �1A1V1 � �2A2V2

0mcv

0t
� ��2A2V2

Dmsys

Dt
�

0mcv

0t
� �2A2V2

F I G U R E  E4.6

(b) (c)

System

Control
surface

t = 0 t > 0

(a)
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120 Chapter 4 ■ Fluid Kinematics

4.4.2 Selection of a Control Volume

Any volume in space can be considered as a control volume. The ease of solving a given
fluid mechanics problem is often very dependent upon the choice of the control volume
used. Only by practice can we develop skill at selecting the “best” control volume. None
are “wrong,” but some are “much better” than others.

Figure 4.10 illustrates three possible control volumes associated with flow through a pipe.
If the problem is to determine the pressure at point (1), selection of the control volume (a) is
better than that of (b) because point (1) lies on the control surface. Similarly, control volume
(a) is better than (c) because the flow is normal to the inlet and exit portions of the control
volume. None of these control volumes are wrong—(a) will be easier to use. Proper control
volume selection will become much clearer in Chapter 5 where the Reynolds transport theo-
rem is used to transform the governing equations from the system formulation into the control
volume formulation, and numerous examples using control volume ideas are discussed.

V

Control surface

(1)

(a)

V
(1)

(b)

V
(1)

(c)

F I G U R E  4.10 Various control volumes for flow through
a pipe.

field representation
velocity field
Eulerian method
Lagrangian method
one-, two-, and 

three-dimensional 
flow

steady and 
unsteady flow

streamline
streakline
pathline
acceleration field
material derivative
local acceleration
convective acceleration
system
control volume
Reynolds transport 

theorem

4.5 Chapter Summary and Study Guide

This chapter considered several fundamental concepts of fluid kinematics. That is, various
aspects of fluid motion are discussed without regard to the forces needed to produce this motion.
The concepts of a field representation of a flow and the Eulerian and Lagrangian approaches
to describing a flow are introduced, as are the concepts of velocity and acceleration fields.

The properties of one-, two-, or three-dimensional flows and steady or unsteady flows
are introduced along with the concepts of streamlines, streaklines, and pathlines. Streamlines,
which are lines tangent to the velocity field, are identical to streaklines and pathlines if the
flow is steady. For unsteady flows, they need not be identical.

As a fluid particle moves about, its properties (i.e., velocity, density, temperature) may
change. The rate of change of these properties can be obtained by using the material deriva-
tive, which involves both unsteady effects (time rate of change at a fixed location) and convec-
tive effects (time rate of change due to the motion of the particle from one location to another).

The concepts of a control volume and a system are introduced, and the Reynolds trans-
port theorem is developed. By using these ideas, the analysis of flows can be carried out
using a control volume (a fixed volume through which the fluid flows), whereas the gov-
erning principles are stated in terms of a system (a flowing portion of fluid).

The following checklist provides a study guide for this chapter. When your study of
the entire chapter and end-of-chapter exercises has been completed you should be able to

write out the meanings of the terms listed here in the margin and understand each of
the related concepts. These terms are particularly important and are set in color and
bold type in the text.

understand the concept of the field representation of a flow and the difference between
Eulerian and Lagrangian methods of describing a flow.
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explain the differences among streamlines, streaklines, and pathlines.

calculate and plot streamlines for flows with given velocity fields.

use the concept of the material derivative, with its unsteady and convective effects, to
determine time rate of change of a fluid property.

determine the acceleration field for a flow with a given velocity field.

understand the properties of and differences between a system and a control volume.

interpret, physically and mathematically, the concepts involved in the Reynolds trans-
port theorem.

Some of the important equations in this chapter are

Equation for streamlines (4.1)

Acceleration (4.3)

Material derivative (4.6)

Streamwise and normal 
components of acceleration (4.7)

Reynolds transport theorem (4.14)
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Problems 121

Review Problems

Go to Appendix G for a set of review problems with answers.
Detailed solutions can be found in Student Solution Manual for

a Brief Introduction to Fluid Mechanics, by Young et al. (©
2011 John Wiley and Sons, Inc.).

Problems

Note: Unless otherwise indicated use the values of fluid
properties found in the tables on the inside of the front
cover. Problems designated with an (*) are intended to be
solved with the aid of a programmable calculator or a com-
puter. Problems designated with a (†) are “open-ended”
problems and require critical thinking in that to work them
one must make various assumptions and provide the neces-
sary data. There is not a unique answer to these problems.

The even-numbered problems are included in the
hard copy version of the book, and the answers to these
even-numbered problems are listed at the end of the book.
Odd-numbered problems are provided in WileyPLUS, or
in Appendix L on the book’s web site, www.wiley.com/

college/young. The lab-type problems, FE problems, FlowLab
problems, and the videos that accompany problems can also
be accessed on these web sites.

Section 4.1 The Velocity Field

4.2 The components of a velocity field are given by 
and . Determine the location of any stag-

nation points in the flow field.

4.4 A flow can be visualized by plotting the velocity field as
velocity vectors at representative locations in the flow as shown
in Video V4.2 and Fig. E4.1. Consider the velocity field given in
polar coordinates by yr � �10/r and y� � 10/r. This flow 

1V � 02
w � 0y � xy3 � 16,

u � x � y,
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velocity, which is given by where a is the
sphere radius and is the fluid speed far from the sphere.

Particle

1 0.500 0.480
2 0.250 0.232
3 0.140 0.128
4 0.120 0.112  ��

��

��

��

x at t � 0.002 s 1ft2x at t � 0 s 1ft2

V0

V � V0 11 � a3/x32,

Section 4.2 The Acceleration Field

4.12 A velocity field is given by and where c
is a constant. Determine the x and y components of the acceler-
ation. At what point (points) in the flow field is the acceleration
zero?

4.14 The velocity of the water in the pipe shown in Fig. P4.14
is given by V1 � 0.50t m/s and V2 � 1.0t m/s, where t is in sec-
onds. (a) Determine the local acceleration at points (1) and (2).
(b) Is the average convective acceleration between these two
points negative, zero, or positive? Explain.

y � cy2,u � cx2

4.16 A fluid flows along the x axis with a velocity given by
where x is in feet and t in seconds. (a) Plot the speed

for and (b) Plot the speed for 
and (c) Determine the local and convective accel-
eration. (d) Show that the acceleration of any fluid particle in
the flow is zero. (e) Explain physically how the velocity of a
particle in this unsteady flow remains constant throughout its
motion.

4.18 A shock wave is a very thin layer in a
high-speed (supersonic) gas flow across which the flow proper-
ties (velocity, density, pressure, etc.) change from state (1) to
state (2) as shown in Fig. P4.18. If V1 � 1800 fps, V2 � 700 fps,
and estimate the average deceleration of the gas
as it flows across the shock wave. How many g’s deceleration
does this represent?

/ � 10�4 in.,

1thickness � /2

2 � t � 4 s.
x � 7 ftt � 3 s.0 � x � 10 ft

V � 1x/t2 î,

approximates a fluid swirling into a sink as shown in Fig. P4.4.
Plot the velocity field at locations given by r � 1, 2, and 3 with
� � 0, 30, 60, and 90�.

4.6 A velocity field is given by 
where u and y are in ft/s and x and y are in feet. Plot the stream-
line that passes through x � 0 and y � 0. Compare this stream-
line with the streakline through the origin.

4.8 In addition to the customary horizontal velocity compo-
nents of the air in the atmosphere (the “wind”), there often are
vertical air currents (thermals) caused by buoyant effects due to
uneven heating of the air as indicated in Fig. P4.8. Assume that
the velocity field in a certain region is approximated by u � u0,
y� y0 (1 � y/h) for 0 � y � h, and u � u0, y� 0 for y � h. De-
termine the equation for the streamlines and plot the streamline
that passes through the origin for values of u0/y0 � 0.5, 1, and 2.

V � x î � x 1x � 12 1y �12 ĵ,

4.10 (See Fluids in the News article titled “Follow those parti-
cles,” Section 4.1.) Two photographs of four particles in a flow
past a sphere are superposed as shown in Fig. P4.10. The time in-
terval between the photos is s. The locations of the
particles, as determined from the photos, are shown in the table.
(a) Determine the fluid velocity for these particles. (b) Plot a
graph to compare the results of part (a) with the theoretical

¢t � 0.002

F I G U R E  P4.4

vr

v

r
θ

θ

u0

y

y = h

x0

F I G U R E  P4.8

 –0.4  –0.2
a = 0.1 ft

t = 0
t = 0.002 s

x, ft

y, ft

F I G U R E  P4.10

V1 =  
0.50t m/s

V2 =  
1.0t m/s

(1)
(2)

F I G U R E  P4.14
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4.20 A gas flows along the x axis with a speed V � 5x m/s
and a pressure of p � 10x2 N/m2, where x is in meters. (a) De-
termine the time rate of change of pressure at the fixed loca-
tion x � 1. (b) Determine the time rate of change of pressure
for a fluid particle flowing past x � 1. (c) Explain without 
using any equations why the answers to parts (a) and (b) are
different.

4.22 A hydraulic jump is a rather sudden change in depth of a
liquid layer as it flows in an open channel as shown in Fig.
P4.22 and Videos V10.11 and 10.12. In a relatively short dis-
tance (thickness � �) the liquid depth changes from z1 to z2,
with a corresponding change in velocity from V1 to V2. If V1 �
5 m/s, V2 � 1 m/s, and � � 0.2 m, estimate the average deceler-
ation of the liquid as it flows across the hydraulic jump. How
many g’s deceleration does this represent?

4.24 Assume the temperature of the exhaust in an exhaust pipe
can be approximated by T � T0(1 � ae�bx) [1 � c cos(�t)],
where T0 � 100 �C, a � 3, b � 0.03 m�1, c � 0.05, and � � 100
rad/s. If the exhaust speed is a constant 3 m/s, determine the
time rate of change of temperature of the fluid particles at x � 0
and x � 4 m when t � 0.

4.26 Assume that the streamlines for the wingtip vortices from
an airplane (see Fig. P4.26 and Video V4.6) can be approxi-
mated by circles of radius r and that the speed is V � K/r, where
K is a constant. Determine the streamline acceleration, as, and
the normal acceleration, an, for this flow.

4.28 A fluid flows past a sphere with an upstream velocity of
as shown in Fig. P4.28. From a more advanced

theory it is found that the speed of the fluid along the front part
of the sphere is Determine the streamwise and
normal components of acceleration at point A if the radius of the
sphere is a � 0.20 m.

V � 3
2V0 sin �.

V0 � 40 m/s

4.30 Air flows from a pipe into the region between a circular
disk and a cone as shown in Fig. P4.30. The fluid velocity in the
gap between the disk and the cone is closely approximated by 
V � V0R2/r2, where R is the radius of the disk, r is the radial coordi-
nate, and V0 is the fluid velocity at the edge of the disk. Determine
the acceleration for r � 0.5 and 2 ft if V0 � 5 ft/s and R � 2 ft.

Section 4.3 and 4.4 Control Volume and 
System Representations and the Reynolds 
Transport Theorem

4.32 Water flows through a duct of square cross section as shown
in Fig. P4.32 with a constant, uniform velocity of V � 20 m/s.
Consider fluid particles that lie along line A–B at time t � 0. De-
termine the position of these particles, denoted by line A�–B�,
when t � 0.20 s. Use the volume of fluid in the region between
lines A–B and A�–B� to determine the flowrate in the duct. Re-
peat the problem for fluid particles originally along line C–D
and along line E–F. Compare your three answers.

Problems 123

Shock wave

V2V1

�
V2

V1

V

�
x

F I G U R E  P4.18

�

Hydraulic jump

z1

V1

V2

z2

F I G U R E  P4.22

F I G U R E  P4.26

r

θ

V

A
aθ

40°
V0

F I G U R E  P4.28

Pipe
Cone

Disk

R

V

r

F I G U R E  P4.30

V = 20 m/s

B B' D F

A A' C E

45°
0.5 m

F I G U R E  P4.32

4.34 In the region just downstream of a sluice gate, the water
may develop a reverse flow region as indicated in Fig. P4.34 and
Video V10.11. The velocity profile is assumed to consist of two
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124 Chapter 4 ■ Fluid Kinematics

uniform regions, one with velocity Va � 10 fps and the other with
Vb � 3 fps. Determine the net flowrate of water across the portion
of the control surface at section (2) if the channel is 20 ft wide.

4.36 Water flows in the branching pipe shown in Fig. P4.36
with uniform velocity at each inlet and outlet. The fixed control
volume indicated coincides with the system at time t � 20 s.
Make a sketch to indicate (a) the boundary of the system at time
t � 20.2 s, (b) the fluid that left the control volume during that
0.2-s interval, and (c) the fluid that entered the control volume
during that time interval.

4.38 Two liquids with different densities and viscosities fill the
gap between parallel plates as shown in Fig. P4.38. The bottom
plate is fixed; the top plate moves with a speed of 2 ft/s. The ve-
locity profile consists of two linear segments as indicated. The
fixed control volume ABCD coincides with the system at time 
t � 0. Make a sketch to indicate (a) the system at time t � 0.1 s
and (b) the fluid that has entered and exited the control volume
in that time period.

■ Lifelong Learning Problems

4.40 Even for the simplest flows it is often not easy to visually
represent various flow field quantities such as velocity, pressure,
or temperature. For more complex flows, such as those involv-
ing three-dimensional or unsteady effects, it is extremely diffi-
cult to “show the data.” However, with the use of computers and
appropriate software, novel methods are being devised to more
effectively illustrate the structure of a given flow. Obtain infor-
mation about methods used to present complex flow data. Sum-
marize your findings in a brief report.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for
fluid mechanics are provided on the book’s web site, www.wiley.
com/college/young, or WileyPLUS.

Sluice gate
Control surface

Vb = 3 ft/s

Va = 10 ft/s

1.8 ft

1.2 ft

(1) (2)

F I G U R E  P4.34

0.8 m

Control volume

0.6 m

0.5 m
(1)

(2)
(3)V3 = 2.5 m/s

V2 = 1 m/s

V1 = 2 m/s

F I G U R E  P4.36

F I G U R E  P4.38

1.6 ft

A

D

B

C

y

x

0.5 ft

1.5 ft/s

2 ft/s

0 ft/s

0.4 ft
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CHAPTER OPENING PHOTO: Wind turbine farms (this is the Middelgrunden Offshore Wind Farm in
Denmark) are becoming more common. Finite control volume analysis can be used to estimate the
amount of energy transferred between the moving air and each turbine rotor. (Photograph courtesy of
Siemens Wind Power.)

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ identify an appropriate control volume and draw the corresponding
diagram.

■ calculate flowrates using the continuity equation.

■ calculate forces and torques using the linear momentum and moment-of-
momentum equations.

■ use the energy equation to account for losses due to friction, as well as
effects of pumps and turbines.

■ apply the kinetic energy coefficient to nonuniform flows.

Many practical problems in fluid mechanics require analysis of the behavior of the contents
of a finite region in space (a control volume). For example, we may be asked to calculate the
anchoring force required to hold a jet engine in place during a test. Important questions can
be answered readily with finite control volume analyses. The bases of this analysis method
are some fundamental principles of physics, namely, conservation of mass, Newton’s second

55Finite Control
Volume Analysis

Finite Control
Volume Analysis
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law of motion, and the laws of thermodynamics. Thus, as one might expect, the resultant
techniques are powerful and applicable to a wide variety of fluid mechanical circumstances
that require engineering judgment. Furthermore, the finite control volume formulas are easy
to interpret physically and not difficult to use.

126 Chapter 5 ■ Finite Control Volume Analysis

5.1 Conservation of Mass—The Continuity Equation

5.1.1 Derivation of the Continuity Equation

A system is defined as a collection of unchanging contents, so the conservation of mass
principle for a system is simply stated as

Time rate of change of the system mass � 0

or

(5.1)

where Msys is the system mass.
Figure 5.1 shows a system and a fixed, nondeforming control volume that are coincident

at an instant of time. Since we are considering conservation of mass, we take the extensive prop-
erty to be mass (i.e., B � mass so that b � 1). Thus, the Reynolds transport theorem (Eq. 4.13)
allows us to state that

(5.2)

or

Because the amount of mass in a small volume is , it follows that the amount of mass
in control volume, Mcv, can be written as

If the control volume has multiple inlets and outlets, Eq. 5.2 can be modified to
account for flow through each of the inlets and outlets to give

(5.3)
DMsys

Dt
�

0
0t �

cv

� dV �a �outAoutVout �a �inA inVin

Mcv � �
cv

� d V

� dVdV

Time rate of change time rate of change net rate of flow
of the mass of the

�
of the mass of the

�
of mass through

coincident system contents of the coin- the control
cident control volume surface

DMsys

Dt
�

0Mcv

0t
� �2A2V2 � �1A1V1

DMsys

Dt
� 0

System

Control volume

(a) (b)

(1)

(2)

(c)

V1

V2

F I G U R E  5.1 System and control volume at three different
instances of time. (a) System and control at time t � �t. (b) System and control
volume at t, coincident condition. (c) System and control volume at t � �t.
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5.1 Conservation of Mass—The Continuity Equation 127

When a flow is steady, all field properties (i.e., properties at any specified point),
including density, remain constant with time and the time rate of change of the mass of the
contents of the control volume is zero. That is,

(5.4)

so that for steady flow

The control volume expression for conservation of mass, commonly called the con-
tinuity equation, is obtained by combining Eqs. 5.1 and 5.3 to obtain

(5.5)

In words, Eq. 5.5 states that to conserve mass the time rate of change of the mass of the
contents of the control volume plus the net rate of mass flow through the control surface
must equal zero. Note that Eq. 5.5 is restricted to fixed, nondeforming control volumes hav-
ing uniform properties across the inlets and outlets, with the velocity normal to the inlet
and outlet areas. A more general form of the continuity equation, valid for more general
flow conditions, is given in Appendix D.

An often-used expression for the mass flowrate, , through a section of the control
volume having area A is

(5.6)

where � is the fluid density, V is the component of fluid velocity normal to the area A, and
Q � VA is the volume flowrate (ft3/s or m3/s). Note the symbols used to denote mass, m
(slugs or kg), and mass flowrate, (slugs/s or kg/s).

Often the fluid velocity across a section area A is not uniform. In such cases, the
appropriate fluid velocity to use in Eq. 5.6 is the average value of the component of veloc-
ity normal to the section area involved. This average value, , is defined in Eq. 5.7 and
shown in the figure in the margin.

(5.7)

If the velocity is considered uniformly distributed (one-dimensional flow) over the section
area, then and the bar notation is not necessary.

5.1.2 Fixed, Nondeforming Control Volume

Several example problems that involve the continuity equation for fixed, nondeforming
control volumes (Eq. 5.5) follow.

V � V

V �

�
A

 � V d A

�A

V

m#

m#  � �AV � �Q

m#

0
0t

 �
cv

�  dV �a �outAoutVout �a �inAinVin � 0

0
0t �

cv

� d V � 0

0Mcv

0t
� 0

V5.1 Sink flow

V5.2 Shop vac filter

V

V

GIVEN A great danger to workers in confined spaces
involves the consumption of breathable air (oxygen) and
its replacement with other gases such as carbon dioxide
(CO2). To prevent this from happening, confined spaces

Conservation of Mass—Steady, Incompressible Flow

need to be ventilated. Although there is no standard for air
exchange rates, a complete change of the air every 3 min-
utes has been accepted by industry as providing effective
ventilation.

EXAMPLE 5.1

c05FiniteControlVolumeAnalysis.qxd  9/24/10  1:21 PM  Page 127



128 Chapter 5 ■ Finite Control Volume Analysis

A worker is performing maintenance in a small rectangular
tank with a height of 10 ft and a square base 6 ft by 6 ft. Fresh
air enters through an 8-inch-diameter hose and exits through a
4-inch-diameter port on the tank wall. The flow is assumed
steady and incompressible.

SOLUTION

FIND Determine

(a) the exchange rate needed (ft3/min) for this tank and

(b) the velocity of the air entering and exiting the tank at this
exchange rate.

(Ans)

COMMENTS In this example it is quite apparent how
much the problem is simplified by assuming the flow is
steady and incompressible. It is important as engineers to
understand when such assumptions can be made. Also one
can see how the velocity through an outlet/inlet is directly
related to flowrate and geometry of the outlet/inlet. For ex-
ample, if the air velocity through the outlet causes too much
dust to be stirred up, the velocity could be decreased by in-
creasing the diameter of the outlet. The relationship be-
tween velocity and diameter is shown in Fig. E5.1. As ex-
pected, the velocity is inversely proportional to the square
of the diameter.

As mentioned, there is no written standard for air ex-
change rates, but changing the air every 3 minutes has been
accepted by industry. It is important for engineers to under-
stand that individual industries and companies will have
their own established safety precautions, depending on the
nature of their work. As an engineer one must heed these pre-
cautions. Safety is always a key component in the design
process.

Vin �
Q

Ain
�

120 ft2/min

a
�

4
b a

8

12
 ftb

2
� 343 ft/min � 5.73 ft/s

(a) The necessary exchange rate, which will provide the
flowrate entering and exiting the space, is based on the vol-
ume, of the tank, where

Thus, 360 ft3 of air is needed to provide one complete air ex-
change. As described in the problem statement, to provide
effective ventilation this must be done every 3 minutes.

Therefore, the required flowrate, Q, is

(Ans)

(b) The continuity equation, Eq. 5.5, can be used to calculate
the velocities at the inlet and outlet. Thus,

(1)

We consider the volume within the tank to be the control vol-
ume, Ain the  cross-sectional area of the hose as it protrudes
through the tank wall, and Aout the area of the port in the tank
wall. Since the flow is assumed steady and incompressible,

and

Thus, Eq. 1 reduces to

or

(2)

which can be rearranged to solve for and .

Vout �
Q

Aout
�

120 ft2/min

a
�

4
b a

4

12
 ftb

2
� 1380 ft/min � 22.9 ft/s

VinVout

Vout Aout � Vin Ain � Q

Vout Aout � Vin Ain � 0

�out � �in

0
0t �cv

�dV � 0

0
0t �

cv

� dV �a �outVoutAout �a �inV in Ain � 0

Q �
360 ft3

3 min
� 120 cfm

V � 110 ft2 16 ft2 16 ft2 � 360 ft3

V,

F I G U R E  E5.1

Outlet diameter (in.)

V
ou

t  
(f

t/
s)

6 8 10 12420

25

0

5

10

15

20
(4 in., 22.9 ft/s)

GIVEN Incompressible, laminar water flow develops in a
straight pipe having radius R as indicated in Fig. E5.2a. At sec-
tion (1), the velocity profile is uniform; the velocity is equal to
a constant value U and is parallel to the pipe axis everywhere.

At section (2), the velocity profile is axisymmetric and para-
bolic, with zero velocity at the pipe wall and a maximum value
of umax at the centerline.

Conservation of Mass—Nonuniform Velocity ProfileEXAMPLE 5.2
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5.1 Conservation of Mass—The Continuity Equation 129

SOLUTION

(b) Since this flow is incompressible, we conclude from
Eq. 5.7 that U is the average velocity at all sections of the con-
trol volume. Thus, the average velocity at section (2), , is
one-half the maximum velocity, umax, there or

(Ans)

COMMENT The relationship between the maximum ve-
locity at section (2) and the average velocity is a function of
the “shape” of the velocity profile. For the parabolic profile
assumed in this example, the average velocity, is the
actual “average” of the maximum velocity at section (2),

and the minimum velocity at that section, u2 � 0.
However, as shown in Fig. E5.2c, if the velocity profile is a
different shape (nonparabolic), the average velocity is not nec-
essarily one-half of the maximum velocity.

u2 � umax,

umax/2,

V2 �
umax

2

V2

(a) An appropriate control volume is sketched (dashed lines)
in Fig. E5.2a. The application of Eq. 5.5 to the contents of this
control volume yields

(1)

At the inlet, section (1), the velocity is uniform with V1 � U so
that

(2)

At the outlet, section (2), the velocity is not uniform.
However, the net flowrate through this section is the sum of
flows through numerous small washer-shaped areas of size
dA2 � 2�r dr as shown by the shaded area element in Fig.
E5.2b. On each of these infinitesimal areas the fluid velocity
is denoted as u2. Thus, in the limit of infinitesimal area
elements, the summation is replaced by an integration and
the outflow through section (2) is given by

(3)

By combining Eqs. 1, 2, and 3, we get

(4)

Since the flow is considered incompressible, �1 � �2. The par-
abolic velocity relationship for flow through section (2) is
used in Eq. 4 to yield

(5)

Integrating, we get from Eq. 5

or

(Ans)umax � 2U

2�umax a
r2

2
�

r4

4R2b
R

0
� �R2U � 0

2�umax�
R

0

c1 � a
r

R
b

2

d r dr � A1U � 0

�2�
R

0

u22�r dr � �1A1U � 0

a �outAoutVout � �2�
R

0

u22�r dr

a �inAinVin � �1A1U

a �outA outVout �a �inA inVin � 0

FIND
(a) How are U and umax related?

(b) How are the average velocity at section (2), and umax

related?
V2,

F I G U R E  E5.2a

Section (1) Control volume

dA2 = 2  r drπ Section (2)

Pipe

R

r

u1 = U

u2 = umax  1 -  r  2

                 
_
R( )[ ]

F I G U R E  E5.2b

�

dA2dr

r

V2 = umax/2 

       (parabolic)

V2 = umax/2 

         (nonparabolic)

umax

F I G U R E  E5.2c
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130 Chapter 5 ■ Finite Control Volume Analysis

GIVEN Construction workers in a trench of the type shown
in Fig. E5.3a are installing a new waterline. The trench is 10 ft
long, 5 ft wide, and 8 ft deep. As a result of being near an in-
tersection, carbon dioxide from vehicle exhaust enters the
trench at a rate of 10 ft3/min. Because carbon dioxide has a
greater density than air, it will settle to the bottom of the trench
and displace the air the workers need to breathe. Assume that
there is negligible mixing between the air and carbon dioxide.

FIND (a) Estimate the time rate of change of the depth of
carbon dioxide in the trench, in feet per minute at any
instant. (b) Calculate the time, it would take for the level
of carbon dioxide to reach 6 ft, the approximate height to fully
engulf the utility workers.

th�6,
0h/0t,

SOLUTION

Conservation of Mass—Unsteady Flow

change of the mass of air in the control volume must be equal
to the rate of air mass flow out of the control volume. Thus,
applying Eqs. 5.5 and 5.6 to the air only and to the carbon
dioxide only, we obtain

for air and

(2)

for carbon dioxide. The volume of carbon dioxide in the con-
trol volume is given by

(3)

Combining Eqs. 2 and 3, we obtain

and, thus, since 

or

(Ans)

(b) To find the time it will take to engulf the workers at a
depth of we need only to divide the height the level
needs to reach by the time rate of change of depth. That is,

(Ans)th�6 �
6 ft

0.2 1ft�min2
� 30 min

h � 6 ft,

0h

0t
�

10 ft3�min

50 ft2 � 0.20 ft�min

0h

0t
�

Qco2

50 ft2

m
#

� �Q,

�co2
150 ft22

0h

0t
� m

#
co2

�co2
volume

 �co2
 dVco2

� �co2
3h110 ft2 15 ft2 4

0
0t

 �co2
volume

 �co2
 dVco2

� m
#

co2

0
0t

 �air
volume

 �air dVair � m
#

air � 0

EXAMPLE 5.3

(a) We use the fixed, nondeforming control volume outlined
with a dashed line in Fig. E5.3b. This control volume includes,
at any instant, the carbon dioxide accumulated in the trench,
some of the carbon dioxide flowing from the street into the
trench, and some air. Application of Eqs. 5.5 and 5.6 to the
contents of the control volume results in

(1)

where are the mass flowrates of carbon dioxide
into and air out of the control volume.

Recall that the mass, dm, of fluid contained in a small vol-
ume Hence, the two integrals in Eq. 1 repre-
sent the total amount of air and carbon dioxide in the control
volume, and the sum of the first two terms is the time rate of
change of mass within the control volume.

Note that the time rates of change of air mass and carbon
dioxide mass are each not zero. Recognizing, however, that
the air mass must be conserved, we know that the time rate of

dV� is dm � �dV�.

m
#

co2
 and m

#
air

  � m
#

co2
� m

#
air � 0

0
0t

 �air
volume

 �air dVair �
0
0t

 �co2
volume

 �co2
 dVco2

F I G U R E  E5.3a
(Photo courtesy of the New York
State Department of Transportation.)

h

5 ft

10 ft

8 ft

Control volume

QCO2

F I G U R E  E5.3b
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5.1 Conservation of Mass—The Continuity Equation 131

The preceding example problems illustrate that when the flow is steady, the time rate
of change of the mass of the contents of the control volume is zero and the net amount of
mass flowrate, , through the control surface is, therefore, also zero

(5.8)

If the steady flow is also incompressible, the net amount of volume flowrate, Q, through
the control surface is also zero

(5.9)

When the flow is unsteady, the instantaneous time rate of change of the mass of the con-
tents of the control volume is not necessarily zero.

For steady flow involving only one stream of a specific fluid flowing through the con-
trol volume at sections (1) and (2),

(5.10)

and for incompressible flow,

(5.11)Q � A1V1 � A2V2

m
#

� �1A1V1 � �2A2V2

a Qout �a Qin � 0

a m
#

out �a m
#

in � 0

m�

COMMENTS As shown in this example, it would not
take long for the air within the confined space of the trench to
be displaced enough to become a danger to the workers. Fur-
thermore, by the time workers feel the effects of an oxygen-
deficient atmosphere, they may be unable to remove them-
selves from the dangerous space.

Note that the answer to part (b) can be easily obtained by
realizing that the accumulated volume, , of a flow is theV�

flowrate, Q, times the time it has been flowing, t. That is,
� Qt. For this example, the volume of the carbon diox-

ide in the trench when it is 6 ft deep (neglecting the vol-
ume of the workers and equipment within the trench) is

Thus, with a flowrate of 
Q � 10 ft3/min, th �6 � 300 ft3/10 ft3/min � 30 min in agree-
ment with the foregoing answer.

V� � 5 ft � 10 ft � 6 ft � 300 ft3.

V�

F l u i d s  i n  t h e  N e w s

New 1.6-gpf standards Toilets account for approximately 40%
of all indoor household water use. To conserve water, the new
standard is 1.6 gallons of water per flush (gpf). Old toilets use
up to 7 gpf; those manufactured after 1980 use 3.5 gpf. Neither
is considered a low-flush toilet. A typical 3.2-person household
in which each person flushes a 7-gpf toilet 4 times a day uses
32,700 gallons of water each year; with a 3.5-gpf toilet the
amount is reduced to 16,400 gallons. Clearly the new 1.6-gpf
toilets will save even more water. However, designing a toilet

that flushes properly with such a small amount of water is not
simple. Today there are two basic types involved: those that are
gravity powered and those that are pressure powered. Gravity
toilets (typical of most currently in use) have rather long cycle
times. The water starts flowing under the action of gravity and
the swirling vortex motion initiates the siphon action that builds
to a point of discharge. In the newer pressure-assisted models,
the flowrate is large but the cycle time is short and the amount
of water used is relatively small. (See Problem 5.18.)

V5.3 Flow through
a contraction

5.1.3 Moving, Nondeforming Control Volume

When a moving control volume is used, the velocity relative to the moving control volume (rel-
ative velocity) is an important flow field variable. The relative velocity, W, is the fluid velocity
seen by an observer moving with the control volume. The control volume velocity, Vcv, is the
velocity of the control volume as seen from a fixed coordinate system. The absolute velocity,
V, is the fluid velocity seen by a stationary observer in a fixed coordinate system. As indicated
by the figure in the margin, these velocities are related to each other by the vector equation

(5.12)V � W � Vcv

V VCV

W
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The control volume expression for conservation of the mass (the continuity equation) for a
moving, nondeforming control volume is the same as that for a stationary control volume,
provided the absolute velocity is replaced by the relative velocity. Thus,

(5.13)

Note that Eq. 5.13 is restricted to control volumes having uniform properties across the
inlets and outlets, with the velocity normal to the inlet and outlet areas.

0
0t

 �
cv

� d V �a �out A outWout �a �inAinWin � 0
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GIVEN Water enters a rotating lawn sprinkler through its
base at the steady rate of 1000 ml/s as sketched in Fig. E5.4.
The exit area of each of the two nozzles is 30 mm2.

FIND Determine the average speed of the water leaving the
nozzle, relative to the nozzle, if 

(a) the rotary sprinkler head is stationary,

(b) the sprinkler head rotates at 600 rpm, and 

(c) the sprinkler head accelerates from 0 to 600 rpm.

SOLUTION 

Conservation of Mass—Relative Velocity

With Q � A1W1, A2 � A3, and W2 � W3 it follows that

or

(Ans)

(b), (c) The value of W2 is independent of the speed of rota-
tion of the sprinkler head and represents the average velocity
of the water exiting from each nozzle with respect to the noz-
zle for cases (a), (b), and (c). 

COMMENT The velocity of water discharging from each
nozzle, when viewed from a stationary reference (i.e., V2), will
vary as the rotation speed of the sprinkler head varies since
from Eq. 5.12,

where U � �R is the speed of the nozzle and � and R
are the angular velocity and radius of the sprinkler head,
respectively.

V2 � W2 � U

 � 16.7 m/s

 W2 �
11000 ml/s2 10.001 m3/liter2 1106 mm2/m22

11000 ml/liter2 122 130 mm22

W2 �
Q

2 A2

EXAMPLE 5.4

(a) We specify a control volume that contains the water in
the rotary sprinkler head at any instant. This control volume is
nondeforming, but it moves (rotates) with the sprinkler head.

The application of Eq. 5.13 to the contents of this control
volume for situation (a), (b), or (c) of the problem results in
the same expression, namely,

0 flow is steady or the
control volume is filled with 
an incompressible fluid

(1)

The time rate of change of the mass of water in the control vol-
ume is zero because the flow is steady and the control volume
is filled with water.

Because there is only one inflow [at the base of the rotating
arm, section (1)] and two outflows [the two nozzles at the tips
of the arm, sections (2) and (3), each with the same area and
fluid velocity], Eq. 1 becomes

(2)

Hence, for incompressible flow with �1 � �2 � �3, Eq. 2
becomes

A2W2 � A3W3 � A1W1 � 0

�2A2W2 � �3A3W3 � �1A1W1 � 0

0
0t

 �
cv

� d V �a �outA outWout �a �inAinWin � 0

F I G U R E  E5.4

Control volume

Section (3)

Sprinkler head
W2

Q

Q = 1000 ml/s

Section (1)

A2 = 30 mm2

Section (2) 

88
88
88
88
88
8n
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5.2 Newton’s Second Law—The Linear Momentum and Moment-of-Momentum Equations 133

5.2 Newton’s Second Law—The Linear Momentum 
and Moment-of-Momentum Equations

5.2.1 Derivation of the Linear Momentum Equation

Newton’s second law of motion for a system is

Because momentum is mass times velocity, the momentum of a small particle of mass

Time rate of change of the
linear momentum of the system

�
sum of external forces
acting on the system

is V� d . Hence, the momentum of the entire system, , is the sum (integral)
of the momentum of each small volume element in the system and Newton’s law becomes

(5.14)

When a control volume is coincident with a system at an instant of time, the forces
acting on the system and the forces acting on the contents of the coincident control volume
(see Fig. 5.2) are instantaneously identical: that is,

(5.15)

Furthermore, for a system and the contents of a coincident control volume that is fixed and
nondeforming, the Reynolds transport theorem [Eq. 4.14 with b set equal to the velocity
(i.e., momentum per unit mass), and Bsys being the system momentum] allows us to con-
clude that

(5.16)

Note that the integral represents the amount of momentum within the control
volume. In words, Eq. 5.16 can be written as

Equation 5.16 states that the time rate of change of system linear momentum is
expressed as the sum of the two control volume quantities: the time rate of change of the
linear momentum of the contents of the control volume and the net rate of linear momen-
tum flow through the control surface. As particles of mass move into or out of a control
volume through the control surface, they carry linear momentum in or out. Thus, linear
momentum flow should seem no more unusual than mass flow.

Time rate of change
of the linear
momentum of the
system

�

time rate of change
of the linear
momentum of the
contents of the
control volume

�

net rate of flow
of linear momentum
through the
control surface

�cvV�  dV

D

Dt
 �

sys

 V� d V �
0
0t �

cv

 V� d V �a V
out

�
out

A
out

V
out

�a V
in

�
in

A
in

V
in

a Fsys �a Fcontents of the
coincident control volume

D

Dt
 �

sys

V� d V �a Fsys

�sysV� dVV� d�V

V5.4 Smokestack
plume momentum

V5.5 Marine
propulsion

FD

FA

FE

FC

FBCoincident
control volume

System
F I G U R E  5.2 External forces acting on system

and coincident control volume.
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By combining Eqs. 5.14, 5.15, and 5.16 we obtain the following mathematical state-
ment of Newton’s second law of motion:

If the flow is steady, the velocity (and, therefore, the momentum) of the fluid occupying a
small volume element within the control volume is constant in time. Hence, the total
amount of momentum within the control volume, , is also constant in time and the
time derivative term in the aforementioned equation is zero. The momentum problems con-
sidered in this text all involve steady flow. Thus, for steady flow

(5.17)

Equation 5.17 is the linear momentum equation. The form presented here is restricted to steady
flows through fixed, nondeforming control volumes having uniform properties across the inlets
and outlets, with the velocity normal to the inlet and outlet areas. A more general form of the
linear momentum equation, valid for more general flow conditions, is given in Appendix D.

The forces involved in Eq. 5.17 are body and surface forces that act on what is con-
tained in the control volume, as shown by the figure in the margin. The only body force
we consider in this chapter is the one associated with the action of gravity. We experience
this body force as weight. The surface forces are basically exerted on the contents of the
control volume by material just outside the control volume in contact with material just
inside the control volume. For example, a wall in contact with fluid can exert a reaction
surface force on the fluid it bounds. Similarly, fluid just outside the control volume can
push on fluid just inside the control volume at a common interface, usually an opening in
the control surface through which fluid flow occurs.

5.2.2 Application of the Linear Momentum Equation

The linear momentum equation for the inertial control volume is a vector equation (Eq. 5.17).
In engineering applications, components of this vector equation resolved along orthogonal
coordinates, for example, x, y, and z (rectangular coordinate system) or r, �, and x (cylindri-
cal coordinate system), will normally be used. A simple example involving one-dimensional,
steady, incompressible flow is considered first.

a Vout�outAoutVout �a Vin�inAinVin �a Fcontents of the
control volume

�cvV� dV
dV

0
0t

 �
cv

 V� d V �a Vout�outAoutVout �a Vin�inAinVin �a Fcontents of the
control volume
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Flow out

Flow in

Control volume

Ffluid in

Ffluid out

Fwall

�

V5.6 Force due to a
water jet

GIVEN As shown in Fig. E5.5a, a horizontal jet of water
exits a nozzle with a uniform speed of V1 � 10 ft/s, strikes a
vane, and is turned through an angle �.

FIND Determine the anchoring force needed to hold the
vane stationary if gravity and viscous effects are negligible.

SOLUTION 

Linear Momentum—Change in Flow Direction

and

(2)

where V � u î � w k̂, and �Fx and �Fz are the net x and z com-
ponents of force acting on the contents of the control volume. De-
pending on the particular flow situation being considered and the
coordinate system chosen, the x and z components of velocity, u

w2 �A2V2 � w1�A1V1 � gFz

EXAMPLE 5.5

We select a control volume that includes the vane and a por-
tion of the water (see Figs. E5.5b and E5.5c) and apply the lin-
ear momentum equation to this fixed control volume. The only
portions of the control surface across which fluid flows are
section (1) (the entrance) and section (2) (the exit). Hence, the
x and z components of Eq. 5.17 become

(1)u2 �A2V2 � u1�A1V1 �gFx
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5.2 Newton’s Second Law—The Linear Momentum and Moment-of-Momentum Equations 135

and w, can be positive, negative, or zero. In this example the flow
is in the positive direction at both the inlet and the outlet.

The water enters and leaves the control volume as a free jet at
atmospheric pressure. Hence, there is atmospheric pressure sur-
rounding the entire control volume, and the net pressure force on
the control volume surface is zero. If we neglect the weight of
the water and vane, the only forces applied to the control vol-
ume contents are the horizontal and vertical components of the
anchoring force, FAx and FAz, respectively.

With negligible gravity and viscous effects, and since p1 � p2,
the speed of the fluid remains constant so that V1 � V2 �
10 ft/s (see the Bernoulli equation, Eq. 3.6). Hence, at section (1),
u1 � V1, w1 � 0, and at section (2), u2 � V1 cos �, w2 � V1 sin �.

By using this information, Eqs. 1 and 2 can be written as

(3)

and

(4)

Equations 3 and 4 can be simplified by using conservation of
mass, which states that for this incompressible flow A1V1 �
A2V2, or A1 � A2 since V1 � V2. Thus,

(5) FAx � ��A1V
2
1 � � A1V

2
1 cos � � ��A1V

2
1  11 � cos �2

V1sin � � A2V1 � 0 � A1V1 � FAz

V1cos � � A2V1 � V1 � A1V1 � FAx

and

(6)

With the given data we obtain

(Ans)

and

(Ans)

COMMENTS The values of FAx and FAz as a function of �
are shown in Fig. E5.5d. Note that if � � 0 (i.e., the vane does
not turn the water), the anchoring force is zero. The inviscid
fluid merely slides along the vane without putting any force on
it. If � � 90°, then FAx � �11.64 lb and FAz � 11.64 lb. It is
necessary to push on the vane (and, hence, for the vane to push
on the water) to the left (FAx is negative) and up in order to
change the direction of flow of the water from horizontal to
vertical. A momentum change requires a force. If � � 180°,
the water jet is turned back on itself. This requires no verti-
cal force (FAz � 0), but the horizontal force (FAx � �23.3 lb)
is two times that required if � � 90°. This force must elimi-
nate the incoming fluid momentum and create the outgoing
momentum.

Note that the anchoring force (Eqs. 5 and 6) can be written
in terms of the mass flowrate, as

and

In this example the anchoring force is needed to produce the
nonzero net momentum flowrate (mass flowrate times the change
in x or z component of velocity) across the control surface.

FAz � m
#
V1 sin �

FAx � �m
#
V111 � cos �2

m
#

� �A1V1,

 � 11.64 sin � lb

 FAz � 11.94 slugs/ft32 10.06 ft22 110 ft/s22 sin �

 � �11.6411 � cos �2 lb

 � �11.6411 � cos �2 slugs�ft/s2

 FAx � �11.94 slugs/ft32 10.06 ft22 110 ft/s2211 � cos �2

 FAz � �A1V2
1 sin �

Nozzle

A1 = 0.06 ft2 Vane

V1

(a)

θ

Nozzle
V1

(b)

Control
volume

(c)

z

x

(2)

FAx
FAz

V1

V2
θ

(1)

F I G U R E  E5.5d

–25

–20

–15

–10

–5

0

5

10

15

F A
x 
or

 F
A

z,  lb 30 60 90 120 150 180 

θ   , deg

FAx 

FAz 

0

F I G U R E  E5.5

c05FiniteControlVolumeAnalysis.qxd  9/24/10  1:22 PM  Page 135



136 Chapter 5 ■ Finite Control Volume Analysis

F l u i d s  i n  t h e  N e w s

Where the plume goes Commercial airliners have wheel
brakes very similar to those on highway vehicles. In fact, an-
tilock brakes now found on most new cars were first devel-
oped for use on airplanes. However, when landing, the major
braking force comes from the engine rather than the wheel
brakes. Upon touchdown, a piece of engine cowling translates
aft and blocker doors drop down, directing the engine airflow
into a honeycomb structure called a cascade. The cascade re-
verses the direction of the high-speed engine exhausts by
nearly 180° so that it flows forward. As predicted by the 

momentum equation, the air passing through the engine pro-
duces a substantial braking force—the reverse thrust. Designers
must know the flow pattern of the exhaust plumes to eliminate
potential problems. For example, the plumes of hot exhaust
must be kept away from parts of the aircraft where repeated
heating and cooling could cause premature fatigue. Also the
plumes must not reenter the engine inlet, blow debris from the
runway in front of the engine, or envelop the vertical tail. (See
Problem 5.29.)

GIVEN As shown in Fig. E5.6a, water flows through a noz-
zle attached to the end of a laboratory sink faucet with a
flowrate of 0.6 liters/s. The nozzle inlet and exit diameters are
16 mm and 5 mm, respectively, and the nozzle axis is vertical.
The mass of the nozzle is 0.1 kg, and the mass of the water in
the nozzle is 3 �10�3 kg. The pressure at section (1) is 464 kPa.

FIND Determine the anchoring force required to hold the
nozzle in place.

SOLUTION

Linear Momentum—Weight, Pressure, 
and Change in Speed

EXAMPLE 5.6

The anchoring force sought is the reaction between the faucet
and nozzle threads. This force can be obtained by application
of the linear momentum equation, Eq. 5.17, to an appropriate
control volume.

(1)

We select a control volume that includes the entire nozzle and the
water contained in the nozzle at an instant, as is indicated in Figs.
E5.6a and E5.6b. All of the vertical forces acting on the contents
of this control volume are identified in Fig. E5.6b. The action of
atmospheric pressure cancels out in every direction and is not
shown. Gage pressure forces do not cancel out in the vertical di-
rection and are shown. Application of the vertical or z direction
component of Eq. 1 to the contents of this control volume leads to

(2)

where w is the z direction component of fluid velocity, and the
various parameters are identified in the figure.

� FA �wn � p1A1 �ww � p2 A2

w2 
�A2V2 � w1�A1V1

�a Fcontents of the
control volume

a Vout �outAoutVout �a Vin 
�inAinVin

g
V1

D1 = 16 mm

x

z

Control volume

Section (1)

Section (2)

D2 = 5 mm

V2

F I G U R E  E5.6a
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Note that the positive direction is considered “up” for the
forces. We will use this same sign convention for the fluid ve-
locity, w, in Eq. 2. Hence, because the flow is “down” at sec-
tion (1), it follows that w1 � �V1. Similarly, at section (2),
w2 � �V2 so that Eq. 2 can be written as

(3)

where is the mass flowrate.
Solving Eq. 3 for the anchoring force, FA, we obtain

(4)

From the conservation of mass equation, Eq. 5.10, we obtain

(5)

which when combined with Eq. 4 gives

(6)

It is instructive to note how the anchoring force is affected
by the different actions involved. As expected, the nozzle
weight,wn, the water weight,ww, and gage pressure force at

FA � m
#
1V1 � V22 �wn � p1A1 �ww � p2A2

m
#

1 � m
#

2 � m
#

FA � m
#

1V1 � m
#

2V2 �wn � p1A1 �ww � p2 A2

m
#

� �AV

� FA �wn � p1A1 �ww � p2 A2

1�V22m
#

2 � 1�V12m
#

1

section (1), p1A1, all increase the anchoring force, while the
gage pressure force at section (2), p2A2, acts to decrease the an-
choring force. The change in the vertical momentum flowrate,

(V1 � V2), will, in this instance, decrease the anchoring force
because this change is negative (V2 � V1).

To complete this example we use quantities given in the
problem statement to quantify the terms on the right-hand side
of Eq. 6. From Eq. 5.6,

(7)

and

(8)

Also from Eq. 5.6,

(9)

The weight of the nozzle,wn, can be obtained from the nozzle
mass, mn, with

(10)

Similarly, the weight of the water in the control volume,ww,
can be obtained from the mass of the water, mw, as

(11)

The gage pressure at section (2), p2, is zero since, as discussed
in Section 3.6.1, when a subsonic flow discharges to the at-
mosphere as in the present situation, the discharge pressure is
essentially atmospheric. The anchoring force, FA, can now be
determined from Eqs. 6 through 11 with

or

(Ans)

Because the anchoring force, FA, is positive, it acts upward in
the z direction. The nozzle would be pushed off the pipe if it
were not fastened securely.

 � 0.0294 N � 77.8 N

FA � �16.5 N � 0.981 N � 93.3 N

 � 0.0294 N � 0

 � 1464 kPa2 11000 Pa/kPa2 
�116 mm22

4110002 mm2/m22

 FA � 10.599 kg/s2 12.98 m/s � 30.6 m/s2 � 0.981 N

 � 2.94 � 10�2 N

ww � mwg � 3 � 10�3kg 19.81 m/s22

wn � mng � 10.1 kg2 19.81 m/s22 � 0.981 N

 �
10.6 liter/s2 110�3 m3/liter2

�15 mm22/4110002 mm2/m22
� 30.6 m/s

V2 �
Q

A2
�

Q

�1D 2
2/42

 �
10.6 liter/s2 110�3 m3/liter2

�116 mm22/4110002 mm2/m22
� 2.98 m/s

 V1 �
Q

A1
�

Q

�1D 2
1/42

 � 0.599 kg/s

 � 1999 kg/m32 10.6 liter/s2 110�3 m3/liter2

 m
#

� �V1A1 � �Q

m
#

F I G U R E  E5.6b

FA

�n

p1A1

V1

�w

p2A2

V2

z

Control volume

FA

�n

�w

p1
A1

p2
A2

V1

V2

= anchoring force that holds
        nozzle in place
= weight of nozzle
= weight of water contained in
         the nozzle
= gage pressure at section (1)
= cross section area at
        section (1)
= gage pressure at section(2)
= cross section area at
       section (2)
= velocity at control volume
        entrance
= velocity at control volume
        exit

c05FiniteControlVolumeAnalysis.qxd  9/24/10  1:22 PM  Page 137



Several important generalities about the application of the linear momentum equation
(Eq. 5.17) are apparent in the example just considered.

1. Linear momentum is directional; it can have components in as many as three
orthogonal coordinate directions. Furthermore, along any one coordinate, the lin-
ear momentum of a fluid particle can be in the positive or negative direction and
thus be considered as a positive or a negative quantity. In Example 5.6, only the
linear momentum in the z direction was considered (all of it was in the negative z
direction).

2. The time rate of change of the linear momentum of the contents of a nondeforming
control volume is zero for steady flow. The time rate of change of the linear momen-
tum of a system, however, is generally not zero, even for steady flow. This is due to
the fact that the momentum of fluid particles making up the system may change as they
flow through the control volume. That is, the particles may speed up, slow down, or
change their direction of motion, even though the flow is steady (i.e., nothing changes

138 Chapter 5 ■ Finite Control Volume Analysis

COMMENT The control volume selected earlier to solve
problems such as this is not unique. The following is an alter-
nate solution that involves two other control volumes—one
containing only the nozzle and the other containing only the
water in the nozzle. These control volumes are shown in
Figs. E5.6c and E5.6d along with the vertical forces acting
on the contents of each control volume. The new force in-
volved, Rz, represents the interaction between the water and
the conical inside surface of the nozzle. It includes the net
pressure and viscous forces at this interface.

Application of Eq. 5.17 to the contents of the control vol-
ume of Fig. E5.6c leads to

(12)

The term patm(A1 � A2) is the resultant force from the at-
mospheric pressure acting on the exterior surface of the nozzle
(i.e., that portion of the surface of the nozzle that is not in
contact with the water). Recall that the pressure force on a
curved surface (such as the exterior surface of the nozzle) is
equal to the pressure times the projection of the surface area
on a plane perpendicular to the axis of the nozzle. The projec-
tion of this area on a plane perpendicular to the z direction is
A1 � A2. The effect of the atmospheric pressure on the internal
area (between the nozzle and the water) is already included in
Rz, which represents the net force on this area.

Similarly, for the control volume of Fig. E5.6d we obtain

(13)

where p1 and p2 are gage pressures. From Eq. 13 it is clear
that the value of Rz depends on the value of the atmo-
spheric pressure, patm, since A1 � A2. That is, we must use
absolute pressure, not gage pressure, to obtain the correct
value of Rz.

 � 1p1 � patm2A1 � 1p2 � patm2A2

Rz � m
#
1V1 � V22 �ww

FA �wn � Rz � patm1A1 � A22

By combining Eqs. 12 and 13 we obtain the same result as
before (Eq. 6) for FA:

Note that although the force between the fluid and the nozzle
wall, Rz, is a function of patm, the anchoring force, FA, is not.
That is, we were correct in using gage pressure when solving
for FA by means of the original control volume shown in
Fig. E5.6b.

FA � m
#
1V1 � V22 �wn � p1A1 �ww � p2A2

FA

�n

Rz

patm

(c)

(p1 + patm)A1

�w

V1

V2

Rz

(p2 + patm)A2

(2)

(d)

F I G U R E  E5.6c and d
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5.2 Newton’s Second Law—The Linear Momentum and Moment-of-Momentum Equations 139

with time at any given location). The momentum problems considered in this text all
involve steady flow.

3. If the control surface is selected so that it is perpendicular to the flow where fluid
enters or leaves the control volume, the surface force exerted at these locations by
fluid outside the control volume on fluid inside will be due to pressure. Furthermore,
when subsonic flow exits from a control volume into the atmosphere, atmospheric
pressure prevails at the exit cross section. In Example 5.6, the flow was subsonic and
so we set the exit flow pressure at the atmospheric level. The continuity equation
(Eq. 5.10) allowed us to evaluate the fluid flow velocities V1 and V2 at sections (1)
and (2).

4. Forces due to atmospheric pressure acting on the control surface may need consid-
eration as indicated by Eq. 13 for the reaction force between the nozzle and the
fluid. When calculating the anchoring force, FA, forces due to atmospheric pressure
on the control surface cancel each other (for example, after combining Eqs. 12 and
13 the atmospheric pressure forces are no longer involved) and gage pressures may
be used.

5. The external forces have an algebraic sign, positive if the force is in the assigned pos-
itive coordinate direction and negative otherwise.

6. Only external forces acting on the contents of the control volume are considered in
the linear momentum equation (Eq. 5.17). If the fluid alone is included in a control
volume, reaction forces between the fluid and the surface or surfaces in contact with
the fluid [wetted surface(s)] will need to be in Eq. 5.17. If the fluid and the wetted
surface or surfaces are within the control volume, the reaction forces between fluid
and wetted surface(s) do not appear in the linear momentum equation (Eq. 5.17)
because they are internal, not external, forces. The anchoring force that holds the
wetted surface(s) in place is an external force, however, and must therefore be in
Eq. 5.17.

7. The force required to anchor an object will generally exist in response to surface
pressure and/or shear forces acting on the control surface, to a change in linear
momentum flow through the control volume containing the object, and to the weight
of the object and the fluid contained in the control volume. In Example 5.6 the noz-
zle anchoring force was required mainly because of pressure forces and partly
because of a change in linear momentum flow associated with accelerating the fluid
in the nozzle. The weight of the water and the nozzle contained in the control vol-
ume influenced the size of the anchoring force only slightly.

V5.8 Fire hose

V5.7 Running on
water

F l u i d s  i n  t h e  N e w s

Motorized surfboard When Bob Montgomery, a former pro-
fessional surfer, started to design his motorized surfboard
(called a jet board), he discovered that there were many engi-
neering challenges to the design. The idea is to provide surfing
to anyone, no matter where they live, near or far from the
ocean. The rider stands on the device like a surfboard and
steers it like a surfboard by shifting his or her body weight. A
new, sleek, compact 45-horsepower engine and pump was

designed to fit within the surfboard hull. Thrust is produced in
response to the change in linear momentum of the water
stream as it enters through the inlet passage and exits through
an appropriately designed nozzle. Some of the fluid dynamic
problems associated with designing the craft included one-
way valves so that water does not get into the engine (at both
the intake or exhaust ports), buoyancy, hydrodynamic lift,
drag, thrust, and hull stability. (See Problem 5.33.) 
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GIVEN Water flows through a horizontal, 180	 pipe bend as
illustrated in Fig. E5.7a. The flow cross-sectional area is con-
stant at a value of 0.1 ft2 through the bend. The flow velocity
everywhere in the bend is axial and 50 ft/s. The absolute pres-
sures at the entrance and exit of the bend are 30 and 24 psia,
respectively. 

FIND Calculate the horizontal (x and y) components of the
anchoring force required to hold the bend in place.

SOLUTION

Linear Momentum—Pressure and Change 
in Flow Direction

EXAMPLE 5.7

Since we want to evaluate components of the anchoring
force to hold the pipe bend in place, an appropriate control
volume (see dashed line in Fig. E5.7a) contains the bend
and the water in the bend at an instant. The horizontal forces
acting on the contents of this control volume are identified
in Fig. E5.7b. Note that the weight of the water is vertical
(in the negative z direction) and does not contribute to the x
and y components of the anchoring force. All of the horizon-
tal normal and tangential forces exerted on the fluid and the
pipe bend are resolved and combined into the two resultant
components, FAx and FAy. These two forces act on the con-
trol volume contents, and thus for the x direction, Eq. 5.17
leads to

(1)

where

At sections (1) and (2), the flow is in the y direction and therefore
u � 0 at both cross sections. There is no x direction momentum
flow into or out of the control volume, and we conclude from
Eq. 1 that 

FAx � 0 (Ans)

For the y direction, we get from Eq. 5.17

(2)

The y components of velocity, v1 and v2, at the inlet and out-
let sections of the control volume are v1 � V1 � V and
v2 � �V2 � �V, respectively, where V � V1 � V2 � 50 ft/s.
Hence, Eq. 2 becomes

(3)

Note that the y component of velocity is positive at section
(1) but is negative at section (2). From the continuity equa-
tion (Eq. 5.10), we get

(4)m
#

� �A2V2 � �A1V1

�V2 
�A2V2 � V1�A1V1 � FAy � p1A1 �  p2A2

v2 
�A2V2 � v1�A1V1 � FAy � p1A1 �  p2A2

VV � u î � v ĵ � wk̂

u2 
�A2V2 � u1�A1V1 � FAx

F I G U R E  E5.7

z

y
x

V = 50 ft/s

Section (1) A = 0.1 ft2

V = 
50 ft/s

Section (2)

Control
volume

180° pipe bend

(a)

x
u v y

w

z

p1A1

V1

V2

p2A2

FAz

FAy

�

FAx
Control volume

Pipe bend
and water

(b)

and thus Eq. 3 can be written as

(5)

Solving Eq. 5 for FAy we obtain

(6)

From the given data we can calculate , the mass flowrate,
from Eq. 4 as

For determining the anchoring force, FAy, the effects of at-
mospheric pressure cancel and thus gage pressures for p1

and p2 are appropriate. By substituting numerical values of
variables into Eq. 6 and using the fact that 1 lb � 1 slug 
 ft/s2,
we get

(Ans) FAy � �970 lb � 220 lb � 134 lb � �1324 lb

 �124 psia � 14.7 psia2 1144 in.2/ft22 10.1 ft22

 �130 psia � 14.7 psia2 1144 in.2/ft22 10.1 ft22

 FAy � �19.70 slugs/s2 150 ft/s � 50 ft/s2

 � 9.70 slugs/s

 m
#

� �1A1V1 � 11.94 slugs/ft32 10.1 ft22 150 ft/s2

m
#

FAy � �m
#
1V1 � V22 � p1A1 � p2A2

�m
#
1V1 � V22 � FAy � p1A1 � p2A2
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5.2 Newton’s Second Law—The Linear Momentum and Moment-of-Momentum Equations 141

The negative sign for FAy is interpreted as meaning that the y
component of the anchoring force is actually in the negative y
direction, not the positive y direction as originally indicated in
Fig. E5.7b.

COMMENT As with Example 5.6, the anchoring force
for the pipe bend is independent of the atmospheric pressure.
However, the force that the bend puts on the fluid inside of it,
Ry, depends on the atmospheric pressure. We can see this by
using a control volume that surrounds only the fluid within the
bend as shown in Fig. E5.7c. Application of the momentum
equation to this situation gives

where p1 and p2 must be in terms of absolute pressure because
the force between the fluid and the pipe wall, Ry, is the com-
plete pressure effect (i.e., absolute pressure).

Thus, we obtain

(7)

We can use the control volume that includes just the pipe
bend (without the fluid inside it) as shown in Fig. E5.7d to
determine FAy, the anchoring force component in the y direc-
tion necessary to hold the bend stationary. The y component
of the momentum equation applied to this control volume
gives

(8)

where Ry is given by Eq. 7. The patm (A1 � A2) term represents
the net pressure force on the outside portion of the control vol-
ume. Recall that the pressure force on the inside of the bend is

FAy � Ry � patm 1A1 � A22

 � �1748 lb

 �124 psia2 1144 in.2/ft22 10.1 ft22

 �130 psia2 1144 in.2/ft22 10.1 ft22

 Ry � �19.70 slugs/s2 150 ft/s � 50 ft/s2

Ry � �m
#
1V1 � V22 � p1A1 � p2A2

accounted for by Ry. By combining Eqs. 7 and 8 and using the
fact that we
obtain

in agreement with the original answer obtained using the
control volume of Fig. E5.7b.

 � �1324 lb

 FAy � �1748 lb � 2117 lb/ft210.1 ft2 � 0.1 ft22

patm � 14.7 lb/in.2 1144 in.2/ft22 � 2117 lb/ft2, 

F I G U R E  E5.7

Control volume

Water in 180° bend

p2A2

p1A1

V2

V1

(c)

Pipe bend only

(d)

Ry patm(A1 + A2)

Rz

Ry

Rx

�

Control volume

FAy

x
u v y

w

z

F l u i d s  i n  t h e  N e w s

Bow thrusters In the past, large ships required the use of
tugboats for precise maneuvering, especially when docking.
Nowadays, most large ships (and many moderate to small
ones as well) are equipped with bow thrusters to help steer in
close quarters. The units consist of a mechanism (usually a
ducted propeller mounted at right angles to the fore/aft axis of
the ship) that takes water from one side of the bow and ejects
it as a water jet on the other side. The momentum flux of this
jet produces a starboard or port force on the ship for maneu-

vering. Sometimes a second unit is installed in the stern. Ini-
tially used in the bows of ferries, these versatile control de-
vices have became popular in offshore oil servicing boats,
fishing vessels, and larger oceangoing craft. They permit
unassisted maneuvering alongside of oil rigs, vessels, loading
platforms, fishing nets, and docks. They also provide precise
control at slow speeds through locks, narrow channels, and
bridges, where the rudder becomes very ineffective. (See
Problem 5.42.)

From Examples 5.5, 5.6, and 5.7, we see that changes in flow speed and/or direction
result in a reaction force. Other types of problems that can be solved with the linear momen-
tum equation (Eq. 5.17) are illustrated in the following examples.
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GIVEN Assume that the flow of Example 5.2 is vertically
upward as shown by Fig. E5.8.

FIND Develop an expression for the fluid pressure drop
that occurs between section (1) and section (2).

SOLUTION

Linear Momentum—Weight, Pressure, Friction, and
Nonuniform Velocity Profile

EXAMPLE 5.8

A control volume (see dashed lines in Fig. E5.2) that in-
cludes only fluid from section (1) to section (2) is selected.
Forces acting on the fluid in this control volume are identi-
fied in Fig. E5.8. The application of the axial component of
Eq. 5.17 to the fluid in this control volume results in

(1)

where Rz is the resultant force of the wetted pipe wall on the
fluid,w is the weight of the fluid in the pipe between sections
(1) and (2), p1 and p2 are the pressures at the inlet and outlet,
respectively, and w is the vertical (axial) component of veloc-
ity. Because the velocity is uniform across section (1), it fol-
lows that the momentum flux across the inlet is simply

(2)

At the outlet, section (2), the velocity is not uniform. However,
the net momentum flux across this section, �wout�AoutVout, is
the sum of the momentum fluxes through numerous small
washer-shaped areas of size dA2 � 2�r dr. On each of these
infinitestimal areas the fluid velocity is denoted as w2. Thus, in
the limit of infinitesimal area elements, the summation is re-
placed by an integration, and by using the parabolic velocity
profile from Example 5.2, w2 � 2w1[1 � (r/R)2], the momen-
tum outflow through section (2) is given by

or

(3)

Combining Eqs. 1, 2, and 3, we obtain

(4)

Solving Eq. 4 for the pressure drop from section (1) to section
(2), p1 � p2, we obtain

(Ans)p1 � p2 �
�w 2

1

3
�

Rz

A1
�
w

A1

4
3 w 2

1��R 2 � w 2
1��R 2 � p1A1 � Rz �w � p2A2

a wout�AoutVout � 4 ��w 2
1 

R2

3

�  2���
R

0

12w12
2 c1 � a

r

R
b

2

d
2

 r dr

a wout�AoutVout � �
A2

w2�w2 dA2 � ��
R

0

w2
2 2 � r dr

a win�AinVin � w1�A1w1 � w1m
.

1

� p1 A1 � Rz �w � p2 A2

a wout�AoutVout �a win�AinVin

COMMENT We see that the drop in pressure from sec-
tion (1) to section (2) occurs because of the following:

1. The change in momentum flow between the two sections
associated with going from a uniform velocity profile to
a parabolic velocity profile. As shown in Eq. 1, the
momentum flux at section (1) is . From Eq. 3, the
momentum flux at section (2) can be written as

. Thus, even though the mass
flowrates are equal at section (1) and section (2), the
momentum flowrates at these two sections are not equal.
The momentum flux associated with a nonuniform
velocity profile is always greater than that for a uniform
velocity profile carrying the same mass flowrate.

2. Pipe wall friction Rz.

3. The weight of the water column; a hydrostatic pressure
effect.

If the velocity profiles had been identically parabolic at sec-
tions (1) and (2), the momentum flowrate at each section would
have been identical, a condition we call “fully developed” flow.
Then the pressure drop, p1 � p2, would be due only to pipe
wall friction and the weight of the water column. If in addition
to being fully developed the flow involved negligible weight
effects (for example, horizontal flow of liquids or the flow of
gases in any direction), the drop in pressure between any two
sections, p1 � p2, would be a result of pipe wall friction only.

4��w2
1 R2/3 � 14/32w1m

#
1

w1m
#

1

F I G U R E  E5.8

Flow

p2A2

�

Rz

R
r

Fluid only

Control volume

Section (1)

Section (2)w2 = 2w1 1 – ( )[ ]r–
R

2

p1A1

w1

x

u v y

w

z
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5.2 Newton’s Second Law—The Linear Momentum and Moment-of-Momentum Equations 143

It should be clear from the preceding examples that fluid flows can lead to a reaction
force in the following ways:

1. Linear momentum flow variation in direction and/or magnitude.

2. Fluid pressure forces.

3. Fluid friction forces.

4. Fluid weight.

GIVEN A sluice gate across a channel of width b is shown
in the closed and open positions in Figs. E5.9a and E5.9b.

FIND Is the anchoring force required to hold the gate in
place larger when the gate is closed or when it is open?

SOLUTION

Linear Momentum—Nonuniform Pressure

Equations 3 and 4 can be combined to form

(5)

Solving Eq. 5 for the reaction force, Rx, we obtain

(6)

By using the continuity equation, Eq. 6
can be rewritten as

(7)

Hence, since , by comparing the expressions for Rx

(Eqs. 2 and 7) we conclude that the reaction force between the
gate and the water (and therefore the anchoring force required
to hold the gate in place) is smaller when the gate is open than
when it is closed. (Ans)

u2 7 u1

Rx � 1
2 
�H2b � 1

2 
�h2b � Ff � m

#
1u2 � u12

m
#

� �bHu1 � �bhu2,

Rx � 1
2�H2b � 1

2�h2b � Ff � �u2
2hb � �u2

1Hb

�u2
2hb � �u2

1Hb � 1
2�H2b � Rx � 1

2�h2b � Ff

EXAMPLE 5.9

We will answer this question by comparing expressions for
the horizontal reaction force, Rx, between the gate and the
water when the gate is closed and when the gate is open. The
control volume used in each case is indicated with dashed
lines in Figs. E5.9a and E5.9b.

When the gate is closed, the horizontal forces acting on the
contents of the control volume are identified in Fig. E5.9c. Ap-
plication of Eq. 5.17 to the contents of this control volume yields

0 0 (no flow)

(1)

Note that the hydrostatic pressure force, �H2b/2, is used. From
Eq. 1, the force exerted on the water by the gate (which is
equal to the force necessary to hold the gate stationary) is

(2)

which is equal in magnitude to the hydrostatic force exerted
on the gate by the water.

When the gate is open, the horizontal forces acting on the
contents of the control volume are shown in Fig. E5.9d. Appli-
cation of Eq. 5.17 to the contents of this control volume leads to

(3)

Note that we have assumed that the pressure distribution is hy-
drostatic in the water at sections (1) and (2). (See Section 3.4.)
Also the frictional force between the channel bottom and the
water is specified as Ff. With the assumption of uniform veloc-
ity distributions

(4)a uout�AoutVout �a uin�AinVin � u2 
�hbu2 � u1�Hbu1

� 1
2 �H 2b � Rx � 1

2 �h2b � Ff

a uout�AoutVout �a uin�AinVin

Rx � 1
2 �H2b

a uout�AoutVout �a uin�AinVin � 1
2 �H 2b � Rx

H

Control volume

Closed sluice
gate

H

Control volume

Open sluice
gate

h
x

z

u

(a) (b)

Control volume

Water only

Control volume

Water only

u1

Rx

u2

( )1_
2

γ H Hb( )1_
2

γ H Hb

( )1_
2

γ h hbFf
Section

(1)

Section (2)

(c) (d)

Rx

F I G U R E  E5.9
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The selection of a control volume is an important matter. An appropriate control volume
can make a problem solution straightforward.

5.2.3 Derivation of the Moment-of-Momentum Equation

In many engineering problems, the moment of a force with respect to an axis, namely
torque, is important. Newton’s second law of motion has already led to a useful relation-
ship between forces and linear momentum flow (see Eq. 5.17). The linear momentum equa-
tion can also be used to solve problems involving torques. However, by forming the
moment of the linear momentum and the moment of the resultant force associated with
each particle of fluid with respect to a point in an inertial coordinate system, we obtain a
moment-of-momentum equation that relates torques and angular momentum flow for the
contents of a control volume.

We define r as the position vector from the origin of the inertial coordinate system
to the fluid particle (Fig. 5.3) and form the moment of each side of Eq. 5.14 with respect
to the origin of an inertial coordinate system. The result is

(5.18)

or

The sketch in the margin illustrates what torque, T � r � F, is.
For a control volume that is instantaneously coincident with the system, the torques

acting on the system and on the control volume contents will be identical:

(5.19)

Recall from Section 5.2.1 that and represent the momentum of
the system and the momentum of the contents of the control volume, respectively. Simi-
larly, the terms represent the moment-of-momentum
of the system and the moment-of-momentum of the contents of the control volume, respec-
tively. Hence, we can use the Reynolds transport theorem (Eq. 4.14) with B set equal to the
moment-of-momentum and b equal to (r � V), the moment-of-momentum per unit mass,
to obtain

(5.20)�a 1r � V2in�inAinVin

D

Dt �
sys

1r � V2� dV �
0
0t

 �
cv

1r � V2� dV �a 1r � V2out �outAoutVout

�sys1r � V2� dV  and �cv1r � V2� dV

�cvV� dV�sysV� dV

a 1r � F2sys �a 1r � F2cv

Time rate of change of the
moment-of-momentum of the system �

sum of the external torques
acting on the system

D

Dt
 �

sys

 1r � V2� d V �a 1r � F2sys
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V5.9 Jellyfish

r

y

x

z

V

F I G U R E  5.3 Inertial coordinate system.

T
T = r × F

Fr
y

x

z
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5.2 Newton’s Second Law—The Linear Momentum and Moment-of-Momentum Equations 145

In words, Eq. 5.20 can be written as

By combining Eqs. 5.18, 5.19, and 5.20 we obtain the following mathematical state-
ment of the moment-of-momentum equation for a fixed control volume.

If the flow is steady, the time derivative term in the aforementioned equation is zero.
Moment-of-momentum problems considered in this text all involve steady flow. Thus, for
steady flow

(5.21)

Equation 5.21 is the moment-of-momentum equation. The form presented here is restricted
to steady flows through fixed, nondeforming control volumes having uniform properties
across the inlets and outlets, with the velocity normal to the inlet and outlet areas. A more
general form of the moment-of-momentum equation, valid for more general flow condi-
tions, is given in Appendix D.

Equation 5.21 is a vector equation, which can be written in terms of its components
in the radial, r, tangential, �, and axial, z, directions. For applications involved in this text,
we will need to consider only the axial component of this equation.

5.2.4 Application of the Moment-of-Momentum Equation

Consider the rotating sprinkler sketched in Fig. 5.4. Because the direction and magnitude
of the flow through the sprinkler from the inlet [section (1)] to the outlet [section (2)] of
the arm change, the water exerts a torque on the sprinkler head, causing it to tend to rotate
or to actually rotate in the direction shown, much like a turbine rotor. In applying the
moment-of-momentum equation (Eq. 5.21) to this flow situation, we elect to use the fixed
and nondeforming control volume shown in Fig. 5.4. The disk-shaped control volume con-
tains within its boundaries the spinning or stationary sprinkler head and the portion of the
water flowing through the sprinkler contained in the control volume at an instant. The con-
trol surface cuts through the sprinkler head’s solid material so that the shaft torque that
resists motion can be clearly identified. When the sprinkler is rotating, the flow field in
the stationary control volume is cyclical and unsteady but steady in the mean. We proceed
to use the axial component of the moment-of-momentum equation (Eq. 5.21) to analyze
this flow.

Water enters the control volume axially through the hollow stem of the sprinkler at
section (1). At this portion of the control surface, the component of r � V resolved along
the axis of rotation is zero because, as indicated in the figure in the margin, r � V and the
axis of rotation (the z axis) are perpendicular. Thus, there is no axial moment-of-momentum
flow in at section (1). Water leaves the control volume through each of the two nozzle open-
ings at section (2). For the exiting flow, the magnitude of the axial component of r � V is

a 1r � V2out�outAoutVout �a 1r � V2in�inAinVin �a 1r � F2contents of the
control volume

�a 1r � V2in�inAinVin �a 1r � F2contents of the
control volume

0
0t

 �
cv

1r � V2� dV �a 1r � V2out �outAoutVout

Time rate of change
of the moment-of-
momentum of the
system

�

time rate of change
of the moment-of-
momentum of the
contents of the
control volume

�

net rate of flow
of the moment-of-
momentum through
the control
surface

V5.10 Rotating
lawn sprinkler

z

r

r × V

V
(1)
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r2V�2, where r2 is the radius from the axis of rotation to the nozzle centerline and V�2 is the
value of the tangential component of the velocity of the flow exiting each nozzle as observed
from a frame of reference attached to the fixed and nondeforming control volume. The fluid
velocity measured relative to a fixed control surface is an absolute velocity, V. The veloc-
ity of the nozzle exit flow as viewed from the nozzle is called the relative velocity, W. As
indicated by the figure in the margin, the absolute and relative velocities, V and W, are
related by the vector relationship

(5.22)

where U is the velocity of the moving nozzle as measured relative to the fixed control
surface.

The algebraic sign to assign the axial component of r � V can be ascertained by
using the right-hand rule. The positive direction along the axis of rotation is the direc-
tion in which the thumb of the right hand points when it is extended and the remaining
fingers are curled around the rotation axis in the positive direction of rotation as illus-
trated in Fig. 5.5. The direction of the axial component of r � V is similarly ascertained

V � W � U

146 Chapter 5 ■ Finite Control Volume Analysis

F I G U R E  5.4 (a) Rotary water
sprinkler. (b) Rotary water sprinkler, plane view.
(c) Rotary water sprinkler, side view.
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ω
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F I G U R E  5.5 Right-hand rule convention.
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5.2 Newton’s Second Law—The Linear Momentum and Moment-of-Momentum Equations 147

by noting the direction of the cross product of the radius from the axis of rotation, rêr ,
and the tangential component of absolute velocity, V�ê�. Thus, for the sprinkler of Fig. 5.4,
we can state that

(5.23)

where, because of mass conservation, is the total mass flowrate through both nozzles. As
was demonstrated in Example 5.4, the mass flowrate is the same whether the sprinkler
rotates or not. The correct algebraic sign of the axial component of r � V can be easily
remembered in the following way: If V� and U are in the same direction, use �; if V� and
U are in opposite directions, use �. For the sprinkler of Fig. 5.4

(5.24)

Note that we have entered Tshaft as a positive quantity in Eq. 5.24. This is equivalent to
assuming that Tshaft is in the same direction as rotation.

For the sprinkler of Fig. 5.4, the axial component of the moment-of-momentum equa-
tion (Eq. 5.21) is, from Eqs. 5.23 and 5.24,

(5.25)

We interpret Tshaft being a negative quantity from Eq. 5.25 to mean that the shaft torque
actually opposes the rotation of the sprinkler arms. The shaft torque, Tshaft, opposes rotation
in all turbine devices.

We could evaluate the shaft power, , associated with shaft torque, Tshaft, by
forming the product Tshaft and the rotational speed of the shaft, �. Thus, from Eq. 5.25
we get

(5.26)

Since r2� is the speed, U, of each sprinkler nozzle, we can also state Eq. 5.26 in the form

(5.27)

Shaft work per unit mass, wshaft, is equal to . Dividing Eq. 5.27 by the mass flowrate,
, we obtain

(5.28)

Negative shaft work as in Eqs. 5.26, 5.27, and 5.28 is work out of the control volume, that
is, work done by the fluid on the rotor and thus its shaft.

wshaft � �U2V�2

m
# W

#
shaft /m

#
W
#

shaft � �U2V�2m
#

W
#

shaft � Tshaft� � �r2V�2m
#
�

W
#

shaft

�r2V�2m
#

� Tshaft

a c 1r � F2contents of the
control volume

d
axial

� Tshaft

m
#

ca 1r � V2out�outAoutVout �a 1r � V2in�inAinVin d
axial

� 1�r2V�22m
#

V5.11 Impulse-type
lawn sprinkler

GIVEN Water enters a rotating lawn sprinkler through its
base at the steady rate of 1000 ml/s as sketched in Fig.
E5.10a. The exit area of each of the two nozzles is 30 mm2 and
the flow leaving each nozzle is in the tangential direction. The
radius from the axis of rotation to the centerline of each nozzle
is 200 mm.

FIND (a) Determine the resisting torque required to hold
the sprinkler head stationary.

(b) Determine the resisting torque associated with the sprin-
kler rotating with a constant speed of 500 rev/min.

(c) Determine the speed of the sprinkler if no resisting torque
is applied.

Moment-of-Momentum—TorqueEXAMPLE 5.10
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SOLUTION

or

Thus, using Eq. 3, with (as calculated previ-
ously), we get

or

(Ans)

COMMENT Note that the resisting torque associated
with sprinkler head rotation is much less than the resisting
torque that is required to hold the sprinkler stationary.

(c) When no resisting torque is applied to the rotating sprin-
kler head, a maximum constant speed of rotation will occur as
demonstrated below. Application of Eqs. 3, 4, and 5 to the

Tshaft � �1.24 N # m

Tshaft � �
1200 mm2 16.2 m/s2 0.999 kg/s 31 1N/kg2/ 1m/s22 4

11000 mm/m2

m
#

� 0.999 kg/s

V2 � 16.7 m/s � 10.5 m/s � 6.2 m/s

To solve parts (a), (b), and (c) of this example we can use the
same fixed and nondeforming, disk-shaped control volume il-
lustrated in Fig. 5.4. As indicated in Fig. E5.10a, the only ax-
ial torque considered is the one resisting motion, Tshaft.

(a) When the sprinkler head is held stationary as specified in
part (a) of this example problem, the velocities of the fluid en-
tering and leaving the control volume are shown in Fig.
E5.10b. Equation 5.25 applies to the contents of this control
volume. Thus,

(1)

Since the control volume is fixed and nondeforming and the
flow exiting from each nozzle is tangential,

(2)

Equations 1 and 2 give

(3)

In Example 5.4, we ascertained that V2 � 16.7 m/s. Thus, from
Eq. 3 with

we obtain

or

(Ans)

(b) When the sprinkler is rotating at a constant speed of
500 rpm, the flow field in the control volume is unsteady but
cyclical. Thus, the flow field is steady in the mean. The veloci-
ties of the flow entering and leaving the control volume are as
indicated in Fig. E5.10c. The absolute velocity of the fluid
leaving each nozzle, V2, is from Eq. 5.22,

(4)

where

as determined in Example 5.4. The speed of the nozzle, U2, is
obtained from

(5)

Application of the axial component of the moment-of-momentum
equation (Eq. 5.25) leads again to Eq. 3. From Eqs. 4 and 5,

 � 16.7 m/s �
1200 mm2 1500 rev/min2 12� rad/rev2

11000 mm/m2 160 s/min2

 V2 � 16.7 m/s � r2�

U2 � r2�

W2 � 16.7 m/s

V2 � W2 � U2

Tshaft � �3.34 N # m

Tshaft � �
1200 mm2 116.7 m/s2 10.999 kg/s2 31 1N/kg2/ 1m/s22 4

11000 mm/m2

 � 0.999 kg/s

 m
#

� Q� �
11000 ml/s2 110�3 m3/liter2 1999 kg/m32

11000 ml/liter2

Tshaft � �r2V2m
#

V�2 � V2

Tshaft � �r2V�2m
#

F I G U R E  E5.10

Control volume

Flow out
Flow out

Tshaft

Q = 1000 ml/s

r2 =
200 mm

Nozzle exit
area = 30 mm2

(a)

(b)

V2
V2 = V  2θ

V1

(c)

W2
W2

V1

U2
V2

ω

V2 = V  2θ
U2 = r2ω
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5.2 Newton’s Second Law—The Linear Momentum and Moment-of-Momentum Equations 149

When the moment-of-momentum equation (Eq. 5.21) is applied to a more general,
one-dimensional flow through a rotating machine, we obtain

(5.29)

by applying the same kind of analysis used with the sprinkler of Fig. 5.4. Whether “�”
or “�” is used with the rV� product depends on the direction of (r � V)axial. A simple way
to determine the sign of the rV� product is to compare the direction of the V� and the blade
speed, U. As shown by the figure in the margin, if V� and U are in the same direction,
then the rV� product is positive. If V� and U are in opposite directions, the rV� product is
negative. These two situations are shown in the figure in the margin. The sign of the shaft
torque is “�” if Tshaft is in the same direction along the axis of rotation as �, and “�”
otherwise.

Tshaft � �m
#

in1�rinV�in2 � m
#

out1�routV�out2

COMMENT By repeating the calculations for various
values of the angular velocity, , the results shown in Fig.
E5.10d are obtained. It is seen that the magnitude of the resisting
torque associated with rotation is less than the torque required to
hold the rotor stationary. Even in the absence of a resisting
torque, the rotor maximum speed is finite.

v

contents of the control volume results in

(6)

For no resisting torque, Eq. 6 yields

Thus,

(7)

In Example 5.4, we learned that the relative velocity of the
fluid leaving each nozzle, W2, is the same regardless of the speed
of rotation of the sprinkler head, �, as long as the mass flowrate
of the fluid, , remains constant. Thus, by using Eq. 7 we obtain

or

(Ans)

For this condition (Tshaft � 0), the water both enters and leaves
the control volume with zero angular momentum.

� �
183.5 rad/s2 160 s/min2

2 � rad/rev
� 797 rpm

� �
W2

r2
�
116.7 m/s2 11000 mm/m2

1200 mm2
� 83.5 rad/s

m
#

� �
W2

r2

0 � �r21W2 � r2�2m
#

Tshaft � �r21W2 � r2�2m
#

T S
ha

ft
 ,  

N
 .  

m

–0.5

0

–1

–1.5

–2

–2.5

–3

–3.5

–4

ω,   rpm

200 400 6000 800

F I G U R E  E5.10d

F l u i d s  i n  t h e  N e w s

Tailless helicopters Most helicopters use a gas turbine engine
to power both the main horizontal lift-producing rotor and the
vertical tail rotor. Without the tail rotor to cancel the torque
from the main rotor, the helicopter body would spin out of
control in the direction opposite to that of the main rotor.
However, by use of the jet-rotor concept, the tail rotor can be
eliminated. In this approach, gas from a source in the heli-
copter (either hot exhaust gases from the engine or air from a
compressor) is directed through the blades themselves and 
exhausted from nozzles at the blade tips, perpendicular to the

blade axis. The concept uses the angular momentum principle
and is essentially an expanded version of a rotating lawn
sprinkler or a rotating water supply arm in a dishwasher. With
no drive shaft supplying torque to turn the main rotor, the tail
rotor is not needed. Although the jet-rotor helicopter concept
was first demonstrated in 1941 and a few were built in the
1950s and 1960s, their performance was not good enough to
warrant further development. Perhaps with the use of new ma-
terials and clever design, the tailless jet-rotor helicopter may
someday replace the current design. (See Problem 5.65.)

rV� > 0

r�

U
Vr

V�

VW

rV� < 0 V�

r

U

Vr

VW
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The shaft power, , is related to shaft torque, Tshaft, by

(5.30)

Thus, using Eqs. 5.29 and 5.30 with a “�” for Tshaft in Eq. 5.29, we obtain

(5.31)

or since r� � U

(5.32)

The “�” is used for the UV� product when U and V� are in the same direction; the “�” is
used when U and V� are in opposite directions. Also, since � Tshaft was used to obtain
Eq. 5.32, when is positive, power is into the control volume (e.g., pump), and when 
is negative, power is out of the control volume (e.g., turbine).

The shaft work per unit mass, wshaft � / , can be obtained from the shaft power,
by dividing Eq. 5.32 by the mass flowrate, . By conservation of mass,

From Eq. 5.32, we obtain

(5.33)wshaft � �1�UinV�in2 � 1�UoutV�out2

m
#

� m
#

in � m
#

out

m
# W

#
shaft,m

#
W
#

shaft

W
#

shaftW
#

shaft

W
#

shaft � �m
#

in1�UinV�in2 � m
#

out1�UoutV�out2

W
#

shaft � �m
#

in1�rin�V�in2 � m
#

out1�rout�V�out2

W
#

shaft � Tshaft�

W
#

shaft

150 Chapter 5 ■ Finite Control Volume Analysis

V5.12 Pelton wheel
turbine

GIVEN An air fan has a bladed rotor of 12-in. outside di-
ameter and 10-in. inside diameter as illustrated in Fig.
E5.11a. The height of each rotor blade is constant at 1 in.
from blade inlet to outlet. The flowrate is steady, on a time-
average basis, at 230 ft3/min and the absolute velocity of the
air at blade inlet, V1, is radial. The blade discharge angle is

30	 from the tangential direction. The rotor rotates at a con-
stant speed of 1725 rpm.

FIND Estimate the power required to run the fan.

Moment-of-Momentum—PowerEXAMPLE 5.11

SOLUTION

velocity at blade exit, V�2. The mass flowrate, , is easily
obtained from Eq. 5.6 as

(2)

The rotor exit blade speed, U2, is

(3)

To determine the fluid tangential speed at the fan rotor exit,
V�2, we use Eq. 5.22 to get

(4)V2 � W2 � U2

 � 90.3 ft/s

U2 � r2� �
16 in.2 11725 rpm2 12� rad/rev2

112 in./ft2 160 s/min2

 � 0.00912 slug/s

m
#

� �Q �
12.38 � 10�3 slug/ft32 1230 ft3/min2

160 s/min2

m
#

We select a fixed and nondeforming control volume that in-
cludes the rotating blades and the fluid within the blade row at
an instant, as shown with a dashed line in Fig. E5.11a. The
flow within this control volume is cyclical but steady in the
mean. The only torque we consider is the driving shaft torque,
Tshaft. This torque is provided by a motor. We assume that the
entering and leaving flows are each represented by uniformly
distributed velocities and flow properties. Since shaft power is
sought, Eq. 5.32 is appropriate. Application of Eq. 5.32 to the
contents of the control volume in Fig. E5.11 gives

(1)

From Eq. 1 we see that to calculate fan power, we need mass
flowrate, , rotor exit blade velocity, U2, and fluid tangentialm

#

W
#

shaft � �m
#

11�U1V�12 � m
#

21�U2V�22

0 1V1 is radial2

88
8n
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By using this value of W2 in Eq. 5 we get

Equation 1 can now be used to obtain

or

(Ans)

COMMENT Note that the “�” was used with the U2V�2

product because U2 and V�2 are in the same direction. This re-
sult, 0.0972 hp, is the power that needs to be delivered through
the fan shaft for the given conditions. Ideally, all of this power
would go into the flowing air. However, because of fluid fric-
tion, only some of this power will produce a useful effect (e.g.,
pressure rise) in the air. How much useful effect depends on
the efficiency of the energy transfer between the fan blades
and the fluid.

 W
#

shaft � 0.0972 hp

U2V�2 �
10.00912 slug/s2 190.3 ft/s2 164.9 ft/s2

31 1slug . ft/s22/lb 4 3550 1ft . lb2/ 1hp . s2 4
� m

#
 W

#
shaft

 � 90.3 ft/s � 129.3 ft/s2 10.8662 � 64.9 ft/s

 V�2 � U2 � W2 cos 30°

The vector addition of Eq. 4 is shown in the form of a “veloc-
ity triangle” in Fig. E5.11b. From Fig. E5.11b, we can see that

(5)

To solve Eq. 5 for V�2 we need a value of W2, in addition to the value
of U2 already determined (Eq. 3). To get W2, we recognize that

(6)

where Vr2 is the radial component of either W2 or V2. Also,
using Eq. 5.6, we obtain

(7)

or since

(8)

where h is the blade height, Eqs. 7 and 8 combine to form

(9)

Taking Eqs. 6 and 9 together we get

(10)

Substituting known values into Eq. 10, we obtain

 � 29.3 ft/s

W2 �
10.00912 slugs/s2 112 in./ft2 112 in./ft2

12.38 � 10�3 slugs/ft322�16 in.2 11 in.2 sin 30°

W2 �
m
#

�2�r2h sin 30°

m
#

� �2�r2hVr 2

A2 � 2 �r2h

m
#

� �A2Vr 2

W2 sin 30° � Vr 2

V�2 � U2 � W2 cos 30°

ω

Section (1)

Fixed control volume

Tshaft

V1

Section (2)

30°
W2

ω

Tshaft

D2 = 2r2 = 12 in.

D1 = 2r1 = 10 in.

h =
1 in.

Fixed
control volume

W2
Wr2 Vr2

U2

V2

(b)(a)

30° V  2θ

F I G U R E  E5.11
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5.3 First Law of Thermodynamics—The Energy Equation

5.3.1 Derivation of the Energy Equation

The first law of thermodynamics for a system is, in words

In symbolic form, this statement is

or

(5.34)

Some of these variables deserve a brief explanation before proceeding further. The total
stored energy per unit mass for each particle in the system, e, is related to the internal
energy per unit mass, , the kinetic energy per unit mass, V2/2, and the potential energy per
unit mass, gz, by the equation

(5.35)

Thus, is the total stored energy of the system.

The net heat transfer rate into the system is denoted with , and the net rate of
work transfer into the system is labeled . Heat transfer and work transfer are consid-
ered “�” going into the system and “�” coming out.

For the control volume that is coincident with the system at an instant of time

(5.36)

Furthermore, for the system and the contents of the coincident control volume that is fixed and
nondeforming, the Reynolds transport theorem (Eq. 4.14 with the parameter B set equal to the
total stored energy and, therefore, the parameter b set equal to e) allows us to conclude that

(5.37)

or, in words,

Combining Eqs. 5.34, 5.36, and 5.37, we get the control volume formula for the first law
of thermodynamics:

(5.38)
0
0t

 �
cv

 e� dV �a eout 
�outAoutVout �a ein�inAinVin � 1Q

#
net
in

� W
#

net
in
2cv

Time rate
of increase
of the total
stored energy
of the system

�

time rate of increase 
of the total stored
energy of the contents
of the control volume

�

net rate of flow
of the total stored energy
out of the control
volume through the
control surface

D

Dt
 �

sys

 e� d V �
0
0t

 �
cv

 e� d V �  a eout�outAoutVout �a ein�inAinVin

1Q
#

net
in

� W
#

net
in
2sys � 1Q

#
net
in

� W
#

net
in
2coincident
control volume

W
#

net in

Q
#

net in

�sysep dV

e � ǔ �
V 2

2
� gz

ǔ

D

Dt
 �

sys

e� d V � 1Q
#

net
in

� W
#

net
in
2sys

D

Dt �
sys

e� d V � aa Q
#

in �a Q
#

outb
sys

� aaW
#

in �aW
#

outb
sys

Time rate of
increase of the
total stored energy
of the system

�

net time rate of
energy addition by
heat transfer into
the system

�

net time rate of
energy addition by
work transfer into
the system

c05FiniteControlVolumeAnalysis.qxd  9/24/10  1:23 PM  Page 152



5.3 First Law of Thermodynamics—The Energy Equation 153

The heat transfer rate, , represents all of the ways in which energy is exchanged between
the control volume contents and surroundings because of a temperature difference. Thus,
radiation, conduction, and/or convection are possible. As shown by the figure in the mar-
gin, heat transfer into the control volume is considered positive; heat transfer out is nega-
tive. In many engineering applications, the process is adiabatic; the heat transfer rate, , is
zero. The net heat transfer rate, , can also be zero when 

The work transfer rate, , also called power, is positive when work is done on the
contents of the control volume by the surroundings. Otherwise, it is considered negative.

In many instances, work is transferred across the control surface by a moving shaft.
In rotary devices such as turbines, fans, and propellers, a rotating shaft transfers work across
that portion of the control surface that slices through the shaft. Since work is the dot prod-
uct of force and related displacement, rate of work (or power) is the dot product of force
and related displacement per unit time. For a rotating shaft, the power transfer, , is
related to the shaft torque that causes the rotation, Tshaft, and the angular velocity of the
shaft, �, by the relationship

When the control surface cuts through the shaft material, the shaft torque is exerted by shaft
material at the control surface. To allow for consideration of problems involving more than
one shaft we use the notation

(5.39)

Work transfer can also occur at the control surface when the force associated with
the fluid pressure (a normal stress) acts over a distance. For example, as shown in Fig. 5.6,
the uniform pressure force acting on the contents of the control surface across the inlet is
Fnormal stress in � pin Ain. This force acts inward, in the same direction as the inlet flow. Hence,
the power transfer (force times velocity) associated with this inlet flow is

Note that the inlet pressure force transfers power to the control volume
contents. As shown in Fig. 5.6, the pressure force also acts inward at the control volume
outlet. Recall that pressure is a compressive normal stress, independent of the direction of
the velocity. Thus, at the outlet the pressure force acts inward and the velocity is outward.
That is, the pressure force and velocity are oppositely directed so that the power transfer
associated with the outlet flow is negative and given by

The outlet pressure force transfers power from the control volume to its surroundings. Thus,
the net power transfer due to fluid normal stress, , is

(5.40)W
#

normal stress � pin Ain Vin � pout Aout Vout

W
#

normal stress

W
#

normal stress out � �Fnormal stress outVout � �pout Aout Vout

W
#

normal stress in 7 0;

W
#

normal stress in � Fnormal stress inVin � pin Ain Vin

W
#

shaft
net in

�aW
#

shaft
in

�aW
#

shaft
out

W
#

shaft � Tshaft�

W
#

shaft

W
# ©Q

#
in � ©Q

#
out � 0.Q

#
net in

Q
#

Q
#

pinAin
pout Aout

Vout

Vin

(in)

Control volume

(out)

F I G U R E  5.6 Inlet and outlet 
pressure forces.

Control volume

Q
•

4

Q
•

2
Q
•

3

Q
•

1

Q
•

net = Q
•

1 + Q
•

2 – Q
•

3 – Q
•

4
in
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Work transfer can also occur at the control surface because of tangential stress
forces. For example, rotating shaft work is transferred by tangential stresses in the shaft
material. For fluid particles, the shear stress power, , is given by the product
of the tangential stress force, Ftangential stress, and the component of velocity in the tangen-
tial direction. At the inlet and outlet portions of the control volume, any tangential stress
force would be parallel to the inlet and outlet areas and, therefore, normal to the fluid
velocities. Hence, the shear stress power transfer at these locations is zero. As shown in
the figure in the margin, at other portions of the control surface where a shear force may
be developed, the velocity is zero because the viscous fluid sticks to the stationary sur-
face. Thus, in general, we can consider the fluid tangential stress power transfer to be
negligible.

Using the information we have developed about power, we can express the first law
of thermodynamics for the contents of a control volume by combining Eqs. 5.38, 5.39, and
5.40 to obtain

(5.41)

When the equation for total stored energy (Eq. 5.35) is considered with Eq. 5.41, we obtain
the energy equation:

(5.42)

Equation 5.42 is restricted to flows through fixed, nondeforming control volumes having
uniform properties across the inlets and outlets, with the velocity normal to the inlet and
outlet areas. A more general form of the energy equation, valid for more general flow con-
ditions, is given in Appendix D.

5.3.2 Application of the Energy Equation

For many applications, Eq. 5.42 can be simplified. For example, the term cv e�
represents the time rate of change of the total stored energy, e, of the contents of the
control volume. This term is zero when the flow is steady. This term is also zero in the
mean when the flow is steady in the mean (cyclical). Furthermore, for many applica-
tions, such as the hair dryer shown in Fig. 5.7, there is only one stream entering and
leaving the control volume, and the properties are all assumed to be uniformly distrib-
uted over the flow cross-sectional areas involved. For such flows the continuity equation
(Eq. 5.10) gives

(5.43)

and Eq. 5.42 can be simplified to form

(5.44)m
#
c ǔout � ǔin � a

p

�
b

out
� a

p

�
b

in
�

V 2
out � V 2

in

2
� g1zout � zin2 d � Q

#
net
in

� W
#

shaft
net in

�inAinVin � �outAoutVout � m
#

dV�0/0t

� Q
#

net
in

� W
#

shaft
net in

�a aǔ �
p

�
�

V 
2

2
� gzb

in
�in AinVin

0
0t �

cv

e� dV �a aǔ �
p

�
�

V 
2

2
� gzb

out
�out AoutVout

� Q
#

net
in

� W
#

shaft
net in

�a pinAinVin �a poutAoutVout

0
0t

 �
cv

 e� d V �a eout�out Aout Vout �a ein�in Ain Vin

W
#

shear stress
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V = 0 Ftangential stress
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5.3 First Law of Thermodynamics—The Energy Equation 155

We call Eq. 5.44 the one-dimensional energy equation for steady flow. Note that Eq. 5.44
is valid for incompressible and compressible flows. Often, the fluid property called enthalpy,
, where

(5.45)

is used in Eq. 5.44. With enthalpy, the one-dimensional energy equation for steady flow
(Eq. 5.44) is

(5.46)

Equation 5.46 is often used for solving compressible flow problems.

m
#
c ȟout � ȟin �

V 2
out � V 2

in

2
� g1zout � zin2 d � Q

#
net
in

� W
#

shaft
net in

ȟ � ǔ �
p
�

ȟ

m•
in = m•

out = m•

m•
out m•

in

F I G U R E  5.7 One inlet, one outlet flow.

GIVEN A pump delivers water at a steady rate of 300 gal/min
as shown in Fig. E5.12. Just upstream of the pump [section (1)]
where the pipe diameter is 3.5 in., the pressure is 18 psi. Just
downstream of the pump [section (2)] where the pipe diameter is
1 in., the pressure is 60 psi. The change in water elevation across

the pump is zero. The rise in internal energy of water, , as-
sociated with a temperature rise across the pump is 3000
ft
lb/slug. The pumping process is considered to be adiabatic.

FIND Determine the power (hp) required by the pump.

ǔ2 � ǔ1

Energy—Pump PowerEXAMPLE 5.12

SOLUTION

We include in our control volume the water contained in the
pump between its entrance and exit sections. Application of
Eq. 5.44 to the contents of this control volume on a time-
average basis yields

0 (no elevation change)

0 (adiabatic flow)

� (1)shaft
net in

W
#

net
in

 � Q
#

 m
#
c ǔ2 � ǔ1 � a

p

�
b

2
� a

p

�
b

1
�

V 2
2 � V 2

1

2
� g1z2 � z12 d

F I G U R E  E5.12

Control volume

Section (1)
p1 = 18 psi

u2 – u1 = 3000 ft •lb/slug
^ ^

D1 =
3.5 in. Pump

W
•

shaft = ?

D2 = 1 in.

Q =
300 gal/min.

Section (2)
p2 = 60 psi

888
88
n

88
88
8n

c05FiniteControlVolumeAnalysis.qxd  9/24/10  1:24 PM  Page 155



156 Chapter 5 ■ Finite Control Volume Analysis

Substituting the values of Eqs. 2, 3, and 4 and values from the
problem statement into Eq. 1 we obtain

(Ans)

COMMENT Of the total 32.2 hp, internal energy change
accounts for 7.09 hp, the pressure rise accounts for 7.37 hp,
and the kinetic energy increase accounts for 17.8 hp.

  �
1

35501ft . lb/s2/hp 4
� 32.2 hp

  �
1123 ft/s22 � 110.0 ft/s22

2 31 1slug . ft2/ 1lb . s22 4
d

  �
118 psi2 1144 in.2/ft22

11.94 slugs/ft32

 �
160 psi2 1144 in.2/ft22

11.94 slugs/ft32

� 11.30 slugs/s2 c 13000 ft .  lb/slug2shaft
net in

W
#

We can solve directly for the power required by the pump,
, from Eq. 1, after we first determine the mass

flowrate, , the speed of flow into the pump, V1, and the speed
of the flow out of the pump, V2. All other quantities in Eq. 1
are given in the problem statement. From Eq. 5.6, we get

(2)

Also from Eq. 5.6,

so

(3)
and

(4) � 123 ft/s

V2 �
Q

A2
�

1300 gal/min24 112 in./ft22

17.48 gal/ft32 160 s/min2� 11 in.22

 � 10.0 ft/s

V1 �
Q

A1
�

1300 gal/min24 112 in./ft22

17.48 gal/ft32 160 s/min2� 13.5 in.22

V �
Q

A
�

Q

�D2/4

 � 1.30 slugs/s

m
#

� �Q �
11.94 slugs/ft32 1300 gal/min2

17.48 gal/ft32 160 s/min2

m
#W

#
shaft net in

GIVEN A steam turbine used to produce electricity is
shown in Fig. E5.13a. Assume the steam enters a turbine with
a velocity of 30 m/s and enthalpy, , of 3348 kJ/kg (see Fig.
E5.13b). The steam leaves the turbine as a mixture of vapor
and liquid having a velocity of 60 m/s and an enthalpy of
2550 kJ/kg. The flow through the turbine is adiabatic, and
changes in elevation are negligible. 

ȟ1

SOLUTION

We use a control volume that includes the steam in the turbine
from the entrance to the exit as shown in Fig. E5.13b. Apply-
ing Eq. 5.46 to the steam in this control volume we get

FIND Determine the work output involved per unit mass
of steam through-flow.

0 (elevation change is negligible)
0 (adiabatic flow)

(1)m
#
c ȟ2 � ȟ1 �

V 2
2 � V 2

1

2
� g1z2 � z12 d � Q

#
net
in

� W
#

shaft
net in

Energy—Turbine Power per Unit Mass of FlowEXAMPLE 5.13

F I G U R E  E5.13b

F I G U R E  E5.13a

88
88
88
8n

88
88
8n

Steam turbine

Control volume

Section (1)
V1 = 30 m/s
h1 = 3348 kJ/kg
^

Section (2)
V2 = 60 m/s
h2 = 2550 kJ/kg
^

wshaft = ?
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5.3 First Law of Thermodynamics—The Energy Equation 157

5.3.3 Comparison of the Energy Equation 
with the Bernoulli Equation

For steady, incompressible flow with zero shaft power, the energy equation (Eq. 5.44)
becomes

(5.47)

Dividing Eq. 5.47 by the mass flowrate, , and rearranging terms we obtain

(5.48)

where

is the heat transfer rate per mass flowrate, or heat transfer per unit mass. Note that Eq. 5.48
involves energy per unit mass and is applicable to one-dimensional flow of a single stream
of fluid between two sections or flow along a streamline between two sections.

If the steady, incompressible flow we are considering also involves negligible viscous
effects (frictionless flow), then the Bernoulli equation, Eq. 3.6, can be used to describe what
happens between two sections in the flow as

(5.49)

where � � �g is the specific weight of the fluid. To get Eq. 5.49 in terms of energy per
unit mass, so that it can be compared directly with Eq. 5.48, we divide Eq. 5.49 by den-
sity, �, and obtain

(5.50)
pout

�
�

V 2
out

2
� gzout �

pin

�
�

V 2
in

2
� gzin

pout �
�V 2

out

2
� �zout � pin �

�V 2
in

2
� �zin

qnet
in

�
Q
#

net in

m
#

pout

�
�

V 2
out

2
� gzout �

pin

�
�

V 2
in

2
� gzin � 1ǔout � ǔin � qnet

in
2

m
#

m
#
c ǔout � ǔin �

pout

�
�

pin

�
�

V 2
out � V 2

in

2
� g1zout � zin2 d � Q

#
net
in

Thus,

(Ans)

COMMENT Note that in this particular example, the
change in kinetic energy is small in comparison to the differ-
ence in enthalpy involved. This is often true in applications
involving steam turbines. To determine the power output,

, we must know the mass flowrate, .m
#

W
#

shaft

 � 797 kJ/kg

wshaft
net out

� 3348 kJ/kg � 2550 kJ/kg � 1.35 kJ/kg

The work output per unit mass of steam through-flow, wshaft net in,
can be obtained by dividing Eq. 1 by the mass flowrate, , to
obtain

(2)

Since wshaft net out� �wshaft net in, we obtain

or

 �
3 130 m/s22 � 160 m/s22 4 31 J/ 1N . m2 4

2 31 1kg . m2/ 1N . s22 4 11000 J/kJ2

wshaft
net out

� 3348 kJ/kg � 2550 kJ/kg

wshaft
net out

� ȟ1 � ȟ2 �
V 2

1 � V 2
2

2

wshaft
net in

�

W
#

shaft
net in

m
# � ȟ2 � ȟ1 �

V 2
2 � V 2

1

2

m
#
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A comparison of Eqs. 5.48 and 5.50 prompts us to conclude that

(5.51)

when the steady, incompressible flow is frictionless. For steady, incompressible flow with
friction, we learn from experience that

(5.52)

In Eqs. 5.48 and 5.50, we consider the combination of variables

as equal to useful or available energy. Thus, from inspection of Eqs. 5.48 and 5.50, we can
conclude that represents the loss of useful or available energy that occurs
in an incompressible fluid flow because of friction. In equation form we have

(5.53)

For a frictionless flow, Eqs. 5.48 and 5.50 tell us that loss equals zero.
It is often convenient to express Eq. 5.48 in terms of loss as

(5.54)

An example of the application of Eq. 5.54 follows.

pout

�
�

V 2
out

2
� gzout �

pin

�
�

V 2
in

2
� gzin � loss

ǔout � ǔin � qnet
in

� loss

ǔout � ǔin � qnet in

p

�
�

V 2

2
� gz

ǔout � ǔin � qnet
in

7 0

ǔout � ǔin � qnet
in

� 0
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V5.13 Energy
transfer

GIVEN As shown in Fig. E5.14a, air flows from a room
through two different vent configurations: a cylindrical hole in
the wall having a diameter of 120 mm and the same diameter
cylindrical hole in the wall but with a well-rounded entrance.
The room pressure is held constant at 1.0 kPa above atmo-
spheric pressure. Both vents exhaust into the atmosphere. As
discussed in Section 8.4.2, the loss in available energy associ-
ated with flow through the cylindrical vent from the room to
the vent exit is 0.5V2

2/2 where V2 is the uniformly distributed
exit velocity of air. The loss in available energy associated
with flow through the rounded entrance vent from the room to
the vent exit is 0.05V2

2/2, where V2 is the uniformly distributed
exit velocity of air.

FIND Compare the volume flowrates associated with the
two different vent configurations.

SOLUTION

We use the control volume for each vent sketched in Fig.
E5.14a. What is sought is the flowrate, Q � A2V2, where A2

is the vent exit cross-sectional area, and V2 is the uniformly

Energy—Effect of Loss of Available EnergyEXAMPLE 5.14

Control
volume

Section (2)

V2

V2

Section (2)

Control
volume

D2 = 120 mm

D2 = 120 mm

Section (1) for
both vents is

in the room and
involves V1 = 0
p1 = 1.0 kPa

F I G U R E  E5.14a
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An important group of fluid mechanics problems involves one-dimensional, incom-
pressible, steady flow with friction and shaft work. Included in this category are constant-
density flows through pumps, blowers, fans, and turbines. For this kind of flow, Eq. 5.44
becomes

(5.55)

We divide Eq. 5.55 by the mass flowrate, use the facts that and
work per unit to obtain

(5.56)
pout

�
�

V 2
out

2
� gzout �

pin

�
�

V 2
in

2
� gzin � wshaft

net in
� loss

mass � wshaft net in � W
#

shaft net in /m
# loss �  ǔout � ǔin � qnet in

m
#
c ǔout � ǔin �

pout

�
�

pin

�
�

V 2
out � V 2

in

2
� g1zout � zin2 d � Q

#
net
in

� W
#

shaft
net in

or

(Ans)

For the cylindrical vent, Eq. 6 gives us

or

(Ans)

COMMENT By repeating the calculations for various
values of the loss coefficient, KL, the results shown in Fig.
E5.14b are obtained. Note that the rounded entrance vent al-
lows the passage of more air than does the cylindrical vent be-
cause the loss associated with the rounded entrance vent is
less than that for the cylindrical one. For this flow the pres-
sure drop, p1 � p2, has two purposes: (1) overcome the loss
associated with the flow, and (2) produce the kinetic energy at
the exit. Even if there were no loss (i.e., KL � 0), a pressure
drop would be needed to accelerate the fluid through the vent.

Q � 0.372 m3/s

 �  
B

11.0 kPa2 11000 Pa/kPa2 311N/m22/ 1Pa2 4

11.23 kg/m32 3 11 � 0.52/2 4 311N . s22/ 1kg . m2 4

 Q �
�1120 mm22

411000 mm/m22
 

 Q � 0.445 m3/s

distributed exit velocity. For both vents, application of Eq. 5.54
leads to

0 (no elevation change)

(1)

where 1loss2 is the loss between sections (1) and (2). Solving
Eq. 1 for V2 we get

(2)

Since

(3)

where KL is the loss coefficient (KL � 0.5 and 0.05 for the
two vent configurations involved), we can combine Eqs. 2
and 3 to get

(4)

Solving Eq. 4 for V2 we obtain

(5)

Therefore, for flowrate, Q, we obtain

(6)

For the rounded entrance cylindrical vent, Eq. 6 gives

 �  
B

11.0 kPa2 11000 Pa/kPa2 311N/m22/ 1Pa2 4

11.23 kg/m32 3 11 � 0.052/2 4 311N . s22/ 1kg . m2 4

Q �
�1120 mm22

411000 mm/m22
 

Q � A2V2 �
�D 2

2

4
 
B

p1 � p2

� 3 11 � KL2/2 4

V2 �
B

p1 � p2

� 3 11 � KL2/2 4

V2 �
B

2 c a
p1 � p2

�
b � KL 

V 2
2

2
d

1loss2 � KL 
V 2

2

2

V2 �
B

2 c a
p1 � p2

�
b � 1loss2 d

0 1V1 � 02

p2

�
�

V 2
2

2
� gz2 �

p1

�
�

V 2
1

2
� gz1 � 1loss2

F I G U R E  E5.14b

0.4 0.50.30.20.10
KL

Q
, m

3
/s

0.5

0.4

0.3

0.2

0.1

0

(0.05, 0.445 m3/s)

(0.5, 0.372 m3/s)

888n
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This is a form of the energy equation for steady flow that is often used for incompressible
flow problems. It is sometimes called the mechanical energy equation or the extended
Bernoulli equation. Note that Eq. 5.56 involves energy per unit mass (ft�lb/slug � ft2/s2 or
N�m/kg � m2/s2).

If Eq. 5.56 is divided by the acceleration of gravity, g, we get

(5.57)

where

(5.58)

and hL � loss/g. Equation 5.57 involves energy per unit weight (ft�lb/lb � ft or N�m/N � m).
Section 3.7 introduced the notion of “head,” which is energy per unit weight. Units of length
(e.g., ft, m) are used to quantify the amount of head involved. If a turbine is in the control vol-
ume, the notation hs � �hT (with hT � 0) is sometimes used, particularly in the field of
hydraulics. For a pump in the control volume, hs � hP. The quantity hT is termed the turbine
head and hP is the pump head. The loss term, hL, is often referred to as head loss.

hs � wshaft net in /g �

W
#

shaft
net in

m
#
g

�

W
#

shaft
net in

�Q

pout

�
�

V 2
out

2g
� zout �

pin

�
�

V 2
in

2g
� zin � hs � hL

160 Chapter 5 ■ Finite Control Volume Analysis

V5.14 Water plant
aerator

GIVEN An axial-flow ventilating fan driven by a motor
that delivers 0.4 kW of power to the fan blades produces a 0.6-m-
diameter axial stream of air having a speed of 12 m/s. The
flow upstream of the fan involves negligible speed.

FIND Determine how much of the work to the air actually
produces a useful effect, that is, a rise in available energy, and
estimate the fluid mechanical efficiency of this fan.

SOLUTION

We select a fixed and nondeforming control volume as is illus-
trated in Fig. E5.15. The application of Eq. 5.56 to the con-
tents of this control volume leads to

0 (atmospheric pressures cancel) 0 (V1 � 0)

(1)

0 (no elevation change)

where wshaft net in � loss is the amount of work added to the air
that produces a useful effect. Equation 1 leads to

(2) (Ans)

A reasonable estimate of efficiency, �, would be the ratio of
amount of work that produces a useful effect, Eq. 2, to the
amount of work delivered to the fan blades. That is,

(3)
� �

wshaft
net in � loss

wshaft
net in

� 72.0 N . m/kg

wshaft
net in

� loss �
V 2

2

2
�

112 m/s22

2 311kg . m2/ 1N . s22 4

wshaft
net in

� loss � a
p2

�
�

V 2
2

2
� gz2b � a

p1

�
�

V 2
1

2
� gz1b

To calculate the efficiency, we need a value of wshaft net in, which is
related to the power delivered to the blades, . We note
that

(4)wshaft
net in

�
W
#

shaft
net in

m
#

W
#

shaft net in

Energy—Fan Work and EfficiencyEXAMPLE 5.15

Fan
motor

Fan

V1 ≈ 0

Section (1)

Stream surface

Control volume
Section (2)

D2 =
0.6 m

V2 = 12 m/s

F I G U R E  E5.15
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88
n
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5.3 First Law of Thermodynamics—The Energy Equation 161

or

(6)

From Eqs. 2, 3, and 6 we obtain

(Ans)

COMMENT Note that only 75% of the power that was
delivered to the air resulted in a useful effect and, thus, 25% of
the shaft power is lost to air friction.

� �
72.0 N . m/kg

95.8 N . m/kg
� 0.752

wshaft
net in

� 95.8 N . m/kg

where the mass flowrate, , is (from Eq. 5.6)

(5)

For fluid density, �, we use 1.23 kg/m3 (standard air) and, thus,
from Eqs. 4 and 5 we obtain

 
�

10.4 kW2 31000 1N . m2/ 1s . kW2 4

11.23 kg/m32 3 1�2 10.6 m22/4 4 112 m/s2

 wshaft
net in

�
W
#

shaft
net in

1��D 2
2/42V2

m
#

� �AV � � 
�D 2

2

4
 V2

m
#

F l u i d s  i n  t h e  N e w s

Curtain of air An air curtain is produced by blowing air
through a long rectangular nozzle to produce a high-velocity
sheet of air, or a “curtain of air.” This air curtain is typically 
directed over a doorway or opening as a replacement for a con-
ventional door. The air curtain can be used for such things as
keeping warm air from infiltrating dedicated cold spaces, pre-
venting dust and other contaminants from entering a clean en-
vironment, and even just keeping insects out of the workplace,
still allowing people to enter or exit. A disadvantage over con-

ventional doors is the added power requirements to operate the
air curtain, although the advantages can outweigh the disad-
vantage for various industrial applications. New applications
for current air curtain designs continue to be developed. For
example, the use of air curtains as a means of road tunnel fire
security is currently being investigated. In such an application,
the air curtain would act to isolate a portion of the tunnel where
fire has broken out and not allow smoke and fumes to infiltrate
the entire tunnel system. (See Problem 5.92.) 

GIVEN The pump shown in Fig. E5.16a adds 10 horse-
power to the water as it pumps water from the lower lake to the
upper lake. The elevation difference between the lake surfaces
is 30 ft and the head loss is 15 ft. 

FIND Determine 

(a) the flowrate and 

(b) the power loss associated with this flow.

SOLUTION

(a) The energy equation (Eq. 5.57) for this flow is

(1)

where points 1 and 2 (corresponding to “in” and “out” in Eq.
5.57) are located on the lake surfaces. Thus, and

so that Eq. 1 becomes

(2)

where and The pump head is
obtained from Eq. 5.58 as

hL � 15 ft.z2 � 30 ft, z1 � 0,

hs � hL � z2 � z1

V1 � V2 � 0
p1 � p2 � 0

p2

�
�

V 2
2

2g
� z2 �

p1

�
�

V 2
1

2g
� z1 � hs � hL

Energy—Head Loss and Power LossEXAMPLE 5.16

F I G U R E  E5.16a

Control volume

Section (2)

Section (1)
Pump

Flow
30 ft

where is in ft when Q is in ft3/s.hs

 � 88.1�Q
 � 110 hp2 1550 ft # lb�s�hp2�162.4 lb�ft32 Q

 hs � W
#

shaft net in �� Q
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By repeating the calculations for various head losses,
the results shown in Fig. E5.16b are obtained. Note that as the
head loss increases, the flowrate decreases because an in-
creasing portion of the 10 hp supplied by the pump is lost
and, therefore, not available to lift the fluid to the higher
elevation.

hL,Hence, from Eq. 2,

or

(Ans)

COMMENT Note that in this example the purpose of the
pump is to lift the water (a 30-ft head) and overcome the head
loss (a 15-ft head); it does not, overall, alter the water’s pres-
sure or velocity.

(b) The power lost due to friction can be obtained from
Eq. 5.58 as

(Ans)

COMMENTS The remaining 
that the pump adds to the water is used to lift the water from the
lower to the upper lake. This energy is not “lost,” but it is stored
as potential energy.

10 hp � 3.33 hp � 6.67 hp

 � 3.33 hp

 � 1830 ft # lb/s 11 hp�550 ft # lb/s2

 W
#

loss � � QhL � 162.4 lb/ft32 11.96 ft3/s2 115 ft2

Q � 1.96 ft3/s

88.1�Q � 15 ft � 30 ft

20 251510

(15 ft, 1.96 ft3/s) 

50
hL, ft

Q
, f

t3
/s

3.5

3

2.5

2

1.5

1

0.5

0

F I G U R E  E5.16b

F l u i d s  i n  t h e  N e w s

Smart shocks Vehicle shock absorbers are dampers used to
provide a smooth, controllable ride. When going over a
bump, the relative motion between the tires and the vehicle
body displaces a piston in the shock and forces a viscous fluid
through a small orifice or channel. The viscosity of the fluid
produces a head loss that dissipates energy to dampen the
vertical motion. Current shocks use a fluid with fixed viscos-
ity. However, recent technology has been developed that uses
a synthetic oil with millions of tiny iron balls suspended in it.
These tiny balls react to a magnetic field generated by an

electric coil on the shock piston in a manner that changes the
fluid viscosity, going anywhere from essentially no damping
to a solid almost instantly. A computer adjusts the current to
the coil to select the proper viscosity for the given conditions
(i.e., wheel speed, vehicle speed, steering-wheel angle, lateral
acceleration, brake application, and temperature). The goal of
these adjustments is an optimally tuned shock that keeps the
vehicle on a smooth, even keel while maximizing the contact
of the tires with the pavement for any road conditions. (See
Problem 5.74.)

5.3.4 Application of the Energy Equation to Nonuniform Flows

The forms of the energy equation discussed in Sections 5.3.1 through 5.3.3 are applicable
to one-dimensional flows, flows that are approximated with uniform velocity distributions
where fluid crosses the control surface.

If the velocity profile at any section where flow crosses the control surface is not uni-
form, the kinetic energy terms in the energy equation must be slightly modified. For exam-
ple, for nonuniform velocity profiles, the energy equation on an energy per unit mass basis
(Eq. 5.56) is

(5.59)
pout

�
�

�outV
2
out

2
� gzout �

pin

�
�

�inV
2
in

2
� gzin � wshaft

net in
� loss

Parabolic
(laminar)

Turbulent

Uniform

� = 2

�    1.08

� = 1

~~
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5.3 First Law of Thermodynamics—The Energy Equation 163

where  is the kinetic energy coefficient and is the average velocity (see Eq. 5.7). It can
be shown that for any velocity profile, � � 1, with � � 1 only for uniform flow. This
property is indicated by the figure in the margin of the previous page. However, for many
practical applications � � 1.0.

V

GIVEN The small fan shown in Fig. E5.17 moves air at a
mass flowrate of 0.1 kg/min. Upstream of the fan, the pipe di-
ameter is 60 mm, the flow is laminar, the velocity distribution
is parabolic, and the kinetic energy coefficient, �1, is equal to
2.0. Downstream of the fan, the pipe diameter is 30 mm, the
flow is turbulent, the velocity profile is quite uniform, and the
kinetic energy coefficient, �2, is equal to 1.08. The rise in
static pressure across the fan is 0.1 kPa, and the fan motor
draws 0.14 W.

FIND Compare the value of loss calculated 

(a) assuming uniform velocity distributions, and 

(b) considering actual velocity distributions.

SOLUTION

Application of Eq. 5.59 to the contents of the control volume
shown in Fig. E5.17 leads to

0 (change in gz is negligible)

(1)

or solving Eq. 1 for loss we get

(2)

To proceed further, we need values of wshaft net in, , and .
These quantities can be obtained as follows. For shaft work

or

so that
(3) wshaft

net in
� 84.0 N . m/kg

 wshaft
net in

�
10.14 W2 31 1N . m/s2/W 4

0.1 kg/min
 160 s/min2

 wshaft
net in

�
power to fan motor

m
#

V2V1

loss � wshaft
net in

� a
p2 � p1

�
b �

�1V
2
1

2
�

�2V
2
2

2

 � loss � wshaft
net in

p2

�
�

�2V
2
2

2
� gz2 �

p1

�
�

�1V
2
1

2
� gz1

Energy—Effect of Nonuniform Velocity ProfileEXAMPLE 5.17

F I G U R E  E5.17

For the average velocity at section (1), , from Eq. 5.10 we
obtain

(4)

For the average velocity at section (2), ,

(5)

(a) For the assumed uniform velocity profiles (�1 � �2 �
1.0), Eq. 2 yields

(6)loss � wshaft
net in

� a
p2 � p1

�
b �

V 2
1

2
�

V 2
2

2

 � 1.92 m/s

V2 �
10.1 kg/min2 11 min/60 s2 11000 mm/m22

11.23 kg/m32 3�130 mm22/4 4

V2

 � 0.479 m/s

 �
10.1 kg/min2 11 min/60s2 11000 mm/m22

11.23 kg/m32 3�160 mm22/4 4

 �
m
#

�1�D2
1/42

V1 �
m
#

�A1

V1

Control volume

Turbulent
flow

Section (2)
  2 = 1.08α

D2 = 30 mm

D1 = 60 mm

Section (1)
  1 = 2.0α

Laminar flow
m = 0.1 kg/min
#
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164 Chapter 5 ■ Finite Control Volume Analysis

If we use Eqs. 3, 4, and 5 and the given pressure rise, Eq. 7
yields

or

(Ans)

COMMENT The difference in loss calculated assuming
uniform velocity profiles and actual velocity profiles is not
large compared to wshaft net in for this fluid flow situation.

 � 0.940 N . m/kg

 � 0.230 N . m/kg � 1.99 N . m/kg

loss � 84.0 N . m/kg � 81.3 N . m/kg

 �
1.0811.92 m/s22

2 31 1kg . m2/ 1N . s22 4
 �

210.479 m/s22

2 31 1kg . m2/ 1N . s22 4

 loss � 84 N . m/kg �
10.1 kPa2 11000 Pa/kPa2 11 N/m2/Pa2

1.23 kg/m3

Using Eqs. 3, 4, and 5 and the pressure rise given in the
problem statement, Eq. 6 gives

or

(Ans)

(b) For the actual velocity profiles (�1 � 2, �2 � 1.08), Eq. 1
gives

(7)loss � wshaft
net in

� a
p2 � p1

�
b � �1 

V 2
1

2
� �2 

V 2
2

2

 � 0.975 N . m/kg

 � 0.115 N . m/kg � 1.84 N . m/kg

 loss � 84.0 N . m/kg � 81.3 N . m/kg

�
11.92 m/s22

2 31 1kg . m2/ 1N . s22 4
�

10.479 m/s22

2 31 1kg . m2/ 1N . s22 4

 loss � 84.0 
N . m

kg
�
10.1 kPa2 11000 Pa/kPa2 11 N/m2/Pa2

1.23 kg/m3

conservation 
of mass

continuity equation
mass flowrate
linear momentum 

equation
moment-of- 

momentum 
equation

shaft power
shaft torque
first law of 

thermo- 
dynamics

heat transfer rate
energy equation
loss
turbine and 

pump head
head loss
kinetic energy 

coefficient

5.4 Chapter Summary and Study Guide

In this chapter the flow of a fluid is analyzed by using the principles of conservation of
mass, momentum, and energy as applied to control volumes. The Reynolds transport theo-
rem is used to convert basic system-orientated conservation laws into the corresponding
control volume formulation.

The continuity equation, a statement of the fact that mass is conserved, is obtained in
a form that can be applied to any flows—steady or unsteady, incompressible or compress-
ible. Simplified forms of the continuity equation are used to solve problems dealing with
mass and volume flowrates.

The linear momentum equation, a form of Newton’s second law of motion applicable
to flow through a control volume, is obtained and used to solve flow problems dealing with
surface and body forces acting on the fluid and its surroundings. The net flux of momentum
through the control surface is directly related to the net force exerted on the contents of the
control volume.

The moment-of-momentum equation, which involves the relationship between torque
and angular momentum flowrate, is obtained and used to solve flow problems dealing with
turbines (that remove energy from a fluid) and pumps (that supply energy to a fluid).

The steady-state energy equation, obtained from the first law of thermodynamics, is
written in several forms. The first (Eq. 5.44) involves terms such as the mass flowrate, inter-
nal energy per unit mass, heat transfer rate, and shaft work rate. The second form (Eq. 5.56
or 5.57) is termed the mechanical energy equation or the extended Bernoulli equation. It
consists of the Bernoulli equation with extra terms that account for losses due to friction in
the flow, as well as terms accounting for the existence of pumps or turbines in the flow.

The following checklist provides a study guide for this chapter. When your study of
the entire chapter and end-of-chapter exercises has been completed you should be able to

write out meanings of the terms listed here in the margin and understand each of the
related concepts. These terms are particularly important and are set in color and bold
type in the text.

select an appropriate control volume for a given problem and draw an accurately
labeled control volume diagram.
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5.4 Chapter Summary and Study Guide 165

use the continuity equation and a control volume to solve problems involving mass or
volume flowrate.

use the linear momentum equation and a control volume, in conjunction with the conti-
nuity equation as necessary, to solve problems involving forces and momentum flowrate.

use the moment-of-momentum equation to solve problems involving torque and angu-
lar momentum flowrate.

use the energy equation, in one of its appropriate forms, to solve problems involving
losses due to friction (head loss) and energy input by pumps or removal by turbines.

use the kinetic energy coefficient in the energy equation when solving problems
involving nonuniform flows.

Some of the important equations in this chapter are

Conservation of mass (5.5)

Mass flowrate (5.6)

Average velocity (5.7)

Steady flow mass conservation (5.8)

Moving control volume 
mass conservation (5.13)

Force related to change 
in linear momentum        (5.17)

Moment-of-
momentum

(5.21)

Shaft torque related to change in (5.29)
moment-of-momentum (angular 
momentum)

Shaft power related to change in (5.32)
moment-of-momentum (angular 
momentum)

First law of (5.42)
thermodynamics 
(conservation of 
energy)

Conservation 
of power (5.46)

Mechanical energy (5.57)
pout

�
�

V 2
out

2g
� zout �

pin

�
�

V 2
in

2g
� zin � hs � hL

m
#
c ȟout � ȟin �

V 2
out � V 2

in

2
� g1zout � zin2 d � Q

#
net
in

� W
#

shaft
net in

�a aǔ �
p

�
�

V 2

2
� gzb

in
 �inAinVin � Q

#
net
in

� W
#

shaft
net in

0
0t

 �
cv

 e� dV �a  aǔ �
p

�
�

V 2

2
� gzb

out
 �out AoutVout

W
#

shaft � 1�m
#

in2 1�UinV�in2 � m
#

out 1�UoutV�out2

Tshaft � 1�m
#

in2 1� rinV�in2 � m
#

out1�routV�out2

a  1r �V2out � outA outV out �a   1r �V2in � inA inVin �a  1r � F2 contents of the
control volume

a  Vout � outA outV out �a  Vin � inA inVin �a Fcontents of the
control volume

0
0t

 �
cv

 � dV �a �outAoutWout �a �in AinWin � 0

a m#
out �a m

#
in � 0

V �

�
A

 �V dA

�A

m
#

� �Q � �AV

0
0t

 �
cv

 � dV �a �outAoutVout �a �inAinVin � 0
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166 Chapter 5 ■ Finite Control Volume Analysis

Problems

Note: Unless otherwise indicated, use the values of fluid
properties found in the tables on the inside of the front
cover. Problems designated with an (*) are intended to be
solved with the aid of a programmable calculator or a com-
puter. Problems designated with a (†) are “open-ended”
problems and require critical thinking in that to work them
one must make various assumptions and provide the neces-
sary data. There is not a unique answer to these problems.

The even-numbered problems are included in the
hard copy version of the book, and the answers to these
even-numbered problems are listed at the end of the book.
Odd-numbered problems are provided in WileyPLUS, or
in Appendix L on the book’s web site, www.wiley.com/
college/young. The lab-type problems, FE problems, FlowLab
problems, and the videos that accompany problems can also
be accessed on these web sites.

Section 5.1 Conservation of Mass—Uniform Flow

5.2 Explain why the mass of the contents of a system is con-
stant with time.

5.4 The pump shown in Fig. P5.4 produces a steady flow of 
10 gal/s through the nozzle. Determine the nozzle exit diameter,

if the exit velocity is to be .V2 � 100 ft/sD2,

5.8 Water flows out through a set of thin, closely spaced blades
as shown in Fig. P5.8 with a speed of V � 10 ft/s around the en-
tire circumference of the outlet. Determine the mass flowrate
through the inlet pipe.

5.10 A hydraulic jump (see Video V10.11) is in place down-
stream from a spillway as indicated in Fig. P5.10. Upstream of
the jump, the depth of the stream is 0.6 ft and the average stream
velocity is 18 ft/s. Just downstream of the jump, the average
stream velocity is 3.4 ft/s. Calculate the depth of the stream, h,
just downstream of the jump.

5.12 Water flows into a rain gutter on a house as shown in Fig.
P5.12 and in Video V10.7 at a rate of 0.0040 ft3/s per foot of
length of the gutter. At the beginning of the gutter (x � 0), the
water depth is zero. (a) If the water flows with a velocity of 1.0
ft/s throughout the entire gutter, determine an equation for the
water depth, h, as a function of location, x. (b) At what location
will the gutter overflow?

Review Problems

Go to Appendix G for a set of review problems with answers.
Detailed solutions can be found in Student Solution Manual 

for a Brief Introduction to Fluid Mechanics, by Young et al. 
(© 2011 John Wiley and Sons, Inc.).

F I G U R E  P5.4

Section (1)

Section (2)

D2

V2 Pump

F I G U R E  P5.8

0.08-ft diameter

0.1 ft

Inlet

Blades

0.6 ft
60°

V = 10 ft/s

F I G U R E  P5.10

18 ft/s

3.4 ft/s
0.6 ft

h

F I G U R E  P5.6

D = 0.25 m

Section (1) Section (2)

p1 = 690 kPa (abs)
T1 = 300 K

p2 = 127 kPa (abs)
T2 = 252 K
V2 = 320 m/s

5.6 Air flows steadily between two cross sections in a long,
straight section of 0.25-m inside-diameter pipe. The static tem-
perature and pressure at each section are indicated in Fig. P5.6.
If the average air velocity at section (2) is 320 m/s, determine
the average air velocity at section (1).
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Problems 167

Section 5.1 Conservation of Mass—
Nonuniform Flow

5.14 Various types of attachments can be used with the shop
vac shown in Video V5.2. Two such attachments are shown in
Fig. P5.14—a nozzle and a brush. The flowrate is 1 ft3/s. (a) De-
termine the average velocity through the nozzle entrance, Vn.
(b) Assume the air enters the brush attachment in a radial direc-
tion all around the brush with a velocity profile that varies lin-
early from 0 to Vb along the length of the bristles as shown in the
figure. Determine the value of Vb.

5.16 A water jet pump (see Fig. P5.16) involves a jet cross-
sectional area of and a jet velocity of 30 m/s. The jet is
surrounded by entrained water. The total cross-sectional area
associated with the jet and entrained streams is These
two fluid streams leave the pump thoroughly mixed with an av-
erage velocity of 6 m/s through a cross-sectional area of

Determine the pumping rate (i.e., the entrained fluid
flowrate) involved in liters/s.
0.075 m2.

0.075 m2.

0.01 m2,

Section 5.1 Conservation of Mass—Unsteady Flow

5.18 (See Fluids in the News article titled “New 1.6-gpf stan-
dards,” Section 5.1.2.) When a toilet is flushed, the water depth,
h, in the tank as a function of time, t, is as given in the table. The
size of the rectangular tank is 19 in. by 7.5 in. (a) Determine the
volume of water used per flush, gpf. (b) Plot the flowrate for

.

t (s) h (in.)

0 5.70
0.5 5.33
1.0 4.80
2.0 3.45
3.0 2.40
4.0 1.50
5.0 0.75
6.0 0

5.20 Air at standard conditions enters the compressor shown in
Fig. P5.20 at a rate of It leaves the tank through a 1.2-in.-
diameter pipe with a density of 0.0035 slugs/ft3 and a uniform
speed of 700 ft/s. (a) Determine the rate (slugs/s) at which the
mass of air in the tank is increasing or decreasing. (b) Determine
the average time rate of change of air density within the tank.

10 ft3/s.

0 � t � 6 s

Section 5.2.1 Linear Momentum—Uniform Flow
(also see Lab Problems 5.98, 5.99, 5.100, and 5.101)

5.22 Exhaust (assumed to have the properties of standard air)
leaves the 4-ft-diameter chimney shown in Video V5.4 and Fig.
P5.22 with a speed of 6 ft/s. Because of the wind, after a few di-
ameters downstream the exhaust flows in a horizontal direction
with the speed of the wind, 15 ft/s. Determine the horizontal
component of the force that the blowing wind puts on the ex-
haust gases.

F I G U R E  P5.12

V = 1 ft/s

3 in. 

4 in. 
h

h

x

F I G U R E  P5.14

Q = 1 ft3/s

Q = 1 ft3/s

Vn

2-in. dia.

1.5 in.

3-in. dia.Vb

F I G U R E  P5.20

Tank volume = 20 ft3
1.2 in.

700 ft/s

0.0035 slugs/ft3

10 ft3/s

Compressor

0.00238 slugs/ft3

F I G U R E  P5.22

15 ft/s
15 ft/s

6 ft/s

4 ft

F I G U R E  P5.16

30 m/s 
jet

6 m/s

Entrained 
water

Entrained 
water
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168 Chapter 5 ■ Finite Control Volume Analysis

5.24 Water enters the horizontal, circular cross-sectional, sudden-
contraction nozzle sketched in Fig. P5.24 at section (1) with a
uniformly distributed velocity of 25 ft/s and a pressure of 75 psi.
The water exits from the nozzle into the atmosphere at section
(2) where the uniformly distributed velocity is 100 ft/s. Deter-
mine the axial component of the anchoring force required to
hold the contraction in place.

5.26 A nozzle is attached to a vertical pipe and discharges water
into the atmosphere as shown in Fig. P5.26. When the discharge
is 0.1 m3/s, the gage pressure at the flange is 40 kPa. Determine
the vertical component of the anchoring force required to hold
the nozzle in place. The nozzle has a weight of 200 N, and the
volume of water in the nozzle is 0.012 m3. Is the anchoring force
directed upward or downward?

5.28 A circular plate having a diameter of 300 mm is held per-
pendicular to an axisymmetric horizontal jet of air having a veloc-
ity of 40 m/s and a diameter of 80 mm as shown in Fig. P5.28. A
hole at the center of the plate results in a discharge jet of air having
a velocity of 40 m/s and a diameter of 20 mm. Determine the hor-
izontal component of force required to hold the plate stationary.

5.30 Water flows from a large tank into a dish as shown in Fig.
P5.30. (a) If at the instant shown the tank and the water in it
weigh what is the tension, in the cable supporting the
tank? (b) If at the instant shown the dish and the water in it
weigh lb, what is the force, needed to support the dish?F2,W2

T1,W1 lb,

5.32 The four devices shown in Fig. P5.32 rest on frictionless
wheels, are restricted to move in the x direction only, and are
initially held stationary. The pressure at the inlets and outlets of
each is atmospheric, and the flow is incompressible. The con-
tents of each device are not known. When released, which de-
vices will move to the right and which to the left? Explain.

F I G U R E  P5.24

D1 = 3 in.

p1 = 75 psi
V1 = 25 ft/s

p2 = 
0 psi

V2 = 
100 ft/s

Section (2)

Section (1)

F I G U R E  P5.26

Area = 0.02 m2

Area = 0.01 m2

p = 40 kPa

Nozzle

0.10 m3/s

g

30°

F I G U R E  P5.28

40 m/s 80 mm

20 mm

40 m/s

Plate

F I G U R E  P5.30

0.1-ft diameter

Dish

Tank

10 ft

12 ft

2 ft

F2

T1

F I G U R E  P5.32

(a)

(c)

(b)

(d)
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5.34 The thrust developed to propel the jet ski shown in Video
V9.12 and Fig. P5.34 is a result of water pumped through the
vehicle and exiting as a high-speed water jet. For the conditions
shown in the figure, what flowrate is needed to produce a 300-lb
thrust? Assume the inlet and outlet jets of water are free jets.

5.36 Water flows from a two-dimensional open channel and is
diverted by an inclined plate as illustrated in Fig. P5.36. When
the velocity at section (1) is 10 ft/s, what horizontal force (per
unit width) is required to hold the plate in position? At section
(1) the pressure distribution is hydrostatic, and the fluid acts as
a free jet at section (2). Neglect friction.

5.38 A vertical, circular cross-sectional jet of air strikes a coni-
cal deflector as indicated in Fig. P5.38. A vertical anchoring force
of 0.1 N is required to hold the deflector in place. Determine the

mass (kg) of the deflector. The magnitude of velocity of the air
remains constant.

5.40 Air flows into the atmosphere from a nozzle and strikes a
vertical plate as shown in Fig. P5.40. A horizontal force of 9 N is re-
quired to hold the plate in place. Determine the reading on the pres-
sure gage. Assume the flow to be incompressible and frictionless.

5.42 (See Fluids in the News article titled “Bow thrusters,”
Section 5.2.2.) The bow thruster on the boat shown in Fig. P5.42
is used to turn the boat. The thruster produces a 1-m-diameter
jet of water with a velocity of . Determine the force pro-
duced by the thruster. Assume that the inlet and outlet pressures
are zero and that the momentum of the water entering the
thruster is negligible.

10 m/s

5.44 Assuming frictionless, incompressible, one-dimensional
flow of water through the horizontal tee connection sketched in
Fig. P5.44, estimate values of the x and y components of the
force exerted by the tee on the water. Each pipe has an inside di-
ameter of 1 m.

F I G U R E  P5.34

3.5-in.-diameter
outlet jet

30°

25-in.2 inlet area

F I G U R E  P5.40

Area = 0.01 m2

Area = 0.003 m2

9N

p =?

F I G U R E  P5.42

D = 1 m

V = 10 m/s

F I G U R E  P5.44

Section (3)

Q3 =
10 m3/s

Section (2)

Section (1)

x

y

z

V1 = 6 m/s
p1 = 200 kPa

F I G U R E  P5.36

10 ft /s

Section (2)

Plate
4 ft

1.0 ft

Section (1)
20°

F I G U R E  P5.38

0.1 m

V = 30 m/s

FA = 0.1 N

60°
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†5.46 A table tennis ball “balances” on a jet of air as shown in
Video V3.2 and in Fig. P5.46. Explain why the ball sits at the
height it does and why the ball does not “roll off” the jet.

Section 5.2.1 Linear Momentum—Nonuniform Flow

5.48 Water is sprayed radially outward over 180	 as indicated
in Fig. P5.48. The jet sheet is in the horizontal plane. If the jet
velocity at the nozzle exit is 30 ft/s, determine the direction and
magnitude of the resultant horizontal anchoring force required
to hold the nozzle in place.

5.50 A variable mesh screen produces a linear and axisymmet-
ric velocity profile as indicated in Fig. P5.50 in the air flow
through a 2-ft-diameter circular cross-sectional duct. The static
pressures upstream and downstream of the screen are 0.2 and 0.15
psi and are uniformly distributed over the flow cross-sectional
area. Neglecting the force exerted by the duct wall on the flow-
ing air, calculate the screen drag force.

Section 5.2.4 Application of the Moment-of-
Momentum Equation

5.52 Five liters per second of water enter the rotor shown in
Video V5.10 and Fig. P5.52 along the axis of rotation. The
cross-sectional area of each of the three nozzle exits normal to
the relative velocity is 18 mm2. How large is the resisting torque
required to hold the rotor stationary if (a) � � 0	, (b) � � 30	,
and (c) � � 60	?

5.54 Five liters per second of water enter the rotor shown in
Video V5.10 and Fig. P5.54 along the axis of rotation. The
cross-sectional area of each of the three nozzle exits normal to
the relative velocity is 18 mm2. How fast will the rotor spin
steadily if the resisting torque is reduced to zero and (a) � � 0	,
(b) � � 30	, or (c) � � 60	?

5.56 A water turbine wheel rotates at the rate of 50 rpm in the di-
rection shown in Fig. P5.56. The inner radius, r2, of the blade row
is 2 ft, and the outer radius, r1, is 4 ft. The absolute velocity vec-
tor at the turbine rotor entrance makes an angle of 20	 with the
tangential direction. The inlet blade angle is 60	 relative to the
tangential direction. The blade outlet angle is 120	. The flowrate
is 20 ft3/s. For the flow tangent to the rotor blade surface at inlet

170 Chapter 5 ■ Finite Control Volume Analysis

F I G U R E  P5.46

F I G U R E  P5.48

8 in. 0.5 in.

V =
30 ft/s

F I G U R E  P5.52

Q = 5 liters/s

r = 0.5m Nozzle exit area normal to
relative velocity = 18 mm2

θ

F I G U R E  P5.54

0.5 m

Nozzle exit area normal to
relative velocity = 18 mm2

θ

Q = 5 liters/s

F I G U R E  P5.50

Section (1) Section (2)

Variable mesh screen

D =  2 ft

p1 =  0.2 psi 
V1 = 100 ft/s 

p2 =  0.15 psi
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and outlet, determine an appropriate constant blade height, b, and
the corresponding power available at the rotor shaft.

5.58 A fan (see Fig. P5.58) has a bladed rotor of 12-in. outside di-
ameter and 5-in. inside diameter and runs at 1725 rpm. The width
of each rotor blade is 1 in. from blade inlet to outlet. The volume
flowrate is steady at 230 ft3/min, and the absolute velocity of the air
at blade inlet, V1, is purely radial. The blade discharge angle is 30	
measured with respect to the tangential direction at the outside di-
ameter of the rotor. (a) What would be a reasonable blade inlet an-
gle (measured with respect to the tangential direction at the inside
diameter of the rotor)? (b) Find the power required to run the fan.

5.60 The single-stage, axial-flow turbomachine shown in Fig.
P5.60 involves water flow at a volumetric flowrate of 9 m3/s.
The rotor revolves at 600 rpm. The inner and outer radii of the
annular flow path through the stage are 0.46 m and 0.61 m, and

The flow entering the rotor row and leaving the stator
row is axial viewed from the stationary casing. Is this device a
turbine or a pump? Estimate the amount of power transferred to
or from the fluid.

	2 � 30°.

5.62 An axial-flow turbomachine rotor involves the upstream (1)
and downstream (2) velocity triangles shown in Fig. P5.62. Is this
turbomachine a turbine or a fan? Sketch an appropriate blade sec-
tion and determine the energy transferred per unit mass of fluid.

5.64 (See Fluids in the News article titled “Tailless helicopters,”
Section 5.2.4.) Shown in Fig. P5.64 is a toy “helicopter” powered

F I G U R E  P5.56

W1

W2

V1

50 rpm

r2 =
2 ft

r1 =
4 ft

60°

120°

20°

Section (1) Section (2)

Q = 20 ft3/s

b

F I G U R E  P5.58

V1

1725
rpm

Q = 230 ft3/min

1 in.

5 in.

12 in.

30°

F I G U R E  P5.60

Q =   
9 m3/s r0 = 0.61 m

600
rpm

V1 V2

U2

Rotor Stator

U1

W2

�2

r1 = 0.46 m 

W1

F I G U R E  P5.62

W1

1

W2

W1

U1
= 60 ft/s

V1
= 40 ft/s

W2=

60°

U2
= 60 ft/s

F I G U R E  P5.64

Balloon 

ω 
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by air escaping from a balloon. The air from the balloon flows
radially through each of the three propeller blades and out
through small nozzles at the tips of the blades. Explain physi-
cally how this flow can cause the rotation necessary to rotate the
blades to produce the needed lifting force.

Section 5.3 First Law of Thermodynamics—The
Energy Equation

5.66 A 100-ft-wide river with a flowrate of 2400 ft3/s flows over
a rock pile as shown in Fig. P5.66. Determine the direction of flow
and the head loss associated with the flow across the rock pile.

†5.68 Explain how, in terms of the loss of available energy in-
volved, a home water faucet valve works to vary the flow through
a lawn hose from the shutoff condition to maximum flow.

5.70 Water flows through a valve (see Fig. P5.70) with a
weight flowrate, m

.
g, of 1000 lb/s. The pressure just upstream of

the valve is 90 psi, and the pressure drop across the valve is 
5 psi. The inside diameters of the valve inlet and exit pipes are
12 and 24 in. If the flow through the valve occurs in a horizon-
tal plane, determine the loss in available energy across the valve.

5.72 Water flows steadily from one location to another in the
inclined pipe shown in Fig. P5.72. At one section, the static
pressure is 8 psi. At the other section, the static pressure is 5 psi.
Which way is the water flowing? Explain.

5.74 (See Fluids in the News article titled “Smart shocks,” Sec-
tion 5.3.3.) A 200-lb force applied to the end of the piston of the
shock absorber shown in Fig. P5.74 causes the two ends of the
shock absorber to move toward each other with a speed of .
Determine the head loss associated with the flow of the oil
through the channel. Neglect gravity and any friction force be-
tween the piston and cylinder walls.

5 ft/s

Section 5.3 The Energy Equation Involving a Pump
or Turbine

5.76 What is the maximum possible power output of the 
hydroelectric turbine shown in Fig. P5.76?

5.78 A hydraulic turbine is provided with 4.25 m3/s of water at
415 kPa. A vacuum gage in the turbine discharge 3 m below the
turbine inlet centerline reads 250 mm Hg vacuum. If the turbine
shaft output power is 1100 kW, calculate the power loss through
the turbine. The supply and discharge pipe inside diameters are
identically 800 mm.

5.80 Water is pumped from a tank, point (1), to the top of a wa-
ter plant aerator, point (2), as shown in Video V5.14 and Fig.
P5.80, at a rate of 3.0 ft3/s. (a) Determine the power that the pump
adds to the water if the head loss from (1) to (2) where V2 � 0 is
4 ft. (b) Determine the head loss from (2) to the bottom of the aer-
ator column, point (3), if the average velocity at (3) is V3 � 2 ft/s.
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F I G U R E  P5.70
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Problems 173

5.82 Water is pumped from the tank shown in Fig. P5.82a. The
head loss is known to be 1.2 V 2/2g, where V is the average velocity
in the pipe. According to the pump manufacturer, the relation-
ship between the pump head and the flowrate is as shown in Fig.
P5.82b: hp � 20 � 2000 Q2, where hp is in meters and Q is in
m3/s. Determine the flowrate, Q.

5.84 Water is pumped from the large tank shown in Fig. P5.84.
The head loss is known to be equal to and the pump head
is , where is in ft when Q is in ft3/s. Determine
the flowrate.

hphp � 20 � 4Q2
4V2/2g

5.86 The turbine shown in Fig. P5.86 develops 100 hp when the
flowrate of water is 20 ft3/s. If all losses are negligible, determine
(a) the elevation h, (b) the pressure difference across the turbine,
and (c) the flowrate expected if the turbine were removed.

5.88 Gasoline flows through a pump at 
as indicated in Fig. P5.88. The loss between sections (1) and (2)
is equal to What will the difference in pressures be-
tween sections (1) and (2) be if 20 kW is delivered by the pump
to the fluid?

0.3V2
1/2.

0.12 m3/s1SG � 0.682

5.90 Water is to be moved from one large reservoir to another
at a higher elevation as indicated in Fig. P5.90. The loss in avail-
able energy associated with 2.5 ft3/s being pumped from sections
(1) to (2) is , where is the average velocity of water
in the 8-in. inside-diameter piping involved. Determine the amount
of shaft power required.

V61 V 2/2 ft2/s2

5.92 (See Fluids in the News article titled “Curtain of air,” Sec-
tion 5.3.3.) The fan shown in Fig. P5.92 produces an air curtain
to separate a loading dock from a cold storage room. The air
curtain is a jet of air 10 ft wide, 0.5-ft thick moving with speed

. The loss associated with this flow is loss ,
where . How much power must the fan supply to the air
to produce this flow?

KL � 5
� KLV2/2V � 30 ft/s

F I G U R E  P5.80

Aerator column

(1)

(3)

(2)

Pump

5 ft
3 ft

10 ft

F I G U R E  P5.82

20

10

Pump
0
0 0.050.07 m

Q, m3/s
0.10

h p
, 

m

hp = 20–2000Q2

(b)(a)

6 m

F I G U R E  P5.84

13 ft

Q V

Pipe area = 0.10 ft2

Pump

F I G U R E  P5.86

T

Free jet

12 in. 12 in.

h

p3 p4

F I G U R E  P5.88

Q = 0.12 m3/s

Section (2) 
D2 = 0.2 m

g

Pump3 m

Section (1) 
D1 = 0.1 m

F I G U R E  P5.90

Pump
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diameter pipe

Section (1)

50 ft

Section (2)
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Section 5.3 The Energy and Linear Momentum
Equations

5.94 Two water jets collide and form one homogeneous jet as
shown in Fig. P5.94. (a) Determine the speed, V, and direc-
tion, of the combined jet. (b) Determine the loss for a fluid
particle flowing from (1) to (3), from (2) to (3). Gravity is
negligible.

�,

5.96 Water flows steadily in a pipe and exits as a free jet
through an end cap that contains a filter as shown in Fig. P5.96.
The flow is in a horizontal plane. The axial component, , ofRy

■ Lab Problems

5.98 This problem involves the force that a jet of air exerts on
a flat plate as the air is deflected by the plate. To proceed with
this problem, go to the book’s web site, www.wiley.com/college/
young, or WileyPLUS.

5.100 This problem involves the force that a jet of water exerts
on a vane when the vane turns the jet through a given angle. To
proceed with this problem, go to the book’s web site, www.wiley
.com/college/young, or WileyPLUS.

■ Lifelong Learning Problems

5.102 What are typical efficiencies associated with swimming
and how can they be improved?

5.104 Discuss the main causes of loss of available energy in a
turbo-pump and how they can be minimized. What are typical
turbo-pump efficiencies?

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for
fluid mechanics are provided on the book’s web site, www
.wiley.com/college/young, or WileyPLUS.

174 Chapter 5 ■ Finite Control Volume Analysis

F I G U R E  P5.92

Fan

10 ft

Air curtain 
(0.5-ft thickness)

Open door

V = 30 ft/s

F I G U R E  P5.94

V2 = 6 m/s

V

V1 = 4 m/s

θ

0.12 m

0.10 m
(1)

(2)

(3)

90°

F I G U R E  P5.96

Area = 0.10 ft2

Area = 0.12 ft2

Ry = 60 lb

V = 10 ft/s

Rx

Pipe

Filter
30°

the anchoring force needed to keep the end cap stationary is 
60 lb. Determine the head loss for the flow through the end cap.
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CHAPTER OPENING PHOTO: Flow past an inclined plate: The streamlines of a viscous fluid flowing
slowly past a two-dimensional object placed between two closely spaced plates (a Hele–Shaw cell)
approximate inviscid, irrotational (potential) flow. (Dye in water between glass plates spaced 1 mm
apart.) (Photography courtesy of D. H. Peregrine.)

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ determine various kinematic elements of the flow given the velocity field.

■ explain the conditions necessary for a velocity field to satisfy the continu-
ity equation.

■ apply the concepts of stream function and velocity potential.

■ characterize simple potential flow fields.

■ analyze certain types of flows using the Navier–Stokes equations.

The previous chapter focused attention on the use of finite control volumes for the solution
of a variety of fluid mechanics problems. This approach is very practical and useful, as it
does not generally require a detailed knowledge of the pressure and velocity variations
within the control volume. Typically, we found that only conditions on the surface of the
control volume entered the problem, and thus, problems could be solved without a detailed
knowledge of the flow field. Unfortunately, many situations arise in which the details of
the flow are important and the finite control volume approach will not yield the desired
information. For example, we may need to know how the velocity varies over the cross sec-
tion of a pipe or how the pressure and shear stress vary along the surface of an airplane

66Differential
Analysis of 
Fluid Flow

Differential
Analysis of 
Fluid Flow

V6.1 Spinning 
football-pressure
contours
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wing. In these circumstances we need to develop relationships that apply at a point, or at
least in a very small region (infinitesimal volume), within a given flow field. This approach,
which involves an infinitesimal control volume, as distinguished from a finite control vol-
ume, is commonly referred to as differential analysis, since (as we will soon discover) the
governing equations are differential equations.

We begin our introduction to differential analysis by reviewing and extending some
of the ideas associated with fluid kinematics that were introduced in Chapter 4. With this
background the remainder of the chapter will be devoted to the derivation of the basic differ-
ential equations (which will be based on the principle of conservation of mass and Newton’s
second law of motion) and to some applications.

176 Chapter 6 ■ Differential Analysis of Fluid Flow

6.1 Fluid Element Kinematics

In this section we will be concerned with the mathematical description of the motion of
fluid elements moving in a flow field. A small fluid element in the shape of a cube, which
is initially in one position, will move to another position during a short time interval �t as
illustrated in Fig. 6.1. Because of the generally complex velocity variation within the field,
we expect the element not only to translate from one position but also to have its volume
changed (linear deformation), to rotate, and to undergo a change in shape (angular defor-
mation). Although these movements and deformations occur simultaneously, we can consider
each one separately as illustrated in Fig. 6.1. Because element motion and deformation are
intimately related to the velocity and variation of velocity throughout the flow field, we will
briefly review the manner in which velocity and acceleration fields can be described.

6.1.1 Velocity and Acceleration Fields Revisited

As discussed in detail in Section 4.1, the velocity field can be described by specifying the
velocity V at all points, and at all times, within the flow field of interest. Thus, in terms of
rectangular coordinates, the notation V (x, y, z, t) means that the velocity of a fluid particle
depends on where it is located within the flow field (as determined by its coordinates x, y,
and z) and when it occupies the particular point (as determined by the time, t). As pointed
out in Section 4.1.1, this method of describing fluid motion is called the Eulerian method.
It is also convenient to express the velocity in terms of three rectangular components so
that as shown by the figure in the margin

(6.1)

where u, v, and w are the velocity components in the x, y, and z directions, respectively,
and , , and are the corresponding unit vectors. Of course, each of these componentsk̂ĵî

V � uî � vĵ � wk̂

= + + +

General
motion

Translation Linear
deformation

Rotation Angular
deformation

Element at t0 Element at t0 +   tδ

F I G U R E  6.1 Types of motion and deformation for a fluid element.
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6.1 Fluid Element Kinematics 177

will, in general, be a function of x, y, z, and t. One of the goals of differential analysis is
to determine how these velocity components specifically depend on x, y, z, and t for a par-
ticular problem.

With this description of the velocity field it was also shown in Section 4.2.1 that the
acceleration of a fluid particle can be expressed as

(6.2)

and in component form:

(6.3a)

(6.3b)

(6.3c)

The acceleration is also concisely expressed as

(6.4)

where the operator

(6.5)

is termed the material derivative, or substantial derivative. In vector notation

(6.6)

where the gradient operator, �( ), is

(6.7)

which was introduced in Chapter 2. As shown in the following sections, the motion and
deformation of a fluid element depend on the velocity field. The relationship between the
motion and the forces causing the motion depends on the acceleration field.

6.1.2 Linear Motion and Deformation

The simplest type of motion that a fluid element can undergo is translation, as illustrated
in Fig. 6.2. In a small time interval �t a particle located at point O will move to point O�
as is illustrated in Fig. 6.2. If all points in the element have the same velocity (which is
only true if there are no velocity gradients), then the element will simply translate from one
position to another. However, because of the presence of velocity gradients, the element will
generally be deformed and rotated as it moves. For example, consider the effect of a sin-
gle velocity gradient ∂u/∂x on a small cube having sides �x, �y, and �z. As is shown in Fig.
6.3a, if the x component of velocity of O and B is u, then at nearby points A and C the x
component of the velocity can be expressed as u � (∂u/∂x) �x. This difference in velocity
causes a “stretching” of the volume element by an amount (∂u/∂x)(�x)(�t) during the short

�1 2 �
0 1 2
0x

 î �
0 1 2
0y

 ĵ �
0 1 2
0z
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0 1 2
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� 1V # �2 1 2
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time interval �t in which line OA stretches to OA� and BC to BC� (Fig. 6.3b). The corre-
sponding change in the original volume, �V � �x �y �z, would be

and the rate at which the volume �V is changing per unit volume due to the gradient
∂u/∂x is

(6.8)

If velocity gradients ∂v/∂y and ∂w/∂z are also present, then using a similar analysis it fol-
lows that, in the general case,

(6.9)

This rate of change of the volume per unit volume is called the volumetric dilatation
rate. Thus, we see that the volume of a fluid may change as the element moves from one
location to another in the flow field. However, for an incompressible fluid the volumet-
ric dilatation rate is zero, as the element volume cannot change without a change in fluid
density (the element mass must be conserved). Variations in the velocity in the direction
of the velocity, as represented by the derivatives 0u/0x, 0y/0y, and 0w/0z, simply cause a
linear deformation of the element in the sense that the shape of the element does not
change. Cross derivatives, such as 0u/0y and 0y/0x, will cause the element to rotate and
generally to undergo an angular deformation, which changes the shape of the element.

1

�V
 
d1�V2

dt
�
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�
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� � # V
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d1�V 2
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�t
d �
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F I G U R E  6.3 Linear deformation of a fluid element.
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F I G U R E  6.2 Translation of a fluid element.
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6.1 Fluid Element Kinematics 179

6.1.3 Angular Motion and Deformation

For simplicity we will consider motion in the x–y plane, but the results can be readily
extended to the more general case. The velocity variation that causes rotation and angular
deformation is illustrated in Fig. 6.4a. In a short time interval �t the line segments OA and
OB will rotate through the angles �� and �� to the new positions OA� and OB� as shown
in Fig. 6.4b. The angular velocity of line OA, �OA, is

For small angles

(6.10)

so that

Note that if ∂v/∂x is positive, �OA will be counterclockwise. Similarly, the angular velocity
of the line OB is

and

(6.11)

so that

In this instance if ∂u/∂y is positive, �OB will be clockwise. The rotation, �z, of the element
about the z axis is defined as the average of the angular velocities �OA and �OB of the two

�OB � lim
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F I G U R E  6.4 Angular motion and deformation of a fluid
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mutually perpendicular lines OA and OB.1 Thus, if counterclockwise rotation is considered
to be positive, it follows that

(6.12)

Rotation of the fluid element about the other two coordinate axes can be obtained in
a similar manner with the result that for rotation about the x axis

(6.13)

and for rotation about the y axis

(6.14)

The three components �x, �y, and �z can be combined to give the rotation vector, �, in the
form

(6.15)

An examination of this result reveals that � is equal to one-half the curl of the velocity vec-
tor. That is,

(6.16)

since by definition of the vector operator � � V

The vorticity, �, is defined as a vector that is twice the rotation vector; that is,

(6.17)

The use of the vorticity to describe the rotational characteristics of the fluid simply eliminates
the factor associated with the rotation vector. The figure in the margin shows vorticity
contours of the wing tip vortex flow shortly after an aircraft has passed. The lighter colors
indicate stronger vorticity. (See also Fig. 4.3.)

We observe from Eq. 6.12 that the fluid element will rotate about the z axis as an unde-
formed block (i.e., �OA � ��OB) only when ∂u/∂y � �∂v/∂x. Otherwise, the rotation will
be associated with an angular deformation. We also note from Eq. 6.12 that when ∂u/∂y �
∂v/∂x the rotation around the z axis is zero. More generally if � � V � 0, then the rota-
tion (and the vorticity) is zero, and flow fields for which this condition applies are termed
irrotational. We will find in Section 6.4 that the condition of irrotationality often greatly
simplifies the analysis of complex flow fields. However, it is probably not immediately obvi-
ous why some flow fields would be irrotational, and we will need to examine this concept
more fully in Section 6.4.
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Wing

1With this definition can also be interpreted to be the angular velocity of the bisector of the angle between the lines OA
and OB.

vz
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6.1 Fluid Element Kinematics 181

In addition to the rotation associated with the derivatives ∂u/∂y and ∂v/∂x, it is observed
from Fig. 6.4b that these derivatives can cause the fluid element to undergo an angular defor-
mation, which results in a change in shape of the element. The change in the original right
angle formed by the lines OA and OB is termed the shearing strain, ��, and from Fig. 6.4b

where �� is considered to be positive if the original right angle is decreasing. The rate of
change of �� is called the rate of shearing strain or the rate of angular deformation and
is commonly denoted with the symbol Angles �� and �� are related to the velocity gra-
dients through Eqs. 6.10 and 6.11 so that

and, therefore,

(6.18)

As we will learn in Section 6.7, the rate of angular deformation is related to a correspond-
ing shearing stress, which causes the fluid element to change in shape. From Eq. 6.18 we
note that if ∂u/∂y � �∂v/∂x, the rate of angular deformation is zero, and this condition
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 c
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d

�� .

�� � �� � ��

GIVEN For a certain two-dimensional flow field the veloc-
ity is given by the equation

V � 1x2 � y22 î � 2xy ĵ

SOLUTION

Vorticity

FIND Is this flow irrotational?

The streamlines for the steady, two-dimensional flow of
this example are shown in Fig. E6.1. (Information about how
to calculate streamlines for a given velocity field is given in
Sections 4.1.1 and 6.2.3.) It is noted that all of the streamlines
(except for the one through the origin) are curved. However,
because the flow is irrotational, there is no rotation of the fluid
elements. That is, lines OA and OB of Fig. 6.4 rotate with the
same speed but in opposite directions.

EXAMPLE 6.1

For an irrotational flow the rotation vector, �, having the com-
ponents given by Eqs. 6.12, 6.13, and 6.14 must be zero. For
the prescribed velocity field

and therefore

Thus, the flow is irrotational. (Ans)

COMMENTS It is to be noted that for a two-dimensional
flow field (where the flow is in the x–y plane) �x and �y will
always be zero, as by definition of two-dimensional flow u
and v are not functions of z, and w is zero. In this instance the
condition for irrotationality simply becomes �z � 0 or ∂v/∂x �
∂u/∂y. 
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182 Chapter 6 ■ Differential Analysis of Fluid Flow

6.2 Conservation of Mass

As discussed in Section 5.2, conservation of mass requires that the mass, M, of a system
remain constant as the system moves through the flow field. In equation form this princi-
ple is expressed as

We found it convenient to use the control volume approach for fluid flow problems, with
the control volume representation of the conservation of mass written as

(6.19)

where this equation (commonly called the continuity equation) can be applied to a finite
control volume (cv). The first term on the left side of Eq. 6.19 represents the rate at which
the mass within the control volume is increasing, and the other terms represent the net rate
at which mass is flowing out through the control surface (rate of mass outflow � rate of
mass inflow). To obtain the differential form of the continuity equation, Eq. 6.19 is applied
to an infinitesimal control volume.

6.2.1 Differential Form of Continuity Equation

We will take as our control volume the small, stationary cubical element shown in Fig. 6.5a.
At the center of the element the fluid density is � and the velocity has components u, y,
and w. Since the element is small, the volume integral in Eq. 6.19 can be expressed as

(6.20)

The rate of mass flow through the surfaces of the element can be obtained by considering
the flow in each of the coordinate directions separately. For example, in Fig. 6.5b flow in

0
0t

 �
cv

 � dV �
0�

0t
 �x �y �z

0
0t

 �
cv

 � dV �a �outAoutVout �a �inAinVin � 0

DMsys

Dt
� 0

corresponds to the case in which the element is simply rotating as an undeformed block
(Eq. 6.12). In the remainder of this chapter we will see how the various kinematical rela-
tionships developed in this section play an important role in the development and subse-
quent analysis of the differential equations that govern fluid motion.
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F I G U R E  6.5 A differential element for the development of conservation of mass equation.
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6.2 Conservation of Mass 183

the x direction is depicted. If we let �u represent the x component of the mass rate of flow
per unit area at the center of the element, then on the right face

(6.21)

and on the left face

(6.22)

Note that we are really using a Taylor series expansion of �u and neglecting higher-order
terms such as (�x)2, (�x)3, and so on. This is indicated by the figure in the margin. When
the right-hand sides of Eqs. 6.21 and 6.22 are multiplied by the area �y �z, the rate at which
mass is crossing the right and left sides of the element is obtained, as illustrated in Fig. 6.5b.
When these two expressions are combined, the net rate of mass flowing from the element
through the two surfaces can be expressed as

(6.23)

For simplicity, only flow in the x direction has been considered in Fig. 6.5b, but, in
general, there will also be flow in the y and z directions. An analysis similar to the one used
for flow in the x direction shows that

(6.24)

and

(6.25)

Thus,

(6.26)

From Eqs. 6.19, 6.20, and 6.26 it now follows that the differential equation for the conser-
vation of mass is

(6.27)

As mentioned previously, this equation is also commonly referred to as the continuity
equation.

The continuity equation is one of the fundamental equations of fluid mechanics and,
as expressed in Eq. 6.27, is valid for steady or unsteady flow and compressible or incom-
pressible fluids. In vector notation Eq. 6.27 can be written as

(6.28)

Two special cases are of particular interest. For steady flow of compressible fluids
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or

(6.29)

This follows since by definition � is not a function of time for steady flow but could be a
function of position. For incompressible fluids the fluid density, �, is a constant throughout
the flow field so that Eq. 6.28 becomes

(6.30)

or

(6.31)

Equation 6.31 applies to both steady and unsteady flow of incompressible fluids. Note that
Eq. 6.31 is the same as that obtained by setting the volumetric dilatation rate (Eq. 6.9) equal
to zero. This result should not be surprising since both relationships are based on conser-
vation of mass for incompressible fluids.

6.2.2 Cylindrical Polar Coordinates

For some problems it is more convenient to express the various differential relationships in
cylindrical polar coordinates rather than Cartesian coordinates. As is shown in Fig. 6.6, with
cylindrical coordinates a point is located by specifying the coordinates r, �, and z. The coor-
dinate r is the radial distance from the z axis, � is the angle measured from a line parallel
to the x axis (with counterclockwise taken as positive), and z is the coordinate along the z
axis. The velocity components, as sketched in Fig. 6.6, are the radial velocity, yr, the tan-
gential velocity, y�, and the axial velocity, yz. Thus, the velocity at some arbitrary point P
can be expressed as

(6.32)

where êr, ê�, and êz are the unit vectors in the r, �, and z directions, respectively, as illus-
trated in Fig. 6.6. The use of cylindrical coordinates is particularly convenient when the
boundaries of the flow system are cylindrical. Several examples illustrating the use of cylin-
drical coordinates will be given in succeeding sections in this chapter.

The differential form of the continuity equation in cylindrical coordinates is

(6.33)
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F I G U R E  6.6 The representation of
velocity components in cylindrical polar coordinates.
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6.2 Conservation of Mass 185

This equation can be derived by following the same procedure used in the preceding sec-
tion. For steady, compressible flow

(6.34)

For incompressible fluids (for steady or unsteady flow)

(6.35)

6.2.3 The Stream Function

Steady, incompressible, plane, two-dimensional flow represents one of the simplest types
of flow of practical importance. By plane, two-dimensional flow we mean that there are
only two velocity components, such as u and v, when the flow is considered to be in the
x–y plane. For this flow the continuity equation, Eq. 6.31, reduces to

(6.36)

We still have two variables, u and v, to deal with, but they must be related in a special way
as indicated by Eq. 6.36. This equation suggests that if we define a function 	(x, y), called
the stream function, which, as shown by the figure in the margin, relates the velocities as

(6.37)

then the continuity equation is identically satisfied. This conclusion can be verified by sim-
ply substituting the expressions for u and v into Eq. 6.36 so that 

Thus, whenever the velocity components are defined in terms of the stream function we
know that conservation of mass will be satisfied. Of course, we still do not know what 	(x, y)
is for a particular problem, but at least we have simplified the analysis by having to determine
only one unknown function, 	(x, y), rather than the two functions, u(x, y) and v(x, y).

Another particular advantage of using the stream function is related to the fact that
lines along which 	 is constant are streamlines. Recall from Section 4.1.4 that streamlines
are lines in the flow field that are everywhere tangent to the velocities, as illustrated in
Fig. 6.7. It follows from the definition of the streamline that the slope at any point along a
streamline is given by

The change in the value of 	 as we move from one point (x, y) to a nearby point (x � dx,
y � dy) is given by the relationship:

Along a line of constant 	 we have d	 � 0 so that
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and, therefore, along a line of constant 	

which is the defining equation for a streamline. Thus, if we know the function 	(x, y) we
can plot lines of constant 	 to provide the family of streamlines helpful in visualizing the
pattern of flow. There are an infinite number of streamlines that make up a particular flow
field, since for each constant value assigned to 	 a streamline can be drawn.

The actual numerical value associated with a particular streamline is not of particu-
lar significance, but the change in the value of 	 is related to the volume rate of flow. Con-
sider two closely spaced streamlines, as shown in Fig. 6.8a. The lower streamline is desig-
nated 	 and the upper one 	 � d	. Let dq represent the volume rate of flow (per unit width
perpendicular to the x–y plane) passing between the two streamlines. Note that flow never
crosses streamlines, since by definition the velocity is tangent to the streamline. From con-
servation of mass we know that the inflow, dq, crossing the arbitrary surface AC of Fig.
6.8a must equal the net outflow through surfaces AB and BC. Thus,

dq � u dy � v dx

dy

dx
�

v
u
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F I G U R E  6.7 Velocity and velocity components along a streamline.
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F I G U R E  6.8 Flow between two streamlines.
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6.2 Conservation of Mass 187

or in terms of the stream function

(6.38)

The right-hand side of Eq. 6.38 is equal to d	 so that

(6.39)

Thus, the volume rate of flow, q, between two streamlines such as 	1 and 	2 of Fig. 6.8b
can be determined by integrating Eq. 6.39 to yield

(6.40)

If the upper streamline, 	2, has a value greater than the lower streamline, 	1, then q is pos-
itive, which indicates that the flow is from left to right. For 	1 > 	2 the flow is from right
to left. This is shown by the figure in the margin.

In cylindrical coordinates the continuity equation (Eq. 6.35) for incompressible, plane,
two-dimensional flow reduces to

(6.41)

and as show by the figure in the margin, the velocity components, vr and v�, can be related
to the stream function, 	(r, �), through the equations

(6.42)

Substitution of these expressions for the velocity components into Eq. 6.41 shows that the
continuity equation is identically satisfied. The stream function concept can be extended to
axisymmetric flows, such as flow in pipes or flow around bodies of revolution, and to two-
dimensional compressible flows. However, the concept is not applicable to general three-
dimensional flows.
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GIVEN The velocity components in a steady, two-
dimensional incompressible flow field are

 v � 4x

 u � 2y

Stream Function

FIND
(a) Determine the corresponding stream function and 

(b) Show on a sketch several streamlines. Indicate the direc-
tion of flow along the streamlines.

EXAMPLE 6.2

SOLUTION

The first of these equations can be integrated to give

where f1(x) is an arbitrary function of x. Similarly, from the
second equation

	 � �2x 
2 � f21y2

	 � y 2 � f11x2

(a) From the definition of the stream function (Eqs. 6.37)

and
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0	
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streamlines (for 	 � 0) can be expressed in the form

which we recognize as the equation of a hyperbola. Thus, the
streamlines are a family of hyperbolas with the 	 � 0 stream-
lines as asymptotes. Several of the streamlines are plotted in
Fig. E6.2. Since the velocities can be calculated at any point, the
direction of flow along a given streamline can be easily deduced.
For example, v � �∂	/∂x � 4x so that v � 0 if x � 0 and 
v 	 0 if x 	 0. The direction of flow is indicated in Fig. E6.2.

y2

	
�

x 
2

	/2
� 1

where f2(y) is an arbitrary function of y. It now follows that in
order to satisfy both expressions for the stream function

(Ans)

where C is an arbitrary constant.

COMMENT Since the velocities are related to the deriva-
tives of the stream function, an arbitrary constant can always
be added to the function, and the value of the constant is actu-
ally of no consequence. Usually, for simplicity, we set C � 0
so that for this particular example the simplest form for the
stream function is

(1) (Ans)

Either answer indicated would be acceptable.

(b) Streamlines can now be determined by setting 	 �
constant and plotting the resulting curve. With the preceding
expression for 	 (with C � 0) the value of 	 at the origin is
zero so that the equation of the streamline passing through
the origin (the 	 � 0 streamline) is

or

Other streamlines can be obtained by setting 	 equal to vari-
ous constants. It follows from Eq. 1 that the equations of these
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y ψ = 0

x

F I G U R E  E6.2

6.3 Conservation of Linear Momentum

To develop the differential, linear momentum equations we can start with the linear momen-
tum equation

(6.43)

where F is the resultant force acting on a fluid mass, P is the linear momentum defined as

and the operator D( )/Dt is the material derivative (see Section 4.2.1). In the last chapter it
was demonstrated how Eq. 6.43 in the form

(6.44)

could be applied to a finite control volume to solve a variety of flow problems. To obtain
the differential form of the linear momentum equation, we can either apply Eq. 6.43 to a
differential system, consisting of a mass, �m, or apply Eq. 6.44 to an infinitesimal control
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6.3 Conservation of Linear Momentum 189

volume, �V, which initially bounds the mass �m. It is probably simpler to use the system
approach since application of Eq. 6.43 to the differential mass, �m, yields

where �F is the resultant force acting on �m. Using this system approach, �m can be treated
as a constant so that

But DV/Dt is the acceleration, a, of the element. Thus,

(6.45)

which is simply Newton’s second law applied to the mass, �m. This is the same result that
would be obtained by applying Eq. 6.44 to an infinitesimal control volume (see Ref. 1).
Before we can proceed, it is necessary to examine how the force, �F, can be most conve-
niently expressed.

6.3.1 Description of Forces Acting on Differential Element

In general, two types of forces need to be considered: surface forces, which act on the sur-
face of the differential element, and body forces, which are distributed throughout the ele-
ment. For our purpose, the only body force, �Fb, of interest is the weight of the element,
which can be expressed as

(6.46)

where g is the vector representation of the acceleration of gravity. In component form

(6.47a)

(6.47b)

(6.47c)

where gx, gy, and gz are the components of the acceleration of gravity vector in the x, y,
and z directions, respectively.

Surface forces act on the element as a result of its interaction with its surroundings.
At any arbitrary location within a fluid mass, the force acting on a small area, �A, that lies
in an arbitrary surface can be represented by �Fs, as shown in Fig. 6.9. In general, �Fs will
be inclined with respect to the surface. The force �Fs can be resolved into three components,
�Fn, �F1, and �F2, where �Fn is normal to the area, �A, and �F1 and �F2 are parallel to the
area and orthogonal to each other. The normal stress, 
n, is defined as


n � lim
�AS0
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F I G U R E  6.9 Component of force acting on
an arbitrary differential area.
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and the shearing stresses are defined as

and

We will use 
 for normal stresses and � for shearing stresses. The intensity of the force
per unit area at a point in a body can thus be characterized by a normal stress and two shear-
ing stresses, if the orientation of the area is specified. For purposes of analysis it is usually
convenient to reference the area to the coordinate system. For example, for the rectangular
coordinate system shown in Fig. 6.10 we choose to consider the stresses acting on planes
parallel to the coordinate planes. On the plane ABCD of Fig. 6.10a, which is parallel to the
y–z plane, the normal stress is denoted 
xx and the shearing stresses are denoted as �xy and
�xz. To easily identify the particular stress component we use a double subscript notation.
The first subscript indicates the direction of the normal to the plane on which the stress acts,
and the second subscript indicates the direction of the stress. Thus, normal stresses have
repeated subscripts, whereas subscripts for the shearing stresses are always different.

It is also necessary to establish a sign convention for the stresses. We define the pos-
itive direction for the stress as the positive coordinate direction on the surfaces for which
the outward normal is in the positive coordinate direction. This is the case illustrated in Fig.
6.10a where the outward normal to the area ABCD is in the positive x direction. The pos-
itive directions for 
xx, �xy, and �xz are as shown in Fig. 6.10a. If the outward normal points
in the negative coordinate direction, as in Fig. 6.10b for the area A�B�C�D�, then the stresses
are considered positive if directed in the negative coordinate directions. Thus, the stresses
shown in Fig. 6.10b are considered to be positive when directed as shown. Note that pos-
itive normal stresses are tensile stresses; that is, they tend to “stretch” the material.

It should be emphasized that the state of stress at a point in a material is not com-
pletely defined by simply three components of a “stress vector.” This follows since any par-
ticular stress vector depends on the orientation of the plane passing through the point. How-
ever, it can be shown that the normal and shearing stresses acting on any plane passing
through a point can be expressed in terms of the stresses acting on three orthogonal planes
passing through the point (Ref. 2).

We now can express the surface forces acting on a small cubical element of fluid in
terms of the stresses acting on the faces of the element as shown in Fig. 6.11. It is expected

�2 � lim
�AS0

 
�F2

�A

�1 � lim
�AS0

 
�F1

�A
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F I G U R E  6.10 Double subscript notation for stresses.
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6.3 Conservation of Linear Momentum 191

that in general the stresses will vary from point to point within the flow field. Thus, we
will express the stresses on the various faces in terms of the corresponding stresses at the
center of the element of Fig. 6.11 and their gradients in the coordinate directions. For sim-
plicity, only the forces in the x direction are shown. Note that the stresses must be multi-
plied by the area on which they act to obtain the force. Summing all these forces in the x
direction yields

(6.48a)

for the resultant surface force in the x direction. In a similar manner the resultant surface
forces in the y and z directions can be obtained and expressed as

(6.48b)

and

(6.48c)

The resultant surface force can now be expressed as

(6.49)

and this force combined with the body force, �Fb, yields the resultant force, �F, acting on
the differential mass, �m. That is, �F � �Fs � �Fb.

6.3.2 Equations of Motion

The expressions for the body and surface forces can now be used in conjunction with Eq. 6.45
to develop the equations of motion. In component form, Eq. 6.45 can be written as

�Fz � �m az

�Fy � �m ay

�Fx � �m ax
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F I G U R E  6.11 Surface forces in the x direction acting on a fluid
element.
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where �m � � �x �y �z, and the acceleration components are given by Eq. 6.3. It now fol-
lows (using Eqs. 6.47 and 6.48 for the forces on the element) that

(6.50a)

(6.50b)

(6.50c)

where the element volume �x �y �z cancels out.
Equations 6.50 are the general differential equations of motion for a fluid. In fact, they

are applicable to any continuum (solid or fluid) in motion or at rest. However, before we can
use the equations to solve specific problems, some additional information about the stresses
must be obtained. Otherwise, we will have more unknowns (all of the stresses and velocities
and the density) than equations. It should not be too surprising that the differential analysis
of fluid motion is complicated. We are attempting to describe, in detail, complex fluid motion.
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6.4 Inviscid Flow

As discussed in Section 1.6, shearing stresses develop in a moving fluid because of the vis-
cosity of the fluid. We know that for some common fluids, such as air and water, the vis-
cosity is small, and therefore it seems reasonable to assume that under some circumstances
we may be able to simply neglect the effect of viscosity (and thus shearing stresses). Flow
fields in which the shearing stresses are assumed to be negligible are said to be inviscid,
nonviscous, or frictionless. These terms are used interchangeably. As discussed in Section
2.1, for fluids in which there are no shearing stresses, the normal stress at a point is inde-
pendent of direction—that is, 
xx � 
yy � 
zz. In this instance we define the pressure, p,
as the negative of the normal stress so that, as indicated by the figure in the margin,

The negative sign is used so that a compressive normal stress (which is what we expect in
a fluid) will give a positive value for p.

In Chapter 3 the inviscid flow concept was used in the development of the Bernoulli
equation, and numerous applications of this important equation were considered. In this sec-
tion we will again consider the Bernoulli equation and will show how it can be derived
from the general equations of motion for inviscid flow.

6.4.1 Euler’s Equations of Motion

For an inviscid flow in which all the shearing stresses are zero, and the normal stresses are
replaced by �p, the general equations of motion (Eqs. 6.50) reduce to

(6.51a)

(6.51b)

(6.51c) �gz �
0p

0z
� � a

0w

0t
� u 

0w

0x
� v 

0w

0y
� w 

0w

0z
b

 �gy �
0p

0y
� � a

0v

0t
� u 

0v

0x
� v 

0v

0y
� w 

0v

0z
b

 �gx �
0p

0x
� � a

0u

0t
� u 

0u

0x
� v 

0u

0y
� w 

0u

0z
b

�p � 
xx � 
yy � 
zz
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6.4 Inviscid Flow 193

These equations are commonly referred to as Euler’s equations of motion, named in honor
of Leonhard Euler, a famous Swiss mathematician who pioneered work on the relationship
between pressure and flow. In vector notation Euler’s equations can be expressed as

(6.52)

Although Eqs. 6.51 are considerably simpler than the general equations of motion,
Eqs. 6.50, they are still not amenable to a general analytical solution that would allow us
to determine the pressure and velocity at all points within an inviscid flow field. The main
difficulty arises from the nonlinear velocity terms (such as u ∂u/∂x, v ∂u/∂y), which appear
in the convective acceleration, or the term. Because of these terms, Euler’s equations
are nonlinear partial differential equations for which we do not have a general method for
solving. However, under some circumstances we can use them to obtain useful information
about inviscid flow fields. For example, as shown in the following section, we can integrate
Eq. 6.52 to obtain a relationship (the Bernoulli equation) among elevation, pressure, and
velocity along a streamline.

6.4.2 The Bernoulli Equation

In Section 3.2 the Bernoulli equation was derived by a direct application of Newton’s sec-
ond law to a fluid particle moving along a streamline. In this section we will again derive
this important equation, starting from Euler’s equations. Of course, we should obtain the
same result since Euler’s equations simply represent a statement of Newton’s second law
expressed in a general form that is useful for flow problems. We will restrict our attention
to steady flow so Euler’s equation in vector form becomes

(6.53)

We wish to integrate this differential equation along some arbitrary streamline (Fig. 6.12)
and select the coordinate system with the z axis vertical (with “up” being positive) so
that, as indicated by the figure in the margin, the acceleration of gravity vector can be
expressed as

where g is the magnitude of the acceleration of gravity vector. Also, it will be convenient
to use the vector identity

1V # �2V � 1
2 �1V # V2 � V � 1� � V2

g � �g �z

�g � �p � �1V # �2V

1V # �2V

�g � �p � � c
0V
0t

� 1V # �2V d

z

x

y

Streamline

ds

z

x

y

g

g � �g�z

� 0i � 0j � gk^ ^ ^

F I G U R E  6.12 The notation for
differential length along a streamline.
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Equation 6.53 can now be written in the form

and this equation can be rearranged to yield

We next take the dot product of each term with a differential length ds along a streamline
(Fig. 6.12). Thus,

(6.54)

Since ds has a direction along the streamline, the vectors ds and V are parallel. However,
as shown by the figure in the margin, the vector V � (� � V) is perpendicular to V (why?),
so it follows that

Recall also that the dot product of the gradient of a scalar and a differential length gives
the differential change in the scalar in the direction of the differential length. That is, with
ds � dx î � dy ĵ � dz k̂ we can write �p . ds � (∂p/∂x) dx � (∂p/∂y) dy � (∂p/∂z) dz � dp.
Thus, Eq. 6.54 becomes

(6.55)

where the change in p, V, and z is along the streamline. Equation 6.55 can now be inte-
grated to give

(6.56)

which indicates that the sum of the three terms on the left side of the equation must remain
a constant along a given streamline. Equation 6.56 is valid for both compressible and incom-
pressible inviscid flows, but for compressible fluids the variation in � with p must be spec-
ified before the first term in Eq. 6.56 can be evaluated.

For inviscid, incompressible fluids (commonly called ideal fluids) Eq. 6.56 can be
written as

(6.57)

and this equation is the Bernoulli equation used extensively in Chapter 3. It is often con-
venient to write Eq. 6.57 between two points (1) and (2) along a streamline and to express
the equation in the “head” form by dividing each term by g so that

(6.58)

It should be again emphasized that the Bernoulli equation, as expressed by Eqs. 6.57 and
6.58, is restricted to the following:

■ inviscid flow ■ incompressible flow

■ steady flow ■ flow along a streamline

p1

�
�

V2
1

2g
� z1 �

p2

�
�

V2
2

2g
� z2

p
�

�
V2

2
� gz � constant along a streamline

�dp

�
�

V 2

2
� gz � constant

dp

�
�

1

2
 d1V 22 � g dz � 0

3V � 1� � V2 4 # ds � 0

�p

�
# ds �

1

2
�1V 22 # ds � g�z # ds � 3V � 1� � V2 4 # ds

�p

�
�

1

2
 �1V 22 � g�z � V � 1� � V2

��g �z � �p �
�

2
 �1V # V2 � �1V � � � V2
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6.4 Inviscid Flow 195

You may want to go back and review some of the examples in Chapter 3 that illustrate the
use of the Bernoulli equation.

6.4.3 Irrotational Flow

If we make one additional assumption—that the flow is irrotational—the analysis of invis-
cid flow problems is further simplified. Recall from Section 6.1.3 that the rotation of a fluid
element is equal to 1

—

2(� � V), and an irrotational flow field is one for which � � V � 0.
Since the vorticity, �, is defined as � � V, it also follows that in an irrotational flow field
the vorticity is zero. The concept of irrotationality may seem to be a rather strange condi-
tion for a flow field. Why would a flow field be irrotational? To answer this question we
note that if 1

—

2(� � V) � 0, then each of the components of this vector, as are given by Eqs.
6.12, 6.13, and 6.14, must be equal to zero. Since these components include the various
velocity gradients in the flow field, the condition of irrotationality imposes specific rela-
tionships among these velocity gradients. For example, for rotation about the z axis to be
zero, it follows from Eq. 6.12 that

and, therefore,

(6.59)

Similarly from Eqs. 6.13 and 6.14

(6.60)

and

(6.61)

A general flow field would not satisfy these three equations. However, a uniform flow as
is illustrated in Fig. 6.13 does. Since u � U (a constant), v � 0, and w � 0, it follows that
Eqs. 6.59, 6.60, and 6.61 are all satisfied. Therefore, a uniform flow field (in which there
are no velocity gradients) is certainly an example of an irrotational flow.

For an inviscid fluid there are no shearing stresses—the only forces acting on a fluid
element are its weight and pressure forces. Because the weight acts through the element
center of gravity, and the pressure acts in a direction normal to the element surface, neither
of these forces can cause the element to rotate. Therefore, for an inviscid fluid, if some part
of the flow field is irrotational, the fluid elements emanating from this region will not take
on any rotation as they progress through the flow field.

0u

0z
�

0w

0x

0w

0y
�

0v

0z

0v

0x
�

0u

0y

�z �
1

2
 a

0v

0x
�

0u

0y
b � 0

u = U (constant)

v = 0

w = 0

x

y

z
F I G U R E  6.13 Uniform flow in the x

direction.
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6.4.4 The Bernoulli Equation for Irrotational Flow

In the development of the Bernoulli equation in Section 6.4.2, Eq. 6.54 was integrated along
a streamline. This restriction was imposed so the right side of the equation could be set
equal to zero; that is,

(since ds is parallel to V). However, for irrotational flow, � � V � 0, so the right side of
Eq. 6.54 is zero regardless of the direction of ds. We can now follow the same procedure
used to obtain Eq. 6.55, where the differential changes dp, d(V 2), and dz can be taken in
any direction. Integration of Eq. 6.55 again yields

(6.62)

where for irrotational flow the constant is the same throughout the flow field. Thus, for
incompressible, irrotational flow the Bernoulli equation can be written as

(6.63)

between any two points in the flow field. Equation 6.63 is exactly the same form as Eq.
6.58 but is not limited to application along a streamline.

6.4.5 The Velocity Potential

For an irrotational flow the velocity gradients are related through Eqs. 6.59, 6.60, and 6.61.
It follows that in this case the velocity components can be expressed in terms of a scalar
function  (x, y, z, t) as

(6.64)

where  is called the velocity potential. Direct substitution of these expressions for the
velocity components into Eqs. 6.59, 6.60, and 6.61 will verify that a velocity field defined
by Eqs. 6.64 is indeed irrotational. In vector form, Eq. 6.64 can be written as

(6.65)

so that for an irrotational flow the velocity is expressible as the gradient of a scalar function .
The velocity potential is a consequence of the irrotationality of the flow field, whereas

the stream function (see Section 6.2.3) is a consequence of conservation of mass. It is to
be noted, however, that the velocity potential can be defined for a general three-dimensional
flow, whereas the stream function is restricted to two-dimensional flows.

For an incompressible fluid, we know from conservation of mass that

and therefore for incompressible, irrotational flow (with V � �) it follows that

(6.66)

where �2( ) � � . �( ) is the Laplacian operator. In Cartesian coordinates

02

0x2
�

02

0y2
�

02

0z2
� 0

�2 � 0

� # V � 0

V � �

u �
0

0x
  v �

0

0y
  w �

0

0z

p1

�
�

V2
1

2g
� z1 �

p2

�
�

V2
2

2g
� z2

�  
dp

�
�

V 
2

2
� gz � constant

1V � � � V2 # ds � 0

196 Chapter 6 ■ Differential Analysis of Fluid Flow

c06DifferentialAnalysisofFluidFlow.qxd  9/24/10  1:38 PM  Page 196



6.4 Inviscid Flow 197

This differential equation arises in many different areas of engineering and physics and is
called Laplace’s equation. Thus, inviscid, incompressible, irrotational flow fields are gov-
erned by Laplace’s equation. This type of flow is commonly called a potential flow. To com-
plete the mathematical formulation of a given problem, boundary conditions have to be
specified. These are usually velocities specified on the boundaries of the flow field of inter-
est. It follows that if the potential function can be determined, then the velocity at all points
in the flow field can be determined from Eq. 6.64, and the pressure at all points can be
determined from the Bernoulli equation (Eq. 6.63). Although the concept of the velocity
potential is applicable to both steady and unsteady flow, we will confine our attention to
steady flow.

For some problems it will be convenient to use cylindrical coordinates, r, �, and z. In
this coordinate system the gradient operator is

(6.67)

so that

(6.68)

where  � (r, �, z). Because

(6.69)

it follows for an irrotational flow (with V � �)

(6.70)

Also, Laplace’s equation in cylindrical coordinates is

(6.71)
1
r
 

0
0r

 ar 
0

0r
b �

1

r 
2
 
02

0�2
�

02

0z2
� 0

vr �
0

0r
  v� �

1
r
 
0

0�
  vz �

0

0z

V � vrêr � v�ê� � vzêz

� �
0

0r
êr �

1
r
 
0

0�
ê� �

0

0z
êz

�1 2 �
0 1 2
0r

 êr �
1
r
 
0 1 2
0�

 ê� �
0 1 2
0z

 êz

GIVEN The two-dimensional flow of a nonviscous, in-
compressible fluid in the vicinity of the 90� corner of Fig.
E6.3a is described by the stream function

where 	 has units of m2/s when r is in meters. Assume the
fluid density is 103 kg/m3 and the x–y plane is horizontal—
that is, there is no difference in elevation between points (1)
and (2).

FIND
(a) Determine, if possible, the corresponding velocity
potential.

(b) If the pressure at point (1) on the wall is 30 kPa, what is
the pressure at point (2)? 

	 � 2r 
2 sin 2�

Velocity Potential and Inviscid Flow PressureEXAMPLE 6.3

(2)

0.5 m

θ

r

(1)

1 m

x

y

F I G U R E  E6.3a
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F I G U R E  E6.3b

SOLUTION

between any two points. Thus, between points (1) and (2) with
no elevation change

or

(3)

Since

it follows that for any point within the flow field

This result indicates that the square of the velocity at any point
depends only on the radial distance, r, to the point. Note that
the constant, 16, has units of s�2. Thus,

and

Substitution of these velocities into Eq. 3 gives

(Ans)

COMMENT The stream function used in this example
could also be expressed in Cartesian coordinates as

	 � 2r 2 sin 2� � 4r 2 sin � cos �

� 36 kPa

p2 � 30 � 103 N/m2 �
103 kg/m3

2
 116 m2/s2 � 4 m2/s22

V 2
2 � 116 s�22 10.5 m22 � 4 m2/s2

V 2
1 � 116 s�22 11 m22 � 16 m2/s2

 � 16r 2

 � 16r 21cos2 2� � sin2 2�2

 V 2 � 14r cos 2�22 � 1�4r sin 2�22

V 2 � v 2
r � v 2

�

p2 � p1 �
�

2
 1V 2

1 � V 2
22

p1

�
�

V 2
1

2g
�

p2

�
�

V 2
2

2g

(a) The radial and tangential velocity components can be
obtained from the stream function as (see Eq. 6.42)

and

Since

it follows that

and therefore by integration

(1)

where f1(�) is an arbitrary function of �. Similarly

and integration yields

(2)

where f2(r) is an arbitrary function of r. To satisfy both Eqs. 1
and 2, the velocity potential must have the form

(Ans)

where C is an arbitrary constant. As is the case for stream
functions, the specific value of C is not important, and it is
customary to let C � 0 so that the velocity potential for this
corner flow is

(Ans)

COMMENT In the statement of this problem it was
implied by the wording “if possible” that we might not be able
to find a corresponding velocity potential. The reason for this
concern is that we can always define a stream function for
two-dimensional flow, but the flow must be irrotational if
there is a corresponding velocity potential. Thus, the fact that
we were able to determine a velocity potential means that the
flow is irrotational. Several streamlines and lines of constant 
are plotted in Fig. E6.3b. These two sets of lines are orthogo-
nal. The reason why streamlines and lines of constant  are al-
ways orthogonal is explained in Section 6.5.

(b) Because we have an irrotational flow of a nonviscous,
incompressible fluid, the Bernoulli equation can be applied

 � 2r 2 cos 2�

 � 2r 2 cos 2� � C

 � 2r 2 cos 2� � f21r2

v� �
1
r
 
0

0�
� �4r sin 2�

 � 2r 
2 cos 2� � f11�2

0

0r
� 4r cos 2�

vr �
0

0r

v� � �
0	

0r
� �4r sin 2�

vr �
1
r
 
0	

0�
� 4r cos 2�

y Streamline (    = constant)ψ

Equipotential
line

(    = constant)φ

x
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6.5 Some Basic, Plane Potential Flows 199

or

since x � r cos � and y � r sin �. However, in the
cylindrical polar form the results can be generalized
to describe flow in the vicinity of a corner of angle
� (see Fig. E6.3c) with the equations

and

where A is a constant.

 � Ar 
�/� cos 

��

�

	 � Ar 
�/� sin  

��

�

	 � 4xy

F I G U R E  E6.3c

α

α

6.5 Some Basic, Plane Potential Flows

A major advantage of Laplace’s equation is that it is a linear partial differential equation.
Because it is linear, various solutions can be added to obtain other solutions—that is, if
1(x, y, z) and 2(x, y, z) are two solutions to Laplace’s equation, then 3 � 1 � 2 is
also a solution. The practical implication of this result is that if we have certain basic solu-
tions we can combine them to obtain more complicated and interesting solutions. In this
section several basic velocity potentials, which describe some relatively simple flows, will
be determined. In the next section these basic potentials will be combined to represent more
complicated flows.

For simplicity, only plane (two-dimensional) flows will be considered. In this case,
as shown by the figures in the margin, for Cartesian coordinates

(6.72)

or for cylindrical coordinates

(6.73)

Since we can define a stream function for plane flow, we can also let

(6.74)

or

(6.75)

where the stream function was defined previously in Eqs. 6.37 and 6.42. We know that by
defining the velocities in terms of the stream function, conservation of mass is identically
satisfied. If we now impose the condition of irrotationality, it follows from Eq. 6.59 that

0u

0y
�

0v

0x

vr �
1
r
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0r

u �
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  v � �
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0x

vr �
0

0r
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1
r
 
0
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u �
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0x
  v �
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0y

V
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u = x
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∂

v = y
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∂
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1__
r

∂φ
∂r
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and in terms of the stream function

or

Thus, for a plane, irrotational flow we can use either the velocity potential or the
stream function—both must satisfy Laplace’s equation in two dimensions. It is apparent
from these results that the velocity potential and the stream function are somehow related.
We have previously shown that lines of constant 	 are streamlines; that is,

(6.76)

The change in  as we move from one point (x, y) to a nearby point (x � dx, y � dy) is
given by the relationship:

Along a line of constant  we have d � 0 so that

(6.77)

A comparison of Eqs. 6.76 and 6.77 shows that lines of constant  (called equipotential
lines) are orthogonal to lines of constant 	 (streamlines) at all points where they intersect.
(Recall, as shown by the figure in the margin, that two lines are orthogonal if the product
of their slopes is minus one.) For any potential flow field a “flow net” can be drawn that
consists of a family of streamlines and equipotential lines. The flow net is useful in visu-
alizing flow patterns and can be used to obtain graphical solutions by sketching in stream-
lines and equipotential lines and adjusting the lines until the lines are approximately orthog-
onal at all points where they intersect. An example of a flow net is shown in Fig. 6.14.
Velocities can be estimated from the flow net, since the velocity is inversely proportional

dy

dx
`
along �constant

� �
u

v

d �
0

0x
 dx �

0

0y
 dy � u dx � v dy
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�
v
u

02	

0x 
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0y2
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0
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0
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y

x

a

a

b b

a_
b

b_
a×(–   ) = –1

Streamline
(    = constant)ψ

d2 < d
V2 > V

V2

V1V

V

d

d
d1 > d

V1 < V

Equipotential line
(   = constant)φ

F I G U R E  6.14 Flow net for a 90� bend.
(From Ref. 3, used by permission.)
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6.5 Some Basic, Plane Potential Flows 201

to the streamline spacing, as shown by the figure in the margin. Thus, for example, from
Fig. 6.14 we can see that the velocity near the inside corner will be higher than the velocity
along the outer part of the bend.

6.5.1 Uniform Flow

The simplest plane flow is one for which the streamlines are all straight and parallel, and
the magnitude of the velocity is constant. This type of flow is called a uniform flow. For
example, consider a uniform flow in the positive x direction as illustrated in Fig. 6.15a. In
this instance, u � U and v � 0, and in terms of the velocity potential

These two equations can be integrated to yield

where C is an arbitrary constant, which can be set equal to zero. Thus, for a uniform flow
in the positive x direction

(6.78)

The corresponding stream function can be obtained in a similar manner, as

and, therefore,

(6.79)

These results can be generalized to provide the velocity potential and stream function
for a uniform flow at an angle � with the x axis, as in Fig. 6.15b. For this case

(6.80)

and

(6.81)

6.5.2 Source and Sink

Consider a fluid flowing radially outward from a line through the origin perpendicular to
the x–y plane as shown in Fig. 6.16. Let m be the volume rate of flow emanating from the

	 � U1y cos � � x sin �2

 � U1x cos � � y sin �2

	 � Uy

0	

0y
� U  

0	

0x
� 0

 � Ux

 � Ux � C

0

0x
� U  

0

0y
� 0

y

x

U

φ =   1φ φ =   2φ

=    1

=    2

=    3

=    4

y

x

U

α

=    1
=    2

=    3
=    4

φ =   1φ

φ =   2φ

(a) (b)

F I G U R E  6.15 Uniform flow: (a) in the x direction and 
(b) in an arbitrary direction, �.

Streamwise acceleration

�ψ

Streamwise deceleration
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line (per unit length), and therefore to satisfy conservation of mass

or

Also, because the flow is a purely radial flow, v� � 0, the corresponding velocity potential
can be obtained by integrating the equations

It follows that

(6.82)

If m is positive, the flow is radially outward, and the flow is considered to be a source flow.
If m is negative, the flow is toward the origin, and the flow is considered to be a sink flow.
The flowrate, m, is the strength of the source or sink.

As shown by the figure in the margin, at the origin where r � 0 the velocity becomes
infinite, which is, of course, physically impossible. Thus, sources and sinks do not really
exist in real flow fields, and the line representing the source or sink is a mathematical sin-
gularity in the flow field. However, some real flows can be approximated at points away
from the origin by using sources or sinks. Also, the velocity potential representing this hypo-
thetical flow can be combined with other basic velocity potentials to describe approximately
some real flow fields. This idea is discussed further in Section 6.6.

The stream function for the source can be obtained by integrating the relationships

to yield

(6.83)

It is apparent from Eq. 6.83 that the streamlines (lines of 	 � constant) are radial lines,
and from Eq. 6.82 the equipotential lines (lines of  � constant) are concentric circles cen-
tered at the origin.
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= constantφ
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F I G U R E  6.16 The streamline pattern for a
source.
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6.5 Some Basic, Plane Potential Flows 203

6.5.3 Vortex

We next consider a flow field in which the streamlines are concentric circles—that is, we
interchange the velocity potential and stream function for the source. Thus, let

(6.84)

and
(6.85)

where K is a constant. In this case the streamlines are concentric circles as illustrated in
Fig. 6.17, with vr � 0 and

(6.86)v� �
1
r
 
0

0�
� �

0	

0r
�

K
r

	 � �K ln r

 � K�

φ = constant

θ

ψ = constant
y

x

r

vθ

F I G U R E  6.17 The streamline pattern for a
vortex.

GIVEN A nonviscous, incompressible fluid flows between
wedge-shaped walls into a small opening as shown in Fig. E6.4.
The velocity potential (in ft2/s), which approximately describes
this flow, is

FIND Determine the volume rate of flow (per unit length)
into the opening.

 � �2 ln r

Potential Flow—SinkEXAMPLE 6.4

SOLUTION

COMMENT Note that the radius R is arbitrary since the
flowrate crossing any curve between the two walls must be
the same. The negative sign indicates that the flow is toward
the opening, that is, in the negative radial direction.

The components of velocity are

which indicates we have a purely radial flow. The flowrate per
unit width, q, crossing the arc of length R�/6 can thus be ob-
tained by integrating the expression

(Ans)

q � �
�/6

0

 vrR d� � ��
�/6

0
  a

2

R
b R d� � �

�

3
� �1.05 ft2/s

vr �
0

0r
� �

2
r
  v� �

1
r
 
0

0�
� 0

R

θr

vr

π_
6

x

y

F I G U R E  E6.4
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This result indicates that the tangential velocity varies inversely with the distance from the
origin, as shown in the figure in the margin, with a singularity occurring at r � 0 (where
the velocity becomes infinite).

It may seem strange that this vortex motion is irrotational (and it is since the flow
field is described by a velocity potential). However, it must be recalled that rotation refers
to the orientation of a fluid element and not the path followed by the element. Thus, for an
irrotational vortex, if a pair of small sticks were placed in the flow field at location A, as
indicated in Fig. 6.18a, the sticks would rotate as they move to location B. One of the sticks,
the one that is aligned along the streamline, would follow a circular path and rotate in a
counterclockwise direction. The other stick would rotate in a clockwise direction due to the
nature of the flow field—that is, the part of the stick nearest the origin moves faster than
the opposite end. Although both sticks are rotating, the average angular velocity of the two
sticks is zero since the flow is irrotational.

If the fluid were rotating as a rigid body, such that v� � K1r where K1 is a constant,
the sticks similarly placed in the flow field would rotate as is illustrated in Fig. 6.18b. This
type of vortex motion is rotational and cannot be described with a velocity potential. The
rotational vortex is commonly called a forced vortex, whereas the irrotational vortex is usu-
ally called a free vortex. The swirling motion of the water as it drains from a bathtub is
similar to that of a free vortex, whereas the motion of a liquid contained in a tank that is
rotated about its axis with angular velocity � corresponds to a forced vortex.

204 Chapter 6 ■ Differential Analysis of Fluid Flow

1_
r

v  ~θ v  ~ rθ
B

A

r

(a) (b)

r

A

B

F I G U R E  6.18 Motion of fluid element from A to B: (a) for an
irrotational (free) vortex and (b) for a rotational (forced) vortex.

r

vθ

1__
r

vθ ~

F l u i d s  i n  t h e  N e w s

Some hurricane facts One of the most interesting, yet poten-
tially devastating, naturally occurring fluid flow phenomena is
a hurricane. Broadly speaking a hurricane is a rotating mass of
air circulating around a low-pressure central core. In some
respects the motion is similar to that of a free vortex. The
Caribbean and Gulf of Mexico experience the most hurricanes,
with the official hurricane season being from June 1 to Novem-
ber 30. Hurricanes are usually 300 to 400 miles wide and are
structured around a central eye in which the air is relatively
calm. The eye is surrounded by an eye wall, which is the region
of strongest winds and precipitation. As one goes from the eye
wall to the eye, the wind speeds decrease sharply and within the

eye the air is relatively calm and clear of clouds. However, in the
eye the pressure is at a minimum and may be 10% less than
standard atmospheric pressure. This low pressure creates strong
downdrafts of dry air from above. Hurricanes are classified into
five categories based on their wind speeds:

Category one—74–95 mph

Category two—96–110 mph

Category three—111–130 mph

Category four—131–155 mph

Category five—greater than 155 mph

(See Problem 6.36.)
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6.5 Some Basic, Plane Potential Flows 205

A combined vortex is one with a forced vortex as a central core and a velocity distri-
bution corresponding to that of a free vortex outside the core. Thus, for a combined vortex

(6.87)

and

(6.88)

where K and � are constants and r0 corresponds to the radius of the central core. The
pressure distribution in both the free and the forced vortex was considered previously in
Example 3.3.

A mathematical concept commonly associated with vortex motion is that of circu-
lation. The circulation, , is defined as the line integral of the tangential component of
the velocity taken around a closed curve in the flow field. In equation form,  can be
expressed as

(6.89)

where the integral sign means that the integration is taken around a closed curve, C, in the
counterclockwise direction, and ds is a differential length along the curve as illustrated in
Fig. 6.19. For an irrotational flow, V � � so that V . ds � � . ds � d and, therefore,

This result indicates that for an irrotational flow the circulation will generally be zero. How-
ever, if there are singularities enclosed within the curve, the circulation may not be zero.
For example, for the free vortex with y� � K/r the circulation around the circular path of
radius r shown in Fig. 6.20 is

 � �
2�

0

 
K

r
 1r d�2 � 2�K

 �  �
C
 d � 0

 �  �
C
 V # ds

v� �
K

r
  r 7 r0

v� � �r  r � r0

ds
VArbitrary

curve C

F I G U R E  6.19 The notation for determining
circulation around closed curve C.

θ

C
D

A

B
ds

vθ

r

θd

F I G U R E  6.20 Circulation around various paths
in a free vortex.

f
f
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which shows that the circulation is nonzero and the constant K � /2�. However, the cir-
culation around any path that does not include the singular point at the origin will be zero.
This can be easily confirmed for the closed path ABCD of Fig. 6.20 by evaluating the cir-
culation around that path.

The velocity potential and stream function for the free vortex are commonly expressed
in terms of the circulation as

(6.90)

and

(6.91)

The concept of circulation is often useful when evaluating the forces developed on bodies
immersed in moving fluids. This application will be considered in Section 6.6.2.

	 � �


2�
 ln r

 �


2�
 �

206 Chapter 6 ■ Differential Analysis of Fluid Flow

V6.4 Vortex in a
beaker

GIVEN A liquid drains from a large tank through a small
opening as illustrated in Fig. E6.5. A vortex forms whose ve-
locity distribution away from the tank opening can be approx-
imated as that of a free vortex having a velocity potential

FIND Determine an expression relating the surface shape
to the strength of the vortex as specified by the circulation .

 �


2�
 �

Potential Flow—Free VortexEXAMPLE 6.5

SOLUTION

COMMENT The negative sign indicates that the surface
falls as the origin is approached as shown in Fig. E6.5. This
solution is not valid very near the origin since the predicted
velocity becomes excessively large as the origin is approached.

Since the free vortex represents an irrotational flow field, the
Bernoulli equation

can be written between any two points. If the points are se-
lected at the free surface, p1 � p2 � 0, so that

(1)

where the free surface elevation, zs, is measured relative to a
datum passing through point (1).

The velocity is given by the equation

We note that far from the origin at point (1) V1 � v� � 0 so
that Eq. 1 becomes

(Ans)

which is the desired equation for the surface profile. 

zs � �
2

8� 
2r 2g

v� �
1
r
 
0

0�
�



2�r

V 2
1

2g
� zs �

V 2
2

2g

p1

�
�

V 2
1

2g
� z1 �

p2

�
�

V 2
2

2g
� z2

F I G U R E  E6.5a

z

r

y

x zs

p = patm

(2)

(1)

F I G U R E  E6.5b
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6.5 Some Basic, Plane Potential Flows 207

6.5.4 Doublet

The final, basic potential flow to be considered is one that is formed by combining a source
and sink in a special way. Consider the equal strength, source–sink pair of Fig. 6.21. The
combined stream function for the pair is

which can be rewritten as

(6.92)

From Fig. 6.21 it follows that

and

These results substituted into Eq. 6.92 give

so that

(6.93)

The figure in the margin shows typical streamlines for this flow. For small values of the
distance a

(6.94)

since the tangent of an angle approaches the value of the angle for small angles.
The so-called doublet is formed by letting the source and sink approach one another

(a S 0) while increasing the strength m (m S �) so that the product ma/� remains con-
stant. In this case, since r/(r 2 � a2) S 1/r, Eq. 6.94 reduces to

(6.95)	 � �
K sin �

r

	 � �
m

2�
 
2ar sin �

r 2 � a2
� �

mar sin �

�1r 2 � a22

	 � �
m

2�
  tan 

�1 a
2ar sin �

r 2 � a2
b

 tan a�
2�	

m
b �

2ar sin �

r 2 � a2

 tan �2 �
r sin �

r cos � � a

 tan �1 �
r sin �

r cos � � a

tan a�
2�	

m
b �  tan 1�1 � �22 �

 tan �1 �  tan �2

1 �  tan �1 tan �2

	 � �
m

2�
 1�1 � �22

P
y

x

θ2
θ1θ

r2

r1
r

SinkSource

a a

F I G U R E  6.21 The combination of
a source and sink of equal strength located along
the x axis.

x

y

Source
Sink
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where K, a constant equal to ma/�, is called the strength of the doublet. The correspond-
ing velocity potential for the doublet is

(6.96)

Plots of lines of constant 	 reveal that streamlines for a doublet are circles through the ori-
gin tangent to the x axis as shown in Fig. 6.22. Just as sources and sinks are not physically
realistic entities, neither are doublets. However, the doublet, when combined with other basic
potential flows, provides a useful representation of some flow fields of practical interest. For

 �
K cos �

r

208 Chapter 6 ■ Differential Analysis of Fluid Flow

x

y

F I G U R E  6.22 Streamlines for a
doublet.

TA B L E 6 . 1

Summary of Basic, Plane Potential Flows

Description of Velocity
Flow Field Velocity Potential Stream Function Componentsa

Uniform flow at 
angle with the x
axis 1see Fig.
6.15b2

Source or sink 
1see Fig. 6.162

source 
sink

Free vortex 
1see Fig. 6.172

counterclockwise 
motion 

clockwise motion

Doublet 
1see Fig. 6.222

aVelocity components are related to the velocity potential and stream function through the relationships:

.u �
0f
0x

�
0c
0y

  v �
0f
0y

� �
0c
0x

  vr �
0f
0r

�
1

r
 
0c
0u

  vu �
1

r
 
0f
0u

� �
0c
0r

v� � �
K sin �

r 2

vr � �
K cos u

r 2c � �
K sin u

r
 f �

K cos u
r

 

 6 0

 7 0

m 6 0
m 7 0

v � U sin aa
u � U cos ac � U1 y cos a � x sin a2f � U1x cos a � y sin a2

v� �


2�r

vr � 0
	 � �



2�
 ln rf �



2p
 u

vu � 0

vr �
m

2pr
c �

m

2p
 uf �

m

2p
 ln r
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6.6 Superposition of Basic, Plane Potential Flows 209

6.6 Superposition of Basic, Plane Potential Flows

As was discussed in the previous section, potential flows are governed by Laplace’s equa-
tion, which is a linear partial differential equation. It therefore follows that the various
basic velocity potentials and stream functions can be combined to form new potentials and
stream functions. (Why is this true?) Whether such combinations yield useful results
remains to be seen. It is to be noted that any streamline in an inviscid flow field can be
considered as a solid boundary, as the conditions along a solid boundary and a streamline
are similar—that is, there is no flow through the boundary or the streamline. Thus, if we
can combine some of the basic velocity potentials or stream functions to yield a stream-
line that corresponds to a particular body shape of interest, that combination can be used
to describe in detail the flow around that body. This method of solving some interesting
flow problems, commonly called the method of superposition, is illustrated in the follow-
ing three sections.

6.6.1 Source in a Uniform Stream—Half-Body

Consider the superposition of a source and a uniform flow as shown in Fig. 6.23a. The
resulting stream function is

(6.97)

and the corresponding velocity potential is

(6.98)

It is clear that at some point along the negative x axis the velocity due to the source will just
cancel that due to the uniform flow and a stagnation point will be created. For the source alone

vr �
m

2�r

 � Ur cos � �
m

2�
 ln r

 � Ur sin � �
m

2�
 �

 	 � 	uniform flow � 	source

example, we will determine in Section 6.6.2 that the combination of a uniform flow and a
doublet can be used to represent the flow around a circular cylinder. Table 6.1 provides a
summary of the pertinent equations for the basic, plane potential flows considered in the
preceding sections.

F I G U R E  6.23 The flow around a half-body: (a) superposition of a source and a uniform
flow; (b) replacement of streamline with solid boundary to form half-body.C � PbU

U

Stagnation
point

y

x

r

θ

Source

b

bπ

bπ

b

Stagnation point

 =    bUψ π

(b)(a)

V6.5 Half-body
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so that the stagnation point will occur at x � �b where

or

(6.99)

The value of the stream function at the stagnation point can be obtained by evaluat-
ing 	 at r � b and � � �, which yields from Eq. 6.97

Since m/2 � �bU (from Eq. 6.99), it follows that the equation of the streamline passing
through the stagnation point is

or

(6.100)

where � can vary between 0 and 2�. A plot of this streamline is shown in Fig. 6.23b. If
we replace this streamline with a solid boundary, as indicated in Fig. 6.23b, then it is clear
that this combination of a uniform flow and a source can be used to describe the flow around
a streamlined body placed in a uniform stream. The body is open at the downstream end
and thus is called a half-body. Other streamlines in the flow field can be obtained by set-
ting 	 � constant in Eq. 6.97 and plotting the resulting equation. A number of these stream-
lines are shown in Fig. 6.23b. Although the streamlines inside the body are shown, they are
actually of no interest in this case, as we are concerned with the flow field outside the body.
It should be noted that the singularity in the flow field (the source) occurs inside the body,
and there are no singularities in the flow field of interest (outside the body).

The width of the half-body asymptotically approaches 2�b � m/U. Thus, as shown
by the figure in the margin, for a given free stream velocity, U, the width of the half-body
increases as the source strength, m, increases. This follows from Eq. 6.100, which can be
written as

so that as � S 0 or � S 2� the half-width approaches 
b�. With the stream function (or
velocity potential) known, the velocity components at any point can be obtained. For the
half-body, using the stream function given by Eq. 6.97,

and

Thus, the square of the magnitude of the velocity, V, at any point is

V 2 � v2
r � v2

� � U 2 �
Um cos �

�r
� a

m

2�r
b

2

v� � �
0	

0r
� �U sin �

vr �
1
r
 
0	

0�
� U cos � �

m

2�r

y � b1� � �2

r �
b1� � �2

 sin �

�bU � Ur sin � � bU�

	stagnation �
m

2

b �
m

2�U

U �
m

2�b

210 Chapter 6 ■ Differential Analysis of Fluid Flow

Increasing 
        m

U = constant
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6.6 Superposition of Basic, Plane Potential Flows 211

and since b � m/2�U

(6.101)

With the velocity known, the pressure at any point can be determined from the Bernoulli
equation, which can be written between any two points in the flow field since the flow is
irrotational. Thus, applying the Bernoulli equation between a point far from the body, where
the pressure is p0 and the velocity is U, and some arbitrary point with pressure p and veloc-
ity V, it follows that

(6.102)

where elevation changes have been neglected. Equation 6.101 can now be substituted into
Eq. 6.102 to obtain the pressure at any point in terms of the reference pressure, p0, and
velocity, U.

This relatively simple potential flow provides some useful information about the flow
around the front part of a streamlined body, such as a bridge pier or strut placed in a uni-
form stream. An important point to be noted is that the velocity tangent to the surface of
the body is not zero; that is, the fluid “slips” by the boundary. This result is a consequence
of neglecting viscosity, the fluid property that causes real fluids to stick to the boundary,
thus creating a “no-slip” condition. All potential flows differ from the flow of real fluids in
this respect and do not accurately represent the velocity very near the boundary. However,
outside this very thin boundary layer the velocity distribution will generally correspond to
that predicted by potential flow theory if flow separation does not occur. (See Section 9.2.6.)
Also, the pressure distribution along the surface will closely approximate that predicted from
the potential flow theory, as the boundary layer is thin and there is little opportunity for the
pressure to vary through the thin layer. In fact, as discussed in more detail in Chapter 9,
the pressure distribution obtained from the potential flow theory is used in conjunction with
the viscous flow theory to determine the nature of flow within the boundary layer.

p0 � 1
2 �U 2 � p � 1

2 �V 2

V 2 � U 2 a1 � 2 
b
r

  cos � �
b2

r 2b

GIVEN A 40-mi/hr wind blows toward a hill arising from a
plain that can be approximated with the top section of a half-body
as illustrated in Fig. E6.6a. The height of the hill approaches
200 ft as shown. Assume an air density of 0.00238 slugs/ft3.

FIND
(a) What is the magnitude of the air velocity at a point on the
hill directly above the origin [point (2)]? 

(b) What is the elevation of point (2) above the plain and
what is the difference in pressure between point (1) on the
plain far from the hill and point (2)? 

SOLUTION

Potential Flow—Half-Body

At point (2), � � �/2, and since this point is on the surface
(Eq. 6.100),

(1)r �
b1� � �2

 sin �
�

�b

2

EXAMPLE 6.6

(a) The velocity is given by Eq. 6.101 as

V2 � U2 a1 � 2 
b

r
 cos � �

b2

r 
2b

F I G U R E  E6.6a

b

r

x

y

θ

40 mi/hr

(1) (3)

(2)
200 ft
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The half-body is a body that is “open” at one end. To study the flow around a closed body,
a source and a sink of equal strength can be combined with a uniform flow. These bodies
have an oval shape and are termed Rankine ovals.

6.6.2 Flow around a Circular Cylinder

A uniform flow in the positive x direction combined with a doublet can be used to repre-
sent flow around a circular cylinder. This combination gives for the stream function

(6.103)

and for the velocity potential

(6.104) � Ur cos � �
K cos �

r

	 � Ur sin � �
K sin �

r

212 Chapter 6 ■ Differential Analysis of Fluid Flow

Thus,

and the magnitude of the velocity at (2) for a 40-mi/hr
approaching wind is

(Ans)

(b) The elevation at (2) above the plain is given by Eq. 1 as

Since the height of the hill approaches 200 ft and this height is
equal to �b, it follows that

(Ans)

From the Bernoulli equation (with the y axis the vertical axis)

so that

and with

and

V2 � 147.4 mi/hr2 a
5280 ft/mi

3600 s/hr
b � 69.5 ft/s

V1 � 140 mi/hr2 a
5280 ft/mi

3600 s/hr
b � 58.7 ft/s

p1 � p2 �
�

2
 1V2

2 � V2
12 � �

 
1y2 � y12

p1

�
�

V2
1

2g
� y1 �

p2

�
�

V2
2

2g
� y2

y2 �
200 ft

2
� 100 ft

y2 �
�b

2

V2 � a1 �
4

� 
2b

1/2

 140 mi/hr2 � 47.4 mi/hr

 � U2 a1 �
4

�2b

 V2
2 � U2 c1 �

b2

1�b/222
d

it follows that

(Ans)

COMMENTS This result indicates that the pressure on
the hill at point (2) is slightly lower than the pressure on the
plain at some distance from the base of the hill with a 0.0533-
psi difference due to the elevation increase and a 0.0114-psi
difference due to the velocity increase.

By repeating the calculations for various values of the
upstream wind speed, U, the results shown in Fig. E6.6b
are obtained. Note that as the wind speed increases the
pressure difference increases from the calm conditions of
p1 � p2 � 0.0533 psi.

The maximum velocity along the hill surface does not occur
at point (2) but further up the hill at � � 63�. At this point 
Vsurface � 1.26U (Problem 6.47). The minimum velocity (V � 0)
and maximum pressure occur at point (3), the stagnation point.

� 9.31 lb/ft2 � 0.0647 psi

 � 10.00238 slugs/ft32 132.2 ft/s22 1100 ft � 0 ft2

 p1 � p2 �
10.00238 slugs/ft32

2
 3 169.5 ft/s22 � 158.7 ft/s22 4

F I G U R E  E6.6b
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(40 mph, 0.0647 psi)
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6.6 Superposition of Basic, Plane Potential Flows 213

In order for the stream function to represent flow around a circular cylinder, it is necessary
that 	 � constant for r � a, where a is the radius of the cylinder. Because Eq. 6.103 can
be written as

it follows that 	 � 0 for r � a if

which indicates that the doublet strength, K, must be equal to Ua2. Thus, the stream func-
tion for flow around a circular cylinder can be expressed as

(6.105)

and the corresponding velocity potential is

(6.106)

A sketch of the streamlines for this flow field is shown in Fig. 6.24.
The velocity components can be obtained from either Eq. 6.105 or 6.106 as

(6.107)

and

(6.108)

On the surface of the cylinder (r � a) it follows from Eqs. 6.107 and 6.108 that vr � 0 and

As shown by the figure in the margin, the maximum velocity occurs at the top and bottom
of the cylinder (� � 
 �/2) and has a magnitude of twice the upstream velocity, U. As we
move away from the cylinder along the ray � � �/2 the velocity varies, as illustrated in
Fig. 6.24.

v�s � �2U sin �

v� �
1
r

0

0�
� �

0	

0r
� �U a1 �

a2

r 
2b sin �

vr �
0

0r
�

1
r

0	

0�
� U a1 �

a2

r 
2b cos �

 � Ur a1 �
a2

r2b cos �

	 � Ur a1 �
a2

r2b sin �

U �
K

a 
2 � 0

	 � aU �
K

r2b r sin �V6.6 Circular
cylinder

F I G U R E  6.24 Flow around a
circular cylinder.

a

r

U

θ

Ψ = 0
2U

0
0

1

2

θ

± π

θsυ
U

± π
2

V6.7 Ellipse
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The pressure distribution on the cylinder surface is obtained from the Bernoulli equation
written from a point far from the cylinder where the pressure is p0 and the velocity is U so that

where ps is the surface pressure. Elevation changes are neglected. Because v�s � �2U sin �,
the surface pressure can be expressed as

(6.109)

A comparison of this theoretical, symmetrical pressure distribution expressed in dimension-
less form with a typical measured distribution is shown in Fig. 6.25, which clearly reveals
that only on the upstream part of the cylinder is there approximate agreement between the
potential flow and the experimental results. Because of the viscous boundary layer that
develops on the cylinder, the main flow separates from the surface of the cylinder, leading
to the large difference between the theoretical, frictionless fluid solution and the experimen-
tal results on the downstream side of the cylinder (see Chapter 9).

The resultant force (per unit length) developed on the cylinder can be determined by
integrating the pressure over the surface. From Fig. 6.26 it can be seen that

(6.110)

and

(6.111)

where Fx is the drag (force parallel to direction of the uniform flow) and Fy is the lift (force
perpendicular to the direction of the uniform flow). Substitution for ps from Eq. 6.109 into
these two equations, and subsequent integration, reveals that Fx � 0 and Fy � 0.

These results indicate that both the drag and the lift as predicted by potential theory for
a fixed cylinder in a uniform stream are zero. Since the pressure distribution is symmetrical

Fy � ��
2�

0

 ps sin � a d�

Fx � ��
2�

0

 ps cos � a d�

ps � p0 � 1
2 �U211 � 4 sin 

2 �2

p0 � 1
2 �U 

2 � ps � 1
2 �v2

�s
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F I G U R E  6.25 A compari-
son of theoretical (inviscid) pressure distri-
bution on the surface of a circular cylinder
with typical experimental distribution.
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6.6 Superposition of Basic, Plane Potential Flows 215

around the cylinder, this is not really a surprising result. However, we know from experience
that there is a significant drag developed on a cylinder when it is placed in a moving fluid.
This discrepancy is known as d’Alembert’s paradox (see Chapter 9).

F I G U R E  6.26 The notation for determining lift and drag
on a circular cylinder.

a

x

y

Fx

Fy

dθ

θ

ps

GIVEN When a circular cylinder is placed in a uniform
stream, a stagnation point is created on the cylinder as shown
in Fig. E6.7a. If a small hole is located at this point, the stag-
nation pressure, pstag, can be measured and used to determine
the approach velocity, U. 

FIND
(a) Show how pstag and U are related. 

(b) If the cylinder is misaligned by an angle � (Figure
E6.7b), but the measured pressure is still interpreted as the
stagnation pressure, determine an expression for the ratio of
the true velocity, U, to the predicted velocity, U�. Plot this ra-
tio as a function of � for the range �20� � � � 20�.

SOLUTION

Potential Flow—Cylinder

Thus,

(1)

The velocity on the surface of the cylinder, v�, where r � a,
is obtained from Eq. 6.108 as

If we now write the Bernoulli equation between a point
upstream of the cylinder and the point on the cylinder where 
r � a, � � �, it follows that

and, therefore,

(2)

Since pstag � p0 � 1—
2 �U2 it follows from Eqs. 1 and 2 that

(Ans)

This velocity ratio is plotted as a function of the misalign-
ment angle � in Fig. E6.7c.

U1true2

U¿ 1predicted2
� 11 � 4  sin 

2�2�1/2

p� � p0 �
1

2
 �U 211 � 4 sin 

2�2

p0 �
1

2
 �U 2 � p� �

1

2
 � 1�2U sin �22

v� � �2U sin �

U1true2

U¿ 1predicted2
� a

pstag � p0

p� � p0
b

1/2

EXAMPLE 6.7

(a) The velocity at the stagnation point is zero so the Bernoulli
equation written between a point on the stagnation streamline
upstream from the cylinder and the stagnation point gives

Thus,

(Ans)

COMMENT A measurement of the difference between
the pressure at the stagnation point and the upstream pressure
can be used to measure the approach velocity. This is, of
course, the same result that was obtained in Section 3.5 for
Pitot-static tubes.

(b) If the direction of the fluid approaching the cylinder is
not known precisely, it is possible that the cylinder is mis-
aligned by some angle, �. In this instance, the pressure actually
measured, p�, will be different from the stagnation pressure,
but if the misalignment is not recognized, the predicted ap-
proach velocity, U�, would still be calculated as

U¿ � c
2
�

 1p� � p02 d
1/2

U � c
2
�

 1pstag � p02 d
1/2

p0

�
�

U2

2g
�

pstag

�
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An additional, interesting potential flow can be developed by adding a free vortex to
the stream function or velocity potential for the flow around a cylinder. In this case

(6.112)

and

(6.113)

where � is the circulation. We note that the circle r � a will still be a streamline (and thus
can be replaced with a solid cylinder), as the streamlines for the added free vortex are all cir-
cular. However, the tangential velocity, v�, on the surface of the cylinder (r � a) now becomes

(6.114)

This type of flow field could be approximately created by placing a rotating cylinder in a
uniform stream. Because of the presence of viscosity in any real fluid, the fluid in contact
with the rotating cylinder would rotate with the same velocity as the cylinder, and the result-
ing flow field would resemble that developed by the combination of a uniform flow past a
cylinder and a free vortex.

A variety of streamline patterns can be developed, depending on the vortex strength, �.
For example, from Eq. 6.114 we can determine the location of stagnation points on the 

v�s � �
0�

0r
`
r�a

� �2U sin � �
�

2�a

� � Ur a1 �
a2

r2b  cos � �
�

2�
 �

� � Ur a1 �
a2

r2b sin � �
�

2�
 ln r
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COMMENT It is clear from these results that significant
errors can arise if the stagnation pressure tap is not aligned
with the stagnation streamline. If two additional, symmetri-
cally located holes are drilled on the cylinder, as illustrated in
Fig. E6.7d, the correct orientation of the cylinder can be de-
termined. The cylinder is rotated until the pressures in the two

symmetrically placed holes are equal, thus indicating that the
center hole coincides with the stagnation streamline. For � �
30� the pressure at the two holes theoretically corresponds to
the upstream pressure, p0. With this orientation a measure-
ment of the difference in pressure between the center hole and
the side holes can be used to determine U.

F I G U R E  E6.7
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6.6 Superposition of Basic, Plane Potential Flows 217

surface of the cylinder. These points will occur at � � �stag where v� � 0 and therefore
from Eq. 6.114

(6.115)

If  � 0, then �stag � 0 or �—that is, the stagnation points occur at the front and rear of
the cylinder as are shown in Fig. 6.27a. However, for �1 � /4�Ua � 1, the stagnation
points will occur at some other location on the surface, as illustrated in Figs. 6.27b,c. If the
absolute value of the parameter /4�Ua exceeds 1, Eq. 6.115 cannot be satisfied, and the
stagnation point is located away from the cylinder, as shown in Fig. 6.27d.

The force per unit length developed on the cylinder can again be obtained by inte-
grating the differential pressure forces around the circumference as in Eqs. 6.110 and 6.111.
For the cylinder with circulation the surface pressure, ps, is obtained from the Bernoulli
equation (with the surface velocity given by Eq. 6.114)

or

(6.116)

Equation 6.116 substituted into Eq. 6.110 for the drag, and integrated, again yields

That is, even for the rotating cylinder no force in the direction of the uniform flow is devel-
oped. However, use of Eq. 6.116 with the equation for the lift, Fy (Eq. 6.111), yields

(6.117)

Thus, for the cylinder with circulation, lift is developed equal to the product of the fluid
density, the upstream velocity, and the circulation. The negative sign means that if U is pos-
itive (in the positive x direction) and  is positive (a free vortex with counterclockwise rota-
tion), the direction of the Fy is downward.
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2
 � a�2U sin � �
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F I G U R E  6.27 The
location of stagnation points on a circu-
lar cylinder: (a) without circulation and
(b, c, d) with circulation.
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Of course, if the cylinder is rotated in the clockwise direction ( 	 0) the direction of
Fy would be upward. This can be seen by studying the surface pressure distribution (Eq. 6.116),
which is plotted in Fig. 6.28 for two situations. One has /4�Ua � 0, which corresponds to
no rotation of the cylinder. The other has /4�Ua � �0.25, which corresponds to clockwise
rotation of the cylinder. With no rotation the flow is symmetrical both top to bottom and front
to back on the cylinder. With rotation the flow is symmetrical front to back but not top to
bottom. In this case the two stagnation points [i.e., (ps � p0)/(�U2/2) � 1] are located on the
bottom of the cylinder and the average pressure on the top half of the cylinder is less than
that on the bottom half. The result is an upward lift force. It is this force acting in a direction
perpendicular to the direction of the approach velocity that causes baseballs and golf balls to
curve when they spin as they are propelled through the air. The development of this lift on
rotating bodies is called the Magnus effect. (See Section 9.4 for further comments.)

Although Eq. 6.117 was developed for a cylinder with circulation, it gives the lift per
unit length for any two-dimensional object of any cross-sectional shape placed in a uni-
form, inviscid stream. The circulation is determined around any closed curve containing the
body. The generalized equation relating lift to fluid density, velocity, and circulation is called
the Kutta–Joukowski law and is commonly used to determine the lift on airfoils. (See Sec-
tion 9.4.2 and Refs. 2–6.)

218 Chapter 6 ■ Differential Analysis of Fluid Flow

F I G U R E  6.28 Pressure distribution on a circular cylinder with and without rotation.
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A sailing ship without sails A sphere or cylinder spinning
about its axis when placed in an airstream develops a force at
right angles to the direction of the airstream. This phenomenon
is commonly referred to as the Magnus effect and is responsible
for the curved paths of baseballs and golf balls. Another lesser-
known application of the Magnus effect was proposed by a 
German physicist and engineer, Anton Flettner, in the 1920s.
Flettner’s idea was to use the Magnus effect to make a ship
move. To demonstrate the practicality of the “rotor-ship” he
purchased a sailing schooner and replaced the ship’s masts and

rigging with two vertical cylinders that were 50 feet high and
9 feet in diameter. The cylinders looked like smokestacks on the
ship. Their spinning motion was developed by 45-hp motors.
The combination of a wind and the rotating cylinders created a
force (Magnus effect) to push the ship forward. The ship, named
the Baden Baden, made a successful voyage across the Atlantic
arriving in New York Harbor on May 9, 1926. Although the fea-
sibility of the rotor-ship was clearly demonstrated, it proved to
be less efficient and practical than more conventional vessels
and the idea was not pursued. (See Problem 6.57.)
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6.8 Viscous Flow 219

6.7 Other Aspects of Potential Flow Analysis

In the preceding section the method of superposition of basic potentials has been used to
obtain detailed descriptions of irrotational flow around certain body shapes immersed in a
uniform stream. It is possible to extend the idea of superposition by considering a distrib-
ution of sources and sinks, or doublets, which when combined with a uniform flow can
describe the flow around bodies of arbitrary shape. Techniques are available to determine
the required distribution to give a prescribed body shape. Also, for plane, potential flow
problems, it can be shown that the complex variable theory (the use of real and imaginary
numbers) can be used effectively to obtain solutions to a great variety of important flow
problems. There are, of course, numerical techniques that can be used to solve not only
plane two-dimensional problems but also the more general three-dimensional problems.
Because potential flow is governed by Laplace’s equation, any procedure that is available
for solving this equation can be applied to the analysis of the irrotational flow of friction-
less fluids. The potential flow theory is an old and well-established discipline within the
general field of fluid mechanics. The interested reader can find many detailed references on
this subject, including Refs. 2–6 given at the end of this chapter.

An important point to remember is that regardless of the particular technique used to
obtain a solution to a potential flow problem, the solution remains approximate because of
the fundamental assumption of a frictionless fluid. The general differential equations that
describe viscous fluid behavior and some simple solutions to these equations are consid-
ered in the remaining sections of this chapter.

6.8 Viscous Flow

To incorporate viscous effects into the differential analysis of fluid motion we must return
to the previously derived general equations of motion, Eqs. 6.50. Since these equations
include both stresses and velocities, there are more unknowns than equations and, therefore,
before proceeding it is necessary to establish a relationship between stresses and velocities.

6.8.1 Stress–Deformation Relationships

For incompressible, Newtonian fluids it is known that the stresses are linearly related to the
rates of deformation and can be expressed in Cartesian coordinates as (for normal stresses)

(6.118a)

(6.118b)

(6.118c)

(for shearing stresses)

(6.118d)

(6.118e)

(6.118f) �zx � �xz � � a
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flow
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where p is the pressure, the negative of the average of the three normal stresses; that is, as
indicated by the figure in the margin, �p � ( )(
xx � 
yy � 
zz). For viscous fluids in
motion the normal stresses are not necessarily the same in different directions—thus, the
need to define the pressure as the average of the three normal stresses. For fluids at rest,
or frictionless fluids, the normal stresses are equal in all directions. (We have made use of
this fact in the chapter on fluid statics and in developing the equations for inviscid flow.)
Detailed discussions of the development of these stress–velocity gradient relationships can
be found in Refs. 3, 7, and 8. An important point to note is that whereas for elastic solids
the stresses are linearly related to the deformation (or strain), for Newtonian fluids the
stresses are linearly related to the rate of deformation (or rate of strain).

In cylindrical polar coordinates the stresses for Newtonian, incompressible fluids are
expressed as (for normal stresses)

(6.119a)

(6.119b)

(6.119c)

(for shearing stresses)

(6.119d)

(6.119e)

(6.119f)

The double subscript has a meaning similar to that of stresses expressed in Cartesian
coordinates—that is, the first subscript indicates the plane on which the stress acts and the
second subscript the direction. Thus, for example, 
rr refers to a stress acting on a plane
perpendicular to the radial direction and in the radial direction (thus, a normal stress). Sim-
ilarly, �r� refers to a stress acting on a plane perpendicular to the radial direction but in the
tangential (� direction) and is, therefore, a shearing stress.

6.8.2 The Navier–Stokes Equations

The stresses as defined in the preceding section can be substituted into the differential
equations of motion (Eqs. 6.50) and simplified by using the continuity equation for incom-
pressible flow (Eq. 6.31). For rectangular coordinates (see the figure in the margin) the
results are

(x direction)
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6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Fluids 221

(z direction)

(6.120c)

where we have rearranged the equations so the acceleration terms are on the left side and
the force terms are on the right. These equations are commonly called the Navier–Stokes
equations, named in honor of the French mathematician L. M. H. Navier and the English
mechanician Sir G. G. Stokes, who were responsible for their formulation. These three equa-
tions of motion, when combined with the conservation of mass equation (Eq. 6.31), pro-
vide a complete mathematical description of the flow of incompressible, Newtonian fluids.
We have four equations and four unknowns (u, v, w, and p), and therefore the problem is
“well posed” in mathematical terms. Unfortunately, because of the general complexity of
the Navier–Stokes equations (they are nonlinear, second order, partial differential equations),
they are not amenable to exact mathematical solutions except in a few instances. However,
in those few instances in which solutions have been obtained and compared with experi-
mental results, the results have been in close agreement. Thus, the Navier–Stokes equations
are considered to be the governing differential equations of motion for incompressible,
Newtonian fluids.

In terms of cylindrical polar coordinates (see the figure in the margin) the
Navier–Stokes equations can be written as (r direction)

(6.121a)

(� direction)

(6.121b)

(z direction)

(6.121c)

To provide a brief introduction to the use of the Navier–Stokes equations, a few of
the simplest exact solutions are developed in the next section. Although these solutions will
prove to be relatively simple, this is not the case in general. In fact, only a few other exact
solutions have been obtained.
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6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Fluids

A principal difficulty in solving the Navier–Stokes equations is because of their nonlinearity
arising from the convective acceleration terms (i.e., u 0u/0x, w 0v/0z). There are no general
analytical schemes for solving nonlinear partial differential equations (e.g., superposition of solu-
tions cannot be used), and each problem must be considered individually. For most practical
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flow problems, fluid particles do have accelerated motion as they move from one location
to another in the flow field. Thus, the convective acceleration terms are usually important.
However, there are a few special cases for which the convective acceleration vanishes
because of the nature of the geometry of the flow system. In these cases exact solutions are
usually possible. The Navier–Stokes equations apply to both laminar and turbulent flow, but
for turbulent flow each velocity component fluctuates randomly with respect to time, and
this added complication makes an analytical solution intractable. Thus, the exact solutions
referred to are for laminar flows in which the velocity is either independent of time (steady
flow) or dependent on time (unsteady flow) in a well-defined manner.

6.9.1 Steady, Laminar Flow between Fixed Parallel Plates

We first consider flow between the two horizontal, infinite parallel plates of Fig. 6.29a. For
this geometry the fluid particles move in the x direction parallel to the plates, and there is
no velocity in the y or z direction—that is, v � 0 and w � 0. In this case it follows from
the continuity equation (Eq. 6.31) that ∂u/∂x � 0. Furthermore, there would be no variation
of u in the z direction for infinite plates, and for steady flow ∂u/∂t � 0 so that u � u(y). If
these conditions are used in the Navier–Stokes equations (Eqs. 6.120), they reduce to

(6.122)

(6.123)

(6.124)

where we have set gx � 0, gy � �g, and gz � 0. That is, the y axis points up. We see that for
this particular problem the Navier–Stokes equations reduce to some rather simple equations.

Equations 6.123 and 6.124 can be integrated to yield

(6.125)

which shows that the pressure varies hydrostatically in the y direction. Equation 6.122,
rewritten as

can be integrated to give
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F I G U R E  6.29 Viscous flow between parallel plates: (a) coordi-
nate system and notation used in analysis and (b) parabolic velocity distribution
for flow between parallel fixed plates.
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and integrated again to yield

(6.126)

Note that for this simple flow the pressure gradient, ∂p/∂x, is treated as constant as far as
the integration is concerned, as (as shown in Eq. 6.125) it is not a function of y. The two
constants, c1 and c2, must be determined from the boundary conditions. For example, if the
two plates are fixed, then u � 0 for y � 
h (because of the no-slip condition for viscous
fluids). To satisfy this condition, c1 � 0 and

Thus, the velocity distribution becomes

(6.127)

Equation 6.127 shows that the velocity profile between the two fixed plates is parabolic as
illustrated in Fig. 6.29b.

The volume rate of flow, q, passing between the plates (for a unit width in the z direc-
tion) is obtained from the relationship

or

(6.128)

The pressure gradient ∂p/∂x is negative, as the pressure decreases in the direction of flow.
If we let �p represent the pressure drop between two points a distance � apart, then

and Eq. 6.128 can be expressed as

(6.129)

The flow is proportional to the pressure gradient, inversely proportional to the viscosity, and
strongly dependent (�h3) on the gap width. In terms of the mean velocity, V, where V � q/2h,
Eq. 6.129 becomes

(6.130)

Equations 6.129 and 6.130 provide convenient relationships for relating the pressure drop
along a parallel-plate channel and the rate of flow or mean velocity. The maximum veloc-
ity, umax, occurs midway (y � 0) between the two plates so that from Eq. 6.127
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V6.12 Liquid–
liquid no-slip

V6.11 No-slip
boundary condition
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Details of the steady, laminar flow between infinite parallel plates are completely pre-
dicted by this solution to the Navier–Stokes equations. For example, if the pressure gradi-
ent, viscosity, and plate spacing are specified, then from Eq. 6.127 the velocity profile can
be determined, and from Eqs. 6.129 and 6.130 the corresponding flowrate and mean veloc-
ity determined. In addition, from Eq. 6.125 it follows that

where p0 is a reference pressure at x � y � 0, and the pressure variation throughout the
fluid can be obtained from

(6.132)

For a given fluid and reference pressure, p0, the pressure at any point can be predicted. This
relatively simple example of an exact solution illustrates the detailed information about the flow
field that can be obtained. The flow will be laminar if the Reynolds number, Re � �V(2h)/�,
remains below about 1400. For flow with larger Reynolds numbers the flow becomes tur-
bulent, and the preceding analysis is not valid since the flow field is complex, three dimen-
sional, and unsteady.

p � ��gy � a
0p

0x
b x � p0

f11x2 � a
0p

0x
b x � p0

6.9.2 Couette Flow

Another simple parallel-plate flow can be developed by fixing one plate and letting the other
plate move with a constant velocity, U, as illustrated in Fig. 6.30a. The Navier–Stokes equa-
tions reduce to the same form as those in the preceding section, and the solutions for pres-
sure and velocity distribution are still given by Eqs. 6.125 and 6.126, respectively. However,
for the moving plate problem the boundary conditions for the velocity are different. For this
case we locate the origin of the coordinate system at the bottom plate and designate the dis-
tance between the two plates as b (see Fig. 6.30a). The two constants, c1 and c2, in Eq. 6.126
can be determined from the boundary conditions, u � 0 at y � 0 and u � U at y � b. It
follows that

(6.133)

or, in dimensionless form,

(6.134)
u

U
�

y

b
�

b2

2�U
 a

0p

0x
b a

y

b
b a1 �

y

b
b

u � U 
y

b
�

1

2�
 a

0p

0x
b 1y 

2 � by2
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10 tons on 8 psi Place a golf ball on the end of a garden hose
and then slowly turn the water on a small amount until the ball
just barely lifts off the end of the hose, leaving a small gap be-
tween the ball and the hose. The ball is free to rotate. This is
the idea behind the new “floating ball water fountains” devel-
oped in Finland. Massive, 10-ton, 6-ft-diameter stone spheres
are supported by the pressure force of the water on the curved
surface within a pedestal and rotate so easily that even a small
child can change their direction of rotation. The key to the

fountain design is the ability to grind and polish stone to an ac-
curacy of a few thousandths of an inch. This allows the gap be-
tween the ball and its pedestal to be very small (on the order of
5/1000 in.) and the water flowrate correspondingly small (on
the order of 5 gallons per minute). Due to the small gap, the
flow in the gap is essentially that of flow between parallel
plates. Although the sphere is very heavy, the pressure under
the sphere within the pedestal needs to be only about 8 psi.
(See Problem 6.68.)

c06DifferentialAnalysisofFluidFlow.qxd  9/24/10  1:43 PM  Page 224



6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Fluids 225

The actual velocity profile will depend on the dimensionless parameter

Several profiles are shown in Fig. 6.30b. This type of flow is called Couette flow.
The simplest type of Couette flow is one for which the pressure gradient is zero; that

is, the fluid motion is caused by the fluid being dragged along by the moving boundary. In
this case, with ∂p/∂x � 0, Eq. 6.133 simply reduces to

(6.135)

which indicates that the velocity varies linearly between the two plates as shown in Fig. 6.30b
for P � 0.

u � U 
y

b

P � �
b2

2�U
 a

0p

0x
b

U

U

1.0

0.8

0.6

0.4

0.2

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

b

3210–1–2P = –3

Back-
flow

y_
b

u__
U

(b)(a)

Fixed
plate

z

x

y
b

Moving
plate

0

F I G U R E  6.30 Viscous flow between parallel plates with the bottom plate fixed and the
upper plate moving (Couette flow): (a) coordinate system and notation used in analysis and (b) velocity
distribution as a function of parameter, P, where P � �(b2/2�U) p/ x. (From Ref. 8, used by permission.)��

GIVEN A wide moving belt passes through a container of a
viscous liquid. The belt moves vertically upward with a constant
velocity, V0, as illustrated in Fig. E6.8a. Because of viscous
forces the belt picks up a film of fluid of thickness h. Gravity
tends to make the fluid drain down the belt. Assume that the flow
is laminar, steady, and fully developed. 

FIND Use the Navier–Stokes equations to determine an ex-
pression for the average velocity of the fluid film as it is dragged
up the belt. 

Plane Couette FlowEXAMPLE 6.8

F I G U R E  E6.8a

y

x

h

Fluid layer

g

V0

SOLUTION

Since the flow is assumed to be uniform, the only velocity
component is in the y direction (the v component) so that u �
w � 0. It follows from the continuity equation that ∂v/∂y � 0,
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and for steady flow ∂v/∂t � 0, so that v � v(x). Under these
conditions the Navier–Stokes equations for the x direction
(Eq. 6.120a) and the z direction (perpendicular to the paper)
(Eq. 6.120c) simply reduce to

This result indicates that the pressure does not vary over a
horizontal plane, and because the pressure on the surface of
the film (x � h) is atmospheric, the pressure throughout the
film must be atmospheric (or zero gage pressure). The
equation of motion in the y direction (Eq. 6.120b) thus
reduces to

or

(1)

Integration of Eq. 1 yields

(2)

On the film surface (x � h) we assume the shearing stress is
zero—that is, the drag of the air on the film is negligible. The
shearing stress at the free surface (or any interior parallel sur-
face) is designated as �xy where from Eq. 6.118d

Thus, if �xy � 0 at x � h, it follows from Eq. 2 that

A second integration of Eq. 2 gives the velocity distribu-
tion in the film as

At the belt (x � 0) the fluid velocity must match the belt ve-
locity, V0, so that

and the velocity distribution is therefore

(3)v �
�

2�
 x2 �

�h

�
 x � V0

c2 � V0

v �
�

2�
 x2 �

�h

�
 x � c2

c1 � �
�h

�

�xy � � a
dv

dx
b

dv

dx
�

�

�
 x � c1

d2v

dx2 �
�

�

0 � ��g � � 
d2v

dx2

0p

0x
� 0  

0p

0z
� 0

With the velocity distribution known we can determine the
flowrate per unit width, q, from the relationship

and thus,

The average film velocity, V (where q � Vh), is therefore

(Ans)

COMMENT Equation (3) can be written in dimensionless
form as

where c � �h2/2�V0. This velocity profile is shown in Fig. E6.8b.
Note that even though the belt is moving upward, for c � 1
(e.g., for fluids with small enough viscosity or with a small
enough belt speed) there are portions of the fluid that flow
downward (as indicated by v/V0 	 0).

It is interesting to note from this result that there will be a
net upward flow of liquid (positive V) only if V0 � �h2/3�. It
takes a relatively large belt speed to lift a small viscosity fluid.

v

V0
� c a

x

h
b

2

 � 2c a
x

h
b � 1

V � V0 �
�h2

3�

q � V0h �
�h3

3�

q � �
h

0

 v dx � �
h

0
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2�
 x 

2 �
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�
 x � V0b dx

F I G U R E  E6.8b
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6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Fluids 227

6.9.3 Steady, Laminar Flow in Circular Tubes

Probably the best known exact solution to the Navier–Stokes equations is for steady, incom-
pressible, laminar flow through a straight circular tube of constant cross section. This type
of flow is commonly called Hagen–Poiseuille flow, or simply Poiseuille flow. It is named
in honor of J. L. Poiseuille, a French physician, and G. H. L. Hagen, a German hydraulic
engineer. Poiseuille was interested in blood flow through capillaries and deduced experi-
mentally the resistance laws for laminar flow through circular tubes. Hagen’s investigation
of flow in tubes was also experimental. It was actually after the work of Hagen and
Poiseuille that the theoretical results presented in this section were determined, but their
names are commonly associated with the solution of this problem.

Consider the flow through a horizontal circular tube of radius R as shown in Fig. 6.31a.
Because of the cylindrical geometry, it is convenient to use cylindrical coordinates. We assume
that the flow is parallel to the walls so that vr � 0 and v� � 0, and from the continuity equa-
tion (Eq. 6.35) ∂vz /∂z � 0. Also, for steady, axisymmetric flow, vz is not a function of t or �
so the velocity, vz, is only a function of the radial position within the tube—that is, vz � vz(r).
Under these conditions the Navier–Stokes equations (Eqs. 6.121) reduce to

(6.136)

(6.137)

(6.138)

where we have used the relationships gr � �g sin � and g� � �g cos � (with � measured
from the horizontal plane).

Equations 6.136 and 6.137 can be integrated to give

or
(6.139)

Equation 6.139 indicates that the pressure is distributed hydrostatically at any particular cross
section, and the z component of the pressure gradient, ∂p/∂z, is not a function of r or �.

The equation of motion in the z direction (Eq. 6.138) can be written in the form

1
r
 

0
0r

 ar 
0vz

0r
b �

1
�

 
0p

0z

p � ��gy � f11z2

p � ��g1r sin �2 � f11z2

 0 � �
0p

0z
� � c

1
r
 

0
0r

 ar 
0vz

0r
b d

 0 � ��g cos � �
1
r
 
0p

0�

 0 � ��g sin � �
0p

0r

z

vz

dr

r

(b)

y

z

vz

g

R

r θ

(a)

F I G U R E  6.31 Viscous flow in a horizontal, circular tube: 
(a) coordinate system and notation used in analysis and (b) flow through a
differential annular ring.
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and integrated (using the fact that ∂p/∂z � constant) to give

Integrating again we obtain

(6.140)

As indicated by the figure in the margin, the shape of the velocity profile depends on
the values of the two constants c1 and c2.

Since we wish vz to be finite at the center of the tube (r � 0), it follows that c1 � 0
[since ln (0) � ��]. At the wall (r � R) the velocity must be zero so that

and the velocity distribution becomes

(6.141)

Thus, at any cross section the velocity distribution is parabolic.
To obtain a relationship between the volume rate of flow, Q, passing through the tube

and the pressure gradient, we consider the flow through the differential, washer-shaped ring
of Fig. 6.31b. Since vz is constant on this ring, the volume rate of flow through the differ-
ential area dA � (2�r) dr is

and therefore

(6.142)

Equation 6.141 for vz can be substituted into Eq. 6.142, and the resulting equation inte-
grated to yield

(6.143)

This relationship can be expressed in terms of the pressure drop, �p, which occurs over a
length, �, along the tube, as

and therefore

(6.144)

For a given pressure drop per unit length, the volume rate of flow is inversely proportional
to the viscosity and proportional to the tube radius to the fourth power. A doubling of the
tube radius produces a sixteenfold increase in flow! Equation 6.144 is commonly called
Poiseuille’s law.
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V6.13 Laminar
flow

vz

c1>0

c1 = 0, c2>0

0 R r
0.5 R

V6.14 Complex
pipe flow
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6.10 Other Aspects of Differential Analysis 229

In terms of mean velocity, V, where V � Q/�R2, Eq. 6.144 becomes

(6.145)

The maximum velocity, vmax, occurs at the center of the tube, where from Eq. 6.141

(6.146)

so that

The velocity distribution, as shown by the figure in the margin, can be written in terms of
vmax as

(6.147)

As was true for the similar case of flow between parallel plates (sometimes referred
to as plane Poiseuille flow), a very detailed description of the pressure and velocity distri-
bution in tube flow results from this solution to the Navier–Stokes equations. Numerous
experiments performed to substantiate the theoretical results show that the theory and exper-
iment are in agreement for the laminar flow of Newtonian fluids in circular tubes or pipes.
In general, the flow remains laminar for Reynolds numbers, Re � �V(2R)/�, below 2100.
Turbulent flow in tubes is considered in Chapter 8.

vz

vmax
� 1 � a

r

R
b

2
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4�
 a

0p
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V �
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R = 1 – (   )2
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F l u i d s  i n  t h e  N e w s

Poiseuille’s law revisited Poiseuille’s law governing laminar
flow of fluids in tubes has an unusual history. It was developed
in 1842 by a French physician, J. L. M. Poiseuille, who was
interested in the flow of blood in capillaries. Poiseuille,
through a series of carefully conducted experiments using wa-
ter flowing through very small tubes, arrived at the formula,

. In this formula Q is the flowrate, K an empir-
ical constant, the pressure drop over the length , and D/¢p
Q � K¢p D4//

the tube diameter. Another formula was given for the value of
K as a function of the water temperature. It was not until the
concept of viscosity was introduced at a later date that
Poiseuille’s law was derived mathematically and the constant
K found to be equal to , where is the fluid viscosity.
The experiments by Poiseuille have long been admired for
their accuracy and completeness considering the laboratory
instrumentation available in the mid-nineteenth century.

��/8�

6.10 Other Aspects of Differential Analysis

In this chapter the basic differential equations that govern the flow of fluids have been devel-
oped. The Navier–Stokes equations, which can be expressed compactly in vector notation as

(6.148)

along with the continuity equation

(6.149)

are the general equations of motion for incompressible, Newtonian fluids. Although we have
restricted our attention to incompressible fluids, these equations can be readily extended to
include compressible fluids. It is well beyond the scope of this introductory text to consider
in depth the variety of analytical and numerical techniques that can be used to obtain both
exact and approximate solutions to the Navier–Stokes equations.

§ # V � 0

� a
0V
0t

� V # �Vb � ��p � �g � � § 2V
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Numerical techniques using digital computers are, of course, used commonly to solve
a wide variety of flow problems. Numerous laminar flow solutions based on the full
Navier–Stokes equations have been obtained by using both finite element and finite difference
methods. Flow characteristics of highly nonlinear problems can be obtained from numerical
solutions. However, these solutions typically require the use of powerful digital computers,
and nonlinearities in the equations represent a complication that challenges the ingenuity of
the numerical analyst. Practical turbulent flow problems are not amenable to a completely
numerical solution because of the extreme complexity of the motion. The solution of real tur-
bulent flows usually involves the use of some type of empirical turbulence model.

The general field of computational fluid dynamics (CFD), in which computers and numer-
ical analysis are combined to solve fluid flow problems, represents an extremely important sub-
ject area in advanced fluid mechanics. A brief introduction to CFD is given in Appendix A.

230 Chapter 6 ■ Differential Analysis of Fluid Flow

V6.15 CFD example

F l u i d s  i n  t h e  N e w s

MRI-CFD for arteries Researchers in the magnetic resonance
imaging (MRI) unit at Sheffield University in Sheffield, England,
are using computational fluid dynamics (CFD) to study flow
through the pulmonary artery in the lung. By using MRI to deter-
mine the shape of the artery and CFD to model the flow through

it, they can determine locations of possible clotting sites and
aneurysms. Clots are formed in low-flow and stagnant regions,
where the blood remains for a longer period than at other places
in the bloodstream. High surface pressure and shear stress areas
can result in aneurysms in which the vessel wall bulges outward.

6.11 Chapter Summary and Study Guide

Differential analysis of fluid flow is concerned with the development of concepts and tech-
niques that can be used to provide a detailed, point by point, description of a flow field.
Concepts related to the motion and deformation of a fluid element are introduced, includ-
ing the Eulerian method for describing the velocity and acceleration of fluid particles. Lin-
ear deformation and angular deformation of a fluid element are described through the use
of flow characteristics such as the volumetric dilatation rate, rate of angular deformation,
and vorticity. The differential form of the conservation of mass equation (continuity equa-
tion) is derived in both rectangular and cylindrical polar coordinates.

Use of the stream function for the study of steady, incompressible, plane, two-
dimensional flow is introduced. The general equations of motion are developed, and for invis-
cid flow these equations are reduced to the simpler Euler equations of motion. The Euler
equations are integrated to give the Bernoulli equation, and the concept of irrotational flow
is introduced. Use of the velocity potential for describing irrotational flow is considered in
detail, and several basic velocity potentials are described, including those for a uniform flow,
source or sink, vortex, and doublet. The technique of using various combinations of these
basic velocity potentials, by superposition, to form new potentials is described. Flows around
a half-body and around a circular cylinder are obtained using this superposition technique.

Basic differential equations describing incompressible, viscous flow (the Navier–Stokes
equations) are introduced. Several relatively simple solutions for steady, viscous, laminar flow
between parallel plates and through circular tubes are included.

The following checklist provides a study guide for this chapter. When your study of
the entire chapter and end-of-chapter exercises has been completed, you should be able to

write out meanings of the terms listed here in the margin and understand each of the
related concepts. These terms are particularly important and are set in color and bold
type in the text.

volumetric 
dilatation rate

vorticity
irrotational flow
continuity equation
stream function
Euler’s equations 

of motion
ideal fluid
Bernoulli equation
velocity potential
equipotential lines
flow net
uniform flow
source and sink
vortex
circulation
doublet
method of 

superposition
half-body
Navier–Stokes 

equations
Couette flow
Poiseuille’s law
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6.11 Chapter Summary and Study Guide 231

determine the acceleration of a fluid particle, given the equation for the velocity field.

determine the volumetric dilatation rate, vorticity, and rate of angular deformation for
a fluid element, given the equation for the velocity field.

show that a given velocity field satisfies the continuity equation.

use the concept of the stream function to describe a flow field.

use the concept of the velocity potential to describe a flow field.

use superposition of basic velocity potentials to describe simple potential flow fields.

use the Navier–Stokes equations to determine the detailed flow characteristics of
incompressible, steady, laminar, viscous flow between parallel plates and through cir-
cular tubes.

Some of the important equations in this chapter are

Acceleration of fluid particle (6.2)

Vorticity (6.17)

Conservation of mass (6.27)

Stream function (6.37)

Euler’s equations of motion (6.51a)

(6.51b)

(6.51c)

Velocity potential (6.65)

Laplace’s equation (6.66)

Uniform potential flow

Source and sink

Vortex

Doublet vr � �
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Navier–Stokes equations

1x direction2

(6.120a)

1y direction2

(6.120b)

1z direction2

(6.120c)
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Review Problems

Go to Appendix G for a set of review problems with answers.
Detailed solutions can be found in Student Solution Manual

for a Brief Introduction to Fluid Mechanics, by Young et al. 
(© 2011 John Wiley and Sons, Inc.)

Problems

Note: Unless otherwise indicated, use the values of fluid
properties found in the tables on the inside of the front cover.
Problems designated with an (*) are intended to be solved
with the aid of a programmable calculator or a computer.

The even-numbered problems are included in the
hard copy version of the book, and the answers to these
even-numbered problems are listed at the end of the book.
Odd-numbered problems are provided in WileyPLUS, or
in Appendix L on the book’s web site, www.wiley.com/
college/young. The lab-type problems, FE problems, FlowLab
problems, and the videos that accompany problems can also
be accessed on these web sites.

Section 6.1 Fluid Element Kinematics

6.2 The velocity in a certain two-dimensional flow field is
given by the equation

V � 2xtî � 2yt ĵ

where the velocity is in ft�s when x, y, and t are in feet and
seconds, respectively. Determine expressions for the local
and convective components of acceleration in the x and y di-
rections. What is the magnitude and direction of the velocity
and the acceleration at the point at the time

6.4 Determine an expression for the vorticity of the flow field
described by

Is the flow irrotational?

6.6 The three components of velocity in a flow field are given by

 w � �3xz � z 
2/2 � 4

 v � xy � yz � z 
2

 u � x 
2 � y 

2 � z 
2

V � �4xy3 î � y4ĵ

t � 0?
x � y � 2 ft
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Section 6.2 Conservation of Mass

6.10 For a certain incompressible, two-dimensional flow field
the velocity component in the y direction is given by the equation

Determine the velocity component in the x direction so that the
continuity equation is satisfied.

6.12 In a certain steady, two-dimensional flow field the fluid
density varies linearly with respect to the coordinate x; that is,

where A is a constant. If the x component of velocity u
is given by the equation determine an expression for y.

6.14 For a certain two-dimensional flow field

(a) What are the corresponding radial and tangential velocity
components? (b) Determine the corresponding stream function
expressed in Cartesian coordinates and in cylindrical polar
coordinates.

6.16 In a two-dimensional, incompressible flow field, the x com-
ponent of velocity is given by the equation u � 2x. (a) Determine
the corresponding equation for the y component of velocity if 
� � 0 along the x axis. (b) For this flow field, what is the magni-
tude of the average velocity of the fluid crossing the surface OA of
Fig. P6.16? Assume that the velocities are in feet per second when
x and y are in feet.

6.18 Verify that the stream function in cylindrical coordinates
satisfies the continuity equation.

6.20 A two-dimensional, incompressible flow is given by 
u � �y and � � x. Show that the streamline passing through the
point x � 10 and y � 0 is a circle centered at the origin.

 v � V
 u � 0

u � y,
� � Ax

 y � 3xy � x2y

6.22 It is proposed that a two-dimensional, incompressible
flow field be described by the velocity components

where A and B are both positive constants. (a) Will the continuity
equation be satisfied? (b) Is the flow irrotational? (c) Determine
the equation for the streamlines and show a sketch of the
streamline that passes through the origin. Indicate the direction
of flow along this streamline.

Section 6.4 Inviscid Flow

6.24 Obtain a photograph/image of a situation in which all or
part of a flow field could be approximated by assuming inviscid
flow. Print this photo and write a brief paragraph that describes
the situation involved.

6.26 The velocity components in an ideal, two-dimensional
velocity field are given by the equations

All body forces are negligible. (a) Does this velocity field sat-
isfy the continuity equation? (b) Determine the equation for
the pressure gradient in the y direction at any point in the field.

6.28 Determine the stream function corresponding to the ve-
locity potential

Sketch the streamline which passes through the origin.

6.30 It is known that the velocity distribution for two-dimensional
flow of a viscous fluid between wide, fixed parallel plates (Fig.
P6.30) is parabolic; that is

with y � 0. Determine, if possible, the corresponding stream
function and velocity potential.

u � Uc c1 � a
y

h
b

2

d

	 � 0,

 � x3 � 3xy2

 v � �6xy
 u � 31x2 � y22

 y � Bx
 u � Ay

ro

ri

ω roω

x

y

u

γ
ro – ri

(a) (b)

F I G U R E  P6.8

A

O

y, ft

x, ft1.0

1.0

F I G U R E  P6.16

Uc

uy

x

h

h

F I G U R E  P6.30

(a) Determine the volumetric dilatation rate and interpret the re-
sults. (b) Determine an expression for the rotation vector. Is this
an irrotational flow field?

6.8 A viscous fluid is contained in the space between concen-
tric cylinders. The inner wall is fixed and the outer wall rotates
with an angular velocity �. (See Fig. P6.8a and Video V6.3.)
Assume that the velocity distribution in the gap is linear as
illustrated in Fig. P6.8b. For the small rectangular element
shown in Fig. P6.8b, determine the rate of change of the right
angle � due to the fluid motion. Express your answer in terms of
r0, ri, and �.

c06DifferentialAnalysisofFluidFlow.qxd  9/24/10  1:45 PM  Page 233



6.32 Consider the incompressible, two-dimensional flow of a
nonviscous fluid between the boundaries shown in Fig. P6.32.
The velocity potential for this flow field is

(a) Determine the corresponding stream function. (b) What is
the relationship between the discharge, q (per unit width normal
to plane of paper), passing between the walls and the coordi-
nates xi, yi of any point on the curved wall? Neglect body forces.

 � x2 � y2

6.36 (See Fluids in the News article titled “Some hurricane
facts,” Section 6.5.3.) Consider a category five hurricane that
has a maximum wind speed of 160 mph at the eye wall, 10 miles
from the center of the hurricane. If the flow in the hurricane out-
side of the hurricane’s eye is approximated as a free vortex, de-
termine the wind speeds at the locations 20 mi, 30 mi, and 40 mi
from the center of the storm.

6.38 For a free vortex (see Video V6.4) determine an expression
for the pressure gradient (a) along a streamline and (b) normal to
a streamline. Assume that the streamline is in a horizontal plane,
and express your answer in terms of the circulation.

Section 6.6 Superposition of Basic, Plane Potential
Flows

6.40 Consider a uniform flow in the positive x direction com-
bined with a free vortex located at the origin of the coordinate
system. The streamline passes through the point x � 4,
y � 0. Determine the equation of this streamline.

6.42 Potential flow against a flat plate (Fig. P6.42a) can be de-
scribed with the stream function

	 � Axy

	 � 0

where A is a constant. This type of flow is commonly called a
“stagnation point” flow since it can be used to describe the flow
in the vicinity of the stagnation point at O. By adding a source
of strength m at O, stagnation point flow against a flat plate with
a “bump” is obtained as illustrated in Fig. P6.42b. Determine
the relationship between the bump height, h, the constant, A,
and the source strength, m.

6.44 The combination of a uniform flow and a source can be
used to describe flow around a streamlined body called a half-
body. (See Video V6.5.) Assume that a certain body has the
shape of a half-body with a thickness of 0.5 m. If this body is
placed in an airstream moving at 15 m/s, what source strength is
required to simulate flow around the body?

6.46 One end of a pond has a shoreline that resembles a half-
body as shown in Fig. P6.46. A vertical porous pipe is located
near the end of the pond so that water can be pumped out. When
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= 0ψ

x

y

q (xi, yi)

F I G U R E  P6.32

F I G U R E  P6.34

x

y
2� 3�

+m +3m

y

x

O

(a)

y

x

(b)

Source

h

F I G U R E  P6.42

A
Pipe

5 m
15 m

F I G U R E  P6.46

Section 6.5 Some Basic, Plane Potential Flows

6.34 Two sources, one of strength m and the other with strength
3m, are located on the x axis as shown in Fig. P6.34. Determine
the location of the stagnation point in the flow produced by
these sources.
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6.50 A fixed circular cylinder of infinite length is placed in a
steady, uniform stream of an incompressible, nonviscous fluid.
Assume that the flow is irrotational. Prove that the drag on the
cylinder is zero. Neglect body forces.

6.52 Water flows around a 6-ft-diameter bridge pier with a
velocity of 12 ft/s. Estimate the force (per unit length) that the
water exerts on the pier. Assume that the flow can be approxi-
mated as an ideal fluid flow around the front half of the cylinder,
but due to flow separation (see Video V6.6), the average pres-
sure on the rear half is constant and approximately equal to one-
half the pressure at point A (see Fig. P6.52).

6.54 Typical inviscid flow solutions for flow around bodies
indicate that the fluid flows smoothly around the body, even for
blunt bodies as shown in Video V6.6. However, experience
reveals that due to the presence of viscosity, the main flow may
actually separate from the body, creating a wake behind the
body. As discussed in a later section (Section 9.2.6), whether
separation takes place depends on the pressure gradient along
the surface of the body, as calculated by inviscid flow theory. If
the pressure decreases in the direction of flow (a favorable pres-
sure gradient), no separation will occur. However, if the pressure
increases in the direction of flow (an adverse pressure gradient),
separation may occur. For the circular cylinder of Fig. P6.54

placed in a uniform stream with velocity, U, determine an ex-
pression for the pressure gradient in the direction of flow on the
surface of the cylinder. For what range of values for the angle �
will an adverse pressure gradient occur?

6.56 Show that for a rotating cylinder in a uniform flow, the
following pressure ratio equation is true.

Here U is the velocity of the uniform flow and q is the surface
speed of the rotating cylinder.

Section 6.8 Viscous Flow

6.58 The two-dimensional velocity field for an incompressible,
Newtonian fluid is described by the relationship

where the velocity has units of meters per second when x and y
are in meters. Determine the stresses 
xx, 
yy, and �xy at the point
x � 0.5 m, y � 1.0 m if pressure at this point is 6 kPa and the
fluid is glycerin at 20� C. Show these stresses on a sketch.

6.60 The velocity of a fluid particle moving along a horizontal
streamline that coincides with the x axis in a plane, two-
dimensional incompressible flow field was experimentally
found to be described by the equation u � x2. Along this steam-
line determine an expression for (a) the rate of change of the �
component of velocity with respect to y, (b) the acceleration of
the particle, and (c) the pressure gradient in the x direction. The
fluid is Newtonian.

6.62 Determine the shearing stress for an incompressible New-
tonian fluid with a velocity distribution of 

.

Section 6.9.1 Steady, Laminar Flow between Fixed
Parallel Plates

6.64 Obtain a photograph/image of a situation that can be ap-
proximated by one of the simple cases covered in Section 6.9.
Print this photo and write a brief paragraph that describes the
situation involved.

6.66 Two fixed, horizontal, parallel plates are spaced 0.2 in.
apart. A viscous liquid (� � 8 � 10�3 lb�s/ft2, SG � 0.9) flows
between the plates with a mean velocity of 0.9 ft/s. Determine
the pressure drop per unit length in the direction of flow. What
is the maximum velocity in the channel?

6.68 (See Fluids in the News article titled “10 tons on 8 psi,”
Section 6.9.1.) A massive, precisely machined, 6-ft-diameter

112x2y � y32 ĵ
V � 13xy2 � 4x32 î �

V � 112xy2 � 6x32 î � 118x2y � 4y32ĵ

ptop � pbottom

pstagnation
�

8q

U

F I G U R E  P6.48

y

x

U
P(x, y)

H

H

A

U = 12 ft/s
6 ft

A

F I G U R E  P6.52

U

θ

a

F I G U R E  P6.54

water is pumped at the rate of 0.06 m3/s through a 3-m-long
pipe, what will be the velocity at point A? Hint: Consider the
flow inside a half-body.

6.48 Two free vortices of equal strength, but opposite direction
of rotation are superimposed with a uniform flow as shown in
Fig. P6.48. The stream functions for these two vorticies are

. (a) Develop an equation for the x com-
ponent of velocity, u, at point in terms of Cartesian coor-
dinates x and y. (b) Compute the x component of velocity at
point A and show that it depends on the ratio ./H

P1x, y2
c � � 3;�12p2 4  ln r
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236 Chapter 6 ■ Differential Analysis of Fluid Flow

granite sphere rests upon a 4-ft-diameter cylindrical pedestal as
shown in Fig P.6.68. When the pump is turned on and the water
pressure within the pedestal reaches 8 psi, the sphere rises off
the pedestal, creating a 0.005-in. gap through which the water
flows. The sphere can then be rotated about any axis with mini-
mal friction. (a) Estimate the pump flowrate, , required to
accomplish this. Assume the flow in the gap between the sphere
and the pedestal is essentially viscous flow between fixed, par-
allel plates. (b) Describe what would happen if the pump
flowrate were increased to .

Section 6.9.2 Couette Flow

6.70 Due to the no-slip condition, as a solid is pulled out of a
viscous liquid some of the liquid is also pulled along as de-
scribed in Example 6.8 and shown in Video V6.11. Based on the
results given in Example 6.8, show on a dimensionless plot the
velocity distribution in the fluid film (�/V0 vs. x/h) when the av-
erage film velocity, V, is 10% of the belt velocity, V0.

6.72 The viscous, incompressible flow between the parallel
plates shown in Fig. P6.72 is caused by both the motion of the
bottom plate and a pressure gradient, 0p/0x. As noted in Section
6.9.2, an important dimensionless parameter for this type of
problem is P � �(b2/2 �U)(0p/0x) where � is the fluid viscosity.

2Q0

Q0

Make a plot of the dimensionless velocity distribution (similar
to that shown in Fig. 6.30b) for P � 3. For this case where does
the maximum velocity occur?

6.74 A viscous fluid is contained between two long concentric
cylinders. The geometry of the system is such that the flow be-
tween the cylinders is approximately the same as the laminar
flow between two infinite parallel plates. (a) Determine an ex-
pression for the torque required to rotate the outer cylinder with
an angular velocity �. The inner cylinder is fixed. Express your
answer in terms of the geometry of the system, the viscosity of
the fluid, and the angular velocity. (b) For a small, rectangular
element located at the fixed wall determine an expression for the
rate of angular deformation of this element. (See Video V6.3
and Fig. P6.8.)

6.76 Two immiscible, incompressible, viscous fluids having
the same densities but different viscosities are contained be-
tween two infinite, horizontal, parallel plates (Fig. P6.76). The
bottom plate is fixed and the upper plate moves with a constant
velocity U. Determine the velocity at the interface. Express your
answer in terms of U, and The motion of the fluid is
caused entirely by the movement of the upper plate; that is,
there is no pressure gradient in the x direction. The fluid veloc-
ity and shearing stress are continuous across the interface
between the two fluids. Assume laminar flow.

�2.�1,

Section 6.9.3 Steady, Laminar Flow in Circular
Tubes

6.78 It is known that the velocity distribution for steady, laminar
flow in circular tubes (either horizontal or vertical) is parabolic.
(See Video V6.13.) Consider a 10-mm-diameter horizontal tube
through which ethyl alcohol is flowing with a steady mean ve-
locity 0.15 m/s. (a) Would you expect the velocity distribution
to be parabolic in this case? Explain. (b) What is the pressure
drop per unit length along the tube?

6.80 A highly viscous Newtonian liquid (� � 1300 kg/m3; � �
6.0 N � s/m2) is contained in a long, vertical, 150-mm-diameter
tube. Initially, the liquid is at rest, but when a valve at the bot-
tom of the tube is opened flow commences. Although the flow
is slowly changing with time, at any instant the velocity distrib-
ution is essentially parabolic; that is, the flow is quasi-steady.
(See Video V6.13.) Some measurements show that the average
velocity, V, is changing in accordance with the equation V � 0.1
t, with V in m/s when t is in seconds. (a) Show on a plot the ve-
locity distribution (�z vs. r) at t � 2 s, where �z is the velocity and
r is the radius from the center of the tube. (b) Verify that the flow
is laminar at this instant.

F I G U R E  P6.68
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6.82 (a) Show that for Poiseuille flow in a tube of radius R the
magnitude of the wall shearing stress, �rz, can be obtained from
the relationship

for a Newtonian fluid of viscosity �. The volume rate of flow is
Q. (b) Determine the magnitude of the wall shearing stress for a
fluid having a viscosity of 0.003 N�s/m2 flowing with an aver-
age velocity of 100 mm/s in a 2-mm-diameter tube.

6.84 Consider a steady, laminar flow through a straight hori-
zontal tube having the constant elliptical cross section given by
the equation

The streamlines are all straight and parallel. Investigate the pos-
sibility of using an equation for the z component of velocity of
the form

w � Aa1 �
x2

a2 �
y2

b2b

x2

a2 �
y2

b2 � 1

0 1�rz2wall 0 �
4�Q

�R3

as an exact solution to this problem. With this velocity distribu-
tion, what is the relationship between the pressure gradient
along the tube and the volume flowrate through the tube?

Section 6.10 Other Aspects of Differential Analysis

■ Lifelong Learning Problems

6.86 What sometimes appear at first glance to be simple fluid
flows can contain subtle, complex fluid mechanics. One such
example is the stirring of tea leaves in a teacup. Obtain informa-
tion about “Einstein’s tea leaves” and investigate some of the
complex fluid motions interacting with the leaves. Summarize
your findings in a brief report.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for
fluid mechanics are provided on the book’s web site, www
.wiley.com/college/young, or WileyPLUS.
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CHAPTER OPENING PHOTO: Flow past a circular cylinder with Re � 2000: The streaklines of flow past
any circular cylinder (regardless of size, velocity, or fluid) are as shown, provided that the dimension-
less parameter called the Reynolds number, Re � �VD/�, is equal to 2000. For other values of Re
the flow pattern will be different (air bubbles in water). (Photograph courtesy of ONERA, France.)

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ apply the Buckingham pi theorem.

■ develop a set of dimensionless variables for a given flow situation.

■ discuss the use of dimensionless variables in data analysis.

■ apply the concepts of modeling and similitude to develop prediction
equations.

Although many practical engineering problems involving fluid mechanics can be solved by
using the equations and analytical procedures described in the preceding chapters, a large num-
ber of problems remain that rely on experimentally obtained data for their solution. An obvi-
ous goal of any experiment is to make the results as widely applicable as possible. To achieve
this end, the concept of similitude is often used so that measurements made on one system
(for example, in the laboratory) can be used to describe the behavior of other similar sys-
tems (outside the laboratory). The laboratory systems are usually thought of as models and
are used to study the phenomenon of interest under carefully controlled conditions. From
these model studies, empirical formulations can be developed or specific predictions of one

Similitude,
Dimensional
Analysis, and
Modeling

7 Similitude,
Dimensional
Analysis, and
Modeling

7

V7.1 Real and
model flies
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7.1 Dimensional Analysis 239

or more characteristics of some other similar system can be made. To do this, it is necessary
to establish the relationship between the laboratory model and the “other” system. In the fol-
lowing sections, we find out how this can be accomplished in a systematic manner.

F l u i d s  i n  t h e  N e w s

Model study of New Orleans levee breach caused by
Hurricane Katrina Much of the devastation to New Orleans
from Hurricane Katrina in 2005 was a result of flood waters
that surged through a breach of the 17 Street Outfall Canal.
To better understand why this occurred and to determine what
can be done to prevent future occurrences, the U.S. Army 
Engineer Research and Development Center Coastal and 
Hydraulics Laboratory is conducting tests on a large (1:50
length scale) 15,000-square-foot hydraulic model that repli-
cates 0.5 mile of the canal surrounding the breach and more

than a mile of the adjacent Lake Pontchartrain front. The ob-
jective of the study is to obtain information regarding the 
effect that waves had on the breaching of the canal and to in-
vestigate the surging water currents within the canals. The
waves are generated by computer-controlled wave generators
that can produce waves of varying heights, periods, and direc-
tions similar to the storm conditions that occurred during the
hurricane. Data from the study will be used to calibrate and
validate information that will be fed into various numerical
model studies of the disaster.

7.1 Dimensional Analysis

To illustrate a typical fluid mechanics problem in which experimentation is required, con-
sider the steady flow of an incompressible, Newtonian fluid through a long, smooth-walled,
horizontal, circular pipe. An important characteristic of this system, which would be of inter-
est to an engineer designing a pipeline, is the pressure drop per unit length that develops
along the pipe as a result of friction. Although this would appear to be a relatively simple
flow problem, it cannot generally be solved analytically (even with the aid of large com-
puters) without the use of experimental data.

The first step in the planning of an experiment to study this problem would be to
decide on the factors, or variables, that will have an effect on the pressure drop per unit
length, �p�, which has dimensions of (lb/ft2)/ft or (N/m2)/m. We expect the list to include
the pipe diameter, D, the fluid density, �, fluid viscosity, �, and the mean velocity, V, at
which the fluid is flowing through the pipe. Thus, we can express this relationship as

(7.1)

which simply indicates mathematically that we expect the pressure drop per unit length to
be some function of the factors contained within the parentheses. At this point the nature
of the function is unknown, and the objective of the experiments to be performed is to deter-
mine the nature of this function.

To perform the experiments in a meaningful and systematic manner, it would be
necessary to change one of the variables, such as the velocity, while holding all others
constant and measure the corresponding pressure drop. This approach to determining the
functional relationship between the pressure drop and the various factors that influence
it, although logical in concept, is fraught with difficulties. Some of the experiments
would be hard to carry out—for example, it would be necessary to vary fluid density
while holding viscosity constant. How would you do this? Finally, once we obtained the
various curves, how could we combine these data to obtain the desired general func-
tional relationship among �p�, D, �, �, and V that would be valid for any similar pipe
system?

Fortunately, there is a much simpler approach to this problem that will eliminate the
difficulties just described. In the following sections we will show that rather than working
with the original list of variables, as described in Eq. 7.1, we can collect these into two

¢p/ � f 1D, �, �, V 2
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nondimensional combinations of variables (called dimensionless products or dimensionless
groups) so that as shown by the figure in the margin

(7.2)

Thus, instead of having to work with five variables, we now have only two. The necessary
experiment would simply consist of varying the dimensionless product �VD/� and deter-
mining the corresponding value of D �p�/�V2. The results of the experiment could then be
represented by a single, universal curve.

The basis for this simplification lies in a consideration of the dimensions of the
variables involved. As discussed in Chapter 1, a qualitative description of physical quan-
tities can be given in terms of basic dimensions such as mass, M, length, L, and time, T.1

Alternatively, we could use force, F, L, and T as basic dimensions, since from Newton’s
second law

(Recall from Chapter 1 that the notation � is used to indicate dimensional equality.) The
dimensions of the variables in the pipe flow example are �p� � (FL�2)/L � FL�3, D � L,
� � FL�4T 2, � � FL�2T, and V � LT�1. A quick check of the dimensions of the two groups
that appear in Eq. 7.2 shows that they are in fact dimensionless products; that is,

and

Not only have we reduced the numbers of variables from five to two, but also the new groups
are dimensionless combinations of variables, which means that the results will be indepen-
dent of the system of units we choose to use. This type of analysis is called dimensional
analysis, and the basis for its application to a wide variety of problems is found in the Buck-
ingham pi theorem described in the following section.

�VD
�

�
1FL�4T 22 1LT�12 1L2

1FL�2T 2
� F 0L0T 0

D ¢p/

�V 2 �
L1F/L32

1FL�4T 22 1LT�122
� F 0L0T 0

F � MLT�2

D ¢p/

�V2 � � a
�VD

�
b
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7.2 Buckingham Pi Theorem

A fundamental question we must answer is how many dimensionless products are required
to replace the original list of variables. The answer to this question is supplied by the basic
theorem of dimensional analysis that states the following:

If an equation involving k variables is dimensionally homogeneous, it can be
reduced to a relationship among k � r independent dimensionless products,
where r is the minimum number of reference dimensions required to describe 
the variables.

The dimensionless products are frequently referred to as pi terms, and the theorem is called
the Buckingham pi theorem. Edgar Buckingham (1867–1940), who stimulated interest in

1As noted in Chapter 1, we will use T to represent the basic dimension of time, although T is also used for temperature in ther-
modynamic relationships (such as the ideal gas law).
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7.3 Determination of Pi Terms 241

the use of dimensional analysis, used the symbol � to represent a dimensionless product,
and this notation is commonly used. Although the pi theorem is a simple one, its proof is
not so simple and we will not include it here. Many entire books have been devoted to the
subject of similitude and dimensional analysis, and a number of these are listed at the end
of this chapter (Refs. 1–5). Students interested in pursuing the subject in more depth (includ-
ing the proof of the pi theorem) can refer to one of these books.

The pi theorem is based on the idea of dimensional homogeneity, which was intro-
duced in Chapter 1. Essentially we assume that for any physically meaningful equation
involving k variables, such as

the dimensions of the variable on the left side of the equal sign must be equal to the dimen-
sions of any term that stands by itself on the right side of the equal sign. It then follows
that we can rearrange the equation into a set of dimensionless products (pi terms) so that

The required number of pi terms is fewer than the number of original variables by r, where
r is determined by the minimum number of reference dimensions required to describe the
original list of variables. Usually the reference dimensions required to describe the vari-
ables will be the basic dimensions M, L, and T or F, L, and T. However, in some instances
perhaps only two dimensions, such as L and T, are required, or maybe just one, such as
L. Also, in a few rare cases the variables may be described by some combination of basic
dimensions, such as M/T 2, and L, and in this case r would be equal to two rather than
three. Although the use of the pi theorem may appear to be a little mysterious and com-
plicated, we will actually develop a simple, systematic procedure for developing the pi terms
for a given problem.

ß1 � �1ß2, ß3, p , ßk�r2

u1 � f 1u2, u3, p , uk2

7.3 Determination of Pi Terms

Several methods can be used to form the dimensionless products, or pi terms, that arise in
a dimensional analysis. Essentially we are looking for a method that will allow us to system-
atically form the pi terms so that we are sure that they are dimensionless and independent and
that we have the right number. The method we will describe in detail in this section is called
the method of repeating variables.

It will be helpful to break the repeating variable method down into a series of dis-
tinct steps that can be followed for any given problem. With a little practice you will be
able to readily complete a dimensional analysis for your problem.

Step 1. List all the variables that are involved in the problem. This step is the most dif-
ficult one, and it is, of course, vitally important that all pertinent variables be
included. Otherwise the dimensional analysis will not be correct! We are using the
term variable to include any quantity, including dimensional and nondimensional
constants, that plays a role in the phenomenon under investigation. All such quan-
tities should be included in the list of variables to be considered for the dimen-
sional analysis. The determination of the variables must be accomplished by the
experimenter’s knowledge of the problem and the physical laws that govern the phe-
nomenon. Typically the variables will include those that are necessary to describe
the geometry of the system (such as a pipe diameter), to define any fluid proper-
ties (such as a fluid viscosity), and to indicate external effects that influence the
system (such as a driving pressure). These general classes of variables are intended
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as broad categories that should be helpful in identifying variables. It is likely, how-
ever, that there will be variables that do not fit easily into one of these categories,
and each problem needs to be analyzed carefully.

Since we wish to keep the number of variables to a minimum, so that we can
minimize the amount of laboratory work, it is important that all variables be indepen-
dent. For example, if in a certain problem the cross-sectional area of a pipe is an impor-
tant variable, either the area or the pipe diameter could be used, but not both, since they
are obviously not independent. Similarly, if both fluid density, �, and specific weight,
�, are important variables, we could list � and �, or � and g (acceleration of gravity), or
� and g. However, it would be incorrect to use all three since � � �g; that is, �, �, and
g are not independent. Note that although g would normally be constant in a given 
experiment, that fact is irrelevant as far as a dimensional analysis is concerned.

Step 2. Express each of the variables in terms of basic dimensions. For the typical fluid
mechanics problem the basic dimensions will be either M, L, and T or F, L, and T.
Dimensionally these two sets are related through Newton’s second law (F � ma) so
that F � MLT �2. For example, � � ML�3 or � � FL�4T 2. Thus, either set can be
used. The basic dimensions for typical variables found in fluid mechanics problems
are listed in Table 1.1 in Chapter 1.

Step 3. Determine the required number of pi terms. This can be accomplished by means
of the Buckingham pi theorem, which indicates that the number of pi terms is equal
to k � r, where k is the number of variables in the problem (which is determined from
Step 1) and r is the number of reference dimensions required to describe these vari-
ables (which is determined from Step 2). The reference dimensions usually corre-
spond to the basic dimensions and can be determined by an inspection of the dimen-
sions of the variables obtained in Step 2. As previously noted, there may be occasions
(usually rare) in which the basic dimensions appear in combinations so that the num-
ber of reference dimensions is less than the number of basic dimensions.

Step 4. Select a number of repeating variables. The number required is equal to the
number of reference dimensions. Essentially what we are doing here is selecting
from the original list of variables, several of which can be combined with each of the
remaining variables to form a pi term. All of the required reference dimensions must
be included within the group of repeating variables, and each repeating variable must
be dimensionally independent of the others (i.e., the dimensions of one repeating vari-
able cannot be reproduced by some combination of products of powers of the remain-
ing repeating variables). This means that the repeating variables cannot themselves be
combined to form a dimensionless product.

For any given problem we usually are interested in determining how one partic-
ular variable is influenced by the other variables. We would consider this variable to be
the dependent variable, and we would want this to appear in only one pi term. Thus, do
not choose the dependent variable as one of the repeating variables, since the repeating
variables will generally appear in more than one pi term.

Step 5. Form a pi term by multiplying one of the nonrepeating variables by the product
of the repeating variables, each raised to an exponent that will make the combi-
nation dimensionless. Essentially, each pi term will be of the form where
ui is one of the nonrepeating variables; u1, u2, and u3 are the repeating variables; and
the exponents ai, bi, and ci are determined so that the combination is dimensionless.

Step 6. Repeat Step 5 for each of the remaining nonrepeating variables. The resulting set
of pi terms will correspond to the required number obtained from Step 3. If not,
check your work—you have made a mistake!

uiu1
aiu2

biu3
ci
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7.3 Determination of Pi Terms 243

Step 7. Check all the resulting pi terms to make sure they are dimensionless. It is easy to
make a mistake in forming the pi terms. However, this can be checked by simply sub-
stituting the dimensions of the variables into the pi terms to confirm that they are 
dimensionless. One good way to do this is to express the variables in terms of M, L,
and T if the basic dimensions F, L, and T were used initially, or vice versa, and then
check to make sure the pi terms are dimensionless.

Step 8. Express the final form as a relationship among the pi terms and think about
what it means. Typically the final form can be written as

where �1 would contain the dependent variable in the numerator. It should be em-
phasized that if you started out with the correct list of variables (and the other steps
were completed correctly), then the relationship in terms of the pi terms can be used
to describe the problem. You need only work with the pi terms—not with the indi-
vidual variables. However, it should be clearly noted that this is as far as we can go
with the dimensional analysis; that is, the actual functional relationship among the
pi terms must be determined by experiment.

To illustrate these various steps we will again consider the problem discussed earlier
in this chapter that was concerned with the steady flow of an incompressible, Newtonian
fluid through a long, smooth-walled horizontal, circular pipe. We are interested in the pres-
sure drop per unit length, �p�, along the pipe. First (Step 1), we must list all of the perti-
nent variables that are involved based on the experimenter’s knowledge of the problem. As
shown by the figure in the margin, we assume that

where D is the pipe diameter, � and � are the fluid density and viscosity, respectively, and
V is the mean velocity.

Next (Step 2) we express all the variables in terms of basic dimensions. Using F, L,
and T as basic dimensions it follows that

We could also use M, L, and T as basic dimensions if desired—the final result will be the
same! Note that for density, which is a mass per unit volume (ML�3), we have used the rela-
tionship F � MLT�2 to express the density in terms of F, L, and T. Do not mix the basic
dimensions; that is, use either F, L, and T or M, L, and T.

We can now apply the pi theorem to determine the required number of pi terms (Step 3).
An inspection of the dimensions of the variables from Step 2 reveals that all three basic
dimensions are required to describe the variables. Since there are five (k � 5) variables (do
not forget to count the dependent variable, �p�) and three required reference dimensions
(r � 3), then according to the pi theorem there will be (5 � 3), or two pi terms required.

The repeating variables to be used to form the pi terms (Step 4) need to be selected
from the list D, �, �, and V. Remember, we do not want to use the dependent variable as
one of the repeating variables. Because three reference dimensions are required, we will
need to select three repeating variables. Generally, we would try to select for repeating

 V � LT�1

 � � FL�2T

 � � FL�4T 2

 D � L

 ¢p/ � 1FL�22/L � FL�3

¢p/ � f 1D, �, �, V 2

ß1 � f1ß2, ß3, . . . , ßk�r2

(1) (2)

D
V

ρ, μ

�

Δp� = (p1 – p2)/�
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variables those that are the simplest, dimensionally. For example, if one of the variables has
the dimension of a length, choose it as one of the repeating variables. In this example we
will use D, V, and � as repeating variables. Note that these are dimensionally independent,
since D is a length, V involves both length and time, and � involves force, length, and time.
This means that we cannot form a dimensionless product from this set.

We are now ready to form the two pi terms (Step 5). Typically, we would start with the
dependent variable and combine it with the repeating variables to form the first pi term; that is,

Since this combination is to be dimensionless, it follows that

The exponents a, b, and c must be determined such that the resulting exponent for each of
the basic dimensions—F, L, and T—must be zero (so that the resulting combination is
dimensionless). Thus, we can write

(for F)

(for L)

(for T )

The solution of this system of algebraic equations gives the desired values for a, b, and c.
It follows that a � 1, b � �2, c � �1, and, therefore,

The process is now repeated for the remaining nonrepeating variables (Step 6). In this
example there is only one additional variable (�) so that

or

and, therefore,

(for F)

(for L)

(for T)

Solving these equations simultaneously it follows that a � �1, b � �1, c � �1 so that

Note that we end up with the correct number of pi terms as determined from Step 3.
At this point stop and check to make sure the pi terms are actually dimensionless

(Step 7). Finally (Step 8), we can express the result of the dimensional analysis as

This result indicates that this problem can be studied in terms of these two pi terms
rather than the original five variables we started with. The eight steps carried out to
obtain this result are summarized by the figure in the margin. Dimensional analysis will not

¢p/D

�V2 � �
~ a

�

DV�
b

ß2 �
�

DV�

 1 � b � 2c � 0

 �2 � a � b � 4c � 0

 1 � c � 0

1FL�2T2 1L2a1LT�12b1FL�4T22c � F0L0T0

ß2 � �DaVb�c

ß1 �
¢p/D

�V2

 �b � 2c � 0

 �3 � a � b � 4c � 0

 1 � c � 0

1FL�32 1L2a1LT�12b1FL�4T22c � F0L0T0

ß1 � ¢p/DaVb�c
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Δp�D_____

  
V2ρ

= F0L0T0

Step 1

Δp� = f(D, r, m, V)

Step 2

Δp� = FL�3, ...

Step 3

k – r = 3

Step 4

D, V, r

Step 5

�1 = Δp�D
aVbrc

Step 6

�2 = mDaVbrc

Step 7

Step 8
Δp�D_____

  
V2ρ

= �
~�     �____

DVρ
m
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7.3 Determination of Pi Terms 245

provide the form of the function . This can only be obtained from a suitable set of exper-
iments. If desired, the pi terms can be rearranged; that is, the reciprocal of �/DV� could be
used and, of course, the order in which we write the variables can be changed. Thus, for
example, �2 could be expressed as

and the relationship between �1 and �2 as

This form, shown by the figure in the margin, was used previously in our initial discussion
of this problem (Eq. 7.2). The dimensionless product �VD/� is a very famous one in fluid
mechanics—the Reynolds number. This number has been alluded to briefly in Chapters 1
and 6 and will be discussed further in Section 7.6.

D ¢p/

�V2 � � a
�VD

�
b

ß2 �
�VD

�

�
&

ρ
μ
VD_____

ρ
DΔp�

V2
______

GIVEN A thin rectangular plate having a width w and a
height h is located so that it is normal to a moving stream of
fluid (see Fig. E 7.1). Assume the drag, d, that the fluid exerts
on the plate is a function of w and h, the fluid viscosity and den-
sity, � and �, respectively, and the velocity V of the fluid ap-
proaching the plate. 

SOLUTION

Method of Repeating Variables

dimension not included in the others. Note that it would be
incorrect to use both w and h as repeating variables since they
have the same dimensions.

Starting with the dependent variable, d, the first pi term can
be formed by combining dwith the repeating variables such that

and in terms of dimensions

Thus, for �1 to be dimensionless it follows that

(for M)

(for L)

(for T) �2 � b � 0

 1 � a � b � 3c � 0

 1 � c � 0

1MLT �22 1L2a1LT �12b1ML�32c � M 0L0T 0

ß1 � d waVb�c

EXAMPLE 7.1

From the statement of the problem we can write

d� f(w, h, �, �, V)

where this equation expresses the general functional relation-
ship between the drag and the several variables that will affect
it. The dimensions of the variables (using the MLT system) are

We see that all three basic dimensions are required to define
the six variables so that the Buckingham pi theorem tells us
that three pi terms will be needed (six variables minus three
reference dimensions, k � r � 6 � 3).

We will next select three repeating variables such as w, V,
and �. A quick inspection of these three reveals that they are
dimensionally independent, since each one contains a basic

 V � LT �1

 � � ML�3

 � � ML�1T �1

 h � L
 w � L
 d � MLT �2

F I G U R E  E7.1

h

w

V
ρ, μ

V7.2 Flow past a
flat plate

FIND Determine a suitable set of pi terms to study this
problem experimentally.
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Now that we have the three required pi terms we should
check to make sure they are dimensionless. To make this
check we use F, L, and T, which will also verify the correct-
ness of the original dimensions used for the variables.
Thus,

If these do not check, go back to the original list of variables
and make sure you have the correct dimensions for each of the
variables and then check the algebra you used to obtain the ex-
ponents a, b, and c.

Finally, we can express the results of the dimensional
analysis in the form

(Ans)

Since at this stage in the analysis the nature of the function
is unknown, we could rearrange the pi terms if we so de-
sired. For example, we could express the final result in the
form

(Ans)

which would be more conventional, since the ratio of the plate
width to height, w/h, is called the aspect ratio and �Vw/� is the
Reynolds number. 

COMMENT To proceed, it would be necessary to perform
a set of experiments to determine the nature of the function

, as discussed in Section 7.7.�

d

w2�V 2 � � a
w

h
, 

�Vw

�
b

�
&

d

w2V 2�
� �

~ a
h

w
, 

�

wV�
b

 ß3 �
�

wV�
�

1FL�2T 2

1L2 1LT�12 1FL�4T 22
� F 0L0T 0

 ß2 �
h

w
�
1L2

1L2
� F 0L0T 0

 ß1 �
d

w2V 2�
�

1F2

1L221LT �1221FL�4T 22
� F 0L0T 0

and, therefore, a � �2, b � �2, and c � �1. The pi term
then becomes

Next the procedure is repeated with the second nonrepeat-
ing variable, h, so that

It follows that

and

(for M)

(for L)

(for T)

so that a � �1, b � 0, c � 0, and therefore

The remaining nonrepeating variable is � so that

with

and, therefore,

(for M)

(for L)

(for T)

Solving for the exponents we obtain a � �1, b � �1,
c � �1 so that

ß3 �
�

wV�

 �1 � b � 0

 �1 � a � b � 3c � 0

 1 � c � 0

1ML�1T �12 1L2a1LT �12b1ML�32c � M 0L0T 0

ß3 � �waV b�c

ß2 �
h

w

 b � 0

 1 � a � b � 3c � 0

 c � 0

1L2 1L2a1LT �12b1ML�32c � M 0L0T 0

ß2 � hwaVb�c

ß1 �
d

w2V 2�

7.4 Some Additional Comments about Dimensional Analysis

The preceding section provides a systematic procedure for performing a dimensional analy-
sis. Other methods could be used, although we think the method of repeating variables is
the easiest for the beginning student to use. Pi terms can also be formed by inspection, as
is discussed in Section 7.5. Regardless of the specific method used for the dimensional
analysis, there are certain aspects of this important engineering tool that must seem a little
baffling and mysterious to the student (and sometimes to the experienced investigator as
well). In this section we will attempt to elaborate on some of the more subtle points that,
based on our experience, can prove to be puzzling to students.
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7.4 Some Additional Comments about Dimensional Analysis 247

7.4.1 Selection of Variables

One of the most important and difficult steps in applying dimensional analysis to any given
problem is the selection of the variables that are involved. As noted previously, for convenience
we will use the term variable to indicate any quantity involved, including dimensional and
nondimensional constants. There is no simple procedure whereby the variables can be eas-
ily identified. Generally, one must rely on a good understanding of the phenomenon involved
and the governing physical laws.

For most engineering problems (including areas outside of fluid mechanics), pertinent
variables can be classified into three general groups—geometry, material properties, and
external effects.

Geometry. The geometric characteristics can usually be prescribed by a series of
lengths and angles. In most problems the geometry of the system plays an important role,
and a sufficient number of geometric variables must be included to describe the system. These
variables can usually be readily identified.

Material Properties. Since the response of a system to applied external effects
such as forces, pressures, and changes in temperature is dependent on the nature of the
materials involved in the system, the material properties that relate the external effects and
the responses must be included as variables. For example, for Newtonian fluids the vis-
cosity of the fluid is the property that relates the applied forces to the rates of deformation
of the fluid.

External Effects. This terminology is used to denote any variable that produces, or
tends to produce, a change in the system. For example, in structural mechanics, forces (ei-
ther concentrated or distributed) applied to a system tend to change its geometry, and such
forces would need to be considered as pertinent variables. For fluid mechanics, variables in
this class would be related to pressures, velocities, or gravity.

7.4.2 Determination of Reference Dimensions

For any given problem it is obviously desirable to reduce the number of pi terms to a min-
imum and, therefore, we wish to reduce the number of variables to a minimum; that is, we
certainly do not want to include extraneous variables. It is also important to know how many
reference dimensions are required to describe the variables. As we have seen in the preceding
examples, F, L, and T appear to be a convenient set of basic dimensions for characterizing
fluid-mechanical quantities. There is, however, really nothing “fundamental” about this set
and, as previously noted, M, L, and T would also be suitable. Of course, in some problems
only one or two of these is required.

7.4.3 Uniqueness of Pi Terms

A little reflection on the process used to determine pi terms by the method of repeating
variables reveals that the specific pi terms obtained depend on the somewhat arbitrary selec-
tion of repeating variables. For example, in the problem of studying the pressure drop in a
pipe, we selected D, V, and � as repeating variables. This led to the formulation of the prob-
lem in terms of pi terms as

(7.3)
¢p/D

�V2 � � a
�VD

�
b
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What if we had selected D, V, and � as repeating variables? A quick check will reveal that
the pi term involving �p� becomes

and the second pi term remains the same. Thus, we can express the final result as

(7.4)

Both results are correct, and both would lead to the same final equation for �p�. Note, how-
ever, that the functions � and �1 in Eqs. 7.3 and 7.4 will be different because the depen-
dent pi terms are different for the two relationships. As shown by the figure in the margin,
the resulting graph of dimensionless data will be different for the two formulations. How-
ever, when extracting the physical variable, pressure drop per unit length, from the two
results, the values will be the same.

We can conclude from this illustration that there is not a unique set of pi terms that
arises from a dimensional analysis. However, the required number of pi terms is fixed.

¢p/D
2

V�
� �1 a

�VD
�
b

¢p/D2

V�
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D2Δp�

Vm

  VD____
μ

  ρ

  VD____
μ

  ρ

  
V2ρ

DΔp�

7.5 Determination of Pi Terms by Inspection

One method for forming pi terms, the method of repeating variables, has been presented in
Section 7.3. This method provides a step-by-step procedure that, if executed properly, will
provide a correct and complete set of pi terms. Although this method is simple and straight-
forward, it is rather tedious, particularly for problems in which large numbers of variables
are involved. Since the only restrictions placed on the pi terms are that they be (1) correct
in number, (2) dimensionless, and (3) independent, it is possible to simply form the pi terms
by inspection, without resorting to the more formal procedure.

To illustrate this approach, we again consider the pressure drop per unit length along
a smooth pipe. Regardless of the technique to be used, the starting point remains the same—
determine the variables, which in this case are

�p/ � f(D, �, �, V)

Next, the dimensions of the variables are listed:

and subsequently the number of reference dimensions determined. Application of the pi the-
orem then tells us how many pi terms are required. In this problem, since there are five
variables and three reference dimensions, two pi terms are needed. Thus, the required num-
ber of pi terms can be easily determined, and the determination of this number should
always be done at the beginning of the analysis.

Once the number of pi terms is known, we can form each pi term by inspection, sim-
ply making use of the fact that each pi term must be dimensionless. We will always let �1

contain the dependent variable, which in this example is �p�. Since this variable has the

 V � LT�1

 � � FL�2T

 � � FL�4T 2

 D � L

 ¢p/ � FL�3
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7.6 Common Dimensionless Groups in Fluid Mechanics 249

dimensions FL�3, we need to combine it with other variables so that a nondimensional product
will result. One possibility is

Next, we will form the second pi term by selecting the variable that was not used in �1,
which in this case is �. We simply combine � with the other variables to make the combi-
nation dimensionless (but do not use �p� in �2, since we want the dependent variable to
appear only in �1). For example, divide � by � (to eliminate F), then by V (to eliminate T ),
and finally by D (to eliminate L). Thus,

and, therefore,

which is, of course, the same result we obtained by using the method of repeating variables.
Although forming pi terms by inspection is essentially equivalent to the repeating vari-

able method, it is less structured. With a little practice the pi terms can be readily formed
by inspection, and this method offers an alternative to the more formal procedure.

¢p/D

�V 2 � � a
�

�VD
b

ß2 �
�

�VD

ß1 �
¢p/D

�V 2

7.6 Common Dimensionless Groups in Fluid Mechanics

At the top of Table 7.1 is a list of variables that commonly arise in fluid mechanics prob-
lems. The list is obviously not exhaustive but does indicate a broad range of variables likely
to be found in a typical problem. Fortunately, not all of these variables would be encoun-
tered in each problem. However, when combinations of these variables are present, it is
standard practice to combine them into some of the common dimensionless groups (pi
terms) given in Table 7.1. These combinations appear so frequently that special names are
associated with them as indicated in Table 7.1.

It is also often possible to provide a physical interpretation to the dimensionless groups,
which can be helpful in assessing their influence in a particular application. For example,
the Froude number is an index of the ratio of the force due to the acceleration of a fluid par-
ticle (inertial force) to the force due to gravity (weight). A similar interpretation in terms of
indices of force ratios can be given to the other dimensionless groups, as indicated in Table
7.1. The Reynolds number is undoubtedly the most famous dimensionless parameter in fluid
mechanics. It is named in honor of Osborne Reynolds, a British engineer, who first demon-
strated that this combination of variables could be used as a criterion to distinguish between
laminar and turbulent flow. In most fluid flow problems there will be a characteristic length,
�, and a velocity, V, as well as the fluid properties of density, �, and viscosity, �, which are
relevant variables in the problem. Thus, with these variables the Reynolds number

arises naturally from the dimensional analysis. The Reynolds number is a measure of the
ratio of the inertia force on an element of fluid to the viscous force on an element. When
these two types of forces are important in a given problem, the Reynolds number will play
an important role.

Re �
�V/
�

V7.3 Reynolds
number

V7.4 Froude 
number
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TA B L E 7 . 1

Some Common Variables and Dimensionless Groups in Fluid Mechanics

Variables: Acceleration of gravity, g; Bulk modulus, Ev; Characteristic length, �; Density, �;
Frequency of oscillating flow, �; Pressure, p (or �p); Speed of sound, c; Surface tension, �; 
Velocity, V; Viscosity, �

Dimensionless Interpretation (Index of Types of
Groups Name Force Ratio Indicated) Applications

Reynolds number, Re Generally of importance in
all types of fluid 
dynamics problems

Froude number, Fr Flow with a free surface

Euler number, Eu Problems in which pressure
or pressure differences
are of interest

Cauchy number,a Ca Flows in which the
compressibility of the 
fluid is important 

Mach number,a Ma Flows in which the
compressibility of the
fluid is important

Strouhal number, St Unsteady flow with a
characteristic frequency
of oscillation

Weber number, We Problems in which surface
tension is important 

inertia force

surface tension force

�V 2/
�

inertia 1local2 force

inertia 1convective2 force

�/
V

inertia force

compressibility force

V

c

inertia force

compressibility force
�V 2

Ev

pressure force

inertia force

p

�V 2

inertia force

gravitational force

V

1g/

inertia force

viscous force

�V/
�

aThe Cauchy number and the Mach number are related, and either can be used as an index of the relative effects of inertia and
compressibility.

V7.5 Strouhal 
number

V7.6 Weber number

F l u i d s  i n  t h e  N e w s

Slip at the micro scale A goal in chemical and biological
analyses is to miniaturize the experiment, which has many
advantages including reduction in sample size. In recent years,
there has been significant work on integrating these tests on a
single microchip to form the “lab-on-a-chip” system. These
devices are on the millimeter scale with complex passages for
fluid flow on the micron scale (or smaller). While there are
advantages to miniaturization, care must be taken in moving to
smaller and smaller flow regimes, as you will eventually bump
into the continuum assumption. To characterize this situation,

a dimensionless number termed the Knudsen number,
, is commonly employed. Here is the mean free

path and is the characteristic length of the system. If Kn is
smaller than 0.01, then the flow can be described by the
Navier–Stokes equations with no slip at the walls. For

, the same equations can be used, but there
can be slip between the fluid and the wall so the boundary
conditions need to be adjusted. For , the continuum
assumption breaks down and the Navier–Stokes equations are
no longer valid.

Kn 7 10

0.01 6 Kn 6 0.3

/
�Kn � �//

7.7 Correlation of Experimental Data

One of the most important uses of dimensional analysis is as an aid in the efficient han-
dling, interpretation, and correlation of experimental data. Since the field of fluid mechan-
ics relies heavily on empirical data, it is not surprising that dimensional analysis is such an
important tool in this field. As noted previously, a dimensional analysis cannot provide a
complete answer to any given problem, since the analysis only provides the dimensionless
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groups describing the phenomenon and not the specific relationship among the groups. To
determine this relationship, suitable experimental data must be obtained. The degree of dif-
ficulty involved in this process depends on the number of pi terms and the nature of the
experiments. (How hard is it to obtain the measurements?) The simplest problems are obvi-
ously those involving the fewest pi terms, and the following sections indicate how the com-
plexity of the analysis increases with the increasing number of pi terms.

7.7.1 Problems with One Pi Term

Application of the pi theorem indicates that if the number of variables minus the number
of reference dimensions is equal to unity, then only one pi term is required to describe the
phenomenon. The functional relationship that must exist for one pi term is

where C is a constant. This is one situation in which a dimensional analysis reveals the spe-
cific form of the relationship and, as is illustrated by the following example, shows how
the individual variables are related. The value of the constant, however, must still be deter-
mined by experiment.

ß1 � C

GIVEN As shown in Fig. E7.2, assume that the drag, d,
acting on a spherical particle that falls very slowly through a
viscous fluid is a function of the particle diameter, D, the par-
ticle velocity, V, and the fluid viscosity, �.

FIND Determine, with the aid of dimensional analysis,
how the drag depends on the particle velocity.

SOLUTION

Flow with Only One Pi Term

or

Thus, for a given particle and fluid, the drag varies directly
with the velocity so that

(Ans)

COMMENTS Actually, the dimensional analysis reveals
that the drag not only varies directly with the velocity, but it
also varies directly with the particle diameter and the fluid

d r V

d � C�VD

EXAMPLE 7.2

From the information given, it follows that

d� f(D, V, �)

and the dimensions of the variables are

We see that there are four variables and three reference dimen-
sions (F, L, and T) required to describe the variables. Thus, ac-
cording to the pi theorem, one pi term is required. This pi term
can be easily formed by inspection and can be expressed as

Because there is only one pi term, it follows that

d

�VD
� C

ß1 �
d

�VD

 � � FL�2T

 V � LT �1

 D � L

 d � F

� = f (D,V,   )μ 

μ

V

D

F I G U R E  E7.2

V7.7 Stokes flow
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7.7.2 Problems with Two or More Pi Terms

If a given phenomenon can be described with two pi terms such that

the functional relationship among the variables can then be determined by varying �2 and
measuring the corresponding values of �1. For this case the results can be conveniently pre-
sented in graphical form by plotting �1 versus �2 as shown by the figure in the margin. It
should be emphasized that the resulting curve would be a “universal” one for the particu-
lar phenomenon studied. This means that if the variables and the resulting dimensional
analysis are correct, then there is only a single relationship between �1 and �2. Note that
this is an empirical relationship and, as such, we can only say it is valid over the range of
�2 covered in the experiments. Extrapolation beyond this range is dangerous, as illustrated
by the dashed lines in the figure.

In addition to presenting data graphically, it may be possible (and desirable) to obtain
an empirical equation relating �1 and �2 by using a standard curve-fitting technique.

ß1 � �1ß22

252 Chapter 7 ■ Similitude, Dimensional Analysis, and Modeling

An approximate solution to this problem can also be ob-
tained theoretically, from which it is found that C � 3	 so that

This equation is commonly called Stokes law and is used in the
study of the settling of particles. Our experiments would re-
veal that this result is only valid for small Reynolds numbers
(�VD/� � 1). This follows, since in the original list of variables,
we have neglected inertial effects (fluid density is not included as
a variable). The inclusion of an additional variable would lead to
another pi term so that there would be two pi terms rather than one.

d � 3	�VD

viscosity. We could not, however, predict the value of the drag,
since the constant, C, is unknown. An experiment would have
to be performed in which the drag and the corresponding ve-
locity are measured for a given particle and fluid. Although in
principle we would only have to run a single test, we would
certainly want to repeat it several times to obtain a reliable
value for C. It should be emphasized that once the value of C
is determined it is not necessary to run similar tests by using
different spherical particles and fluids; that is, C is a universal
constant so long as the drag is a function only of particle diam-
eter, velocity, and fluid viscosity.

Valid range

Π1

Π2

k – r = 2

GIVEN The relationship between the pressure drop per unit
length along a smooth-walled, horizontal pipe and the variables
that affect the pressure drop is to be determined experimen-
tally. In the laboratory the pressure drop was measured over a
5-ft length of smooth-walled pipe having an inside diameter of
0.496 in. The fluid used was water at 60 �F (� � 2.34 	 10�5

lb
s/ft2, � � 1.94 slugs/ft3). Tests were run in which the veloc-
ity was varied and the corresponding pressure drop measured.
The results of these tests are shown here:

Dimensionless Correlation of Experimental Data

Pressure drop for
Velocity (ft/s) 5-ft length (lb/ft2)

1.17 6.26
1.95 15.6
2.91 30.9
5.84 106

11.13 329
16.92 681
23.34 1200
28.73 1730 

FIND Make use of these data to obtain a general relationship
between the pressure drop per unit length and the other variables.

EXAMPLE 7.3

SOLUTION

The first step is to perform a dimensional analysis during the
planning stage before the experiments are actually run. As
discussed in Section 7.3, we will assume that the pressure
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same data are plotted on a logarithmic scale, as shown in
Fig. E7.3b, the data form a straight line, suggesting that a suit-
able equation is of the form �1 � A�n

2 where A and n are em-
pirical constants to be determined from the data by using a
suitable curve-fitting technique, such as a nonlinear regression
program. For the data given in this example, a good fit of the
data is obtained with the equation

(Ans)

COMMENT In 1911, H. Blasius, a German fluid mech-
anician, established a similar empirical equation that is used
widely for predicting the pressure drop in smooth pipes in the
range 4 	 103 � Re � 105. This equation can be expressed in
the form

The so-called Blasius formula is based on numerous experi-
mental results of the type used in this example. Flow in pipes
is discussed in more detail in the next chapter, where it is
shown how pipe roughness (which introduces another vari-
able) may affect the results given in this example (which is for
smooth-walled pipes).

D ¢p/

�V2 � 0.1582 a
�VD

�
b

�1/4

ß1 � 0.150 ß�0.25
2

drop per unit length, �p�, is a function of the pipe diameter,
D, fluid density, �, fluid viscosity, �, and the velocity, V.
Thus,

�p/ � (D, �, �, V)

and application of the pi theorem yields two pi terms

Hence,

To determine the form of the relationship, we need to vary the
Reynolds number, Re � �VD/�, and to measure the corre-
sponding values of D �p�/�V2. The Reynolds number could be
varied by changing any one of the variables, �, V, D, or �, or
any combination of them. However, the simplest way to do
this is to vary the velocity, since this will allow us to use the
same fluid and pipe. Based on the data given, values for the
two pi terms can be computed with the result:

D�p /�V2 �VD/�

0.0195 4.01 	 103

0.0175 6.68 	 103

0.0155 9.97 	 103

0.0132 2.00 	 104

0.0113 3.81 	 104

0.0101 5.80 	 104

0.00939 8.00 	 104

0.00893 9.85 	 104 

These are dimensionless groups so that their values are inde-
pendent of the system of units used so long as a consistent sys-
tem is used. For example, if the velocity is in ft/s, then the
diameter should be in feet, not inches or meters.

A plot of these two pi terms can now be made with the re-
sults shown in Fig. E7.3a. The correlation appears to be quite
good, and if it was not, this would suggest that either we had
large experimental measurement errors or we had perhaps
omitted an important variable. The curve shown in Fig. E7.3a
represents the general relationship between the pressure drop
and the other factors in the Reynolds number range 4.10 	 103 �
Re � 9.85 	 104. Thus, for this range of Reynolds numbers it
is not necessary to repeat the tests for other pipe sizes or other
fluids provided the assumed independent variables (D, �, �,
V) are the only important ones.

Because the relationship between �1 and �2 is nonlinear, it
is not immediately obvious what form of empirical equation
might be used to describe the relationship. If, however, the

�

D ¢p/

�V2 � � a
�VD

�
b

ß1 �
D ¢p/

�V 
2  and ß2 �

�VD

�

F I G U R E  E7.3
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As the number of required pi terms increases, it becomes more difficult to display the
results in a convenient graphical form and to determine a specific empirical equation that
describes the phenomenon. For problems involving three pi terms

it is still possible to show data correlations on simple graphs by plotting families of curves
as shown by the figure in the margin. This is an informative and useful way of representing
the data in a general way. It may also be possible to determine a suitable empirical equation
relating the three pi terms. However, as the number of pi terms continues to increase, cor-
responding to an increase in the general complexity of the problem of interest, both the graph-
ical presentation and the determination of a suitable empirical equation become intractable.
For these more complicated problems, it is often more feasible to use models to predict spe-
cific characteristics of the system rather than to try to develop general correlations.

ß1 � �1ß2, ß32
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7.8 Modeling and Similitude

Models are widely used in fluid mechanics. Major engineering projects involving structures,
aircraft, ships, rivers, harbors, dams, air and water pollution, and so on frequently involve
the use of models. Although the term model is used in many different contexts, the “engi-
neering model” generally conforms to the following definition. A model is a representation
of a physical system that may be used to predict the behavior of the system in some desired
respect. The physical system for which the predictions are to be made is called the proto-
type. Although mathematical or computer models may also conform to this definition, our
interest will be in physical models, that is, models that resemble the prototype but are gen-
erally of a different size, may involve different fluids, and often operate under different con-
ditions (pressures, velocities, etc.). Usually a model is smaller than the prototype. There-
fore, it is handled more easily in the laboratory and is less expensive to construct and operate
than a large prototype. With the successful development of a valid model, it is possible to
predict the behavior of the prototype under a certain set of conditions.

In the following sections we will develop the procedures for designing models so that
the model and prototype will behave in a similar fashion.

7.8.1 Theory of Models

The theory of models can be developed readily by using the principles of dimensional analy-
sis. It has been shown that any given problem can be described in terms of a set of pi terms as

(7.5)

In formulating this relationship, only a knowledge of the general nature of the physical phe-
nomenon, and the variables involved, is required. Specific values for variables (size of com-
ponents, fluid properties, and so on) are not needed to perform the dimensional analysis.
Thus, Eq. 7.5 applies to any system that is governed by the same variables. If Eq. 7.5
describes the behavior of a particular prototype, a similar relationship can be written for a
model of this prototype; that is,

(7.6)

where the form of the function will be the same as long as the same phenomenon is involved
in both the prototype and the model. As shown by the figure in the margin of the following
page, variables or pi terms without a subscript will refer to the prototype, whereas the subscript
m will be used to designate the model variables or pi terms.

ß1m � �1ß2m, ß3m, . . . , ßnm2

ß1 � �1ß2, ß3, . . . , ßn2

V7.8 Model 
airplane

k – r = 3

1Π Π
Π
Π

Π2

3 = C3

3 = C2

3 = C1
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7.8 Modeling and Similitude 255

The pi terms can be developed so that �1 contains the variable that is to be predicted
from observations made on the model. Therefore, if the model is designed and operated
under the following conditions

(7.7)

then with the presumption that the form of � is the same for model and prototype, it fol-
lows that

(7.8)

Equation 7.8 is the desired prediction equation and indicates that the measured value of
�1m obtained with the model will be equal to the corresponding �1 for the prototype as
long as the other pi terms are equal. The conditions specified by Eqs. 7.7 provide the model
design conditions, also called similarity requirements or modeling laws.

As an example of the procedure, consider the problem of determining the drag, d, on
a thin rectangular plate (w 	 h in size) placed normal to a fluid with velocity V as shown
by the figure in the margin. The dimensional analysis of this problem was performed in
Example 7.1, where it was assumed that

d � f(w, h, �, �, V)

Application of the pi theorem yielded

(7.9)

We are now concerned with designing a model that could be used to predict the drag on a
certain prototype (which presumably has a different size than the model). Since the rela-
tionship expressed by Eq. 7.9 applies to both prototype and model, Eq. 7.9 is assumed to
govern the prototype, with a similar relationship

(7.10)

for the model. The model design conditions, or similarity requirements, are therefore

The size of the model is obtained from the first requirement, which indicates that

(7.11)

We are free to establish the height ratio hm/h, but then the model plate width, wm, is fixed
in accordance with Eq. 7.11.

The second similarity requirement indicates that the model and prototype must be
operated at the same Reynolds number. Thus, the required velocity for the model is obtained
from the relationship

(7.12)Vm �
�m

�
 

�

�m
 

w
wm

 V

wm �
hm

h
 w

wm

hm

�
w

h
 and 

�mVmwm

�m
�

�Vw

�

dm

w2
m �mV 2

m

� � a
wm

hm

, 
�mVmwm

�m
b

d

w2�V 2
� � a

w

h
, 

�Vw

�
b

ß1 � ß1m

 ßnm � ßn

o

 ß3m � ß3

 ß2m � ß2

V

Prototype

Vm

Model

�m

�

h

w

V
ρ, μ
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Note that this model design requires not only geometric scaling, as specified by Eq. 7.11,
but also the correct scaling of the velocity in accordance with Eq. 7.12. This result is typ-
ical of most model designs—there is more to the design than simply scaling the geometry!

With the foregoing similarity requirements satisfied, the prediction equation for the
drag is

or

Thus, a measured drag on the model, dm, must be multiplied by the ratio of the square of
the plate widths, the ratio of the fluid densities, and the ratio of the square of the veloci-
ties to obtain the predicted value of the prototype drag, d.

Generally, as is illustrated in this example, to achieve similarity between model and
prototype behavior, all the corresponding pi terms must be equated between model and pro-
totype. Usually, one or more of these pi terms will involve ratios of important lengths (such
as w/h in the foregoing example); that is, they are purely geometrical. Thus, when we equate
the pi terms involving length ratios we are requiring that there be complete geometric sim-
ilarity between the model and the prototype. This means that the model must be a scaled
version of the prototype. Geometric scaling may extend to the finest features of the system,
such as surface roughness or small protuberances on a structure, since these kinds of geo-
metric features may significantly influence the flow.

Another group of typical pi terms (such as the Reynolds number in the foregoing
example) involves force ratios as noted in Table 7.1. The equality of these pi terms requires
the ratio of like forces in model and prototype to be the same. Thus, for flows in which the
Reynolds numbers are equal, the ratio of viscous forces in model and prototype is equal to
the ratio of inertia forces. If other pi terms are involved, such as the Froude number or
Weber number, a similar conclusion can be drawn; that is, the equality of these pi terms
requires the ratio of like forces in model and prototype to be the same. Thus, when these
types of pi terms are equal in model and prototype, we have dynamic similarity between
model and prototype. It follows that with both geometric and dynamic similarity the stream-
line patterns will be the same and corresponding velocity ratios (Vm/V) and acceleration
ratios (am/a) are constant throughout the flow field. Thus, kinematic similarity exists
between model and prototype. To have complete similarity between model and prototype,
we must maintain geometric, kinematic, and dynamic similarity between the two systems.
This will automatically follow if all the important variables are included in the dimensional
analysis and if all the similarity requirements based on the resulting pi terms are satisfied.

d � a
w

wm
b

2

 a
�

�m
b a

V

Vm

b
2

dm

d

w2�V 2
�

dm

w2
m �mV 2

m
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F l u i d s  i n  t h e  N e w s

Modeling parachutes in a water tunnel The first use of a
parachute with a free-fall jump from an aircraft occurred in
1914, although parachute jumps from hot-air balloons had oc-
curred since the late 1700s. In more modern times parachutes
are commonly used by the military and for safety and sport. It
is not surprising that there remains interest in the design and
characteristics of parachutes, and researchers at the Worcester
Polytechnic Institute have been studying various aspects of the
aerodynamics associated with parachutes. An unusual part of
their study is that they are using small-scale parachutes tested

in a water tunnel. The model parachutes are reduced in size by
a factor of 30 to 60 times. Various types of tests can be per-
formed ranging from the study of the velocity fields in the
wake of the canopy with a steady free-stream velocity to the
study of conditions during rapid deployment of the canopy.
According to the researchers, the advantage of using water as
the working fluid, rather than air, is that the velocities and de-
ployment dynamics are slower than in the atmosphere, thus
providing more time to collect detailed experimental data.
(See Problem 7.39.)

V7.9 Environmental
models
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GIVEN A long structural component of a bridge has an
elliptical cross section shown in Fig. E7.4. It is known that
when a steady wind blows past this type of bluff body, vor-
tices may develop on the downwind side that are shed in a
regular fashion at some definite frequency. Because these
vortices can create harmful periodic forces acting on the struc-
ture, it is important to determine the shedding frequency. For
the specific structure of interest, D � 0.1 m, H � 0.3 m, and a
representative wind velocity is V � 50 km/hr. Standard air can
be assumed. The shedding frequency is to be determined
through the use of a small-scale model that is to be tested in a
water tunnel. For the model, Dm � 20 mm and the water tem-
perature is 20 �C. 

FIND Determine the model dimension, Hm, and the veloc-
ity at which the test should be performed. If the shedding
frequency for the model is found to be 49.9 Hz, what is the
corresponding frequency for the prototype?

SOLUTION

Prediction of Prototype Performance from Model DataEXAMPLE 7.4

We expect the shedding frequency, �, to depend on the lengths
D and H, the approach velocity, V, and the fluid density, �, and
viscosity, �. Thus,

� � f(D, H, V, �, �)

where

Because there are six variables and three reference dimensions
(MLT ), three pi terms are required. Application of the pi theo-
rem yields

We recognize the pi term on the left as the Strouhal number
(see Table 7.1), and the dimensional analysis indicates that the
Strouhal number is a function of the geometric parameter,
D/H, and the Reynolds number. Thus, to maintain similarity
between model and prototype

and

�mVm Dm

�m
�

�VD

�

Dm

Hm
�

D

H

�D

V
� � a

D

H
, 

�VD

�
b

 � � ML�1T �1

 � � ML�3

 V � LT �1

 H � L

 D � L

 � � T �1

From the first similarity requirement

(Ans)

The second similarity requirement indicates that the Reynolds
number must be the same for model and prototype so that the
model velocity must satisfy the condition

(1)

For air at standard conditions, � � 1.79 	 10�5 kg/m s,
� � 1.23 kg/m3, and for water at 20� C, � � 1.00 	 10�3

kg/m s, � � 998 kg/m3. The fluid velocity for the prototype is

The required velocity can now be calculated from Eq. 1 as

(Ans)

This is a reasonable velocity that could be readily achieved in
a water tunnel.

Vm � 4.79 m/s

 	
10.1 m2

120 	 10�3 m2
 113.9 m/s2

Vm �
31.00 	 10�3 kg/ 1m # s2 4 11.23 kg/m32

31.79 	 10�5 kg/ 1m # s2 4 1998 kg/m32

V �
150 	 103 m/hr2

13600 s/hr2
� 13.9 m/s

#

#

Vm �
�m

�
 

�

�m
 

D

Dm
 V

 Hm � 60 	 10�3 m � 60 mm

 �
120 	 10�3 m2

10.1 m2
 10.3 m2

 Hm �
Dm

D
 H

F I G U R E  E7.4

V D

H

V7.10 Flow past an
ellipse
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COMMENT This same model could also be used to
predict the drag per unit length, d�, on the prototype, since
the drag would depend on the same variables as those used
for the frequency. Thus, the similarity requirements would
be the same, and with these requirements satisfied it follows
that the drag per unit length expressed in dimensionless
form, such as d�/D�V2, would be equal in model and proto-
type. The measured drag per unit length on the model could
then be related to the corresponding drag on the prototype
through the relationship

d/ � a
D

Dm

b a
�

�m
b a

V

Vm

b
2

d/m

With the two similarity requirements satisfied, it follows
that the Strouhal numbers for prototype and model will be the
same so that

and the predicted prototype vortex shedding frequency is

(Ans) � � 29.0 Hz

 �
113.9 m/s2

14.79 m/s2
 
120 	 10�3 m2

10.1 m2
 149.9 Hz2

 � �
V

Vm
 
Dm

D
 �m

�D

V
�

�mDm

Vm

7.8.2 Model Scales

It is clear from the preceding section that the ratio of like quantities for the model and pro-
totype naturally arises from the similarity requirements. For example, if in a given problem
there are two length variables �1 and �2, the resulting similarity requirement based on a pi
term obtained from these variables is

so that

We define the ratio �1m/�1 or �2m/�2 as the length scale. For true models there will be only
one length scale, and all lengths are fixed in accordance with this scale. There are, how-
ever, other scales, such as the velocity scale, Vm/V, density scale, �m/�, viscosity scale, �m/�,
and so on. In fact, we can define a scale for each of the variables in the problem. Thus, it
is actually meaningless to talk about a “scale” of a model without specifying which scale.

We will designate the length scale as ��, and other scales as �V, ��, ��, and so on,
where the subscript indicates the particular scale. Also, we will take the ratio of the model
value to the prototype value as the scale (rather than the inverse). Length scales are often
specified, for example, as 1:10 or as a model. The meaning of this specification is
that the model is one-tenth the size of the prototype, and the tacit assumption is that all rel-
evant lengths are scaled accordingly so the model is geometrically similar to the prototype.

1
10-scale

/1m

/1
�

/2m

/2

/1

/2
�

/1m

/2m

F l u i d s  i n  t h e  N e w s

“Galloping Gertie” One of the most dramatic bridge col-
lapses occurred in 1940 when the Tacoma Narrows Bridge, lo-
cated near Tacoma, Washington, failed due to aerodynamic
instability. The bridge had been nicknamed “Galloping Ger-
tie” due to its tendency to sway and move in high winds. On
the fateful day of the collapse the wind speed was .
This particular combination of a high wind and the aeroelas-
tic properties of the bridge created large oscillations leading
to its failure. The bridge was replaced in 1950, and a second
bridge parallel to the existing structure was opened in 2007.

65 km/hr

To determine possible wind interference effects due to two
bridges in close proximity, wind tunnel tests were run in a

wind tunnel operated by the National Research
Council of Canada. Models of the two side-by-side bridges,
each having a length scale of 1:211, were tested under vari-
ous wind conditions. Since the failure of the original Tacoma
Narrows Bridge, it is now common practice to use wind tun-
nel model studies during the design process to evaluate any
bridge that is to be subjected to wind-induced vibrations. (See
Problem 7.54.)

9 m 	 9 m

V7.11 Model of
fish hatchery pond
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7.8.3 Distorted Models

Although the general idea behind establishing similarity requirements for models is straight-
forward (we simply equate pi terms), it is not always possible to satisfy all the known
requirements. If one or more of the similarity requirements are not met, for example, if
�2m � �2, then it follows that the prediction equation �1 � �1m is not true; that is,
�1 � �1m. Models for which one or more of the similarity requirements are not satisfied
are called distorted models.

Distorted models are rather commonplace and can arise for a variety of reasons. For
example, perhaps a suitable fluid cannot be found for the model. The classic example of
a distorted model occurs in the study of open channel or free-surface flows. Typically in
these problems both the Reynolds number, �V�/�, and the Froude number, are
involved.

Froude number similarity requires

If the model and prototype are operated in the same gravitational field, then the required
velocity scale is

Reynolds number similarity requires

and the velocity scale is

Since the velocity scale must be equal to the square root of the length scale, it follows
that

(7.13)

where the ratio �/� is the kinematic viscosity, 
. Although it may be possible to satisfy
this design condition in principle, it may be quite difficult, if not impossible, to find a
suitable model fluid, particularly for small-length scales. For problems involving rivers,
spillways, and harbors, for which the prototype fluid is water, the models are also rela-
tively large so that the only practical model fluid is water. However, in this case (with
the kinematic viscosity scale equal to unity) Eq. 7.13 will not be satisfied, and a distorted
model will result. Generally, hydraulic models of this type are distorted and are designed
on the basis of the Froude number, with the Reynolds number different in model and
prototype.

Distorted models can be used successfully, but the interpretation of results obtained
with this type of model is obviously more difficult than the interpretation of results obtained
with true models for which all similarity requirements are met.

�m /�m

�/�
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�
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�
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�
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V7.12 Distorted
river model
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F l u i d s  i n  t h e  N e w s

Old Man River in (large) miniature One of the world’s
largest scale models, a Mississippi River model, resides near
Jackson, Mississippi. It is a detailed, complex model that cov-
ers many acres and replicates the 1,250,000-acre Mississippi
River basin. Built by the Army Corps of Engineers and used
from 1943 to 1973, today it has mostly gone to ruin. As with
many hydraulic models, this is a distorted model, with a hori-
zontal scale of 1:2000 and a vertical scale of 1:100. One
step along the model river corresponds to one mile along the
river. All essential river basin elements such as geological fea-

tures, levees, and railroad embankments were sculpted by
hand to match the actual contours. The main purpose of the
model was to predict floods. This was done by supplying spe-
cific amounts of water at prescribed locations along the model
and then measuring the water depths up and down the model
river. Because of the length scale, there is a difference in the
time taken by the corresponding model and prototype events.
Although it takes days for the actual floodwaters to travel from
Sioux City, Iowa, to Omaha, Nebraska, it would take only
minutes for the simulated flow in the model.

7.9 Some Typical Model Studies

Models are used to investigate many different types of fluid mechanics problems, and it is
difficult to characterize in a general way all necessary similarity requirements, as each prob-
lem is unique. We can, however, broadly classify many of the problems on the basis of the
general nature of the flow and subsequently develop some general characteristics of model
designs in each of these classifications. The following sections consider models for the study
of (1) flow through closed circuits, (2) flow around immersed bodies, and (3) flow with a
free surface. Turbomachine models are considered in Chapter 11.

7.9.1 Flow through Closed Conduits

Common examples of this type of flow include pipe flow and flow through valves, fittings,
and metering devices. Although the conduits are often circular, they could have other shapes
as well and may contain expansions or contractions. Since there are no fluid interfaces or
free surfaces, the dominant forces are inertial and viscous so that the Reynolds number is
an important similarity parameter. For low Mach numbers (Ma � 0.3), compressibility
effects are negligible for the flow of both liquids and gases. For this class of problems, geo-
metric similarity between model and prototype must be maintained. Generally the geomet-
ric characteristics can be described by a series of length terms, �1, �2, �3, . . . , �i, and �,
where � is some particular length dimension for the system. Such a series of length terms
leads to a set of pi terms of the form

where i � 1, 2, . . . , and so on. In addition to the basic geometry of the system, the rough-
ness of the internal surfaces in contact with the fluid may be important. If the average height
of surface roughness elements is defined as �, then the pi term representing roughness would
be �/�. This parameter indicates that for complete geometric similarity, surface roughness
would also have to be scaled.

It follows from this discussion that for flow in closed conduits at low Mach numbers,
any dependent pi term (the one that contains the particular variable of interest, such as pres-
sure drop) can be expressed as

(7.14)

This is a general formulation for this type of problem.

Dependent pi term � � a
/i

/
, 
e

/
, 

�V/
�
b

ßi �
/i

/
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7.9 Some Typical Model Studies 261

With the similarity requirements satisfied, it follows that the dependent pi term will
be equal in model and prototype. For example, if the dependent variable of interest is the
pressure differential, �p, between two points along a closed conduit, then the dependent pi
term could be expressed as

The prototype pressure drop would then be obtained from the relationship

so that from a measured pressure differential in the model, �pm, the corresponding pressure
differential for the prototype could be predicted. Note that in general �p � �pm.

¢p �
�

�m
 a

V

Vm
b

2 

¢pm

ß1 �
¢p

�V2

GIVEN Model tests are to be performed to study the flow
through a large check valve having a 2-ft-diameter inlet and
carrying water at a flowrate of 30 cfs as shown in Fig. E7.5a.
The working fluid in the model is water at the same tempera-
ture as that in the prototype. Complete geometric similarity
exists between model and prototype, and the model inlet di-
ameter is 3 in.

FIND Determine the required flowrate in the model.

SOLUTION

Reynolds Number Similarity

and for the data given

(Ans)

COMMENT As indicated by the foregoing analysis, to
maintain Reynolds number similarity using the same fluid in
model and prototype, the required velocity scale is inversely
proportional to the length scale; that is, .
This strong influence of the length scale on the velocity
scale is shown in Fig. E7.5b. For this particular example,

and the corresponding velocity scale is 8
(see Fig. E7.5b). Thus, with the prototype velocity equal 
to , the required model 1	/42 12 ft22 � 9.50 ft/sV � 130 ft3/s2/

Dm/D � 0.125,

Vm/V � 1Dm/D2�1

 Qm � 3.75 cfs

 Qm �
13/12 ft2

12 ft2
 130 ft3/s2

EXAMPLE 7.5

To ensure dynamic similarity, the model tests should be run so
that

or

where V and D correspond to the inlet velocity and diameter,
respectively. Since the same fluid is to be used in model and
prototype, 
 � 
m, and therefore

The discharge, Q, is equal to VA, where A is the inlet area, so

 �
Dm

D

 
Qm

Q
�

Vm Am

VA
� a

D

Dm

b 
3 1	/42D 2

m 4

3 1	/42D 2 4

Vm

V
�

D

Dm

VmDm

m
�

VD



Rem � Re

F I G U R E  E7.5a

Q = 30cfs

(Qm = ?)

D = 2 ft
(Dm = 3 in.)   
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7.9.2 Flow around Immersed Bodies

Models have been widely used to study the flow characteristics associated with bodies that
are completely immersed in a moving fluid. Examples include flow around aircraft, auto-
mobiles, golf balls, and buildings. (These types of models are usually tested in wind tun-
nels as is illustrated in Fig. 7.1.) Modeling laws for these problems are similar to those
described in the preceding section; that is, geometric and Reynolds number similarity is
required. Since there are no fluid interfaces, surface tension (and therefore the Weber num-
ber, see Table 7.1) is not important. Also, gravity will not affect the flow patterns, so the
Froude number need not be considered. The Mach number will be important for high-
speed flows in which compressibility becomes an important factor, but for incompressible
fluids (such as liquids or for gases at relatively low speeds) the Mach number can be omit-
ted as a similarity requirement. In this case, a general formulation for these problems is

(7.15)

where � is some characteristic length of the system and �i represents other pertinent lengths,
�/� is the relative roughness of the surface (or surfaces), and �V�/� is the Reynolds number.

Dependent pi term � � a
/i

/
, 
e

/
, 

�V/
�
b
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velocity is . Although this is a relatively large 
velocity, it could be attained in a laboratory facility. It is to be
noted that if we tried to use a smaller model, say one with

the required model velocity is 229 ft�s, a very high
velocity that would be difficult to achieve. These results are
indicative of one of the difficulties encountered in maintaining
Reynolds number similarity—the required model velocities
may be impractical to obtain.

D � 1 in.,

Vm � 76.4 ft/s25

20

15

10

5

0
0 0.2 0.4 0.6 0.8 1

Dm /D

V
m

 /V

(0.125, 8)    

F I G U R E  E7.5b

F I G U R E  7.1 Model of
the National Bank of Commerce, San
Antonio, Texas, for measurement of
peak, rms, and mean pressure distribu-
tions. The model is located in a long-
test-section, meteorological wind tunnel.
(Photograph courtesy of Cermak
Peterka Petersen, Inc.)

V7.13 Wind engi-
neering models
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7.9 Some Typical Model Studies 263

Frequently, the dependent variable of interest for this type of problem is the drag, d,
developed on the body, and in this situation the dependent pi term would usually be
expressed in the form of a drag coefficient, CD, where

The numerical factor, 1
—

2, is arbitrary but commonly included, and �2 is usually taken as
some representative area of the object. Thus, drag studies can be undertaken with the
formulation

(7.16)
d

1
2 �V 2/2 � CD � � a

/i

/
, 

�

/
, 

�V/
�
b

CD �
d

1
2 �V 2/2

V7.14 Model air-
plane test in water

GIVEN The drag on the airplane shown in Fig. E7.6 cruis-
ing at 240 mph in standard air is to be determined from tests
on a 1:10 scale model placed in a pressurized wind tunnel. To
minimize compressibility effects, the airspeed in the wind
tunnel is also to be 240 mph.

FIND Determine

(a) the required air pressure in the tunnel (assuming the
same air temperature for model and prototype) and 

(b) the drag on the prototype corresponding to a measured
force of 1 lb on the model.

SOLUTION

Model Design Conditions and Predicted Prototype
Performance

This result shows that the same fluid with �m � � and �m � �
cannot be used if Reynolds number similarity is to be main-
tained. One possibility is to pressurize the wind tunnel to in-
crease the density of the air. We assume that an increase in
pressure does not significantly change the viscosity so that
the required increase in density is given by the relationship

For an ideal gas, p � �RT so that

for constant temperature (T � Tm). Therefore, the wind tunnel
would need to be pressurized so that

pm

p
� 10

 
pm

p
�

�m

�

�m

�
� 10

EXAMPLE 7.6

(a) From Eq. 7.16 it follows that drag can be predicted from
a geometrically similar model if the Reynolds numbers in
model and prototype are the same. Thus,

For this example, Vm � V and so that

and therefore,

�m

�
� 10 

�m

�

 �
�m

�
 112 1102

 
�m

�
�

�m

�
 

V

Vm
 

/
/m

/m // � 1
10

�mVm/m

�m
�

�V/
�

V = 240 mph

F I G U R E  E7.6 (Photograph courtesy 
of NASA.)
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For problems involving high velocities in which the Mach number is greater than
about 0.3, the influence of compressibility, and therefore the Mach number (or Cauchy
number), becomes significant. In this case complete similarity requires not only geometric
and Reynolds number similarity but also Mach number similarity so that

(7.17)

This similarity requirement, when combined with that for Reynolds number similarity, yields

(7.18)

Clearly the same fluid with c � cm and 
 � 
m cannot be used in the model and proto-
type unless the length scale is unity (which means that we are running tests on the pro-
totype). In high-speed aerodynamics the prototype fluid is usually air and it is difficult
to satisfy Eq. 7.18 for reasonable-length scales. Thus, models involving high-speed flows
are often distorted with respect to Reynolds number similarity, but Mach number simi-
larity is maintained.

7.9.3 Flow with a Free Surface

Flows in canals, rivers, spillways, and stilling basins, as well as flow around ships, are all
examples of flow phenomena involving a free surface. For this class of problems, both grav-
itational and inertial forces are important and, therefore, the Froude number becomes an
important similarity parameter. Also, because there is a free surface with a liquid–air inter-
face, forces due to surface tension may be significant, and the Weber number becomes
another similarity parameter that needs to be considered along with the Reynolds number.
Geometric variables will obviously still be important. Thus, a general formulation for prob-
lems involving flow with a free surface can be expressed as

(7.19)

As discussed previously, � is some characteristic length of the system, �i represents
other pertinent lengths, and �/� is the relative roughness of the various surfaces.

Dependent pi term � � a
/i

/
, 
e

/
, 

�V/
�

, 
V

1g/
, 

�V2/
�
b

c
cm

�


m
 
/m

/

Vm

cm
�

V
c
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or

Thus, for a drag of 1 lb on the model the corresponding drag
on the prototype is

(Ans)d � 10 lb

 � 10dm

 � a
1

10
b 112211022dm

 d �
�

�m
   a

V

Vm

b
2  

a
/
/m

b
2

   dm

Since the prototype operates at standard atmospheric pressure,
the required pressure in the wind tunnel is 10 atmospheres or

(Ans)

COMMENT Thus, we see that a high pressure would be
required and this could not be achieved easily or inexpen-
sively. However, under these conditions, Reynolds similarity
would be attained. 

(b) The drag could be obtained from Eq. 7.16 so that

d

1
2  �V 2/2 �

dm
1
2  �mV 2

m/m
2

 � 147 psia

 pm � 10 114.7 psia2

V7.15 Large-scale
wind tunnel

V7.16 Wind tunnel
train model

V7.17 River flow
model
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7.9 Some Typical Model Studies 265

Because gravity is the driving force in these problems, Froude number similarity is def-
initely required so that

The model and prototype are expected to operate in the same gravitational field (gm � g),
and therefore it follows that

(7.20)

Thus, when models are designed on the basis of Froude number similarity, the velocity scale
is determined by the square root of the length scale. As is discussed in Section 7.8.3, to
simultaneously have Reynolds and Froude number similarity it is necessary that the kine-
matic viscosity scale be related to the length scale as

(7.21)

The working fluid for the prototype is normally either freshwater or seawater, and the length
scale is small. Under these circumstances it is virtually impossible to satisfy Eq. 7.21, so
models involving free-surface flows are usually distorted. The problem is further compli-
cated if an attempt is made to model surface tension effects, as this requires equality, of
Weber numbers. Fortunately, in many problems involving free-surface flows, both surface
tension and viscous effects are small and, consequently, strict adherence to Weber and
Reynolds number similarity is not required.

For large hydraulic structures, such as dam spillways, the Reynolds numbers are large
so that viscous forces are small in comparison to the forces due to gravity and inertia. In
this case Reynolds number similarity is not maintained and models are designed on the
basis of Froude number similarity. Care must be taken to ensure that the model Reynolds
numbers are also large, but they are not required to be equal to those of the prototype. This
type of hydraulic model is usually made as large as possible so that the Reynolds number
will be large. A spillway model is shown in Fig. 7.2.

m


� 1�/2

3/2

Vm

V
�
B

/m

/
� 1�/

Vm

1gm/m

�
V

1g/

F I G U R E  7.2 A scale hydraulic model
(1:197) of the Guri Dam in Venezuela, which is used to
simulate the characteristics of the flow over and below the
spillway and the erosion below the spillway. (Photograph
courtesy of St. Anthony Falls Laboratory.)

V7.18 Boat model

V7.19 Dam model

V7.20 Testing of
large yacht mode
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F l u i d s  i n  t h e  N e w s

Ice engineering Various types of models have been studied in
wind tunnels, water tunnels, and towing tanks for many years.
But another type of facility is needed to study ice and ice-
related problems. The U.S. Army Cold Regions Research and
Engineering Laboratory has developed a unique complex that
houses research facilities for studies related to the mechanical
behavior of ice and ice–structure interactions. The laboratory
contains three separate cold-rooms—a test basin, a flume,
and a general research area. In the test basin large-scale
model studies of ice forces on structures such as dams, piers,

ships, and offshore platforms can be performed. Ambient
temperatures can be controlled as low as , and at this
temperature a 2-mm-per-hour ice growth rate can be achieved.
It is also possible to control the mechanical properties of the
ice to properly match the physical scale of the model. Tests
run in the recirculating flume can simulate river processes
during ice formation. And in the large research area, scale
models of lakes and rivers can be built and operated to model
ice interactions with various types of engineering projects.
(See Problem 7.50.)

�20 °F

GIVEN The spillway for the dam shown in Fig. E7.7a is 
20 m wide and is designed to carry 125 m3/s at flood stage. A
1:15 model is constructed to study the flow characteristics
through the spillway. The effects of surface tension and vis-
cosity are to be neglected.

FIND
(a) Determine the required model width and flowrate.

(b) What operating time for the model corresponds to a 24-hr
period in the prototype? 

SOLUTION

Froude Number Similarity

and for gm � g

Since the flowrate is given by Q � VA, where A is an appropri-
ate cross-sectional area, it follows that

where we have made use of the relationship Am/A � (�m/�)2.
For and Q � 125 m3/s

(Ans)

The time scale can be obtained from the velocity scale,
since the velocity is distance divided by time (V � �/t), and
therefore

V

Vm
�

/
t
 
tm
/m

Qm � 1 1
15 2

5/2 1125 m3/s2 � 0.143 m3/s

�/ � 1
15

 � 1�/2
5/2

 
Qm

Q
�

Vm Am

VA
�
B

/m

/
 a

/m

/
b

2

Vm

V
�
B

/m

/

EXAMPLE 7.7

The width, wm, of the model spillway is obtained from the
length scale, ��, so that

and

(Ans)

Of course, all other geometric features (including surface
roughness) of the spillway must be scaled in accordance with
the same length scale.

With the neglect of surface tension and viscosity, Eq. 7.19
indicates that dynamic similarity will be achieved if the Froude
numbers are equal between model and prototype. Thus,

Vm

1gm/m

�
V

1g/

wm �
20 m

15
� 1.33 m

 �
1

15

 
wm

w
� �/

F I G U R E  E7.7a
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small, then surface tension effects may become important in
the model whereas they are not in the prototype. In such a
case the present model design, based simply on Froude
number similarity, would not be adequate.

or

This result indicates that time intervals in the model will be
smaller than the corresponding intervals in the prototype if
�� � 1. For and a prototype time interval of 24 hr

(Ans)

COMMENT As indicated by the foregoing analysis, the
time scale varies directly as the square root of the length
scale. Thus, as shown in Fig. E7.7b, the model time interval,

, corresponding to a 24-hr prototype time interval can be
varied by changing the length scale, . The ability to scale
times may be very useful, since it is possible to “speed up”
events in the model that may occur over a relatively long
time in the prototype. There is, of course, a practical limit to
how small the length scale (and the corresponding time
scale) can become. For example, if the length scale is too

l/
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tm � 2
1
15 124 hr2 � 6.20 hr
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�

F I G U R E  E7.7b

F l u i d s  i n  t h e  N e w s

Jurassic Tank Geologists use models involving water flowing
across sand- or soil-filled tanks to investigate how river beds and
river valleys are formed. The only variables in these studies are
the model flowrate, the bottom slope, and the type of sand or soil
material used. Now researchers at the University of Min-
nesota have developed the “Jurassic Tank,” the first apparatus
to use a “sinking floor.” The bottom of the 40-ft-long, 20-ft-wide,
5-ft-deep tank contains 432 honeycomb funnels on top of which
rests a rubber membrane floor. The floor can be programmed to

sink in any uneven fashion via computer control by removing the
supporting gravel within the honeycombs. By running sediment-
loaded water into the tank and studying the patterns of sediment
deposition as the basin floor is lowered, it is possible to deter-
mine how sinking of the earth’s crust interacts with sediment
buildup to produce the sediment layers that fill ocean sedimen-
tary basins. The name Jurassic Tank comes from its ability to
model conditions during the Jurassic era at the beginning of the
formation of the Atlantic Ocean (about 160 million years ago).

7.10 Chapter Summary and Study Guide

Many practical engineering problems involving fluid mechanics require experimental data
for their solution. Thus, laboratory studies and experimentation play a significant role in
this field. It is important to develop good procedures for the design of experiments so they
can be efficiently completed with as broad applicability as possible. To achieve this end the
concept of similitude is often used in which measurements made in the laboratory can be
utilized for predicting the behavior of other similar systems. In this chapter, dimensional
analysis is used for designing such experiments, as an aid for correlating experimental data,
and as the basis for the design of physical models. As the name implies, dimensional analy-
sis is based on a consideration of the dimensions required to describe the variables in a
given problem. A discussion of the use of dimensions and the concept of dimensional homo-
geneity (which forms the basis for dimensional analysis) was included in Chapter 1.

Essentially, dimensional analysis simplifies a given problem described by a certain set
of variables by reducing the number of variables that need to be considered. In addition to
being fewer in number, the new variables are dimensionless products of the original variables.
Typically these new dimensionless variables are much simpler to work with in performing
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the desired experiments. The Buckingham pi theorem, which forms the theoretical basis for
dimensional analysis, is described. This theorem establishes the framework for reducing a
given problem described in terms of a set of variables to a new set of dimensionless vari-
ables. A simple method, called the repeating variable method, is described for actually form-
ing the dimensionless variables (often called pi terms). Forming dimensionless variables by
inspection is also considered. It is shown how the use of dimensionless variables can be of
assistance in planning experiments and as an aid in correlating experimental data.

For problems in which there is a large number of variables, the use of physical models
is described. Models are used to make specific predictions from laboratory tests rather than
formulating a general relationship for the phenomenon of interest. The correct design of a
model is obviously imperative for the accurate predictions of other similar, but usually larger,
systems. It is shown how dimensional analysis can be used to establish a valid model design.

The following checklist provides a study guide for this chapter. When your study of
the entire chapter and end-of-chapter exercises has been completed you should be able to

write out meanings of the terms listed here in the margin and understand each of the
related concepts. These terms are particularly important and are set in color and bold
type in the text.

use the Buckingham pi theorem to determine the number of dimensionless variables
needed for a given flow problem.

form a set of dimensionless variables using the method of repeating variables.

form a set of dimensionless variables by inspection.

use dimensionless variables as an aid in interpreting and correlating experimental data.

establish a set of similarity requirements (and prediction equation) for a model to be
used to predict the behavior of another similar system (the prototype).

Some of the important equations in this chapter are

Reynolds number

Froude number

Euler number

Cauchy number

Mach number

Strouhal number

Weber number
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similitude
dimensionless product
basic dimensions
pi term
Buckingham pi 

theorem
method of repeating 

variables
model
prototype
prediction equation
model design 

conditions
similarity 

requirements
modeling laws
length scale
distorted models
true models
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Review Problems

Go to Appendix G for a set of review problems with answers.
Detailed solutions can be found in Student Solution Manual 

for a Brief Introduction to Fluid Mechanics, by Young et al. 
(© 2011 John Wiley and Sons, Inc.).

Problems

NNoottee:: Unless otherwise indicated use the values of fluid
properties found in the tables on the inside of the front
cover. Problems designated with an (*) are intended to be
solved with the aid of a programmable calculator or a com-
puter. Problems designated with a (†) are “open-ended”
problems and require critical thinking in that to work them
one must make various assumptions and provide the neces-
sary data. There is not a unique answer to these problems.

The even-numbered problems are included in the
hard copy version of the book, and the answers to these
even-numbered problems are listed at the end of the book.
Odd-numbered problems are provided in WileyPLUS, or
in Appendix L on the book’s web site, www.wiley.com/
college/young. The lab-type problems, FE problems, FlowLab
problems, and the videos that accompany problems can also
be accessed on these web sites.

Section 7.1 Dimensional Analysis

7.2 What are the dimensions of acceleration of gravity, density,
dynamic viscosity, kinematic viscosity, specific weight, and
speed of sound in (a) the FLT system and (b) the MLT system?
Compare your results with those given in Table 1.1 in Chapter 1.

7.4 The Mach number for a body moving through a fluid with
velocity V is defined as V/c, where c is the speed of sound in the
fluid. This dimensionless parameter is usually considered to be
important in fluid dynamics problems when its value exceeds
0.3. What would be the velocity of a body at a Mach number of
0.3 if the fluid is (a) air at standard atmospheric pressure and 
20 �C, and (b) water at the same temperature and pressure?

Section 7.3 Determination of Pi Terms

7.6 Water flows over a dam as illustrated in Fig. P7.6. As-
sume the flowrate, q, per unit length along the dam depends on

the head, H, width, b, acceleration of gravity, g, fluid density,
�, and fluid viscosity, �. Develop a suitable set of dimension-
less parameters for this problem using b, g, and � as repeating
variables.

7.8 For low-speed flow over a flat plate, one measure of the
boundary layer is the resulting thickness, , at a given down-
stream location. The boundary layer thickness is a function of
the free-stream velocity, , fluid density and viscosity, � and �,
and the distance from the leading edge, x. Find the number of pi
terms for this relationship.

7.10 The pressure rise, across a pump can be expressed as

where D is the impeller diameter, the fluid density, the rota-
tional speed, and Q the flowrate. Determine a suitable set of di-
mensionless parameters.

7.12 At a sudden contraction in a pipe the diameter changes
from The pressure drop, which develops across the
contraction, is a function of as well as the velocity, V,
in the larger pipe, and the fluid density, and viscosity, Use

as repeating variables to determine a suitable set of
dimensionless parameters. Why would it be incorrect to include
the velocity in the smaller pipe as an additional variable?

7.14 Under certain conditions, wind blowing past a rectangular
speed limit sign can cause the sign to oscillate with a frequency .
(See Fig. P7.14 and Video V9.9.) Assume that is a function of
the sign width, b, sign height, h, wind velocity, V, air density, �,

�
�

D1, V, and �
�.�,

D1 and D2,
¢p,D1 to D2.

��

¢p � f 1D, r, v, Q2

¢p,

Vq

�

H q

b

F I G U R E  P7.6 F I G U R E  P7.14

ω

SPEED
LIMIT

40
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and an elastic constant, k, for the supporting pole. The constant, k,
has dimensions of FL. Develop a suitable set of pi terms for this
problem.

Section 7.5 Determination of Pi Terms by Inspection

7.16 Assume that the flowrate, Q, of a gas from a smokestack
(see Video V 5.11) is a function of the density of the ambient
air, , the density of the gas, , within the stack, the accelera-
tion of gravity, g, and the height and diameter of the stack, h and
d, respectively. Develop a set of pi terms that could be used to
describe this problem. Form the pi terms by inspection.

7.18 As shown in Fig. P7.18 and Video V5.13, a jet of liquid
directed against a block can tip over the block. Assume that the
velocity, V, needed to tip over the block is a function of the fluid
density, �, the diameter of the jet, D, the weight of the block,w,
the width of the block, b, and the distance, d, between the jet and
the bottom of the block. (a) Determine a set of dimensionless pa-
rameters for this problem. Form the dimensionless parameters
by inspection. (b) Use the momentum equation to determine an
equation for V in terms of the other variables. (c) Compare the
results of parts (a) and (b).

�g�a

Section 7.7 Correlation of Experimental Data (also
see Lab Problems 7.58, 7.59, 7.60, and 7.61)

7.20 The buoyant force, FB, acting on a body submerged in a
fluid is a function of the specific weight, �, of the fluid and the
volume, , of the body. Show, by dimensional analysis, that the
buoyant force must be directly proportional to the specific weight.

7.22 When a sphere of diameter d falls slowly in a highly vis-
cous fluid, the settling velocity, V, is known to be a function of
d, the fluid viscosity, �, and the difference, , between the
specific weight of the sphere and the specific weight of the fluid.
Due to a tight budget situation, only one experiment can be per-
formed, and the following data were obtained: for

If possible,
based on this limited amount of data, determine the general
equation for the settling velocity. If you do not think it is possi-
ble, indicate what additional data would be required.

7.24 A liquid flows with a velocity V through a hole in the side
of a large tank. Assume that

where h is the depth of fluid above the hole, g is the accelera-
tion of gravity, � the fluid density, and � the surface tension.

V � f 1h, g, �, �2

lb # s/ft2, and ¢� � 10 lb/ft3.d � 0.1 in., � � 0.03
V � 0.42 ft/s

¢�

V

The following data were obtained by changing h and measur-
ing V, with a fluid having a density � 103 kg/m3 and surface
tension � 0.074 N/m.

V (m/s) 3.13 4.43 5.42 6.25 7.00

h (m) 0.50 1.00 1.50 2.00 2.50

Plot these data by using appropriate dimensionless variables.
Could any of the original variables have been omitted?

7.26 A fluid flows through the horizontal curved pipe of Fig.
P7.26 with a velocity V. The pressure drop, , between the en-
trance and the exit to the bend is thought to be a function of the
velocity, bend radius, R, pipe diameter, D, and fluid density,
The data shown in the following table were obtained in the lab-
oratory. For these tests and

Perform a dimensional analysis and, based on the
data given, determine if the variables used for this problem ap-
pear to be correct. Explain how you arrived at your answer.

V (ft/s) 2.1 3.0 3.9 5.1
�p (lb/ft2) 1.2 1.8 6.0 6.6

D � 0.1 ft.
R � 0.5 ft,� � 2.0 slugs/ft3,

�.

¢p

7.28 The time, t, it takes to pour a certain volume of liquid
from a cylindrical container depends on several factors, includ-
ing the viscosity of the liquid. (See Video V1.3.) Assume that for
very viscous liquids the time it takes to pour out two-thirds of the
initial volume depends on the initial liquid depth, �, the cylinder
diameter, D, the liquid viscosity, �, and the liquid specific weight, �.
Data shown in the following table were obtained in the laboratory.
For these tests � � 45 mm, D � 67 mm, and � � 9.60 kN/m3.
(a) Perform a dimensional analysis and, based on the data given,
determine if variables used for this problem appear to be correct.
Explain how you arrived at your answer. (b) If possible, deter-
mine an equation relating the pouring time and viscosity for the
cylinder and liquids used in these tests. If it is not possible, indi-
cate what additional information is needed.

� (N s/m2) 11 17 39 61 107

t(s) 15 23 53 83 145

Section 7.8 Modeling and Similitude

7.30 To test the aerodynamics of a new prototype automobile,
a scale model will be tested in a wind tunnel. For dynamic
similarity, it will be required to match Reynolds numbers be-
tween model and prototype. Assuming that you will be testing

.

V

D

d

b

ρ
�

F I G U R E  P7.18

V

R
D

F I G U R E  P7.26
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a -scale model and both model and prototype will be exposed
to standard air pressure, will it be better for the wind tunnel air
to be colder or hotter than standard sea-level air temperature of 
15 �C? Why?

7.32 A liquid contained in a steadily rotating cylinder with a
vertical axis moves as a rigid body. In this case, as shown in Fig.
P7.32 and Video V7.3, the fluid velocity, V, varies directly with
the radius r so that V � r� where � is the angular velocity of the
rotating cylinder. Assume that the characteristic Reynolds num-
ber for this system is based on the radius and velocity at the wall
of the cylinder. (a) For a 12-in.-diameter cylinder rotating with
an angular velocity � � 0.4, rad/s, calculate the Reynolds num-
ber if the liquid has a kinematic viscosity of (i) 0.33 ft2/s or (ii)
0.33 	 10�2 ft2/s. (b) If the cylinder were suddenly stopped,
would you expect the motion of the liquids to be similar for the two
liquids of part (a)? Explain. Do the results shown in Video V7.3
support your conclusions?

1
10

7.34 The drag characteristics of a torpedo are to be studied in
a water tunnel using a 1:5-scale model. The tunnel operates
with freshwater at , whereas the prototype torpedo is to
be used in seawater at To correctly simulate the behav-
ior of the prototype moving with a velocity of 30 m/s, what ve-
locity is required in the water tunnel? Assume Reynolds number
similarity.

7.36 Carbon tetrachloride flows with a velocity of 0.30 m/s
through a 30-mm-diameter tube. A model of this system is to be
developed using standard air as the model fluid. The air velocity
is to be 2 m/s. What tube diameter is required for the model 
if dynamic similarity is to be maintained between model and
prototype?

7.38 The drag, on a sphere located in a pipe through which
a fluid is flowing is to be determined experimentally (see Fig.
P7.38). Assume that the drag is a function of the sphere diame-
ter, d, the pipe diameter, D, the fluid velocity, V, and the fluid
density, (a) What dimensionless parameters would you use
for this problem? (b) Some experiments using water indicate
that for and the drag is

If possible, estimate the drag on a sphere located
in a 2-ft-diameter pipe through which water is flowing with a
velocity of 6 ft/s. The sphere diameter is such that geometric
similarity is maintained. If it is not possible, explain why not.

1.5 	 10�3 lb.
V � 2 ft/s,D � 0.5 in.,d � 0.2 in.,

�.

d,

15.6 °C.
20 °C

7.40 The drag on a sphere moving in a fluid is known to be a
function of the sphere diameter, the velocity, and the fluid vis-
cosity and density. Laboratory tests on a 4-in.-diameter sphere
were performed in a water tunnel, and some model data are plot-
ted in Fig. P7.40. For these tests the viscosity of the water was
2.3 	 10�5 lb s/ft2 and the water density was 1.94 slugs/ft3. Es-
timate the drag on an 8-ft-diameter balloon moving in air at a ve-
locity of 3 ft/s. Assume the air to have a viscosity of 3.7 	 10�7

lb s/ft2 and a density of 2.38 	 10�3 slugs/ft3.#

#

7.42 A large, rigid, rectangular billboard is supported by an
elastic column as shown in Fig. P7.42. There is concern about
the deflection, of the top of the structure during a high wind
of velocity V. A wind tunnel test is to be conducted with a 1:15-
scale model. Assume the pertinent column variables are its
length and cross-sectional dimensions and the modulus of elas-
ticity of the material used for the column. The only important
“wind” variables are the air density and velocity. (a) Determine
the model design conditions and the prediction equation for the
deflection. (b) If the same structural materials are used for the
model and prototype, and the wind tunnel operates under stan-
dard atmospheric conditions, what is the required wind tunnel
velocity to match an 80-km/hr wind?

,

†7.44 If a large oil spill occurs from a tanker operating near a
coastline, the time it would take for the oil to reach shore is of
great concern. Design a model system that can be used to inves-
tigate this type of problem in the laboratory. Indicate all assump-
tions made in developing the design and discuss any difficulty

ω

V

r

F I G U R E  P7.32
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that may arise in satisfying the similarity requirements arising
from your model design.

Section 7.9 Some Typical Model Studies

7.46 At a large fish hatchery the fish are reared in open, water-
filled tanks. Each tank is approximately square in shape with
curved corners, and the walls are smooth. To create motion in
the tanks, water is supplied through a pipe at the edge of the
tank. The water is drained from the tank through an opening at
the center. (See Video V7.11.) A model with a length scale of
1:13 is to be used to determine the velocity, V, at various loca-
tions within the tank. Assume that V � f (�, �i , �, �, g, Q) where �
is some characteristic length such as the tank width, �i repre-
sents a series of other pertinent lengths, such as inlet pipe diam-
eter, fluid depth, and so on, � is the fluid density, � is the fluid vis-
cosity, g is the acceleration of gravity, and Q is the discharge
through the tank. (a) Determine a suitable set of dimensionless
parameters for this problem and the prediction equation for the
velocity. If water is to be used for the model, can all of the simi-
larity requirements be satisfied? Explain and support your answer
with the necessary calculations. (b) If the flowrate into the full-
sized tank is 250 gpm, determine the required value for the model
discharge assuming Froude number similarity. What model depth
will correspond to a depth of 32 in. in the full-sized tank?

7.48 A new blimp will move at 6 m/s in 20 �C air, and we want
to predict the drag force. Using a 1:13-scale model in water at
20 �C and measuring a 2500-N drag force on the model, deter-
mine (a) the required water velocity, (b) the drag on the proto-
type blimp, and (c) the power that will be required to propel it
through the air.

7.50 (See Fluids in the News article titled “Ice engineering,”
Section 7.9.3.) A model study is to be developed to determine
the force exerted on bridge piers due to floating chunks of ice in
a river. The piers of interest have square cross sections. Assume
that the force, R, is a function of the pier width, b, the thickness of
the ice, d, the velocity of the ice, V, the acceleration of gravity,
g, the density of the ice, , and a measure of the strength of the
ice, , where has the dimensions (a) Based on these
variables determine a suitable set of dimensionless variables for
this problem. (b) The prototype conditions of interest include an
ice thickness of 12 in. and an ice velocity of 6 ft/s. What model
ice thickness and velocity would be required if the length scale
is to be 1/10? (c) If the model and prototype ice have the same
density, can the model ice have the same strength properties as
that of the prototype ice? Explain.

7.52 River models are used to study many different types of
flow situations. (See, for example, Video V7.17.) A certain
small river has an average width and depth of 60 and 4 ft, re-
spectively, and carries water at a flowrate of 700 ft3/s. A model
is to be designed based on Froude number similarity so that the
discharge scale is 1/250. At what depth and flowrate would the
model operate?

7.54 (See Fluids in the News article titled “Galloping Gertie,”
Section 7.8.2.) The Tacoma Narrows Bridge failure is a dra-
matic example of the possible serious effects of wind-induced
vibrations. As a fluid flows around a body, vortices may be cre-
ated that are shed periodically creating an oscillating force on

FL�2.EiEi

�i

the body. If the frequency of the shedding vortices coincides
with the natural frequency of the body, large displacements of
the body can be induced as was the case with the Tacoma Nar-
rows bridge. To illustrate this type of phenomenon, consider
fluid flow past a circular cylinder. Assume the frequency, n, of
the shedding vortices behind the cylinder is a function of the
cylinder diameter, D, the fluid velocity, V, and the fluid kine-
matic viscosity, . (a) Determine a suitable set of dimensionless
variables for this problem. One of the dimensionless variables
should be the Strouhal number, . (b) Some experiments
using small models (cylinders) were performed in which the
shedding frequency of the vortices (in Hz) was measured. Re-
sults for a particular cylinder in a Newtonian, incompressible
fluid are shown in Fig. P7.54. Is this a “universal curve” that
can be used to predict the shedding frequency for any cylinder
placed in any fluid? Explain. (c) A certain structural compo-
nent in the form of a 1-in.-diameter, 12-ft-long rod acts as a
cantilever beam with a natural frequency of 19 Hz. Based on
the data in Fig. P7.54, estimate the wind speed that may
cause the rod to oscillate at its natural frequency. Hint: Use a
trial-and-error solution.

nD/V



7.56 As winds blow past buildings, complex flow patterns
can develop due to various factors, such as flow separation and
interactions between adjacent buildings. (See Video V7.9.)
Assume that the local gage pressure, p, at a particular location
on a building is a function of the air density, �, the wind speed,
V, some characteristic length, �, and all other pertinent lengths,
�i, needed to characterize the geometry of the building or
building complex. (a) Determine a suitable set of dimension-
less parameters that can be used to study the pressure distribu-
tion. (b) An eight-story building that is 100 ft tall is to be mod-
eled in a wind tunnel. If a length scale of 1:300 is to be used,
how tall should the model building be? (c) How will a mea-
sured pressure in the model be related to the corresponding
prototype pressure? Assume the same air density in the model
and prototype. Based on the assumed variables, does the
model wind speed have to be equal to the prototype wind
speed? Explain.
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■ Lab Problems

7.58 This problem involves the time that it takes water to drain
from two geometrically similar tanks. To proceed with this
problem, go to the book’s web site, www.wiley.com/college/
young, or WileyPLUS.

7.60 This problem involves the determination of the head loss
for flow through a valve. To proceed with this problem, go to the
book’s web site, www.wiley.com/college/young, or WileyPLUS.

■ Lifelong Learning Problems

7.62 Microfluidics is the study of fluid flow in fabricated devices
at the micro scale. Advances in microfluidics have enhanced the
ability of scientists and engineers to perform laboratory experi-
ments using miniaturized devices known as a “lab-on-a-chip.”

Obtain information about a lab-on-a-chip device that is available
commercially and investigate its capabilities. Summarize your
findings in a brief report.

■ FlowLab Problem

*7.64 This FlowLab problem involves investigation of the
Reynolds number significance in fluid dynamics through the
simulation of flow past a cylinder. To proceed with this prob-
lem, go to the book’s web site, www.wiley.com/college/young,
or WileyPLUS.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for
fluid mechanics are provided on the book’s web site, www.wiley
.com/college/young, or WileyPLUS.
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CHAPTER OPENING PHOTO: Turbulent jet: The jet of water from the pipe is turbulent. The complex,
irregular, unsteady structure typical of turbulent flows is apparent. (Laser-induced fluorescence of dye
in water.) (Photography by P. E. Dimotakis, R. C. Lye, and D. Z. Papantoniou.)

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ identify and understand various characteristics of the flow in pipes.

■ discuss the main properties of laminar and turbulent pipe flow and appre-
ciate their differences.

■ calculate losses in straight portions of pipes as well as those in various
pipe system components.

■ apply appropriate equations and principles to analyze a variety of pipe
flow situations.

■ predict the flowrate in a pipe by use of common flowmeters.

In this chapter we apply the basic principles concerning mass, momentum, and energy to a
specific, important topic—the flow of viscous incompressible fluids in pipes and ducts.
Some of the basic components of a typical pipe system are shown in Fig. 8.1. They include
the pipes themselves (perhaps of more than one diameter), the various fittings used to con-
nect the individual pipes to form the desired system, the flowrate control devices (valves),
and the pumps or turbines that add energy to or remove energy from the fluid.

Viscous Flow 
in Pipes

8 Viscous Flow 
in Pipes

8

V8.1 Turbulent jet
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8.1 General Characteristics of Pipe Flow 275

8.1 General Characteristics of Pipe Flow

Before we apply the various governing equations to pipe flow examples, we will discuss some
of the basic concepts of pipe flow. Unless otherwise specified, we will assume that the con-
duit is round, although we will show how to account for other shapes. For all flows involved
in this chapter, we assume that the pipe is completely filled with the fluid being transported.

8.1.1 Laminar or Turbulent Flow

The flow of a fluid in a pipe may be laminar flow or it may be turbulent flow. Osborne Reynolds,
a British scientist and mathematician, was the first to distinguish the difference between these
two classifications of flow by using a simple apparatus as shown in Fig. 8.2a and the figure in
the margin. For “small enough flowrates” the dye streak (a streakline) will remain as a well-
defined line as it flows along, with only slight blurring due to molecular diffusion of the dye
into the surrounding water. For a somewhat larger “intermediate flowrate” the dye streak fluc-
tuates in time and space, and intermittent bursts of irregular behavior appear along the streak.
However, for “large enough flowrates” the dye streak almost immediately becomes blurred and
spreads across the entire pipe in a random fashion. These three characteristics, denoted as 
laminar, transitional, and turbulent flow, respectively, are illustrated in Fig. 8.2b.

Outlet

Pipe

Pump

Elbow
Tee Valve

Inlet

Q = VA

D

Dye streak

Dye

Smooth, well-rounded
entrance

Pipe

(a) (b)

Laminar

Transitional

Turbulent

F I G U R E  8.2 (a) Experiment to illustrate type of flow. (b) Typical dye streaks.

V8.2 Laminar/
turbulent pipe flow

F I G U R E  8.1 Typical pipe system components.
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In the previous paragraph the term flowrate should be replaced by Reynolds number,
Re � �VD/�, where V is the average velocity in the pipe. That is, the flow in a pipe is
laminar, transitional, or turbulent provided the Reynolds number is “small enough,” “inter-
mediate,” or “large enough.” It is not only the fluid velocity that determines the character
of the flow—its density, viscosity, and the pipe size are of equal importance. These para-
meters combine to produce the Reynolds number. For general engineering purposes (i.e.,
without undue precautions to eliminate disturbances), the following values are appropriate:
The flow in a round pipe is laminar if the Reynolds number is less than approximately 2100.
The flow in a round pipe is turbulent if the Reynolds number is greater than approximately
4000. For Reynolds numbers between these two limits, the flow may switch between lam-
inar and turbulent conditions in an apparently random fashion (transitional flow).

276 Chapter 8 ■ Viscous Flow in Pipes

F l u i d s  i n  t h e  N e w s

Nanoscale flows The term nanoscale generally refers to ob-
jects with characteristic lengths from atomic dimensions up to
a few hundred nanometers (nm). (Recall that .)
Nanoscale fluid mechanics research has recently uncovered
many surprising and useful phenomena. No doubt many more
remain to be discovered. For example, in the future researchers
envision using nanoscale tubes to push tiny amounts of water-
soluble drugs to exactly where they are needed in the human
body. Because of the tiny diameters involved, the Reynolds
numbers for such flows are extremely small and the flow is
definitely laminar. In addition, some standard properties of

1 nm � 10�9 m

everyday flows (for example, the fact that a fluid sticks to a
solid boundary) may not be valid for nanoscale flows. Also,
ultratiny mechanical pumps and valves are difficult to manu-
facture and may become clogged by tiny particles such as bi-
ological molecules. As a possible solution to such problems,
researchers have investigated the possibility of using a system
that does not rely on mechanical parts. It involves using light-
sensitive molecules attached to the surface of the tubes. By
shining light onto the molecules, the light-responsive mole-
cules attract water and cause motion of water through the
tube. (See Problem 8.2.)

GIVEN Water at a temperature of 50 �F flows through a pipe
of diameter D � 0.73 in. and into a glass as shown in Fig. E8.1a.

FIND Determine

(a) the minimum time taken to fill a 12-oz glass (volume �
0.0125 ft3) with water if the flow in the pipe is to be laminar.

(b) the maximum time taken to fill the glass if the flow is to
be turbulent. 

SOLUTION

Laminar or Turbulent FlowEXAMPLE 8.1

(a) If the flow in the pipe is to remain laminar, the minimum
time to fill the glass will occur if the Reynolds number is the max-
imum allowed for laminar flow, typically Re � �VD/� � 2100.
Thus, V � 2100 �/�D, where from Table B.1, � � 1.94 slugs/ft3

and � � 2.73 � 10�5 lb s/ft2 at 50� F. Therefore, the maximum
average velocity for laminar flow in the pipe is

� 0.486 ft/s

 V �
2100�

�D
�

210012.73 � 10�5 lb # s/ft22

11.94 slugs/ft32 10.73/12 ft2
� 0.486 lb # s/slug

#

F I G U R E  E8.1a

�, �
Q

D

V

V8.3 Intermittent
turbulent burst in
pipe flow
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8.1.2 Entrance Region and Fully Developed Flow

Any fluid flowing in a pipe had to enter the pipe at some location. The region of flow near
where the fluid enters the pipe is termed the entrance region and is illustrated in Fig. 8.3.
As shown, the fluid typically enters the pipe with a nearly uniform velocity profile at sec-
tion (1). As the fluid moves through the pipe, viscous effects cause it to stick to the pipe
wall (the no-slip boundary condition). This is true whether the fluid is relatively inviscid
air or a very viscous oil. Thus, a boundary layer in which viscous effects are important is
produced along the pipe wall such that the initial velocity profile changes with distance

matic viscosity, � � �/�, decreases and the corresponding
times to fill the glass increase as indicated.

If the flowing fluid had been honey with a kinematic viscos-
ity (� � �/�) 3000 times greater than that of water, the velocities
given earlier would be increased by a factor of 3000 and the
times reduced by the same factor. As shown in the following sec-
tions, the pressure needed to force a very viscous fluid through a
pipe at such a high velocity may be unreasonably large.

With � volume of glass and � Qt we obtain

(Ans)

(b) If the flow in the pipe is to be turbulent, the maximum
time to fill the glass will occur if the Reynolds number is the
minimum allowed for turbulent flow, Re � 4000. Thus, with
the given values of � and �, V � 4000 �/�D � 0.925 ft/s and

(Ans)

COMMENTS Note that because water is “not very vis-
cous,” the velocity must be “fairly small” to maintain laminar
flow. In general, turbulent flows are encountered more often
than laminar flows because of the relatively small viscosity of
most common fluids (water, gasoline, air). By repeating the
calculations at various water temperatures, T (i.e., with differ-
ent densities and viscosities), the results shown in Fig. E8.1b
are obtained. As the water temperature increases, the kine-

 � 4.65 s

 t �
V

Q
�

V

1�/42D2V
�
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along the pipe, x, until the fluid reaches the end of the entrance length, section (2), beyond
which the velocity profile does not vary with x. The boundary layer has grown in thickness
to completely fill the pipe.

The shape of the velocity profile in the pipe depends on whether the flow is laminar
or turbulent, as does the entrance length, �e. Typical entrance lengths are given by

(8.1)

and

(8.2)

Once the fluid reaches the end of the entrance region, section (2) of Fig. 8.3, the flow is
simpler to describe because the velocity is a function of only the distance from the pipe
centerline, r, and independent of x. This is true until the character of the pipe changes in
some way, such as a change in diameter or the fluid flows through a bend, valve, or some
other component at section (3). The flow between (2) and (3) is termed fully developed
flow. Beyond the interruption of the fully developed flow [at section (4)], the flow gradu-
ally begins its return to its fully developed character [section (5)] and continues with this
profile until the next pipe system component is reached [section (6)].

/e

D
� 4.4 1Re21/6 for turbulent flow

/e

D
� 0.06 Re for laminar flow
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8.2 Fully Developed Laminar Flow

Knowledge of the velocity profile can lead directly to other useful information such as pres-
sure drop, head loss, flowrate, and the like. Thus, we begin by developing the equation for
the velocity profile in fully developed laminar flow. If the flow is not fully developed, a
theoretical analysis becomes much more complex and is outside the scope of this text. If
the flow is turbulent, a rigorous theoretical analysis is as yet not possible.

8.2.1 From F � ma Applied Directly to a Fluid Element

We consider the fluid element at time t as is shown in Fig. 8.4. It is a circular cylinder of
fluid of length � and radius r centered on the axis of a horizontal pipe of diameter D.
Because the velocity is not uniform across the pipe, the initially flat ends of the cylinder
of fluid at time t become distorted at time t � �t when the fluid element has moved to its
new location along the pipe as shown in Fig. 8.4. If the flow is fully developed and steady,
the distortion on each end of the fluid element is the same, and no part of the fluid expe-
riences any acceleration as it flows, as shown in the figure in the margin. Every part of the
fluid merely flows along its pathline parallel to the pipe walls with constant velocity,

Velocity profiles

Streamlines

(1) (2)

D

Velocity
profile

V = u(r)i

r

Fluid element at time t Element at time t +   tδ

x

�^ F I G U R E  8.4
Motion of a cylindrical fluid
element within a pipe.
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8.2 Fully Developed Laminar Flow 279

although neighboring particles have slightly different velocities. The velocity varies from
one pathline to the next. This velocity variation, combined with the fluid viscosity, produces
the shear stress.

If gravitational effects are neglected, the pressure is constant across any vertical cross
section of the pipe, although it varies along the pipe from one section to the next. Thus, if
the pressure is p � p1 at section (1), it is p2 � p1 � �p at section (2), where �p is the
pressure drop between sections (1) and (2). We anticipate the fact that the pressure decreases
in the direction of flow so that �p � 0. A shear stress, �, acts on the surface of the cylin-
der of fluid. This viscous stress is a function of the radius of the cylinder, � � �(r).

As was done in fluid statics analysis (Chapter 2), we isolate the cylinder of fluid as
is shown in Fig. 8.5 and apply Newton’s second law, Fx � max. In this case even though
the fluid is moving, it is not accelerating, so that ax � 0. Thus, fully developed horizontal
pipe flow is merely a balance between pressure and viscous forces. This can be written as

and simplified to give

(8.3)

Since neither �p nor � is a function of the radial coordinate, r, it follows that 2�/r
must also be independent of r. That is, � � Cr, where C is a constant. At r � 0 (the center-
line of the pipe) there is no shear stress (� � 0). At r � D/2 (the pipe wall) the shear stress
is a maximum, denoted �w, the wall shear stress. Hence, C � 2�w /D and the shear stress
distribution throughout the pipe is a linear function of the radial coordinate

(8.4)

as is indicated in Fig. 8.6. As seen from Eqs. 8.3 and 8.4, the pressure drop and wall shear
stress are related by

(8.5)¢p �
4/�w

D

� �
2�wr

D

¢p

/
�

2�

r

1p12�r2 � 1p1 � ¢p2�r2 � 1�22�r/ � 0

2  r�τ π

(p1 – Δp)   r2π
x

r

�

p1   r
2π

F I G U R E  8.5 Free-
body diagram of a cylinder of fluid.
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F I G U R E  8.6 Shear stress distribution within the fluid
in a pipe (laminar or turbulent flow) and typical velocity profiles.
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To carry the analysis further we must prescribe how the shear stress is related to the
velocity. This is the critical step that separates the analysis of laminar from that of turbu-
lent flow—from being able to solve for the laminar flow properties and not being able to
solve for the turbulent flow properties without additional ad hoc assumptions. As discussed
in Section 8.3, the shear stress dependence for turbulent flow is very complex. However,
for laminar flow of a Newtonian fluid, the shear stress is simply proportional to the velocity
gradient, “� � � du/dy” (see Section 1.6). In the notation associated with our pipe flow, this
becomes

(8.6)

The negative sign is indicated to give � � 0 with du/dr 	 0 (the velocity decreases from
the pipe centerline to the pipe wall).

By combining Eqs. 8.3 (Newton’s second law of motion) and 8.6 (the definition of a
Newtonian fluid) we obtain

which can be integrated to give the velocity profile as follows:

or

where C1 is a constant. Because the fluid is viscous, it sticks to the pipe wall so that u � 0
at r � D/2. Hence, C1 � (�p/16��)D2 and the velocity profile can be written as

(8.7)

where Vc � �pD2/(16��) is the centerline velocity.
This velocity profile, plotted in Fig. 8.6, is parabolic in the radial coordinate, r, has a

maximum velocity, Vc, at the pipe centerline, and a minimum velocity (zero) at the pipe
wall. The volume flowrate through the pipe can be obtained by integrating the velocity pro-
file across the pipe. Since the flow is axisymmetric about the centerline, the velocity is con-
stant on small-area elements consisting of rings of radius r and thickness dr, which have
area as shown by the figure in the margin. Thus,

or

By definition, the average velocity is the flowrate divided by the cross-sectional area,
V � Q/A � Q/�R2, so that for this flow

(8.8)V �
�R2Vc

2�R2 �
Vc

2
�
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32�/
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2
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8.2 Fully Developed Laminar Flow 281

and

(8.9)

This flow is termed Hagen–Poiseuille flow. Equation 8.9 is commonly referred to as
Poiseuille’s law. Recall that all of these results are restricted to laminar flow (those with
Reynolds numbers less than approximately 2100) in a horizontal pipe. For a given pressure
drop per unit length, the volume rate of flow is inversely proportional to the viscosity and
proportional to the tube diameter to the fourth power. As indicated in the marginal figure,
a doubling of the tube diameter produces a sixteenfold increase in flow!

The adjustment necessary to account for nonhorizontal pipes, as shown in Fig. 8.7,
can be easily included by replacing the pressure drop, �p, by the combined effect of pres-
sure and gravity, �p � �� sin 	, where 	 is the angle between the pipe and the horizontal.
This can be shown from a force balance in the x direction (along the pipe axis) on the cylin-
der of fluid. The method is exactly analogous to that used to obtain the Bernoulli equation
(Eq. 3.6) when the streamline is not horizontal. Thus, all of the results for the horizontal
pipe are valid provided the pressure gradient is adjusted for the elevation term. That is, �p
is replaced by �p � �� sin 	 so that

(8.10)

and

(8.11)

It is seen that the driving force for pipe flow can be either a pressure drop in the flow
direction, �p, or the component of weight in the flow direction, ��� sin 	.

Q �
�1¢p � �/ sin 	2D4

128�/

V �
1¢p � �/ sin 	2D2

32�/

Q �
�D 4 ¢p

128�/

�

� sin    =    r2� sinθ θγπ

πp   r2

Fy

x

θ
(p + Δp)   r2

r

�

2   r�τ

(b)(a)

�

Fluid cylinder
θ

Q

π

π

F I G U R E  8.7 Free-body diagram of a fluid cylinder for flow in a nonhorizontal pipe.

~ D4Q
Q

D
D0

Q0

16Q0

2D0

GIVEN An oil with a viscosity of � � 0.40 N s/m2 and den-
sity � � 900 kg/m3 flows in a pipe of diameter D � 0.020 m. 

FIND (a) What pressure drop, p1 � p2, is needed to pro-
duce a flowrate of Q � 2.0 � 10�5 m3/s if the pipe is horizontal
with x1 � 0 and x2 � 10 m? 

# (b) How steep a hill, 	, must the pipe be on if the oil is to
flow through the pipe at the same rate as in part (a) but with
p1 � p2? 

(c) For the conditions of part (b), if p1 � 200 kPa, what is
the pressure at section x3 � 5 m, where x is measured along
the pipe?

Laminar Pipe FlowEXAMPLE 8.2

c08ViscousFlowinPipes.qxd  9/28/10  10:22 AM  Page 281



282 Chapter 8 ■ Viscous Flow in Pipes

(2.31 m) � 20,400 N/m2, which is equivalent to that needed for
the horizontal pipe. For the horizontal pipe it is the work done
by the pressure forces that overcomes the viscous dissipation.
For the zero pressure drop pipe on the hill, it is the change in
potential energy of the fluid “falling” down the hill that is con-
verted to the energy lost by viscous dissipation. Note that if it
is desired to increase the flowrate to Q � 1.0 � 10�4 m3/s with
p1 � p2, the value of 	 given by Eq. 1 is sin 	 � �1.15. Since
the sine of an angle cannot be greater than 1, this flow would
not be possible. The weight of the fluid would not be large
enough to offset the viscous force generated for the flowrate
desired. A larger-diameter pipe would be needed.

(c) With p1 � p2 the length of the pipe, �, does not appear in
the flowrate equation (Eq. 1). This is a statement of the fact that
for such cases the pressure is constant all along the pipe (pro-
vided the pipe lies on a hill of constant slope). This can be seen
by substituting the values of Q and 	 from case (b) into Eq. 8.11
and noting that �p � 0 for any �. For example, �p � p1 � p3 �
0 if � � x3 � x1 � 5 m. Thus, p1 � p2 � p3 so that

(Ans)

COMMENT Note that if the fluid were gasoline (� � 3.1 �
10�4 N
s/m2 and � � 680 kg/m3), the Reynolds number would be
Re � 2790, the flow would probably not be laminar, and use of
Eqs. 8.9 and 8.11 would give incorrect results. Also note from
Eq. 1 that the kinematic viscosity, v � �/�, is the important vis-
cous parameter. This is a statement of the fact that with constant
pressure along the pipe, it is the ratio of the viscous force (��)
to the weight force (�� � �g) that determines the value of 	.

p3 � 200 kPa

SOLUTION

(a) If the Reynolds number is less than 2100 the flow is
laminar and the equations derived in this section are valid.
Since the average velocity is V � Q/A � 2.0 � 10�5 m3/s/
[�(0.020)2m2/4] � 0.0637 m/s, the Reynolds number is
Re � �VD/� � 2.87 	 2100. Hence, the flow is laminar and
from Eq. 8.9 with � � x2 � x1 � 10 m, the pressure drop is

or

(Ans)

(b) If the pipe is on a hill of angle 	 such that �p � p1 �
p2 � 0, Eq. 8.11 gives

(1)

or

Thus, 	 � �13.34�. (Ans)

COMMENT This checks with the previous horizontal re-
sult as is seen from the fact that a change in elevation of �z �
� sin 	 � (10 m) sin (�13.34�) � �2.31 m is equivalent to a
pressure change of �p � �g �z � (900 kg/m3)(9.81 m/s2)

 sin 	 �
�12810.40 N # s/m22 12.0 � 10�5 m3/s2

�1900 kg/m32 19.81 m/s22 10.020 m24

 sin 	 � �
128�Q

��gD4

¢p � 20,400 N/m2 � 20.4 kPa

 �
12810.40 N # s/m22 110.0 m2 12.0 � 10�5 m3/s2

�10.020 m24

¢p � p1 � p2 �
128�/Q

�D4

8.2.2 From the Navier–Stokes Equations

In the previous section we obtained results for fully developed laminar pipe flow by apply-
ing Newton’s second law and the assumption of a Newtonian fluid to a specific portion of
the fluid—a cylinder of fluid centered on the axis of a long round pipe. When this govern-
ing law and assumptions are applied to a general fluid flow (not restricted to pipe flow),
the result is the Navier–Stokes equations as discussed in Chapter 6. In Section 6.9.3 these
equations were solved for the specific geometry of fully developed laminar flow in a round
pipe. The results are the same as those given in Eq. 8.7.

8.3 Fully Developed Turbulent Flow

In the previous section various properties of fully developed laminar pipe flow were discussed.
Since turbulent pipe flow is actually more likely to occur than laminar flow in practical situ-
ations, it is necessary to obtain similar information for turbulent pipe flow. However, tur-
bulent flow is a very complex process. Numerous persons have devoted considerable effort in
attempting to understand the variety of baffling aspects of turbulence. Although a considerable
amount of knowledge about the topic has been developed, the field of turbulent flow still
remains the least understood area of fluid mechanics.
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8.3 Fully Developed Turbulent Flow 283

8.3.1 Transition from Laminar to Turbulent Flow

Flows are classified as laminar or turbulent. For any flow geometry, there is one (or more)
dimensionless parameter such that with this parameter value below a particular value the flow
is laminar, whereas with the parameter value larger than a certain value it is turbulent. For
pipe flow this parameter is the Reynolds number. The value of the Reynolds number must be
less than approximately 2100 for laminar flow and greater than approximately 4000 for tur-
bulent flow.

A typical trace of the axial component of velocity, u � u(t), measured at a given loca-
tion in turbulent pipe flow is shown in Fig. 8.8. Its irregular, random nature is the distin-
guishing feature of turbulent flows. The character of many of the important properties of
the flow (pressure drop, heat transfer, etc.) depends strongly on the existence and nature of
the turbulent fluctuations or randomness indicated.

For example, mixing processes and heat and mass transfer processes are considerably
enhanced in turbulent flow compared to laminar flow. This is due to the macroscopic scale
of the randomness in turbulent flow. We are all familiar with the “rolling,” vigorous eddy-
type motion of the water in a pan being heated on the stove (even if it is not heated to boil-
ing). Such finite-sized random mixing is very effective in transporting energy and mass
throughout the flow field, thereby increasing the various rate processes involved. Laminar
flow, however, can be thought of as very small but finite-sized fluid particles flowing
smoothly in layers, one over another. The only randomness and mixing take place on the
molecular scale and result in relatively small heat, mass, and momentum transfer rates.

u(t) _
u = time average
(or mean) value

u'

T

tO tO + T

u

t

F I G U R E  8.8 The time-averaged, u. and fluctuating, descrip-
tion of a parameter for turbulent flow.

u�,

V8.4 Stirring color
into paint

V8.5 Laminar and
turbulent mixing

V8.6 Stirring cream
into coffee

F l u i d s  i n  t h e  N e w s

Listen to the flowrate Sonar systems are designed to listen to
transmitted and reflected sound waves in order to locate sub-
merged objects. They have been used successfully for many
years to detect and track underwater objects such as sub-
marines and aquatic animals. Recently, sonar techniques have
been refined so that they can be used to determine the flowrate
in pipes. These new flowmeters work for turbulent, not lami-
nar, pipe flows because their operation depends strictly on the

existence of turbulent eddies within the flow. The flowmeters
contain a sonar-based array that listens to and interprets pres-
sure fields generated by the turbulent motion in pipes. By lis-
tening to the pressure fields associated with the movement of
the turbulent eddies, the device can determine the speed at
which the eddies travel past an array of sensors. The flowrate
is determined by using a calibration procedure that links the
speed of the turbulent structures to the volumetric flowrate.
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8.3.2 Turbulent Shear Stress

The fundamental difference between laminar and turbulent flow lies in the chaotic, random
behavior of the various fluid parameters. As indicated in Fig. 8.8, such flows can be
described in terms of their mean values (denoted with an overbar) on which are superim-
posed the fluctuations (denoted with a prime). Thus, if u � u(x, y, z, t) is the x component
of instantaneous velocity, then its time mean (or time average) value, , is

(8.12)

where the time interval, T, is considerably longer than the period of the longest fluctuations
but considerably shorter than any unsteadiness of the average velocity. This is illustrated in
Fig. 8.8.

It is tempting to extend the concept of viscous shear stress for laminar flow (� � �
du/dy) to that of turbulent flow by replacing u, the instantaneous velocity, by , the time-
average velocity. However, numerous experimental and theoretical studies have shown that
such an approach leads to completely incorrect results.

That is, the shear stress in turbulent flow is not merely proportional to the gradient
of the time-average velocity: � � � d /dy. It also contains a contribution due to the ran-
dom fluctuations of the components of velocity. One could express the shear stress for tur-
bulent flow in terms of a new parameter called the eddy viscosity, 
, where

(8.13)

Although the concept of an eddy viscosity is intriguing, in practice it is not an easy
parameter to use. Unlike the absolute viscosity, �, which is a known value for a given fluid,
the eddy viscosity is a function of both the fluid and the flow conditions. That is, the eddy
viscosity of water cannot be looked up in handbooks—its value changes from one turbu-
lent flow condition to another and from one point in a turbulent flow to another.

Several semiempirical theories have been proposed (Ref. 1) to determine approximate
values of 
. For example, the turbulent process could be viewed as the random transport of
bundles of fluid particles over a certain distance, �m, the mixing length, from a region of
one velocity to another region of a different velocity. By the use of some ad hoc assump-
tions and physical reasoning, the eddy viscosity is then given by

Thus, the turbulent shear stress is

(8.14)

The problem is thus shifted to that of determining the mixing length, �m. Further consider-
ations indicate that �m is not a constant throughout the flow field. Near a solid surface the
turbulence is dependent on the distance from the surface. Thus, additional assumptions are
made regarding how the mixing length varies throughout the flow.

The net result is that as yet there is no general, all-encompassing, useful model that
can accurately predict the shear stress throughout a general incompressible, viscous turbu-
lent flow. Without such information it is impossible to integrate the force balance equa-
tion to obtain the turbulent velocity profile and other useful information, as was done for
laminar flow.
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V8.7 Turbulence in
a bowl

V8.8 Laminar to
turbulent flow from
a pipe
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8.4 Dimensional Analysis of Pipe Flow 285

8.3.3 Turbulent Velocity Profile

Although considerable information concerning turbulent velocity profiles has been obtained
through the use of dimensional analysis, experimentation, and semiempirical theoretical
efforts, there is still no accurate general expression for turbulent velocity profiles.

An often-used (and relatively easy to use) correlation is the empirical power-law
velocity profile

(8.15)

In this representation, the value of n is a function of the Reynolds number, with typical val-
ues between n � 6 and n � 10. Typical turbulent velocity profiles based on this power-law
representation are shown in Fig. 8.9. Note that the turbulent profiles are much “flatter” than
the laminar profile.

A closer examination of Eq. 8.15 shows that the power-law profile cannot be valid
near the wall, since according to this equation the velocity gradient is infinite there. In addi-
tion, Eq. 8.15 cannot be precisely valid near the centerline because it does not give d /dr � 0
at r � 0. However, it does provide a reasonable approximation to the measured velocity
profiles across most of the pipe.

u

u

Vc

� a1 �
r

R
b

1/n

F I G U R E  8.9
Typical laminar flow and
turbulent flow velocity
profiles.
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8.4 Dimensional Analysis of Pipe Flow

As noted previously, turbulent flow can be a very complex, difficult topic—one that as yet
has defied a rigorous theoretical treatment. Thus, most turbulent pipe flow analyses are
based on experimental data and semiempirical formulas. These data are expressed conve-
niently in dimensionless form.
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It is often necessary to determine the head loss, hL, that occurs in a pipe flow so that
the energy equation, Eq. 5.57, can be used in the analysis of pipe flow problems. As shown
in Fig. 8.1, a typical pipe system usually consists of various lengths of straight pipe inter-
spersed with various types of components (valves, elbows, etc.). The overall head loss for the
pipe system consists of the head loss due to viscous effects in the straight pipes, termed the
major loss and denoted hL major, and the head loss in the various pipe components, termed
the minor loss and denoted hL minor. That is,

The head loss designations of “major” and “minor” do not necessarily reflect the relative
importance of each type of loss. For a pipe system that contains many components and a
relatively short length of pipe, the minor loss may actually be larger than the major loss.

8.4.1 Major Losses

A dimensional analysis treatment of pipe flow provides the most convenient base from
which to consider turbulent, fully developed pipe flow. The pressure drop and head loss
in a pipe are dependent on the wall shear stress, �w, between the fluid and the pipe sur-
face. A fundamental difference between laminar and turbulent flow is that the shear stress
for turbulent flow is a function of the density of the fluid, �. For laminar flow, the shear
stress is independent of the density, leaving the viscosity, �, as the only important fluid
property.

Thus, as shown by the figure in the margin, the pressure drop, �p, for steady, incom-
pressible turbulent flow in a horizontal round pipe of diameter D can be written in func-
tional form as

(8.16)

where V is the average velocity, � is the pipe length, and � is a measure of the roughness
of the pipe wall. It is clear that �p should be a function of V, D, and �. The dependence
of �p on the fluid properties � and � is expected because of the dependence of � on these
parameters.

Although the pressure drop for laminar pipe flow is found to be independent of
the roughness of the pipe, it is necessary to include this parameter when considering
turbulent flow. This can be shown to be due to the random velocity components that
account for a momentum transfer (which is a function of the density) and, hence, a
shear force.

Since there are seven variables (k � 7) that can be written in terms of the three ref-
erence dimensions MLT (r � 3), Eq. 8.16 can be written in dimensionless form in terms
of k � r � 4 dimensionless groups. One such representation is

This result differs from that used for laminar flow in two ways. First, we have chosen to
make the pressure dimensionless by dividing by the dynamic pressure, �V2/2, rather than a
characteristic viscous shear stress, �V/D. Second, we have introduced two additional dimen-
sionless parameters, the Reynolds number, Re � �VD/�, and the relative roughness, /D,
which are not present in the laminar formulation because the two parameters � and are
not important in fully developed laminar pipe flow.

As was done for laminar flow, the functional representation can be simplified by impos-
ing the reasonable assumption that the pressure drop should be proportional to the pipe

e
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8.4 Dimensional Analysis of Pipe Flow 287

length. (Such a step is not within the realm of dimensional analysis. It is merely a logical
assumption supported by experiments.) The only way that this can be true is if the �/D depen-
dence is factored out as

The quantity �pD/(��V2/2) is termed the friction factor, f. Thus, for a horizontal pipe

(8.17)

where

The friction factor, f, defined by Eq. 8.17 and termed the Darcy friction factor, is widely used
in engineering calculations. Infrequently, the Fanning friction factor, fF, defined by fF � f/4
is used instead. Only f is used in this book.

From Eq. 5.57 the energy equation for steady incompressible flow is

where hL is the head loss between sections (1) and (2). With the assumption of a constant diam-
eter (D1 � D2 so that V1 � V2), horizontal (z1 � z2) pipe, this becomes �p � p1� p2 � �hL,
which can be combined with Eq. 8.17 to give

(8.18)

Equation 8.18, called the Darcy–Weisbach equation, is valid for any fully developed, steady,
incompressible pipe flow—whether the pipe is horizontal or on a hill. However, Eq. 8.17
is valid only for horizontal pipes. In general, with V1 � V2 the energy equation gives

Part of the pressure change is due to the elevation change and part is due to the head loss
associated with frictional effects, which are given in terms of the friction factor, f.

It is not easy to determine the functional dependence of the friction factor on the
Reynolds number and relative roughness. Much of this information is a result of experi-
ments. Figure 8.10 shows the functional dependence of f on Re and �/D and is called the
Moody chart. Typical roughness values for various new, clean pipe surfaces are given in
Table 8.1.

The following characteristics are observed from the data of Fig. 8.10. For laminar
flow, f � 64/Re, which is independent of relative roughness. For very large Reynolds num-
bers, f � �(�/D), which, as shown by the figure in the margin, is independent of the
Reynolds number. Such flows are commonly termed completely turbulent flow (or wholly
turbulent flow). For flows with moderate values of Re, the friction factor is indeed depen-
dent on both the Reynolds number and relative roughness—f � �(Re, �/D). Note that even
for hydraulically smooth pipes (� � 0) the friction factor is not zero. That is, there is a
head loss in any pipe, no matter how smooth the surface is made.

p1 � p2 � � 1z2 � z12 � �hL � �1z2 � z12 � f 
/
D

 
�V2

2

hL major � f 
/
D

 
V2

2g

p1

�
�

V2
1

2g
� z1 �

p2

�
�

V2
2

2g
� z2 � hL

f � � aRe, 
e

D
b

¢p � f 
/
D

 
�V2

2

¢p
1
2 �V2 �

/
D

 � aRe, 
e

D
b
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00
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The following equation is valid for the entire nonlaminar range of the Moody chart

(8.19a)

In fact, the Moody chart is a graphical representation of this equation, which is an
empirical fit of the pipe flow pressure drop data. Equation 8.19a is called the Cole-
brook formula. A difficulty with its use is that it is implicit in the dependence of f.
That is, for given conditions (Re and �/D), it is not possible to solve for f without some
sort of iterative scheme. With the use of modern computers and calculators, such cal-
culations are not difficult. It is possible to obtain an equation that adequately approxi-
mates the Colebrook/Moody chart relationship for turbulent flow situations but does not
require an iterative scheme. For example, the Haaland equation (Ref. 18), which is eas-
ier to use, is given by

(8.19b)

where one can solve for f explicitly.

1

1f
� �1.8 log c a

e/D

3.7
b

1.11

�
6.9

Re
d

1

1f
� �2.0 log a

e/D

3.7
�

2.51

Re1f
b

F I G U R E  8.10 Friction factor as a function of Reynolds number and relative roughness for
round pipes—the Moody chart. (Data from Ref. 7 with permission.)
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8.4 Dimensional Analysis of Pipe Flow 289

TA B L E 8 . 1

Equivalent Roughness for New Pipes. [From Moody (Ref. 2) 
and Colebrook (Ref. 3).]

Equivalent Roughness, 

Pipe Feet Millimeters

Riveted steel 0.003–0.03 0.9–9.0
Concrete 0.001–0.01 0.3–3.0
Wood stave 0.0006–0.003 0.18–0.9
Cast iron 0.00085 0.26
Galvanized iron 0.0005 0.15
Commercial steel
or wrought iron 0.00015 0.045

Drawn tubing 0.000005 0.0015
Plastic, glass 0.0 1smooth2 0.0 1smooth2

E

GIVEN Air under standard conditions flows through a
4.0-mm-diameter drawn tubing with an average velocity of
V � 50 m/s. For such conditions the flow would normally
be turbulent. However, if precautions are taken to eliminate
disturbances to the flow (the entrance to the tube is very

smooth, the air is dust-free, the tube does not vibrate, etc.),
it may be possible to maintain laminar flow. 

FIND (a) Determine the pressure drop in a 0.1-m section
of the tube if the flow is laminar. 

(b) Repeat the calculations if the flow is turbulent.

SOLUTION

Comparison of Laminar or Turbulent Pressure Drop

(b) If the flow were turbulent, then f � (Re, /D), where
from Table 8.1, � 0.0015 mm so that /D � 0.0015 mm/4.0
mm � 0.000375. From the Moody chart with Re � 1.37 � 104

and �D � 0.000375 we obtain f � 0.028. Thus, the pressure
drop in this case would be approximately

or

(Ans)

COMMENTS A considerable savings in effort to force
the fluid through the pipe could be realized (0.179 kPa rather
than 1.076 kPa) if the flow could be maintained as laminar
flow at this Reynolds number. In general this is very difficult

¢p � 1.076 kPa

 � 10.0282 
10.1 m2

10.004 m2
 
1

2
 11.23 kg/m32 150 m/s22

¢p � f 
/
D

 
1

2
 �V 2

e

ee

e�

 � 179 N/m2

¢p �
32�/

D2  V �
3211.79 � 10�5 N # s/m22 10.1 m2 150 m/s2

10.004 m22

EXAMPLE 8.3

Under standard temperature and pressure conditions the den-
sity and viscosity are � � 1.23 kg/m3 and � � 1.79 � 10�5

N s/m2. Thus, the Reynolds number is

which would normally indicate turbulent flow.

(a) If the flow were laminar, then f � 64/Re � 64/13,700 �
0.00467 and the pressure drop in a 0.1-m-long horizontal sec-
tion of the pipe would be

or

(Ans)

COMMENT Note that the same result is obtained from
Eq. 8.8.

¢p � 0.179 kPa

 � 10.004672 
10.1 m2

10.004 m2
 
1

2
 11.23 kg/m32 150 m/s22

¢p � f 
/
D

 
1

2
 �V2

 � 13,700

Re �
�VD

�
�
11.23 kg/m32 150 m/s2 10.004 m2

1.79 � 10�5 N # s/m2

#
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8.4.2 Minor Losses

Most pipe systems consist of more than straight pipes. These additional components (valves,
bends, tees, and the like) add to the overall head loss of the system. Such losses are gen-
erally termed minor losses, with the corresponding head loss denoted hL minor.

Head loss information for essentially all components is given in dimensionless form
and is based on experimental data. The most common method used to determine these head
losses or pressure drops is to specify the loss coefficient, KL, which is defined as

so that

or

(8.20)

The pressure drop across a component that has a loss coefficient of KL � 1 is equal to the
dynamic pressure, �V2/2. As shown by Eq. 8.20 and the figure in the margin, for a given
value of KL the head loss is proportional to the square of the velocity.

Many pipe systems contain various transition sections in which the pipe diameter
changes from one size to another. Any change in flow area contributes losses that are not

hL minor � KL 
V2

2g

¢p � KL 
1
2 �V 2

KL �
hL minor

1V 2/2g2
�

¢p
1
2 �V 2

290 Chapter 8 ■ Viscous Flow in Pipes

For our case this gives

which is in agreement with the previous results. Note that the
value of f is relatively insensitive to /D for this particular
situation. Whether the tube was smooth glass ( /D � 0) or the
drawn tubing ( /D � 0.000375) would not make much differ-
ence in the pressure drop. For this flow, an increase in relative
roughness by a factor of 30 to /D � 0.0113 (equivalent to a
commercial steel surface; see Table 8.1) would give f �
0.043. This would represent an increase in pressure drop and
head loss by a factor of 0.043/0.0291 � 1.48 compared with
that for the original drawn tubing.

The pressure drop of 1.076 kPa in a length of 0.1 m of
pipe corresponds to a change in absolute pressure [assum-
ing p � 101 kPa (abs) at x � 0] of approximately
1.076/101 � 0.0107, or about 1%. Thus, the incompress-
ible flow assumption on which the aforementioned calcula-
tions (and all of the formulas in this chapter) are based is
reasonable. However, if the pipe were 2 m long the pressure
drop would be 21.5 kPa, approximately 20% of the original
pressure. In this case the density would not be approxi-
mately constant along the pipe, and a compressible flow
analysis would be needed.

e

e

e

e

f � 0.316113,7002�0.25 � 0.0292

to do, although laminar flow in pipes has been maintained up
to Re � 100,000 in rare instances.

An alternate method to determine the friction factor for 
the turbulent flow would be to use the Colebrook formula,
Eq. 8.19a. Thus,

or

(1)

By using a root-finding technique on a computer or calculator,
the solution to Eq. 1 is determined to be , in agree-
ment (within the accuracy of reading the graph) with the Moody
chart method of Alternatively, the Haaland equation,
Eq. 8.19b, could be used (without iteration) to obtain .

Numerous other empirical formulas can be found in the
literature (Ref. 4) for portions of the Moody chart. For example,
an often-used equation, commonly referred to as the Blasius
formula, for turbulent flow in smooth pipes ( /D � 0) with
Re � 105 is

f �
0.316

Re1/4

e

f � 0.0289
f � 0.028.

f � 0.0291

1

1f
� �2.0 log a1.01 � 10�4 �

1.83 � 10�4

1f
b

 � �2.0 log a
0.000375

3.7
�

2.51

1.37 � 1041f
b

1

1f
� �2.0 log a

e/D

3.7
�

2.51

Re1f
b

 ~ V2hL minor

h L
 m

in
or

V
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8.4 Dimensional Analysis of Pipe Flow 291

accounted for in the fully developed head loss calculation (the friction factor). The extreme
cases involve flow into a pipe from a reservoir (an entrance) or out of a pipe into a reser-
voir (an exit).

A fluid may flow from a reservoir into a pipe through any number of different shaped
entrance regions as are sketched in Fig. 8.11. Each geometry has an associated loss coeffi-
cient. An obvious way to reduce the entrance loss is to round the entrance region as is
shown in Fig. 8.11c. Typical values for the loss coefficient for entrances with various
amounts of rounding of the lip are shown in Fig. 8.12. A significant reduction in KL can be
obtained with only slight rounding.

A head loss (the exit loss) is also produced when a fluid flows from a pipe into a
tank as is shown in Fig. 8.13. In these cases the entire kinetic energy of the exiting fluid
(velocity V1) is dissipated through viscous effects as the stream of fluid mixes with the fluid
in the tank and eventually comes to rest (V2 � 0). The exit loss from points (1) and (2) is
therefore equivalent to one velocity head, or KL � 1.

(a) (b)

(c) (d)

F I G U R E  8.11 Entrance flow conditions and loss coefficient (Refs.
12, 13). (a) Reentrant, KL � 0.8, (b) sharp edged, KL � 0.5, (c) slightly rounded,
KL � 0.2 (see Fig. 8.12), and (d) well rounded, KL � 0.04 (see Fig. 8.12).

D

r

0.5

0.4

0.3

0.2

0.1

0
0 0.05 0.1 0.15 0.20 0.25

r__
D

KL

F I G U R E  8.12
Entrance loss coefficient as a
function of rounding of the
inlet edge (Ref. 5).

V8.10 Entrance/exit
flows
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Losses also occur because of a change in pipe diameter. The loss coefficient for a
sudden contraction, KL � hL/(V 2

2/2g), is a function of the area ratio, A2/A1, as is shown in
Fig. 8.14. The value of KL changes gradually from one extreme of a sharp-edged entrance
(A2/A1 � 0 with KL � 0.50) to the other extreme of no area change (A2/A1 � 1 with KL � 0).
The loss coefficient for a sudden expansion is shown in Fig. 8.15.

Bends in pipes produce a greater head loss than if the pipe were straight. The losses
are due to the separated region of flow near the inside of the bend (especially if the bend
is sharp) and the swirling secondary flow that occurs because of the imbalance of centripetal
forces as a result of the curvature of the pipe centerline (see Fig. 8.16). These effects and
the associated values of KL for large Reynolds number flows through a 90� bend are shown
in Fig. 8.16. The friction loss due to the axial length of the pipe bend must be calculated
and added to that given by the loss coefficient of Fig. 8.16.

292 Chapter 8 ■ Viscous Flow in Pipes

(a)

(c) (d)

(b)

(1)

(2)

F I G U R E  8.13 Exit flow conditions and loss coefficient.
(a) Reentrant, KL � 1.0, (b) sharp edged, KL � 1.0, (c) slightly rounded, KL � 1.0,
and (d ) well rounded, KL � 1.0.

A1 A2 hL = KL 
V2

2
___
2g

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

A2/A1

KL

F I G U R E  8.14
Loss coefficient for a sudden
contraction (Ref. 6).

V8.11 Separated
flow in a diffuser
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8.4 Dimensional Analysis of Pipe Flow 293

For situations in which space is limited, a flow direction change is often accomplished
by the use of miter bends, as is shown in Fig. 8.17, rather than smooth bends. The consid-
erable losses in such bends can be reduced by the use of carefully designed guide vanes
that help direct the flow with less unwanted swirl and disturbances.

Another important category of pipe system components is that of commercially avail-
able pipe fittings such as elbows, tees, reducers, valves, and filters. The values of KL for
such components depend strongly on the shape of the component and only very weakly on
the Reynolds number for typical large Re flows. Thus, the loss coefficient for a 90� elbow
depends on whether the pipe joints are threaded or flanged but is, within the accuracy of
the data, fairly independent of the pipe diameter, flowrate, or fluid properties (the Reynolds
number effect). Typical values of KL for such components are given in Table 8.2.

Valves control the flowrate by providing a means to adjust the overall system loss
coefficient to the desired value. When the valve is closed, the value of KL is infinite and no
fluid flows. Opening of the valve reduces KL, producing the desired flowrate. Typical cross
sections of various types of valves are shown in Fig. 8.18. Loss coefficients for typical
valves are given in Table 8.2.

A1 A2 hL = KL 
V1

2
___
2g

1.0

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

A1/A2

KL

F I G U R E  8.15
Loss coefficient for a sudden
expansion (Ref. 6).

F I G U R E  8.16 Character of the flow in a 90°° bend and the
associated loss coefficient (Ref. 4).
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b b
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V8.12 Car exhaust
system
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KL ≈ 1.1

Q

Separated
flow

KL ≈ 0.2 

Guide vanes

Q

(a) (b)

F I G U R E  8.17 Character
of the flow in a mitered bend and the
associated loss coefficient: (a) without
guide vanes and (b) with guide vanes.

90�

TA B L E 8 . 2

Loss Coefficients for Pipe Components . (Data from Refs. 4, 6, 11.)

Component

a. Elbows
Regular flanged 0.3
Regular threaded 1.5
Long radius flanged 0.2
Long radius threaded 0.7
Long radius flanged 0.2
Regular threaded 0.4

b. return bends
return bend, flanged 0.2
return bend, threaded 1.5

c. Tees
Line flow, flanged 0.2
Line flow, threaded 0.9
Branch flow, flanged 1.0
Branch flow, threaded 2.0

d. Union, threaded 0.08

*e. Valves
Globe, fully open 10
Angle, fully open 2
Gate, fully open 0.15
Gate, closed 0.26
Gate, closed 2.1
Gate, closed 17
Swing check, forward flow 2
Swing check, backward flow 

Ball valve, fully open 0.05
Ball valve, closed 5.5
Ball valve, closed 210

*See Fig. 8.18 for typical valve geometry.

2
3

1
3

3
4

1
2

1
4

180°
180°
180�

45°,
45°,
90°,
90°,

90°,
90°,

KL

hL � KL1V
2�2g2

V

V

V

V

V

V
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8.4 Dimensional Analysis of Pipe Flow 295

F I G U R E  8.18 Internal structure of various valves: (a) globe valve, (b) gate valve, 
(c) swing check valve, and (d) stop check valve. (Courtesy of Crane Co., Valve Division.).

F l u i d s  i n  t h e  N e w s

Safety in fluids The following incident is taken from a
NIOSH (National Institute for Occupational Safety and
Health) fatality investigation report that emphasizes the dan-
gers of oxygen-deficient environments in confined spaces. A
35-year-old male water system operator (victim) was asphyx-
iated after entering a valve vault at a municipal water system
plant. The victim was assigned to turn on a waterline valve
serving a nearby tree farm. The valve was located at the water
treatment plant inside an underground valve vault that “always
had normal air.” The victim entered the valve vault through a

ground-level manhole without testing or ventilating the vault
to atmosphere. A coworker, who had last seen the victim one
hour earlier, checked the manhole and saw the victim lying on
his back at the bottom. The victim did not respond to any calls.
Other workers summoned from the plant building and local
fire department personnel ventilated the valve vault and re-
moved the victim. The vault atmosphere was subsequently
found to be oxygen deficient. There were no witnesses to the
incident, but evidence suggests that the victim lost conscious-
ness and fell from the ladder railings to the bottom of the vault.
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296 Chapter 8 ■ Viscous Flow in Pipes

GIVEN The closed-circuit wind tunnel shown in Fig. E8.4a
is a smaller version of that depicted in Fig. E8.4b in which air at
standard conditions is to flow through the test section [between
sections (5) and (6)] with a velocity of 200 ft/s. The flow is
driven by a fan that essentially increases the static pressure by

the amount p1 � p9 that is needed to overcome the head losses
experienced by the fluid as it flows around the circuit.

FIND Estimate the value of p1 � p9 and the horsepower
supplied to the fluid by the fan.

SOLUTION

Minor Losses

where hp is the actual head rise supplied by the pump (fan) to
the air. Again since z9 � z1 and V9 � V1 this, when combined
with Eq. 1, becomes

The actual power supplied to the air (horsepower, pa) is ob-
tained from the fan head by

(2)

Thus, the power that the fan must supply to the air depends
on the head loss associated with the flow through the wind
tunnel. To obtain a reasonable, approximate answer we make
the following assumptions. We treat each of the four turning
corners as a mitered bend with guide vanes so that from Fig.
8.17 � 0.2. Thus, for each corner

hLcorner
� KL 

V2

2g
� 0.2 

V2

2g

KLcorner

pa � �Qhp � �A5V5hp � �A5V5hL1�9

hp �
1 p1 � p92

�
� hL1�9

p9

�
�

V2
9

2g
� z9 � hp �

p1

�
�

V2
1

2g
� z9

EXAMPLE 8.4

The maximum velocity within the wind tunnel occurs in the
test section (smallest area). Thus, the maximum Mach number
of the flow is Ma5 � V5/c5, where V5 � 200 ft/s and from
Eq. 1.15 the speed of sound is c5 � (kRT )5

1/2 � {1.4(1716
ft lb/slug � R) [(460 � 59)� R]}1/2 � 1117 ft/s. Thus, Ma5 �
200/1117 � 0.179. As indicated in Chapter 3, most flows can
be considered as incompressible if the Mach number is less
than about 0.3. Hence, we can use the incompressible formu-
las for this problem.

The purpose of the fan in the wind tunnel is to provide the
necessary energy to overcome the net head loss experienced
by the air as it flows around the circuit. This can be found from
the energy equation between points (1) and (9) as

where is the total head loss from (1) to (9). With z1 � z9

and V1 � V9 this gives

(1)

Similarly, by writing the energy equation (Eq. 5.57) across
the fan, from (9) to (1), we obtain

p1

�
�

p9

�
� hL1�9

hL1 � 9

p1

�
�

V2
1

2g
� z1 �

p9

�
�

V2
9

2g
� z9 � hL1�9

##

F I G U R E  E8.4a
(Photograph courtesy of 
DELTALAB, France.)

(4)

V5 = 200 ft/s

(5) (6) (7)

(8)

Fan

Q (1)
(9)(2)

Test section
Flow-straightening

screens

(3)

F I G U R E  E8.4b
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8.4 Dimensional Analysis of Pipe Flow 297

or

(Ans)

COMMENTS By repeating the calculations with various
test section velocities, V5, the results shown in Fig. E8.4c are
obtained. Since the head loss varies as and the power varies
as head loss times V5, it follows that the power varies as the
cube of the velocity. Thus, doubling the wind tunnel speed re-
quires an eightfold increase in power.

With a closed-return wind tunnel of this type, all of the
power required to maintain the flow is dissipated through vis-
cous effects, with the energy remaining within the closed tun-
nel. If heat transfer across the tunnel walls is negligible, the air
temperature within the tunnel will increase in time. For
steady-state operations of such tunnels, it is often necessary to
provide some means of cooling to maintain the temperature at
acceptable levels.

It should be noted that the actual size of the motor that
powers the fan must be greater than the calculated 62.3 hp 
because the fan is not 100% efficient. The power calculated
earlier is that needed by the fluid to overcome losses in the
tunnel, excluding those in the fan. If the fan were 60% efficient,
it would require a shaft power of p� 62.3 hp/(0.60) � 104 hp
to run the fan. Determination of fan (or pump) efficiencies can
be a complex problem that depends on the specific geometry of
the fan. Introductory material about fan performance can be
found in Chapter 11 and various references (Refs. 7, 8, 9, for
example).

It should also be noted that the aforementioned results are
only approximate. Clever, careful design of the various com-
ponents (corners, diffuser, etc.) may lead to improved (i.e.,
lower) values of the various loss coefficients and, hence, lower
power requirements. Since hL is proportional to V 2, compo-
nents with the larger V tend to have the larger head loss. Thus,
even though KL � 0.2 for each of the four corners, the head
loss for corner (7) is (V7/V3)

2 � (80/22.9)2 � 12.2 times
greater than it is for corner (3).

V 2
5

pa �
34,300 ft # lb/s

550 1ft # lb/s2/hp
� 62.3 hp

where, because the flow is assumed incompressible, V �
V5A5/A. The values of A and the corresponding velocities
throughout the tunnel are given in Table E8.4.

TA B L E E 8 . 4

Location Area (ft2) Velocity (ft/s)

1 22.0 36.4
2 28.0 28.6
3 35.0 22.9
4 35.0 22.9
5 4.0 200.0
6 4.0 200.0
7 10.0 80.0
8 18.0 44.4
9 22.0 36.4

We also treat the enlarging sections from the end of the test
section (6) to the beginning of the nozzle (4) as a conical dif-
fuser with a loss coefficient of � 0.6. This value is larger
than that of a well-designed diffuser (see Ref. 4, for example).
Since the wind tunnel diffuser is interrupted by the four turn-
ing corners and the fan, it may not be possible to obtain a
smaller value of for this situation. Thus,

The loss coefficients for the conical nozzle between sections
(4) and (5) and the flow-straightening screens are assumed to
be � 0.2 and � 4.0 (Ref. 14), respectively. We ne-
glect the head loss in the relatively short test section.

Thus, the total head loss is

or

or

Hence, from Eq. 1 we obtain the pressure rise across the fan as

(Ans)

From Eq. 2 we obtain the power added to the fluid as

 � 34,300 ft # lb/s

 pa � 10.0765 lb/ft32 14.0 ft22 1200 ft/s2 1560 ft2

 � 42.8 lb/ft2 � 0.298 psi

 p1 � p9 � �hL1�9
� 10.0765 lb/ft32 1560 ft2

hL1�9
� 560 ft

 � 0.2120022 � 4.0122.922 4  ft2/s2/ 32132.2 ft/s22 4

 � 30.2180.02 � 44.42 � 28.62 � 22.922 � 0.6120022
 � 0.6V2

6 � 0.2V2
5 � 4.0V2

4 4 /2g

 hL1�9
� 30.21V2

7 � V2
8 � V2

2 � V2
32

 � hLdif
� hLnoz

� hLscr

 hL1�9
� hLcorner7

� hLcorner8
� hLcorner2

� hLcorner3

KLscr
KLnoz

hLdif
� KLdif

 
V2

6

2g
� 0.6 

V2
6

2g

KLdif

KLdif

V5  ft/s

�
a
,  h

p

250

200

150

100

50

0 100 150 200 250 300
0

(200 ft/s, 62.3 hp)

50

F I G U R E  E8.4c
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8.4.3 Noncircular Conduits

Many of the conduits that are used for conveying fluids are not circular in cross section.
Although the details of the flows in such conduits depend on the exact cross-sectional shape,
many round pipe results can be carried over, with slight modification, to flow in conduits
of other shapes.

Practical, easy-to-use results can be obtained by introducing the hydraulic diameter,
Dh � 4A/P, defined as four times the ratio of the cross-sectional flow area divided by the
wetted perimeter, P, of the pipe as is illustrated in Fig. 8.19. The hydraulic diameter is used
in the definition of the friction factor, hL � f(�/Dh)V

2/2g, the Reynolds number, Reh �
�VDh/�, and the relative roughness, �/Dh.

Calculations for fully developed turbulent flow in ducts of noncircular cross section
are usually carried out by using the Moody chart data for round pipes with the diameter
replaced by the hydraulic diameter as indicated earlier. For turbulent flow such calculations
are usually accurate to within about 15%. If greater accuracy is needed, a more detailed
analysis based on the specific geometry of interest is needed.

298 Chapter 8 ■ Viscous Flow in Pipes

A = cross-sectional
area

P = perimeter
of pipe

Dh = 4A/P = hydraulic
diameter

(a) (b)

y

z

x

z V = u(y,z)

F I G U R E  8.19 Noncircular duct.

GIVEN Air at a temperature of 120 �F and standard pres-
sure flows from a furnace through an 8-in.-diameter pipe with
an average velocity of 10 ft/s. It then passes through a transi-
tion section similar to the one shown in Fig. E8.5 and into a
square duct whose side is of length a. The pipe and duct sur-
faces are smooth (� � 0). The head loss per foot is to be the
same for the pipe and the duct.

FIND Determine the duct size, a.

Noncircular ConduitEXAMPLE 8.5

F I G U R E  E8.5

VSOLUTION

We first determine the head loss per foot for the pipe, hL/� �
( f /D)V2/2g, and then size the square duct to give the same
value. For the given pressure and temperature we obtain (from
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8.5 Pipe Flow Examples 299

104. From Fig. 8.10, with this Reynolds number and the given
smooth duct we obtain f � 0.023, which does not quite agree
with the assumed value of f . Hence, we do not have the solu-
tion. We try again, using the latest calculated value of f � 0.023
as our guess. The calculations are repeated until the guessed
value of f agrees with the value obtained from Fig. 8.10. The 
final result (after only two iterations) is f � 0.023, Reh � 3.03
� 104, and

(Ans)

COMMENTS Alternatively, we can use the Colebrook
equation or the Haaland equation (rather than the Moody
chart) to obtain the solution as follows. For a smooth pipe 
( /Dh � 0) the Colebrook equation, Eq. 8.19a, becomes

(5)

where from Eq. 3,

(6)

If we combine Eqs. 4, 5, and 6 and simplify, Eq. 7 is obtained
for a.

(7)

By using a root-finding technique on a computer or calcu-
lator, the solution to Eq. 7 is determined to be a � 0.614 ft,
in agreement (given the accuracy of reading the Moody
chart) with that obtained by the trial-and-error method given
earlier.

Note that the length of the side of the equivalent square
duct is a/D � 7.34/8 � 0.918, or approximately 92% of the
diameter of the equivalent duct. It can be shown that this
value, 92%, is a very good approximation for any pipe
flow—laminar or turbulent. The cross-sectional area of the
duct (A � a2 � 53.9 in.2) is greater than that of the round
pipe (A � �D2/4 � 50.3 in.2). Also, it takes less material to
form the round pipe (perimeter � �D � 25.1 in.) than the
square duct (perimeter � 4a � 29.4 in.). Circles are very 
efficient shapes.

1.928 a�5/2 � �2 log  12.62 � 10�4 a�3/22

f � 0.269 a5

 � �2.0 log a
2.51

Reh1f
b

 
1

1f
� �2.0 log a

e /Dh

3.7
�

2.51

Reh1f
b

e

a � 0.611 ft � 7.34 in.

Table B.3) � � 1.89 � 10�4 ft2/s so that

With this Reynolds number and with /D � 0 we obtain the
friction factor from Fig. 8.10 as f � 0.022 so that

Thus, for the square duct we must have

(1)

where

(2)

is the velocity in the duct.
By combining Eqs. 1 and 2 we obtain

or

(3)

where a is in feet. Similarly, the Reynolds number based on
the hydraulic diameter is

(4)

We have three unknowns (a, f, and Reh) and three equations
(Eqs. 3, 4, and the third equation in graphical form, Fig.
8.10, the Moody chart). Thus, a trial-and-error solution is
required.

As an initial attempt, assume the friction factor for the duct
is the same as for the pipe. That is, assume f � 0.022. From Eq.
3 we obtain a � 0.606 ft, while from Eq. 4 we have Reh � 3.05 �

Reh �
VsDh

�
�
13.49/a22a

1.89 � 10�4 �
1.85 � 104

a

a � 1.30 f 1/5

0.0512 �
f

a
 
13.49/a222

2132.22

 Vs �
Q

A
�

�

4
 a

8

12
 ftb

2

 110 ft/s2

a2 �
3.49

a2

 Dh � 4A/P � 4a2/4a � a and

hL

/
�

f

Dh
 
V2

s

2g
� 0.0512

hL

/
�

0.022

1 8
12 ft2

 
110 ft/s22

2132.2 ft/s22
� 0.0512

e

Re �
VD

�
�

110 ft/s2 1 8
12 ft2

1.89 � 10�4 ft2/s
� 35,300

8.5 Pipe Flow Examples

The previous sections of this chapter discussed concepts concerning flow in pipes and ducts.
The purpose of this section is to apply these ideas to the solutions of various practical
problems.
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8.5.1 Single Pipes

The nature of the solution process for pipe flow problems can depend strongly on which
of the various parameters are independent parameters (the “given”) and which is the
dependent parameter (the “determine”). The three most common types of problems are
discussed here.

In a Type I problem we specify the desired flowrate or average velocity and determine
the necessary pressure difference or head loss. For example, if a flowrate of 2.0 gal/min is
required for a dishwasher that is connected to the water heater by a given pipe system as
shown by the figure in the margin, what pressure is needed in the water heater?

In a Type II problem we specify the applied driving pressure (or, alternatively, the
head loss) and determine the flowrate. For example, how many gallons per minute of hot
water are supplied to the dishwasher if the pressure within the water heater is 60 psi and
the pipe system details (length, diameter, roughness of the pipe; number of elbows; etc.)
are specified?

In a Type III problem we specify the pressure drop and the flowrate and determine
the diameter of the pipe needed. For example, what diameter of pipe is needed between
the water heater and dishwasher if the pressure in the water heater is 60 psi (determined
by the city water system) and the flowrate is to be not less than 2.0 gal/min (determined
by the manufacturer)?

300 Chapter 8 ■ Viscous Flow in Pipes

F l u i d s  i n  t h e  N e w s

New hi-tech fountains Ancient Egyptians used fountains in
their palaces for decorative and cooling purposes. Current
use of fountains continues but with a hi-tech flare. Although
the basic fountain still consists of a typical pipe system (i.e.,
pump, pipe, regulating valve, nozzle, filter, and basin), re-
cent use of computer-controlled devices has led to the de-
sign of innovative fountains with special effects. For exam-
ple, by using several rows of multiple nozzles, it is possible
to program and activate control valves to produce water jets
that resemble symbols, letters, or the time of day. Other
fountains use specially designed nozzles to produce coher-

ent, laminar streams of water that look like glass rods flying
through the air. By using fast-acting control valves in a syn-
chronized manner it is possible to produce mesmerizing
three-dimensional patterns of water droplets. The possibili-
ties are nearly limitless. With the initial artistic design of the
fountain established, the initial engineering design (i.e., the ca-
pacity and pressure requirements of the nozzles and the size of
the pipes and pumps) can be carried out. It is often neces-
sary to modify the artistic and/or engineering aspects of the
design in order to obtain a functional, pleasing fountain.
(See Problem 8.47.)

I:ΔpIII:D

II:Q

GIVEN Water at 60 �F flows from the basement to the sec-
ond floor through the 0.75-in. (0.0625-ft)-diameter copper pipe
(a drawn tubing) at a rate of Q � 12.0 gal/min � 0.0267 ft3/s
and exits through a faucet of diameter 0.50 in. as shown in Fig.
E8.6a.

FIND Determine the pressure at point (1) if 

(a) all losses are neglected,

(b) the only losses included are major losses, or 

(c) all losses are included.

(Type I, Determine Pressure Drop)EXAMPLE 8.6

Q =
12.0

gal/min

(1)

(2)

(3)

15 ft

10 ft

5 ft 10 ft

10 ft 10 ft
(8)(7)

(6)

(4)

(5)

g

Threaded
90° elbows

0.75-in. diameter
copper pipe

Wide open
globe valve

0.50-in.
diameter

KL = 2 based on
pipe

velocity

F I G U R E  E8.6a
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8.5 Pipe Flow Examples 301

SOLUTION

or

(Ans)

COMMENT Of this pressure drop, the amount due to
pipe friction is approximately (21.3 � 10.7) psi � 10.6 psi.

(c) If major and minor losses are included, Eq. 1 becomes

or

(2)

where the 21.3-psi contribution is due to elevation change,
kinetic energy change, and major losses [part (b)] and the
last term represents the sum of all of the minor losses. The
loss coefficients of the components (KL � 1.5 for each elbow
and KL � 10 for the wide-open globe valve) are given in
Table 8.2 (except for the loss coefficient of the faucet, which
is given in Fig. E8.6a as KL � 2). Thus,

or

(3)

COMMENTS Note that we did not include an entrance or
exit loss because points (1) and (2) are located within the fluid
streams, not within an attaching reservoir where the kinetic
energy is zero. Thus, by combining Eqs. 2 and 3 we obtain the
entire pressure drop as

(Ans)

This pressure drop calculated by including all losses should be
the most realistic answer of the three cases considered.

More detailed calculations will show that the pressure
distribution along the pipe is as illustrated in Fig. E8.6b for
cases (a) and (c)—neglecting all losses or including all losses.

p1 � 121.3 � 9.172 psi � 30.5 psi

a  �KL 
V 2

2
� 9.17 psi

 � 1321 lb/ft2

 a �KL 
V 2

2
� 11.94 slugs/ft32 

18.70 ft/s22

2
 310 � 411.52 � 2 4

p1 � 21.3 psi �a  �KL 
V 2

2

p1 � �z2 �
1

2
 � 1V 2

2 � V 2
12 � f � 

/
D

 
V 2

1

2g
�a  �KL 

V 2

2

p1 � 21.3 psi

 � 11248 � 299 � 15152 lb/ft2 � 3062 lb/ft2

 � 11.94 slugs/ft32 10.02152 a
60 ft

0.0625 ft
b 
18.70 ft/s22

2

 � 11248 � 2992 lb/ft2

 p1 � �z2 �
1

2
 � 1V 2

2 � V 2
12 � �f 

/
D

 
V 2

1

2
Since the fluid velocity in the pipe is given by V1 � Q/A1 �
Q/(�D2/4) � (0.0267 ft3/s)/[�(0.0625 ft)2/4] � 8.70 ft/s, and
the fluid properties are � � 1.94 slugs/ft3 and � � 2.34 �
10�5 lb s/ft2 (see Table B.1), it follows that Re � �VD/� �
(1.94 slugs/ft3)(8.70 ft/s)(0.0625 ft)/(2.34 � 10�5 lb s/ft2) �
45,000. Thus, the flow is turbulent. The governing equation
for case (a), (b), or (c) is the energy equation as given by
Eq. 5.59,

where z1 � 0, z2 � 20 ft, p2 � 0 (free jet), � � �g �
62.4 lb/ft3, and the outlet velocity is V2 � Q/A2 � (0.0267 ft3/s)/
[�(0.50/12)2ft2/4] � 19.6 ft/s. We assume that the kinetic en-
ergy coefficients �1 and �2 are unity. This is reasonable be-
cause turbulent velocity profiles are nearly uniform across
the pipe (see Section 5.3.4). Thus,

(1)

where the head loss is different for each of the three cases.

(a) If all losses are neglected (hL � 0), Eq. 1 gives

or

(Ans)

COMMENT Note that for this pressure drop, the amount
due to elevation change (the hydrostatic effect) is �(z2 � z1) �
8.67 psi and the amount due to the increase in kinetic energy
is �(V 2

2 � V 2
1)/2 � 2.07 psi.

(b) If the only losses included are the major losses, the head
loss is

From Table 8.1 the roughness for a 0.75-in.-diameter copper
pipe (drawn tubing) is � 0.000005 ft so that /D � 8 �
10�5. With this /D and the calculated Reynolds number (Re �
45,000), the value of f is obtained from the Moody chart as f �
0.0215. Note that the Colebrook equation (Eq. 8.19a) would
give the same value of f. Hence, with the total length of the
pipe as � � (15 � 5 � 10 � 10 � 20) ft � 60 ft and the 
elevation and kinetic energy portions the same as for part (a),
Eq. 1 gives

e
ee

hL � f 
/
D

 
V2

1

2g

p1 � 10.7 psi

 � 11248 � 2992 lb/ft2 � 1547 lb/ft2

 �
1.94 slugs/ft3

2
 3 119.6 ft/s22 � 18.70 ft/s22 4

 p1 � 162.4 lb/ft32 120 ft2

p1 � �z2 � 1
2 � 1V

2
2 � V2

12 � �hL

p1

�
� �1 

V2
1

2g
� z1 �

p2

�
� �2 

V2
2

2g
� z2 � hL

#
#
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302 Chapter 8 ■ Viscous Flow in Pipes

above the hydraulic grade line (HGL), which is one pressure
head (�z) above the pipe itself. For case (c) the energy line is
not horizontal. Each bit of friction in the pipe or loss in a com-
ponent reduces the available energy, thereby lowering the en-
ergy line. Thus, for case (a) the total head remains constant
throughout the flow with a value of

For case (c) the energy line starts at

and falls to a final value of

The elevation of the energy line can be calculated at any
point along the pipe. For example, at point (7), 50 ft from
point (1),

The head loss per foot of pipe is the same all along the pipe.
That is,

Thus, the energy line is a set of straight-line segments of the
same slope separated by steps whose height equals the head loss
of the minor component at that location. As is seen from Fig.
E8.6c, the globe valve produces the largest of all the minor
losses.

hL

/
� f 

V2

2gD
�

0.021518.70 ft/s22

2132.2 ft/s22 10.0625 ft2
� 0.404 ft/ft

 � 44.1 ft

 �
19.93 � 1442 lb/ft2

162.4 lb/ft32
�
18.70 ft/s22

2132.2 ft/s22
� 20 ft

 H7 �
p7

�
�

V2
7

2g
� z7

 � 26.0 ft

 H2 �
p2

�
�

V2
2

2g
� z2 � 0 �

119.6 ft/s22

2132.2 ft/s22
� 20 ft

 � 71.6 ft

 �
130.5 � 1442lb/ft2

162.4 lb/ft32
�
18.70 ft/s22

2132.2 ft/s22
� 0

 H1 �
p1

�
�

V2
1

2g
� z1

 �
p2

�
�

V2
2

2g
� z2 �

p3

�
�

V3
3

2g
� z3 � p

 � 26.0 ft

 H �
p1

�
�

V2
1

2g
� z1 �

11547 lb/ft22

162.4 lb/ft32
�
18.70 ft/s22

2132.2 ft/s22
� 0

Note that not all of the pressure drop, p1 � p2, is a “pressure
loss.” The pressure change due to the elevation and velocity
changes is completely reversible. The portion due to the major
and minor losses is irreversible.

This flow can be illustrated in terms of the energy line and
hydraulic grade line concepts introduced in Section 3.7. As is
shown in Fig. E8.6c, for case (a) there are no losses and the
energy line (EL) is horizontal, one velocity head (V2/2g)

30

20

10

0
0 10 20 30 40 50 60

10.7 10.7

6.37

2.07
2.07

4.84
3.09

9.93

12.411.7

30.5 psi

27.1
27.8

20.2
21.0

18.5
19.3

(a) No losses
(c) Including all

losses    

Pressure
loss

Elevation
and

kinetic
energy

p2 = 0

Distance along pipe from point (1), ft

p
, 

ps
i

Location:  (1) (3) (4) (5) (6) (7) (8) (2)

6.37

F I G U R E  E8.6b

80
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40
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0
0 10 20 30 40 50 60

Distance along pipe from point (1), ft

H
, 

el
ev

at
io

n 
to

 e
ne

rg
y 

lin
e,

 f
t

Energy line with no losses, case (a)

Energy line including all
losses, case (c)

Sharp drop due to component loss
Slope due to pipe friction

F I G U R E  E8.6c

Although the governing pipe flow equations are quite simple, they can provide very
reasonable results for a variety of applications, as shown in the next example.
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8.5 Pipe Flow Examples 303

GIVEN A utility worker is fixing power lines in a manhole
space at a busy intersection as shown in Fig. E8.7a. A major
portion of car exhaust is carbon dioxide (CO2), which has a
density of 3.55 � 10�3 slug/ft3. Since the density of air at stan-
dard conditions is 2.38 � 10�3 slug/ft3, the carbon dioxide will
tend to settle into the bottom of the manhole space and dis-
place the oxygen. This is a very relevant danger to utility
workers and is further discussed in the related “Fluids in the
News” article on page 295. To avoid suffocation a fan is used

SOLUTION

(Type I, Determine Head Loss)

it follows that

From Table 8.1 the equivalent roughness, for plastic is 0.0.
Therefore, Using this information with the Moody
chart, we find the friction factor, f, to be 0.017. We now have
enough information to solve Eq. 1.

The actual power the fan must supply to the air (horsepower,
) can be calculated by

(2)

(Ans)pa � 7.44
ft # lb

s
a

1 hp

550 ft # lb/s
b � 1.35 � 10�2 hp

 � 7.44 
ft # lb

s

 pa � 17.65 � 10�2 lb/ft3 2 1600 ft3/min2 a
1 min

60 s
b 19.72 ft2

pa � �QhP

pa

hP � 10.0172 c
30 ft

18/122 ft
d c
128.6 ft/s22

2132.2 ft/s22
d � 9.72 ft

e/D � 0.
e,

 � 1.21 � 105

 Re �
�VD

�
�
12.38 � 10�3 slugs/ft32 128.6 ft/s2 1 8

12 ft2

3.74 � 10�7 lb # s/ft2

to supply fresh air from the surface into the manhole space as
shown in Fig. E8.7b. The air is routed through a 8-in.-diameter
plastic hose that is 30 feet in length.

FIND Determine the horsepower needed by the fan to over-
come the head loss with a required flowrate of 600 cfm, when
(a) neglecting minor losses and (b) including minor losses for
one sharp-edged entrance, one exit, and one 90° miter bend
(no guide vanes).

EXAMPLE 8.7

The purpose of the fan is to deliver air at a certain flowrate,
which also requires the fan to overcome the net head loss
within the pipe. This can be found from the energy equation
between points (1) and (2) as

where hL is the total head loss from (1) to (2) and hp is the head
rise supplied by the fan to the air. Points (1) and (2) are as-
sumed to be sufficiently away from the entrance and exit of the
plumbing so that p1 � p2 � V1 � V2 � 0. Also, since the fluid
is air, the change in elevation is negligible.

Thus, the energy equation reduces to 

(a) Neglecting minor losses it follows that

(1)

where V is the velocity within the hose. Therefore, we must
use the Moody chart to find the friction factor, f. Since

V �
Q

A
�

600 ft3/min
�

4
18/12 ft22

� 1719 ft/min � 28.6 ft/s

hP � f
/
D

 
V 2

2g

hp � hL.

p1

�
�

V 2
1

2g
� z1 � hp �

p2

�
�

V 2
2

2g
� z2 � hL

V

(1)

(2)

Fan

F I G U R E  E8.7bF I G U R E  E8.7a (Photograph 
courtesy of the National Institute for Occupational 
Safety and Health.)
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304 Chapter 8 ■ Viscous Flow in Pipes

Pipe flow problems in which it is desired to determine the flowrate for a given set of conditions (Type II
problems) often require trial-and-error solution techniques. This is because it is necessary to know the
value of the friction factor to carry out the calculations, but the friction factor is a function of the un-
known velocity (flowrate) in terms of the Reynolds number. The solution procedure is indicated in 
Example 8.8.

that in this situation neglecting minor losses would provide an
underestimation of the power required to pump 600 cfm of air.
The table that follows contains different power requirements
for a few different pipe situations using the preceding flow
properties.

Caution also needs to be taken when placing the fan outside the
confined space so that clean air is supplied and hazardous gases
emitted from the manhole are not circulated back into the con-
fined space. There is also the question of whether to have air
forced into the confined space or have the contaminated air ex-
hausted from the space and naturally draw in fresh air.

COMMENTS Typically flexible hosing is used to route
air into confined spaces. Minor losses were neglected in part
(a), but we need to be cautious in making this assumption with
a relatively short overall pipe length.

(b) For the additional minor losses, we need to include the
entrance, exit, and bend. The loss coefficient for an entrance
with sharp edges in 0.5, the loss coefficient for a 90� bend with
no guide vanes is 1.1, and the loss coefficient for the exit is
1.0. Therefore, the total minor loss is given as

The power required to account for both the major and the 
minor losses is

(Ans)

COMMENTS Note that the horsepower required more
than doubles what is needed for a straight pipe. It is easy to see

� 5.94 � 10�2 hp

133 ft2  a
1 hp

550 ft # lb/s
b� a

1 min

60 s
b

pa � 1.35 � 10�2 hp � 17.65 � 10�2 lb/ft32 1600 ft3/min2

 hL minor � 33.0 ft

 hL minor �gKL

V 2

2g
� 10.5 � 1.1 � 1.02

128.6 ft/s22

2132.2 ft/s22

Pipe Setup hL minor (ft) hL major (ft) hP (ft) pa (hp)

Straight pipe 0 9.72 9.72 0.014
Entrance and 

exit 19.1 9.72 28.8 0.040
Entrance, exit,

1 miter bend 33.0 9.72 42.7 0.059
Entrance, exit,

2 miter bends 47.0 9.72 56.7 0.079
Entrance, exit,

4 miter bends 74.9 9.72 84.7 0.118

GIVEN The fan shown in Fig. E8.8a is to provide airflow
through the spray booth and fume hood so that workers are
protected from harmful vapors and aerosols while mixing
chemicals within the hood. For proper operation of the hood,
the flowrate is to be between 6 ft3/s and 12 ft3/s. With the ini-
tial setup the flowrate is 9 ft3/s, the loss coefficient for the sys-
tem is 5, and the duct is short enough so that major losses are
negligible. It is proposed that when the factory is remodeled
the 8-in.-diameter galvanized iron duct will be 100 ft long and
the total loss coefficient will be 10.

FIND Determine if the flowrate will be within the required
6 ft3/s to 12 ft3/s after the proposed remodeling. Assume that
the head added to the air by the fan remains constant.

(Type II, Determine Flowrate)EXAMPLE 8.8

(1)

(2)

Fan
Q

8-in.-diameter 
galvanized iron duct

F I G U R E  E8.8a
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SOLUTION

or

(4)

where again V is in feet per second.
Also, since (see

Table 8.1 for the value of we know which particular
curve of the Moody chart is pertinent to this flow. Thus, we
have three relationships (Eqs. 3, 4, and �/D � 0.00075 curve
of Fig. 8.10) from which we can solve for the three un-
knowns, f, Re, and V. This is done easily by an iterative
scheme as follows.

It is usually simplest to assume a value of f, calculate V
from Eq. 3, calculate Re from Eq. 4, and look up the new
value of f in the Moody chart for this value of Re. If the 
assumed f and the new f do not agree, the assumed answer
in not correct—we do not have the solution to the three
equations. Although values of f, V, or Re could be assumed
as starting values, it is usually simplest to assume a value of
f because the correct value often lies on the relatively flat
portion of the Moody chart for which f is quite insensitive
to Re.

Thus, we assume f � 0.019, approximately the large Re
limit for the given relative roughness. From Eq. 3 we obtain

and from Eq. 4

Re � 4240(17.0) � 72,100

With this Re and �/D, Fig. 8.10 gives f � 0.022, which is not
equal to the assumed solution of f � 0.019 (although it is
close!). We try again, this time with the newly obtained
value of f � 0.022, which gives V � 16.7 ft/s and Re �
70,800. With these values, Fig. 8.10 gives f � 0.022, which
agrees with the assumed value. Thus, the solution is V �
16.7 ft/s, or

(Ans)

COMMENT It is seen that operation of the system after
the proposed remodeling will not provide enough airflow to
protect workers from inhalation hazards while mixing chem-
icals within the hood. By repeating the calculations for dif-
ferent duct lengths and different total minor loss coefficients,
the results shown in Fig. E8.8b are obtained, which give
flowrate as a function of duct length for various values of the mi-
nor loss coefficient. It will be necessary to redesign the remod-
eled system (e.g., larger fan, shorter ducting, larger-diameter

Q � VA � 116.7 ft/s2 a
�

4
ba

8

12
ftb

2

� 5.83 ft3/s

V �
B

3990

11 � 15010.0192
� 17.0 ft/s

e2,
e/D � 10.0005 ft2/ 18/12 ft2 � 0.00075

Re � 4240V

We can determine the head that the fan adds to the air by con-
sidering the initial situation (i.e., before remodeling). To do
this we write the energy equation between section (1) in the
room and section (2) at the exit of the duct as shown in Fig.
E8.8a.

(1)

Since we are dealing with air, we can assume any change in el-
evation is negligible. We can also assume the pressure inside
the room and at the exit of the duct is equal to atmospheric
pressure and the air in the room has zero velocity. Therefore,
Eq. 1 reduces to

(2)

The diameter of the duct is given as 8 in., so the velocity at the
exit can be calculated from the flowrate, where 

For the original configura-
tion the duct is short enough to neglect major losses and only
minor losses contribute to the total head loss. This head loss
can be found from 

With this information the simplified
energy equation, Eq. 2, can now be solved to find the head
added to the air by the fan.

The energy equation now must be solved with the new config-
uration after remodeling. Using the same assumptions as be-
fore gives the same reduced energy equation as shown in Eq. 2.
With the increase in duct length to 100 ft the duct is no longer
short enough to neglect major losses.

where We can now rearrange and solve for the veloc-
ity in ft/s.

(3)

The value of f is dependent on Re, which is dependent on V, an
unknown.

Re �
�VD

�
�
12.38 � 10�3 slugs/ft32 1V2 1 8

12 ft2

3.74 � 10�7 lb # s/ft2

�
B

3990

11 � 150 f

V �

R

2ghp

1 � f
/
D

�g  KL

�

R

2132.2 ft/s22 161.9 ft2

1 � f a
100 ft

8/12 ft
b �10

V2 � V.

hp �
V 2

2

2g
� f

/
D

V 2

2g
�a KL

V 2

2g

hp �
125.8 ft/s22

2132.2 ft/s22
� 51.6 ft � 61.9 ft

32132.2 ft/s22 4 � 51.6 ft.
5125.8 ft/s22/hL, minor � ©KLV2/ 12g2 �

19 ft3/s2/��18/1222/4� � 25.8 ft/s.
V � Q/A �

hp �
V 2

2

2g
� hL

p1

�
�

V2
1

2g
� z1 � hp �

p2

�
�

V2
2

2g
� z2 � hL
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In pipe flow problems for which the diameter is the unknown (Type III), an iterative
technique is required since neither the Reynolds number, Re � �VD/� � 4�Q/��D, nor
the relative roughness, �/D, is known unless D is known. Example 8.9 illustrates this.

306 Chapter 8 ■ Viscous Flow in Pipes

duct) so that the flowrate will be within the acceptable range.
In many companies, teams of occupational safety and health
experts and engineers work together during the design phase
of remodeling (or when a new operation is being planned) to
consider and prevent potential negative impacts on workers’
safety and health in an effort called “Prevention through 
Design.” They also may be required to ensure that exhaust
from such a system exits the building away from human ac-
tivity and into an area where it will not be drawn back inside
the facility.

100 125 1507550250
�, ft

9.5

8

8.5

9

7.5

7

6.5

6

5.5

5

Original system

Proposed remodeled system

KL = 5

KL = 8

KL = 10

Q,
 ft

3
/s

Minimum
flowrate
needed

F I G U R E  E8.8b

GIVEN Air at standard temperature and pressure flows
through a horizontal, galvanized iron pipe ( � 0.0005 ft) at
a rate of 2.0 ft3/s. The pressure drop is to be no more than
0.50 psi per 100 ft of pipe.

e

SOLUTION

(Type III Without Minor Losses, Determine Diameter)

or

(2)

where D is in feet. Also Re � �VD/� � (0.00238 slugs/ft3)
[(2.55/D2) ft/s]D/(3.74 � 10�7 lb s/ft2), or

(3)

and

(4)

Thus, we have four equations [Eqs. 2, 3, 4, and either the
Moody chart (Fig. 8.10), the Colebrook equation (Eq. 8.19a)
or the Haaland equation (8.19b)] and four unknowns ( f, D,
e/D, and Re) from which the solution can be obtained by trial-
and-error methods.

If we use the Moody chart, it is probably easiest to assume
a value of f, use Eqs. 2, 3, and 4 to calculate D, Re, and e/D,
and then compare the assumed f with that from the Moody chart.
If they do not agree, try again. Thus, we assume f � 0.02, a
typical value, and obtain D � 0.404(0.02)1/5 � 0.185 ft, which
gives e/D � 0.0005/0.185 � 0.0027 and Re � 1.62 � 104/
0.185 � 8.76 � 104. From the Moody chart we obtain f �

e

D
�

0.0005

D

Re �
1.62 � 104

D

#

D � 0.404 f 1/5

FIND Determine the minimum pipe diameter.

EXAMPLE 8.9

We assume the flow to be incompressible with � � 0.00238
slugs/ft3 and � � 3.74 � 10�7 lb s/ft2. Note that if the pipe were
too long, the pressure drop from one end to the other, p1 � p2,
would not be small relative to the pressure at the beginning, and
compressible flow considerations would be required. For exam-
ple, a pipe length of 200 ft gives (p1 � p2)/p1 � [(0.50 psi)/(100 ft)]
(200 ft)/14.7 psi � 0.068 � 6.8%, which is probably small
enough to justify the incompressible assumption.

With z1 � z2 and V1 � V2 the energy equation (Eq. 5.57)
becomes

(1)

where V � Q/A � 4Q/(�D2) � 4(2.0 ft3/s)/�D2, or

where D is in feet. Thus, with p1 � p2 � (0.5 lb/in.2)(144
in.2/ft2) and � � 100 ft, Eq. 1 becomes

 � f 
1100 ft2

D
 10.00238 slugs/ft32 

1

2
 a

2.55

D2  
ft

s
b

2

 p1 � p2 � 10.52 11442 lb/ft2

V �
2.55

D2

p1 � p2 � f 
/
D

 
�V 2

2

#
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8.5 Pipe Flow Examples 307

8.5.2 Multiple Pipe Systems

In many pipe systems there is more than one pipe involved. The complex system of tubes
in our lungs (beginning as shown by the figure in the margin with the trachea and ending in
tens of thousands of minute bronchioles after numerous branchings) is such a system. The
governing mechanisms for the flow in multiple pipe systems are the same as for single pipes.

One of the simplest multiple pipe systems is that containing pipes in series, as is
shown in Fig. 8.20a. Every fluid particle that passes through the system passes through each
of the pipes. Thus, the flowrate (but not the velocity) is the same in each pipe, and the head

By repeating the calculations for various values of the
flowrate, Q, the results shown in Fig. E8.9 are obtained. Al-
though an increase in flowrate requires a larger-diameter
pipe (for the given pressure drop), the increase in diameter
is minimal. For example, if the flowrate is doubled from

to , the diameter increases from 0.151 ft to
0.196 ft.

2 ft3/s1 ft3/s

0.027 for these values of e/D and Re. Since this is not the same
as our assumed value of f, we try again. With f � 0.027, we ob-
tain D � 0.196 ft, e/D � 0.0026, and Re � 8.27 � 104, which
in turn give f � 0.027, in agreement with the assumed value.
Thus, the diameter of the pipe should be

(Ans)

COMMENT If we use the Colebrook equation (Eq. 8.19a)
with e/D � 0.0005/0.404 f 1/5 � 0.00124/f 1/5 and Re � 1.62 �
104/0.404 f 1/5 � 4.01 � 104/f 1/5, we obtain

or

By using a root-finding technique on a computer or calculator, the
solution to this equation is determined to be and
hence in agreement with the Moody chart method.D � 0.196 ft,

f � 0.027,

1

1f
� �2.0 log a

3.35 � 10�4

f 1/5 �
6.26 � 10�5

f 3/10 b

1

1f
� �2.0 log a

e/D

3.7
�

2.51

Re1f
b

D � 0.196 ft

(2 ft3/s, 0.196 ft)    

D
,  f

t

Q,
 
ft3/s

0 0.5 1 1.5 2 2.5 3

0.25

0.20

0.15

0.10

0.05

0

F I G U R E  E8.9

Bronchiole

Lung

Trachea

Q A V1
(1) (2) (3) 

V2D1 D2 D3 B 
Q

V3

(a)

V1

V2

V3

D3

D2

D1

(1)

(2)

(3)

Q1

Q2

Q3

B
A

(b)

F I G U R E  8.20 Series (a) and parallel (b) pipe systems.
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loss from point A to point B is the sum of the head losses in each of the pipes. The gov-
erning equations can be written as follows

and

where the subscripts refer to each of the pipes.
Another common multiple pipe system contains pipes in parallel, as is shown in

Fig. 8.20b. In this system a fluid particle traveling from A to B may take any of the paths
available, with the total flowrate equal to the sum of the flowrates in each pipe. How-
ever, by writing the energy equation between points A and B it is found that the head loss
experienced by any fluid particle traveling between these locations is the same, indepen-
dent of the path taken. Thus, the governing equations for parallel pipes are

and

The flow in a relatively simple-looking multiple pipe system may be more complex
than it appears initially. The branching system termed the three-reservoir problem shown in
Fig. 8.21 is such a system. Three reservoirs at known elevations are connected together with
three pipes of known properties (length, diameter, and roughness). The problem is to deter-
mine the flowrates into or out of the reservoirs. In general, the flow direction (whether the
fluid flows into or out of reservoir B) is not obvious, and the solution process must include
the determination of this direction.

hL1
� hL2

� hL3

Q � Q1 � Q2 � Q3

hLA�B
� hL1

� hL2
� hL3

Q1 � Q2 � Q3

308 Chapter 8 ■ Viscous Flow in Pipes

F I G U R E  8.21
A three-reservoir system.

A

B

C

(3)

(2)(1)

D1, �1

D2, �2

D3, �3

F l u i d s  i n  t h e  N e w s

Deepwater pipeline Pipelines used to transport oil and gas
are commonplace. But south of New Orleans, in deep waters
of the Gulf of Mexico, a not-so-common multiple pipe system
is being built. The new so-called Mardi Gras system of pipes
is being laid in water depths of 4300 to 7300 ft. It will trans-
port oil and gas from five deepwater fields with the interesting
names of Holstein, Mad Dog, Thunder Horse, Atlantis, and Na
Kika. The deepwater pipelines will connect with lines at inter-
mediate water depths to transport the oil and gas to shallow-

water fixed platforms and shore. The steel pipe used is 28 in.
in diameter with a wall thickness of 1 1/8 in. The thick-walled
pipe is needed to withstand the large external pressure, which
is about 3250 psi at a depth of 7300 ft. The pipe is installed in
240-ft sections from a vessel the size of a large football sta-
dium. Upon completion, the deepwater pipeline system will
have a total length of more than 450 miles and the capability
of transporting more than 1 million barrels of oil per day and
1.5 billion cubic feet of gas per day. (See Problem 8.90.)
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8.6 Pipe Flowrate Measurement 309

8.6 Pipe Flowrate Measurement

Three of the most common devices used to measure the instantaneous flowrate in pipes are
the orifice meter, the nozzle meter, and the Venturi meter as shown in Figs. 8.22, 8.24, and
8.26. As discussed in Section 3.6.3, each of these meters operates on the principle that a
decrease in flow area in a pipe causes an increase in velocity that is accompanied by a
decrease in pressure. Correlation of the pressure difference with the velocity provides a means
of measuring the flowrate.

Based on the results of the previous sections of this chapter, we anticipate that there
is a head loss between sections (1) and (2) (see Fig. 8.22) so that the governing equations
become

and

The ideal situation has hL � 0 and results in

(8.21)

where  � D2/D1 (see Section 3.6.3). The difficulty in including the head loss is that there
is no accurate expression for it. The net result is that empirical coefficients are used in the
flowrate equations to account for the complex “real-world” effect brought on by the nonzero
viscosity. The coefficients are discussed in this section.

A typical orifice meter is constructed by inserting a flat plate with a hole between
two flanges of a pipe, as shown in Fig. 8.22. An orifice discharge coefficient, Co , is used
to take nonideal effects into account. That is,

(8.22)

where A0 � �d2/4 is the area of the hole in the orifice plate. The value of Co is a function
of  � d/D and the Reynolds number, Re � �VD/�, where V � Q/A1. Typical values of Co

are given in Fig. 8.23. As shown by Eq. 8.22 and the figure in the margin, for a given value
of Co, the flowrate is proportional to the square root of the pressure difference.

Another type of pipe flowmeter that is based on the same principles used in the ori-
fice meter is the nozzle meter, three variations of which are shown in Fig. 8.24. The flow
pattern for the nozzle meter is closer to ideal than the orifice meter flow, but there still are

Q � Co Qideal � Co Ao 
B

21p1 � p22

�11 � 42

Qideal � A2V2 � A2 
B

21p1 � p22

�11 � 42

p1

�
�

V 2
1

2g
�

p2

�
�

V 2
2

2g
� hL

Q � A1V1 � A2V2

Q

A1

A0(1) (2)A2

Pressure taps

d
D1 = D

D2

F I G U R E  8.22
Typical orifice meter construction.

~  p1 � p2Q

Q

p1 � p2
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viscous effects. These are accounted for by use of the nozzle discharge coefficient, Cn, where

(8.23)

with An � �d2/4. As with the orifice meter, the value of Cn is a function of the diameter
ratio,  � d/D, and the Reynolds number, Re � �VD/�. Typical values obtained from exper-
iments are shown in Fig. 8.25. Note that Cn � Co; the nozzle meter is more efficient (less
energy dissipated) than the orifice meter.

The most precise and most expensive of the three obstruction-type flowmeters is the
Venturi meter shown in Fig. 8.26. It is designed to reduce head losses to a minimum. Most
of the head loss that occurs in a well-designed Venturi meter is due to friction losses along
the walls rather than losses associated with separated flows and the inefficient mixing
motion that accompanies such flow.

The flowrate through a Venturi meter is given by

(8.24)Q � CvQideal � CvAT 
B

21p1 � p22

�11 � 42

Q � CnQideal � Cn An 
B

21p1 � p22

�11 � 42
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d__
D

=      = 0.7β

0.5

0.6

0.4
0.2

D V

d

D D__
2

0.66

0.64

0.62

0.60

0.58
104 105 106 107 108

Re =  VD/ρ μ

Co

F I G U R E  8.23 Orifice meter discharge coefficient (Ref. 10).

F I G U R E  8.24 Typical nozzle meter construction.

dD

(a) (b) (c)

Pressure taps
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8.6 Pipe Flowrate Measurement 311

where AT � �d2/4 is the throat area. The range of values of Cv, the Venturi discharge coef-
ficient, is given in Fig. 8.27. The throat-to-pipe diameter ratio ( � d/D), the Reynolds num-
ber, and the shape of the converging and diverging sections of the meter are among the
parameters that affect the value of Cv.

Again, the precise values of Cn, Co, and Cv depend on the specific geometry of the
devices used. Considerable information concerning the design, use, and installation of stan-
dard flowmeters can be found in various books (Refs. 10, 15, 16, 17).

F I G U R E  8.25 Nozzle meter discharge 
coefficient (Ref. 10).

V
D d

1.00

0.98

0.96

0.94
104 105 106 107 108

Re =   VD/ρ μ

Cn

0.6

0.4

0.2

=     = 0.8d__
D

β

F I G U R E  8.26 Typical Venturi meter construction.

Q

D d

F I G U R E  8.27 Venturi meter discharge 
coefficient (Ref. 15).
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0.94
104 105 106 107 108

Re =   VD/ρ μ

Cv
Range of values

depending on specific
geometry
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GIVEN Ethyl alcohol flows through a pipe of diameter
D � 60 mm in a refinery. The pressure drop across the nozzle
meter used to measure the flowrate is to be �p � 4.0 kPa
when the flowrate is Q � 0.003 m3/s. 

SOLUTION

Nozzle Flow Meter

or d � 0.0341 m. With the new value of  � 0.0341/0.060 �
0.568 and Re � 42,200, we obtain (from Fig. 8.25) Cn � 0.972
in agreement with the assumed value. Thus,

(Ans)

COMMENTS If numerous cases are to be investigated, it
may be much easier to replace the discharge coefficient data of
Fig. 8.25 by the equivalent equation, Cn � �(, Re), and use a
computer to iterate for the answer. Such equations are avail-
able in the literature (Ref. 10). This would be similar to using
the Colebrook equation rather than the Moody chart for pipe
friction problems.

By repeating the calculations, the nozzle diameters, d,
needed for the same flowrate and pressure drop but with differ-
ent fluids are shown in Fig. E8.10. The diameter is a function of
the fluid viscosity because the nozzle coefficient, Cn, is a func-
tion of the Reynolds number (see Fig. 8.25). In addition, the di-
ameter is a function of the density because of this Reynolds
number effect and, perhaps more importantly, because the den-
sity is involved directly in the flowrate equation, Eq. 8.23. These
factors all combine to produce the results shown in the figure.

d � 34.1 mm

FIND Determine the diameter, d, of the nozzle.

EXAMPLE 8.10

From Table 1.5 the properties of ethyl alcohol are � � 789
kg/m3 and � � 1.19 �10�3 N s/m2. Thus,

From Eq. 8.23 the flowrate through the nozzle is

or

(1)

where d is in meters. Note that  � d/D � d/0.06. Equation 1
and Fig. 8.25 represent two equations for the two unknowns d
and Cn that must be solved by trial and error.

As a first approximation we assume that the flow is ideal,
or Cn � 1.0, so that Eq. 1 becomes

(2)

In addition, for many cases 1 � 4 � 1, so that an approximate
value of d can be obtained from Eq. 2 as

Hence, with an initial guess of d � 0.0346 m or  � d/D �
0.0346/0.06 � 0.577, we obtain from Fig. 8.25 (using Re �
42,200) a value of Cn � 0.972. Clearly this does not agree
with our initial assumption of Cn � 1.0. Thus, we do not
have the solution to Eq. 1 and Fig. 8.25. Next we assume
 � 0.577 and Cn � 0.972 and solve for d from Eq. 1 to
obtain

d � a
1.20 � 10�3

0.972
21 � 0.5774b

1/2

d � 11.20 � 10�321/2 � 0.0346 m

d � 11.20 � 10�321 � 421/2

1.20 � 10�3 �
Cnd2

21 � 4

Q � 0.003 m3/s � Cn 
�

4
 d 2 
B

214 � 103 N/m22

789 kg/m311 � 42

 �
41789 kg/m32 10.003 m3/s2

�10.06 m2 11.19 � 10�3 N # s/m22
� 42,200

Re �
�VD

�
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F I G U R E  E8.10

Numerous other devices are used to measure the flowrate in pipes. Many of these
devices use principles other than the high-speed/low-pressure concept of the orifice, nozzle,
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8.7 Chapter Summary and Study Guide 313

and Venturi meters (see Ref. 16). In some instances, it is necessary to know the amount
(volume or mass) of fluid that has passed through a pipe during a given time period rather
than the instantaneous flowrate. There are several quantity-measuring devices that provide
such information. These include the nutating disk meter used to determine the amount of
water used in your house or the amount of gasoline pumped into your car’s fuel tank and
the bellows meter used to determine the amount of natural gas delivered to the furnace in
your house.

laminar flow
transitional flow
turbulent flow
entrance length
fully developed flow
wall shear stress
Hagen–Poiseuille flow
major loss
minor loss
relative roughness
friction factor
Moody chart
Colebrook formula
loss coefficient
hydraulic diameter
multiple pipe systems
orifice meter
nozzle meter
Venturi meter

V8.14 Water meter

V8.13 Rotameter

8.7 Chapter Summary and Study Guide

This chapter discussed the flow of a viscous fluid in a pipe. General characteristics of lam-
inar, turbulent, fully developed, and entrance flows are considered. Poiseuille’s equation is
obtained to describe the relationship among the various parameters for fully developed lam-
inar flow.

Various characteristics of turbulent pipe flow are introduced and contrasted to lami-
nar flow. It is shown that the head loss for laminar or turbulent pipe flow can be written in
terms of the friction factor (for major losses) and the loss coefficients (for minor losses).
In general, the friction factor is obtained from the Moody chart or the Colebrook formula
and is a function of the Reynolds number and the relative roughness. The minor loss coef-
ficients are a function of the flow geometry for each system component.

Analysis of noncircular conduits is carried out by use of the hydraulic diameter con-
cept. Various examples involving flow in single pipe systems and flow in multiple pipe sys-
tems are presented. The inclusion of viscous effects and losses in the analysis of orifice,
nozzle, and Venturi flowmeters is discussed.

The following checklist provides a study guide for this chapter. When your study
of the entire chapter and end-of-chapter exercises has been completed you should be
able to

write out meanings of the terms listed here in the margin and understand each of the
related concepts. These terms are particularly important and are set in color and bold
type in the text.

determine which of the following types of flow will occur: entrance flow or fully
developed flow; laminar flow or turbulent flow.

use the Poiseuille equation in appropriate situations and understand its limitations.

explain the main properties of turbulent pipe flow and how they are different from or
similar to laminar pipe flow.

use the Moody chart and the Colebrook equation to determine major losses in pipe
systems.

use minor loss coefficients to determine minor losses in pipe systems.

determine the head loss in noncircular conduits.

incorporate major and minor losses into the energy equation to solve a variety of pipe
flow problems, including Type I problems (determine the pressure drop or head loss),
Type II problems (determine the flowrate), and Type III problems (determine the pipe
diameter).

solve problems involving multiple pipe systems.

determine the flowrate through orifice, nozzle, and Venturi flowmeters as a function
of the pressure drop across the meter.
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Some of the important equations in this chapter are

Entrance length (8.1)

(8.2)

Pressure drop for fully 
developed laminar pipe flow (8.5)

Velocity profile for fully 
developed laminar pipe flow (8.7)

Volume flowrate for fully 
developed laminar pipe flow (8.9)

Pressure drop for a 
horizontal pipe (8.17)

Head loss due to major 
losses (8.18)

Colebrook formula (8.19a)

Haaland equation (8.19b)

Head loss due to minor 
losses (8.20)

Volume flowrate for orifice,
nozzle, or Venturi meter (8.22, 8.23, 8.24)
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Review Problems

Go to Appendix G for a set of review problems with answers.
Detailed solutions can be found in Student Solution Manual 

for a Brief Introduction to Fluid Mechanics, by Young et al. 
(© 2011 John Wiley and Sons, Inc.).

Problems

Note: Unless otherwise indicated use the values of fluid
properties found in the tables on the inside of the front
cover. Problems designated with an (*) are intended to be
solved with the aid of a programmable calculator or a com-
puter. Problems designated with a (†) are “open-ended”
problems and require critical thinking in that to work them
one must make various assumptions and provide the neces-
sary data. There is not a unique answer to these problems.

The even-numbered problems are included in the
hard copy version of the book, and the answers to these
even-numbered problems are listed at the end of the book.
Odd-numbered problems are provided in WileyPLUS, or
in Appendix L on the book’s web site, www.wiley.com/
college/young. The lab-type problems, FE problems, FlowLab
problems, and the videos that accompany problems can also
be accessed on these web sites.

Section 8.1 General Characteristics of Pipe Flow
(also see Lab Problem 8.105)

8.2 (See Fluids in the News article titled “Nanoscale flows,”
Section 8.1.1.) (a) Water flows in a tube that has a diameter of

Determine the Reynolds number if the average ve-
locity is 10 diameters per second. (b) Repeat the calculations if
the tube is a nanoscale tube with a diameter of 

8.4 Water flows through a 50-ft pipe with a 0.5-in. diameter at
5 gal/min. What fraction of this pipe can be considered an en-
trance region?

8.6 Carbon dioxide at and a pressure of 550 kPa (abs)
flows in a pipe at a rate of 0.04 N/s. Determine the maximum di-
ameter allowed if the flow is to be turbulent.

8.8 A soft drink with the properties of water is sucked
through a 4-mm-diameter, 0.25-m-long straw at a rate of 
4 cm3/s. Is the flow at the outlet of the straw laminar? Is it fully
developed? Explain.

10 °C

20 °C

D � 100 nm.

D � 0.1 m.

8.10 The pressure distribution measured along a straight, hori-
zontal portion of a 50-mm-diameter pipe attached to a tank is
shown below. Approximately how long is the entrance length?
In the fully developed portion of the flow, what is the value of
the wall shear stress?

x (m) (�0.01 m) p (mm H2O) (�5 mm)

0 (tank exit) 520
0.5 427
1.0 351
1.5 288
2.0 236
2.5 188
3.0 145
3.5 109
4.0 73
4.5 36
5.0 (pipe exit) 0

Section 8.2 Fully Developed Laminar Flow

8.12 Water flows in a constant-diameter pipe with the follow-
ing conditions measured: At section (a) pa � 32.4 psi and za �
56.8 ft; at section (b) pb � 29.7 psi and zb � 68.2 ft. Is the flow
from (a) to (b) or from (b) to (a)? Explain.

8.14 A fluid flows through a horizontal 0.1-in.-diameter pipe.
When the Reynolds number is 1500, the head loss over a 20-ft
length of the pipe is 6.4 ft. Determine the fluid velocity.

8.16 For fully developed laminar pipe flow in a circular pipe,
the velocity profile is given by u(r) � 2 (1 � r2/R2) in m/s,
where R is the inner radius of the pipe. Assuming that the pipe
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diameter is 4 cm, find the maximum and average velocities in
the pipe as well as the volume flowrate.

8.18 Laminar flow in a horizontal pipe of diameter D gives a
flowrate of Q if the pressure gradient is The fluid
is cooled so that the density increases by a factor of 1.04 and the
viscosity increases by a factor of 3.8. Determine the new pres-
sure gradient required (in terms of K ) if the flowrate remains
the same.

8.20 At time the level of water in tank A shown in Fig
P8.20 is 2 ft above that in tank B. Plot the elevation of the water
in tank A as a function of time until the free surfaces in both
tanks are at the same elevation. Assume quasi-steady condi-
tions—that is, the steady pipe flow equations are assumed valid
at any time, even though the flowrate does change (slowly) in
time. Neglect minor losses. Note: Verify and use the fact that the
flow is laminar

t � 0

0p/0x � �K.

8.22 A viscous fluid flows in a 0.10-m-diameter pipe such that
its velocity measured 0.012 m away from the pipe wall is 0.8 m/s.
If the flow is laminar, determine the centerline velocity and the
flowrate.

8.24 Water flows downhill through a 3-in.-diameter steel pipe.
The slope of the hill is such that for each mile (5280 ft) of hori-
zontal distance, the change in elevation is �z ft. Determine the
maximum value of �z if the flow is to remain laminar and the
pressure all along the pipe is constant.

Section 8.3 Fully Developed Turbulent Flow

8.26 For air at a pressure of 200 kPa (abs) and temperature of
determine the maximum laminar volume flowrate for

flow through a 2.0-cm-diameter tube.

8.28 When soup is stirred in a bowl, there is considerable tur-
bulence in the resulting motion (see Video V8.7). From a very
simplistic standpoint, this turbulence consists of numerous inter-
twined swirls, each involving a characteristic diameter and 
velocity. As time goes by, the smaller swirls (the fine-scale struc-
ture) die out relatively quickly, leaving the large swirls that con-
tinue for quite some time. Explain why this is to be expected.

Section 8.4.1 Major Losses (also see Lab 
Problem 8.101)

8.30 Carbon dioxide at a temperature of 0 �C and a pressure of
600 kPa (abs) flows through a horizontal 40-mm-diameter pipe
with an average velocity of 2 m/s. Determine the friction factor
if the pressure drop is 235 N/m2 per 10-m length of pipe.

15 °C,

8.32 Water flows through a horizontal plastic pipe with a diam-
eter of 0.2 m at a velocity of 10 cm/s. Determine the pressure
drop per meter of pipe using the Moody chart.

8.34 Water flows at a rate of 2.0 ft3/s in an old, rusty 6-in.-
diameter pipe that has a relative roughness of 0.010. It is proposed
that by inserting a smooth plastic liner with an inside diameter of
5 in. into the old pipe as shown in Fig. P8.34 the pressure drop
per mile can be reduced. Is it true that the lined pipe can carry
the required 2.0 ft3/s at a lower pressure drop than in the old
pipe? Support your answer with appropriate calculations.

8.36 Air at standard conditions flows through an 8-in.-diameter,
14.6-ft-long, straight duct with the velocity versus pressure drop
data indicated in the following table. Determine the average
friction factor over this range of data.

V (ft�min) �p (in. water)

3950 0.35
3730 0.32
3610 0.30
3430 0.27
3280 0.24
3000 0.20
2700 0.16

8.38 A 3-ft-diameter duct is used to carry ventilating air into a
vehicular tunnel at a rate of 9000 ft3/min. Tests show that the pres-
sure drop is 1.5 in. of water per 1500 ft of duct. What is the value
of the friction factor for this duct and the approximate size of the
equivalent roughness of the surface of the duct?

8.40 Two equal-length, horizontal pipes, one with a diameter
of 1 in., the other with a diameter of 2 in., are made of the same
material and carry the same fluid at the same flowrate. Which
pipe produces the larger head loss? Justify your answer.

Section 8.4.2 Minor Losses (also see Lab 
Problem 8.106)

8.42 An optional method of stating minor losses from pipe
components is to express the loss in terms of equivalent
length; the head loss from the component is quoted as the
length of straight pipe with the same diameter that would gen-
erate an equivalent loss. Develop an equation for the equiva-
lent length, .

8.44 To conserve water and energy, a “flow reducer” is in-
stalled in the showerhead as shown in Fig. P8.44. If the pressure
at point (1) remains constant and all losses except for that in the

/eq

0.1-in. diameter, galvanized iron

25 ft

2 ft at t = 0 3 ft3 ft

B A

F I G U R E  P8.20

6 in.

Old

5 in.

New

Liner

F I G U R E  P8.34
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“flow reducer” are neglected, determine the value of the loss
coefficient (based on the velocity in the pipe) of the “flow re-
ducer” if its presence is to reduce the flowrate by a factor of 2.
Neglect gravity.

8.46 Repeat Problem 8.45 if the straws are replaced by a
piece of porous foam rubber that has a loss coefficient equal
to 5.4.

8.48 Air flows through the fine mesh gauze shown in Fig.
P8.48 with an average velocity of 1.50 m/s in the pipe. Deter-
mine the loss coefficient for the gauze.

8.50 Air at 80 �F and standard atmospheric pressure flows
through a furnace filter with an average velocity of 2.4 ft/s. If
the pressure drop across the filter is 0.11 in. of water, what is the
loss coefficient for the filter?

Section 8.4.3 Noncircular Conduits

8.52 Air at standard temperature and pressure flows at a rate of
7.0 cfs through a horizontal, galvanized iron duct that has a rec-
tangular cross-sectional shape of 12 in. by 6 in. Estimate the
pressure drop per 200 ft of duct.

8.54 Air at standard conditions flows through a horizontal 
1 ft by 1.5 ft rectangular wooden duct at a rate of 
Determine the head loss, pressure drop, and power supplied
by the fan to overcome the flow resistance in 500 ft of the
duct.

Section 8.5.1 Single Pipes—Determine Pressure Drop

8.56 Water flows at a rate of 10 gal per minute in a new hori-
zontal 0.75-in.-diameter galvanized iron pipe. Determine the
pressure gradient, �p/�, along the pipe.

5000 ft3�min.

8.58 When water flows from the tank shown in Fig. P8.58, the
water depth in the tank as a function of time is as indicated. De-
termine the cross-sectional area of the tank. The total length of
the 0.60-in.-diameter pipe is 20 ft, and the friction factor is 0.03.
The loss coefficients are 0.50 for the entrance, 1.5 for each 
elbow, and 10 for the valve.

8.60 Natural gas (� � 0.0044 slugs/ft3 and � � 5.2 � 10�5

ft2/s) is pumped through a horizontal 6-in.-diameter cast-iron
pipe at a rate of 800 lb/hr. If the pressure at section (1) is 50 psi
(abs), determine the pressure at section (2) 8 mi downstream if
the flow is assumed incompressible. Is the incompressible as-
sumption reasonable? Explain.

8.62 Water flows from the container shown in Fig. P8.62. De-
termine the loss coefficient needed in the valve if the water is to
“bubble up” 3 in. above the outlet pipe.

8.64 Water flows through a 2-in.-diameter pipe with a velocity
of 15 ft/s as shown in Fig. P8.64. The relative roughness of the
pipe is 0.004, and the loss coefficient for the exit is 1.0. Deter-
mine the height, h, to which the water rises in the piezometer
tube.

Q

1__
2

in.

(1)

Flow reducer washer

50 holes of
diameter 0.05 in.

F I G U R E  P8.44

Gauze over
end of pipe

Water

8 mm

V = 1.5 m/s

F I G U R E  P8.48

3 ft
Valve

h

2.0

1.5

1.0
0 100 200 300

t, s

h,
 f

t

F I G U R E  P8.58

32 in.

18 in.

27 in.

Vent

3 in.

2 in.

-in.-diameter galvanized iron pipe
with threaded fittings

1__
2

F I G U R E  P8.62
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Section 8.5.1 Single Pipes—Determine Flowrate
(also see Lab Problems 8.103 and 8.104)

8.76 The pump shown in Fig. P8.76 delivers a head of 250 ft to
the water. Determine the power that the pump adds to the water.
The difference in elevation of the two ponds is 200 ft.

8.78 Water flows from the nozzle attached to the spray tank
shown in Fig. P8.78. Determine the flowrate if the loss coeffi-
cient for the nozzle (based on upstream conditions) is 0.75 and
the friction factor for the rough hose is 0.11.

*8.80 Water flows from a large open tank through a sharp-
edged entrance and into a horizontal 0.5-in.-diameter copper
pipe (drawn tubing) of length The water exits the pipe as a
free jet a distance of 4.0 ft below the free surface of the tank.
Plot a log–log graph of the flowrate through the pipe, Q, as a
function of for Comment on your results.10 � / � 10,000 ft./

/.

8.66 The exhaust from your car’s engine flows through a com-
plex pipe system as shown in Fig. P8.66 and Video V8.12. Assume
that the pressure drop through this system is �p1 when the engine is
idling at 1000 rpm at a stop sign. Estimate the pressure drop (in
terms of �p1) with the engine at 3000 rpm when you are driving on
the highway. List all the assumptions that you made to arrive at
your answer.

8.68 Water at 40 �F flows through the coils of the heat exchanger
as shown in Fig. P8.68 at a rate of 0.9 gal/min. Determine the
pressure drop between the inlet and outlet of the horizontal 
device.

8.70 The hose shown in Fig. P8.69 will collapse if the pressure
within it is lower than 10 psi below atmospheric pressure. De-
termine the maximum length, L, allowed if the friction factor is
0.015 and the flowrate is 0.010 cfs. Neglect minor losses.

†8.72 Estimate the pressure drop associated with the airflow
from the cold air return in your room to the furnace (see Figure
P8.72). List all assumptions and show all calculations.

8.74 A fan is to produce a constant airspeed of 40 m/s through-
out the pipe loop shown in Fig. P8.74. The 3-m-diameter pipes
are smooth, and each of the four 90� elbows has a loss coeffi-
cient of 0.30. Determine the power that the fan adds to the air.
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8 ft

8 ft

2 in.
15 ft/s

h

Open

F I G U R E  P8.64

F I G U R E  P8.66

Muffler
Exhaust

Intake manifold

F I G U R E  P8.68

Q

18 in.

0.5-in. copper pipe (drawn tubing)

Threaded 180°
return bend

F I G U R E  P8.72

Duct

Cold air return

Furnace

Filter

F I G U R E  P8.74

Fan

V = 40 m/s

D = 3 m
10 m

20 m

F I G U R E  P8.76

KLvalve
 = 5.0

KLelbow
 = 1.5

Pipe length = 500 ft
Pipe diameter = 0.75 ft
Pipe roughness = 0

KLexit
 = 1.0

Pump

KLent
 = 0.8

c08ViscousFlowinPipes.qxd  9/28/10  10:23 AM  Page 318



Section 8.5.1 Single Pipes—Determine Diameter

8.84 A certain process requires 2.3 cfs of water to be delivered
at a pressure of 30 psi. This water comes from a large-diameter
supply main in which the pressure remains at 60 psi. If the gal-
vanized iron pipe connecting the two locations is 200 ft long and
contains six threaded elbows, determine the pipe diameter.
Elevation differences are negligible.

8.86 Water is to be moved from a large, closed tank in which
the air pressure is 20 psi into a large, open tank through 2000 ft
of smooth pipe at the rate of 3 ft3/s. The fluid level in the open
tank is 150 ft below that in the closed tank. Determine the re-
quired diameter of the pipe. Neglect minor losses.

8.88 Rainwater flows through the galvanized iron downspout
shown in Fig. P8.88 at a rate of 0.006 m3/s. Determine the size

90°

of the downspout cross section if it is a rectangle with an aspect
ratio of 1.7 to 1 and it is completely filled with water. Neglect
the velocity of the water in the gutter at the free surface and the
head loss associated with the elbow.

Section 8.5.2 Multiple Pipe Systems

8.90 (See Fluids in the News article titled “Deepwater
pipeline,” Section 8.5.2.) Five oil fields, each producing an out-
put of Q barrels per day, are connected to the 28-in.-diameter
“main line pipe” (A–B–C) by 16-in.-diameter “lateral pipes” as
shown in Fig. P8.90. The friction factor is the same for each of
the pipes and elevation effects are negligible. (a) For section
A–B determine the ratio of the pressure drop per mile in the
main line pipe to that in the lateral pipes. (b) Repeat the calcu-
lations for section B–C.

8.92 The three water-filled tanks shown in Fig. P8.92 are con-
nected by pipes as indicated. If minor losses are neglected, deter-
mine the flowrate in each pipe.

Section 8.6 Pipe Flowrate Measurement (also see
Lab Problem 8.102)

8.94 Gasoline flows through a 35-mm-diameter pipe at a rate
of 0.0032 m3/s. Determine the pressure drop across a flow nozzle
placed in the line if the nozzle diameter is 20 mm.

8.96 Water flows through a 40-mm-diameter nozzle meter in a
75-mm-diameter pipe at a rate of 0.015 m3/s. Determine the pres-
sure difference across the nozzle if the temperature is (a)
or (b)

8.98 Water flows through the Venturi meter shown in Fig.
P8.98. The specific gravity of the manometer fluid is 1.52. De-
termine the flowrate.

80 °C.
10 °C,

Problems 319

8.82 Air, assumed incompressible, flows through the two pipes
shown in Fig. P8.82. Determine the flowrate if minor losses are
neglected and the friction factor in each pipe is 0.020. Determine
the flowrate if the 0.5-in.-diameter pipe were replaced by a 
1-in.-diameter pipe. Comment on the assumption of incompressibility.

F I G U R E  P8.78

Nozzle diameter
= 7.5 mm

0.80 m

p = 150 kPa

D = 15 mm
� = 1.9 m

40°

p = 0.5 psi
T = 150°F

20 ft 20 ft

1 in. 0.50 in.

F I G U R E  P8.82

g

70 mm

4 m

3 m

F I G U R E  P8.88

Q

Q
Q

Q

Q

CBA
Main line

Lateral

F I G U R E  P8.90

Elevation = 20 m

Elevation = 60 m

Elevation = 0
= 0.10 m
= 200 m
= 0.015

D
�
f

= 0.08 m
= 400 m
= 0.020

D
�
f

= 0.08 m
= 200 m
= 0.020

D
�
f

F I G U R E  P8.92
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8.100 Water flows through the orifice meter shown in Fig.
P8.100 at a rate of 0.10 cfs. If d � 0.1 ft, determine the value of h.

8.102 Water flows through the orifice meter shown in Fig. P8.100
such that h � 1.6 ft with d � 1.5 in. Determine the flowrate.

■ Lab Problems

8.104 This problem involves the calibration of an orifice meter
and a Venturi meter. To proceed with this problem, go to the
book’s web site, www.wiley.com/college/young, or WileyPLUS.

8.106 This problem involves the flow of water pumped from a
tank and through a pipe system. To proceed with this problem,
go to the book’s web site, www.wiley.com/college/young, or
WileyPLUS.

8.108 This problem involves the power loss due to friction in a
coiled pipe. To proceed with this problem, go to the book’s web
site, www.wiley.com/college/young, or WileyPLUS.

■ Lifelong Learning Problems

8.110 Data used in the Moody diagram were first published
in 1944. Since then, there have been many innovations in pipe
material, pipe design, and measurement techniques. Investi-
gate whether there have been any improvements or enhance-
ments to the Moody chart. Summarize your findings in a brief
report.

■ FlowLab Problems

*8.112 This FlowLab problem involves simulating the flow
in the entrance region of a pipe and looking at basic concepts
involved with the flow regime. To proceed with this problem,
go to the book’s web site, www.wiley.com/college/young, or
WileyPLUS.

*8.114 This FlowLab problem involves conducting a paramet-
ric study to see how Reynolds number affects the entrance
length of a pipe. To proceed with this problem, go to the book’s
web site, www.wiley.com/college/young, or WileyPLUS.

*8.116 This FlowLab problem involves the simulation of fully
developed pipe flow and how the Reynolds number affects the
wall friction. To proceed with this problem, go to the book’s
web site, www.wiley.com/college/young, or WileyPLUS.

*8.118 This FlowLab problem involves investigation of effects
of the pipe expansion ratio on flow separation. To proceed with
this problem, go to the book’s web site, www.wiley.com/college/
young, or WileyPLUS.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for
fluid mechanics are provided on the book’s web site, www
.wiley.com/college/young, or WileyPLUS.
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2 in.

SG = 1.52

Q
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h

Q

d

2 in.

F I G U R E  P8.100
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CHAPTER OPENING PHOTO: Impulsive start of flow past an array of cylinders: The complex structure
of laminar flow past a relatively simple geometric structure illustrates why it is often difficult to obtain
exact analytical results for external flows. (Dye in water.) (Photograph courtesy of ONERA, France.)

99Flow over
Immersed Bodies

Flow over
Immersed Bodies

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ identify and discuss the features of external flow.

■ explain the fundamental characteristics of a boundary layer, including
laminar, transitional, and turbulent regimes.

■ calculate boundary layer parameters for flow past a flat plate.

■ provide a description of boundary layer separation.

■ calculate the lift and drag for various objects.

In this chapter we consider various aspects of the flow over bodies that are immersed in a
fluid. Examples include the flow of air around airplanes, automobiles, and falling
snowflakes or the flow of water around submarines and fish. In these situations the object
is completely surrounded by the fluid, and the flows are termed external flows. Theoretical
(i.e., analytical and numerical) techniques can provide much of the needed information
about such flows. However, because of the complexities of the governing equations and the
complexities of the geometry of the objects involved, the amount of information obtained
from purely theoretical methods is limited. Thus, much of the information about external
flows comes from experiments carried out, for the most part, on scale models of the actual
objects.
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9.1.1 Lift and Drag Concepts

When any body moves through a fluid, an interaction between the body and the fluid occurs;
this effect can be described in terms of the forces at the fluid–body interface. This can be
described in terms of the stresses—wall shear stresses, �w, due to viscous effects and nor-
mal stresses due to the pressure, p. Typical shear stress and pressure distributions are shown
in Figs. 9.2a and 9.2b. Both �w and p vary in magnitude and direction along the surface.

The resultant force in the direction of the upstream velocity is termed the drag, d,
and the resultant force normal to the upstream velocity is termed the lift, l, as is indicated
in Fig. 9.2c. The resultant of the shear stress and pressure distributions can be obtained by
integrating the effect of these two quantities on the body surface as is indicated in Fig. 9.3.
The net x and y components of the force on the object are

(9.1)d � �  dFx � �
 
p cos � dA � �  �w sin � dA

322 Chapter 9 ■ Flow over Immersed Bodies

9.1 General External Flow Characteristics

A body immersed in a moving fluid experiences a resultant force due to the interaction between
the body and the fluid surrounding it. We can fix the coordinate system in the body and treat
the situation as fluid flowing past a stationary body with velocity U, the upstream velocity.

Three general categories of bodies are shown in Fig. 9.1. They include (a) two-
dimensional objects (infinitely long and of constant cross-sectional size and shape), (b)
axisymmetric bodies (formed by rotating their cross-sectional shape about the axis of sym-
metry), and (c) three-dimensional bodies that may possess a line or plane of symmetry.

Another classification of body shape can be made depending on whether the body is
streamlined or blunt. The flow characteristics depend strongly on the amount of streamlin-
ing present. In general, streamlined bodies (i.e., airfoils, racing cars) have little effect on
the surrounding fluid compared with the effect that blunt bodies (i.e., parachutes, buildings)
have on the fluid.

F l u i d s  i n  t h e  N e w s

Armstrong’s aerodynamic bike and suit Lance Armstrong
rode to his seventh straight Tour de France victory in 2005 us-
ing specially designed lightweight, streamlined bikes and
suits. The bicycle manufacturer, Trek, used computational
fluid dynamics analysis and wind tunnel testing to find ways
to make the frame more streamlined to reduce drag. The two
specially designed bikes were the lightest and most stream-
lined the company has made in its 27-year history. When racing
in a pack, the more efficient aerodynamics are not very impor-
tant. However, in a 200-km stage race where the riders are “on

their own,” not drafting, the new frame theoretically saved
Armstrong 10 watts. In addition, Nike designed special skin-
suits that have “zoned” fabrics to make the flow past the arms,
thighs, and torso more streamlined. They have directional
seams that follow airflow lines (no seams crossing the flow)
and use materials selected to avoid wrinkles when the rider is
in the racing position. Although it is hard to quantify, the re-
sults of the new aerodynamic bikes and suits could have made
the difference between winning or losing the Tour for Armstrong.
(See Problem 9.46.)
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F I G U R E  9.1 Flow classification: (a) two-dimensional, (b) axisymmetric, and
(c) three-dimensional.

V9.1 Space Shuttle
landing
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9.1 General External Flow Characteristics 323

and

(9.2)

Of course, to carry out the integrations and determine the lift and drag, we must know the
body shape (i.e., � as a function of location along the body) and the distribution of �w and
p along the surface. These distributions are often extremely difficult to obtain, either exper-
imentally or theoretically.

l � �  dFy � ��
 
p sin � dA � �  �w cos � dA

F I G U R E  9.2 Forces from the surrounding fluid on a two-dimensional object: (a) pressure
force, (b) viscous force, and (c) resultant force (lift and drag).
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F I G U R E  9.3 Pressure and shear forces on
a small element of the surface of a body.
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F l u i d s  i n  t h e  N e w s

Pressure-sensitive paint For many years, the conventional
method for measuring surface pressure has been to use static
pressure taps consisting of small holes on the surface con-
nected by hoses from the holes to a pressure-measuring 
device. Pressure-sensitive paint (PSP) is now gaining accep-
tance as an alternative to the static surface pressure ports.
The PSP material is typically a luminescent compound that is
sensitive to the pressure on it and can be excited by an appro-
priate light that is captured by special video-imaging equip-
ment. Thus, it provides a quantitative measure of the surface

pressure. One of the biggest advantages of PSP is that it is a
global measurement technique, measuring pressure over the
entire surface, as opposed to discrete points. PSP also has the
advantage of being nonintrusive to the flow field. Although
static pressure port holes are small, they do alter the surface
and can slightly alter the flow, thus affecting downstream
ports. In addition, the use of PSP eliminates the need for a
large number of pressure taps and connecting tubes. This al-
lows pressure measurements to be made in less time and at a
lower cost.
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324 Chapter 9 ■ Flow over Immersed Bodies

GIVEN Air at standard conditions flows past a flat plate
as is indicated in Fig. E9.1. In case (a) the plate is parallel to
the upstream flow, and in case (b) it is perpendicular to the
upstream flow. The pressure and shear stress distributions on
the surface are as indicated (obtained either by experiment or
theory).

FIND Determine the lift and drag on the plate.

SOLUTION

Drag from Pressure and Shear Stress Distributions

we obtain the following drag

or

(Ans)

COMMENT Clearly two mechanisms are responsible for
the drag. On the ultimately streamlined body (a zero-thickness
flat plate parallel to the flow) the drag is entirely due to the
shear stress at the surface and, in this example, is relatively
small. For the ultimately blunted body (a flat plate normal to
the upstream flow) the drag is entirely due to the pressure dif-
ference between the front and the back portions of the object
and, in this example, is relatively large.

If the flat plate were oriented at an arbitrary angle relative to the
upstream flow as indicated in Fig. E9.1c, there would be both a lift
and a drag, each of which would be dependent on both the shear
stress and the pressure. Both the pressure and the shear stress dis-
tributions would be different for the top and bottom surfaces.

 d � 55.6 lb

 � 1�0.8932lb/ft2 d 110 ft2 dy

 d � �
2 ft

y��2

 c0.744 a1 �
y2

4
b lb/ft2

EXAMPLE 9.1

For either orientation of the plate, the lift and drag are ob-
tained from Eqs. 9.1 and 9.2. With the plate parallel to the 
upstream flow we have � � 90� on the top surface and � � 270�
on the bottom surface so that the lift and drag are given by

and

(1)

where we have used the fact that because of symmetry the
shear stress distribution is the same on the top and the bottom
surfaces, as is the pressure also [whether we use gage (p � 0)
or absolute (p � patm) pressure]. There is no lift generated—
the plate does not know up from down. With the given shear
stress distribution, Eq. 1 gives

or

(Ans)

With the plate perpendicular to the upstream flow, we have
� � 0� on the front and � � 180� on the back. Thus, from Eqs.
9.1 and 9.2

and

Again there is no lift because the pressure forces act parallel to
the upstream flow (in the direction of d not l) and the shear
stress is symmetrical about the center of the plate. With the
given relatively large pressure on the front of the plate (the
center of the plate is a stagnation point) and the negative pres-
sure (less than the upstream pressure) on the back of the plate,

d � �
front

 p dA � �
back

 p dA

l � �
front

 �w dA � �
back

 �w dA � 0

d � 0.0992 lb

d � 2 �
4 ft

x�0

 a
1.24 � 10�3

x1/2  lb/ft2b
 

110 ft2 dx

d � �
top

 �w dA � �
bottom

 �w dA � 2 �
top

 �w dA

l � ��
top

 p dA � �
bottom

 p dA � 0

F I G U R E  E9.1

U = 25 ft/s

p = 0 (gage)

y

x

p = p(x) = 0

4 ft

b = width = 10 ft

=    (x) = (1.24 × 10 –3)/  x lb/ft2

where x is in feet
√τ

(a)

w τw

U
Low p

High p

� ≠ 0

� ≠ 0

(c)

τw

τw

U = 25 ft/s

(b)

p = 0

p = 0.744  1 –       lb/ft2

where y is in feet

y2
__
4

y
p = –0.893 lb/ft2

x

(y) =
–   (–y) 

( )

τw

τw
τw
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9.1 General External Flow Characteristics 325

Without detailed information concerning the shear stress and pressure distributions on
a body, Eqs. 9.1 and 9.2 cannot be used. The widely used alternative is to define dimen-
sionless lift and drag coefficients and determine their approximate values by means of a
simplified analysis, some numerical technique, or an appropriate experiment. The lift coef-
ficient, CL, and drag coefficient, CD, are defined as

and

where A is a characteristic area of the object (see Chapter 7). Typically, as shown in the figure
in the margin, A is taken to be frontal area—the projected area seen by a person looking
toward the object from a direction parallel to the upstream velocity, U. In other situations A
is taken to be the planform area—the projected area seen by an observer looking toward the
object from a direction normal to the upstream velocity (i.e., from “above” it).

9.1.2 Characteristics of Flow Past an Object

External flows past objects encompass an extremely wide variety of fluid mechanics phe-
nomena. For a given-shaped object, the characteristics of the flow depend very strongly on
various parameters, such as size, orientation, speed, and fluid properties. As discussed in
Chapter 7, according to dimensional analysis arguments, the character of the flow should
depend on the various dimensionless parameters involved. For typical external flows the
most important of these parameters are the Reynolds number, the Mach number, and the
Froude number.

For the present, we consider how the external flow and its associated lift and drag
vary as a function of Reynolds number. Recall that the Reynolds number represents the ratio
of inertial effects to viscous effects. The nature of the flow past a body depends strongly
on whether Re 	 1 or Re 
 1.

Flows past three flat plates of length � with Re � �U�/� � 0.1, 10, and 107 are
shown in Fig. 9.4. If the Reynolds number is small, the viscous effects are relatively strong
and the plate affects the uniform upstream flow far ahead, above, below, and behind the
plate. To reach that portion of the flow field where the velocity has been altered by less
than 1% of its undisturbed value (i.e., U � u  0.01U) we must travel relatively far from
the plate. In low Reynolds number flows the viscous effects are felt far from the object in
all directions.

As the Reynolds number is increased (by increasing U, for example), the region in
which viscous effects are important becomes smaller in all directions except downstream,
as shown in Fig. 9.4b. One does not need to travel very far ahead, above, or below the plate
to reach areas in which the viscous effects of the plate are not felt. The streamlines are dis-
placed from their original uniform upstream conditions, but the displacement is not as great
as for the Re � 0.1 situation shown in Fig. 9.4a.

As suggested by Ludwig Prandtl in 1904, if the Reynolds number is large (but not
infinite), the flow is dominated by inertial effects and the viscous effects are negligible
everywhere except in a region very close to the plate and in the relatively thin wake region
behind the plate, as shown in Fig. 9.4c. Since the fluid viscosity is not zero (Re  �), it
follows that the fluid must stick to the solid surface (the no-slip boundary condition). There
is a thin boundary layer region of thickness � � �(x) 
 � (i.e., thin relative to the length
of the plate) next to the plate in which the fluid velocity changes from the upstream value

CD �
d

1
2 �U 2A

CL �
l

1
2 �U 2A

A = D�

A = c�

�

�

U

U

c

D
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of u � U to zero velocity on the plate. The existence of the plate has very little effect on
the streamlines outside of the boundary layer—ahead, above, or below the plate. However,
the wake region is due entirely to the viscous interaction between the fluid and the plate.

As with the flow past the flat plate described earlier, the flow past a blunt object (such
as a circular cylinder) also varies with Reynolds number. In general, the larger the Reynolds
number, the smaller the region of the flow field in which viscous effects are important. For

326 Chapter 9 ■ Flow over Immersed Bodies

Streamlines deflected
considerably

Re = U�/v = 0.1

U

Viscous effects
important

u < 0.99U

y

x

U

(a)

U

u < 0.99U
y

x

Viscous effects
important

Streamlines deflected
somewhat

Re =  10

Viscosity not
important

U

Viscosity not
important

Re =  107

(b)

U

(c)

Viscous effects
important

Boundary layer

y

Streamlines deflected
very slightly

δ << �

Wake
region

U

x

�

F I G U R E  9.4 Character of the steady, viscous flow
past a flat plate parallel to the upstream velocity: (a) low Reynolds
number flow, (b) moderate Reynolds number flow, and (c) large
Reynolds number flow.
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9.1 General External Flow Characteristics 327

objects that are not sufficiently streamlined, however, an additional characteristic of the flow
is observed. This is termed flow separation and is illustrated by the figure in the margin
and in Fig. 9.5.

Low Reynolds number flow (Re � UD/�  1) past a circular cylinder is character-
ized by the fact that the presence of the cylinder and the accompanying viscous effects are
felt throughout a relatively large portion of the flow field. As is indicated in Fig. 9.5a, for
Re � UD/� � 0.1, the viscous effects are important several diameters in any direction from
the cylinder.

As the Reynolds number is increased, the region ahead of the cylinder in which vis-
cous effects are important becomes smaller, with the viscous region extending only a short
distance ahead of the cylinder. The viscous effects are convected downstream and the flow
loses its symmetry. Another characteristic of external flows becomes important—the flow
separates from the body at the separation location as indicated in Fig. 9.5b.

At still larger Reynolds numbers, the area affected by the viscous forces is forced far-
ther downstream until it involves only a thin (� 
 D) boundary layer on the front portion
of the cylinder and an irregular, unsteady (perhaps turbulent) wake region that extends far
downstream of the cylinder. The fluid in the region outside of the boundary layer and wake
region flows as if it were inviscid.

F I G U R E  9.5 Character of the steady, viscous flow past a circular
cylinder: (a) low Reynolds number flow, (b) moderate Reynolds number flow, and
(c) large Reynolds number flow.
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Viscous forces
important throughout
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x

x

Viscous
effects
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V9.2 Streamlined
and blunt bodies
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328 Chapter 9 ■ Flow over Immersed Bodies

9.2 Boundary Layer Characteristics

As was discussed in the previous section, it is often possible to treat flow past an object as
a combination of viscous flow in the boundary layer and inviscid flow elsewhere. If the
Reynolds number is large enough, viscous effects are important only in the boundary layer
regions near the object (and in the wake region behind the object). The boundary layer is
needed to allow for the no-slip boundary condition that requires the fluid to cling to any
solid surface that it flows past. Outside of the boundary layer the velocity gradients normal
to the flow are relatively small, and the fluid acts as if it were inviscid, even though the
viscosity is not zero. A necessary condition for this structure of the flow is that the Reynolds
number be large.

9.2.1 Boundary Layer Structure and Thickness on a Flat Plate

This section considers the situation in which the boundary layer is formed on a long flat
plate along which flows a viscous, incompressible fluid as is shown in Fig. 9.6. For a finite-
length plate, it is clear that the plate length, �, can be used as the characteristic length, with
the Reynolds number as Re � U�/�. For the infinitely long flat plate extending from x �
0 to , it is not obvious how to define the Reynolds number because there is no char-
acteristic length. The plate has no thickness and is not of finite length!

For an infinitely long plate we use x, the coordinate distance along the plate from the
leading edge, as the characteristic length and define the Reynolds number as Rex � Ux/�.
Thus, for any fluid or upstream velocity the Reynolds number will be sufficiently large for
boundary layer type flow (i.e., Fig. 9.4c) if the plate is long enough. Physically, this means
that the flow situations illustrated in Fig. 9.4 could be thought of as occurring on the same
plate but should be viewed by looking at longer portions of the plate as we step away from
the plate to see the flows in Fig. 9.4a, 9.4b, and 9.4c, respectively. If the plate is sufficiently
long, the Reynolds number Re � U�/� is sufficiently large so that the flow takes on its
boundary layer character (except very near the leading edge).

An appreciation of the structure of the boundary layer flow can be obtained by con-
sidering what happens to a fluid particle that flows into the boundary layer. As is indicated
in Fig. 9.6, a small rectangular particle retains its original shape as it flows in the uniform
flow outside of the boundary layer. Once it enters the boundary layer, the particle begins
to distort because of the velocity gradient within the boundary layer—the top of the parti-
cle has a larger speed than its bottom. Near the leading edge of the plate there is laminar
boundary layer flow.

x � q

F I G U R E  9.6 Distortion of a fluid particle as it flows within the
boundary layer.

δ

U U U U

Fluid
particle

Leading
edge
x = 0

Laminar boundary
layer

Turbulent boundary
layer

x

V9.3 Laminar
boundary layer
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9.2 Boundary Layer Characteristics 329

At some distance downstream from the leading edge, the boundary layer flow becomes
turbulent and the fluid particles become greatly distorted because of the random, irregular
nature of the turbulence. The transition from laminar to turbulent boundary layer flow
occurs at a critical value of the Reynolds number, Rex,cr on the order of 2 � 105 to 3 �
106, depending on the roughness of the surface and the amount of turbulence in the upstream
flow, as discussed in Section 9.2.4.

The purpose of the boundary layer is to allow the fluid to change its velocity from the
upstream value of U to zero on the surface. Thus, V � 0 at y � 0 and V � U î at the edge of
the boundary layer, with the velocity profile, u � u(x, y) bridging the boundary layer thickness.
This boundary layer characteristic occurs in a variety of flow situations, not just on flat
plates. For example, boundary layers form on the surfaces of cars, in the water running
down the gutter of the street, and in the atmosphere as the wind blows across the surface
of the earth (land or water).

V9.4 Laminar/
turbulent transition

F l u i d s  i n  t h e  N e w s

The albatross: Nature’s aerodynamic solution for long
flights The albatross is a phenomenal seabird that soars just
above ocean waves, taking advantage of the local boundary
layer to travel incredible distances with little to no wing flap-
ping. This limited physical exertion results in minimal energy
consumption and, combined with aerodynamic optimization,
allows the albatross to easily travel 1000 km (620 miles) per
day, with some tracking data showing almost double that
amount. The albatross has high aspect ratio wings (up to 11 ft
in wingspan) and a lift-to-drag ratio (l/d) of approximately
27, both similar to high-performance sailplanes. With this

aerodynamic configuration, the albatross then makes use of a
technique called “dynamic soaring” to take advantage of the
wind profile over the ocean surface. Based on the boundary
layer profile, the albatross uses the rule of dynamic soaring,
which is to climb when pointed upwind and dive when pointed
downwind, thus constantly exchanging kinetic and potential
energy. Though the albatross loses energy to drag, it can peri-
odically regain energy due to vertical and directional motions
within the boundary layer by changing local airspeed and di-
rection. This is not a direct line of travel, but it does provide
the most fuel-efficient method of long-distance flight.

We define the boundary layer thickness, �, as that distance from the plate at which
the fluid velocity is within some arbitrary value of the upstream velocity. Typically, as indi-
cated in Fig. 9.7a,

where

To remove this arbitrariness (i.e., what is so special about 99%; why not 98%?), the fol-
lowing definitions are introduced. Figure 9.7b shows two velocity profiles for flow past a flat
plate—one if there were no viscosity (a uniform profile) and the other if there were viscosity
and zero slip at the wall (the boundary layer profile). Because of the velocity deficit, U � u,

u � 0.99U� � y

F I G U R E  9.7 Boundary layer thickness: (a) standard boundary
layer thickness and (b) boundary layer displacement thickness.

U

U U
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δ

a b

Equal
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  = 0
u = U
μ

  ≠ 0
u = u(y)
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U – u
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within the boundary layer, the flowrate across section b–b is less than that across section a–a.
However, if we displace the plate at section a–a by an appropriate amount �*, the boundary
layer displacement thickness, the flowrate across each section will be identical. This is true if

where b is the plate width. Thus,

(9.3)

The displacement thickness represents the amount that the thickness of the body must
be increased so that the fictitious uniform inviscid flow has the same mass flowrate proper-
ties as the actual viscous flow. It represents the outward displacement of the streamlines
caused by the viscous effects on the plate.

Another boundary layer thickness definition, the boundary layer momentum thickness,
�, is often used when determining the drag on an object. Again because of the velocity deficit,
U � u, in the boundary layer, the momentum flux across section b–b in Fig. 9.7 is less than
that across section a–a. This deficit in momentum flux for the actual boundary layer flow is
given by

which by definition is the momentum flux in a layer of uniform speed U and thickness �.
That is,

or

(9.4)

All three boundary layer thickness definitions, �, �*, and �, are of use in boundary layer
analyses.

9.2.2 Prandtl/Blasius Boundary Layer Solution

In theory, the details of viscous incompressible flow past any object can be obtained by
solving the governing Navier–Stokes equations discussed in Section 6.8.2. For steady,
two-dimensional laminar flows with negligible gravitational effects, these equations (Eqs.
6.120a, b, and c) reduce to the following

(9.5)

(9.6)

which express Newton’s second law. In addition, the conservation of mass equation, Eq. 6.31,
for incompressible flow is

(9.7)
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9.2 Boundary Layer Characteristics 331

The appropriate boundary conditions are that the fluid velocity far from the body is the
upstream velocity and that the fluid sticks to the solid body surfaces. Although the mathe-
matical problem is well-posed, no one has obtained an analytical solution to these equa-
tions for flow past any shaped body!

By using boundary layer concepts introduced in the previous sections, Prandtl was
able to impose certain approximations (valid for large Reynolds number flows) and thereby
to simplify the governing equations. In 1908, H. Blasius, one of Prandtl’s students, was able
to solve these simplified equations for the boundary layer flow past a flat plate parallel to
the flow. Details may be found in the literature (Refs. 1, 2, and 3).

From the Blasius solution it is found that the boundary layer thickness is

(9.8)

or

where Rex � Ux/�. It can also be shown that the displacement and momentum thicknesses
are given by

(9.9)

and

(9.10)

As postulated, the boundary layer is thin provided that Rex is large (i.e., �/x S 0 as
Rex S �).

With the velocity profile known it is an easy matter to determine the wall shear stress,
�w � �(�u/�y)y�0, where the velocity gradient is evaluated at the plate. The value of �u/�y
at y � 0 can be obtained from the Blasius solution to give

(9.11)

As indicated by Eq. 9.11 and illustrated in the figure in the margin, the shear stress decreases
with increasing x because of the increasing thickness of the boundary layer—the velocity
gradient at the wall decreases with increasing x. Also, �w varies as U3/2, not as U as it does
for fully developed laminar pipe flow.

For a flat plate of length � and width b, the net friction drag, df , can be expressed
in terms of the friction drag coefficient, CDf , as

(9.12)

For the Blasius solution Eq. 9.12 gives

where Re� � U�/� is the Reynolds number based on the plate length.

CD f �
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9.2.3 Momentum Integral Boundary Layer Equation 
for a Flat Plate

One of the important aspects of boundary layer theory is determination of the drag caused
by shear forces on a body. As discussed in the previous section, such results can be obtained
from the governing differential equations for laminar boundary layer flow. Since these solu-
tions are extremely difficult to obtain, it is of interest to have an alternative approxi-
mate method. The momentum integral method described in this section provides such
an alternative.

We consider the uniform flow past a flat plate and the fixed control volume as shown
in Fig. 9.8. In agreement with advanced theory and experiment, we assume that the pres-
sure is constant throughout the flow field. The flow entering the control volume at the lead-
ing edge of the plate [section (1)] is uniform, whereas the velocity of the flow exiting the
control volume [section (2)] varies from the upstream velocity at the edge of the boundary
layer to zero velocity on the plate.

Fluid adjacent to the plate makes up the lower portion of the control surface. The upper
surface coincides with the streamline just outside the edge of the boundary layer at section
(2). It need not (in fact, does not) coincide with the edge of the boundary layer except at
section (2). If we apply the x component of the momentum equation (Eq. 5.17) to the steady
flow of fluid within this control volume we obtain

Because the flow is uniform over the inlet, section (1), it follows that

where b is the plate width. Because of the variable velocity over the outlet, section (2), we
can write the outlet, momentum flowrate as

Hence, the x component of the momentum equation can be written as

(9.13)

In addition the net force that the plate exerts on the fluid is the drag, d, where

(9.14)a Fx � �d � ��
plate

 �w dA � �b �
plate

 �w dx

a Fx � �b�
�

0

u 
2 dy � �U 

2bh

a u2�A2u2 � ��
122

u2 dA � �b�
�

0

u2 dy

a u1�A1u1 � �U 
2bh

a Fx �a u2 
�A2u2 �a u1�A1u1
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F I G U R E  9.8 Control volume used in derivation of the momentum
integral equation for boundary layer flow.
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9.2 Boundary Layer Characteristics 333

Thus, by combining Eqs. 9.13 and 9.14,

(9.15)

Although the height h is not known, it is known that for conservation of mass the
flowrate through section (1) must equal that through section (2), or

which can be written as

(9.16)

Thus, by combining Eqs. 9.15 and 9.16 we obtain the drag in terms of the deficit of momen-
tum flux across the outlet of the control volume as

(9.17)

A typical boundary layer profile and the corresponding integrand of the integral in Eq. 9.17
are shown in the figure in the margin.

If the flow were inviscid, the drag would be zero, since we would have u ≡ U and
the right-hand side of Eq. 9.17 would be zero. (This is consistent with the fact that �w � 0
if � � 0.) Equation 9.17 points out the important fact that boundary layer flow on a flat
plate is governed by a balance between shear drag (the left-hand side of Eq. 9.17) and a
decrease in the momentum of the fluid (the right-hand side of Eq. 9.17). By comparing
Eqs. 9.17 and 9.4 we see that the drag can be written in terms of the momentum thick-
ness, �, as

(9.18)

Note that this equation is valid for laminar or turbulent flows.
The shear stress distribution can be obtained from Eq. 9.18 by differentiating both

sides with respect to x to obtain

(9.19)

Since dd� �wb dx (see Eq. 9.14), it follows that

(9.20)

Hence, by combining Eqs. 9.19 and 9.20 we obtain the momentum integral equation for the
boundary layer flow on a flat plate

(9.21)

The usefulness of this relationship lies in the ability to obtain approximate boundary
layer results easily using rather crude assumptions. This method is illustrated in
Example 9.2.

�w � �U2 
d™
dx

dd

dx
� b�w

dd

dx
� �bU 2 

d™
dx
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334 Chapter 9 ■ Flow over Immersed Bodies

GIVEN Consider the laminar flow of an incompressible
fluid past a flat plate at y � 0. The boundary layer velocity
profile is approximated as u � Uy/� for 0 � y � � and u � U
for y � �, as is shown in Fig. E9.2. 

FIND Determine the shear stress by using the momentum
integral equation. Compare these results with the Blasius re-
sults given by Eq. 9.11.

Momentum Integral Boundary Layer EquationEXAMPLE 9.2

SOLUTION

This can be integrated from the leading edge of the plate,
x � 0, where � � 0 to an arbitrary location x where the bound-
ary layer thickness is �. The result is

or

(4)

Note that this approximate result (i.e., the velocity profile is
not actually the simple straight line we assumed) compares 
favorably with the (much more laborious to obtain) Blasius 
result given by Eq. 9.8.

The wall shear stress can also be obtained by combining
Eqs. 1, 3, and 4 to give

(Ans)

Again this approximate result is close (within 13%) to the
Blasius value of �w given by Eq. 9.11.

�w � 0.289U3/2 
B

��

x

� � 3.46 
B

�x

U

�2

2
�

6�

�U
 x

From Eq. 9.21 the shear stress is given by

(1)

while for laminar flow we know that �w � �(�u/�y)y �0. For
the assumed profile we have

(2)

and from Eq. 9.4

or

(3)

Note that as yet we do not know the value of � (but suspect that
it should be a function of x).

By combining Eqs. 1, 2, and 3 we obtain the following dif-
ferential equation for �:

or
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F I G U R E  E9.2

y

U u0

u = Uy/δ

δ

u = U

9.2.4 Transition from Laminar to Turbulent Flow

The analytical results given in Section 9.2.2 are restricted to laminar boundary layer
flows along a flat plate with zero pressure gradient. They agree quite well with experi-
mental results up to the point where the boundary layer flow becomes turbulent, which
will occur for any free stream velocity and any fluid provided the plate is long enough.
This is true because the parameter that governs the transition to turbulent flow is the
Reynolds number—in this case the Reynolds number based on the distance from the
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9.2 Boundary Layer Characteristics 335

leading edge of the plate, Rex � Ux/�. Typical boundary layer flow characteristics dif-
fer depending on whether the flow is laminar or turbulent. For example, boundary layer
thickness and wall shear stress are different in these two regimes, as shown in the mar-
ginal figure.

The value of the Reynolds number at the transition location is a rather complex
function of various parameters involved, including the roughness of the surface, the cur-
vature of the surface (e.g., a flat plate or a sphere), and some measure of the disturbances
in the flow outside the boundary layer. On a flat plate with a sharp leading edge in a typ-
ical airstream, the transition takes place at a distance x from the leading edge given by
Rex,cr � 2 � 105 to 3 � 106. Unless otherwise stated, we will use Rex,cr � 5 � 105 in our
calculations.

Transition from laminar to turbulent flow also involves a noticeable change in the
shape of the boundary layer velocity profile. Typical profiles obtained in the neighborhood
of the transition location are indicated in Fig. 9.9. Relative to laminar profiles, turbulent
profiles are flatter, have a larger velocity gradient at the wall, and produce a larger bound-
ary layer thickness.

F I G U R E  9.9 Typical
boundary layer profiles on a flat plate
for laminar, transitional, and turbulent
flow (Ref. 1).
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 f

t
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τ w
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Laminar Turbulent
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V9.5 Transition on
flat plate

GIVEN A fluid flows steadily past a flat plate with a veloc-
ity of U � 10 ft/s. 

FIND At approximately what location will the boundary layer
become turbulent, and how thick is the boundary layer at that point
if the fluid is water at 60 �F, standard air, or glycerin at 68 �F?

Boundary Layer TransitionEXAMPLE 9.3
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9.2.5 Turbulent Boundary Layer Flow

The structure of turbulent boundary layer flow is very complex, random, and irregular. It
shares many of the characteristics described for turbulent pipe flow in Section 8.3. In par-
ticular, the velocity at any given location in the flow is unsteady in a random fashion.
The flow can be thought of as a jumbled mix of intertwined eddies (or swirls) of different
sizes (diameters and angular velocities). The figure in the margin shows a laser-induced
fluorescence visualization of a turbulent boundary layer on a flat plate (side view). The
various fluid quantities involved (i.e., mass, momentum, energy) are convected down-
stream in the free-stream direction as in a laminar boundary layer. For turbulent flow they
are also convected across the boundary layer (in the direction perpendicular to the plate)
by the random transport of finite-sized fluid particles associated with the turbulent eddies.
There is considerable mixing involved with these finite-sized eddies—considerably
more than is associated with the mixing found in laminar flow where it is confined to
the molecular scale. Consequently, the shear force for turbulent boundary layer flow is
considerably greater than it is for laminar boundary layer flow (see Section 8.3.2).

There are no “exact” solutions for turbulent boundary layer flow. As discussed in Sec-
tion 9.2.2, it is possible to solve the Prandtl boundary layer equations for laminar flow past
a flat plate to obtain the Blasius solution. Since there is no precise expression for the shear
stress in turbulent flow (see Section 8.3), solutions are not available for turbulent flow. Thus,
it is necessary to use some empirical relationship for the wall shear stress and correspond-
ing drag coefficient.

In general, the drag coefficient for a flat plate of length �, CDf � df /(1
—

2 �U2A), is a
function of the Reynolds number, Re�, and the relative roughness, �/�. The results of numer-
ous experiments covering a wide range of the parameters of interest are shown in Fig. 9.10.
For laminar boundary layer flow the drag coefficient is a function of only the Reynolds
number—surface roughness is not important. This is similar to laminar flow in a pipe. How-
ever, for turbulent flow, the surface roughness does affect the shear stress and, hence, the
drag coefficient. This is similar to turbulent pipe flow. Values of the roughness, �, for dif-
ferent materials can be obtained from Table 8.1.

336 Chapter 9 ■ Flow over Immersed Bodies

SOLUTION

where � is in ft2/s and xcr and �cr are in feet. The values of the
kinematic viscosity obtained from Tables 1.4 to 1.6 are listed in
Table E9.3 along with the corresponding xcr and �cr.

COMMENT Laminar flow can be maintained on a longer
portion of the plate if the viscosity is increased. However, the
boundary layer flow eventually becomes turbulent, provided
the plate is long enough. Similarly, the boundary layer thick-
ness is greater if the viscosity is increased.

For any fluid, the laminar boundary layer thickness is found
from Eq. 9.8 as

The boundary layer remains laminar up to

Thus, if we assume Rex,cr � 5 � 105 we obtain

and

�cr � ��x�xcr
� 5 c

�

10
 15 � 104 �2 d

1/2

� 354 �

xcr �
5 � 105

10 ft /s
 � � 5 � 104 �

xcr �
�Rex,cr

U

� � 5 
B

�x

U
TA B L E E 9 . 3

Fluid ( ) (ft) (ft)

Water 0.605 0.00428
Air 7.85 0.0556
Glycerin 640.0 4.53 1.28 � 10�2

1.57 � 10�4

1.21 � 10�5

�crxcrft2�sN

(Ans)

Plate
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9.2 Boundary Layer Characteristics 337

The drag coefficient diagram of Fig. 9.10 (boundary layer flow) shares many charac-
teristics in common with the familiar Moody diagram (pipe flow) of Fig. 8.10, even though
the mechanisms governing the flow are quite different. Fully developed horizontal pipe flow
is governed by a balance between pressure forces and viscous forces. The fluid inertia
remains constant throughout the flow. Boundary layer flow on a horizontal flat plate is gov-
erned by a balance between inertia effects and viscous forces. The pressure remains con-
stant throughout the flow.

It is often convenient to have an equation for the drag coefficient as a function of the
Reynolds number and relative roughness rather than the graphical representation given in
Fig. 9.10. Although there is not one equation valid for the entire Re�–e/� range, the equa-
tions presented in Table 9.1 do work well for the conditions indicated.

0.002

      0

0.004

0.006

0.008

0.010

0.012

105 106 107 108 109

Re�

C
D

f

Turbulent

Completely
turbulent

1 × 10–3

      2 × 10–3

     = 3 × 10–3

      5 × 10–3

ε

Laminar

5 × 10–4

2 × 10–4

1 × 10–4

5 × 10–5

5 × 10–6

1 × 10–6

Transitional

Turbulent
smooth plate

2 × 10–5

�

0.014

F I G U R E  9.10 Friction drag coefficient for a flat
plate parallel to the upstream flow (Ref. 12, with permission).

TA B L E 9 . 1

Empirical Equations for the Flat Plate Drag Coefficient (Ref. 1)

Equation Flow Conditions

Laminar flow
Transitional with 
Turbulent, smooth plate
Completely turbulentCDf � 31.89 � 1.62 log1e�/2 4�2.5

CDf � 0.455� 1log Re/2
2.58

Rex,cr � 5 � 105CDf � 0.455� 1log Re/2
2.58 � 1700�Re/

CDf � 1.328� 1Re/2
0.5

GIVEN The water ski shown in Fig. E9.4a moves through
70 �F water with a velocity U.

FIND Estimate the drag caused by the shear stress on the
bottom of the ski for 0  U  30 ft/s.

Drag on a Flat PlateEXAMPLE 9.4
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9.2.6 Effects of Pressure Gradient

The boundary layer discussions in the previous parts of Section 9.2 have dealt with flow
along a flat plate in which the pressure is constant throughout the fluid. In general, when
a fluid flows past an object other than a flat plate, the pressure field is not uniform. As
shown in Fig. 9.5, if the Reynolds number is large, relatively thin boundary layers will
develop along the surfaces. Within these layers the component of the pressure gradient in
the streamwise direction (i.e., along the body surface) is not zero, although the pressure gra-
dient normal to the surface is negligibly small. That is, if we were to measure the pressure
while moving across the boundary layer from the body to the boundary layer edge, we would
find that the pressure is essentially constant. However, the pressure does vary in the direction

338 Chapter 9 ■ Flow over Immersed Bodies

SOLUTION

The approximate location of the transition from laminar to
turbulent boundary layer flow as defined by Rex,cr � �Uxcr /� �
5 � 105 is indicated in Fig. E9.4b. Up to U � 1.31 ft/s the en-
tire boundary layer is laminar. The fraction of the boundary
layer that is laminar decreases as U increases until only the
front 0.18 ft is laminar when U � 30 ft/s.

For anyone who has water skied, it is clear that it can re-
quire considerably more force to be pulled along at 30 ft/s than
the 2 � 4.88 lb � 9.76 lb (two skis) indicated in Fig. E9.4b.
As is discussed in Section 9.3, the total drag on an object such
as a water ski consists of more than just the friction drag.
Other components, including pressure drag and wave-making
drag, can add considerably to the total resistance.

Clearly the ski is not a flat plate, and it is not aligned exactly
parallel to the upstream flow. However, we can obtain a reason-
able approximation to the shear force using flat plate results.
That is, the friction drag, df , caused by the shear stress on the
bottom of the ski (the wall shear stress) can be determined as

With A � �b � 4 ft � 0.5 ft � 2 ft2, � � 1.94 slugs/ft3, and
� � 2.04 � 10�5 lb s/ft2 (see Table B.1) we obtain

(1)

where df and U are in pounds and feet per second, respectively.
The friction coefficient, CDf , can be obtained from Fig.

9.10 or from the appropriate equations given in Table 9.1. As
we will see, for this problem, much of the flow lies within the
transition regime where both laminar and turbulent portions
of the boundary layer flow occupy comparable lengths of
the plate. We choose to use the values of CDf from the table.

For the given conditions we obtain

where U is in feet per second. With U � 10 ft/s, or Re� �
3.80 �106, we obtain from Table 9.1 CDf � 0.455/(log Re�)

2.58 �
1700/Re� � 0.00308. From Eq. 1 the corresponding drag is

By covering the range of upstream velocities of interest we ob-
tain the results shown in Fig. E9.4b.

COMMENTS If Re � 1000, the results of boundary layer
theory are not valid—inertia effects are not dominant enough
and the boundary layer is not thin compared with the length of
the plate. For our problem this corresponds to U � 2.63 �
10�3 ft/s. For all practical purposes U is greater than this
value, and the flow past the ski is of the boundary layer type.

df � 1.941102210.003082 � 0.598 lb

Re/ �
�U/

�
�
11.94 slugs/ft32 14 ft2U

2.04 � 10�5 lb # s/ft2 � 3.80 � 105 U

 � 1.94 U2CDf
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2 11.94 slugs/ft32 12.0 ft22U 2CDf
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F I G U R E  E9.4
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9.2 Boundary Layer Characteristics 339

along the body surface if the body is curved, as shown by the figure in the margin. The
variation in the free-stream velocity, Ufs, the fluid velocity at the edge of the boundary layer,
is the cause of the pressure gradient in the boundary layer. The characteristics of the entire
flow (both within and outside of the boundary layer) are often highly dependent on the pres-
sure gradient effects on the fluid within the boundary layer.

For a flat plate parallel to the upstream flow, the upstream velocity (that far ahead of
the plate) and the free-stream velocity (that at the edge of the boundary layer) are equal—
U � Ufs. This is a consequence of the negligible thickness of the plate. For bodies of nonzero
thickness, these two velocities are different. This can be seen in the flow past a circular cylin-
der of diameter D. The upstream velocity and pressure are U and p0, respectively. If the fluid
were completely inviscid (� � 0), the Reynolds number would be infinite (Re � �UD/� � �)
and the streamlines would be symmetrical, as are shown in Fig. 9.11a. The fluid velocity
along the surface would vary from Ufs � 0 at the very front and rear of the cylinder (points
A and F are stagnation points) to a maximum of Ufs � 2U at the top and bottom of the cylin-
der (point C). This is also indicated in the figure in the margin. The pressure on the surface
of the cylinder would be symmetrical about the vertical midplane of the cylinder, reaching
a maximum value of p0 � �U2/2 (the stagnation pressure) at both the front and the back of
the cylinder, and a minimum of p0 � 3�U2/2 at the top and bottom of the cylinder. The pres-
sure and free-stream velocity distributions are shown in Figs. 9.11b and 9.11c. Because of
the absence of viscosity (therefore, �w � 0) and the symmetry of the pressure distribution
for inviscid flow past a circular cylinder, it is clear that the drag on the cylinder is zero.

Consider large Reynolds number flow of a real (viscous) fluid past a circular cylin-
der. As discussed in Section 9.1.2, we expect the viscous effects to be confined to thin
boundary layers near the surface. This allows the fluid to stick (V � 0) to the surface—a

A F

C
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p0 +      U 21
2

p0 –      U 21
2

p0 –   U 2

p0 –      U 23
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U

0
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Ufs

U, p0
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(b) (c)

ρ
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ρ

F I G U R E  9.11 Inviscid flow past a circular
cylinder: (a) streamlines for the flow if there were no viscous
effects, (b) pressure distribution on the cylinder’s surface, and
(c) free-stream velocity on the cylinder’s surface.
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necessary condition for any fluid, provided . The basic idea of boundary layer the-
ory is that the boundary layer is thin enough so that it does not greatly disturb the flow
outside the boundary layer. Based on this reasoning, for large Reynolds numbers the flow
throughout most of the flow field would be expected to be as is indicated in Fig. 9.11a, the
inviscid flow field.

The pressure distribution indicated in Fig. 9.11b is imposed on the boundary layer
flow along the surface of the cylinder. In fact, there is negligible pressure variation across
the thin boundary layer so that the pressure within the boundary layer is that given by the
inviscid flow field. This pressure distribution along the cylinder is such that the stationary
fluid at the nose of the cylinder (Ufs � 0 at � � 0) is accelerated to its maximum velocity
(Ufs � 2U at � � 90�) and then is decelerated back to zero velocity at the rear of the cylin-
der (Ufs � 0 at � � 180�). This is accomplished by a balance between pressure and iner-
tia effects; viscous effects are absent for the inviscid flow outside the boundary layer.

Physically, in the absence of viscous effects, a fluid particle traveling from the front
to the back of the cylinder coasts down the “pressure hill” from � � 0 to � � 90� (from
point A to C in Fig. 9.11b) and then back up the hill to � � 180� (from point C to F) with-
out any loss of energy. There is an exchange between kinetic and pressure energy, but there
are no energy losses. The same pressure distribution is imposed on the viscous fluid within
the boundary layer. The decrease in pressure in the direction of flow along the front half of
the cylinder is termed a favorable pressure gradient. The increase in pressure in the direc-
tion of flow along the rear half of the cylinder is termed an adverse pressure gradient.

Consider a fluid particle within the boundary layer indicated in Fig. 9.12. In its attempt
to flow from A to F it experiences the same pressure distribution as the particles in the free
stream immediately outside the boundary layer—the inviscid flow field pressure. However,
because of the viscous effects involved, the particle in the boundary layer experiences a loss
of energy as it flows along. This loss means that the particle does not have enough energy
to coast all of the way up the pressure hill (from C to F) and to reach point F at the rear
of the cylinder. This kinetic energy deficit is seen in the velocity profile detail at point C,
shown in Fig. 9.12a. Because of friction, the boundary layer fluid cannot travel from the
front to the rear of the cylinder. (This conclusion can also be obtained from the concept
that due to viscous effects the particle at C does not have enough momentum to allow it to
coast up the pressure hill to F.)

Thus, the fluid flows against the increasing pressure as far as it can, at which point
the boundary layer separates from (lifts off) the surface, as indicated by the figures in the
margin. This boundary layer separation is indicated in Fig. 9.12a. Typical velocity profiles
at representative locations along the surface are shown in Fig. 9.12b. At the separation loca-
tion (profile D), the velocity gradient at the wall and the wall shear stress are zero. Beyond
that location (from D to E) there is reverse flow in the boundary layer.

As is indicated in Fig. 9.12c, because of boundary layer separation, the average pres-
sure on the rear half of the cylinder is considerably less than that on the front half. Thus,
a large pressure drag is developed, even though (because of small viscosity) the viscous
shear drag may be quite small.

� � 0
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F l u i d s  i n  t h e  N e w s

Increasing truck mpg A large portion of the aerodynamic
drag on semis (tractor-trailer rigs) is a result of the low pressure
on the flat back end of the trailer. Researchers have recently de-
veloped a drag-reducing attachment that could reduce fuel
costs on these big rigs by 10%. The device consists of a set of
flat plates (attached to the rear of the trailer) that fold out into

a box shape, thereby making the originally flat rear of the
trailer a somewhat more “aerodynamic” shape. Based on thor-
ough wind tunnel testing and actual tests conducted with a
prototype design used in a series of cross-country runs, it is es-
timated that trucks using the device could save approximately
$4,000 a year in fuel costs.

Separation
location
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9.3 Drag 341

The location of separation, the width of the wake region behind the object, and the
pressure distribution on the surface depend on the nature of the boundary layer flow. Com-
pared with a laminar boundary layer, a turbulent boundary layer flow has more kinetic
energy and momentum associated with it because (1) as is indicated in Fig. 9.9, the veloc-
ity profile is fuller, more nearly like the ideal uniform profile, and (2) there can be consid-
erable energy associated with the swirling, random components of the velocity that do not
appear in the time-averaged x component of velocity. Thus, as is indicated in Fig. 9.12c,
the turbulent boundary layer can flow farther around the cylinder (farther up the pressure
hill) before it separates than the laminar boundary layer.

F I G U R E  9.12 Boundary layer characteristics on a circular cylinder: (a) boundary
layer separation location, (b) typical boundary layer velocity profiles at various locations on the 
cylinder, and (c) surface pressure distributions for inviscid flow and boundary layer flow.
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9.3 Drag

As discussed in Section 9.1, any object moving through a fluid will experience a drag, d—
a net force in the direction of flow due to the pressure and shear forces on the surface of
the object. This net force, a combination of flow direction components of the normal and

V9.6 Snow drifts
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tangential forces on the body, can be determined by use of Eqs. 9.1 and 9.2, provided the
distributions of pressure, p, and wall shear stress, �w, are known. Only in very rare instances
can these distributions be determined analytically.

Most of the information pertaining to drag on objects is a result of numerous exper-
iments with wind tunnels, water tunnels, towing tanks, and other ingenious devices used to
measure the drag on scale models. Typically, the result for a given shaped object is a drag
coefficient, CD, where

(9.22)

and CD is a function of other dimensionless parameters such as Reynolds number, Re, Mach
number, Ma, Froude number, Fr, and relative roughness of the surface, e/�. That is,

9.3.1 Friction Drag

Friction drag, df , is that part of the drag that is due directly to the shear stress, �w, on the
object. It is a function of not only the magnitude of the wall shear stress but also of the
orientation of the surface on which it acts. This is indicated by the factor �w sin � in Eq. 9.1.
For highly streamlined bodies or for low Reynolds number flow most of the drag may be
due to friction.

The friction drag on a flat plate of width b and length � oriented parallel to the upstream
flow can be calculated from

where CDf is the friction drag coefficient. The value of CDf is given as a function of Reynolds
number, Re� � �U�/�, and relative surface roughness, �/�, in Fig. 9.10 and Table 9.1.

Most objects are not flat plates parallel to the flow; instead, they are curved surfaces
along which the pressure varies. The precise determination of the shear stress along the sur-
face of a curved body is quite difficult to obtain. Although approximate results can be
obtained by a variety of techniques (Refs. 1, 2), these are outside the scope of this text.

9.3.2 Pressure Drag

Pressure drag, dp, is that part of the drag that is due directly to the pressure, p, on an
object. It is often referred to as form drag because of its strong dependency on the shape
or form of the object. Pressure drag is a function of the magnitude of the pressure and
the orientation of the surface element on which the pressure force acts. For example, the
pressure force on either side of a flat plate parallel to the flow may be very large, but
it does not contribute to the drag because it acts in the direction normal to the upstream
velocity. However, the pressure force on a flat plate normal to the flow provides the
entire drag.

As noted previously, for most bodies, there are portions of the surface that are paral-
lel to the upstream velocity, others normal to the upstream velocity, and the majority of
which are at some angle in between, as shown by the figure in the margin. The pressure
drag can be obtained from Eq. 9.1 provided a detailed description of the pressure distribu-
tion and the body shape is given. That is,

dp � �  p cos � dA

df � 1
2 �U 2b/CDf

CD � �1shape, Re, Ma, Fr, e//2

CD �
d

1
2 �U 2A
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9.3 Drag 343

which can be rewritten in terms of the pressure drag coefficient, CDp, as

(9.23)

Here Cp � (p � p0)/(�U2/2) is the pressure coefficient, where p0 is a reference pressure.
The level of the reference pressure, p0, does not influence the drag directly because the
net pressure force on a body is zero if the pressure is constant (i.e., p0) on the entire
surface.

9.3.3 Drag Coefficient Data and Examples

As discussed in previous sections, the net drag is produced by both pressure and shear stress
effects. In most instances these two effects are considered together and an overall drag coef-
ficient, CD, as defined in Eq. 9.22 is used. There is an abundance of such drag coefficient data
available in the literature. In this section we consider a small portion of this information for
representative situations. Additional data can be obtained from various sources (Refs. 4, 5).

Shape Dependence. Clearly the drag coefficient for an object depends on the shape
of the object, with shapes ranging from those that are streamlined to those that are blunt.
The drag on an ellipse with aspect ratio �/D, where D and � are the thickness and length
parallel to the flow, illustrates this dependence. The drag coefficient CD � d/(�U2bD/2),
based on the frontal area, A � bD, where b is the length normal to the flow, is as shown in
Fig. 9.13. The more blunt the body, the larger the drag coefficient. With �/D � 0 (i.e., a flat
plate normal to the flow) we obtain the flat plate value of CD � 1.9. With �/D � 1 the cor-
responding value for a circular cylinder is obtained. As �/D becomes larger, the value of CD

decreases.
For very large aspect ratios (�/D S ) the ellipse behaves as a flat plate parallel to

the flow. For such cases, the friction drag is greater than the pressure drag. For extremely
thin bodies (i.e., an ellipse with �/D S , a flat plate, or very thin airfoils) it is custom-
ary to use the planform area, A � b�, in defining the drag coefficient. The ellipse drag coef-
ficient based on the planform area, CD � d/(�U2b�/2), is also shown in Fig. 9.13. Clearly
the drag obtained by using either of these drag coefficients would be the same. They merely
represent two different ways to package the same information.

q

q

CDp �
dp

1
2 
�U 

2A
�

�p cos � dA

1
2 
�U 

2A
�

�Cp cos � dA

A

V9.7 Skydiving
practice

F I G U R E  9.13 Drag
coefficient for an ellipse with the
characteristic area either the frontal area,
A � bD, or the planform area, A � b
(Ref. 4).
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∞
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The amount of streamlining can have a considerable effect on the drag. Incredibly, the
drag on the two two-dimensional objects drawn to scale in Fig. 9.14 is the same. The width
of the wake for the streamlined strut is very thin, on the order of that for the much smaller-
diameter circular cylinder.

Reynolds Number Dependence. Another parameter on which the drag coefficient
can be very dependent is the Reynolds number. Low Reynolds number flows (Re  1) are
governed by a balance between viscous and pressure forces. Inertia effects are negligibly
small. In such instances the drag is expected to be a function of the upstream velocity, U,
the body size, �, and the viscosity, �. Thus, for a small grain of sand settling in a lake (see
marginal figure)

From dimensional considerations (see Section 7.7.1)

(9.24)

where the value of the constant C depends on the shape of the body. If we put Eq. 9.24 into
dimensionless form using the standard definition of the drag coefficient, CD � d/ �U2A, we
obtain

where Re � �U�/�. For a sphere it can be shown that CD � 24/Re, where � � D, the sphere
diameter. For most objects, the low Reynolds number flow results are valid up to a Reynolds
number of about 1.

CD �
constant

Re

1
2

d � C�/U

d � f 1U, /, �2
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F I G U R E  9.14 Two objects of considerably different size that have the same drag force:
and (a) circular cylinder CD � 1.2 and (b) streamlined strut CD � 0.12.

U, ρU, ρ

Diameter = D

(a) (b)

10 D

�a = �b

F l u i d s  i n  t h e  N e w s

At 12,600 mpg it doesn’t cost much to “fill ’er up” Typical
gas consumption for a Formula 1 racer, a sports car, and a
sedan is approximately 2 mpg, 15 mpg, and 30 mpg, respec-
tively. Thus, just how did the winning entry in the 2005 Shell
Eco-Marathon achieve an incredible 12,600 mpg? To be sure,
this vehicle is not as fast as a Formula 1 racer (although the
rules require it to average at least 15 mph), and it can’t carry as
large a load as your family sedan can (the vehicle has barely
enough room for the driver). However, by using a number of

clever engineering design considerations, this amazing fuel ef-
ficiency was obtained. The type (and number) of tires, the 
appropriate engine power and weight, the specific chassis de-
sign, and the design of the body shell are all important and in-
terrelated considerations. To reduce drag, the aerodynamic
shape of the high-efficiency vehicle was given special attention
through theoretical considerations and wind tunnel model test-
ing. The result is an amazing vehicle that can travel a long dis-
tance without hearing the usual “fill ’er up.” (See Problem 9.67.)

U

� = f(U, �, �)

Re < 1

�

�
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9.3 Drag 345

GIVEN While workers spray paint the ceiling of a room,
numerous small paint aerosols are dispersed into the air. Even-
tually these particles will settle out and fall to the floor or other
surfaces. Consider a small spherical paint particle of diameter
D � 1 � 10�5 m (or 10 �m) and specific gravity SG � 1.2.

FIND Determine the time it would take this particle to fall
8 ft from near the ceiling to the floor. Assume that the air
within the room is motionless.

SOLUTION

Low Reynolds Number Flow Drag

G. G. Stokes, a British mathematician and a physicist. By
combining Eqs. 1, 2, and 3, we obtain

Then, solving for U,

(4)

From Tables 1.5 and 1.7 we obtain , �air �
12.0 N/m3 and �air � 1.79 � 10�5 N s/m2. Thus, from Eq. 4
we obtain

or

Let tfall denote the time it takes for the particle to fall 8 ft. Thus,
since 8 ft is approximately 2.44 m,

Therefore, it will take over 11 minutes for the paint particle to
fall to the floor.

Since

we see that Re  1, and the form of the drag coefficient used
is valid.

COMMENTS By repeating the calculations for various
particle diameters, the results shown in Fig. E9.5b are ob-
tained. Note that very small particles fall extremely slowly.
In fact, particles in the general size range that can be in-
haled deeply into the lungs (on the order of 5 �m or less)

 � 0.00251

 Re �
�DU

�
�
11.23 kg/m32 11 � 10�5 m2 10.00365 m/s2

1.79 � 10�5 N # s/m2

tfall �
2.44 m

0.00365 m/s
� 668 s

U � 0.00365 m/s

U �
110�5 m22 3 11.22 19800 N/m32 � 112.0 N/m32 4

1811.79 � 10�5 N # s/m22

#
	H2O � 9800 N/m3

U �
D21SG	H2O � 	air2

18�air

SG 	H2O 



6
 D3 � 3
�airUD � 	air 




6
 D3

EXAMPLE 9.5

A free-body diagram of the particle (relative to the moving
particle) is shown in Fig. E9.5a. The particle moves down-
ward with a constant velocity U that is governed by a bal-
ance between the weight of the particle, the buoyancy
force of the surrounding air, FB, and the drag, of the air
on the particle.

d.
w,

From the free-body diagram, we obtain

where, if is the particle volume

(1)

and

(2)

We assume 1because of the smallness of the object2 that
the flow will be creeping flow with 
so that

or

(3)

We must eventually check to determine if the assumption that
Re  1 is valid. Equation 3 is called Stokes’s law in honor of

d � 3
�airUD

 d �
1

2
 �air U

2 



4
 D2CD �

1

2
 �airU

2
 



4
 D2

 a
24

�airUD��air
b

CD � 24�Re1Re 6 12

FB � 	airV� � 	air 



6
 D3

w � 	paintV� � SG 	H2O 



6
 D3

V�

w � d � FB

FB

d

w

U

F I G U R E  E9.5a
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Moderate Reynolds number flows tend to take on a boundary layer flow structure.
For such flows past streamlined bodies, the drag coefficient tends to decrease slightly with
Reynolds number. The CD � Re�1/2 dependence for a laminar boundary layer on a flat
plate (see Table 9.1) is such an example. Moderate Reynolds number flows past blunt bod-
ies generally produce drag coefficients that are relatively constant. The CD values for the
spheres and circular cylinders shown in Fig. 9.15a indicate this character in the range 103 
Re  105.

The structure of the flow field at selected Reynolds numbers indicated in Fig. 9.15a
is shown in Fig. 9.15b. For a given object there is a wide variety of flow situations, depend-
ing on the Reynolds number involved. The curious reader is strongly encouraged to study
the many beautiful photographs and videos of these (and other) flow situations found in
Refs. 6 and 19.

For many shapes there is a sudden change in the character of the drag coefficient
when the boundary layer becomes turbulent. This is illustrated in Fig. 9.10 for the flat plate
and in Fig. 9.15 for the sphere and the circular cylinder. The Reynolds number at which
this transition takes place is a function of the shape of the body.

For streamlined bodies, the drag coefficient increases when the boundary layer
becomes turbulent because most of the drag is due to the shear force, which is greater for
turbulent flow than for laminar flow. However, the drag coefficient for a relatively blunt
object, such as a cylinder or sphere, actually decreases when the boundary layer becomes
turbulent. As discussed in Section 9.2.6, a turbulent boundary layer can travel further along
the surface into the adverse pressure gradient on the rear portion of the cylinder before
separation occurs. The result is a thinner wake and smaller pressure drag for turbulent
boundary layer flow. This is indicated in Fig. 9.15 by the sudden decrease in CD for 105 
Re  106.

For extremely blunt bodies, such as a flat plate perpendicular to the flow, the flow
separates at the edge of the plate regardless of the nature of the boundary layer flow. Thus,
the drag coefficient shows very little dependence on the Reynolds number.

The drag coefficients for a series of two-dimensional bodies of varying bluntness are
given as a function of Reynolds number in Fig. 9.16. The characteristics described earlier
are evident.

346 Chapter 9 ■ Flow over Immersed Bodies

will remain airborne most of the working day, thus contin-
ually exposing workers to potential hazards. It is often the
smaller particles that cause the greatest health concerns,
particularly to individuals exposed day after day for many
years. In work environments that generate particle-laden
air, proper engineering controls are needed to reduce in-
halation exposures (e.g., appropriate ventilation) or, in ex-
treme cases, personal protective equipment (PPE, e.g., res-
pirator) may be required. PPE is considered a last resort
because in practice it is the least effective means to protect
workers. It is more effective and usually less expensive in
the long run to design out or control a problem with engi-
neering ingenuity—prevention through design.

F I G U R E  E9.5b
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Smooth sphere
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F I G U R E  9.15 (a) Drag coefficient as a function of Reynolds number for a smooth circu-
lar cylinder and a smooth sphere. (b) Typical flow patterns for flow past a circular cylinder at various
Reynolds numbers as indicated in (a).

V9.10 Flow past a
flat place

V9.11 Flow past an
ellipse
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F I G U R E  9.16 Character of the drag coefficient as a function of
the Reynolds number for objects with various degrees of streamlining, from a
flat plate normal to the upstream flow to a flat plate parallel to the flow (two-
dimensional flow) (Ref. 4).

GIVEN Hail is produced by the repeated rising and
falling of ice particles in the updraft of a thunderstorm, as is
indicated in Fig. E9.6a. When the hail becomes large
enough, the aerodynamic drag from the updraft can no
longer support the weight of the hail, and it falls from the
storm cloud.

FIND Estimate the velocity, U, of the updraft needed to
make D � 1.5-in.-diameter (i.e., “golf ball–sized”) hail.

SOLUTION

Terminal Velocity of a Falling Object

(2)

By using �ice � 1.84 slugs/ft3, �air � 2.38 � 10�3 slugs/ft3,
and D � 1.5 in. � 0.125 ft, Eq. 2 becomes

or

(3)U �
64.5

1CD

U � c
411.84 slugs/ft32 132.2 ft/s22 10.125 ft2

312.38 � 10�3 slugs/ft32CD

d
1/2

U � a
4

3
 
�ice

�air
 
gD

CD
b

1/2

EXAMPLE 9.6

As discussed in Example 9.5, for steady-state conditions a
force balance on an object falling through a fluid gives

where FB � 	air is the buoyant force of the air on the parti-
cle, w� 	ice is the particle weight, and d is the aerody-
namic drag. This equation can be rewritten as

(1)

With � 
D3/6 and because 	ice 	 	air (i.e.,w	 FB), Eq. 1
can be simplified to

V

1
2 �airU

2 



4
 D2CD �w � FB

V
V

w � d � FB

Anvil

Storm
movement

Ground

Hail
Updraft

Rain

40,000
to

50,000 ft Down
draft

F I G U R E  E9.6a
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Compressibility Effects. If the velocity of the object is sufficiently large, compress-
ibility effects become important and the drag coefficient becomes a function of the Mach num-
ber, Ma � U/c, where c is the speed of sound in the fluid. For low Mach numbers, Ma  0.5
or so, compressibility effects are unimportant and the drag coefficient is essentially indepen-
dent of Ma. However, for larger Mach number flows, the drag coefficient can be strongly
dependent on Ma.

For most objects, values of CD increase dramatically in the vicinity of Ma � 1 (i.e., sonic
flow). This change in character, indicated by Fig. 9.17, is due to the existence of shock waves
as indicated by the figure in the margin. Shock waves are extremely narrow regions in the flow
field across which the flow parameters change in a nearly discontinuous manner. Shock waves,
which cannot exist in subsonic flows, provide a mechanism for the generation of drag that is not
present in the relatively low-speed subsonic flows. More information on these important topics
can be found in standard texts about compressible flow and aerodynamics (Refs. 7, 8, and 18).

Surface Roughness. In general, for streamlined bodies, the drag increases with
increasing surface roughness. Great care is taken to design the surfaces of airplane wings to be
as smooth as possible, as protruding rivets or screw heads can cause a considerable increase in

roughness features. However, the calculated updraft velocities
are in agreement with measured values.

where U is in feet per second. To determine U, we must know
CD. Unfortunately, CD is a function of the Reynolds number (see
Fig. 9.15), which is not known unless U is known. Thus, we must
use an iterative technique similar to that done with the Moody
chart for certain types of pipe flow problems (see Section 8.5).

From Fig. 9.15 we expect that CD is on the order of 0.5.
Thus, we assume CD � 0.5 and from Eq. 3 obtain

The corresponding Reynolds number (assuming � � 1.57 �
10�4 ft2/s) is

For this value of Re we obtain CD � 0.5 from Fig. 9.15. Thus,
our assumed value of CD � 0.5 was correct. The correspond-
ing value of U is

(Ans)

COMMENTS By repeating the calculations for various
altitudes, z, above sea level (using the properties of the U.S.
Standard Atmosphere given in Appendix C), the results shown
in Fig. E9.6b are obtained. Because of the decease in density
with altitude, the hail falls even faster through the upper por-
tions of the storm than when it hits the ground.

Clearly, an airplane flying through such an updraft would feel
its effects (even if it were able to dodge the hail). As seen from
Eq. 2, the larger the hail, the stronger the necessary updraft. Hail-
stones greater than 6 in. in diameter have been reported. In real-
ity, a hailstone is seldom spherical and often not smooth. The
hailstone shown in Fig. E9.6c is larger than golf-ball sized and is
clearly ellipsoidal in shape with additional smaller-scale surface

U � 91.2 ft/s � 62.2 mph

Re �
UD

�
�

91.2 ft /s 10.125 ft2

1.57 � 10�4 ft2/s
� 7.26 � 104

U �
64.5

10.5
� 91.2 ft /s

140

120
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80

60

40

20

0

U
, 
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ph
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z, ft

(0, 62.2 mph)

F I G U R E  E9.6b

F I G U R E  E9.6c (Photograph courtesy 
of NOAA.)

Ma = 1.5
U

Ma = 3
U

Shock
wave
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F I G U R E  9.17
Drag coefficient as a function of
Mach number for supersonic
flow (adapted from Ref. 13).
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F I G U R E  9.18 The effect of surface roughness on the drag coefficient of a sphere 
in the Reynolds number range for which the laminar boundary layer becomes turbulent (Ref. 4).

the drag. However, for an extremely blunt body, such as a flat plate normal to the flow, the
drag is independent of the surface roughness, as the shear stress is not in the upstream flow
direction and contributes nothing to the drag.

For blunt bodies such as a circular cylinder or sphere, an increase in surface rough-
ness can actually cause a decrease in the drag. This is illustrated for a sphere in Fig. 9.18.
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GIVEN A well-hit golf ball (diameter D � 1.69 in.,
weight w� 0.0992 lb) can travel at U � 200 ft/s as it leaves
the tee. A well-hit table tennis ball (diameter D � 1.50 in.,
weight w� 0.00551 lb) can travel at U � 60 ft/s as it leaves
the paddle. 

FIND Determine the drag on a standard golf ball, a
smooth golf ball, and a table tennis ball for the conditions
given. Also determine the deceleration of each ball for these
conditions.

SOLUTION

Effect of Surface Roughness

for the smooth golf ball

(Ans)

and for the table tennis ball

(Ans)

The corresponding decelerations are a � d/m � gd/w,
where m is the mass of the ball. Thus, the deceleration relative
to the acceleration of gravity, a/g (i.e., the number of g’s decel-
eration), is a/g � d/w or

(Ans)

(Ans)

and

(Ans)
a

g
�

0.0263 lb

0.00551 lb
� 4.77 for the table tennis ball

a

g
�

0.378 lb

0.0992 lb
� 3.81 for the smooth golf ball

a

g
�

0.185 lb

0.0992 lb
� 1.86 for the standard golf ball

 � 0.0263 lb

 d �
1

2
 12.38 � 10�3 slugs/ft32 160 ft /s22 

�

4
 a

1.50

12
 ftb

2 

10.502

� 0.378 lb

 d �
1

2
 12.38 � 10�3 slugs/ft32 1200 ft /s22 

�

4
 a

1.69

12
 ftb

2 

10.512

EXAMPLE 9.7

For either ball, the drag can be obtained from

(1)

where the drag coefficient, CD, is given in Fig. 9.18 as a func-
tion of the Reynolds number and surface roughness. For the
golf ball in standard air

while for the table tennis ball

The corresponding drag coefficients are CD � 0.25 for the
standard golf ball, CD � 0.51 for the smooth golf ball, and
CD � 0.50 for the table tennis ball. Hence, from Eq. 1 for the
standard golf ball

(Ans) � 0.185 lb

 d �
1

2
 12.38 � 10�3 slugs/ft32 1200 ft /s22 

�

4
 a

1.69

12
 ftb

2

10.252

Re �
UD

�
�
160 ft /s2 11.50/12 ft2

1.57 � 10�4 ft2/s
� 4.78 � 104

Re �
UD

�
�
1200 ft /s2 11.69/12 ft2

1.57 � 10�4 ft2/s
� 1.79 � 105

d �
1

2
 �U 2 

�

4
 D2CD

As discussed in Section 9.2.6, when the Reynolds number reaches the critical value (Re �
3 � 105 for a smooth sphere), the boundary layer becomes turbulent and the wake region
behind the sphere becomes considerably narrower than if it were laminar (see Figs. 9.12
and 9.15). The result is a considerable drop in pressure drag with a slight increase in fric-
tion drag, combining to give a smaller overall drag (and CD).

The boundary layer can be tripped into turbulence at a smaller Reynolds number by
using a rough-surfaced sphere. For example, the critical Reynolds number for a golf ball is
approximately Re � 4 � 104. In the range 4 � 104 � Re � 4 � 105, the drag on the stan-
dard rough (i.e., dimpled) golf ball is considerably less (CDrough/CDsmooth � 0.25/0.5 � 0.5)
than for the smooth ball. As is shown in Example 9.7, this is precisely the Reynolds num-
ber range for well-hit golf balls—hence, a reason for dimples on golf balls. The Reynolds
number range for well-hit table tennis balls is less than Re � 4 � 104. Thus, table tennis
balls are smooth.
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352 Chapter 9 ■ Flow over Immersed Bodies

COMMENTS Note that there is a considerably smaller
deceleration for the rough golf ball than for the smooth one.
Because of its much larger drag-to-mass ratio, the table tennis
ball slows down relatively quickly and does not travel as far as
the golf ball. (Note that with U � 60 ft/s the standard golf ball
has a drag of d � 0.0200 lb and a deceleration of a/g �
0.202, considerably less than the a/g � 4.77 of the table tennis
ball. Conversely, a table tennis ball hit from a tee at 200 ft/s
would decelerate at a rate of a � 1740 ft/s2, or a/g � 54.1. It
would not travel nearly as far as the golf ball.)

By repeating the above calculations, the drag as a function
of speed for both a standard golf ball and a smooth golf ball is
shown in Fig. E9.7.

The Reynolds number range for which a rough golf ball
has smaller drag than a smooth one (i.e., 4 � 104 to 3.6 � 105)
corresponds to a flight velocity range of 45 � U � 400 ft/s.
This is comfortably within the range of most golfers. (The
fastest tee shot by top professional golfers is approxi-
mately 280 ft/s.) As discussed in Section 9.4.2, the dimples

(roughness) on a golf ball also help produce a lift (due to
the spin of the ball) that allows the ball to travel farther
than a smooth ball.

1.2

1

0.8

0.6

0.4

0.2

0

�
, 
lb

0 100 200 400 500

U, ft/s

300

Smooth
golf ball

Standard
golf ball

F I G U R E  E9.7

F l u i d s  i n  t h e  N e w s

Dimpled baseball bats For many years it has been known
that dimples on golf balls can create a turbulent boundary
layer and reduce the aerodynamic drag, allowing longer
drives than with smooth balls. Thus, why not put dimples on
baseball bats so that tomorrow’s baseball sluggers can swing
the bat faster and, therefore, hit the ball farther? MIT instruc-
tor Jeffery De Tullio pondered that question, performed

experiments with dimpled bats to determine the answer, and
received a patent for his dimpled bat invention. The result is
that a batter can swing a dimpled bat approximately 3 to 5%
faster than a smooth bat. Theoretically, this extra speed will
translate to an extra 10- to 15-ft distance on a long hit. (See
Problem 9.64.)

V9.12 Jet ski

�pole �flag

Froude Number Effects. Another parameter on which the drag coefficient may be
strongly dependent is the Froude number, As is discussed in Chapter 10, the
Froude number is a ratio of the free-stream speed to a typical wave speed on the interface of
two fluids, such as the surface of the ocean. An object moving on the surface, such as a ship,
often produces waves that require a source of energy to generate. This energy comes from the
ship and is manifest as a drag. [Recall that the rate of energy production (power) equals speed
times force.] The nature of the waves produced often depends on the Froude number of the
flow and the shape of the object—the waves generated by a water skier “plowing” through
the water at a low speed (low Fr) are different from those generated by the skier “planing”
along the surface at a high speed (larger Fr).

Composite Body Drag. Approximate drag calculations for a complex body can
often be obtained by treating the body as a composite collection of its various parts. For exam-
ple, the total force on a flagpole because of the wind (see the figure in the margin) can be
approximated by adding the aerodynamic drag produced by the various components
involved—the drag on the flag and the drag on the pole. In some cases considerable care must
be taken in such an approach because of the interactions between the various parts. It may

Fr � U/1g/.

c09FlowoverImmersedBodies.qxd  9/29/10  9:38 AM  Page 352
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GIVEN A 60-mph (i.e., 88-fps) wind blows past the water
tower shown in Fig. E9.8a.

FIND Estimate the moment (torque), M, needed at the base
to keep the tower from tipping over.

SOLUTION

Drag on a Composite Body

3 we obtain

and

From Eq. 1 the corresponding moment needed to prevent the
tower from tipping is

(Ans)

COMMENT The above result is only an estimate be-
cause (a) the wind is probably not uniform from the top of
the tower to the ground, (b) the tower is not exactly a com-
bination of a smooth sphere and a circular cylinder, (c) the
cylinder is not of infinite length, (d) there will be some in-
teraction between the flow past the cylinder and that past the
sphere so that the net drag is not exactly the sum of the two,
and (e) a drag coefficient value was obtained by extrapola-
tion of the given data. However, such approximate results
are often quite accurate.

 � 3.64 � 105 ft # lb

M � 3470 lb a50 ft �
40

2
 ftb � 4840 lb a

50

2
 ftb

� 4840 lb

dc � 0.512.38 � 10�3 slugs/ft32 188 ft /s22150 ft � 15 ft2 10.72

 � 3470 lb

ds � 0.512.38 � 10�3 slugs/ft32 188 ft /s22 



4
 140 ft2210.32

EXAMPLE 9.8

We treat the water tower as a sphere resting on a circular cylin-
der and assume that the total drag is the sum of the drag from
these parts. The free-body diagram of the tower is shown in
Fig. E9.8b. By summing moments about the base of the tower,
we obtain

(1)

where

(2)

and

(3)

are the drag on the sphere and cylinder, respectively. For stan-
dard atmospheric conditions, the Reynolds numbers are

and

The corresponding drag coefficients, CDs and CDc , can be ap-
proximated from Fig. 9.15 as

and 

Note that the value of CDs was obtained by an extrapola-
tion of the given data to Reynolds numbers beyond those
given (a potentially dangerous practice!). From Eqs. 2 and

CDc � 0.7CDs � 0.3

Rec �
UDc

�
�
188 ft /s2 115 ft2

1.57 � 10�4 ft2/s
� 8.41 � 106

Res �
UDs

�
�
188 ft /s2 140 ft2

1.57 � 10�4 ft2/s
� 2.24 � 107

dc �
1

2
 �U 2bDcCDc

ds �
1

2
 �U 2 




4
 D2

sCDs

M � ds ab �
Ds

2
b � dc a

b

2
b

F I G U R E  E9.8

�
s

�
c

b
 
+ D

s
/2

b/2

R
x

R
y

M

(b)(a)

�

U = 60 mph
   = 88 fps

D
s
 = 40 ft

D
c
 = 15 ft

b = 50 ft
D

c

D
s

b

Drag coefficient information for a very wide range of objects is available in the lit-
erature. Some of this information is given in Figs. 9.19, 9.20, and 9.21 for a variety of two-

not be correct to merely add the drag of the components to obtain the drag of the entire object,
although such approximations are often reasonable.
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D

R
Square rod

with rounded
corners

DR
Rounded

equilateral
triangle

D
Semicircular

shell

Semicircular
cylinder

D

D T-beam

I-beamD

D Angle

D

Hexagon

�

D Rectangle

Shape
Reference area

A
(b = length)

A = bD

A = bD

A = bD

A = bD

A = bD

A = bD

A = bD

A = bD

A = bD

Drag coefficient

CD = �________

        

U2A1__
2

ρ

R/D CD

0
0.02
0.17
0.33

2.2
2.0
1.2
1.0

R/D CD

0
0.02
0.08
0.25

1.4
1.2
1.3
1.1

2.1
2.0
1.9
1.3

2.3
1.1

2.15
1.15

1.80
1.65

1.98
1.82

2.05

1.0

�/D CD

0.1
0.5
0.65
1.0
2.0
3.0

1.9
2.5
2.9
2.2
1.6
1.3

Reynolds number
Re =   UD/ ρ

Re = 105

Re = 105

Re = 2 × 104

Re > 104

Re > 104

Re > 104

Re > 104

Re > 104

Re = 105

<

μ

F I G U R E  9.19 Typical drag coefficients for regular two-dimensional
objects (Refs. 4 and 5).

V9.13 Drag on a
truck

and three-dimensional, natural and man-made objects. Recall that a drag coefficient of unity
is equivalent to the drag produced by the dynamic pressure acting on an area of size A.
That is, if CD � 1. Typical nonstreamlined objects have drag coef-
ficients on this order.

d � 1
2�U2ACD � 1

2�U2A
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D
Solid

hemisphere

D
Hollow

hemisphere

D Thin disk

�

D

Circular
rod

parallel
to flow

D Cone

CubeD

Cube

D

D

Streamlined
body

Shape Reference area
A

A =    D2__
4
π

A =    D2__
4
π

A =    D2__
4
π

A =    D2__
4
π

A =    D2__
4
π

A = D2

A = D2

A =    D2__
4
π

Drag coefficient
CD

1.17
0.42

1.42
0.38

1.1

, degrees CD

10
30
60
90

0.30
0.55
0.80
1.15

�/D CD

0.5
1.0
2.0
4.0

1.1
0.93
0.83
0.85

θ

1.05

0.80

0.04

Re > 104

Re > 104

Re > 103

Re > 105

Re > 104

Re > 104

Re > 104

Re > 105

Reynolds number
Re =   UD/ ρ μ

θ

F I G U R E  9.20 Typical drag coefficients for regular three-
dimensional objects (Ref. 4).
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U

D Parachute

D Porous
parabolic

dish

Average
person

Fluttering
flag

D

l

Empire
State Building

Six-car passenger train

Bikes

Upright commuter

Racing

Drafting

Streamlined

Tractor-trailor tucks

Fairing

Gap seal

Standard

With fairing

With
fairing and
gap seal

Tree
U = 10 m/s
U = 20 m/s
U = 30 m/s

Dolphin

Large
birds

Shape Reference area

Frontal area

A =    D2__
4
π

Frontal area

A =    D2__
4
π

Standing

Sitting

Crouching

A = �D

Frontal area

Frontal area

A = 5.5 ft2

A = 3.9 ft2

A = 3.9 ft2

A = 5.0 ft2

Frontal area

Frontal area

Frontal area

Frontal area

Frontal area

Wetted area

Drag coefficient
CD

1.4

Porosity

Porosity = open area/total area

0 0.2 0.5

1.42 1.20 0.82

0.95 0.90 0.80

CDA = 9 ft2

CDA = 6 ft2

CDA = 2.5 ft2

�/D CD

2
1

3
0.12
0.07

0.15

1.4

1.8

1.1

0.88

0.50

0.12

0.96

0.76

0.70

0.43
0.26
0.20

0.0036 at Re = 6 × 106

(flat plate has CDf = 0.0031)

0.40

V9.14 Automobile
streamlining

F I G U R E  9.21 Typical drag coefficients for objects of interest (Refs.
4, 5, 11, and 14).
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9.4 Lift

As indicated in Section 9.1, any object moving through a fluid will experience a net force
of the fluid on the object. For symmetrical objects, this force will be in the direction of the
free stream—a drag, d. If the object is not symmetrical (or if it does not produce a sym-
metrical flow field, such as the flow around a rotating sphere), there may also be a force
normal to the free stream—a lift, l.

9.4.1 Surface Pressure Distribution

The lift can be determined from Eq. 9.2 if the distributions of pressure and wall shear stress
around the entire body are known. As indicated in Section 9.1, such data are usually not
known. Typically, the lift is given in terms of the lift coefficient

(9.25)

which is obtained from experiments, advanced analysis, or numerical considerations.
The most important parameter that affects the lift coefficient is the shape of the object.

Considerable effort has gone into designing optimally shaped lift-producing devices. We
will emphasize the effect of the shape on lift—the effects of the other dimensionless
parameters can be found in the literature (Refs. 9, 10, and 18).

CL �
l

1
2�U2A

Most common lift-generating devices (i.e., airfoils, fans, spoilers on cars) operate in
the large Reynolds number range in which the flow has a boundary layer character, with
viscous effects confined to the boundary layers and wake regions. For such cases the wall
shear stress, �w, contributes little to the lift. Most of the lift comes from the surface pres-
sure distribution.

A typical device designed to produce lift does so by generating a pressure distribu-
tion that is different on the top and bottom surfaces. For large Reynolds number flows these
pressure distributions are usually directly proportional to the dynamic pressure, �U2/2, with
viscous effects being of secondary importance. Hence, as indicated by the figure in the mar-
gin, for a given airfoil the lift is proportional to the square of the airspeed. Two airfoils
used to produce lift are indicated in Fig. 9.22. Clearly the symmetrical one cannot produce
lift unless the angle of attack, �, is nonzero. Because of the asymmetry of the nonsymmet-
rical airfoil, the pressure distributions on the upper and lower surfaces are different, and a
lift is produced even with � � 0.

F l u i d s  i n  t h e  N e w s

Learning from nature For hundreds of years humans looked
toward nature, particularly birds, for insight about flying.
However, all early airplanes that closely mimicked birds
proved unsuccessful. Only after much experimenting with
rigid (or at least nonflapping) wings did human flight become
possible. Now engineers are again turning to living systems—
birds, insects, and other biological models—in an attempt to
produce breakthroughs in aircraft design. For example, by
morphing and rotating their wings in three dimensions, birds

can obtain remarkable maneuverability. Recently, researchers
at the University of Florida in Gainesville wondered if they
could mimic such a system. The result is small military sur-
veillance aircraft whose wings similarly change shape during
flight, allowing the prototype planes to turn, dip, and roll in
ways that have previously not been possible. With new hi-tech
materials, computers, and automatic controls, aircraft of the
future may very well mimic nature more than was once
thought possible. (See Problem 9.84.)

U

� � ~ U
2
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358 Chapter 9 ■ Flow over Immersed Bodies

Because most airfoils are thin, it is customary to use the planform area, A � bc, in
the definition of the lift coefficient. Here b is the length of the airfoil and c is the chord
length—the length from the leading edge to the trailing edge as indicated in Fig. 9.22. Typ-
ical lift coefficients so defined are on the order of unity (see Fig. 9.23). That is, the lift
force is on the order of the dynamic pressure times the planform area of the wing,

. The wing loading, defined as the average lift per unit area of the wing, l/A,
therefore, increases with speed. For example, the wing loading of the 1903 Wright Flyer
aircraft was 1.5 lb/ft2, whereas for the present-day Boeing 747 aircraft it is 150 lb/ft2. The
wing loading for a bumble bee is approximately 1 lb/ft2 (Ref. 11).

In many lift-generating devices the important quantity is the ratio of the lift to drag
developed, . Such information is often presented in terms of CL/CD versus �,
as shown in Fig. 9.23a, or in a lift-drag polar of CL versus CD with � as a parameter, as

l/d � CL/CD

l � 1�U2/22A

F I G U R E  9.22 Symmet-
rical and nonsymmetrical airfoils.

α
U

Symmetrical

Nonsymmetrical

c

α
U

120

100

80

60

40

20

0

–20

–40
–8 –4 0 4 8

, degreesα

CL__
CD

NACA 64(1) – 412 airfoil
Re = 7 × 105

Stall 1.5

1.0

0.5

0

–0.5
0 0.005 0.010 0.015 0.02

CD

CL

(b)(a)

= –6°α

= –4°α

= –2°α

= 0°α

= 2°α

= 4°α

= 6°α
= 8°α

F I G U R E  9.23 Two representations of the same lift and drag data for a typical airfoil:
(a) lift-to-drag ratio as a function of angle of attack, with the onset of boundary layer separation on the
upper surface indicated by the occurrence of stall, and (b) the lift and drag polar diagram with the angle
of attack indicated (Ref. 17).

V9.15 Stalled 
airfoil
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9.4 Lift 359

shown in Fig. 9.23b. The most efficient angle of attack (i.e., largest CL/CD) can be found
by drawing a line tangent to the CL � CD curve from the origin, as shown in Fig. 9.23b.

Although viscous effects and the wall shear stress contribute little to the direct gen-
eration of lift, they play an extremely important role in the design and use of lifting devices.
This is because of the viscosity-induced boundary layer separation that can occur on non-
streamlined bodies such as airfoils that have too large an angle of attack. Up to a certain
point, the lift coefficient increases rather steadily with the angle of attack. If � is too large,
the boundary layer on the upper surface separates, the flow over the wing develops a wide,
turbulent wake region, the lift decreases, and the drag increases. This condition, indicated
in the figure in the margin, is termed stall. Such conditions are extremely dangerous if they
occur while the airplane is flying at a low altitude where there is not sufficient time and
altitude to recover from the stall.

V9.17 Trailing edge
flap

Not stalled

StalledStalled

V9.16 Bat flying

F l u i d s  i n  t h e  N e w s

Bats feel turbulence Researchers have discovered that at cer-
tain locations on the wings of bats, there are special touch-sensing
cells with a tiny hair poking out of the center of the cell. These
cells, which are very sensitive to air flowing across the wing
surface, can apparently detect turbulence in the flow over the
wing. If these hairs are removed the bats fly well in a straight

line, but when maneuvering to avoid obstacles, their elevation
control is erratic. When the hairs grow back, the bats regain
their complete flying skills. It is proposed that these touch-sens-
ing cells are used to detect turbulence on the wing surface and
thereby tell bats when to adjust the angle of attack and curva-
ture of their wings in order to avoid stalling out in midair.

As indicated earlier, the lift and drag on an airfoil can be altered by changing the
angle of attack. This actually represents a change in the shape of the object. Other shape
changes can be used to alter the lift and drag when desirable. In modern airplanes it is
common to utilize leading edge and trailing edge flaps as shown in Fig. 9.24. To generate

F I G U R E  9.24
Typical lift and drag
alterations possible with the
use of various types of flap
designs (Ref. 15).

No flaps

Trailing edge
slotted flap

Double-slotted
trailing edge flaps

(Data not
shown)

Leading
edge flap

3.0

2.0

1.0

0
0 0.1 0.2 0.3

CD

CL
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the necessary lift during the relatively low-speed landing and takeoff procedures, the air-
foil shape is altered by extending special flaps on the front and/or rear portions of the
wing. Use of the flaps considerably enhances the lift, although it is at the expense of an
increase in the drag (the airfoil is in a “dirty” configuration). This increase in drag is not
of much concern during landing and takeoff operations—the decrease in landing or take-
off speed is more important than is a temporary increase in drag. During normal flight with
the flaps retracted (the “clean” configuration), the drag is relatively small, and the needed
lift force is achieved with the smaller lift coefficient and the larger dynamic pressure
(higher speed).

A wide variety of lift and drag information for airfoils can be found in standard aero-
dynamics books (Refs. 9, 10, 18).

V9.18 Leading
edge flap

GIVEN In 1977 the Gossamer Condor, shown in Fig.
E9.9a, won the Kremer prize by being the first human-
powered aircraft to complete a prescribed figure-eight course
around two turning points 0.5 mi apart (Ref. 16). The follow-
ing data pertain to this aircraft:

 Drag coefficient � CD � 0.046 1based on

Weight 1including pilot2 �w � 210 lb

 Wing size � b � 96 ft, c � 7.5 ft 1average2

 Flight speed � U � 15 ft /s

 planform area2

 drag/pilot power � 0.8
� power to overcome  Power train efficiency � �

Lift and Power for Human-Powered Flight

(b) The product of the power that the pilot supplies and the
power train efficiency equals the useful power needed to over-
come the drag, d. That is,

where

Thus,

(1)

or

(Ans) p � 166 ft # lb/s a
1 hp

550 ft # lb/s
b � 0.302 hp

 p �
12.38 � 10�3 slugs/ft32 1720 ft22 10.0462 115 ft /s23

210.82

p �
dU

�
�

1
2 �U2ACDU

�
�

�ACDU 3

2�

d � 1
2 �U 2ACD

�p � dU

EXAMPLE 9.9

(a) For steady flight conditions the lift must be exactly bal-
anced by the weight, or

Thus,

where A � bc � 96 ft � 7.5 ft � 720 ft2, w � 210 lb, and
� � 2.38 � 10�3 slugs/ft3 for standard air. This gives

(Ans)

a reasonable number. The overall lift-to-drag ratio for the air-
craft is CL/CD � 1.09/0.046 � 23.7.

 � 1.09

CL �
21210 lb2

12.38 � 10�3 slugs/ft32 115 ft /s221720 ft22

CL �
2w

�U 2A

w � l � 1
2 �U 2ACL

SOLUTION

U

F I G U R E  E9.9a (Photo-
graph copyright © Don Monroe.)

FIND Determine 

(a) the lift coefficient, CL, and 

(b) the power, p, required by the pilot.
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COMMENT This power level is obtainable by a well-
conditioned athlete (as is indicated by the fact that the flight
was completed successfully). Note that only 80% of the pilot’s
power (i.e., 0.8 � 0.302 � 0.242 hp, which corresponds to a
drag of d� 8.86 lb) is needed to force the aircraft through
the air. The other 20% is lost because of the power train
inefficiency. 

By repeating the calculations for various flight speeds, the
results shown in Fig. E9.9b are obtained. Note from Eq. 1 that
for a constant drag coefficient, the power required increases as
U3—a doubling of the speed to 30 ft/s would require an eight-
fold increase in power (i.e., 2.42 hp, well beyond the range of
any human).

2.5

2.0

1.5

1.0

0.5

�
, 
hp

0
15 20 25 30

U, ft/s

100 5

(15, 0.302)

F I G U R E  E9.9b

V9.19 Wing tip
vortices

9.4.2 Circulation

Consider the flow past a finite-length airfoil, as indicated in Fig. 9.25. For lift-generating con-
ditions the average pressure on the lower surface is greater than that on the upper surface.
Near the tips of the wing this pressure difference will cause some of the fluid to attempt to
migrate from the lower to the upper surface, as indicated in Fig. 9.25b. At the same time, this
fluid is swept downstream, forming a trailing vortex (swirl) from each wing tip (see Fig. 4.3).

The trailing vortices from the right and left wing tips are connected by the bound vor-
tex along the length of the wing. It is this vortex that generates the circulation that pro-
duces the lift. The combined vortex system (the bound vortex and the trailing vortices) is
termed a horseshoe vortex. The strength of the trailing vortices (which is equal to the
strength of the bound vortex) is proportional to the lift generated. Large aircraft (for exam-
ple, a Boeing 747) can generate very strong trailing vortices that persist for a long time
before viscous effects finally cause them to die out. Such vortices are strong enough to flip
smaller aircraft out of control if they follow too closely behind the large aircraft.

F l u i d s  i n  t h e  N e w s

Why winglets? Winglets, those upward turning ends of airplane
wings, boost the performance by reducing drag. This is accom-
plished by reducing the strength of the wing tip vortices formed
by the difference between the high pressure on the lower surface
of the wing and the low pressure on the upper surface of the
wing. These vortices represent an energy loss and an increase in
drag. In essence, the winglet provides an effective increase in the
aspect ratio of the wing without extending the wingspan.
Winglets come in a variety of styles—the Airbus A320 has a very

small upper and lower winglet; the Boeing 747-400 has a con-
ventional, vertical upper winglet; and the Boeing Business Jet (a
derivative of the Boeing 737) has an 8-ft winglet with a curving
transition from wing to winglet. Since the airflow around the
winglets is quite complicated, the winglets must be carefully de-
signed and tested for each aircraft. In the past winglets were
more likely to be retrofitted to existing wings, but new airplanes
are being designed with winglets from the start. Unlike tailfins
on cars, winglets really do work. (See Problem 9.86.)

As indicated earlier, the generation of lift is directly related to the production of cir-
culation or vortex flow around the object. A nonsymmetric airfoil, by design, generates its
own prescribed amount of swirl and lift. A symmetrical object, such as a circular cylinder
or sphere, which normally provides no lift, can generate swirl and lift if it rotates.

As discussed in Section 6.6.2, inviscid flow past a circular cylinder has the symmet-
rical flow pattern indicated in Fig. 9.26a. By symmetry the lift and drag are zero. However,
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if the cylinder is rotated about its axis in a stationary real (� � 0) fluid, the rotation will
drag some of the fluid around, producing circulation about the cylinder as in Fig. 9.26b.
When this circulation is combined with an ideal, uniform upstream flow, the flow pattern
indicated in Fig. 9.26c is obtained. The flow is no longer symmetrical about the horizontal
plane through the center of the cylinder; the average pressure is greater on the lower half
of the cylinder than on the upper half, and a lift is generated. This effect is called the Mag-
nus effect. A similar lift is generated on a rotating sphere. It accounts for the various types
of pitches in baseball (i.e., curve ball, floater, sinker), the ability of a soccer player to hook
the ball, and the hook, slice, or lift of a golf ball.
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U

A

B

Bound vortex

Trailing
vortex

(a)

(b)

BA

Low pressure

High pressure

Bound vortex

Trailing vortex

F I G U R E  9.25 Flow past a finite-length wing: (a) the horseshoe
vortex system produced by the bound vortex and the trailing vortices and (b) the
leakage of air around the wing tips produces the trailing vortices.

S S

ω ω

S S

S = stagnation point (highest pressure)
“(a) + (b) = (c)”

(c)(b)(a)

F I G U R E  9.26 Inviscid flow past a circular cylinder: (a) uniform upstream flow without
circulation, (b) free vortex at the center of the cylinder, and (c) combination of free vortex and uniform
flow past a circular cylinder giving nonsymmetric flow and a lift.

(Photograph courtesy of
NASA.)
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9.5 Chapter Summary and Study Guide

drag
lift
lift coefficient
drag coefficient
wake region
boundary layer
boundary layer 

thickness
laminar boundary layer
transition
turbulent boundary 

layer
free-stream velocity
favorable pressure 

gradient
adverse pressure

gradient
boundary layer 

separation
friction drag
pressure drag
stall
circulation

In this chapter the flow past objects is discussed. It is shown how the pressure and shear
stress distributions on the surface of an object produce the net lift and drag forces on the
object.

The character of flow past an object is a function of the Reynolds number. For large
Reynolds number flows a thin boundary layer forms on the surface. Properties of this
boundary layer flow are discussed. These include the boundary layer thickness, whether
the flow is laminar or turbulent, and the wall shear stress exerted on the object. In addi-
tion, boundary layer separation and its relationship to the pressure gradient are considered.

The drag, which contains portions due to friction (viscous) effects and pressure effects,
is written in terms of the dimensionless drag coefficient. It is shown how the drag coeffi-
cient is a function of shape, with objects ranging from very blunt to very streamlined. Other
parameters affecting the drag coefficient include the Reynolds number, Froude number,
Mach number, and surface roughness.

The lift is written in terms of the dimensionless lift coefficient, which is strongly
dependent on the shape of the object. Variation of the lift coefficient with shape is illus-
trated by the variation of an airfoil’s lift coefficient with angle of attack.

The following checklist provides a study guide for this chapter. When your study of
the entire chapter and end-of-chapter exercises has been completed, you should be able to

write out meanings of the terms listed here in the margin and understand each of the
related concepts. These terms are particularly important and are set in color and bold
type in the text.

determine the lift and drag on an object from the given pressure and shear stress dis-
tributions on the object.

for flow past a flat plate, calculate the boundary layer thickness, the wall shear stress,
the friction drag, and determine whether the flow is laminar or turbulent.

explain the concept of the pressure gradient and its relationship to boundary layer 
separation.

for a given object, obtain the drag coefficient from appropriate tables, figures, or equa-
tions and calculate the drag on the object.

explain why golf balls have dimples.

for a given object, obtain the lift coefficient from appropriate figures and calculate the
lift on the object.

Some of the important equations in the chapter are

Lift coefficient and drag coefficient (9.25), (9.22)

Boundary layer displacement thickness (9.3)

Boundary layer momentum thickness (9.4)

Blasius boundary layer 
thickness, displacement (9.8), (9.9), (9.10)
thickness, and momentum
thickness for flat plate
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Blasius wall shear stress for flat plate (9.11)

Drag on flat plate (9.18)

Blasius friction drag coefficient 
for flat plate (9.12)CDf �

1.328

2Ref

d � �bU 2™

�w � 0.332U3/2

B

��

x

Review Problems

Go to Appendix G for a set of review problems with answers.
Detailed solutions can be found in Student Solution Manual for

a Brief Introduction to Fluid Michanics, by Young et al. (© 2011
John Wiley and Sons, Inc.)

Problems

Note: Unless otherwise indicated use the values of fluid
properties found in the tables on the inside of the front
cover. Problems designated with an (*) are intended to be

solved with the aid of a programmable calculator or a com-
puter. Problems designated with a (†) are “open-ended”
problems and require critical thinking in that to work them
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Problems 365

one must make various assumptions and provide the neces-
sary data. There is not a unique answer to these problems.

The even-numbered problems are included in the
hard copy version of the book, and the answers to these
even-numbered problems are listed at the end of the
book. Odd-numbered problems are provided in Wiley
PLUS, or in Appendix L on the book’s web site, www.wiley
.com/college/young. The lab-type problems, FE problems,
FlowLab problems, and the videos that accompany prob-
lems can also be accessed on these web sites.

Section 9.1 General External Flow Characteristics

9.2 Fluid flows past the two-dimensional bar shown in Fig.
P9.2. The pressures on the ends of the bar are as shown, and
the average shear stress on the top and bottom of the bar is �avg.
Assume that the drag due to pressure is equal to the drag due
to viscous effects. (a) Determine �avg in terms of the dynamic
pressure, �U2/2. (b) Determine the drag coefficient for this
object.

9.4 Repeat Problem 9.1 if the object is a cone (made by rotat-
ing the equilateral triangle about the horizontal axis through its
tip) rather than a triangular bar.

9.6 A small 15-mm-long fish swims with a speed of 20 mm/s.
Would a boundary layer type flow be developed along the sides
of the fish? Explain.

9.8 Typical values of the Reynolds number for various animals
moving through air or water are listed here. For which cases is
inertia of the fluid important? For which cases do viscous ef-
fects dominate? For which cases would the flow be laminar; tur-
bulent? Explain.

Animal Speed Re

1a2 large whale 300,000,000
1b2 flying duck 300,000
1c2 large dragonfly 30,000
1d2 invertebrate larva 0.3
1e2 bacterium 0.00003

Section 9.2 Boundary Layer Characteristics (also see
Lab Problems 9.89 and 9.90)

9.10 A viscous fluid flows past a flat plate such that the bound-
ary layer thickness at a distance from the leading edge is �0.
Determine the boundary layer thickness at distances 4x0, 25x0,
and 100x0 from the leading edge. Assume laminar flow.

9.12 Discuss any differences in boundary layers between inter-
nal flows (e.g., pipe flow) and external flows.

x0

 0.01 mm�s
 1 mm�s
 7 m�s

 20 m�s
 10 m�s

9.14 If a high school student who has completed a first course
in physics asked you to explain the idea of a boundary layer,
what would you tell the student?

9.16 A smooth flat plate of length � � 6 m and width b � 4 m
is placed in water with an upstream velocity of U � 0.5 m/s.
Determine the boundary layer thickness and the wall shear
stress at the center and the trailing edge of the plate. Assume a
laminar boundary layer.

9.18 A 30-story office building (each story is 12 ft tall) is built
in a suburban industrial park. Plot the dynamic pressure, �u2/2,
as a function of elevation if the wind blows at hurricane strength
(75 mph) at the top of the building. Use the atmospheric bound-
ary layer information of Problem 9.17.

9.20 A laminar boundary layer velocity profile is approxi-
mated by a sine wave with u/U � sin [�(y/�)/2] for y � �,
and u � U for y � �. (a) Show that this profile satisfies the
appropriate boundary conditions. (b) Use the momentum in-
tegral equation to determine the boundary layer thickness,
� � �(x).

*9.22 For a fluid of specific gravity SG � 0.86 flowing past a
flat plate with an upstream velocity of U � 5 m/s, the wall shear
stress on a flat plate was determined to be as indicated in the fol-
lowing table. Use the momentum integral equation to determine
the boundary layer momentum thickness, � � �(x). Assume
� � 0 at the leading edge, x � 0.

x (m) �w N/m2

0 —
0.2 13.4
0.4 9.25
0.6 7.68
0.8 6.51
1.0 5.89
1.2 6.57
1.4 6.75
1.6 6.23
1.8 5.92
2.0 5.26

9.24 Because of the velocity deficit, U � u, in the boundary
layer the streamlines for flow past a flat plate are not exactly
parallel to the plate. This deviation can be determined by use of
the displacement thickness, �*. For air blowing past the flat
plate shown in Fig. P9.24, plot the streamline A�B that passes
through the edge of the boundary layer at
point B. That is, plot y � y(x) for streamline A�B. Assume lam-
inar boundary layer flow.

1y � �B at x � /2

F I G U R E  P9.2

U

τavg

τavg

10h

Width = b
h

p =    �U21
2

p = –0.2    �U21
2

F I G U R E  P9.24

yU =
1 m/s

x

� = 4 m

Edge of boundary layer

Streamline A – B

δB

B
A
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9-26 An airplane flies at a speed of 400 mph at an altitude of
10,000 ft. If the boundary layers on the wing surfaces behave as
those on a flat plate, estimate the extent of laminar boundary
layer flow along the wing. Assume a transitional Reynolds num-
ber of Rex,cr � 5 � 105. If the airplane maintains its 400-mph
speed but descends to sea-level elevation, will the portion of the
wing covered by a laminar boundary layer increase or decrease
compared with its value at 10,000 ft? Explain.

Section 9.3 Drag

9.28 It is often assumed that “sharp objects can cut through the
air better than blunt ones.” Based on this assumption, the drag
on the object shown in Fig. P9.28 should be less when the wind
blows from right to left than when it blows from left to right.
Experiments show that the opposite is true. Explain.

9.30 As shown in Video V9.2 and Fig. P9.30a, a kayak is a rel-
atively streamlined object. As a first approximation in calculat-
ing the drag on a kayak, assume that the kayak acts as if it were
a smooth flat plate 17 ft long and 2 ft wide. Determine the drag
as a function of speed and compare your results with the mea-
sured values given in Fig. P9.30b. Comment on reasons why the
two sets of values may differ.

assumed that the sandy soil cannot support any moment about the
center of the soil ball, point A. Estimate the tension in the rope if
the wind is 80 km/hr. See Fig. 9.30 for drag coefficient data.

†9.34 How fast will a toy balloon filled with helium rise
through still air? List all of your assumptions.

9.36 Water flows over two flat plates with the same laminar
free-stream velocity. Both plates have the same width, but Plate
#2 is twice as long as Plate #1. What is the relationship between
the drag force for these two plates?

9.38 The drag coefficient for a newly designed hybrid car is
predicted to be 0.21. The cross-sectional area of the car is 30 ft2.
Determine the aerodynamic drag on the car when it is driven
through still air at 55 mph.

9.40 A baseball is thrown by a pitcher at 95 mph through stan-
dard air. The diameter of the baseball is 2.82 in. Estimate the
drag force on the baseball.

9.42 The structure shown in Fig. P9.42 consists of three cylin-
drical support posts to which an elliptical flat-plate sign is at-
tached. Estimate the drag on the structure when a 50-mph wind
blows against it.

9.44 Repeat Problem 9.43 if a 2 � 2.5-m flag is attached to the
top of the pole. See Fig. 9.30 for drag coefficient data for flags.

9.46 (See Fluids in the News article titled “Armstrong’s aero-
dynamic bike and suit,” Section 9.1.) By appropriate streamlin-
ing, the amount of power needed to pedal a bike can be lowered.
How much must the drag coefficient for a bike and rider be re-
duced if the power a bike racer expends while riding 13 m/s is to
be reduced by 10 watts? Assume the cross-sectional area of the
bike and rider is 0.36 m2.
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9.32 The large, newly planted tree shown in Fig. P9.32 is kept
from tipping over in a wind by use of a rope as shown. It is
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†9.48 Estimate the wind velocity necessary to knock over a
garbage can. List your assumptions.

9.50 Estimate the velocity with which you would contact
the ground if you jumped from an airplane at an altitude of
5000 ft and (a) air resistance is negligible, (b) air resistance
is important, but you forgot your parachute, or (c) you use a
25-ft-diameter parachute.

9.52 Explain how the drag on a given smokestack could be the
same in a 2-mph wind as in a 4-mph wind. Assume the values of
� and � are the same for each case.

†9.54 Estimate the wind force on your hand when you hold it
out your car window while driving 55 mph. Repeat your calcu-
lations if you were to hold your hand out of the window of an
airplane flying 550 mph.

*9.56 The device shown in Fig. P9.56 is to be designed to mea-
sure the wall shear stress as air flows over the smooth surface
with an upstream velocity U. It is proposed that �w can be ob-
tained by measuring the bending moment. M, at the base [point
(1)] of the support that holds the small surface element, which is
free from contact with the surrounding surface. Plot a graph of M
as a function of U for 5 � U � 50 m/s, with and 5 m./ � 2, 3, 4,

†9.58 During a flash flood, water rushes over a road as shown
in Fig. P9.58 with a speed of 12 mph. Estimate the maximum
water depth, h, that would allow a car to pass without being
swept away. List all assumptions and show all calculations.

9.60 A 4-mm-diameter meteor of specific gravity 2.9 has a
speed of 6 km/s at an altitude of 50,000 m where the air density
is 1.03 � 10�3 kg/m3. If the drag coefficient at this large Mach
number condition is 1.5, determine the deceleration of the meteor.

9.62 The United Nations Building in New York is approximately
87.5 m wide and 154 m tall. (a) Determine the drag on this build-
ing if the drag coefficient is 1.3 and the wind speed is a uniform
20 m/s. (b) Repeat your calculations if the velocity profile against
the building is a typical profile for an urban area (see Problem
9.17) and the wind speed halfway up the building is 20 m/s.

9.64 (See Fluids in the News article titled “Dimpled baseball
bats,” Section 9.3.3.) How fast must a 3.5-in.-diameter, dimpled
baseball bat move through the air in order to take advantage of
drag reduction produced by the dimples on the bat? Although
there are differences, assume the bat (a cylinder) acts the same
as a golf ball in terms of how the dimples affect the transition
from a laminar to a turbulent boundary layer.

9.66 An airplane tows a banner that is b � 0.8 m tall and / �
25 m long at a speed of 150 km/hr. If the drag coefficient based
on the area is CD � 0.06, estimate the power required to tow
the banner. Compare the drag force on the banner with that on a
rigid flat plate of the same size. Which has the larger drag force
and why?

9.68 Estimate the power needed to overcome the aerody-
namic drag of a person who runs at a rate of 100 yd in 10 s in
still air. Repeat the calculations if the race is run into a 20-mph
headwind.

9.70 The wings of old airplanes are often strengthened by the
use of wires that provided cross-bracing as shown in Fig. P9.70.
If the drag coefficient for the wings was 0.020 (based on the
planform area), determine the ratio of the drag from the wire
bracing to that from the wings.

b/

16 ft

0.6 ft

0.8 ft

1 ft 15 ft

15 ft

15 ft

5 ft

F I G U R E  P9.42

U
�

(1)

Square

10 mm

5 mm

F I G U R E  P9.56

h

U = 12 mph

F I G U R E  P9.58

Speed:  70 mph
Wing area:  148 ft2

Wire:  length = 160 ft
         diameter = 0.05 in.

F I G U R E  P9.70
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9.72 As indicated in Fig. P9.72 the orientation of leaves on a
tree is a function of the wind speed, with the tree becoming
“more streamlined” as the wind increases. The resulting drag co-
efficient for the tree (based on the frontal area of the tree, HW) as
a function of Reynolds number (based on the leaf length, L) is
approximated as shown. Consider a tree with leaves of length
L � 0.3 ft. What wind speed will produce a drag on the tree that
is six times greater than the drag on the tree in a 15-ft/s wind?

what is the takeoff speed if it is loaded with 372 passengers? As-
sume each passenger with luggage weighs 200 lb.

9.84 (See Fluids in the News article titled “Learning from na-
ture,” Section 9.4.1.) As indicated in Fig. P9.84, birds can signifi-
cantly alter their body shape and increase their planform area, A, by
spreading their wing and tail feathers, thereby reducing their flight
speed. If during landing the planform area is increased by 50% and
the lift coefficient increased by 30% while all other parameters are
held constant, by what percent is the flight speed reduced?

368 Chapter 9 ■ Flow over Immersed Bodies

U

y

x

c

u = u(x)

u = U

F I G U R E  P9.80

F I G U R E  P9.84

U

1.6

1.2

0.8

0.4

0

2u
U

0 0.2 0.4 0.8 1.00.6
x
c

u

Upper surface

Lower surface

NACA 632–015

F I G U R E  P9.88

Calm wind Strong wind

1,000,000100,000
Re =   UL/  

10,000

0.6

0.5

0.4

0.3

0.2

0.1

0

ρ μ

C
D

L

H

W

U

U

F I G U R E  P9.72

Section 9.4 Lift

9.74 A Piper Cub airplane has a gross weight of 1750 lb, a
cruising speed of 115 mph, and a wing area of 179 ft2. Deter-
mine the lift coefficient of this airplane for these conditions.

9.76 A rectangular wing with an aspect ratio of 6 is to generate
1000 lb of lift when it flies at a speed of 200 ft/s. Determine the
length of the wing if its lift coefficient is 1.0.

9.78 A wing generates a lift l when moving through sea-level
air with a velocity U. How fast must the wing move through the
air at an altitude of 10,000 m with the same lift coefficient if it
is to generate the same lift?

9.80 Air blows over the flat-bottomed, two-dimensional object
shown in Fig. P9.80. The shape of the object, y � y(x), and the
fluid speed along the surface, u � u(x), are given in the table.
Determine the lift coefficient for this object.

x(% c) y(% c) u/U

0 0 0
2.5 3.72 0.971
5.0 5.30 1.232
7.5 6.48 1.273

10 7.43 1.271
20 9.92 1.276
30 11.14 1.295
40 11.49 1.307
50 10.45 1.308
60 9.11 1.195
70 6.46 1.065
80 3.62 0.945
90 1.26 0.856

100 0 0.807

9.82 A Boeing 747 aircraft weighing 580,000 lb when loaded
with fuel and 100 passengers takes off with an airspeed of 140 mph.
With the same configuration (i.e., angle of attack, flap settings),

9.86 (See Fluids in the News article titled “Why winglets?,”
Section 9.4.2.) It is estimated that by installing appropriately de-
signed winglets on a certain airplane the drag coefficient will be
reduced by 5%. For the same engine thrust, by what percent will
the aircraft speed be increased by use of the winglets?

9.88 When air flows past the airfoil shown in Fig. P9.88, the
velocity just outside the boundary layer, u, is as indicated. Esti-
mate the lift coefficient for these conditions.
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■ Lab Problems

9.90 This problem involves measuring the pressure distribution
on a circular cylinder. To proceed with this problem, go to the
book’s web site, www.wiley.com/college/young, or WileyPLUS.

■ Lifelong Learning Problems

9.92 For typical aircraft flying at cruise conditions it is advanta-
geous to have as much laminar flow over the wing as possible be-
cause there is an increase in friction drag once the flow becomes
turbulent. Various techniques have been developed to help promote
laminar flow over the wing, both in airfoil geometry configurations
as well as active flow control mechanisms. Obtain information on
one of these techniques. Summarize your findings in a brief report.

■ FlowLab Problems

*9.94 This FlowLab problem involves simulation of flow past an
airfoil and investigation of the surface pressure distribution as a
function of angle of attack. To proceed with this problem, go to the
book’s web site, www.wiley.com/college/young, or WileyPLUS.

*9.96 This FlowLab problem involves simulating the effects of
altitude on the lift and drag of an airfoil. To proceed with this
problem, go to the book’s web site, www.wiley.com/college/
young, or WileyPLUS.

*9.98 This FlowLab problem involves simulating the pressure
distribution for flow past a cylinder and investigating the differ-
ences between inviscid and viscous flows. To proceed with this
problem, go to the book’s web site, www.wiley.com/college/
young, or WileyPLUS.

*9.100 This FlowLab problem involves simulating the unsteady
flow past a cylinder. To proceed with this problem, go to the
book’s web site, www.wiley.com/college/young, or WileyPLUS.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for
fluid mechanics are provided on the book’s web site, www.wiley
.com/college/young, or WileyPlus.
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370

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ discuss the general characteristics of open-channel flow.

■ use a specific energy diagram.

■ apply appropriate equations to analyze open-channel flow with uniform
depth.

■ calculate key properties of a hydraulic jump.

■ determine flowrates based on open-channel flow-measuring devices.

Open-channel flow involves the flow of a liquid in a channel or conduit that is not com-
pletely filled. A free surface exists between the flowing fluid (usually water) and fluid above
it (usually the atmosphere). The main driving force for such flows is the fluid weight—
gravity forces the fluid to flow downhill. Most open-channel flow results are based on cor-
relations obtained from model and full-scale experiments. Additional information can be
gained from various analytical and numerical efforts.

1010Open-Channel
Flow

Open-Channel
Flow

CHAPTER OPENING PHOTO: Hydraulic jump: Under certain conditions, when water flows in an open chan-
nel, the depth of the water may increase considerably over a short distance along the channel. This phe-
nomenon is termed a hydraulic jump (water flow from left to right). (Photograph by Bruce Munson.)

10.1 General Characteristics of Open-Channel Flow

An open-channel flow is classified as uniform flow (UF) if the depth of flow does not vary
along the channel (dy/dx � 0, where y is the fluid depth and x is the distance along the
channel). Conversely, it is nonuniform flow or varied flow if the depth varies with distance

. Nonuniform flows are further classified as rapidly varying flow (RVF) if the
flow depth changes considerably over a relatively short distance, dy/dx � 1. Gradually vary-
ing flows (GVF) are those in which the flow depth changes slowly with distance along the

1dy/dx � 02

V10.1 Offshore oil
drilling platform
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10.2 Surface Waves 371

channel, dy/dx � 1. Examples of these types of flow are illustrated in Fig. 10.1 and the
photographs in the margin.

As for any flow geometry, open-channel flow may be laminar, transitional, or turbu-
lent, depending on various conditions involved. Which type of flow occurs depends on the
Reynolds number, Re � �VRh/�, where V is the average velocity of the fluid and Rh is the
hydraulic radius of the channel (see Section 10.4). Since most open-channel flows involve
water (which has a fairly small viscosity) and have relatively large characteristic lengths,
most open-channel flows have large Reynolds numbers. Thus, it is rare to have laminar
open-channel flows.

Open-channel flows involve a free surface that can deform from its undisturbed, rel-
atively flat configuration to form waves. The character of an open-channel flow may depend
strongly on how fast the fluid is flowing relative to how fast a typical wave moves relative
to the fluid. The dimensionless parameter that describes this behavior is the Froude num-
ber, Fr � V/(gy)1/2, where y is the fluid depth. As shown by the figure in the margin, the
special case of a flow with a Froude number of unity, Fr � 1, is termed a critical flow. If
the Froude number is less than 1, the flow is subcritical (or tranquil). A flow with the
Froude number greater than 1 is termed supercritical (or rapid).

Uniform flow

Rapidly varying flow
(Photograph courtesy
of Stillwater Sciences.)

10.2 Surface Waves

The distinguishing feature of flows involving a free surface (as in open-channel flows) is
the opportunity for the free surface to distort into various shapes. The surface of a lake or
the ocean is seldom “smooth as a mirror.” It is usually distorted into ever-changing patterns
associated with surface waves as shown by the photograph in the margin.

UF uniform flow
GVF gradually varying flow
RVF rapidly varying flow

RVF UF RVF UF RVF GVF RVF UF

y

F I G U R E  10.1
Classification of open-channel
flow.

Fr =
√gy

V

0

1 Critical

Supercritical

Subcritical

F l u i d s  i n  t h e  N e w s

Highest tides in the world The unsteady, periodic ocean tides
are a result of the slightly variable gravitational forces of the
moon and the sun felt at any location on the surface of the
spinning Earth. At most ocean shores the tides are only a few
feet. The greatest difference between high and low tide ever
recorded, 53.38 ft, occurred in the Bay of Fundy, in Canada.
The extremely high tides in the Bay of Fundy are a result of
two factors. First, the gradual tapering (width) and shallowing
(depth) of the bay constricts the tidal flow into the bay from its

mouth on the Atlantic Ocean. Second, the precise size of the
bay, which tapers from 62 mi wide and 600 ft deep at its mouth
to mud flats 180 mi upstream at the end of the bay, causes a
resonance effect. The time it takes water to flood the length of
the Bay of Fundy (its natural rhythm) is nearly identical to the
time between high and low tides in the ocean. The closeness of
these two natural rhythms sets up a resonance effect, enhanc-
ing the tides, similar to the wave motion produced by sloshing
water back and forth in a bathtub.

c10OpenChannelFlow.qxd  9/28/10  10:33 AM  Page 371



372 Chapter 10 ■ Open-Channel Flow

10.2.1 Wave Speed

Consider the situation illustrated in Fig. 10.2a in which a single elementary wave of small
height, �y, is produced on the surface of a channel by suddenly moving the initially station-
ary end wall with speed �V. The water in the channel was stationary at the initial time, t � 0.
A stationary observer will observe a single wave move down the channel with a wave speed
c, with no fluid motion ahead of the wave and a fluid velocity of �V behind the wave. The
motion is unsteady for such an observer. For an observer moving along the channel with
speed c, the flow will appear steady as shown in Fig. 10.2b. To this observer, the fluid veloc-
ity will be V � �c î on the observer’s right and V � (�c � �V)î to the left of the observer.

The relationship between the various parameters involved for this flow can be obtained
by application of the continuity and momentum equations to the control volume shown in
Fig. 10.2b as follows. With the assumption of uniform one-dimensional flow, the continu-
ity equation (Eq. 5.10) becomes

where b is the channel width. This simplifies to

or in the limit of small-amplitude waves with �y � y

(10.1)

Similarly, the momentum equation (Eq. 5.17) is

where we have written the mass flowrate as ṁ � �bcy and have assumed that the pressure
variation is hydrostatic within the fluid. That is, the pressure forces on the channel across
sections (1) and (2) are F1 � �yc1A1 � �(y � �y)2b/2 and F2 � �yc2A2 � �y2b/2, respectively.

1
2 �y2b � 1

2 �
 
1y � �y22b � �bcy 3 1c � �V2 � c 4

c � y 
�V

�y

c �
1y � �y2 �V

�y

�cyb � 1�c � �V2 1y � �y2b

Control
surface Stationary wave

V = (– c +   V)iδ
y +   yδ yV = – ci

x

x

Channel width = b

(1) (2)
(b)

(a)

Moving
end wall

Vδ yδ

Vδ

c = wave speed

y
Stationary

fluid

^

^

F I G U R E  10.2 (a) Production of a single elementary wave in
a channel as seen by a stationary observer. (b) Wave as seen by an observer
moving with a speed equal to the wave speed.

V10.2 Filling your
car’s gas tank

CFX

V10.3 Water strider
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10.2 Surface Waves 373

If we again impose the assumption of small-amplitude waves [that is, (�y)2 � y �y], the
momentum equation reduces to

(10.2)

Combination of Eqs. 10.1 and 10.2 gives the wave speed

(10.3)

as indicated by the figure in the margin.
The speed of a small-amplitude solitary wave as indicated in Fig. 10.2 is proportional

to the square root of the fluid depth, y, and independent of the wave amplitude, �y.
A more general description of wave motion can be obtained by considering continu-

ous (not solitary) waves of sinusoidal shape as is shown in Fig. 10.3. An advanced analy-
sis of such sinusoidal surface waves of small amplitude shows that the wave speed varies
with both the wavelength, �, and fluid depth, y, as (Ref. 1)

(10.4)

where tanh(2�y/�) is the hyperbolic tangent of the argument 2�y/�. This result is plotted
in Fig. 10.4. For conditions for which the water depth is much greater than the wavelength
(y � �, as in the ocean), the wave speed is independent of y, as shown by the figure in the
margin, and given by

However, if the fluid layer is shallow (y � �, as often happens in open channels), the wave
speed is given by c � (gy)1/2, as derived for the solitary wave in Fig. 10.2. These two lim-
iting cases are shown in Fig. 10.4.

c �
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c � 1gy
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√c =   gy

F I G U R E  10.3
Sinusoidal surface wave.

c

y = mean depth

= lengthλ
c    tδ

Surface at time t

Surface at
time t +   tδ

y =
amplitude

δ

F l u i d s  i n  t h e  N e w s

Tsunami, the nonstorm wave A tsunami, often miscalled a
“tidal wave,” is a wave produced by a disturbance (for exam-
ple, an earthquake, volcanic eruption, or meteorite impact)
that vertically displaces the water column. Tsunamis are char-
acterized as shallow-water waves, with long periods, very
long wavelengths, and extremely large wave speeds. For ex-
ample, the waves of the great December 2005, Indian Ocean
tsunami traveled with speeds of 500–1000 m/s. Typically,
these waves were of small amplitude in deep water far from
land. Satellite radar measured the wave height as less than 1 m

in these areas. However, as the waves approached shore and
moved into shallower water, they slowed down considerably
and reached heights up to 30 m. Because the rate at which a
wave loses its energy is inversely related to its wavelength,
tsunamis, with their wavelengths on the order of 100 km, not
only travel at high speeds, but they also travel great distances
with minimal energy loss. The furthest reported death from
the Indian Ocean tsunami occurred approximately 8000 km
from the epicenter of the earthquake that produced it. (See
Problem 10.9.)

V10.4 Sinusoidal
waves
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10.2.2 Froude Number Effects

Consider an elementary wave traveling on the surface of a fluid as is shown in the figure
in the margin and in Fig. 10.2a. If the fluid layer is stationary, the wave moves to the right
with speed c relative to the fluid and the stationary observer. If the fluid is flowing to the
left with velocity V � c, the wave (which travels with speed c relative to the fluid) will
travel to the right with a speed of c � V relative to a fixed observer. If the fluid flows to
the left with V � c, the wave will remain stationary, but if V 	 c the wave will be washed
to the left with speed V � c.

These ideas can be expressed in dimensionless form by use of the Froude num-
ber, Fr � V/(gy)1/2, where we take the characteristic length to be the fluid depth, y. Thus,
the Froude number, Fr � V/(gy)1/2 � V/c, is the ratio of the fluid velocity to the wave
speed.

The following characteristics are observed when a wave is produced on the surface
of a moving stream, as happens when a rock is thrown into a river. If the stream is not
flowing, the wave spreads equally in all directions. If the stream is nearly stationary or mov-
ing in a tranquil manner (i.e., V � c), the wave can move upstream. Upstream locations are
said to be in hydraulic communication with the downstream locations. That is, an observer
upstream of a disturbance can tell that there has been a disturbance on the surface because
that disturbance can propagate upstream to the observer. Such conditions, V � c or Fr � 1,
are termed subcritical.

However, if the stream is moving rapidly so that the flow velocity is greater than the
wave speed (i.e., V 	 c), no upstream communication with downstream locations is possi-
ble. Any disturbance on the surface downstream from the observer will be washed further
downstream. Such conditions, V 	 c or Fr 	 1, are termed supercritical. For the special
case of V � c or Fr � 1, the upstream propagating wave remains stationary and the flow
is termed critical.

374 Chapter 10 ■ Open-Channel Flow

F I G U R E  10.4 Wave speed as a
function of wavelength.
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V10.5 Bicycle
through a puddle

10.3 Energy Considerations

A typical segment of an open-channel flow is shown in Fig. 10.5. The slope of the chan-
nel bottom (or bottom slope), S0 � (z1 � z2)/�, is assumed constant over the segment shown.
The fluid depths and velocities are y1, y2, V1, and V2 as indicated.
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10.3 Energy Considerations 375

With the assumption of a uniform velocity profile across any section of the channel,
the one-dimensional energy equation for this flow (Eq. 5.57) becomes

(10.5)

where hL is the head loss due to viscous effects between sections (1) and (2) and z1 � z2 � S0�.
Since the pressure is essentially hydrostatic at any cross section, we find that p1/� � y1 and
p2/� � y2 so that Eq. 10.5 becomes

(10.6)

We write the head loss in terms of the slope of the energy line, Sf � hL/� (often termed the
friction slope), as indicated in Fig. 10.5. Recall from Chapter 3 that the energy line is located
a distance z (the elevation from some datum to the channel bottom) plus the pressure head
(p/�) plus the velocity head (V 2/2g) above the datum.

10.3.1 Specific Energy

The concept of the specific energy, E, defined as

(10.7)

is often useful in open-channel flow considerations. The energy equation, Eq. 10.6, can be
written in terms of E as

(10.8)

If we consider a simple channel whose cross-sectional shape is a rectangle of width
b, the specific energy can be written in terms of the flowrate per unit width, q � Q/b �
Vyb/b � Vy, as

(10.9)

which is illustrated by the figure in the margin.
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F I G U R E  10.5 Typical open-channel geometry.
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For a given channel of constant width, the value of q remains constant along the channel,
although the depth, y, may vary. To gain insight into the flow processes involved, we consider
the specific energy diagram, a graph of y � y(E) with q fixed, as shown in Fig. 10.6. The
relationship between the specific energy, E, the flow depth, y, and the velocity head, as
given by Eq. 10.7, is indicated in the figure.

For given q and E, Eq. 10.9 is a cubic equation [y3 � Ey2 � (q2/2g) � 0] with three
solutions, ysup, ysub, and yneg. If the specific energy is large enough (i.e., E 	 Emin, where
Emin is a function of q), two of the solutions are positive and the other, yneg, is negative. The
negative root, represented by the curved dashed line in Fig. 10.6, has no physical meaning
and can be ignored. Thus, for a given flowrate and specific energy there are two possible
depths. These two depths are termed alternate depths.

It can be shown that critical conditions (Fr � 1) occur at the location of Emin,
where Emin � 3yc/2 and yc � (q2/g)1/3. Because the layer is deeper and the velocity
smaller for the upper part of the specific energy diagram (compared with the conditions
at Emin), such flows are subcritical (Fr � 1). Conversely, flows for the lower part of the
diagram are supercritical. This is shown by the figure in the margin. Thus, for a given
flowrate, q, if E 	 Emin there are two possible depths of flow, one subcritical and the
other supercritical.

V 
2/2g,
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F I G U R E  10.6 Specific energy 
diagram.
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GIVEN Water flows up a 0.5-ft-tall ramp in a constant-
width, rectangular channel at a rate as is shown
in Fig. E10.1a. 1For now disregard the “bump.”2 The upstream
depth is 2.3 ft and viscous effects are negligible. 

q � 5.75 ft2
s
FIND Determine the elevation of the water surface down-
stream of the ramp, y2 � z2.

Specific Energy Diagram—QuantitativeEXAMPLE 10.1
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SOLUTION

the flow from 112 to 122 or must lie along the 
curve shown. Any deviation from this curve would imply ei-
ther a change in q or a relaxation of the one-dimensional
flow assumption. To stay on the curve and go from 112
around the critical point 1point c2 to point would require
a reduction in specific energy to As is seen from Fig.
E10.1a, this would require a specified elevation 1bump2 in
the channel bottom so that critical conditions would occur
above this bump. The height of this bump can be obtained
from the energy equation (Eq. 10.8) written between
points (1) and (c) with Sf � 0 (no viscous effects) and

That is, In particular,
since and 

the top of this bump would need to be
above the

channel bottom at section 112. The flow could then acceler-
ate to supercritical conditions as is shown by the
free surface represented by the dashed line in Fig. E10.1a.

1Fr2¿ 7 12

ft � 1.51 ft � 0.89 ftzc � z1 � E1 � Emin � 2.40
31q2
g21
3
2 � 1.51 ft,

Emin � 3yc
2 �0.513
y1
2 � 2.40 ftE1 � y1 �

E1 � Emin � z1 � zc.S0/ � z1 � zc.

Emin.
12¿ 2

q � 5.75 ft2
s12¿ 2

With and conservation of energy
1Eq. 10.6, which, under these conditions, is actually the Bernoulli
equation2 requires that

For the conditions given and
this becomes

(1)

where and are in ft�s and ft, respectively. The continuity
equation provides the second equation

or

(2)

Equations 1 and 2 can be combined to give

which has solutions

Note that two of these solutions are physically realistic, but the
negative solution is meaningless. This is consistent with the
previous discussions concerning the specific energy 1recall
the three roots indicated in Fig. 10.62. The corresponding
elevations of the free surface are either

or

Which of these two flows is to be expected? This question can
be answered by use of the specific energy diagram obtained
from Eq. 10.9, which for this problem is

where E and y are in feet. The diagram is shown in Fig. E10.1b.
The upstream condition corresponds to subcritical flow; the
downstream condition is either subcritical or supercritical,
corresponding to points 2 or Note that since 

it follows that the downstream condi-
tions are located 0.5 ft to the left of the upstream conditions on
the diagram.

With a constant-width channel, the value of q remains the
same for any location along the channel. That is, all points for

1z2 � z12 � E2 � 0.5 ft,
E1 � E2 �2¿.

E � y �
0.513

y2

y2 � z2 � 0.638 ft � 0.50 ft � 1.14 ft
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s

y2V2 � y1V1

y2V2
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V1 � q
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y1 =
2.3 ft

0.89 ft 0.5 ft

V1 =
2.5 ft/s V2

z2 = 0.5 ft

z1 = 0

Free surface with ramp

Free
surface

with bump

Bump

Ramp

(c)

(a)

y2

y2

y1 = 2.30

E1 = 2.40Emin = 1.51

yc = 1.01

(2)

(2�)

(1)

0.5

0

1

2

3

4

0 1 2 3 4

y
, 

ft

E2 = 1.90

E, ft

(b)

(c)

q = 5.75 ft2/s

c10OpenChannelFlow.qxd  9/28/10  10:34 AM  Page 377



378 Chapter 10 ■ Open-Channel Flow

If the flow conditions upstream of the ramp were supercrit-
ical, the free-surface elevation and fluid depth would increase
as the fluid flows up the ramp. This is indicated in Fig. E10.1c
along with the corresponding specific energy diagram, as is
shown in Fig. E10.1d. For this case the flow starts at 112 on the
lower 1supercritical2 branch of the specific energy curve and
ends at 122 on the same branch with Since both y and
z increase from 112 to 122, the surface elevation, also
increases. Thus, flow up a ramp is different for subcritical than
it is for supercritical conditions.

y � z,
y2 7 y1.

Since the actual elevation change 1a ramp2 shown in Fig.
E10.1a does not contain a bump, the downstream conditions
will correspond to the subcritical flow denoted by 122, not the
supercritical condition Without a bump on the channel
bottom, the state is inaccessible from the upstream condi-
tion state 112. Such considerations are often termed the acces-
sibility of flow regimes. Thus, the surface elevation is

(Ans)

COMMENTS Note that since and
the elevation of the free surface decreases

as it goes across the ramp.
y2 � z2 � 2.22 ft,

y1 � z1 � 2.30 ft

y2 � z2 � 2.22 ft

12¿ 2
12¿ 2.

F I G U R E  E10.1 (Continued)

V2 > c2y2 > y1

y1
V1 > c1

y1

y2

y

E

0.5 ft

(2) (1)

0.5 ft

(c) (d)

10.4 Uniform Depth Channel Flow

Many channels are designed to carry fluid at a uniform depth all along their length. Uni-
form depth flow (dy/dx � 0, or y1 � y2 and V1 � V2) can be accomplished by adjusting the
bottom slope, S0, so that it precisely equals the slope of the energy line, Sf. That is, S0 � Sf

(see Eq. 10.8). From an energy point of view, uniform depth flow is achieved by a balance
between the potential energy lost by the fluid as it coasts downhill and the energy that is
dissipated by viscous effects (head loss) associated with shear stresses throughout the fluid.

10.4.1 Uniform Flow Approximations

We consider fluid flowing in an open channel of constant cross-sectional size and shape such
that the depth of flow remains constant as indicated in Fig. 10.7. The area of the section is
A and the wetted perimeter (i.e., the length of the perimeter of the cross section in contact
with the fluid) is P. Reasonable analytical results can be obtained by assuming a uniform
velocity profile, V, and a constant wall shear stress, �w, along the wetted perimeter.

10.4.2 The Chezy and Manning Equations

Under the assumptions of steady, uniform flow, the x component of the momentum equa-
tion (Eq. 5.17) applied to the control volume indicated in Fig. 10.8 simply reduces to

©Fx � �Q1V2 � V12 � 0

V10.6 Merging
channels
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10.4 Uniform Depth Channel Flow 379

since V1 � V2. There is no acceleration of the fluid, and the momentum flux across section
(1) is the same as that across section (2). The flow is governed by a simple balance between
the forces in the direction of the flow. Thus, �Fx � 0, or

(10.10)

where F1 and F2 are the hydrostatic pressure forces across either end of the control volume,
as shown by the figure in the margin. Because the flow is at a uniform depth (y1 � y2), it
follows that F1 � F2 so that these two forces do not contribute to the force balance. The
term w sin 	 is the component of the fluid weight that acts down the slope, and �wP� is
the shear force on the fluid, acting up the slope as a result of the interaction of the water
and the channel’s wetted perimeter. Thus, Eq. 10.10 becomes

where we have used the approximation that sin 	 � tan 	 � S0, since the bottom slope is
typically very small (i.e., S0 � 1). Because w� �A� and the hydraulic radius is defined
as Rh � A/P, the force balance equation becomes

(10.11)

Most open-channel flows are turbulent (rather than laminar), and the wall shear stress is
nearly proportional to the dynamic pressure, �V2/2, and independent of the viscosity. That is,

where K is a constant dependent upon the roughness of the channel. In such situations,
Eq. 10.11 becomes
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or

(10.12)

where the constant C is termed the Chezy coefficient and Eq. 10.12 is termed the Chezy
equation.

From a series of experiments it was found that the slope dependence of Eq. 10.12
(V � S1

0
/2) is reasonable but that the dependence on the hydraulic radius is more nearly

rather than . Thus, the following somewhat modified equation for open-
channel flow is used to more accurately describe the Rh dependence:

(10.13)

Equation 10.13 is termed the Manning equation, and the parameter n is the Manning resis-
tance coefficient. Its value is dependent on the surface material of the channel’s wetted perime-
ter and is obtained from experiments. It is not dimensionless, having the units of s/m1/3 or s/ft1/3.

Typical values of the Manning coefficient are indicated in Table 10.1. As expected,
the rougher the wetted perimeter, the larger the value of n. The values of n were developed
for SI units. Standard practice is to use the same value of n when using the BG system of
units and to insert a conversion factor into the equation.

Thus, uniform flow in an open channel is obtained from the Manning equation written as

(10.14)

and

(10.15)

where 
 � 1 if SI units are used, and 
 � 1.49 if BG units are used. Thus, by using Rh in
meters, A in m2, and 
 � 1, the average velocity is meters per second and the flowrate m3/s.

Q �



n
 AR2/3

h S1/2
0

V �



n
 R2/3

h S1/2
0

V �
R2/3

h S1/2
0

n

V � Rh 
1/2V � Rh 

2/3

V � C1RhS0
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A. Natural channels
Clean and straight 0.030
Sluggish with deep pools 0.040
Major rivers 0.035

B. Floodplains
Pasture, farmland 0.035
Light brush 0.050
Heavy brush 0.075
Trees 0.15

C. Excavated earth channels
Clean 0.022
Gravelly 0.025
Weedy 0.030
Stony, cobbles 0.035

TA B L E 1 0 . 1

Values of the Manning Coefficient, n (Ref. 5)

Wetted Perimeter n Wetted Perimeter n

D. Artificially lined channels
Glass 0.010
Brass 0.011
Steel, smooth 0.012
Steel, painted 0.014
Steel, riveted 0.015
Cast iron 0.013
Concrete, finished 0.012
Concrete, unfinished 0.014
Planed wood 0.012
Clay tile 0.014
Brickwork 0.015
Asphalt 0.016
Corrugated metal 0.022
Rubble masonry 0.025

V10.7 Uniform
channel flow
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10.4 Uniform Depth Channel Flow 381

By using Rh in feet, A in ft2, and 
 � 1.49, the average velocity is feet per second and the
flowrate ft3/s.

10.4.3 Uniform Depth Examples

A variety of interesting and useful results can be obtained from the Manning equation. The
following examples illustrate some of the typical considerations.

Determination of the flowrate for a given channel with flow at a given depth (often
termed the normal flowrate or normal depth) is obtained from a straightforward calculation
as shown in Example 10.2.

F l u i d s  i n  t h e  N e w s

Done without GPS or lasers Two thousand years before the
invention of such tools as the GPS or laser surveying equip-
ment, Roman engineers were able to design and construct
structures that made a lasting contribution to Western civiliza-
tion. For example, one of the best-surviving examples of 
Roman aqueduct construction is the Pont du Gard, an aque-
duct that spans the Gardon River near Nîmes, France. This

aqueduct is part of a circuitous, 50-km-long open channel that
transported water to Rome from a spring located 20 km from
Rome. The spring is only 14.6 m above the point of delivery,
giving an average bottom slope of only S0 � 3  10�4. It is ob-
vious that to carry out such a project, the Roman understanding
of hydraulics, surveying, and construction was well advanced.
(See Problem 10.23.)

GIVEN Water flows in the canal of trapezoidal cross sec-
tion shown in Fig. E10.2a. The bottom drops 1.4 ft per 1000 ft
of length, and the canal is lined with new finished concrete.

FIND Determine 

(a) the flowrate and

(b) the Froude number for this flow.

SOLUTION

Uniform Flow—Determine Flowrate

Thus, with S0 � 1.4 ft/1000 ft � 0.0014, Eq. 1 becomes

where Q is in ft3/s.
From Table 10.1, we obtain n � 0.012 for finished con-

crete. Thus,

(Ans)

COMMENT The corresponding average velocity, V � Q
A,

Q �
10.98

0.012
� 915 cfs

Q �
1.49

n
 189.8 ft22 13.25 ft22/310.001421/2 �

10.98
n

EXAMPLE 10.2

(a) From Eq. 10.15,

(1)

where we have used 
 � 1.49, since the dimensions are given
in BG units. For a depth of y � 5 ft, the flow area is

so that with a wetted perimeter of P � 12 ft � 2(5/sin 40� ft)
� 27.6 ft, the hydraulic radius is determined to be Rh � A/P �
3.25 ft. Note that even though the channel is quite wide (the
free-surface width is 23.9 ft), the hydraulic radius is only 3.25 ft,
which is less than the depth.

A � 12 ft 15 ft2 � 5 ft a
5

 tan 40°
 ftb � 89.8 ft2

Q �
1.49

n
 AR 2/3

h  S1/2
0

F I G U R E  E10.2a

y = 5 ft
40°40°

12 ft

is 10.2 ft�s. It does not take a very steep slope 
for this velocity.tan�1 10.00142 � 0.080°2or 	 �

1S0 � 0.0014

c10OpenChannelFlow.qxd  9/28/10  10:34 AM  Page 381



In some instances a trial-and-error or iteration method must be used to solve for the depen-
dent variable. This is often encountered when the flowrate, channel slope, and channel material
are given, and the flow depth is to be determined as illustrated in the following example.

382 Chapter 10 ■ Open-Channel Flow

By repeating the calculations for various surface types
(i.e., various Manning coefficient values) the results shown in
Fig. E10.2b are obtained. Note that the increased roughness
causes a decrease in the flowrate. This is an indication that for
the turbulent flows involved, the wall shear stress increases
with surface roughness. [For water at the Reynolds
number based on the 3.25-ft hydraulic radius of the channel is

well into the turbulent regime.]

(b) The Froude number based on the maximum depth for the
flow can be determined from For the finished
concrete case,

(Ans)

The flow is subcritical.

Fr �
10.2 ft
s

132.2 ft
s2  5 ft21
2
� 0.804

Fr � V
 1gy21
2.

106,
� 2.3511.41 10�5 ft2
s23.25 ft 110.2 ft
s2
Re � RhV
� �

50 °F,

F I G U R E  E10.2b

1200

1000

800

600

400

200

0
0 0.005 0.01 0.015 0.02 0.025 0.03

Q
, 
cf

s

n

Finished concrete

Rubble masonry

Brickwork Asphalt

F l u i d s  i n  t h e  N e w s

Plumbing the Everglades Because of all of the economic de-
velopment that has occurred in southern Florida, the natural
drainage pattern of that area has been greatly altered during
the past century. Previously there was a vast network of sur-
face flow southward from the Orlando area, to Lake Okee-
chobee, through the Everglades, and out to the Gulf of Mexico.
Currently a vast amount of freshwater from Lake Okeechobee
and surrounding waterways (1.7 billion gallons per day) is
sluiced into the ocean for flood control, bypassing the Ever-
glades. A new long-term Comprehensive Everglades Restora-
tion Plan is being implemented to restore, preserve, and pro-

tect the south Florida ecosystem. Included in the plan is the
use of numerous aquifer-storage-and-recovery systems that
will recharge the ecosystem. In addition, surface water reser-
voirs using artificial wetlands will clean agricultural runoff. In
an attempt to improve the historical flow from north to south,
old levees will be removed, parts of the Tamiami Trail cause-
way will be altered, and stored water will be redirected
through miles of new pipes and rebuilt canals. Strictly speak-
ing, the Everglades will not be “restored.” However, by 2030,
1.6 million acres of national parkland will have cleaner water
and more of it. (See Problem 10.41.)

GIVEN Water flows in the channel shown in Fig. E10.2a at
a rate of Q � 10.0 m3/s. The canal lining is weedy. 

FIND Determine the depth of the flow.

SOLUTION

Uniform Flow—Determine Flow Depth

3.66 m and the area is

A � y a
y

tan 40°
b � 3.66y � 1.19y2 � 3.66y

EXAMPLE 10.3

In this instance neither the flow area nor the hydraulic radius is
known, although they can be written in terms of the depth, y.
Since the flowrate is given in m3/s, we will solve this problem
using SI units. Hence, the bottom width is (12 ft)(1 m/3.281 ft) �

COMMENT The same results would be obtained for the
channel if its size were given in meters. We would use the
same value of n but set for this SI units situation.k � 1
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10.4 Uniform Depth Channel Flow 383

In many man-made channels the surface roughness (and, hence the Manning coeffi-
cient) varies along the wetted perimeter of the channel. In such cases the channel cross sec-
tion can be divided into N subsections, each with its own wetted perimeter, Pi, and Ai, and
Manning coefficient, ni. The Pi values do not include the imaginary boundaries between the
different subsections. The total flowrate is assumed to be the sum of the flowrates through
each section. This technique is illustrated by Example 10.4.

GIVEN Water flows along the drainage canal having the
properties shown in Fig. E10.4a. The bottom slope is S0 �
1 ft/500 ft � 0.002. 

FIND Estimate the flowrate.

Uniform Flow—Variable RoughnessEXAMPLE 10.4

COMMENT By repeating the calculations for various
flowrates, the results shown in Fig. E10.3 are obtained.
Note that the water depth is not linearly related to the
flowrate. That is, if the flowrate is doubled, the depth is not
doubled.

where A and y are in square meters and meters, respectively.
Also, the wetted perimeter is

so that

where Rh and y are in meters. Thus, with n � 0.030 (from
Table 10.1), Eq. 10.15 can be written as

which can be rearranged into the form

(1)

where y is in meters. The solution of Eq. 1 can be obtained
easily by use of a simple root-finding numerical technique or
by trial-and-error methods. The only physically meaningful
root of Eq. 1 (i.e., a positive, real number) gives the solution
for the normal flow depth at this flowrate as

(Ans)y � 1.50 m

11.19y2 � 3.66y25 � 51513.11y � 3.6622 � 0

   10.001421/2

 �
1.0

0.030
 11.19y2 � 3.66y2 a

1.19y2 � 3.66y

3.11y � 3.66
b

2/3

Q � 10 �



n
 AR 2/3

h    S
1/2
0

Rh �
A

P
�

1.19y2 � 3.66y

3.11y � 3.66

P � 3.66 � 2 a
y

 sin 40°
b � 3.11y � 3.66

F I G U R E  E10.3

(10, 1.50)

3.0

2.5

2.0

1.5

1.0

0.5

0
0 5 10 15 20 25 30

y
, 

m

Q, m3/s

F I G U R E  E10.4a

(2)

n2 =
0.015

0.8 ft

(3)0.6 ft(1)

n1 = 0.020 n3 = 0.030
3 ft2 ft3 ft

SOLUTION

The appropriate values of Ai, Pi, Rhi, and ni are listed in
Table E10.4. Note that the imaginary portions of the perime-
ters between sections (denoted by the dashed lines in Fig. E10. 4a)
are not included in the Pi. That is, for section (2)

A2 � 2 ft 10.8 � 0.62 ft � 2.8 ft2

We divide the cross section into three subsections as is indi-
cated in Fig. E10.4a and write the flowrate as Q � Q1 � Q2 �
Q3, where for each section

Qi �
1.49

ni
 AiR

2/3
hi S1/2

0
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One type of problem often encountered in open-channel flows is that of determining
the best hydraulic cross section, defined as the section of the minimum area for a given
flowrate, Q, slope, S0, and roughness coefficient, n. Example 10.5 illustrates the concept of
the best hydraulic cross section for rectangular channels.

384 Chapter 10 ■ Open-Channel Flow

where neff is the effective value of n for this channel. With
Q � 16.8 ft3/s as determined earlier, the value of neff is
found to be

As expected, the effective roughness (Manning n) is between
the minimum (n2 � 0.015) and maximum (n3 � 0.030) values
for the individual subsections.

By repeating the calculations for various depths, y, the re-
sults shown in Fig. E10.4b are obtained. Note that there are
two distinct portions of the graph—one when the water is con-
tained entirely within the main, center channel 
the other when the water overflows into the side portions of the
channel 1y 7 0.8 ft2.

1y 6 0.8 ft2;

 �
1.4916.42 10.59322/310.00221/2

16.8
� 0.0179

neff �
1.49AR 2/3

h S1/2
0

Q

and

so that

■ TA B L E  E 1 0 . 4

Ai Pi Rhi
i (ft2) (ft) (ft) ni

1 1.8 3.6 0.500 0.020
2 2.8 3.6 0.778 0.015
3 1.8 3.6 0.500 0.030

Thus, the total flowrate is

or

(Ans)

COMMENTS If the entire channel cross section were
considered as one flow area, then A � A1 � A2 � A3 � 6.4 ft2

and P � P1 � P2 � P3 � 10.8 ft, or Rh � A/P � 6.4 ft2/10.8 ft �
0.593 ft. The flowrate is given by Eq. 10.15, which can be
written as

Q �
1.49
neff

 AR 2/3
h S1/2

0

Q � 16.8 ft3/s

 �
11.8 ft22 10.500 ft22/3

0.030
d

  c
11.8 ft22 10.500 ft22/3

0.020
�
12.8 ft22 10.778 ft22/3

0.015

Q � Q1 � Q2 � Q3 � 1.4910.00221/2

Rh2
�

A2

P2
�

2.8 ft2

3.6 ft
� 0.778 ft

P2 � 2 ft � 210.8 ft2 � 3.6 ft

40

30

20

0 0.5 1 1.5 2

10

0

(1.4 ft, 16.8 ft3/sQ
, 

ft
3
/s

y, ft

F I G U R E  E10.4b

GIVEN Water flows uniformly in a rectangular channel of
width b and depth y.

FIND Determine the aspect ratio, b/y, for the best hydraulic
cross section.

Uniform Flow—Best Hydraulic Cross SectionEXAMPLE 10.5

SOLUTION

where A � by and P � b � 2y, so that Rh � A/P � by/(b � 2y).
We rewrite the hydraulic radius in terms of A as

Rh �
A

12y � b2
�

A

12y � A/y2
�

Ay

12y2 � A2

The uniform flow is given by Eq. 10.15 as

(1)Q �



n
 AR 2/3

h S1/2
0
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10.5 Gradually Varied Flow 385

An alternate but equivalent method to obtain the aforemen-
tioned answer is to use the fact that dRh/dy � 0, which follows
from Eq. 1 using dQ/dy � 0 (constant flowrate) and dA/dy � 0
(best hydraulic cross section has minimum area). Differentiation
of Rh � Ay/(2y2 � A) with constant A gives b/y � 2 when
dRh /dy � 0.

The best hydraulic cross section can be calculated for other
shapes in a similar fashion. The results (given here without
proof) for circular, rectangular, trapezoidal (with 60� sides),
and triangular shapes are shown in Fig. E10.5b.

so that Eq. 1 becomes

This can be rearranged to give

(2)

where K � (nQ/
S0
1/2)3/2 is a constant. The best hydraulic section

is the one that gives the minimum A for all y. That is, dA/dy � 0.
By differentiating Eq. 2 with respect to y, we obtain

which, with dA/dy � 0, reduces to

(3)

With K � A5/2 y/(2y2 � A) from Eq. 2, Eq. 3 can be written in
the form

which simplifies to y � (A/2)1/2. Thus, because A � by, the
best hydraulic cross section for a rectangular shape has a
width b and a depth

or

That is, the rectangle with the best hydraulic cross section is
twice as wide as it is deep, or

(Ans)

COMMENTS A rectangular channel with b/y � 2 will
give the smallest area (and smallest wetted perimeter) for a
given flowrate. Conversely, for a given area, the largest
flowrate in a rectangular channel will occur when b/y � 2. For
A � by � constant, if y S 0 then b S , and the flowrate is
small because of the large wetted perimeter P � b � 2y S .
The maximum Q occurs when y � b/2. However, as seen in
Fig. E10.5a, the maximum represented by this optimal config-
uration is a rather weak one. For example, for aspect ratios be-
tween 1 and 4, the flowrate is within 96% of the maximum
flowrate obtained with the same area and b/y � 2.

q
q

b/y � 2

2y2 � by

y � a
A

2
b

1/2

� a
by

2
b

1/2

A5/2 �
4A5/2y2

12y2 � A2

A5/2 � 4Ky

5

2
 A3/2 

dA

dy
 y � A5/2 � K a4y �

dA

dy
b

A5/2y � K12y2 � A2

Q �



n
 A a

Ay

2y2 � A
b

2/3 

S1/2
0

1.00

0.95

0.90

0.85

0 1 2 3 4 5
b__
y

Q_____
Qmax

b

y

A = by = constant

(a)

y = D/2

D

(i)

y = b/2

b

(ii)

b

b

60°
√

y =
3b/2

(iii) (iv)

(b)

90°

F I G U R E  E10.5

10.5 Gradually Varied Flow

In many situations the flow in an open channel is not of uniform depth (y � constant)
along the channel. This can occur because of several reasons: The bottom slope is not con-
stant, the cross-sectional shape and area vary in the flow direction, or there is some obstruction
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across a portion of the channel. Such flows are classified as gradually varying flows if
dy/dx � 1.

If the bottom slope and the energy line slope are not equal, the flow depth will vary
along the channel, either increasing or decreasing in the flow direction. In such cases

, and the right-hand side of Eq. 10.10 is not zero. Physically, the dif-
ference between the component of weight and the shear forces in the direction of flow pro-
duces a change in the fluid momentum that requires a change in velocity and, from conti-
nuity considerations, a change in depth. Whether the depth increases or decreases depends
on various parameters of the flow, with a variety of surface profile configurations [flow
depth as a function of distance, y � y(x)] possible (Refs. 4 and 7).

dV/dx � 0dy/dx � 0
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10.6 Rapidly Varied Flow

In many open channels, flow depth changes occur over a relatively short distance so that
dy/dx � 1. Such rapidly varied flow conditions are often quite complex and difficult to ana-
lyze in a precise fashion. Fortunately, many useful approximate results can be obtained by
using a simple one-dimensional model along with appropriate experimentally determined
coefficients when necessary. This section discusses several of these flows.

The hydraulic jump is one such case. As indicated in Fig. 10.9, the flow may change
from a relatively shallow, high-speed condition into a relatively deep, low-speed condition
within a horizontal distance of just a few channel depths. Also, many open-channel flow-
measuring devices are based on principles associated with rapidly varied flows. Among
these devices are broad-crested weirs, sharp-crested weirs, critical flow flumes, and sluice
gates. The operation of such devices is discussed in the following sections.

10.6.1 The Hydraulic Jump

Observations of flows in open channels show that under certain conditions it is possible that
the fluid depth will change very rapidly over a short length of the channel without any
change in the channel configuration. Such changes in depth can be approximated as a dis-
continuity in the free-surface elevation (dy/dx � �). Physically, this near discontinuity,
called a hydraulic jump, may result when there is a conflict between the upstream and the
downstream influences that control a particular section (or reach) of a channel.

The simplest type of hydraulic jump occurs in a horizontal, rectangular channel as indi-
cated in Fig. 10.10. Although the flow within the jump itself is extremely complex and agi-
tated, it is reasonable to assume that the flow at sections (1) and (2) is nearly uniform, steady,

V10.8 Erosion in a
channel

V10.9 Bridge pier
scouring

F I G U R E  10.9 Hydraulic jump. (Photograph by Bruce Munson.)

V10.10 Big Sioux
River Bridge 
collapse
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10.6 Rapidly Varied Flow 387

and one-dimensional. In addition, we neglect any wall shear stresses, �w, within the relatively
short segment between these two sections. Under these conditions the x component of the
momentum equation (Eq. 5.17) for the control volume indicated can be written as

where, as indicated by the figure in the margin, the pressure force at either section is hydro-
static. That is, F1 � pc1A1 � �y 2

1b/2 and F2 � pc2A2 � �y 2
2b/2, where for the rectangular

channel cross sections, pc1 � �y1/2 and pc2 � �y2/2 are the pressures at the centroids of
the channel cross sections and b is the channel width. Thus, the momentum equation
becomes

(10.16)

In addition to the momentum equation, we have the conservation of mass equation (Eq. 5.11)

(10.17)

and the energy equation (Eq. 5.57)

(10.18)

The head loss, hL, in Eq. 10.18 is due to the violent turbulent mixing and dissipation that
occur within the jump itself. We have neglected any head loss due to wall shear stresses.

Clearly Eqs. 10.16, 10.17, and 10.18 have a solution y1 � y2, V1 � V2, and hL � 0.
This represents the trivial case of no jump. Because these are nonlinear equations, it may
be possible that more than one solution exists. The other solutions can be obtained as fol-
lows. By combining Eqs. 10.16 and 10.17 to eliminate V2 we obtain

which can be simplified by factoring out a common nonzero factor y1 � y2 from each side
to give

where is the upstream Froude number. By using the quadratic formula we
obtain

y2

y1
�

1

2
 1�1 � 21 � 8Fr 

2
1 2

Fr1 � V1/1gy1

a
y2

y1
b

2

� a
y2

y1
b � 2Fr 

2
1 � 0

y2
1

2
�

y2
2

2
�

V1y1

g
 a

V1y1

y2
� V1b �

V2
1y1

gy2
 1y1 � y22

y1 �
V2

1

2g
� y2 �

V2
2

2g
� hL

y1bV1 � y2bV2 � Q

y2
1

2
�

y2
2

2
�

V1y1

g
 1V2 � V12

F1 � F2 � �Q1V2 � V12 � �V1y1b1V2 � V12

F I G U R E  10.10 Hydraulic jump geometry.
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V10.11 Hydraulic
jump in a river
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Clearly the solution with the minus sign is not possible (it would give a negative y2/y1). Thus,

(10.19)

This depth ratio, y2/y1, across the hydraulic jump is shown as a function of the upstream
Froude number in Fig. 10.11. The portion of the curve for Fr1 � 1 is dashed in recognition
of the fact that to have a hydraulic jump the flow must be supercritical. That is, the solu-
tion as given in Eq. 10.19 must be restricted to Fr1 � 1, for which y2/y1 � 1. This can be
shown by consideration of the energy equation, Eq. 10.18, as follows. The dimensionless
head loss, hL/y1, can be obtained from Eq. 10.18 as

(10.20)

where, for given values of Fr1, the values of y2/y1 are obtained from Eq. 10.19. As indicated
in Fig. 10.12, the head loss is negative if Fr1 � 1. Since negative head losses are not pos-
sible (viscous effects dissipate energy, they cannot create energy; see Section 5.3), it is not
possible to produce a hydraulic jump with Fr1 � 1. The head loss across the jump is indi-
cated by the lowering of the energy line shown in Fig. 10.10.

hL

y1
� 1 �

y2

y1
�

Fr2
1

2
c1 � a

y1

y2
b

2

d

y2

y1
�

1

2
 1�1 � 21 � 8Fr 

2
1 2
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5

4

3

2

1

0
0 1 2 3 4

No jump possible

Fr1 =
V1______

√gy1

y2__
y1

F I G U R E  10.11 Depth ratio across a
hydraulic jump as a function of upstream Froude
number.

F l u i d s  i n  t h e  N e w s

Grand Canyon rapids building Virtually all of the rapids in
the Grand Canyon were formed by rock debris carried into the
Colorado River from side canyons. Severe storms wash large
amounts of sediment into the river, building debris fans that
narrow the river. This debris forms crude dams that back up the
river to form quiet pools above the rapids. Water exiting the
pool through the narrowed channel can reach supercritical con-
ditions and produce hydraulic jumps downstream. Since the
configuration of the jumps is a function of the flowrate, the dif-
ficulty in running the rapids can change from day to day. Also,

rapids change over the years as debris is added to or removed
from the rapids. For example, Crystal Rapid, one of the notori-
ous rafting stretches of the river, changed very little between
the first photos of 1890 and those of 1966. However, a debris
flow from a severe winter storm in 1966 greatly constricted the
river. Within a few minutes the configuration of Crystal Rapid
was completely changed. The new, immature rapid was again
drastically changed by a flood in 1983. While Crystal Rapid is
now considered full grown, it will undoubtedly change again,
perhaps in 100 or 1000 years. (See Problem 10.58.)

V10.12 Hydraulic
jump in a sink

c10OpenChannelFlow.qxd  9/28/10  10:35 AM  Page 388



10.6 Rapidly Varied Flow 389

No jump
possible

Fr1 =
V1______

√gy1

4

3

2

1

0

-1
0 1 2 3 4

h
L__

y1

F I G U R E  10.12 Dimensionless head
loss across a hydraulic jump as a function of
upstream Froude number.

GIVEN Water on the horizontal apron of the 100-ft-wide
spillway shown in Fig. E10.6a has a depth of 0.60 ft and a ve-
locity of 18 ft/s. 

FIND Determine 

(a) the depth, y2, after the jump, the Froude numbers before
and after the jump, Fr1 and Fr2, and 

(b) the power dissipated, pd, within the jump.

Hydraulic JumpEXAMPLE 10.6

SOLUTION

Since Q1 � Q2, or V2 � (y1V1)/y2 � 0.60 ft(18 ft/s)/3.19 ft �
3.39 ft/s, it follows that

(Ans)Fr2 �
V2

1gy2

�
3.39 ft /s

3 132.2 ft /s22 13.19 ft2 41/2 � 0.334

(a) Conditions across the jump are determined by the up-
stream Froude number

(Ans)

Thus, the upstream flow is supercritical, and it is possible to
generate a hydraulic jump as sketched.

From Eq. 10.19 we obtain the depth ratio across the jump as

or

(Ans)y2 � 5.32 10.60 ft2 � 3.19 ft

 �
1

2
 3�1 � 21 � 814.1022 4 � 5.32

y2

y1
�

1

2
 1�1 � 21 � 8Fr2

12

Fr1 �
V1

1gy1

�
18 ft /s

3 132.2 ft /s22 10.60 ft2 41/2 � 4.10

(a)

y1 = 0.60 ft Downstream
obstacles

b = width = 100 ft

Spillway apron

V1 = 18 ft/s
y2

V2

1000

800

600

400

200

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

�
d
,  h

p

y1, ft

(b)

(0.60 ft, 277 hp)

(1.54 ft, 0 hp)

F I G U R E  E10.6
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10.6.2 Sharp-Crested Weirs

A weir is an obstruction on a channel bottom over which the fluid must flow. It provides
a convenient method of determining the flowrate in an open channel in terms of a single
depth measurement. A sharp-crested weir is essentially a vertical sharp-edged flat plate
placed across the channel in a way such that the fluid must flow across the sharp edge and
drop into the pool downstream of the weir plate, as shown in Fig. 10.13. The specific shape
of the flow area in the plane of the weir plate is used to designate the type of weir (see

390 Chapter 10 ■ Open-Channel Flow

in Section 10.3, the specific energy diagram for this flow can
be obtained by using V � q/y, where

Thus,

or

where y and E are in feet. The resulting specific energy diagram
is shown in Fig. E10.6c. Because of the head loss across the
jump, the upstream and downstream values of E are different. In
going from state (1) to state (2) the fluid does not proceed along
the specific energy curve and pass through the critical condition
at state 2�. Rather, it jumps from (1) to (2) as is represented by
the dashed line in the figure. From a one-dimensional consider-
ation, the jump is a discontinuity. In actuality, the jump is a
complex three-dimensional flow incapable of being represented
on the one-dimensional specific energy diagram.

E � y �
1.81

y2

E � y �
q2

2gy2 � y �
110.8 ft2/s22

2132.2 ft /s22y 2

 � 10.8 ft2/s

q � q1 � q2 �
Q

b
� y1V1 � 0.60 ft 118.0 ft /s2

COMMENT As is true for any hydraulic jump, the flow
changes from supercritical to subcritical flow across the jump.

(b) The power (energy per unit time) dissipated, pd, by vis-
cous effects within the jump can be determined from the head
loss as (see Eq. 5.58)

(1)

where hL is obtained from Eqs. 10.18 or 10.20 as

or

Thus, from Eq. 1,

or

(Ans)

COMMENTS This power, which is dissipated within the
highly turbulent motion of the jump, is converted into an in-
crease in water temperature, T. That is, T2 	 T1. Although the
power dissipated is considerable, the difference in tempera-
ture is not great because the flowrate is quite large.

By repeating the calculations for the given flowrate
but

with various upstream depths, y1, the results shown in
Fig. E10.6b are obtained. Note that a slight change in water
depth can produce a considerable change in energy dissipated.
Also, if the flow is subcritical ( ) and no
hydraulic jump can occur.

The hydraulic jump flow process can be illustrated by use
of the specific energy concept introduced in Section 10.3 as
follows. Equation 10.18 can be written in terms of the specific
energy, E � y � V2/2g, as E1 � E2 � hL, where E1 � y1 �
V 2

1/2g � 5.63 ft and E2 � y2 � V 2
2/2g � 3.37 ft. As discussed

Fr1 6 1y1 7 1.54 ft

Q1 � A1V1 � b1y1V1 � 100 ft 10.6 ft2 118 ft/s2 �1080 ft3/s

 pd �
1.52  105 ft . lb/s

550 3 1ft . lb/s2/hp 4
� 277 hp

 � 1.52  105 ft . lb/s

pd � 162.4 lb/ft32 1100 ft2 10.60 ft2 118.0 ft /s2 12.26 ft2

hL � 2.26 ft

 � c3.19 ft �
13.39 ft /s22

2132.2 ft /s22
d

hL � ay1 �
V 2

1

2g
b� ay2 �

V 2
2

2g
b� c0.60 ft �

118.0 ft /s22

2132.2 ft /s22
d

pd � �QhL � �by1V1hL

q = 10.8 ft2/s
(2)

(2')

(1)

h
L
 = 2.26 ft

4

3

2

1

0
0 1 2 3 4 5 6

y
, 

ft

E, ft

E2 = 3.37 E1 = 5.63

(c)

F I G U R E  E10.6 (Continued)
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10.6 Rapidly Varied Flow 391

Fig. 10.14). The complex nature of the flow over a weir makes it impossible to obtain pre-
cise analytical expressions for the flow as a function of other parameters, such as the weir
height, Pw, the weir head, H, the fluid depth upstream, and the geometry of the weir plate
(angle 	 for triangular weirs or aspect ratio, b/H, for rectangular weirs).

As a first approximation, we assume that the velocity profile upstream of the weir
plate is uniform and that the pressure within the nappe (see Fig. 10.13) is atmospheric. In
addition, we assume that the fluid flows horizontally over the weir plate with a nonuniform
velocity profile, as indicated in Fig. 10.15. With pB � 0 the Bernoulli equation for flow
along the arbitrary streamline A–B indicated can be written as

(10.21)

where h is the distance that point B is below the free surface. The total head for any par-
ticle along the vertical section (1) is the same, zA � pA/� � V2

1/2g � H � Pw � V2
1/2g. Thus,

the velocity of the fluid over the weir plate is obtained from Eq. 10.21 as

The flowrate can be calculated from

(10.22)

where � � �(h) is the cross-channel width of a strip of the weir area, as indicated in Fig.
10.15b. For a rectangular weir � is constant. For other weirs, such as triangular or circular
weirs, the value of � is known as a function of h.

Q � �
122

u2 dA � �
h�H

h�0

 u2/ dh

u2 �
B

2g ah �
V2

1

2g
b

pA

�
�

V2
1

2g
� zA � 1H � Pw � h2 �

u2
2

2g

F I G U R E  10.13 Sharp-crested weir geometry.

Q

H

P
w

Draw down

Nappe

Weir plate

F I G U R E  10.14 Sharp-crested weir plate geometry: (a) rectangular, 
(b) triangular, and (c) trapezoidal.

Weir
plate

Channel
walls

(a) (b) (c)

b

θ
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For a rectangular weir (see Fig. 10.14a), � � b, and the flowrate becomes

or

(10.23)

Equation 10.23 is a rather cumbersome expression that can be simplified by using the fact
that with Pw � H (as often happens in practical situations) the upstream velocity is negligi-
bly small. That is, V2

1/2g � H and Eq. 10.23 simplifies to the basic rectangular weir equation

(10.24)

Because of the numerous approximations made to obtain Eq. 10.24, it is not unex-
pected that an experimentally determined correction factor must be used to obtain the actual
flowrate as a function of weir head. Thus, the final form is

(10.25)

where Cwr is the rectangular weir coefficient. In most practical situations the following cor-
relation, shown in the figure in the margin, can be used (Refs. 3 and 6):

(10.26)

More precise values of Cwr can be found in the literature if needed (Refs. 2 and 9).
The triangular sharp-crested weir (see Fig. 10.14b) is often used for flow measure-

ments, particularly for measuring flowrates over a wide range of values. For small flowrates,
the head, H, for a rectangular weir would be very small and the flowrate could not be mea-
sured accurately. However, with the triangular weir, the flow area decreases as H decreases
so that even for small flowrates, reasonable heads are developed. Accurate results can be
obtained over a wide range of Q.

The triangular weir equation can be obtained from Eq. 10.22 by using

/ � 21H � h2 tan a
	

2
b

Cwr � 0.611 � 0.075 a
H

Pw
b

Q � Cwr 
2
3 12g b H3/2

Q � 2
3 12g b H3/2

Q �
2

3
 12g b c aH �

V2
1

2g
b

3/2

� a
V2

1

2g
b

3/2

d

Q � 12g b�
H

0

 ah �
V2

1

2g
b

1/2

 dh
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1

0
0 1

Cwr

H/P
w

V10.13 Triangular
weir

F I G U R E  10.15 Assumed flow structure over a weir.
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10.6 Rapidly Varied Flow 393

where 	 is the angle of the vee notch (see Figs. 10.14 and 10.15). After carrying out the
integration and again neglecting the upstream velocity (V 2

1/2g � H), we obtain

(10.27)

where the experimentally determined triangular weir coefficient, Cwt, is used to account for
the real-world effects neglected in the analysis. Typical values of Cwt for triangular weirs
are in the range of 0.58 to 0.62, as shown in Fig. 10.16.

10.6.3 Broad-Crested Weirs

A broad-crested weir is a structure in an open channel that has a horizontal crest above
which the fluid pressure may be considered hydrostatic. A typical configuration is shown
in Fig. 10.17.

The operation of a broad-crested weir is based on the fact that for an appropriately
designed weir, nearly uniform critical flow is achieved in the short reach above the weir
block, as shown by the figure in the margin. (If H/Lw � 0.08, viscous effects are impor-
tant, and the flow is subcritical over the weir. However, if H/Lw 	 0.5 the streamlines are
not horizontal.) If the kinetic energy of the upstream flow is negligible, then V 2

1/2g � y1

Q � Cwt 
8

15
  tan a

	

2
b 12g H5/2

V10.14 Low-head
dam

H/L
w
 = 0.08

H/L
w
 = 0.50

H

L
w

Minimum Cwt for all θ

0.66

0.64

0.62

0.60

0.58

0.56

0 0.2 0.4 0.6 0.8 1.0
H, ft

C
w

t
90°

60°

45°

= 20°θ

F I G U R E  10.16 Weir coefficient for triangular
sharp-crested weirs (Ref. 8).

F I G U R E  10.17 Broad-crested weir geometry.

Weir block

V1 V2 = V
c

y2 = y
c

L
w

P
w

H

y1

(1)

(2)
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and the upstream specific energy is E1 � V 2
1/2g � y1 � y1. Observations show that as the

flow passes over the weir block, it accelerates and reaches critical conditions, y2 � yc and
Fr2 � 1 (i.e., V2 � c2), corresponding to the nose of the specific energy curve (see Fig.
10.6). The flow does not accelerate to supercritical conditions (Fr2 	 1).

The Bernoulli equation can be applied between point (1) upstream of the weir and
point (2) over the weir where the flow is critical to obtain

or, if the upstream velocity head is negligible,

However, because V2 � Vc � (gyc)
1/2, we find that V 2

c � gyc so that we obtain

or

Thus, the flowrate is

or

Again an empirical weir coefficient is used to account for the various real-world effects not
included in the aforementioned simplified analysis. That is,

(10.28)

where approximate values of Cwb, the broad-crested weir coefficient shown in the figure in
the margin, can be obtained from the equation (Ref. 5)

(10.29)Cwb � 1.125 a
1 � H/Pw

2 � H/Pw
b

1/2

Q � Cwb b 1g a
2

3
b

3/2 

H3/2

Q � b 1g a
2

3
b

3/2

 H 
3/2

Q � by2V2 � bycVc � byc1gyc2
1/2 � b1g yc

3/2

yc �
2H

3

H � yc �
yc

2

H � yc �
1V2

c � V2
12

2g
�

V2
c

2g

H � Pw �
V2

1

2g
� yc � Pw �

V2
c

2g
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1

0
0 1

Cwb

H/P
w

GIVEN Water flows in a rectangular channel of width
b � 2 m with flowrates between Qmin � 0.02 m3/s and Qmax �
0.60 m3/s. This flowrate is to be measured by using (a) a rec-
tangular sharp-crested weir, (b) a triangular sharp-crested weir
with 	 � 90�, or (c) a broad-crested weir. In all cases the bot-
tom of the flow area over the weir is a distance Pw � 1 m
above the channel bottom. 

FIND Plot a graph of Q � Q(H), flowrate as a function of
weir head, for each weir and comment on which weir would
be best for this application.

Sharp-Crested and Broad-Crested WeirsEXAMPLE 10.7
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10.6 Rapidly Varied Flow 395

10.6.4 Underflow Gates

A variety of underflow gate structures is available for flowrate control. Three typical types
are illustrated in Fig. 10.18.

where, again, H and Q are in meters and m3/s. This result is
also plotted in Fig. E10.7.

COMMENT Although it appears as though any of the
three weirs would work well for the upper portion of the
flowrate range, neither the rectangular nor the broad-crested
weir would be very accurate for small flowrates near Q � Qmin

because of the small head, H, at these conditions. The triangu-
lar weir, however, would allow reasonably large values of H at
the lowest flowrates. The corresponding heads with Q � Qmin �
0.02 m3/s for rectangular, triangular, and broad-crested weirs
are 0.0312, 0.182, and 0.0375 m, respectively.

In addition, as discussed in this section, for proper opera-
tion the broad-crested weir geometry is restricted to 0.08 �
H/Lw � 0.50, where Lw is the weir block length. From Eq. 3
with Qmax � 0.60 m3/s, we obtain Hmax � 0.349. Thus, we
must have Lw 	 Hmax/0.5 � 0.698 m to maintain proper critical
flow conditions at the largest flowrate in the channel. However,
with Q � Qmin � 0.02 m3/s, we obtain Hmin � 0.0375 m. Thus,
we must have Lw � Hmin/0.08 � 0.469 m to ensure that fric-
tional effects are not important. Clearly, these two constraints
on the geometry of the weir block, Lw, are incompatible.

A broad-crested weir will not function properly under the wide
range of flowrates considered in this example. The sharp-crested
triangular weir would be the best of the three types considered,
provided the channel can handle the Hmax � 0.719-m head.

SOLUTION

For the rectangular weir with Pw � 1 m, Eqs. 10.25 and 10.26
give

Thus,

or

(1)

where H and Q are in meters and m3/s, respectively. The re-
sults from Eq. 1 are plotted in Fig. E10.7.

Similarly, for the triangular weir, Eq. 10.27 gives

or

(2)

where H and Q are in meters and m3/s and Cwt is obtained from
Fig. 10.16. For example, with H � 0.20 m � 0.656 ft, we find
Cwt � 0.584, or Q � 2.36 (0.584)(0.20)5/2 � 0.0247 m3/s. The
triangular weir results are also plotted in Fig. E10.7.

For the broad-crested weir, Eqs. 10.28 and 10.29 give

Thus, with Pw � 1 m

or

(3) Q � 3.84 a
1 � H

2 � H
b

1/2

 H 3/2

 Q � 1.125 a
1 � H

2 � H
b

1/2

12 m2 29.81 m/s2 a
2

3
b

3/2

 H 3/2

 � 1.125 a
1 � H/Pw

2 � H/Pw

b
1/2 

b1g a
2

3
b

3/2

H3/2

Q � Cwb b1g a
2

3
b

3/2 

H 3/2

Q � 2.36Cwt  H
5/2

 � Cwt 
8

15
 tan  145°2 2219.81 m/s22 H 5/2

Q � Cwt 
8

15
  tan a

	

2
b 12g H 5/2

 Q � 5.9110.611 � 0.075H2H 3/2

 Q � 10.611 � 0.075H2 
2

3
 2219.81 m/s22 12 m2 H 3/2

 � a0.611 � 0.075 
H

Pw

b 
2

3
 12g bH 3/2

Q � Cwr 
2

3
 12g bH 3/2

F I G U R E  E10.7
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The flow under a gate is said to be free outflow when the fluid issues as a jet of
supercritical flow with a free surface open to the atmosphere as shown in Fig. 10.18 and
the photograph in the margin. In such cases it is customary to write this flowrate as the
product of the distance, a, between the channel bottom and the bottom of the gate times
the convenient reference velocity (2gy1)

1/2. That is,

(10.30)

where q is the flowrate per unit width. The discharge coefficient, Cd, is a function of the
contraction coefficient, Cc � y2/a, and the depth ratio y1/a. Typical values of the discharge
coefficient for free outflow (or free discharge) from a vertical sluice gate are on the order
of 0.55 to 0.60 as indicated by the top line in Fig. 10.19 (Ref. 2).

As indicated in Fig. 10.20, in certain situations the jet of water issuing from under
the gate is overlaid by a mass of water that is quite turbulent. Typical values of Cd for these
drowned outflow cases are indicated as the series of lower curves in Fig. 10.19.

q � Cd a12gy1

396 Chapter 10 ■ Open-Channel Flow

(Photograph courtesy
of Pend Oreille Public
Utility District.)

V10.15 Spillway
gate

F I G U R E  10.18 Three variations of underflow gates: (a) vertical 
gate, (b) radial gate, and (c) drum gate.

(a) (b) (c)

y1
y2

a

F I G U R E  10.19 Typical discharge coefficients for underflow
gates (Ref. 3).
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F I G U R E  10.20 Drowned outflow
from a sluice gate.
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open-channel flow
critical flow
subcritical flow
supercritical flow
wave speed
Froude number
specific energy
specific energy diagram
uniform depth flow
wetted perimeter
hydraulic radius
Chezy equation
Manning equation
Manning resistance 

coefficient
rapidly varied flow
hydraulic jump
sharp-crested weir
weir head
broad-crested weir
underflow gate

10.7 Chapter Summary and Study Guide

This chapter discussed various aspects of flows in an open channel. A typical open chan-
nel flow is driven by the component of gravity in the direction of flow. The character of
such flows can be a strong function of the Froude number, which is the ratio of the fluid
speed to the free-surface wave speed. The specific energy diagram is used to provide insight
into the flow processes involved in open-channel flow.

Uniform depth channel flow is achieved by a balance between the potential energy
lost by the fluid as it coasts downhill and the energy dissipated by viscous effects. Alter-
nately, it represents a balance between weight and friction forces. The relationship among
the flowrate, the slope of the channel, the geometry of the channel, and the roughness of
the channel surfaces is given by the Manning equation. Values of the Manning coefficient
used in the Manning equation are dependent on the surface material roughness.

The hydraulic jump is an example of nonuniform depth open-channel flow. If the
Froude number of a flow is greater than 1, the flow is supercritical, and a hydraulic jump
may occur. The momentum and mass equations are used to obtain the relationship between
the upstream Froude number and the depth ratio across the jump. The energy dissipated in
the jump and the head loss can then be determined by use of the energy equation.

The use of weirs to measure the flowrate in an open channel is discussed. The rela-
tionships between the flowrate and the weir head are given for both sharp-crested and broad-
crested weirs.

The following checklist provides a study guide for this chapter. When your study of
the entire chapter and end-of-chapter exercises has been completed, you should be able to

write out meanings of the terms listed here in the margin and understand each of the
related concepts. These terms are particularly important and are set in color and bold
type in the text.

determine the Froude number for a given flow and explain the concepts of subcriti-
cal, critical, and supercritical flows.

plot and interpret the specific energy diagram for a given flow.

use the Manning equation to analyze uniform depth flow in an open channel.

calculate properties such as the depth ratio and the head loss for a hydraulic jump.

determine the flowrates over sharp-crested weirs, broad-crested weirs, and under the
underflow gates.

Some important equations in this chapter are:

Froude number

Wave speed (10.3)

Specific energy (10.7)

Manning equation (10.13)

Hydraulic jump depth ratio (10.19)

Hydraulic jump head loss (10.20)
hL

y1
� 1 �

y2

y1
�

Fr1
2

2
 c1 � a

y1

y2
b

2

d

y2

y1
�

1

2
 1�1 � 21 � 8Fr1 

2 2

V �
k

n
 Rh

2
3S0
1
2

E � y �
V 2

2g

c � 1gy

Fr � V
 1gy21
2
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Rectangular sharp-crested weir (10.25)

Triangular sharp-crested weir (10.27)

Broad-crested weir (10.28)

Underflow gate (10.30)

References

1. Currie, C. G., and Currie, I. G., Fundamental Mechanics of Fluids, Third Edition, Marcel
Dekker, New York, 2003.

2. Henderson, F. M., Open Channel Flow, Macmillan, New York, 1966.
3. Rouse, H., Elementary Fluid Mechanics, Wiley, New York, 1946.
4. French, R. H., Open Channel Hydraulics, McGraw-Hill, New York, 1985.
5. Chow, V. T., Open Channel Hydraulics, McGraw-Hill, New York, 1959.
6. Blevins, R. D., Applied Fluid Dynamics Handbook, Van Nostrand Reinhold, New York, 1984.
7. Vennard, J. K., and Street, R. L., Elementary Fluid Mechanics, Seventh Edition, Wiley, New

York, 1995.
8. Lenz, A. T., “Viscosity and Surface Tension Effects on V-Notch Weir Coefficients,” Transac-

tions of the American Society of Chemical Engineers, Vol. 108, 759–820, 1943.
9. Spitzer, D. W., editor, Flow Measurement: Practical Guides for Measurement and Control,

Instrument Society of America, Research Triangle Park, N. C., 1991.
10. Wallet, A., and Ruellan, F., Houille Blanche, Vol. 5, 1950.

q � Cd a12gy1

Q � Cwb b 1g a
2

3
b

3�2

 H 3�2

Q � Cwt 
8

15
 tan a

u

2
b 12g H 5�2

Q � Cwr 
2

3
 12g b H 3�2

398 Chapter 10 ■ Open-Channel Flow

Review Problems

Go to Appendix G for a set of review problems with answers.
Detailed solutions can be found in Student Solution Manual 

for a Brief Introduction to Fluid Mechanics, by Young et al. 
(© 2011 John Wiley and Sons, Inc.).

Problems

Note: Unless otherwise indicated use the values of fluid prop-
erties found in the tables on the inside of the front cover.
Problems designated with an (*) are intended to be solved
with the aid of a programmable calculator or a computer.

The even-numbered problems are included in the
hard copy version of the book, and the answers to these
even-numbered problems are listed at the end of the book.
Odd-numbered problems are provided in WileyPLUS, or
in Appendix L on the book’s web site, www.wiley.com/
college/young. The lab-type problems, FE problems, FlowLab
problems, and the videos that accompany problems can also
be accessed on these web sites.

Section 10.2 Surface Waves

10.2 Consider waves made by dropping objects (one after
another from a fixed location) into a stream of depth y that is

moving with speed V as shown in Fig. P10.2 (see Video
V9.5). The circular wave crests that are produced travel with
speed c � (gy)1/2 relative to the moving water. Thus, as the
circular waves are washed downstream, their diameters in-
crease and the center of each circle is fixed relative to the
moving water. (a) Show that if the flow is supercritical, lines
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Problems 399

tangent to the waves generate a wedge of half-angle �/2 �
arcsin (1/Fr), where Fr � V/(gy)1/2 is the Froude number. (b)
Discuss what happens to the wave pattern when the flow is
subcritical, Fr � 1.

10.4 On a distant planet small-amplitude waves travel across a
1-m-deep pond with a speed of 5 m/s. Determine the accelera-
tion of gravity on the surface of that planet.

†10.6 Explain physically, why surface tension increases the
speed of surface waves.

10.8 Observations at a shallow sandy beach show that even
though the waves several hundred yards out from the shore are
not parallel to the beach, the waves often “break” on the beach
nearly parallel to the shore as is indicated in Fig. P10.8. Explain
this behavior based on the wave speed c � (gy)1/2.

Section 10.3 Energy Considerations

10.10 Water flows in a rectangular channel with a flowrate
per unit width of q � 2.5 m2/s. Plot the specific energy dia-
gram for this flow. Determine the two possible depths of flow
if E � 2.5 m.

10.12 Water flows in a rectangular channel at a rate of q �
20 cfs/ft. When a Pitot tube is placed in the stream, water in the
tube rises to a level of 4.5 ft above the channel bottom. Deter-
mine the two possible flow depths in the channel. Illustrate this
flow on a specific energy diagram.

10.14 Water flows in a 10-ft-wide rectangular channel with a
flowrate of Q � 60 ft3/s and an upstream depth of y1 � 2 ft as
shown in Fig. P10.14. Determine the flow depth and the surface
elevation at section (2).

10.16 Water in a rectangular channel flows into a gradual con-
traction section as indicated in Fig. P10.16. If the flowrate is Q �

25 ft3/s and the upstream depth is y1 � 2 ft, determine the down-
stream depth, y2.

10.18 Water flows in a horizontal, rectangular channel with an
initial depth of 2 ft and an initial velocity of 12 ft/s. Determine
the depth downstream if losses are negligible. Note that there
may be more than one solution. Repeat the problem if the initial
depth remains the same, but the initial velocity is 6 ft/s.

10.20 Determine the maximum depth in a 3-m-wide rectangu-
lar channel if the flow is to be supercritical with a flowrate of 
Q � 60 m3/s.

Section 10.4 Uniform Depth Channel Flow—
Determine Flowrate

10.22 The following data are obtained for a particular reach of
the Provo River in Utah: A � 183 ft2, free-surface width � 55 ft,
average depth � 3.3 ft, Rh � 3.22 ft, V � 6.56 ft/s, length of
reach � 116 ft, and elevation drop of reach � 1.04 ft. Determine
(a) the average shear stress on the wetted perimeter, (b) the
Manning coefficient, n, and (c) the Froude number of the flow.

10.24 An open channel of square cross section had a flowrate of
80 ft3/s when first used. After extended use, the channel became
half-filled with silt. Determine the flowrate for this silted condition.
Assume the Manning coefficient is the same for all the surfaces.

10.26 A 2-m diameter pipe made of finished concrete lies on a
slope of 1-m elevation change per 1000 m horizontal distance.
Determine the flowrate when the pipe is half full.

10.28 By what percent is the flowrate reduced in the rectangu-
lar channel shown in Fig. P10.28 because of the addition of the
thin center board? All surfaces are of the same material.
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10.30 A trapezoidal channel with a bottom width of 3.0 m
and sides with a slope of 2:1 (horizontal vertical) is lined with
fine gravel (n � 0.020) and is to carry 10 m3/s. Can this chan-
nel be built with a slope of S0 � 0.00010 if it is necessary to
keep the velocity below 0.75 m/s to prevent scouring of the
bottom? Explain.

10.32 Water flows in a 2-m-diameter finished concrete pipe so
that it is completely full and the pressure is constant all along
the pipe. If the slope is S0 � 0.005, determine the flowrate by
using open-channel flow methods. Compare this result with that
obtained using the pipe flow methods of Chapter 8.

10.34 Water flows in a channel with an equilateral triangle
cross section as is shown in Fig. P10.34. Let Qfull denote the
flowrate when y � h. By what percent is Qfull less than Q when
y � h � �y, where �y � h? That is, placing a lid on this channel
reduces the flowrate by what percent?

10.36 The smooth concrete-lined channel shown in Fig. P10.36
is built on a slope of 2 m/km. Determine the flowrate if the
depth is y � 1.5 m.

10.38 Repeat Problem 10.36 if the surfaces are smooth con-
crete as indicated except for the diagonal surface, which is grav-
elly with n � 0.025.

Section 10.4 Uniform Depth Channel Flow—
Determine Depth or Size

10.40 Rainwater runoff from a 200  500-ft parking lot is to
drain through a circular concrete pipe that is laid on a slope of 
5 ft/mi. Determine the pipe diameter if it is to be full with a
steady rainfall of 1.5 in./hr.

10.42 A rectangular, unfinished 28-ft-wide concrete channel is
laid on a slope of 8 ft/mi. Determine the flow depth and Froude
number of the flow if the flowrate is 400 ft3/s.

10.44 Two canals join to form a larger canal as shown in Video
V10.6 and Fig. P10.44. Each of the three rectangular canals is
lined with the same material and has the same bottom slope. The

water depth in each is to be 2 m. Determine the width of the
merged canal, b. Explain physically (i.e., without using any
equations) why it is expected that the width of the merged canal
is less than the combined widths of the two original canals (i.e.,
b � 4 m � 8 m � 12 m).

10.46 Determine the flow depth for the channel shown in Fig.
P10.36 if the flowrate is 15 m3/s.

10.48 Four sewer pipes of 0.5-m diameter join to form one pipe
of diameter D. If the Manning coefficient, n, and the slope are
the same for all of the pipes, and if each pipe flows half full,
determine D.

10.50 At what depth will 50 ft3/s of water flow in a 6-ft-wide
rectangular channel lined with rubble masonry set on a slope of
1 ft in 500 ft? Is a hydraulic jump possible under these condi-
tions? Explain.

Section 10.4 Uniform Depth Channel Flow—
Determine Slope

10.52 Water flows in a river with a speed of 3 ft/s. The river is
a clean, straight, natural channel, 400 ft wide with a nearly uni-
form 3-ft depth. Is the slope of this river greater than or less than
the average slope of the Mississippi River, which drops a dis-
tance of 1475 ft in its 2552-mi length? Support your answer
with appropriate calculations.

10.54 A 50-ft-long aluminum gutter (Manning coefficient n �
0.011) on a section of a roof is to handle a flowrate of 0.15 ft3/s
during a heavy rainstorm. The cross section of the gutter is
shown in Fig. P10.54. Determine the vertical distance that this
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gutter must be pitched (i.e., the difference in elevation between
the two ends of the gutter) so that the water does not overflow
the gutter. Assume uniform depth channel flow.

10.56 The smooth concrete-lined, symmetrical channel shown
in Video V10.7 and Fig. P10.55 carries silt-laden water. If the
velocity must be 4.0 ft/s to prevent the silt from settling out (and
eventually clogging the channel), determine the minimum slope
needed.

Section 10.6.1 The Hydraulic Jump (also see Lab
Problems 10.83 and 10.84)

10.58 (See Fluids in the News article titled “Grand Canyon
rapids building,” Section 10.6.1.) During the flood of 1983, a
large hydraulic jump formed at “Crystal Hole” rapid on the Col-
orado River. People rafting the river at that time report “entering
the rapid at almost 30 mph, hitting a 20-ft-tall wall of water, and
exiting at about 10 mph.” Is this information (i.e., upstream and
downstream velocities and change in depth) consistent with the
principles of a hydraulic jump? Show calculations to support
your answer.

10.60 Under appropriate conditions, water flowing from a
faucet, onto a flat plate, and over the edge of the plate can pro-
duce a circular hydraulic jump as shown in Fig. P10.60 and
Video V10.12. Consider a situation where a jump forms 3.0 in.
from the center of the plate with depths upstream and down-
stream of the jump of 0.05 and 0.20 in., respectively. Determine
the flowrate from the faucet.

10.62 Show that the Froude number downstream of a hydraulic
jump in a rectangular channel is (y1/y2)

3/2 times the Froude num-
ber upstream of the jump, where (1) and (2) denote the upstream
and downstream conditions, respectively.

*10.64 A rectangular channel of width b is to carry water at
flowrates from 30 � Q � 600 cfs. The water depth upstream
of the hydraulic jump that occurs (if one does occur) is to re-
main 1.5 ft for all cases. Plot the power dissipated in the jump
as a function of flowrate for channels of width b � 10, 20, 30,
and 40 ft.

10.66 A hydraulic jump at the base of a spillway of a dam is
such that the depths upstream and downstream of the jump are
0.90 and 3.6 ft, respectively (see Video V10.11). If the spillway

is 10 ft wide, what is the flowrate upstream of the jump; down-
stream of the jump?

10.68 Water flows in a rectangular channel at a depth of y � 1 ft
and a velocity of V � 20 ft/s. When a gate is suddenly placed
across the end of the channel, a wave (a moving hydraulic
jump) travels upstream with velocity Vw as is indicated in Fig.
P10.68. Determine Vw. Note that this is an unsteady problem
for a stationary observer. However, for an observer moving 
to the left with velocity Vw, the flow appears as a steady hydraulic
jump.

Section 10.6 Weirs (also see Lab Problems 10.81 
and 10.82)

10.70 A rectangular sharp-crested weir is used to measure the
flowrate in a channel of width 10 ft. It is desired to have the
channel flow depth be 6 ft when the flowrate is 50 cfs. Deter-
mine the height, Pw, of the weir plate.

10.72 A basin at a water treatment plant is 60 ft long, 10 ft
wide, and 5 ft deep. Water flows from the basin over a 3-ft-long,
rectangular weir whose crest is 4 ft above the bottom of the
basin. Estimate how long it will take for the depth of the water
in the basin to change from 4.5 ft to 4.4 ft if there is no flow into
the basin.

10.74 Water flows over a broad-crested weir that has a width of
4 m and a height of Pw � 1.5 m. The free-surface well upstream
of the weir is at a height of 0.5 m above the surface of the weir.
Determine the flowrate in the channel and the minimum depth
of the water above the weir block.

10.76 Determine the head, H, required to allow a flowrate of
300 m3/hr over a sharp-crested triangular weir with .

10.78 A water-level regulator (not shown) maintains a depth of
2.0 m downstream from a 50-ft-wide drum gate as shown in Fig.
P10.78. Plot a graph of flowrate, Q, as a function of water depth
upstream of the gate, y1, for 2.0 � y1 � 5.0 m.
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10.80 Water flows over a triangular weir as shown in Fig.
P10.80a and Video V10.7. It is proposed that in order to in-
crease the flowrate, Q, for a given head, H, the triangular weir
should be changed to a trapezoidal weir as shown in Fig.
P10.80b. (a) Derive an equation for the flowrate as a function of
the head for the trapezoidal weir. Neglect the upstream velocity
head and assume the weir coefficient is 0.60, independent of H.
(b) Use the equation obtained in part (a) to show that when b �
H the trapezoidal weir functions as if it were a triangular weir.
Similarly, show that when b � H the trapezoidal weir functions
as if it were a rectangular weir.

■ Lab Problems

10.82 This problem involves the calibration of a rectangular
weir. To proceed with this problem, go to the book’s web site,
www.wiley.com/college/young, or WileyPLUS.

10.84 This problem involves the head loss across a hydraulic
jump. To proceed with this problem, go to the book’s web site,
www.wiley.com/college/young, or WileyPLUS.

■ Lifelong Learning Problems

10.86 Recent photographs from NASA’s Mars Orbiter Camera on
the Mars Global Surveyor provide new evidence that water may
still flow on the surface of Mars. Obtain information about the pos-
sibility of current or past open-channel flows on Mars and other
planets or their satellites. Summarize your findings in a brief report.

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for
fluid mechanics are provided on the book’s web site, www.wiley
.com/college/young, or WileyPLUS.

402 Chapter 10 ■ Open-Channel Flow
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CHAPTER OPENING PHOTO: Turbine blades on the rotor of a centrifugal compressor used in an auto-
mobile turbocharger.

1111TurbomachinesTurbomachines

Learn ing  Ob j ec t i v e s

After completing this chapter, you should be able to:

■ construct appropriate velocity triangles.

■ calculate parameters related to centrifugal pumps.

■ apply appropriate equations and principles to predict pump performance.

■ calculate shaft torque and power for turbines.

■ use the concept of specific speed to select the appropriate pump or
turbine.

Pumps and turbines (sometimes called fluid machines) occur in a wide variety of configu-
rations. In general, pumps add energy to the fluid—they do work on the fluid; turbines
extract energy from the fluid—the fluid does work on them. The term pump will be used
to generically refer to all pumping machines, including pumps, fans, blowers, and compres-
sors. Fluid machines can be divided into two main categories: positive displacement
machines (denoted as the static type) and turbomachines (denoted as the dynamic type).
The majority of this chapter deals with turbomachines.

Positive displacement machines force a fluid into or out of a chamber by changing
the volume of the chamber. The pressures developed and the work done are a result of
essentially static forces rather than dynamic effects. Typical examples include the common
tire pump (shown by the figure in the margin) used to fill bicycle tires, the human heart,
and the gear pump.

Turbomachines, however, involve a collection of blades, buckets, flow channels, or
passages arranged around an axis of rotation to form a rotor. Rotation of the rotor produces
dynamic effects that either add energy to the fluid or remove energy from the fluid. Exam-
ples of turbomachine-type pumps include simple window fans, propellers on ships or air-
planes, squirrel-cage fans on home furnaces, and compressors in automobile turbochargers.
Examples of turbines include the turbine portion of gas turbine engines on aircraft, steam
turbines used to drive generators at electrical generation stations, and the small, high-speed
air turbines that power dentist drills.
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404 Chapter 11 ■ Turbomachines

11.1 Introduction

Turbomachines are mechanical devices that either extract energy from a fluid (turbine) or add
energy to a fluid (pump) as a result of dynamic interactions between the device and the fluid.

Turbomachines contain blades, airfoils, “buckets,” flow channels, or passages attached to
a rotating shaft. Energy is either supplied to the rotating shaft (by a motor, for example) and
transferred to the fluid by the blades (a pump) or transferred from the fluid to the blades and
made available at the rotating shaft as shaft power (a turbine), as shown by the wind turbine
blades in the photograph in the margin. The fluid used can be either a gas (as with a window
fan or a gas turbine engine) or a liquid (as with the water pump on a car or a turbine at a hydro-
electric power plant).

Many turbomachines contain some type of housing or casing that surrounds the rotat-
ing blades or rotor, thus forming an internal flow passageway through which the fluid flows
(see Fig. 11.1). Others, such as a windmill or a window fan, are unducted. Some turbo-
machines include stationary blades or vanes in addition to rotor blades.

Turbomachines are classified as axial-flow, mixed-flow, or radial-flow machines
depending on the predominant direction of the fluid motion relative to the rotor’s axis (see
Fig. 11.1). For an axial-flow machine, the fluid maintains a significant axial-flow direction
component from the inlet to outlet of the rotor. A radial-flow machine involves a substan-
tial radial-flow component at the rotor inlet, exit, or both. In mixed-flow machines there are
significant radial- and axial-flow velocity components for the flow through the rotor row.

11.2 Basic Energy Considerations

An understanding of the work transfer in turbomachines can be obtained by considering
the basic operation of a household fan (pump) and a windmill (turbine). Although the
actual flows in such devices are very complex (i.e., three-dimensional and unsteady), the

F I G U R E  11.1 (a) A
radial-flow turbomachine. (b) An 
axial-flow turbomachine.
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essential phenomena can be illustrated by use of simplified considerations and velocity
triangles.

Consider a fan blade driven at constant angular velocity, �, by a motor as is shown
in Fig. 11.2a. We denote the blade speed as U � �r, where r is the radial distance from
the axis of the fan. The absolute fluid velocity (that seen by a person sitting stationary at

F I G U R E  11.2
Idealized flow through a fan:
(a) fan blade geometry and
(b) absolute velocity, V; rela-
tive velocity, W; and blade
velocity, U; at the inlet and
exit of the fan blade section.
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the table on which the fan rests) is denoted V, and the relative velocity (that seen by a per-
son riding on the moving fan blade) is denoted W. As shown by the figure in the margin,
the actual (absolute) fluid velocity is the vector sum of the relative velocity and the blade
velocity

(11.1)

A simplified sketch of the fluid velocity as it “enters” and “exits” the fan at radius r
is shown in Fig. 11.2b. The shaded surface labeled a-b-c-d is a portion of the cylindrical
surface (including a “slice” through the blade) shown in Fig. 11.2a. We assume for sim-
plicity that the flow moves smoothly along the blade so that relative to the moving blade
the velocity is parallel to the leading and trailing edges (points 1 and 2) of the blade. For
now we assume that the fluid enters and leaves the fan at the same distance from the axis
of rotation; thus, U1 � U2 � �r.

With this information we can construct the velocity triangles shown in Fig. 11.2b.
Note that this view is looking radially toward the axis of rotation. The motion of the blade
is down; the motion of the incoming air is assumed to be directed along the axis of rota-
tion. The important concept to grasp from this sketch is that the fan blade (because of its
shape and motion) “pushes” the fluid, causing it to change direction. The absolute velocity
vector, V, is turned during its flow across the blade from section (1) to section (2). Initially
the fluid had no component of absolute velocity in the direction of the motion of the blade,
the � (or tangential) direction. When the fluid leaves the blade, this tangential component
of absolute velocity is nonzero. For this to occur, the blade must push on the fluid in the
tangential direction. That is, the blade exerts a tangential force component on the fluid in
the direction of the motion of the blade. This tangential force component and the blade
motion are in the same direction—the blade does work on the fluid. This device is a pump.

However, consider the windmill shown in Fig. 11.3a. Rather than the rotor being 
driven by a motor, it is rotated in the opposite direction (compared to the fan in Fig. 11.2)
by the wind blowing through the rotor. We again note that because of the blade shape and
motion, the absolute velocity vectors at sections (1) and (2), V1 and V2, have different
directions. For this to happen, the blades must have pushed up on the fluid—opposite to
the direction of their motion. Alternatively, because of equal and opposite forces
(action/reaction) the fluid must have pushed on the blades in the direction of their motion—
the fluid does work on the blades. This extraction of energy from the fluid is the purpose
of a turbine.

V � W � U

406 Chapter 11 ■ Turbomachines
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F I G U R E  11.3 Idealized flow through a windmill: (a) windmill blade geometry
and (b) absolute velocity, V; relative velocity, W; and blade velocity, U; at the inlet and exit of
the windmill blade section.
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11.2 Basic Energy Considerations 407

F l u i d s  i n  t h e  N e w s

Current from currents The use of large, efficient wind tur-
bines to generate electrical power is becoming more com-
monplace throughout the world. “Wind farms” containing 
numerous turbines located at sites that have proper wind con-
ditions can produce a significant amount of electrical power.
Recently, researchers in the United States, the United King-
dom, and Canada have been investigating the possibility of
harvesting the power of ocean currents and tides by using cur-
rent turbines that function much like wind turbines. Rather
than being driven by wind, they derive energy from ocean

currents that occur at many locations in the 70% of the
Earth’s surface that is water. Clearly, a 4-knot (7 km/hr) tidal
current is not as fast as a 40-mph (70 km/hr) wind driving a
wind turbine. However, since turbine power output is propor-
tional to the fluid density, and since seawater is more than
800 times as dense as air, significant power can be extracted
from slow, but massive, ocean currents. One promising con-
figuration involves blades twisted in a helical pattern. This
technology may provide electrical power that is both ecolog-
ically and economically sound.

GIVEN The rotor shown in Fig. E11.1a rotates at a con-
stant angular velocity of � � 100 rad/s. Although the fluid ini-
tially approaches the rotor in an axial direction, the flow
across the blades is primarily radial (see Fig. 11.1a). Measure-
ments indicate that the absolute velocity at the inlet and outlet
are V1 � 12 m/s and V2 � 25 m/s, respectively. 

FIND Is this device a pump or a turbine?

SOLUTION

Basic Difference Between a Pump and a TurbineEXAMPLE 11.1

To answer this question, we need to know if the tangential
component of the force of the blade on the fluid is in the direc-
tion of the blade motion (a pump) or opposite to it (a turbine).
We assume that the blades are tangent to the incoming relative
velocity and that the relative flow leaving the rotor is tangent
to the blades as shown in Fig. E11.1b. We can also calculate
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F I G U R E  E11.1 (Continued)

Blade

(1)

(2)

(1)

(2)
 = 60°β

= 100 rad/sω

r2 = 0.2m

r1 = 0.1m

2

(a)

(1)

(2) 60°
W2

U2 = 20 m/s

Blade
motion

W1

U1 = 10 m/s

+

W2

U2 = 20 m/s

V2 = 25 m/s
= 60°β2

30°

Radial

Circumferential

W1
V1 = 12 m/s

U1 = 10 m/s

Outlet

Known quantities
shown in color

Inlet

(c)

(b)

c11Turbomachines.qxd  9/28/10  10:38 AM  Page 407



408 Chapter 11 ■ Turbomachines

radial-flow turbine. In this case (Fig. E.11.1d ) the flow direc-
tion is reversed (compared to that in Figs. E.11.1a, b, and c)
and the velocity triangles are as indicated. Stationary vanes
around the perimeter of the rotor would be needed to achieve
V1 as shown. Note that the component of the absolute velocity,
V, in the direction of the blade motion is smaller at the outlet
than at the inlet. The blade must push against the fluid in the
direction opposite the motion of the blade to cause this. Hence
(by equal and opposite forces), the fluid pushes against the
blade in the direction of blade motion, thereby doing work on
the blade. There is a transfer of work from the fluid to the
blade—a turbine operation.

the inlet and outlet blade speeds as

and

With the known absolute fluid velocity and blade velocity at
the inlet, we can draw the velocity triangle (the graphical repre-
sentation of Eq. 11.1) at that location as shown in Fig. E11.1c.
Note that we have assumed that the absolute flow at the blade
row inlet is radial (i.e., the direction of V1 is radial). At the out-
let we know the blade velocity, U2, the outlet speed, V2, and the
relative velocity direction, �2 (because of the blade geometry).
Therefore, we can graphically (or trigonometrically) con-
struct the outlet velocity triangle as shown in the figure. By
comparing the velocity triangles at the inlet and outlet, it can be
seen that as the fluid flows across the blade row, the absolute ve-
locity vector turns in the direction of the blade motion. At the in-
let there is no component of absolute velocity in the direction of
rotation; at the outlet this component is not zero. That is, the
blade pushes the fluid in the direction of the blade motion,
thereby doing work on the fluid, adding energy to it.

This device is a pump. (Ans)

COMMENT On the other hand, by reversing the direction
of flow from larger to smaller radii, this device can become a

U2 � �r2 � 1100 rad/s2 10.2 m2 � 20 m/s

U1 � �r1 � 1100 rad /s2 10.1 m2 � 10 m/s

F I G U R E  E11.1 (Continued)

ω

W1

W2

U2

V1
U1

V2

(d)

11.3 Basic Angular Momentum Considerations

Since turbomachines involve the rotation of an impeller or a rotor about a central axis, it
is appropriate to discuss their performance in terms of torque and angular momentum.

Recall that work can be written as force times distance or as torque times angular dis-
placement. Hence, if the shaft torque (the torque that the shaft applies to the rotor) and the
rotation of the rotor are in the same direction, energy is transferred from the shaft to the
rotor and from the rotor to the fluid—the machine is a pump. Conversely, if the torque
exerted by the shaft on the rotor is opposite to the direction of rotation, the energy trans-
fer is from the fluid to the rotor—a turbine. The amount of shaft torque (and, hence, shaft
work) can be obtained from the moment-of-momentum equation derived formally in Sec-
tion 5.2.3 and discussed as follows.

Consider a fluid particle traveling through the rotor in the radial-flow machine
shown in Figs. E11.1a, b, and c. For now, assume that the particle enters the rotor with
a radial velocity only (i.e., no “swirl”). After being acted upon by the rotor blades dur-
ing its passage from the inlet [section (1)] to the outlet [section (2)], the particle exits
with radial (r) and circumferential (�) components of velocity. Thus, the particle enters
with no angular momentum about the rotor axis of rotation but leaves with nonzero angu-
lar momentum about that axis. (Recall that the axial component of angular momentum
for a particle is its mass times the distance from the axis times the � component of
absolute velocity.)

V11.2 Self-
propelled lawn
sprinkler
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11.3 Basic Angular Momentum Considerations 409

In a turbomachine a series of particles (a continuum) passes through the rotor. Thus,
the moment-of-momentum equation applied to a control volume as derived in Section 5.2.3
is valid. For steady flow Eq. 5.21 gives

Recall that the left-hand side of this equation represents the sum of the external torques
(moments) acting on the contents of the control volume, and the right-hand side is the
net rate of flow of moment-of-momentum (angular momentum) through the control
surface.

The axial component of this equation applied to the one-dimensional simplification
of flow through a turbomachine rotor with section (1) as the inlet and section (2) as the
outlet results in

(11.2)

where Tshaft is the shaft torque applied to the contents of the control volume. The “�” is
associated with mass flowrate into the control volume, and the “�” is used with the out-
flow. The sign of the V� component depends on the direction of V� and the blade motion,
U. If V� and U are in the same direction, then V� is positive. The sign of the torque exerted
by the shaft on the rotor, Tshaft, is positive if Tshaft is in the same direction as rotation and
negative otherwise.

As seen from Eq. 11.2, the shaft torque is directly proportional to the mass flowrate,
(It takes considerably more torque and power to pump water than to pump air

with the same volume flowrate.) The torque also depends on the tangential component
of the absolute velocity, V�. Equation 11.2 is often called the Euler turbomachine
equation.

Also recall that the shaft power, is related to the shaft torque and angular veloc-
ity by

(11.3)

By combining Eqs. 11.2 and 11.3 and using the fact that U � �r, we obtain

(11.4)

Again, the value of V� is positive when V� and U are in the same direction and negative
otherwise. Also, is positive when the shaft torque and � are in the same direction
and negative otherwise. Thus, is positive when power is supplied to the contents of the
control volume (pumps) and negative otherwise (turbines). This outcome is consistent with
the sign convention involving the work term in the energy equation considered in Chapter 5
(see Eq. 5.44).

Finally, in terms of work per unit mass, we obtain

(11.5)

where we have used the fact that by conservation of mass, Equations 11.3, 11.4,
and 11.5 are the basic governing equations for pumps or turbines whether the machines are
radial-, mixed-, or axial-flow devices and for compressible and incompressible flows. Note
that neither the axial nor the radial component of velocity enters into the specific work
(work per unit mass) equation.

m� 1 � m� 2.

wshaft � �U1V�1 � U2V�2

wshaft � W
#

shaft /m
# ,

W
.

shaft

W
.

shaft

W
#

shaft � �m
#

11U1V�12 � m
#

21U2V�22

W
#

shaft � Tshaft �

W
.

shaft,

m� � �Q.

Tshaft � �m� 11r1V�12 � m� 21r2V�22

a 1r � F2 �a 1r � V2out�outAoutVout �a 1r � V2in�inAinVin
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F l u i d s  i n  t h e  N e w s

1948 Buick Dynaflow started it Prior to 1948 almost all cars
had manual transmissions, which required the use of a clutch
pedal to shift gears. The 1948 Buick Dynaflow was the first
automatic transmission to use the hydraulic torque converter
and was the model for present-day automatic transmissions.
Currently, in the United States over 84% of the cars have auto-
matic transmissions. The torque converter replaces the clutch
found on manual-shift vehicles and allows the engine to con-
tinue running when the vehicle comes to a stop. In principle,
but certainly not in detail or complexity, operation of a torque

converter is similar to blowing air from a fan onto another fan
that is unplugged. One can hold the blade of the unplugged fan
and keep it from turning, but as soon as it is let go, it will be-
gin to speed up until it comes close to the speed of the pow-
ered fan. The torque converter uses transmission fluid (not air)
and consists of a pump (the powered fan) driven by the engine
driveshaft, a turbine (the unplugged fan) connected to the in-
put shaft of the transmission, and a stator (absent in the fan
model) to efficiently direct the flow between the pump and
turbine.

11.4 The Centrifugal Pump

One of the most common radial-flow turbomachines is the centrifugal pump. This type of
pump has two main components: an impeller attached to a rotating shaft and a stationary
casing, housing, or volute enclosing the impeller. The impeller consists of a number of
blades (usually curved) arranged in a regular pattern around the shaft. A sketch showing the
essential features of a centrifugal pump is shown in Fig. 11.4. As the impeller rotates, fluid
is sucked in through the eye of the casing and flows radially outward. Energy is added to
the fluid by the rotating blades, and both pressure and absolute velocity are increased as
the fluid flows from the eye to the periphery of the blades. For the simplest type of cen-
trifugal pump, the fluid discharges directly into a volute-shaped casing. The casing shape
is designed to reduce the velocity as the fluid leaves the impeller, and this decrease in kinetic
energy is converted into an increase in pressure. The volute-shaped casing, with its increas-
ing area in the direction of flow, is used to produce an essentially uniform velocity distri-
bution as the fluid moves around the casing into the discharge opening. For large centrifu-
gal pumps, a different design is often used in which diffuser guide vanes surround the
impeller.

11.4.1 Theoretical Considerations

Although flow through a pump is very complex (unsteady and three-dimensional), the basic
theory of operation of a centrifugal pump can be developed by considering the time averaged,
steady, one-dimensional flow of the fluid as it passes between the inlet and the outlet sec-
tions of the impeller as the blades rotate. As shown in Fig. 11.5, for a typical blade passage,

F I G U R E  11.4 Schematic
diagram of basic elements of a 
centrifugal pump.

Discharge

Impeller

Eye

Inflow

Blade

Hub plate

Casing, housing,
or volute

V11.3 Windshield
Washer Pump
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11.4 The Centrifugal Pump 411

the absolute velocity, V1, of the fluid entering the passage is the vector sum of the velocity
of the blade, U1, rotating in a circular path with angular velocity �, and the relative veloc-
ity, W1, within the blade passage so that V1 � W1 � U1. Similarly, at the exit V2 � W2 � U2.
Note that U1 � r1� and U2 � r2�. Fluid velocities are taken to be average velocities over the
inlet and exit sections of the blade passage. The relationship between the various velocities
is shown graphically in Fig. 11.5.

As discussed in Section 11.3, the moment-of-momentum equation indicates that the
shaft torque, Tshaft, required to rotate the pump impeller is given by Eq. 11.2 applied to a
pump with That is,

(11.6)

where V�1 and V�2 are the tangential components of the absolute velocities, V1 and V2 (see
Fig. 11.5).

For a rotating shaft, the power transferred is given by and, therefore,
from Eq. 11.6

Since U1 � r1� and U2 � r2� we obtain

(11.7)

Equation 11.7 shows how the power supplied to the shaft of the pump is transferred to the
flowing fluid. It also follows that the shaft power per unit mass of flowing fluid is

(11.8)

Recall from Section 5.3.3 that the energy equation is often written in terms of heads—
velocity head, pressure head, and elevation head. The head that a pump adds to the fluid is
an important parameter. The ideal or maximum head rise possible, hi, is found from

W� shaft � �gQhi

wshaft �
W� shaft

�Q
� U2V�2 � U1V�1

W� shaft � �Q1U2V�2 � U1V�12

W� shaft � �Q�1r2V�2 � r1V�12

W� shaft � Tshaft�

Tshaft � m� 1r2V�2 � r1V�12 � �Q1r2V�2 � r1V�12

m� 1 � m� 2 � m� .

+

ω

r1

r2

W1

V1

U1

V 1θ
Vr1

 1β

α 1

U2

V2

W2

Vr2

 2β

α 2
V 2θ

F I G U R E  11.5 Velocity
diagrams at the inlet and exit of a
centrifugal pump impeller.
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which is obtained from Eq. 5.57 by setting head loss (hL) equal to zero and multiplying by
the weight flowrate, �gQ. Combining this result with Eq. 11.8, we get

(11.9)

This ideal head rise, hi, is the amount of energy per unit weight of fluid added to the fluid
by the pump. The actual head rise realized by the fluid is less than the ideal amount by the
head loss suffered.

An appropriate relationship between the flowrate and the pump ideal head rise can be
obtained as follows. Often the fluid has no tangential component of velocity V�1, or swirl,
as it enters the impeller; that is, the angle between the absolute velocity and the tangential
direction is 90� (�1 � 90� in Fig. 11.5). In this case, Eq. 11.19 reduces to

(11.10)

From Fig. 11.5

so that Eq. 11.10 can be expressed as

(11.11)

The flowrate, Q, is related to the radial component of the absolute velocity through the
equation

(11.12)

where b2 is the impeller blade height at the radius r2. Thus, combining Eqs. 11.11 and 11.12
yields

(11.13)

This equation is graphed in the margin and shows that the ideal or maximum head rise for a
centrifugal pump varies linearly with Q for a given blade geometry and angular velocity. For
actual pumps, the blade angle �2 falls in the range of 15–35�, with a normal range of
20� � �2 � 25�, and with 15� � �1 � 50� (Ref. 1). Blades with �2 � 90� are called backward
curved, whereas blades with �2 � 90� are called forward curved. Pumps are not usually
designed with forward-curved vanes since such pumps tend to suffer unstable flow conditions.

Figure 11.6 shows the ideal head versus flowrate curve (Eq. 11.13) for a centrifugal
pump with backward-curved vanes (�2 � 90�). Since there are simplifying assumptions
(i.e., zero losses) associated with the equation for hi, we would expect that the actual rise
in head of the fluid, ha, would be less than the ideal head rise, and this is indeed the case.
As shown in Fig. 11.6, the ha versus Q curve lies below the ideal head–rise curve and
shows a nonlinear variation with Q. Differences between the two curves (as represented
by the shaded areas between the curves) arise from several sources. These differences
include hydraulic losses due to fluid skin friction in the blade passages, which vary as Q2,
and other losses due to such factors as flow separation, impeller blade-casing clearance
flows, and other three-dimensional flow effects. Near the design flowrate, some of these
other losses are minimized.

hi �
U2

2

g
�

U2 cot �2

2�r2b2g
 Q

Q � 2�r2b2Vr 2

hi �
U2

2

g
�

U2Vr 2 cot �2

g

 cot  �2 �
U2 � V�2

Vr2

hi �
U2V�2

g

hi �
1
g

 1U2V�2 � U1V�12
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11.4 The Centrifugal Pump 413

F I G U R E  11.6 Effect of losses 
on the pump head–flowrate curve.Flowrate

H
ea

d

Other
losses

Actual head, ha

Theoretical head, hi

Friction losses

GIVEN Water is pumped at the rate of 1400 gpm through
a centrifugal pump operating at a speed of 1750 rpm. The im-
peller has a uniform blade height, b, of 2 in. with r1 � 1.9 in.
and r2 � 7.0 in., and the exit blade angle �2 is 23� (see
Fig. 11.5). Assume ideal flow conditions and that the tangen-
tial velocity component, V�1, of the water entering the blade
is zero (�1 � 90�). 

SOLUTION

Centrifugal Pump Performance Based on
Inlet/Outlet Velocities

(b) From Eq. 11.10 the ideal head rise is given by

(Ans)

Alternatively, from Eq. 11.11, the ideal head rise is

(Ans)

(c) From Eq. 11.7, with V�1 � 0, the power transferred to the
fluid is given by the equation

(Ans)

COMMENT Note that the ideal head rise and the power
transferred are related through the relationship

W� shaft � �gQhi

 � 61,500 ft . lb/s 11 hp/550 ft . lb/s2 � 112 hp

 �
11.94 slugs/ft32 11400 gpm2 1107 ft /s2 195.0 ft /s2

311slug . ft /s22/lb 4 17.48 gal/ft32 160 s/min2

W� shaft � �QU2V�2

 � 316 ft

 �
1107 ft /s22

32.2 ft /s2 �
1107 ft/s2 15.11 ft /s2   cot  23°

32.2 ft /s2

hi �
U 2

2

g
�

U2Vr2  cot  �2

g

 � 316 ft

hi �
U2V�2

g
�
1107 ft /s2 195.0 ft /s2

32.2 ft /s2

FIND Determine 

(a) the tangential velocity component, V�2, at the exit,

(b) the ideal head rise, hi, and 

(c) the power, transferred to the fluid.W� shaft,

EXAMPLE 11.2

(a) At the exit the velocity diagram is as shown in Fig. 11.5,
where V2 is the absolute velocity of the fluid, W2 is the rela-
tive velocity, and U2 is the tip velocity of the impeller with

Since the flowrate is given, it follows that Q � 2�r2b2Vr2 or

From Fig. 11.5, we see that

so that

(Ans) � 95.0 ft /s

 � 1107 � 5.11 cot 23°2 ft /s

V�2 � U2 � Vr 2  cot  �2

 cot  �2 �
U2 � V�2

Vr 2

 � 5.11 ft /s

 �
1400 gpm

17.48 gal /ft32 160 s /min2 12�2 17/12 ft2 12/12 ft2

Vr 2 �
Q

2�r2b2

 � 107 ft /s

U2 � r2� � 17/12 ft2 12� rad /rev2 
11750 rpm2

160 s /min2
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11.4.2 Pump Performance Characteristics

Centrifugal pump design is a highly developed field, with much known about pump theory
and design procedures (see, e.g., Refs. 1, 2, 3, 4, and 17). However, due to the general com-
plexity of flow through a centrifugal pump, the actual performance of the pump cannot be
accurately predicted on a completely theoretical basis as indicated by the data of Fig. 11.6.
Actual pump performance is determined experimentally through tests on the pump. From
these tests, pump characteristics are determined and presented as pump performance curves.
It is this information that is most helpful to the engineer responsible for incorporating pumps
into a given flow system.

The actual head rise, ha, gained by fluid flowing through a pump can be determined
with an experimental arrangement of the type shown in Fig. 11.7, using the energy equa-
tion (Eq. 5.57 with ha � hs � hL where hs is the shaft work head and is identical to hi, and
hL is the pump head loss)

(11.14)

with sections (1) and (2) at the pump inlet and exit, respectively. The head, ha, is the same
as hp used with the energy equation, Eq. 5.57, where hp is interpreted to be the net head
rise actually gained by the fluid flowing through the pump; that is, ha � hp � hs � hL. Typi-
cally, the differences in elevations and velocities are small so that

(11.15)

The power, pf , gained by the fluid is given by the equation

(11.16)pf � �Qha

ha �
p2 � p1

�

ha �
p2 � p1

�
� z2 � z1 �

V2
2 � V2

1

2g

414 Chapter 11 ■ Turbomachines

blade angle at the exit. If the actual exit flow angle was made
available in this example, it could have been used in Eq. 11.11
to calculate the ideal head rise.

The pump power, is the actual power required to
achieve a blade speed of 107 ft�s, a flowrate of 1400 gpm, and
the tangential velocity, V�2, associated with this example. If
pump losses could somehow be reduced to zero (every pump
designer’s dream), the actual and ideal head rise would have
been identical at 316 ft. As is, the ideal head rise is 316 ft and
the actual head rise something less.

W
#

shaft,

It should be emphasized that results given in the previous
equation involve the ideal head rise. The actual head rise per-
formance characteristics of a pump are usually determined by
experimental measurements obtained in a testing laboratory.
The actual head rise is always less than the ideal head rise for
a specific flowrate because of the loss of available energy as-
sociated with actual flows. Also, it is important to note that
even if actual values of U2 and Vr2 are used in Eq. 11.11, the
ideal head rise is calculated. The only idealization used in this
example problem is that the exit flow angle is identical to the

F I G U R E  11.7 Typical experimental arrange-
ment for determining the head rise gained by a fluid flowing
through a pump.

(1)

(2)

z2 – z1
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11.4 The Centrifugal Pump 415

In addition to the head or power added to the fluid, the overall efficiency, 	, is of
interest, where

The denominator of this relationship represents the total power applied to the shaft of the
pump and is often referred to as brake horsepower (bhp). Thus,

(11.17)

The overall pump efficiency is affected by the hydraulic losses in the pump and by the
mechanical losses in the bearings and seals.

Performance characteristics for a given pump geometry and operating speed are usu-
ally given in the form of plots of ha, 	, and bhp versus Q (commonly referred to as capac-
ity) as illustrated in Fig. 11.8. Actually, only two curves are needed, as ha, 	, and bhp are
related through Eq. 11.17. For convenience, all three curves are usually provided. The head
developed by the pump at zero discharge is called the shutoff head, and it represents the
rise in pressure head across the pump with the discharge valve closed. Since there is no
flow with the valve closed, the related efficiency is zero, and the power supplied by the
pump (bhp at Q � 0) is simply dissipated as heat. Although centrifugal pumps can be oper-
ated for short periods of time with the discharge valve closed, damage will occur due to
overheating and large mechanical stress with any extended operation with the valve closed.

As can be seen from Fig. 11.8, as the discharge is increased from zero the brake horse-
power increases, with a subsequent fall as the maximum discharge is approached. As noted
previously, with ha and bhp known, the efficiency can be calculated. As shown in Fig. 11.8,
the efficiency is a function of the flowrate and reaches a maximum value at some particu-
lar value of the flowrate, commonly referred to as the normal or design flowrate or capac-
ity for the pump. The points on the various curves corresponding to the maximum efficiency
are denoted as the best efficiency points (BEP). It is apparent that when selecting a pump
for a particular application, it is usually desirable to have the pump operate near its maxi-
mum efficiency. Thus, performance curves of the type shown in Fig. 11.8 are very impor-
tant to the engineer responsible for the selection of pumps for a particular flow system.
Matching the pump to a particular flow system is discussed in Section 11.4.3.

Pump performance characteristics are also presented in charts of the type shown in
Fig. 11.9. Since impellers with different diameters may be used in a given casing, perfor-
mance characteristics for several impeller diameters can be provided with corresponding

	 �
�Qha /550

bhp

	 �
power gained by the fluid

shaft power driving the pump
�
pf

W
.

shaft

F I G U R E  11.8 Typical per-
formance characteristics for a centrifugal
pump of a given size operating at a constant
impeller speed.
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lines of constant efficiency and brake horsepower as illustrated in Fig. 11.9. Thus, the same
information can be obtained from this type of graph as from the curves shown in Fig. 11.8.

11.4.3 System Characteristics and Pump Selection

A typical flow system in which a pump is used is shown in Fig. 11.10. The energy equa-
tion applied between points (1) and (2) indicates that

(11.18)

where hp is the actual head gained by the fluid from the pump, and 	hL represents all fric-
tion losses in the pipe and minor losses for pipe fittings and valves. From our study of pipe
flow, we know that typically hL varies approximately as the flowrate squared; that is, hL Q2

(see Section 8.4). Thus, Eq. 11.18 can be written in the form

(11.19)

where K depends on the pipe sizes and lengths, friction factors, and minor loss coefficients.
Equation 11.19, shown graphically in the figure in the margin, is the system equation and
shows how the actual head gained by the fluid from the pump is related to the system pa-
rameters. In this case the parameters include the change in elevation head, z2 � z1, and the
losses due to friction as expressed by KQ2. Each flow system has its own specific system
equation. If the flow is laminar, the frictional losses will be proportional to Q rather than Q2

(see Section 8.2).

hp � z2 � z1 � KQ 
2

r

hp � z2 � z1 � ©hL
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F I G U R E  11.9 Typical
Performance curves for a two-stage
centrifugal pump operating at 3500 rpm.
Data given for three different impeller
diameters.
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11.4 The Centrifugal Pump 417

There is also a unique relationship between the actual pump head gained by the fluid
and the flowrate, which is governed by the pump design (as indicated by the pump perfor-
mance curve). To select a pump for a particular application, it is necessary to utilize both
the system curve, as determined by the system equation, and the pump performance curve.
If both curves are plotted on the same graph, as illustrated in Fig. 11.11, their intersection
(point A) represents the operating point for the system. That is, this point gives the head
and flowrate that satisfy both the system equation and the pump equation. On the same
graph the pump efficiency is shown. Ideally, we want the operating point to be near the best
efficiency point (BEP) for the pump. For a given pump, it is clear that as the system equa-
tion changes, the operating point will shift. For example, if the pipe friction increases due
to pipe wall fouling, the system changes, resulting in the operating point A shifting to point
B in Fig. 11.11 with a reduction in flowrate and efficiency. The following example shows
how the system and pump characteristics can be used to decide if a particular pump is suit-
able for a given application.

Change in
system equation System

curve

Efficiency
curve

Operating
point

Pump performance
curve

P
um

p
he

ad
, 

h
p

E
ff

ic
ie

nc
y

(A)(B)

Flowrate, Q

Elevation (static) head
= z2 – z1 F I G U R E  11.11 Utiliza-

tion of the system curve and the pump
performance curve to obtain the oper-
ating point for the system.

GIVEN Water is to be pumped from one large, open tank
to a second large, open tank as shown in Fig. E11.3a. The pipe
diameter throughout is 6 in. and the total length of the pipe
between the pipe entrance and exit is 200 ft. Minor loss coef-
ficients for the entrance, exit, and the elbow are shown, and
the friction factor for the pipe can be assumed constant and

SOLUTION

Use of Pump Performance Curves

Thus, with p1 � p2 � 0, V1 � V2 � 0, 
z � z2 � z1 � 10 ft,
f � 0.02, D � 6/12 ft, and � � 200 ft, Eq. 1 becomes

(2) � 10.5 � 1.5 � 1.02 d  
V 2

2132.2 ft /s22

hp � 10 � c0.02 
1200 ft2

16/12 ft2

equal to 0.02. A certain centrifugal pump having the perfor-
mance characteristics shown in Fig. E11.3b is suggested as a
good pump for this flow system. 

FIND With this pump, what would be the flowrate between
the tanks? Do you think this pump would be a good choice?

EXAMPLE 11.3

Application of the energy equation between the two free sur-
faces, points (1) and (2) as indicated, gives

(1)� f 
/
D

 
V 2

2g
�a KL 

V 2

2g

p1

�
�

V 2
1

2g
� z1 � hp �

p2

�
�

V 2
2

2g
� z2 
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This combination is shown in Fig. E11.3c with the intersection
(as obtained graphically) occurring at

(Ans)

with the corresponding actual head gained equal to 66.5 ft.
Another concern is whether the pump is operating efficiently

at the operating point. As can be seen from Fig. E11.3c, although
this is not peak efficiency, which is about 86%, it is close (about
84%). Thus, this pump would be a satisfactory choice, assuming
the 1600 gal/min flowrate is at or near the desired flowrate.

The amount of pump head needed at the pump shaft is
66.5 ft/0.84 � 79.2 ft. The power needed to drive the pump is

�

 � 17,600 ft . lb/s � 32.0 hp

162.4 lb/ft32 3 11600 gal/min2/ 17.48 gal/ft32 160 s/min2 4 166.5 ft2

0.84

 W� shaft �
�Qha

	

Q � 1600 gal/min

where the given minor loss coefficients have been used. Since

Eq. 2 can be expressed as

(3)

where Q is in ft3/s, or with Q in gallons per minute.

(4)

Equation 3 or 4 represents the system equation for this partic-
ular flow system and reveals how much actual head the fluid
will need to gain from the pump to maintain a certain flowrate.
Performance data shown in Fig. E11.3b indicate the actual
head the fluid will gain from this particular pump when it op-
erates at a certain flowrate. Thus, when Eq. 4 is plotted on the
same graph with performance data, the intersection of the two
curves represents the operating point for the pump and the system.

hp � 10 � 2.20 � 10�5Q2

hp � 10 � 4.43 Q2

V �
Q
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�
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11.5 Dimensionless Parameters and Similarity Laws 419

On the other hand, the given pump would not work at all for
since its maximum head (hp � 88 ft when Q � 0)

is not enough to lift the water 100 ft, let alone overcome head
losses. This is shown in Fig. E11.3d by the fact that for

the system curve and the pump performance curve
do not intersect.
¢z � 100 ft

¢z � 100 ft

COMMENT By repeating the calculations for 
z � z2 �
z1 � 80 ft and 100 ft (rather than the given 10 ft), the results
shown in Fig. E11.3d are obtained. Although the given pump
could be used with (provided that the 500 gal/min
flowrate produced is acceptable), it would not be an ideal pump
for this application since its efficiency would be only 36 per-
cent. Energy could be saved by using a different pump with a
performance curve that more nearly matches the new system re-
quirements (i.e., higher efficiency at the operating condition).

¢z � 80 ft

(c)
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Space Shuttle fuel pumps The fuel pump of your car engine
is vital to its operation. Similarly, the fuels (liquid hydrogen
and oxygen) of each Space Shuttle main engine (there are
three per shuttle) rely on multistage turbopumps to get from
storage tanks to main combustors. High pressures are utilized
throughout the pumps to avoid cavitation. The pumps, some
centrifugal and some axial, are driven by axial-flow, multi-

stage turbines. Pump speeds are as high as 35,360 rpm. The
liquid oxygen is pumped from 100 to 7420 psia, the liquid hy-
drogen from 30 to 6515 psia. Liquid hydrogen and oxygen
flowrates of about 17,200 gpm and 6100 gpm, respectively,
are achieved. These pumps could empty your home swimming
pool in seconds. The hydrogen goes from �423 �F in storage
to �6000 �F in the combustion chamber!

11.5 Dimensionless Parameters and Similarity Laws

As discussed in Chapter 7, dimensional analysis is particularly useful in the planning and
execution of experiments. Since the characteristics of pumps are usually determined exper-
imentally, it is expected that dimensional analysis and similitude considerations will prove
to be useful in the study and documentation of these characteristics.

From the previous section we know that the principal, dependent pump variables are the
actual head rise, hp, shaft power, and efficiency, 	. We expect that these variables willW� shaft,
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depend on the geometrical configuration, which can be represented by some characteristic
diameter, D, other pertinent lengths, �i , and surface roughness, �. In addition, the other
important variables are flowrate, Q, the pump shaft rotational speed, �, fluid viscosity, 
,
and fluid density, �. We will only consider incompressible fluids presently, so compressibil-
ity effects need not concern us yet. Thus, any one of the dependent variables hp, and
	 can be expressed as

and a straightforward application of dimensional analysis leads to

(11.20)

The dependent pi term involving the head is usually expressed as CH � gha /�2D2,
where ghp is the actual head rise in terms of energy per unit mass, rather than simply hp,
which is energy per unit weight. This dimensionless parameter is called the head rise
coefficient. The dependent pi term involving the shaft power is expressed as

and this standard dimensionless parameter is termed the power coeffi-
cient. The power appearing in this dimensionless parameter is commonly based on the shaft
(brake) horsepower, bhp, so that in BG units, The rotational speed,
�, which appears in these dimensionless groups is expressed in rad/s. The final dependent
pi term is the efficiency, 	 , which is already dimensionless. Thus, in terms of dimension-
less parameters the performance characteristics are expressed as

The last pi term in each of the aforementioned equations is a form of the Reynolds
number that represents the relative influence of viscous effects. When the pump flow
involves high Reynolds numbers, as is usually the case, experience has shown that the
effect of the Reynolds number can be neglected. For simplicity, the relative roughness,
�/D, can also be neglected in pumps, as the highly irregular shape of the pump chamber
is usually the dominant geometric factor rather than the surface roughness. Thus, with
these simplifications and for geometrically similar pumps (all pertinent dimensions, �i ,
scaled by a common length scale), the dependent pi terms are functions of only Q/�D3,
so that

(11.21)

(11.22)

(11.23) 	 � �3a
Q

�D3b
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11.5 Dimensionless Parameters and Similarity Laws 421

The dimensionless parameter CQ � Q/�D3 is called the flow coefficient. These three
equations provide the desired similarity relationships among a family of geometrically
similar pumps. If two pumps from the family are operated at the same value of flow
coefficient

(11.24)

it then follows that

(11.25)

(11.26)

(11.27)

where subscripts 1 and 2 refer to any two pumps from the family of geometrically similar
pumps.

With these so-called pump scaling laws it is possible to experimentally determine the
performance characteristics of one pump in the laboratory and then use these data to pre-
dict the corresponding characteristics for other pumps within the family under different
operating conditions. Figure 11.12a shows some typical curves obtained for a centrifugal
pump. Figure 11.12b shows the results plotted in terms of the dimensionless coefficients,
CQ, CH, Cp, and 	. From these curves the performance of different-sized, geometrically
similar pumps can be predicted, as can the effect of changing speeds on the performance
of the pump from which the curves were obtained. It is to be noted that the efficiency, 	,
is related to the other coefficients through the relationship 	 � CQCH Cp

�1. This follows
directly from the definition of 	.
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F I G U R E  11.12 Typical performance data for a centrifugal pump: (a) characteristic
curves for a 12-in. centrifugal pump operating at 1000 rpm and (b) dimensionless characteristic curves.
(Data from Ref. 5, used with permission.)
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11.5.1 Specific Speed

A useful pi term can be obtained by eliminating diameter D between the flow coefficient
and the head rise coefficient. This is accomplished by raising the flow coefficient to an
appropriate exponent (1/2) and dividing this result by the head coefficient raised to another
appropriate exponent (3/4) so that

(11.28)

The dimensionless parameter Ns is called the specific speed. Specific speed varies with
the flow coefficient just as the other coefficients and efficiency discussed earlier do.
However, for any pump it is customary to specify a value of specific speed at the flow
coefficient corresponding to peak efficiency only. For pumps with low Q and high hp,
the specific speed is low compared to a pump with high Q and low hp. Centrifugal
pumps typically are low-capacity, high-head pumps and, therefore, have low specific
speeds.

Specific speed as defined by Eq. 11.28 is dimensionless and therefore independent 
of the system of units used in its evaluation as long as a consistent unit system is used.

1Q/�D321/2

1ghp /�2D223/4
�

�2Q

1ghp2
3/4

� Ns

422 Chapter 11 ■ Turbomachines

GIVEN An 8-in.-diameter centrifugal pump operating at
1200 rpm is geometrically similar to the 12-in.-diameter pump
having the performance characteristics of Figs. 11.12a and
11.12b while operating at 1000 rpm. The working fluid is
water at 60 �F.

SOLUTION

Use of Pump Scaling Laws

Also,

(Ans)

COMMENT The last result gives the shaft horsepower,
which is the power supplied to the pump shaft. The power
actually gained by the fluid is equal to �Qhp, which in this
example is

Thus, the efficiency, 	, is

which checks with the efficiency curve of Fig. 11.12b.

	 �
pf

W
.

shaft

�
6050

7150
� 85%

pf � �Qhp � 162.4 lb/ft32 12.33 ft3/s2 141.6 ft2 � 6050 ft . lb/s

 W
.

shaft �
7150 ft . lb/s

550 ft . lb/s/hp
� 13.0 hp

 � 7150 ft . lb/s

 � 10.0142 11.94 slugs/ft32 1126 rad /s2318/12 ft25
W
#

shaft � Cp��3D5

FIND For peak efficiency, predict the discharge, actual
head rise, and shaft horsepower for this smaller pump. 

EXAMPLE 11.4

As is indicated by Eq. 11.23, for a given efficiency the flow
coefficient has the same value for a given family of pumps.
From Fig. 11.12b we see that at peak efficiency CQ � 0.0625.
Thus, for the 8-in. pump

(Ans)

or in terms of gpm

(Ans)

The actual head rise and the shaft horsepower can be deter-
mined in a similar manner since at peak efficiency CH � 0.19
and Cp� 0.014, so that with �

(Ans)hp �
CH �2D2

g
�
10.192 1126 rad/s2218/12 ft22

32.2 ft /s2 � 41.6 ft

12� rad/rev2� 126 rad/s
� � 1200 rev/min 11 min/60 s2

 � 1046 gpm

Q � 12.33 ft3/s2 17.48 gal/ft32 160 s/min2

Q � 2.33 ft3/s

 � 10.06252 11200/60 rev/s2 12� rad /rev2 18/12 ft23
Q � CQ�D3
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11.6 Axial-Flow and Mixed-Flow Pumps 423

However, in the United States a modified, dimensional form of specific speed, Nsd, is com-
monly used, where

(11.29)

In this case Nsd is said to be expressed in U.S. customary units. Typical values of Nsd are
in the range 500 � Nsd � 4000 for centrifugal pumps. Both Ns and Nsd have the same phys-
ical meaning, but their magnitudes will differ by a constant conversion factor (Nsd � 2733 Ns)
when � in Eq. 11.28 is expressed in rad/s.

Each family or class of pumps has a particular range of values of specific speed
associated with it. Thus, pumps that have low-capacity, high-head characteristics will have
specific speeds that are smaller than pumps that have high-capacity, low-head character-
istics. The concept of specific speed is very useful to engineers and designers, since if
the required head, flowrate, and speed are specified, it is possible to select an appropri-
ate (most efficient) type of pump for a particular application. For example, as shown by
the figure in the margin, as the specific speed, Nsd, increases beyond about 2000, the peak
efficiency of the purely radial-flow centrifugal pump starts to fall off, and other types of
more efficient pump design are preferred. In addition to the centrifugal pump, the axial-
flow pump is widely used. As discussed in Section 11.6, in an axial-flow pump the direc-
tion of the flow is primarily parallel to the rotating shaft rather than radial as in the cen-
trifugal pump. Axial-flow pumps are essentially high-capacity, low-head pumps and
therefore have large specific speeds (Nsd � 9000) compared to centrifugal pumps. Mixed-
flow pumps combine features of both radial-flow and axial-flow pumps and have inter-
mediate values of specific speed. Figure 11.13 illustrates how the specific speed changes
as the configuration of the pump changes from centrifugal or radial to axial.
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F I G U R E  11.13 Variation in specific speed with type of pump (for pumps operating at
peak efficiency). (Adapted from Ref. 6, used with permission.)
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11.6 Axial-Flow and Mixed-Flow Pumps

As noted previously, centrifugal pumps are radial-flow machines that operate most effi-
ciently for applications requiring high heads at relatively low flowrates. This head–flowrate
combination typically yields specific speeds (Nsd) that are less than approximately 4000. For
many applications, such as those associated with drainage and irrigation, high flowrates at
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low heads are required and centrifugal pumps are not suitable. In this case, axial-flow pumps
are commonly used. This type of pump consists essentially of a propeller confined within
a cylindrical casing. Axial-flow pumps are often called propeller pumps. For this type of
pump the flow is primarily in the axial direction (parallel to the axis of rotation of the shaft),
as opposed to the radial flow found in the centrifugal pump. Whereas the head developed
by a centrifugal pump includes a contribution due to centrifugal action, the head developed
by an axial-flow pump is due primarily to the tangential force exerted by the rotor blades
on the fluid. A schematic of an axial-flow pump arranged for vertical operation is shown
in Fig. 11.14. The rotor is connected to a motor through a shaft, and as it rotates (usually
at a relatively high speed) the fluid is sucked in through the inlet. Typically the fluid dis-
charges through a row of fixed stator (guide) vanes used to straighten the flow leaving the
rotor. Some axial-flow pumps also have inlet guide vanes upstream of the rotor row, and
some are multistage in which pairs (stages) of rotating blades (rotor blades) and fixed vanes
(stator blades) are arranged in series. Axial-flow pumps usually have specific speeds (Nsd)
in excess of 9000.

The definitions and broad concepts that were developed for centrifugal pumps are also
applicable to axial-flow pumps. The actual flow characteristics, however, are quite differ-
ent. In Fig. 11.15 typical head, power, and efficiency characteristics are compared for a cen-
trifugal pump and an axial-flow pump. It is noted that at design capacity (maximum effi-
ciency) the head and brake horsepower are the same for the two pumps selected, but as the
flowrate decreases, the power input to the centrifugal pump falls to 180 hp at shutoff,
whereas for the axial-flow pump the power input increases to 520 hp at shutoff. This char-
acteristic of the axial-flow pump can cause overloading of the drive motor if the flowrate
is reduced significantly from the design capacity. It is also noted that the head curve for
the axial-flow pump is much steeper than that for the centrifugal pump. Thus, with axial-
flow pumps there will be a large change in head with a small change in the flowrate, whereas
for the centrifugal pump, with its relatively flat head curve, there will be only a small change
in head with large changes in the flowrate. It is further observed from Fig. 11.15 that, except
at design capacity, the efficiency of the axial-flow pump is lower than that of the centrifu-
gal pump. To improve operating characteristics, some axial-flow pumps are constructed with
adjustable blades.

For applications requiring specific speeds intermediate to those for centrifugal and
axial-flow pumps, mixed-flow pumps have been developed that operate efficiently in the

424 Chapter 11 ■ Turbomachines

Inlet
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Rotor blades

Fixed stator blades

Driveshaft

Shaft to motor

F I G U R E  11.14 Schematic diagram
of an axial-flow pump arranged for vertical operation.
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11.6 Axial-Flow and Mixed-Flow Pumps 425

specific speed range 4000 � Nsd � 9000. As the name implies, the flow in a mixed-flow
pump has both a radial and an axial component. Figure 11.16 shows some typical data
for centrifugal, mixed-flow, and axial-flow pumps, each operating at the same flowrate
for peak efficiency. These data indicate that as we proceed from the centrifugal pump to
the mixed-flow pump to the axial-flow pump, the specific speed increases, the head
decreases, the speed increases, the impeller diameter decreases, and the eye diameter
increases. These general trends are commonly found when these three types of pumps are
compared.

The dimensionless parameters and scaling relationships developed in the previous sec-
tions apply to all three types of pumps—centrifugal, mixed flow, and axial flow—since the
dimensional analysis used is not restricted to a particular type of pump. Additional infor-
mation about pumps can be found in Refs. 1, 7, 8, 9, and 10.
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F I G U R E  11.15 Comparison of

performance characteristics for a centrifugal
pump and an axial-flow pump, each rated
42,000 gal�min at a 17-ft head. (Data from
Ref. 7, used with permission.)
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F I G U R E  11.16 Comparison of different types of impellers. Specific speed for 
centrifugal pumps based on single suction. (Adapted from Ref. 7, used with permission.)
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Mechanical heart assist devices As with any pump, the human
heart can suffer various malfunctions and problems during its
useful life. Recent developments in artificial heart technology
may be able to provide help to those whose pumps have broken
down beyond repair. One of the more promising techniques is
use of a left-ventricular assist device (LVAD), which supple-
ments a diseased heart. Rather than replacing a diseased heart, an
LVAD pump is implanted alongside the heart and works in par-
allel with the cardiovascular system to assist the pumping func-
tion of the heart’s left ventricle. (The left ventricle supplies 

oxygenated blood to the entire body and performs about 80% of
the heart’s work.) Some LVADs are positive displacement pumps
that use mechanical means to force a membrane back and forth
to “beat” in conjunction with the patient’s natural heart. Others
use a centrifugal or axial-flow pump to provide a continuous
flow of blood. The continuous-flow devices may take some ad-
justment on the part of patients who do not hear a pulse or a
heartbeat. Despite advances in artificial heart technology, it is
probably still several years before fully implantable, quiet, and
reliable devices will be considered for widespread use.

11.7 Turbines

As discussed in Section 11.2, turbines are devices that extract energy from a flowing fluid.
The geometry of turbines is such that the fluid exerts a torque on the rotor in the direction
of its rotation. The shaft power generated is available to drive generators or other devices.
In the following sections we discuss mainly the operation of hydraulic turbines (those for
which the working fluid is water). Although there are numerous ingenious hydraulic tur-
bine designs, most of these turbines can be classified into two basic types—impulse tur-
bines and reaction turbines. In general, impulse turbines are high-head, low-flowrate
devices, whereas reaction turbines are low-head, high-flowrate devices.

For hydraulic impulse turbines, the pressure drop across the rotor is zero; all of the
pressure drop across the turbine stage occurs in the nozzle row. The Pelton wheel shown
in Fig. 11.17 is a classical example of an impulse turbine. In these machines the total
head of the incoming fluid (the sum of the pressure head, velocity head, and elevation
head) is converted into a large-velocity head at the exit of the supply nozzle (or nozzles
if a multiple-nozzle configuration is used). Both the pressure drop across the bucket (blade)
and the change in relative speed (i.e., fluid speed relative to the moving bucket) of the
fluid across the bucket are negligible. The space surrounding the rotor is not completely
filled with fluid. It is the impulse of the individual jets of fluid striking the buckets that
generates the torque.

For reaction turbines, however, the rotor is surrounded by a casing (or volute), which
is completely filled with the working fluid. There is both a pressure drop and a change in
fluid relative speed across the rotor. As shown for the radial-inflow turbine in Fig. 11.18,
guide vanes act as nozzles to accelerate the flow and turn it in the appropriate direction as
the fluid enters the rotor. Thus, part of the pressure drop occurs across the guide vanes and
part occurs across the rotor.

F I G U R E  11.17 Schematic
diagram of a Pelton wheel turbine.

Rotor

BucketNozzle
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11.7 Turbines 427

11.7.1 Impulse Turbines

Although there are various types of impulse turbine designs, perhaps the easiest to under-
stand is the Pelton wheel. Lester Pelton, an American mining engineer during the California
gold-mining days, is responsible for many of the still-used features of this type of turbine.
It is most efficient when operated with a large head (e.g., a water source from a lake located
significantly above the turbine nozzle), which is converted into a relatively large velocity
at the exit of the nozzle (see Fig. 11.17).

As shown in Fig. 11.19, for a Pelton wheel a high-speed jet of water strikes the buck-
ets and is deflected. The water enters and leaves the control volume surrounding the wheel
as free jets (atmospheric pressure). In addition, a person riding on the bucket would note
that the speed of the water does not change as it slides across the buckets (assuming vis-
cous effects are negligible). That is, the magnitude of the relative velocity does not change,
but its direction does. The change in direction of the velocity of the fluid jet causes a torque
on the rotor, resulting in a power output from the turbine.

Design of the optimum, complex shape of the buckets to obtain maximum power out-
put is a very difficult matter. Ideally, the radial component of velocity is zero. (In practice
there often is a small but negligible radial component.) In addition, the buckets would ide-
ally turn the relative velocity vector through a 180� turn, but physical constraints dictate
that �, the angle of the exit edge of the blade, is less than 180�. Thus, the fluid leaves with
an axial component of velocity as shown in Fig. 11.20.

The inlet and exit velocity triangles at the arithmetic mean radius, rm, are assumed to
be as shown in Fig. 11.21. To calculate the torque and power, we must know the tangen-
tial components of the absolute velocities at the inlet and exit. (Recall from the discussion

F I G U R E  11.19 Ideal fluid
velocities for a Pelton wheel turbine.
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U b

ω

Radial
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F I G U R E  11.18 Schematic
diagram of a reaction turbine.
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in Section 11.3 that neither the radial nor the axial components of velocity enter into the
torque or power equations.) From Fig. 11.21 we see that

(11.30)

and

(11.31)

Thus, with the assumption that W1 � W2 (i.e., the relative speed of the fluid does not change
as it is deflected by the buckets), we can combine Eqs. 11.30 and 11.31 to obtain

(11.32)

This change in tangential component of velocity combined with the torque and power equa-
tions developed in Section 11.3 (i.e., Eqs. 11.2 and 11.4) gives

where is the mass flowrate through the turbine.
Thus, since U � �rm

(11.33)

These results are plotted in Fig. 11.22 along with typical experimental results. Note that
V1 � U (i.e., the jet impacts the bucket), and (i.e., the turbine extracts power
from the fluid).

Several interesting points can be noted from the aforementioned results. First, the power
is a function of �. However, a typical value of � � 165� (rather than the optimum 180�) results
in a relatively small (less than 2%) reduction in power since 1 � cos 165 � 1.966, compared

W� shaft 6 0

W
#

shaft � Tshaft� � m
#
U1U � V12 11 �  cos �2

m� � �Q

Tshaft � m
.
rm 1U � V12 11 �  cos �2

V�2 � V�1 � 1U � V12 11 �  cos  �2

V�2 � W2 cos � � U

V�1 � V1 � W1 � U
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a

a

b

b

W1 = V1 – U

Blade cross section

W2 = W1 = V1 – U

β

Tangential

 Axial

F I G U R E  11.20 Flow as viewed 
by an observer riding on the Pelton wheel—
relative velocities.

a

a

b

b

W1

β

 U

V1

W1 = W2

 U

V2 

F I G U R E  11.21 Inlet and exit 
velocity triangles for a Pelton wheel turbine.
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11.7 Turbines 429

to 1 � cos 180 � 2. Second, although the torque is maximum when the wheel is stopped
(U � 0), there is no power under this condition—to extract power one needs force and motion.
However, the power output is a maximum when

(11.34)

This can be shown by using Eq. 11.33 and solving for U that gives A
bucket speed of one-half the speed of the fluid coming from the nozzle gives the maximum
power. Third, the maximum speed occurs when Tshaft � 0 (i.e., the load is completely
removed from the turbine, as would happen if the shaft connecting the turbine to the gen-
erator were to break and frictional torques were negligible). For this case U � �R � V1, the
turbine is “freewheeling,” and the water simply passes across the rotor without putting any
force on the buckets.

dW� shaft /dU � 0.

Umax power �
V1

2

Actual
power

β

Tshaft

Actual
torque

0 0.2 V1 0.4 V1 0.6 V1 0.8 V1 1.0 V1

U =    rm

   shaft
   ⋅
–W –Tshaft

⎥Tshaft⎥max
= mrmV1(1– cos   )⋅ ⎥          ⎥

max
= 0.25 mV1

2(1– cos   )⋅ β

Umax power = 0.5V1

   shaft
   ⋅
  W

   shaft
   ⋅
  W

ω

F I G U R E  11.22
Typical theoretical and experi-
mental power and torque for a
Pelton wheel turbine as a func-
tion of bucket speed.

GIVEN Water to drive a Pelton wheel is supplied through
a pipe from a lake as indicated in Fig. E11.5a. The head loss
due to friction in the pipe is important, but minor losses can be
neglected.

FIND (a) Determine the nozzle diameter, D1, that will
give the maximum power output.

(b) Determine the maximum power and the angular velocity
of the rotor at the conditions found in part (a).

Pelton Wheel Turbine CharacteristicsEXAMPLE 11.5

z
0

 = 200 ft

= 1000 ft, f = 0.02�

D = 8 in

z
1 
= 0

D
1

β = 150 deg

(0) 

2R = 3 ft(1)

(a)

F I G U R E  E11.5
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As shown by Eq. 11.34, the maximum power (in terms of
its variation with U) occurs when U � V1/2, which, when used
with Eqs. 4 and 5, gives

(6)

The maximum power possible occurs when 
which according to Eq. 6 can be found as

or

Thus, the nozzle diameter for maximum power output is

(Ans)

(b) The corresponding maximum power can be determined
from Eq. 6 as

or

(Ans)

The rotor speed at the maximum power condition can be
obtained from

where V1 is given by Eq. 4. Thus,

(Ans)

COMMENT The reason that an optimum-diameter nozzle
exists can be explained as follows. A larger-diameter nozzle
will allow a larger flowrate but will produce a smaller jet ve-
locity because of the head loss within the supply side. A
smaller-diameter nozzle will reduce the flowrate but will
produce a larger jet velocity. Since the power depends on a

 � 295 rpm
 � 30.9 rad /s � 1 rev/2� rad � 60 s/min

� �
V1

2R
�

  
113.5

21 � 15210.23924
 ft/s

2a
3

2
 ftb

U � �R �
V1

2

 � �59.0 hp

W
#

shaft � �3.25 � 104 ft . lb/s �
1 hp

550 ft . lb/s

W
#

shaft � � 

1.04 � 106 10.23922

31 � 15210.23924 4 3/2 � �3.25 � 104 ft . lb/s

D1 � 0.239 ft

304 D4
1 � 1

 � a
3

2
b  

411522 D5
1

11 � 152 D4
12

5/2 d � 0

dW� shaft

dD1
� �1.04 � 106 c

2 D1

11 � 152 D4
12

3/2

dW� shaft /dD1 � 0,

W� shaft � � 

1.04 � 106 D2
1

11 � 152 D4
12

3/2

(a) As indicated by Eq. 11.33, the power output depends on
the flowrate, , and the jet speed at the nozzle exit, V1,
both of which depend on the diameter of the nozzle, D1, and
the head loss associated with the supply pipe. That is,

(1)

The nozzle exit speed, V1, can be obtained by applying the
energy equation (Eq. 5.57) between a point on the lake sur-
face (where V0 � p0 � 0) and the nozzle outlet (where 
z1 � p1 � 0) to give

(2)

where the head loss is given in terms of the friction factor, f, as
(see Eq. 8.18)

The speed, V, of the fluid in the pipe of diameter D is obtained
from the continuity equation

We have neglected minor losses associated with the pipe en-
trance and the nozzle. With the given data, Eq. 2 becomes

(3)

or

(4)

where D1 is in feet.
By combining Eqs. 1 and 4 and using Q � �D2

1V1/4 we
obtain the power as a function of D1 and U as

(5)

where U is in feet per second and is in ft � lb/s. These re-
sults are plotted as a function of U for various values of D1 in
Fig. E11.5b.

W� shaft

W
#

shaft �
323 UD2

1

21 � 152 D4
1

 CU �
113.5

21 � 152 D4
1

§

 
�

113.5

21 � 152 D 4
1

 � C 2132.2 ft /s22 1200 ft2

1 � 0.02 a
1000 ft

8/12 ft
b a

D1

8/12
b

4 §

1/2

V1 �
£

2gz0

1 � f 
/
D

 a
D1

D
b

4 §

1/2

z0 � c1 � f 
/
D

 a
D1

D
b

4

d
V 2

1

2g

V �
A1V1

A
� a

D1

D
b

2

V1

hL � f 
/
D

 
V 2

2g

z0 �
V 2

1

2g
� hL

W
#

shaft � �QU1U � V12 11 �  cos �2

Q � m� /�

SOLUTION
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11.7 Turbines 431

A second type of impulse turbine that is widely used (most often with gas as the
working fluid) is indicated in Fig. E11.6a. A circumferential series of fluid jets strikes the
rotating blades, which, as with the Pelton wheel, alter both the direction and the magnitude
of the absolute velocity. As with the Pelton wheel, the inlet and exit pressures (i.e., on either
side of the rotor) are equal, and the magnitude of the relative velocity is unchanged as the
fluid slides across the blades (if frictional effects are negligible).

By setting it can be shown (see Problem
11.41) that the maximum power occurs when

which gives the same results obtained earlier for the specific
parameters of the example problem. Note that the optimum
condition depends only on the friction factor and the length-to-
diameter ratio of the supply pipe. What happens if the supply
pipe is frictionless or of essentially zero length?

D1 � D^a2f 
/
D
b

1/4

dW� shaft /dD1 � 0,product combination of flowrate and jet velocity (see Eq. 1),
there is an optimum-diameter nozzle that gives the maximum
power.

These results can be generalized (i.e., without regard to the
specific parameter values of this problem) by considering Eqs.
1 and 3 and the condition that U � V1/2 to obtain

 � 12gz02
3/2 D2

1^a1 � f 
/

D5 D4
1b

3/2

W
#

shaft �U�V1/2 � � 

�

16
  � 11 �  cos �2

D1 = 0.239 ft

D1 = 0.200 ft

D1 = 0.300 ft

U, ft/s

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0 20 40 60 80 100
0

−W
sh

af
t, 

ft
  
 lb

/s

(b)

F I G U R E  E11.5 (Continued)

GIVEN An air turbine used to drive the high-speed drill
used by your dentist is shown in Fig. E11.6a. Air exiting from
the upstream nozzle holes forces the turbine blades to move
in the direction shown. The turbine rotor speed is 300,000 rpm,
the tangential component of velocity out of the nozzle is twice

Non–Pelton Wheel Impulse Turbine (Dentist Drill)

the blade speed, and the tangential component of the 
absolute velocity out of the rotor is zero.

FIND Estimate the shaft energy per unit mass of air flow-
ing through the turbine.

EXAMPLE 11.6
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is the mean-radius blade velocity. Thus, Eq. 1 becomes

(Ans)

COMMENT For each slug of air passing through the tur-
bine there is 310,000 ft . lb of energy available at the shaft to
drive the drill. However, because of fluid friction, the actual
amount of energy given up by each slug of air will be greater
than the amount available at the shaft. How much greater de-
pends on the efficiency of the fluid-mechanical energy trans-
fer between the fluid and the turbine blades.

Recall that the shaft power is given by 
Hence, to determine the power we need to know the mass
flowrate, , which depends on the size and number of the
nozzles. Although the energy per unit mass is large (i.e.,
310,000 ft . lb/slug), the flowrate is small, so the power is not
“large.”

m�

W� shaft � m� wshaft.

 � �310,000 ft . lb /slug

 � 1�310,000 ft2/s22 11 lb/slug . ft /s22

 � �310,000 ft2/s2

wshaft � �U1V�1 � �2U 2 � �21394 ft /s22

We use the fixed, nondeforming control volume that includes
the turbine rotor and the fluid in the rotor blade passages at an
instant of time (see Fig. E11.6b). The only torque acting on
this control volume is the shaft torque. For simplicity we ana-
lyze this problem using an arithmetic mean radius, rm, where

A sketch of the velocity triangles at the rotor entrance and exit
is shown in Fig. E11.6c.

Application of Eq. 11.5 (a form of the moment-of-momentum
equation) gives

(1)

where wshaft is shaft energy per unit of mass flowing through
the turbine. From the problem statement, V�1 � 2U and V�2 � 0,
where

(2)

 � 394 ft /s

 � 10.168 in. � 0.133 in.2/2112 in./ft2

 U � �rm � 1300,000 rev/min2 11 min/60 s2 12� rad/rev2

wshaft � �U1V�1 � U2V�2

rm �
1

2
  1r0 � ri2

SOLUTION

ri = 0.133 in.
ro = 0.168 in. 

Tshaft Tshaft

Control
volume

Section (1) Section (2)

U

U1

V1

V  1θ

V2W1

U2
W2

(a) (b)

(c)

ω

F I G U R E  E11.6

V11.5 Dental drill
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11.7 Turbines 433

11.7.2 Reaction Turbines

As indicated in the previous section, impulse turbines are best suited (i.e., most efficient)
for lower-flowrate and higher-head operations. Reaction turbines, however, are best suited
for higher-flowrate and lower-head situations such as are often encountered in hydroelec-
tric power plants associated with a dammed river, for example.

In a reaction turbine the working fluid completely fills the passageways through which
it flows (unlike an impulse turbine, which contains one or more individual unconfined jets
of fluid). The angular momentum, pressure, and velocity of the fluid decrease as it flows
through the turbine rotor—the turbine rotor extracts energy from the fluid.

As with pumps, turbines are manufactured in a variety of configurations—radial-flow,
mixed-flow, and axial-flow types. Typical radial- and mixed-flow hydraulic turbines are
called Francis turbines, named after James Francis, an American engineer. At very low heads
the most efficient type of turbine is the axial-flow or propeller turbine. The Kaplan turbine,
named after Victor Kaplan, a German professor, is an efficient axial-flow hydraulic turbine
with adjustable blades. Cross sections of these different turbine types are shown in Fig. 11.23.

F l u i d s  i n  t h e  N e w s

Cavitation damage in hydraulic turbines The occurrence
of cavitation in hydraulic pumps seems to be an obvious pos-
sibility since low suction pressures are expected. Cavitation
damage can also occur in hydraulic turbines even though they
do not seem obviously prone to this kind of problem. Local
acceleration of liquid over blade surfaces can be sufficient to
result in local pressures low enough to cause fluid vaporiza-

tion or cavitation. Further along the flow path, the fluid can
decelerate rapidly enough with accompanying increase in lo-
cal pressure to make cavitation bubbles collapse with enough
intensity to cause blade surface damage in the form of mate-
rial erosion. Over time, this erosion can be severe enough to
require blade repair or replacement, which is very expensive.
(See Problem 11.54.)

Rotor blades

ω

Rotor
Adjustable
guide vanes

Draft tube

ω

Adjustable
guide vane

Plan view of guide vanes

ω

(a) (b)

ω

F I G U R E 11.23 (a) Typical radial-flow Francis turbine and (b) typical axial-flow Kaplan turbine.
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As shown in Fig. 11.23a, flow across the rotor blades of a radial-inflow turbine has
a major component in the radial direction. Inlet guide vanes (which may be adjusted to
allow optimum performance) direct the water into the rotor with a tangential component of
velocity. The absolute velocity of the water leaving the rotor is essentially without tangen-
tial velocity. Hence, the rotor decreases the angular momentum of the fluid, the fluid exerts
a torque on the rotor in the direction of rotation, and the rotor extracts energy from the
fluid. The Euler turbomachine equation (Eq. 11.2) and the corresponding power equation
(Eq. 11.4) are equally valid for this turbine as they are for the centrifugal pump discussed
in Section 11.4.

As shown in Fig. 11.23b, for an axial-flow Kaplan turbine, the fluid flows through
the inlet guide vanes and achieves a tangential velocity in a vortex (swirl) motion before it
reaches the rotor. Flow across the rotor contains a major axial component. Both the inlet
guide vanes and the turbine blades can be adjusted by changing their setting angles to pro-
duce the best match (optimum output) for the specific operating conditions. For example,
the operating head available may change from season to season and/or the flowrate through
the rotor may vary.

As with pumps, incompressible flow turbine performance is often specified in terms
of appropriate dimensionless parameters. The flow coefficient, CQ � Q/�D3, the head coef-
ficient, CH � ghT/�2D2, and the power coefficient, are defined in the
same way for pumps and turbines. However, turbine efficiency, 	, is the inverse of pump
efficiency. That is, the efficiency is the ratio of the shaft power output to the power avail-
able in the flowing fluid, or

For geometrically similar turbines and for negligible Reynolds number and surface rough-
ness difference effects, the relationships between the dimensionless parameters are given
functionally by that shown in Eqs. 11.21, 11.22, and 11.23. That is,

where the functions �1, �2, and �3 are dependent on the type of turbine involved. Also,
for turbines the efficiency, 	, is related to the other coefficients according to 	 � Cp/CHCQ.

As indicated earlier, the design engineer has a variety of turbine types available for
any given application. It is necessary to determine which type of turbine would best fit the
job (i.e., be most efficient) before detailed design work is attempted. As with pumps, the
use of a specific speed parameter can help provide this information. For hydraulic turbines,
the rotor diameter D is eliminated between the flow coefficient and the power coefficient
to obtain the power specific speed, N s, where

We use the more common, but not dimensionless, definition of specific speed

(11.35)

That is, Nsd is calculated with angular velocity, �, in rpm; shaft power, in brake horse-
power; and head, hT, in feet. Optimum turbine efficiency (for large turbines) as a function
of specific speed is indicated in Fig. 11.24. Also shown are representative rotor and casing
cross sections. Note that impulse turbines are best at low specific speeds, that is, when oper-
ating with larger heads and small flowrate. The other extreme is axial-flow turbines, which

W� shaft,

N¿sd �
�1rpm22W

#
shaft 1bhp2

3hT 1ft2 4
5/4

N¿s �
�2W� shaft/�

1ghT2
5/4

CH � �11CQ2,  Cp � �21CQ2,  and  	 � �31CQ2

	 �
W� shaft

�gQhT

Cp � W
#

shaft /��3D5,
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11.7 Turbines 435

are the most efficient type if the head is low and if the flowrate is large. For intermedi-
ate values of specific speeds, radial- and mixed-flow turbines offer the best performance.

Data shown in Fig. 11.24 are meant only to provide a guide for turbine-type selec-
tion. The actual turbine efficiency for a given turbine depends very strongly on the detailed
design of the turbine. Considerable analysis, testing, and experience are needed to produce
an efficient turbine. However, data of Fig. 11.24 are representative. Much additional infor-
mation can be found in the literature (Refs. 11, and 17).

10 20 40 60 80 100

10 20 40 60 80 100

  ′Nsd

100

90

80

70

%η

Francis

Impulse

Kaplan

Impulse turbines

Radial flow Mixed flow Axial flow

Reaction turbines

  ′Nsd

F I G U R E  11.24 Typical turbine cross sections and maximum
efficiencies as a function of specific speed.

GIVEN A hydraulic turbine is to operate at an angular
velocity of 6 rev/s, a flowrate of 10 ft3/s, and a head of 20 ft. 

SOLUTION

Use of Specific Speed to Select Turbine Type

this amount by an assumed efficiency (94%).

Thus, for this turbine,

N¿sd �
�2W� shaft

1hT2
5/4 �

1360 rpm2121.3 hp

120 ft25/4 � 39.3

 W� shaft � 21.3 hp

W
#

shaft � �Qz	 � 162.4 lb/ft32 110 ft3/s2 c
20 ft10.942

550 ft . lb/s . hp
d

FIND What type of turbine should be selected?

EXAMPLE 11.7

The most efficient type of turbine to use can be obtained
by calculating the specific speed, Nsd, and using the infor-
mation of Fig. 11.24. To use the dimensional form of the
specific speed indicated in Fig. 11.24 we must convert the
given data into the appropriate units. For the rotor speed
we get

To estimate the shaft power, we assume all of the available
head is converted into power (i.e., hT � z � 20 ft) and multiply

� � 6 rev/s � 60 s/min � 360 rpm
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or

A Pelton wheel with a diameter of D � 0.952 ft supplied with
water through a nozzle of diameter d1 � 0.596 ft is not a
practical design. Typically d1 � D (see Fig. 11.17). By using
multiple jets it would be possible to reduce the jet diameter.
However, even with eight jets, the jet diameter would be 0.211
ft, which is still too large (relative to the wheel diameter) to be
practical. Hence, the aforementioned calculations reinforce
the results presented in Fig. 11.24—a Pelton wheel would not
be practical for this application. If the flowrate were consider-
ably smaller, the specific speed could be reduced to the range
where a Pelton wheel would be the type to use (rather than a
mixed-flow reaction turbine).

d1 � c
4Q

�V1
d

1/2

� c
4110 ft3/s2

�135.9 ft /s2
d

1/2

� 0.596 ft

According to the information of Fig. 11.24,

A mixed-flow Francis turbine would

probably give the highest efficiency and

an assumed efficiency of 0.94 is appropriate. (Ans)

COMMENT What would happen if we wished to use a
Pelton wheel for this application? Note that with only a 20-ft
head, the maximum jet velocity, V1, obtainable (neglecting
viscous effects) would be

As shown by Eq. 11.34, for maximum efficiency of a Pelton
wheel the jet velocity is ideally two times the blade velocity.
Thus, V1 � 2�R, or the wheel diameter, D � 2R, is

To obtain a flowrate of Q � 10 ft3/s at a velocity of V1 � 39.5 ft/s,
the jet diameter, d1, must be given by

Q �
�

4
d 2

1V1

D �
V1

�
�

35.9 ft /s

16 rev/s � 2� rad /rev2
� 0.952 ft

V1 � 12 gz � 22 � 32.2 ft /s2 � 20 ft � 35.9 ft /s

11.8 Compressible Flow Turbomachines

Compressible flow turbomachines are in many ways similar to the incompressible flow
pumps and turbines described in previous portions of this chapter. The main difference is
that the density of the fluid (a gas or vapor) changes significantly from the inlet to the out-
let of the compressible flow machines. This added feature has interesting consequences (e.g.,
shock waves), benefits (e.g., large pressure changes), and complications (e.g., blade cooling).
The photograph in Fig. 11.25 shows a typical centrifugal compressor used in an automobile

F I G U R E  11.25 Photograph of the rotor from an automobile
turbocharger.

V11.6 Flow in a
compressor stage
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turbocharger. Exhaust gases from the engine drive the turbine, which powers the compres-
sor so that more air can be forced into the engine.

An in-depth understanding of compressible flow turbomachines requires the mastery
of various thermodynamic concepts, as well as information provided earlier about basic
energy considerations (Section 11.2) and basic angular momentum considerations (Section 11.3).
The interested reader is encouraged to read some of the references available for further
information (Refs. 12, 13, 14, 15, 16, and 17).

11.9 Chapter Summary and Study Guide

This chapter discussed various aspects of turbomachine analysis and design. The concepts
of angular momentum and torque are key to understanding how such pumps and turbines
operate.

The shaft torque required to change the axial component of angular momentum of a
fluid as it flows through a pump or turbine is described in terms of diagrams of inlet and
outlet velocity triangles. Such diagrams indicate the relationship among absolute, relative,
and blade velocities.

Performance characteristics for centrifugal pumps are discussed. Standard dimension-
less pump parameters, similarity laws, and the concept of specific speed are presented for
use in pump analysis. It is shown how to use the pump performance curve and the system
curve for proper pump selection. A brief discussion of axial-flow and mixed-flow pumps is
given.

The analysis of impulse turbines is provided, with emphasis on the Pelton wheel tur-
bine. For impulse turbines there is negligible pressure difference across the blade; the torque
is a result of the impulse of the fluid jet striking the blade. Radial-flow and axial-flow reac-
tion turbines are also discussed.

The following checklist provides a study guide for this chapter. When your study
of the entire chapter and end-of-chapter exercises has been completed, you should be
able to

write out meanings of the terms listed here in the margin and understand each of the
related concepts. These terms are particularly important and are set in color and bold
type in the text.

draw appropriate velocity triangles for given pump or turbine configurations.

calculate the shaft torque, shaft power, and pump head for a given centrifugal pump
configuration.

use the pump performance curve and the system curve to predict the pump perfor-
mance for a given system.

predict the performance characteristics for one pump based on the performance of
another pump of the same family using the pump scaling laws.

use the specific speed to determine whether a radial flow, mixed flow, or axial flow
pump would be most appropriate for a given situation.

calculate the shaft torque and shaft power for an impulse turbine of a given configu-
ration.

calculate the shaft torque and shaft power for a given reaction turbine.

use the specific speed to determine whether an impulse or a reaction turbine would
be most appropriate for a given situation.

turbomachine
axial, mixed, and 

radial flow
velocity triangle
angular momentum
shaft torque
Euler turbomachine 

equation
shaft power
centrifugal pump
pump performance 

curve
overall efficiency
system equation
head rise coefficient
power coefficient
flow coefficient
pump scaling laws
specific speed
impulse turbine
reaction turbine
Pelton wheel
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Some of the important equations in this chapter are

Vector addition of velocities (11.1)

Shaft torque (11.2)

Shaft power (11.3)

Shaft power (11.4)

Shaft work (11.8)

Pump ideal head rise (11.9)

Pump actual head rise (11.14)

Pump similarity relationship (11.21)

Pump similarity relationship (11.22)

Pump similarity relationship (11.23)

Pump scaling law (11.24)

Pump scaling law (11.25)

Pump scaling law (11.26)

Pump scaling law (11.27)

Specific speed (pumps) (11.29)

Specific speed (turbines) (11.35) N¿sd �
�1rpm22W
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Review Problems

Go to Appendix G for a set of review problems with answers.
Detailed solutions can be found in Student Solution Manual

for a Brief Introduction to Fluid Mechanics, by Young et al. 
(© 2011 John Wiley and Sons, Inc.).

7. Kristal, F. A., and Annett, F. A., Pumps: Types, Selection, Installation, Operation, and Mainte-
nance, McGraw-Hill, New York, 1953.

8. Garay, P. N., Pump Application Desk Book, Third Edition, Fairmont Press, Lilburn, Georgia, 1996.

9. Karassick, I. J., et al., Pump Handbook, Third Edition, McGraw-Hill, New York, 2000.

10. Moody, L. F., and Zowski, T., “Hydraulic Machinery,” in Handbook of Applied Hydraulics,
Third Edition, by C. V. Davis and K. E. Sorensen, McGraw-Hill, New York, 1969.

11. Balje, O. E., Turbomachines: A Guide to Design, Selection, and Theory, Wiley, New York, 1981.

12. Bathie, W. W., Fundamentals of Gas Turbines, Wiley, New York, 1984.

13. Boyce, M. P., Gas Turbine Engineering Handbook, Third Edition, Gulf Publishing, Houston, 2006.

14. Cohen, H., Rogers, G. F. C., and Saravanamuttoo, H. I. H., Gas Turbine Theory, Third Edition,
Longman Scientific & Technical, Essex, UK, and Wiley, New York, 1987.

15. Johnson, I. A., and Bullock, R. D., Eds., Aerodynamic Design of Axial-Flow Compressors,
NASA SP-36, National Aeronautics and Space Administration, Washington, D.C. 1965.

16. Glassman, A. J., Ed., Turbine Design and Application, Vol. 3, NASA SP-290, National Aero-
nautics and Space Administration, Washington, D.C. 1975.

17. Johnson, R. W., Ed. The Handbook of Fluid Dynamics, CRC Press, New York, 1998.

Problems

Note: Unless otherwise indicated, use the values of fluid
properties found in the tables on the inside of the front
cover. Problems designated with a (†) are “open-ended”
problems and require critical thinking in that to work
them one must make various assumptions and provide the
necessary data. There is not a unique answer to these
problems.

The even-numbered problems are included in the
hard copy version of the book, and the answers to these
even-numbered problems are listed at the end of the book.
Odd-numbered problems are provided in WileyPLUS, or
in Appendix L on the book’s web site, www.wiley.com/
college/young. The lab-type problems, FE problems, FlowLab
problems, and the videos that accompany problems can also
be accessed on these web sites.

Section 11.3 Basic Angular Momentum
Considerations

11.2 Water flows axially up the shaft and out through the two
sprinkler arms as sketched in Fig. P11.1 and as shown in Video
V11.2. With the help of the moment-of-momentum equation ex-
plain why, at a threshold amount of water flow, the sprinkler
arms begin to rotate. What happens when the flowrate increases
above this threshold amount?

11.4 Air (assumed incompressible) flows across the rotor
shown in Fig. P11.4 such that the magnitude of the absolute ve-
locity increases from 15 m/s to 25 m/s. Measurements indicate
that the absolute velocity at the inlet is in the direction shown.
Determine the direction of the absolute velocity at the outlet if

the fluid puts no torque on the rotor. Is the rotation CW or
CCW? Is this device a pump or a turbine?

11.6 Identify typical units for the variables work per unit mass
and power in the British Gravitational and the International 
Systems. Which unit system is easiest to understand, and why?

11.8 Shown in Fig. P11.8 is a toy “helicopter” powered by air
escaping from a balloon. The air from the balloon flows radially
through each of the three propeller blades and out small nozzles
at the tips of the blades. The nozzles (along with the rotating
propeller blades) are tilted at a small angle as indicated. Sketch

F I G U R E  P11.4

60°

V1 = 15 m/s

V2 = 25 m/s

r2 = 1.2 m

r1 = 1.9 m

θ
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the velocity triangle (i.e., blade, absolute, and relative veloci-
ties) for the flow from the nozzles. Explain why this toy tends to
move upward. Is this a turbine? Pump?

Section 11.4 The Centrifugal Pump

11.10 The performance characteristics of a certain centrifugal
pump are determined from an experimental setup similar to that
shown in Fig. 11.7. When the flowrate of a liquid (SG � 0.9)
through the pump is 120 gpm, the pressure gage at (1) indicates
a vacuum of 95 mm of mercury, and the pressure gage at (2) in-
dicates a pressure of 80 kPa. The diameter of the pipe at the inlet
is 110 mm, and at the exit it is 55 mm. If z2 � z1 � 0.5 m, what
is the actual head rise across the pump? Explain how you would
estimate the pump motor power requirement.

11.12 Water is pumped with a centrifugal pump, and measure-
ments made on the pump indicate that for a flowrate of 240 gpm
the required input power is 6 hp. For a pump efficiency of 62%,
what is the actual head rise of the water being pumped?

11.14 It is sometimes useful to have hp � Q pump perfor-
mance curves expressed in the form of an equation. Fit the hp � Q
data given in Problem 11.13 to an equation of the form hp �
h0 � kQ2 and compare the values of hp determined from the
equation with the experimentally determined values. (Hint:
Plot hp versus Q2 and use the method of least squares to fit the
data to the equation.)

11.16 Due to fouling of the pipe wall, the friction factor for the
pipe of Example 11.3 increases from 0.02 to 0.03. Determine
the new flowrate, assuming all other conditions remain the same.
What is the pump efficiency at this new flowrate? Explain how
a line valve could be used to vary the flowrate through the pipe
of Example 11.3. Would it be better to place the valve upstream
or downstream of the pump? Why?

11.18 A centrifugal pump having a 6-in.-diameter impeller and
the characteristics shown in Fig. 11.9 is to be used to pump
gasoline through 4000 ft of commercial steel 3-in.-diameter
pipe. The pipe connects two reservoirs having open surfaces at
the same elevation. Determine the flowrate. Do you think this
pump is a good choice? Explain.

11.20 In a chemical processing plant a liquid is pumped from
an open tank, through a 0.1-m-diameter vertical pipe, and into
another open tank as shown in Fig. P11.20a. A valve is located
in the pipe, and the minor loss coefficient for the valve as a func-
tion of the valve setting is shown in Fig. P11.20b. The pump
head–capacity relationship is given by the equation hp � 52.0 �
1.01 � 103 Q2 with hp in meters when Q is in m3/s. Assume the
friction factor f � 0.02 for the pipe, and all minor losses, except
for the valve, are negligible. The fluid levels in the two tanks can
be assumed to remain constant. (a) Determine the flowrate with
the valve wide open. (b) Determine the required valve setting
(percent open) to reduce the flowrate by 50%.

440 Chapter 11 ■ Turbomachines
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Section 11.5 Dimensionless Parameters and
Similarity Laws

11.22 A small model of a pump is tested in the laboratory and
found to have a specific speed, Nsd, equal to 1000 when operating
at peak efficiency. Predict the discharge of a larger, geometrically

c11Turbomachines.qxd  9/28/10  10:42 AM  Page 440



Problems 441

similar pump operating at peak efficiency at a speed of 1800 rpm
across an actual head rise of 200 ft.

11.24 A centrifugal pump with a 12-in.-diameter impeller re-
quires a power input of 60 hp when the flowrate is 3200 gpm
against a 60-ft head. The impeller is changed to one with a 10-in.
diameter. Determine the expected flowrate, head, and input
power if the pump speed remains the same.

11.26 A certain axial-flow pump has a specific speed of 
If the pump is expected to deliver 3000 gpm when operating against
a 15-ft head, at what speed (rpm) should the pump be run?

11.28 Fueloil �
is pumped through the piping system of Fig. P11.28 with a

velocity of 4.6 ft�s. The pressure 200 ft upstream from the pump
is 5 psi. Pipe losses downstream from the pump are negligible,
but minor losses are not 1minor loss coefficients are given on the
figure2. (a) For a pipe diameter of 2 in. with a relative roughness

determine the head that must be added by the
pump. (b) For a pump operating speed of 1750 rpm, what type of
pump 1radial flow, mixed flow, or axial flow2 would you recom-
mend for this application?

e�D � 0.001,

ft22
10�5 lb # s�1sp. wt � 48.0 lb�ft3, viscosity � 2.0

NS � 5.0.

Section 11.7 Turbines

11.30 A Pelton wheel turbine is illustrated in Fig. P11.30. The
radius to the line of action of the tangential reaction force on
each vane is 1 ft. Each vane deflects fluid by an angle of 135� as
indicated. Assume all of the flow occurs in a horizontal plane.
Each of the four jets shown strikes a vane with a velocity of 100 ft/s
and a stream diameter of 1 in. The magnitude of velocity of the

jet remains constant along the vane surface. (a) How much
torque is required to hold the wheel stationary? (b) How fast
will the wheel rotate if shaft torque is negligible, and what prac-
tical situation is simulated by this condition?

11.32 Describe what will happen when the flow through the tur-
bomachine of Fig. P11.31 is in the opposite direction (right to left)
and the shaft is freed up to rotate in response to the reversed flow.

11.34 A simplified sketch of a hydraulic turbine runner is
shown in Fig. P11.34. Relative to the rotating runner, water enters
at section (1) (cylindrical cross-sectional area A1 at r1 � 1.5 m) at
an angle of 100� from the tangential direction and leaves at sec-
tion (2) (cylindrical cross-sectional area A2 at r2 � 0.85 m) at an
angle of 50� from the tangential direction. The blade height at
sections (1) and (2) is 0.45 m and the volume flowrate through
the turbine is 30 m3/s. The runner speed is 130 rpm in the direc-
tion shown. Determine the shaft power developed. Is the shaft
power greater or less than the power lost by the fluid? Explain.

11.36 A sketch of the arithmetic mean radius blade sections of
an axial-flow water turbine stage is shown in Fig. P11.36. The ro-
tor speed is 1500 rpm. (a) Sketch and label velocity triangles for
the flow entering and leaving the rotor row. Use V for absolute ve-
locity, W for relative velocity, and U for blade velocity. Assume
flow enters and leaves each blade row at the blade angles shown.
(b) Calculate the work per unit mass delivered at the shaft.

F I G U R E  P11.28
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11.38 A 10.9-ft-diameter Pelton wheel operates at 500 rpm
with a total head just upstream of the nozzle of 5330 ft. Estimate
the diameter of the nozzle of the single-nozzle wheel if it devel-
ops 25,000 horsepower.

11.40 A Pelton wheel has a diameter of 2 m and develops 500 kW
when rotating 180 rpm. What is the average force of the water
against the blades? If the turbine is operating at maximum effi-
ciency, determine the speed of the water jet from the nozzle and
the mass flowrate.

11.42 A hydraulic turbine operating at 180 rpm with a head of
170 feet develops 20,000 hp. Estimate the power and speed if
the turbine were to operate under a head of 190 ft.

11.44 Turbines are to be designed to develop 30,000 hp
while operating under a head of 70 ft and an angular velocity
of 60 rpm. What type of turbine is best suited for this pur-
pose? Estimate the flowrate needed.

11.46 Water at 400 psi is available to operate a turbine at
1750 rpm. What type of turbine would you suggest to use if the
turbine should have an output of approximately 200 hp?

11.48 Test data for the small Francis turbine shown in Fig.
P11.48 are given in the table shown. The test was run at a con-
stant 32.8-ft head just upstream of the turbine. The Prony
brake on the turbine output shaft was adjusted to give various
angular velocities, and the force on the brake arm, F, was
recorded. Use the given data to plot curves of torque as a func-
tion of angular velocity and turbine efficiency as a function of
angular velocity.

11.50 The device shown in Fig. P11.50 is used to investigate
the power produced by a Pelton wheel turbine. Water supplied at a
constant flowrate issues from a nozzle and strikes the turbine buck-
ets as indicated. The angular velocity, �, of the turbine wheel is
varied by adjusting the tension on the Prony brake spring,
thereby varying the torque, Tshaft, applied to the output shaft.
This torque can be determined from the measured force, R,
needed to keep the brake arm stationary as Tshaft � R�, where � is
the moment arm of the brake force.

Experimentally determined values of � and R are shown
in the following table. Use these results to plot a graph of torque
as a function of the angular velocity. On another graph plot the
power output, shaft � Tshaft �, as a function of the angular ve-
locity. On each of these graphs plot the theoretical curves for
this turbine, assuming 100% efficiency.

Compare the experimental and theoretical results and dis-
cuss some possible reasons for any differences between them.

� (rpm) R (lb)

0 2.47
360 1.91
450 1.84
600 1.69
700 1.55
940 1.17

1120 0.89
1480 0.16 

■ Lifelong Learning Problems

11.52 Outline the steps associated with the preliminary design
of a turbomachine rotor.

11.54 (See Fluids in the News article titled “Cavitation damage
in hydraulic turbines,” Section 11.7.2.) How is cavitation and,
more importantly, the damage it can cause detected in hydraulic
turbines? How can this damage be minimized?

■ FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for
fluid mechanics are provided on the book’s web site, www.wiley
.com/college/young, or WileyPLUS.

W
#

F I G U R E  P11.50

Prony brakeω

Pelton
wheel Spring

Brake shoe

0.43 in.

.(0)

R

= 6 in.

Q =
0.0542 ft3/s

D
2

= 3 in.

F I G U R E  P11.48

F

Q

Brake arm

Brake cord

 (rpm) Q (ft3/s) F (lb)

0
1000
1500
1870
2170
2350
2580
2710

0.129
0.129
0.129
0.124
0.118

0.0942
0.0766
0.068

2.63
2.40
2.22
1.91
1.49

0.876
0.337
0.089

ω
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c11Turbomachines.qxd  9/28/10  10:42 AM  Page 442

www.wiley.com/college/young
www.wiley.com/college/young


Appendix A
Computational Fluid Dynamics
and FlowLab

A.1 Introduction

Numerical methods using digital computers are, of course, commonly utilized to solve a wide
variety of flow problems. As discussed in Chapter 6, although the differential equations that
govern the flow of Newtonian fluids [the Navier–Stokes equations (Eq. 6.120)] were derived
many years ago, there are few known analytical solutions to them. However, with the advent
of high-speed digital computers it has become possible to obtain approximate numerical solu-
tions to these (and other fluid mechanics) equations for a wide variety of circumstances.

Computational fluid dynamics (CFD) involves replacing the partial differential equa-
tions with discretized algebraic equations that approximate the partial differential equations.
These equations are then numerically solved to obtain flow field values at the discrete points
in space and/or time. Since the Navier–Stokes equations are valid everywhere in the flow
field of the fluid continuum, an analytical solution to these equations provides the solution
for an infinite number of points in the flow. However, analytical solutions are available for
only a limited number of simplified flow geometries. To overcome this limitation, the gov-
erning equations can be discretized and put in algebraic form for the computer to solve.
The CFD simulation solves for the relevant flow variables only at the discrete points, which
make up the grid or mesh of the solution (discussed in more detail later). Interpolation
schemes are used to obtain values at non–grid point locations.

CFD can be thought of as a numerical experiment. In a typical fluids experiment, an
experimental model is built, measurements of the flow interacting with that model are taken,
and the results are analyzed. In CFD, the building of the model is replaced with the formula-
tion of the governing equations and the development of the numerical algorithm. The process
of obtaining measurements is replaced with running an algorithm on the computer to simulate
the flow interaction. Of course, the analysis of results is common ground to both techniques.

CFD can be classified as a subdiscipline to the study of fluid dynamics. However, it
should be pointed out that a thorough coverage of CFD topics is well beyond the scope of this
textbook. This appendix highlights some of the more important topics in CFD but is only
intended as a brief introduction. The topics include discretization of the governing equations,
grid generation, boundary conditions, application of CFD, and some representative examples.
Also included is a section on FlowLab, which is the educational CFD software incorporated
with this textbook. FlowLab offers the reader the opportunity to begin using CFD to solve flow
problems as well as to reinforce concepts covered in the textbook. For more information, visit
the book web site, or WileyPLUS, to access the FlowLab problems, tutorials, and user’s guide.

VA.1 Pouring 
a liquid

A.2 Discretization

The process of discretization involves developing a set of algebraic equations (based on dis-
crete points in the flow domain) to be used in place of the partial differential equations. Of
the various discretization techniques available for the numerical solution of the governing
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differential equations, the following three types are most common: (1) the finite difference
method, (2) the finite element (or finite volume) method, and (3) the boundary element
method. In each of these methods, the continuous flow field (i.e., velocity or pressure as a
function of space and time) is described in terms of discrete (rather than continuous) val-
ues at prescribed locations. Through this technique the differential equations are replaced
by a set of algebraic equations that can be solved on the computer.

For the finite element (or finite volume) method, the flow field is broken into a set of
small fluid elements (usually triangular areas if the flow is two-dimensional or small-volume
elements if the flow is three-dimensional). The conservation equations (i.e., conservation of
mass, momentum, and energy) are written in an appropriate form for each element, and the
set of resulting algebraic equations for the flow field is solved numerically. The number,
size, and shape of elements are dictated in part by the particular flow geometry and flow
conditions for the problem at hand. As the number of elements increases (as is necessary
for flows with complex boundaries), the number of simultaneous algebraic equations that
must be solved increases rapidly. Problems involving one million (or more) grid cells are
not uncommon in today’s CFD community, particularly for complex three-dimensional
geometries. Further information about this method can be found in Refs. 1 and 2.

For the boundary element method, the boundary of the flow field (not the entire flow
field as in the finite element method) is broken into discrete segments (Ref. 3) and appropri-
ate singularities such as sources, sinks, doublets, and vortices are distributed on these bound-
ary elements. The strengths and type of the singularities are chosen so that the appropriate
boundary conditions of the flow are obtained on the boundary elements. For points in the flow
field not on the boundary, the flow is calculated by adding the contributions from the various
singularities on the boundary. Although the details of this method are rather mathematically
sophisticated, it may (depending on the particular problem) require less computational time
and space than the finite element method. Typical boundary elements and their associated sin-
gularities (vortices) for two-dimensional flow past an airfoil are shown in Fig. A.1. Such use
of the boundary element method in aerodynamics is often termed the panel method in recog-
nition of the fact that each element plays the role of a panel on the airfoil surface (Ref. 4).

The finite difference method for computational fluid dynamics is perhaps the most
easily understood and widely used of the three preceding methods. For this method the flow
field is dissected into a set of grid points and the continuous functions (velocity, pressure,
etc.) are approximated by discrete values of these functions calculated at the grid points.
Derivatives of the functions are approximated by using the differences between the func-
tion values at local grid points divided by the grid spacing. The standard method for con-
verting the partial differential equations to algebraic equations is through the use of Taylor
series expansions. (See Ref. 5.) For example, assume a standard rectangular grid is applied
to a flow domain as shown in Fig. A.2.

This grid stencil shows five grid points in x–y space with the center point being labeled
as i, j. This index notation is used as subscripts on variables to signify location. For exam-
ple, is the u component of velocity at the first point to the right of the center point
i, j. The grid spacing in the i and j directions is given as and , respectively.¢y¢x

ui � 1, j
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Γ F I G U R E  A.1 Panel
method for flow past an airfoil.
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A.2 Discretization 445

To find an algebraic approximation to a first-derivative term such as at the i, j
grid point, consider a Taylor series expansion written for u at as

(A.1)

Solving for the underlined term in the foregoing equation results in the following:

(A.2)

where contains higher order terms proportional to , and so forth. Equation
A.2 represents a forward difference equation to approximate the first derivative using val-
ues at and i, j along with the grid spacing in the x direction. Obviously in solving
for the term we have ignored higher-order terms such as the second and third deriv-
atives present in Eq. A.1. This process is termed truncation of the Taylor series expansion.
The lowest-order term that was truncated included . Notice that the first-derivative
term contains . When solving for the first derivative, all terms on the right-hand side
were divided by . Therefore, the term signifies that this equation has error of
“order ,” which is due to the neglected terms in the Taylor series and is called trunca-
tion error. Hence, the forward difference is termed first-order accurate.

Thus, we can transform a partial derivative into an algebraic expression involving
values of the variable at neighboring grid points. This method of using the Taylor series
expansions to obtain discrete algebraic equations is called the finite difference method. Sim-
ilar procedures can be used to develop approximations termed backward difference and cen-
tral difference representations of the first derivative. The central difference makes use of
both the left and right points (i.e., ) and is second-order accurate. In
addition, finite difference equations can be developed for the other spatial directions (i.e.,

) as well as for second derivatives , which are also contained in the
Navier–Stokes equations. (See Ref. 5 for details.)

Applying this method to all terms in the governing equations transfers the differen-
tial equations into a set of algebraic equations involving the physical variables at the grid
points (i.e., etc.). This set of equations is
then solved by appropriate numerical techniques. The larger the number or grid points used,
the larger the number of equations that must be solved.

A student of CFD should realize that the discretization of the continuum governing
equations involves the use of algebraic equations that are an approximation to the original
partial differential equation. Along with this approximation comes some amount of error.
This type of error is termed truncation error because the Taylor series expansion used to
represent a derivative is “truncated” at some reasonable point and the higher-order terms
are ignored. The truncation errors tend to zero as the grid is refined by making and ¢y¢x
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smaller, so grid refinement is one method of reducing this type of error. Another type of
unavoidable numerical error is the so-called round-off error. This type of error is due to the
limit of the computer on the number of digits it can retain in memory. Engineering students
can run into round-off errors from their calculators if they plug values into the equations at
an early stage of the solution process. Fortunately, for most CFD cases, if the algorithm is
set up properly, round-off errors are usually negligible.
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A.3 Grids

CFD computations using the finite difference method provide the flow field at discrete
points in the flow domain. The arrangement of these discrete points is termed the grid or
the mesh. The type of grid developed for a given problem can have a significant impact on
the numerical simulation, including the accuracy of the solution. The grid must represent the
geometry correctly and accurately, since an error in this representation can have a signifi-
cant effect on the solution.

The grid must also have sufficient grid resolution to capture the relevant flow physics,
otherwise they will be lost. This particular requirement is problem dependent. For example,
if a flow field has small-scale structures, the grid resolution must be sufficient to capture these
structures. It is usually necessary to increase the number of grid points (i.e., use a finer mesh)
where large gradients are to be expected, such as in the boundary layer near a solid surface.
The same can also be said for the temporal resolution. The time step, , used for unsteady
flows must be smaller than the smallest time scale of the flow features being investigated.

Generally, the types of grids fall into two categories: structured and unstructured,
depending on whether or not there exists a systematic pattern of connectivity of the grid points
with their neighbors. As the name implies, a structured grid has some type of regular, coher-
ent structure to the mesh layout that can be defined mathematically. The simplest structured
grid is a uniform rectangular grid, as shown in Fig. A.3a. However, structured grids are not
restricted to rectangular geometries. Fig. A.3b shows a structured grid wrapped around a par-
abolic surface. Notice that grid points are clustered near the surface (i.e., grid spacing in nor-
mal direction increases as one moves away from the surface) to help capture the steep flow
gradients found in the boundary layer region. This type of variable grid spacing is used wher-
ever there is a need to increase grid resolution and is termed grid stretching.

For the unstructured grid, the grid cell arrangement is irregular and has no systematic
pattern. The grid cell geometry usually consists of various-sized triangles for two-dimensional

¢t

(a) (b)

F I G U R E  A.3 Structured grids. (a) Rectangular grid. 
(b) Grid around a parabolic surface.
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problems and tetrahedrals for three-dimensional grids. An example of an unstructured grid is
shown in Fig. A.4. Unlike structured grids, for an unstructured grid each grid cell and the con-
nection information to neighboring cells is defined separately. This produces an increase in
the computer code complexity as well as a significant computer storage requirement. The
advantage to an unstructured grid is that it can be applied to complex geometries, where struc-
tured grids would have severe difficulty. The finite difference method is restricted to struc-
tured grids whereas the finite volume (or finite element) method can use either structured or
unstructured grids.

Other grids include hybrid, moving, and adaptive grids. A grid that uses a combination
of grid elements (rectangles, triangles, etc.) is termed a hybrid grid. As the name implies, the
moving grid is helpful for flows involving a time-dependent geometry. If, for example, the prob-
lem involves simulating the flow within a pumping heart or the flow around a flapping wing,
a mesh that moves with the geometry is desired. The nature of the adaptive grid lies in its abil-
ity to literally adapt itself during the simulation. For this type of grid, while the CFD code is
trying to reach a converged solution, the grid will adapt itself to place additional grid resources
in regions of high-flow gradients. Such a grid is particularly useful when a new problem arises
and the user is not quite sure where to refine the grid due to high-flow gradients.

VA.2 Dynamic grid

F I G U R E  A.4 Anisotropic adaptive mesh for the calculation of viscous flow over a NACA
0012 airfoil at a Reynolds number of 10,000, Mach number of 0.755, and angle of attack of 1.5°. (From
CFD Laboratory, Concordia University, Montreal, Canada. Used by permission.)

A.4 Boundary Conditions

The same governing equations, the Navier–Stokes equations (Eq. 6.120), are valid for all
incompressible Newtonian fluid flow problems. Thus, if the same equations are solved for
all types of problems, how is it possible to achieve different solutions for different types of
flows involving different flow geometries? The answer lies in the boundary conditions of
the problem. The boundary conditions are what allow the governing equations to differen-
tiate between different flow fields (for example, flow past an automobile and flow past a
person running) and produce a solution unique to the given flow geometry.

It is critical to specify the correct boundary conditions so that the CFD simulation is
a well-posed problem and is an accurate representation of the physical problem. Poorly
defined boundary conditions can ultimately affect the accuracy of the solution. One of the
most common boundary conditions used for simulation of viscous flow is the no-slip condition,
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as discussed in Section 1.6. Thus, for example, for two-dimensional external or internal flows,
the x and y components of velocity (u and y) are set to zero at the stationary wall to satisfy
the no-slip condition. Other boundary conditions that must be appropriately specified
involve inlets, outlets, far-field, wall gradients, etc. It is important to not only select the cor-
rect physical boundary condition for the problem but also to correctly implement this bound-
ary condition into the numerical simulation.

448 Appendix A ■ Computational Fluid Dynamics and FlowLab

A.5 Basic Representative Examples

A very simple one-dimensional example of the finite difference technique is presented in
the following example.

GIVEN A viscous oil flows from a large, open tank and
through a long, small-diameter pipe as shown in Fig. EA.1a.
At time the fluid depth is H. t � 0

FIND Use a finite difference technique to determine the
liquid depth as a function of time, Compare this 
result with the exact solution of the governing equation.

h � h1t2.

SOLUTION

Flow from a Tank

By combining Eqs. 2 and 3 we obtain

or

where is a constant. For simplicity we
assume the conditions are such that Thus, we must solve

(4)

The exact solution to Eq. 4 is obtained by separating the
variables and integrating to obtain

(5)

However, assume this solution were not known. The following
finite difference technique can be used to obtain an approxi-
mate solution.

As shown in Fig. EA.1b, we select discrete points 1nodes or
grid points2 in time and approximate the time derivative of h
by the expression

(6)

where is the time step between the different node points on
the time axis and and are the approximate values of h at
nodes i and Equation 6 is called the backward-difference
approximation to We are free to select whatever value ofdh�dt.

i � 1.
hi�1hi

¢t

dh

dt
`
t�ti

�
hi � hi�1

¢t

h � He�t

dh

dt
� �h with h � H at t � 0

C � 1.
C � �D4�32�/D2

T

dh

dt
� �Ch

D2�h

32�/
� �a

DT

D
b

2dh

dt

EXAMPLE A.1

Although this is an unsteady flow 1i.e., the deeper the oil, the
faster it flows from the tank2, we assume that the flow is “quasi-
steady” 1see Example 3.182 and apply steady flow equations as
follows.

As shown by Eq. 6.145, the mean velocity, V, for steady
laminar flow in a round pipe of diameter D is given by

(1)

where is the pressure drop over the length For this prob-
lem the pressure at the bottom of the tank 1the inlet of the pipe2
is and that at the pipe exit is zero. Hence, and 
Eq. 1 becomes

(2)

Conservation of mass requires that the flowrate from the tank,
is related to the rate of change of depth of oil in

the tank, by

where is the tank diameter. Thus,

or

(3)V � �a
DT

D
b

2

 
dh

dt

�

4
 D2V � �

�

4
 D2

T 
dh

dt

DT

Q � �
�

4
 D2

T 
dh

dt

dh�dt,
Q � �D2V�4,

V �
D2�h

32�/

¢p � �h�h

/.¢p

V �
D2¢p

32�/
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We cannot use Eq. 7 for since it would involve the non-
existing Rather we use the initial condition 1Eq. 42, which
gives

The result is the following set of N algebraic equations for the
N approximate values of h at times 

 hN � hN�1� 11 � ¢t2

. .
 .

. .
 .

 h3 � h2� 11 � ¢t2

 h2 � h1� 11 � ¢t2

 h1 � H

1N � 12¢t.

� ¢t, . . . , tN �t1 � 0, t2

h1 � H

h0.
i � 1that we wish. 1Although we do not need to space the nodes

at equal distances, it is often convenient to do so.2 Since the
governing equation 1Eq. 42 is an ordinary differential equation,
the “grid” for the finite difference method is a one-dimensional
grid as shown in Fig. EA.1b rather than a two-dimensional grid
1which occurs for partial differential equations2 as shown in
Fig. EA.2b, or a three-dimensional grid.

Thus, for each value of . . . we can approximate
the governing equation, Eq. 4, as

or

(7)hi �
hi�1

11 � ¢t2

hi � hi�1

¢t
� �hi

i � 2, 3, 4,

¢t

DT

H

h

t

h2

h3

hi – 1

hi

hi – hi – 1 

i = 1 i – 1 i2 3

h

D

(a) (b)

(c)

V
0 Δt

Δt

2Δt

H

0.8H

0.6H

0.4H

0.2H

0
0.0 0.2 0.4

Exact: h = He–1

0.6 0.8 1.0

h

t

Δt = 0.2

Δt = 0.1

�

F I G U R E  EA.1
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For most CFD problems the governing equations to be solved are partial differential
equations [rather than an ordinary differential equation as in the preceding example (Eq.
A.1)] and the finite difference method becomes considerably more involved. The following
example illustrates some of the concepts involved.

450 Appendix A ■ Computational Fluid Dynamics and FlowLab

t i for t � 1 hi for t � 1

0.2 6 0.4019H
0.1 11 0.3855H
0.01 101 0.3697H
0.001 1001 0.3681H

Exact 1Eq. 52 — 0.3678H 

It is seen that the approximate results compare quite favorably
with the exact solution given by Eq. 5. It is expected that the
finite difference results would more closely approximate the
exact results as is decreased since in the limit of 
the finite difference approximation for the derivatives 1Eq. 62
approaches the actual definition of the derivative.

¢t S 0¢t

�
For most problems the corresponding equations would be

more complicated than those just given, and a computer
would be used to solve for the For this problem the solu-
tion is simply

or in general

The results for are shown in Fig. EA.1c. Tabu-
lated values of the depth for are listed in the following
table.

t � 1
0 6 t 6 1

hi � H� 11 � ¢t2i�1

. .
 .

. .
 .

h3 � H� 11 � ¢t22
h2 � H� 11 � ¢t2

hi.

GIVEN Consider steady, incompressible flow of an invis-
cid fluid past a circular cylinder as shown in Fig. EA.2a. The

stream function, for this flow is governed by the Laplace
equation 1see Section 6.52

(1)

FIND Describe a simple finite difference technique that
can be used to solve this problem.

The exact analytical solution is given in Section 6.6.2.

02�

0x2 �
02�

0y2 � 0

c,

SOLUTION

Flow Past a Cylinder

ture of the actual flow field. If the grid is too fine, excessive
computer time and storage may be required. Considerable
work has gone into forming appropriate grids 1Ref. 62. We con-
sider a grid that is uniformly spaced in the x and y directions,
as shown in Fig. EA.2b.

As shown in Eq. 6.105, the exact solution to Eq. 1 1in terms
of polar coordinates r, rather than Cartesian coordinates x, y2
is The finite difference solution ap-
proximates these stream function values at a discrete 1finite2
number of locations 1the grid points2 as where the i and j
indices refer to the corresponding and locations.

The derivatives of can be approximated as follows:

0�

0x
�

1

¢x
 1�i�1, j � �i, j2

�
yjxi

�i, j,

� � Ur 11 � a2�r22 sin �.
�

EXAMPLE A.2

The first step is to define a flow domain and set up an appropri-
ate grid for the finite difference scheme. Since we expect the
flow field to be symmetrical both above and below and in front
of and behind the cylinder, we consider only one-quarter of the
entire flow domain as indicated in Fig. EA.2b. We locate the up-
per boundary and right-hand boundary far enough from the
cylinder so that we expect the flow to be essentially uniform at
these locations. It is not always clear how far from the ob-
ject these boundaries must be located. If they are not far
enough, the solution obtained will be incorrect because we
have imposed artificial, uniform flow conditions at a loca-
tion where the actual flow is not uniform. If these bound-
aries are farther than necessary from the object, the flow do-
main will be larger than necessary and excessive computer
time and storage will be required. Experience in solving such
problems is invaluable!

Once the flow domain has been selected, an appropriate
grid is imposed on this domain 1see Fig. EA.2b2. Various grid
structures can be used. If the grid is too coarse, the numerical
solution may not be capable of capturing the fine-scale struc-
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Equation 4 can be solved for the stream function at and to
give

(5)

Note that the value of depends on the values of the stream
function at neighboring grid points on either side and above
and below the point of interest 1see Eq. 5 and Fig. EA.2c2.

To solve the problem 1either exactly or by the finite differ-
ence technique2 it is necessary to specify boundary conditions
for points located on the boundary of the flow domain 1see
Section 6.6.32. For example, we may specify that on the
lower boundary of the domain 1see Fig. EA.2b2 and a
constant, on the upper boundary of the domain. Appropriate
boundary conditions on the two vertical ends of the flow do-
main can also be specified. Thus, for points interior to the
boundary Eq. 5 is valid; similar equations or specified values
of are valid for boundary points. The result is an equal
number of equations and unknowns, one for every grid
point. For this problem, these equations represent a set of 

�i, j,
�i, j

� � C,
� � 0

�i, j

 � 1¢x221�i, j�1 � �i, j�12 4

�i, j �
1

2 3 1¢x22 � 1¢y22 4
 3 1¢y221�i�1, j � �i�1, j2

yjxiand

This particular approximation is called a forward-difference
approximation. Other approximations are possible. By similar
reasoning, it is possible to show that the second derivatives of

can be written as follows:

(2)

and

(3)

Thus, by combining Eqs. 1, 2, and 3 we obtain

(4)� �i, j�12 � 2 a
1

1¢x22
�

1

1¢y22
b �i, j � 0

02�

0x2 �
02�

0y2 �
1

1¢x22
 1�i�1, j � �i�1, j2 �

1

1¢y22
 1�i, j�1

02�

0y2 �
1

1¢y22
 1�i, j�1 � 2�i, j � �i, j�12

02�

0x2 �
1

1¢x22
 1�i�1, j � 2�i, j � �i�1, j2

�

0�

0y
�

1

¢y
 1�i, j�1 � �i, j2

F I G U R E  EA.2
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U

(a)

(b)
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(c)
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The preceding two examples are rather simple because the governing equations are
not too complex. A finite difference solution of the more complicated, nonlinear
Navier–Stokes equation (Eq. 6.158) requires considerably more effort and insight and larger
and faster computers. A typical finite difference grid for a more complex flow, the flow past
a turbine blade, is shown in Fig. A.5. Note that the mesh is much finer in regions where
large gradients are to be expected (i.e., near the leading and trailing edges of the blade) and
more coarse away from the blade.
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and

Further details of the finite difference technique can be
found in standard references on the topic 1Refs. 5, 7, and 82.
Also see the completely solved viscous flow CFD problem
in Section A6.

v � �
0�

0x
� �

1

¢x
 1�i�1, j � �i, j2

linear algebraic equations for the solution of which pro-
vides the finite difference approximation for the stream func-
tion at discrete grid points in the flow field. Streamlines 1lines
of constant 2 can be obtained by interpolating values of 
between the grid points and “connecting the dots” of

The velocity field can be obtained from the de-
rivatives of the stream function according to Eq. 6.74. That is,

u �
0�

0y
�

1

¢y
 1�i, j�1 � �i, j2

� � constant.

�i, j�

�i, j,

A.6 Methodology

In general, most applications of CFD take the same basic approach. Some of the differences
include problem complexity, available computer resources, available expertise in CFD, and
whether a commercially available CFD package is used or a problem-specific CFD algo-
rithm is developed. In today’s market, there are many commercial CFD codes available to
solve a wide variety of problems. However, if the intent is to conduct a thorough investi-
gation of a specific fluid flow problem, such as in a research environment, it is possible
that taking the time to develop a problem-specific algorithm may be most efficient in the
long run. The features common to most CFD applications can be summarized in the flow-
chart shown in Fig. A.6. A complete, detailed CFD solution for a viscous flow obtained by
using the steps summarized in the flowchart can be accessed by visiting the book web site.

The Algorithm Development box is required only when developing your own CFD
code. When using a commercial CFD code, this step is not necessary. This chart rep-
resents a generalized methodology to CFD. There are other more complex components
that are hidden in the flowchart steps, which are beyond the scope of a brief introduc-
tion to CFD.

F I G U R E  A.5 Finite difference
grid for flow past a turbine blade. (From Ref. 9,
used by permission.)
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A.7 Application of CFD

In the early stages of CFD, research and development was primarily driven by the aero-
space industry. Today, CFD is still used as a research tool, but it also has found a place in
industry as a design tool. There is now a wide variety of industries that make at least some
use of CFD, including automotive, industrial, HVAC, naval, civil, chemical, biological, and
others. Industries are using CFD as an added engineering tool that complements the exper-
imental and theoretical work in fluid dynamics.

A.7.1 Advantages of CFD

There are many advantages to using CFD for simulation of fluid flow. One of the most
important advantages is the realizable savings in time and cost for engineering design. In
the past, coming up with a new engineering design meant somewhat of a trial-and-error
method of building and testing multiple prototypes prior to finalizing the design. With CFD,
many of the issues dealing with fluid flow can be flushed out prior to building the actual
prototype. This translates to a significant savings in time and cost. It should be noted that
CFD is not meant to replace experimental testing but rather to work in conjunction with it.
Experimental testing will always be a necessary component of engineering design. Other
advantages include the ability of CFD to (1) obtain flow information in regions that would
be difficult to test experimentally, (2) simulate real flow conditions, (3) conduct large para-
metric tests on new designs in a shorter time, and (4) enhance visualization of complex flow
phenomena.

A good example of the advantages of CFD is shown in Figure A.7. Researchers use a
type of CFD approach called “large-eddy simulation” or LES to simulate the fluid dynamics
of a tornado as it encounters a debris field and begins to pick up sand-sized particles. A full
animation of this tornado simulation can be accessed by visiting the book web site. The
motivation for this work is to investigate whether there are significant differences in the
fluid mechanics when debris particles are present. Historically it has been difficult to get
comprehensive experimental data throughout a tornado so CFD is helping to shine some
light on the complex fluid dynamics involved in such a flow.

Assumptions &
Simplifications

Convergence
Interpret
Results

Models
Special

Requirements
Implicit or

Explicit
Run

Simulation
Visualize

Flow Field

Governing
Equations

Structured or
Unstructured

Accuracy
Steady/

Unsteady
Postprocess

Values

Problem Geometry
Discretization

Method
Algorithm

Development
Verification
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Physics Discretize Solve Analyze

CFD Methodology

Grid

F I G U R E  A.6 Flowchart of general CFD methodology.

VA.3 Tornado 
simulation
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A.7.2 Difficulties in CFD

One of the key points that a beginning CFD student should understand is that one cannot treat
the computer as a “magic black box” when performing flow simulations. It is quite possible
to obtain a fully converged solution for the CFD simulation, but this is no guarantee that the
results are physically correct. This is why it is important to have a good understanding of the
flow physics and how they are modeled. Any numerical technique (including those discussed
previously), no matter how simple in concept, contains many hidden subtleties and potential
problems. For example, it may seem reasonable that a finer grid would ensure a more accu-
rate numerical solution. While this may be true (as Example A.1), it is not always so straightfor-
ward; a variety of stability or convergence problems may occur. In such cases the numerical
“solution” obtained may exhibit unreasonable oscillations or the numerical result may
“diverge” to an unreasonable (and incorrect) result. Other problems that may arise include
(but are not limited to) (1) difficulties in dealing with the nonlinear terms of the Navier–Stokes
equations, (2) difficulties in modeling or capturing turbulent flows, (3) convergence issues, (4)
difficulties in obtaining a quality grid for complex geometries, and (5) managing resources,
both time and computational, for complex problems such as unsteady three-dimensional flows.

A.7.3 Verification and Validation

Verification and validation of the simulation are critical steps in the CFD process. This is a nec-
essary requirement for CFD, particularly since it is possible to have a converged solution that
is nonphysical. Figure A.8 shows the streamlines for viscous flow past a circular cylinder at a

454 Appendix A ■ Computational Fluid Dynamics and FlowLab

F I G U R E  A.7 Results from a large-eddy simulation showing the visual appearance of the
debris and funnel cloud from a simulated medium-swirl F3-F4 tornado. The funnel cloud is translating at
15 m/s and is ingesting 1-mm-diameter “sand” from the surface as it encounters a debris field. Please
visit the book web site to access a full animation of this tornado simulation. (Photographs and animation
courtesy of Dr. David Lewellen, Ref. 10, and Paul Lewellen, West Virginia University.)
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given instant after it was impulsively started from rest. The lower half of the figure represents
the results of a finite difference calculation; the upper half of the figure represents the photo-
graph from an experiment of the same flow situation. It is clear that the numerical and experi-
mental results agree quite well. For any CFD simulation, there are several levels of testing that
need to be accomplished before one can have confidence in the solution. The most important
verification to be performed is grid convergence testing. In its simplest form, it consists of prov-
ing that further refinement of the grid (i.e., increasing the number of grid points) does not alter
the final solution. When this has been achieved, the solution is termed a grid-independent solu-
tion. Other verification factors that need to be investigated include the suitability of the conver-
gence criterion, whether the time step is adequate for the time scale of the problem, and
comparison of CFD solutions to existing data, at least for baseline cases. Even when using a
commercial CFD code that has been validated on many problems in the past, the CFD practi-
tioner still needs to verify the results through such measures as grid-dependence testing.

A.7.4 Summary

In CFD, there are many different numerical schemes, grid techniques, and so on. They all
have their advantages and disadvantages. A great deal of care must be used in obtaining
approximate numerical solutions to the governing equations of fluid motion. The process is
not as simple as the often-heard “just let the computer do it.” Remember that CFD is a tool
and as such needs to be used appropriately to produce meaningful results. The general field
of computational fluid dynamics, in which computers and numerical analysis are combined
to solve fluid flow problems, represents an extremely important subject area in advanced
fluid mechanics. Considerable progress has been made in the past relatively few years, but
much remains to be done. The reader is encouraged to consult some of the available literature.

F I G U R E  A.8 Streamlines for
flow past a circular cylinder at a short time
after the flow was impulsively started. The
upper half is a photograph from a flow visual-
ization experiment. The lower half is from a
finite difference calculation. (See the photo-
graph at the beginning of Chapter 9.) (From
Ref. 9, used by permission.)

A.8 FlowLab

The authors of this textbook are working in collaboration with Fluent, Inc., the largest
provider of commercial CFD software (www.fluent.com), to offer students the opportunity
to use a new CFD tool called FlowLab. FlowLab is designed to be a virtual fluids labora-
tory to help enhance the educational experience in fluids courses. It uses computational fluid
dynamics to help the student grasp various concepts in fluid dynamics and introduces the
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student to the use of CFD in solving fluid flow problems. Please visit the book web site,
or WileyPLUS, to access FlowLab resources for this textbook.

The motivation behind incorporating FlowLab with a fundamental fluid mechanics
textbook is twofold: (1) expose the student to computational fluid dynamics and (2) offer
a mechanism for students to conduct experiments in fluid dynamics, numerically in this
case. This educational software allows students to reinforce basic concepts covered in class,
conduct parametric studies to gain a better understanding of the interaction between geom-
etry, fluid properties, and flow conditions, and provides the student a visualization tool for
various flow phenomena.

One of the strengths of FlowLab is the ease of use. The CFD simulations are based
on previously developed templates, which allow the user to start using CFD to solve flow
problems without requiring an extensive background in the subject. FlowLab provides the
student the opportunity to focus on the results of the simulation rather than the develop-
ment of the simulation. Typical results showing the developing velocity profile in the
entrance region of a pipe are shown in the solution window of Fig. A.9.

Problems have been developed that take advantage of the FlowLab capability of this
textbook. Please visit the book web site, or WileyPLUS, to access these problems (con-
tained in Chapters 7, 8, and 9) as well as a basic tutorial on using FlowLab and a brief
example. The course instructor can provide information on accessing the FlowLab software. 
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F I G U R E  A.9 Entrance
flow in a pipe. Velocity profiles as a
function of radial position for various
locations along the pipe length.
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TA B L E  B . 1

Physical Properties of Water ( )a

Specific Dynamic Kinematic Surface Vapor Speed of
Density, Weight,b Viscosity, Viscosity, Tension,c Pressure, Sound,d

Temperature pv c
( ) ( ) ( ) (lb . s ft2) ( ) (lb�ft) [ (abs)] (ft�s)

32 1.940 62.42 3.732 E � 5 1.924 E � 5 5.18 E � 3 8.854 E � 2 4603
40 1.940 62.43 3.228 E � 5 1.664 E � 5 5.13 E � 3 1.217 E � 1 4672
50 1.940 62.41 2.730 E � 5 1.407 E � 5 5.09 E � 3 1.781 E � 1 4748
60 1.938 62.37 2.344 E � 5 1.210 E � 5 5.03 E � 3 2.563 E � 1 4814
70 1.936 62.30 2.037 E � 5 1.052 E � 5 4.97 E � 3 3.631 E � 1 4871
80 1.934 62.22 1.791 E � 5 9.262 E � 6 4.91 E � 3 5.069 E � 1 4819
90 1.931 62.11 1.500 E � 5 8.233 E � 6 4.86 E � 3 6.979 E � 1 4960

100 1.927 62.00 1.423 E � 5 7.383 E � 6 4.79 E � 3 9.493 E � 1 4995
120 1.918 61.71 1.164 E � 5 6.067 E � 6 4.67 E � 3 1.692 E � 0 5049
140 1.908 61.38 9.743 E � 6 5.106 E � 6 4.53 E � 3 2.888 E � 0 5091
160 1.896 61.00 8.315 E � 6 4.385 E � 6 4.40 E � 3 4.736 E � 0 5101
180 1.883 60.58 7.207 E � 6 3.827 E � 6 4.26 E � 3 7.507 E � 0 5195
200 1.869 60.12 6.342 E � 6 3.393 E � 6 4.12 E � 3 1.152 E � 1 5089
212 1.860 59.83 5.886 E � 6 3.165 E � 6 4.04 E � 3 1.469 E � 1 5062

lb�in 2.ft2�s�lb�ft3slugs�ft3�F
SNMGR

BG Units

aBased on data from Handbook of Chemistry and Physics, Sixty-ninth Edition, CRC Press, 1988. Where necessary, values obtained by interpolation.
bDensity and specific weight are related through the equation � � �g. For this table, g � 32.174 ft/s2.
cIn contact with air.
dFrom R. D. Blevins, Applied Fluid Dynamics Handbook, Van Nostrand Reinhold Co., Inc., New York, 1984.

TA B L E  B . 2

Physical Properties of Water ( )a

Specific Dynamic Kinematic Surface Vapor Speed of
Density, Weight,b Viscosity, Viscosity, Tension,c Pressure, Sound,d

Temperature pv c
( ) ( ) ( ) (N . s m2) ( ) (N�m) [ (abs)] (m�s)

0 999.9 9.806 1.787 E � 3 1.787 E � 6 7.56 E � 2 6.105 E � 2 1403
5 1000.0 9.807 1.519 E � 3 1.519 E � 6 7.49 E � 2 8.722 E � 2 1427

10 999.7 9.804 1.307 E � 3 1.307 E � 6 7.42 E � 2 1.228 E � 3 1447
20 998.2 9.789 1.002 E � 3 1.004 E � 6 7.28 E � 2 2.338 E � 3 1481
30 995.7 9.765 7.975 E � 4 8.009 E � 7 7.12 E � 2 4.243 E � 3 1507
40 992.2 9.731 6.529 E � 4 6.580 E � 7 6.96 E � 2 7.376 E � 3 1526
50 988.1 9.690 5.468 E � 4 5.534 E � 7 6.79 E � 2 1.233 E � 4 1541
60 983.2 9.642 4.665 E � 4 4.745 E � 7 6.62 E � 2 1.992 E � 4 1552
70 977.8 9.589 4.042 E � 4 4.134 E � 7 6.44 E � 2 3.116 E � 4 1555
80 971.8 9.530 3.547 E � 4 3.650 E � 7 6.26 E � 2 4.734 E � 4 1555
90 965.3 9.467 3.147 E � 4 3.260 E � 7 6.08 E � 2 7.010 E � 4 1550

100 958.4 9.399 2.818 E � 4 2.940 E � 7 5.89 E � 2 1.013 E � 5 1543

N�m2m2�s�kN�m3kg�m3�C
SNMGR

SI Units

aBased on data from Handbook of Chemistry and Physics, Sixty-ninth Edition, CRC Press, 1988.
bDensity and specific weight are related through the equation � � �g. For this table, g � 9.807 m/s2.
cIn contact with air.
dFrom R. D. Blevins, Applied Fluid Dynamics Handbook, Van Nostrand Reinhold Co., Inc., New York, 1984.
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TA B L E  B . 3

Physical Properties of Air at Standard Atmospheric Pressure (BG Units)a

Specific Speed
Specific Dynamic Kinematic Heat of

Density, Weight,b Viscosity, Viscosity, Ratio, Sound,
Temperature k c

( ) ( ) ( ) (lb . s ft2) ( ) (–) (ft�s)

�40 2.939 E � 3 9.456 E � 2 3.29 E � 7 1.12 E � 4 1.401 1004
�20 2.805 E � 3 9.026 E � 2 3.34 E � 7 1.19 E � 4 1.401 1028

0 2.683 E � 3 8.633 E � 2 3.38 E � 7 1.26 E � 4 1.401 1051
10 2.626 E � 3 8.449 E � 2 3.44 E � 7 1.31 E � 4 1.401 1062
20 2.571 E � 3 8.273 E � 2 3.50 E � 7 1.36 E � 4 1.401 1074
30 2.519 E � 3 8.104 E � 2 3.58 E � 7 1.42 E � 4 1.401 1085
40 2.469 E � 3 7.942 E � 2 3.60 E � 7 1.46 E � 4 1.401 1096
50 2.420 E � 3 7.786 E � 2 3.68 E � 7 1.52 E � 4 1.401 1106
60 2.373 E � 3 7.636 E � 2 3.75 E � 7 1.58 E � 4 1.401 1117
70 2.329 E � 3 7.492 E � 2 3.82 E � 7 1.64 E � 4 1.401 1128
80 2.286 E � 3 7.353 E � 2 3.86 E � 7 1.69 E � 4 1.400 1138
90 2.244 E � 3 7.219 E � 2 3.90 E � 7 1.74 E � 4 1.400 1149

100 2.204 E � 3 7.090 E � 2 3.94 E � 7 1.79 E � 4 1.400 1159
120 2.128 E � 3 6.846 E � 2 4.02 E � 7 1.89 E � 4 1.400 1180
140 2.057 E � 3 6.617 E � 2 4.13 E � 7 2.01 E � 4 1.399 1200
160 1.990 E � 3 6.404 E � 2 4.22 E � 7 2.12 E � 4 1.399 1220
180 1.928 E � 3 6.204 E � 2 4.34 E � 7 2.25 E � 4 1.399 1239
200 1.870 E � 3 6.016 E � 2 4.49 E � 7 2.40 E � 4 1.398 1258
300 1.624 E � 3 5.224 E � 2 4.97 E � 7 3.06 E � 4 1.394 1348
400 1.435 E � 3 4.616 E � 2 5.24 E � 7 3.65 E � 4 1.389 1431
500 1.285 E � 3 4.135 E � 2 5.80 E � 7 4.51 E � 4 1.383 1509
750 1.020 E � 3 3.280 E � 2 6.81 E � 7 6.68 E � 4 1.367 1685

1000 8.445 E � 4 2.717 E � 2 7.85 E � 7 9.30 E � 4 1.351 1839
1500 6.291 E � 4 2.024 E � 2 9.50 E � 7 1.51 E � 3 1.329 2114

ft2�s�lb�ft3slugs�ft3�F
NMGR

aBased on data from R. D. Blevins, Applied Fluid Dynamics Handbook, Van Nostrand Reinhold Co., Inc., New York, 1984.
bDensity and specific weight are related through the equation � � �g. For this table g � 32.174 ft/s2.
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TA B L E  B . 4

Physical Properties of Air at Standard Atmospheric Pressure (SI Units)a

Specific Speed
Specific Dynamic Kinematic Heat of

Density, Weight,b Viscosity, Viscosity, Ratio, Sound,
Temperature k c

( ) ( ) ( ) (N . s m2) ( ) (–) (m�s)

�40 1.514 14.85 1.57 E � 5 1.04 E � 5 1.401 306.2
�20 1.395 13.68 1.63 E � 5 1.17 E � 5 1.401 319.1

0 1.292 12.67 1.71 E � 5 1.32 E � 5 1.401 331.4
5 1.269 12.45 1.73 E � 5 1.36 E � 5 1.401 334.4

10 1.247 12.23 1.76 E � 5 1.41 E � 5 1.401 337.4
15 1.225 12.01 1.80 E � 5 1.47 E � 5 1.401 340.4
20 1.204 11.81 1.82 E � 5 1.51 E � 5 1.401 343.3
25 1.184 11.61 1.85 E � 5 1.56 E � 5 1.401 346.3
30 1.165 11.43 1.86 E � 5 1.60 E � 5 1.400 349.1
40 1.127 11.05 1.87 E � 5 1.66 E � 5 1.400 354.7
50 1.109 10.88 1.95 E � 5 1.76 E � 5 1.400 360.3
60 1.060 10.40 1.97 E � 5 1.86 E � 5 1.399 365.7
70 1.029 10.09 2.03 E � 5 1.97 E � 5 1.399 371.2
80 0.9996 9.803 2.07 E � 5 2.07 E � 5 1.399 376.6
90 0.9721 9.533 2.14 E � 5 2.20 E � 5 1.398 381.7

100 0.9461 9.278 2.17 E � 5 2.29 E � 5 1.397 386.9
200 0.7461 7.317 2.53 E � 5 3.39 E � 5 1.390 434.5
300 0.6159 6.040 2.98 E � 5 4.84 E � 5 1.379 476.3
400 0.5243 5.142 3.32 E � 5 6.34 E � 5 1.368 514.1
500 0.4565 4.477 3.64 E � 5 7.97 E � 5 1.357 548.8

1000 0.2772 2.719 5.04 E � 5 1.82 E � 4 1.321 694.8

m2�s�N�m3kg�m3�C
NMGR

aBased on data from R. D. Blevins, Applied Fluid Dynamics Handbook, Van Nostrand Reinhold Co., Inc., New York, 1984.
bDensity and specific weight are related through the equation � � �g. For this table g � 9.807 m/s2.
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TA B L E  C . 1

Properties of the U.S. Standard Atmosphere (BG Units)a

Dynamic
Acceleration Density, Viscosity,

Altitude Temperature of Gravity, Pressure, p
(ft) ( ) g ( ) [ (abs)] ( ) (lb . s ft2)

�5,000 76.84 32.189 17.554 2.745 E � 3 3.836 E � 7
0 59.00 32.174 14.696 2.377 E � 3 3.737 E � 7

5,000 47.17 32.159 12.228 2.048 E � 3 3.637 E � 7
10,000 23.36 32.143 10.108 1.756 E � 3 3.534 E � 7
15,000 5.55 32.128 8.297 1.496 E � 3 3.430 E � 7
20,000 �12.26 32.112 6.759 1.267 E � 3 3.324 E � 7
25,000 �30.05 32.097 5.461 1.066 E � 3 3.217 E � 7
30,000 �47.83 32.082 4.373 8.907 E � 4 3.107 E � 7
35,000 �65.61 32.066 3.468 7.382 E � 4 2.995 E � 7
40,000 �69.70 32.051 2.730 5.873 E � 4 2.969 E � 7
45,000 �69.70 32.036 2.149 4.623 E � 4 2.969 E � 7
50,000 �69.70 32.020 1.692 3.639 E � 4 2.969 E � 7
60,000 �69.70 31.990 1.049 2.256 E � 4 2.969 E � 7
70,000 �67.42 31.959 0.651 1.392 E � 4 2.984 E � 7
80,000 �61.98 31.929 0.406 8.571 E � 5 3.018 E � 7
90,000 �56.54 31.897 0.255 5.610 E � 5 3.052 E � 7

100,000 �51.10 31.868 0.162 3.318 E � 5 3.087 E � 7
150,000 19.40 31.717 0.020 3.658 E � 6 3.511 E � 7
200,000 �19.78 31.566 0.003 5.328 E � 7 3.279 E � 7
250,000 �88.77 31.415 0.000 6.458 E � 8 2.846 E � 7

�slugs�ft3lb�in.2ft�s2�F
MR

aData abridged from U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C.
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TA B L E  C . 2

Properties of the U.S. Standard Atmosphere (SI Units)a

Dynamic
Acceleration Density, Viscosity,

Altitude Temperature of Gravity, Pressure, p
(m) ( ) g ( ) [ (abs)] ( ) (N . s m2)

�1000 21.50 9.810 1.139 E � 5 1.347 E � 0 1.821 E � 5
0 15.00 9.807 1.013 E � 5 1.225 E � 0 1.789 E � 5

1000 8.50 9.804 8.988 E � 4 1.112 E � 0 1.758 E � 5
2000 2.00 9.801 7.950 E � 4 1.007 E � 0 1.726 E � 5
3000 �4.49 9.797 7.012 E � 4 9.093 E � 1 1.694 E � 5
4000 �10.98 9.794 6.166 E � 4 8.194 E � 1 1.661 E � 5
5000 �17.47 9.791 5.405 E � 4 7.364 E � 1 1.628 E � 5
6000 �23.96 9.788 4.722 E � 4 6.601 E � 1 1.595 E � 5
7000 �30.45 9.785 4.111 E � 4 5.900 E � 1 1.561 E � 5
8000 �36.94 9.782 3.565 E � 4 5.258 E � 1 1.527 E � 5
9000 �43.42 9.779 3.080 E � 4 4.671 E � 1 1.493 E � 5

10000 �49.90 9.776 2.650 E � 4 4.135 E � 1 1.458 E � 5
15000 �56.50 9.761 1.211 E � 4 1.948 E � 1 1.422 E � 5
20000 �56.50 9.745 5.529 E � 3 8.891 E � 2 1.422 E � 5
25000 �51.60 9.730 2.549 E � 3 4.008 E � 2 1.448 E � 5
30000 �46.64 9.715 1.197 E � 3 1.841 E � 2 1.475 E � 5
40000 �22.80 9.684 2.871 E � 2 3.996 E � 3 1.601 E � 5
50000 �2.50 9.654 7.978 E � 1 1.027 E � 3 1.704 E � 5
60000 �26.13 9.624 2.196 E � 1 3.097 E � 4 1.584 E � 5
70000 �53.57 9.594 5.221 E � 0 8.283 E � 5 1.438 E � 5
80000 �74.51 9.564 1.052 E � 0 1.846 E � 5 1.321 E � 5

�kg�m3N�m2m�s2�C
MR

aData abridged from U.S. Standard Atmosphere, 1975, U.S. Government Printing Office, Washington, D.C.
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Appendix D
Reynolds Transport 
Theorem

D.1 General Reynolds Transport Theorem

In Section 4.4.1 the Reynolds transport theorem (Eq. 4.13) was obtained under the restric-
tive assumptions of a fixed control volume having uniform properties across the inlets and
outlets with the velocity normal to the inlet and outlet areas. This appendix develops a form
of the Reynolds transport theorem that is valid for more general flow conditions.

A general, fixed control volume with fluid flowing through it is shown in Fig. D.1. We
consider the system to be the fluid within the control volume at the initial time t. A short
time later a portion of the fluid (region II) has exited from the control volume and additional
fluid (region I, not part of the original system) has entered the control volume.

We consider an extensive fluid property B and seek to determine how the rate of change
of B associated with the system is related to the rate of change of B within the control vol-
ume at any instant. By repeating the exact steps that we did for the simplified control volume
shown in Fig. 4.8, we see that Eq. 4.12 is also valid for the general case, provided that we
give the correct interpretation to the terms and Thus,

(D.1)

The term represents the net flowrate of the property B from the control volume.
Its value can be thought of as arising from the addition (integration) of the contributions
through each infinitesimal area element of size �A on the portion of the control surface
dividing region II and the control volume. This surface is denoted CSout. As indicated in
Fig. D.2, in time �t the volume of fluid that passes across each area element is given by
� � ��n �A, where ��n � �� cos � is the height (normal to the base, �A) of the small
volume element, and � is the angle between the velocity vector and the outward pointing

V
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out
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0Bcv
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� �Bout � �Bin
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CV–I
II

I

Inflow

Outflow

Fixed control surface and system
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System boundary at time t +   tδ

F I G U R E  D.1 Control volume 
and system for flow through an 
arbitrary, fixed control volume.
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normal to the surface, n̂. Thus, since �� � V �t, the amount of the property B carried
across the area element �A in the time interval �t is given by

The rate at which B is carried out of the control volume across the small-area element �A,
denoted is

By integrating over the entire outflow portion of the control surface, CSout, we obtain

The quantity V cos � is the component of the velocity normal to the area element �A. From
the definition of the dot product, this can be written as V cos � � V . n̂. Hence, an alternate
form of the outflow rate is

(D.2)

In a similar fashion, by considering the inflow portion of the control surface, CSin, as
shown in Fig. D.3, we find that the inflow rate of B into the control volume is

(D.3)B
#

in � ��
csin

�bV cos � dA � ��
csin

�bV . n̂ dA

B
#

out � �
csout

�bV . n̂ dA

B
#
out � �

csout

dB
#
out � �

csout

�bV cos � dA

�B
#
out � lim

�tS0
 
�b �V

�t
� lim

�tS0
 
1�bV cos � �t2  �A

�t
� �bV cos � �A

�B
#
out,

�B � b� �V � b�1V cos � �t2 �A
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D.2 General Control Volume Equations 467

Therefore, the net flux (flowrate) of parameter B across the entire control surface is

(D.4)

where the integration is over the entire control surface.
By combining Eqs. D.1 and D.4 we obtain

This can be written in a slightly different form by using so that

(D.5)

Equation D.5 is the general form of the Reynolds transport theorem for a fixed, nondeform-
ing control volume.

The left side of Eq. D.5 is the time rate of change of an arbitrary extensive parameter
of a system. This may represent the rate of change of mass, momentum, energy, or angular
momentum of the system, depending on the choice of the parameter B.

The first term on the right side of Eq. D.5 represents the time rate of change of B within
the control volume as the fluid flows through it. Recall that b is the amount of B per unit
mass so that �b d is the amount of B in a small-volume d . Thus, the time derivative of
the integral of �b throughout the control volume is the time rate of change of B within the
control volume at a given time.

The last term in Eq. D.5 (an integral over the control surface) represents the net flowrate
of the parameter B across the entire control surface. Over a portion of the control surface
this property is being carried out of the control volume (V . n̂ � 0); over other portions it is
being carried into the control volume (V . n̂ � 0). Over the remainder of the control surface
there is no transport of B across the surface since bV . n̂ � 0, because either b � 0, V � 0,
or V is parallel to the surface at those locations.
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0t �
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� �
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D.2 General Control Volume Equations

In Chapter 5 the simplified form of the Reynolds transport theorem (Eq. 4.14) was used in
the derivation of the governing control volume equations involving conservation of mass, lin-
ear momentum, moment-of-momentum, and energy. The equations obtained are valid for
flows in which the fluid properties (i.e., velocity, pressure) are uniform across the inlet and
outlet areas of the control volume and the velocity is normal to these areas. By using the
more general form of the Reynolds transport theorem given in Eq. D.5, the governing equa-
tions can be written for flows having variable properties across the control surface and
velocities that are not normal to the control surface, as shown in Fig. D.1. The resulting equa-
tions are given as

a) Conservation of mass equation

(D.6)
0
0t �

cv
 �dV � �

cs
 �V . n̂ dA � 0
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b) Linear momentum equation

(D.7)

c) Moment-of-momentum equation

(D.8)

d) Energy equation

(D.9)

Equations D.6 through D.9 are very similar to those developed in Chapter 5 under more
restrictive conditions (Eqs. 5.5, 5.17, 5.21, and 5.42, respectively). The main difference be-
tween these two sets of equations is the way the various flux (or flowrate) terms are treated.
The four integral terms of the form �cs in Eqs. D.6 through D.9 represent the
flux of mass, linear momentum, moment-of-momentum, and energy through the control sur-
face, respectively. If the velocities at the inlets and outlets of the control volume are normal
to those areas, and if the fluid properties are uniform across those areas, the integrands 
of these four terms are constant and the integrals can be written algebraically as
�cs where is the mass flowrate.
Note that on the inflow portion of the control surface and on the outflow portion

. The solution to Example 5.5 is repeated here to illustrate the use of the more
general form of the linear momentum equation, Eq. D.7.
V # n̂ 7 0

V # n̂ 6 0
m
#

� �AV1
       
2�V # n̂ dA �a 1        

2out    m
.

out �a 1        
2inm

.
in,

1          2�V . n̂dA

0
0t

 �
cv

 e� dV � �
cs
aǔ �

p

�
�  

V 
2

2
� gzb �V . n̂ dA � Q

#
net
in

� W
#

shaft
net in

0
0t

 �
cv

 1r � V2� d V � �
cv

 1r � V2� V . n̂ dA �a 1r � F2contents of the
control volume

0
0t

 �
cv

 V� d V � �
cv

 V� V . n̂ dA �a Fcontents of the
control volume
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GIVEN As shown in Fig. ED.1a, a horizontal jet of water
exits a nozzle with a uniform speed of V1�10 ft/s, strikes a
vane, and is turned through an angle �. 

FIND Determine the anchoring force needed to hold the
vane stationary.

SOLUTION

(Repeat of Example 5.5)

where V � u î � wk̂, and �Fx and �Fx are the net x and z com-
ponents of force acting on the contents of the control volume.

The water enters and leaves the control volume as a free
jet at atmospheric pressure. Hence, there is atmospheric pres-
sure surrounding the entire control volume, and the net pres-
sure force on the control volume surface is zero. If we neglect
the weight of the water and vane, the only forces applied to
the control volume contents are the horizontal and vertical
components of the anchoring force, FAx and FAz, respectively.

The only portions of the control surface across which fluid
flows are section 1 (the entrance) where V n̂ � �V1 and sec-
tion 2 (the exit) where V n̂ � �V2. (Recall that the unit nor-
mal vector is directed out from the control surface.) Also, with
negligible gravity and viscous effects, and since p1 � p2, the
speed of the fluid remains constant so that V1 � V2 � 10 ft/s

#
#

EXAMPLE D.1

We select a control volume that includes the vane and a por-
tion of the water (see Figs. ED.1b, c) and apply the linear mo-
mentum equation to this fixed control volume. The x and z
components of Eq. D.7 become

0 (flow is steady)

V n̂dA (1)

and

0 (flow is steady)

V n̂dA (2) � a Fz
#0

0t
 �

cv

 w � dV � �
cs

 w � 

 �a Fx
#0

0t
 �

cv

 u � d V � �
cs

 u � 

88
88
88
n

88
88
88
n
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D.2 General Control Volume Equations 469

With the given data we obtain

(Ans)

and

(Ans)

COMMENT Note that the anchoring force (Eqs. 5, 6) can
be written in terms of the mass flowrate, as

and

In this example the anchoring force is needed to produce the
nonzero net momentum flowrate (mass flowrate times the change
in x or z component of velocity) across the control surface.

FAz � m
#
V1 

  
sin �

FAx � �m
#
V111 � cos �2

m
#

� �A1V1,

 � 11.64 sin � lb

 FAz � 11.94 slugs/ft32 10.06 ft22 110 ft/s22 sin �

 � �11.6411 � cos �2 lb

 � �11.6411 � cos �2 slugs # ft/s2

 FAx � �11.94 slugs/ft32 10.06 ft22 110 ft/s2211 � cos �2

(see the Bernoulli equation, Eq. 3.6). Hence, at section (1),
u � V1, w � 0, and at section (2), u � V1 cos �, w � V1 sin �.

By using the foregoing information, Eqs. 1 and 2 can be
written as

(3)

and

(4)

Note that since the flow is uniform across the inlet and exit,
the integrals simply reduce to multiplications. Equations 3 and
4 can be simplified by using conservation of mass, which
states that for this incompressible flow A1V1 � A2V2, or A1 �
A2 since V1 � V2. Thus,

(5)

and

(6) FAz � �A1V 2
1 sin �

 � ��A1V 2
1  11 � cos �2

 FAx � ��A1V 2
1 � �A1V 2

1 cos �

102�1�V12A1 � V1 sin � �1V12A2 � FAz

V1 �1�V12A1 � V1 cos � �1V12A2 � FAx

Nozzle

A1 = 0.06 ft2 Vane

V1

(a)

θ

Nozzle
V1

(b)

Control
volume

(c)

z

x

(2)

FAx
FAz

V1

V2
θ

(1)^

n̂2

n1

F I G U R E  ED.1
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Appendix E
Comprehensive Table 
of Conversion Factors1

The following tables express the definitions of miscellaneous units of measure as exact
numerical multiples of coherent SI units, and provide multiplying factors for converting
numbers and miscellaneous units to corresponding new numbers and SI units.

Conversion factors are expressed using computer exponential notation, and an asterisk
follows each number that expresses an exact definition. For example, the entry “2.54 E � 2*”
expresses the fact that 1 inch � 2.54 � 10�2 meter, exactly by definition. Numbers not fol-
lowed by an asterisk are only approximate representations of definitions or are the results of
physical measurements. In these tables pound-force is designated as lbf, whereas in the text
pound-force is designated as lb.

TA B L E  E . 1

Listing by Physical Quantity

To convert from to Multiply by

Acceleration

foot/second2 meter/second2 3.048 E � 1*
free fall, standard meter/second2 9.806 65 E � 0*
gal (galileo) meter/second2 1.00 E � 2*
inch/second2 meter/second2 2.54 E � 2*

Area

acre meter2 4.046 856 422 4 E � 3*
are meter2 1.00 E � 2*
barn meter2 1.00 E � 28*
foot2 meter2 9.290 304 E � 2*
hectare meter2 1.00 E � 4*
inch2 meter2 6.4516 E � 4*
mile2 (U.S. statute) meter2 2.589 988 110 336 E � 6*
section meter2 2.589 988 110 336 E � 6*
township meter2 9.323 957 2 E � 7
yard2 meter2 8.361 273 6 E � 1*

Density

gram/centimeter3 kilogram/meter3 1.00 E � 3*
lbm/inch3 kilogram/meter3 2.767 990 5 E � 4
lbm/foot3 kilogram/meter3 1.601 846 3 E � 1
slug/foot3 kilogram/meter3 5.153 79 E � 2

1These tables abridged from E. A. Mechtly, The International System of Units, 2nd Revision, NASA SP-7012, 1973.
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Appendix E ■ Comprehensive Table of Conversion Factors 471

TA B L E  E . 1  (continued)

To convert from to Multiply by

Energy

British thermal unit:
(IST after 1956) joule 1.055 056 E � 3

British thermal unit (thermochemical) joule 1.054 350 E � 3
calorie (International Steam Table) joule 4.1868 E � 0
calorie (thermochemical) joule 4.184 E � 0*
calorie (kilogram, International Steam joule 4.1868 E � 3
Table)

calorie (kilogram, thermochemical) joule 4.184 E � 3*
electron volt joule 1.602 191 7 E � 19
erg joule 1.00 E � 7*
foot lbf joule 1.355 817 9 E � 0
foot poundal joule 4.214 011 0 E � 2
joule (international of 1948) joule 1.000 165 E � 0
kilocalorie (International Steam Table) joule 4.1868 E � 3
kilocalorie (thermochemical) joule 4.184 E � 3*
kilowatt hour joule 3.60 E � 6*
watt hour joule 3.60 E � 3*

Force

dyne newton 1.00 E � 5*
kilogram force (kgf) newton 9.806 65 E � 0*
kilopond force newton 9.806 65 E � 0*
kip newton 4.448 221 615 260 5 E � 3*
lbf (pound force, avoirdupois) newton 4.448 221 615 260 5 E � 0*
ounce force (avoirdupois) newton 2.780 138 5 E � 1
pound force, lbf (avoirdupois) newton 4.448 221 615 260 5 E � 0*
poundal newton 1.382 549 543 76 E � 1*

Length

angstrom meter 1.00 E � 10*
astronomical unit (IAU) meter 1.496 00 E � 11
cubit meter 4.572 E � 1*
fathom meter 1.8288 E � 0*
foot meter 3.048 E � 1*
furlong meter 2.011 68 E � 2*
hand meter 1.016 E � 1*
inch meter 2.54 E � 2*
league (international nautical) meter 5.556 E � 3*
light year meter 9.460 55 E � 15
meter wavelengths Kr 86 1.650 763 73 E � 6*
micron meter 1.00 E � 6*
mil meter 2.54 E � 5*
mile (U.S. statute) meter 1.609 344 E � 3*
nautical mile (U.S.) meter 1.852 E � 3*
rod meter 5.0292 E � 0*
yard meter 9.144 E � 1*
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TA B L E  E . 1  (continued)

To convert from to Multiply by

Mass

carat (metric) kilogram 2.00 E � 4*
grain kilogram 6.479 891 E � 5*
gram kilogram 1.00 E � 3*
ounce mass (avoirdupois) kilogram 2.834 952 312 5 E � 2*
pound mass, lbm (avoirdupois) kilogram 4.535 923 7 E � 1*
slug kilogram 1.459 390 29 E � 1
ton (long) kilogram 1.016 046 908 8 E � 3*
ton (metric) kilogram 1.00 E � 3*
ton (short, 2000 pound) kilogram 9.071 847 4 E � 2*
tonne kilogram 1.00 E � 3*

Power

Btu (thermochemical)/second watt 1.054 350 264 488 E � 3
calorie (thermochemical)/second watt 4.184 E � 0*
foot lbf/second watt 1.355 817 9 E � 0
horsepower (550 foot lbf/second) watt 7.456 998 7 E � 2
kilocalorie (thermochemical)/second watt 4.184 E � 3*
watt (international of 1948) watt 1.000 165 E � 0

Pressure

atmosphere newton/meter2 1.013 25 E � 5*
bar newton/meter2 1.00 E � 5*
barye newton/meter2 1.00 E � 1*
centimeter of mercury (0 �C) newton/meter2 1.333 22 E � 3
centimeter of water (4 �C) newton/meter2 9.806 38 E � 1
dyne/centimeter2 newton/meter2 1.00 E � 1*
foot of water (39.2 �F) newton/meter2 2.988 98 E � 3
inch of mercury (32 �F) newton/meter2 3.386 389 E � 3
inch of mercury (60 �F) newton/meter2 3.376 85 E � 3
inch of water (39.2 �F) newton/meter2 2.490 82 E � 2
inch of water (60 �F) newton/meter2 2.4884 E � 2
kgf/centimeter2 newton/meter2 9.806 65 E � 4*
kgf/meter2 newton/meter2 9.806 65 E � 0*
lbf/foot2 newton/meter2 4.788 025 8 E � 1
lbf/inch2 (psi) newton/meter2 6.894 757 2 E � 3
millibar newton/meter2 1.00 E � 2*
millimeter of mercury (0 �C) newton/meter2 1.333 224 E � 2
pascal newton/meter2 1.00 E � 0*
psi (lbf/inch2) newton/meter2 6.894 757 2 E � 3
torr (0 �C) newton/meter2 1.333 22 E � 2

Speed

foot/second meter/second 3.048 E � 1*
inch/second meter/second 2.54 E � 2*
kilometer/hour meter/second 2.777 777 8 E � 1
knot (international) meter/second 5.144 444 444 E � 1
mile/hour (U.S. statute) meter/second 4.4704 E � 1*
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Appendix E ■ Comprehensive Table of Conversion Factors 473

TA B L E  E . 1  (continued)

To convert from to Multiply by

Temperature

Celsius kelvin TK � TC � 273.15
Fahrenheit kelvin TK � (5/9)(TF � 459.67)
Fahrenheit Celsius TC � (5/9)(TF � 32)
Rankine kelvin TK � (5/9)TR

Time

day (mean solar) second (mean solar) 8.64 E � 4*
hour (mean solar) second (mean solar) 3.60 E � 3*
minute (mean solar) second (mean solar) 6.00 E � 1*
year (calendar) second (mean solar) 3.1536 E � 7*

Viscosity

centistoke meter2/second 1.00 E � 6*
stoke meter2/second 1.00 E � 4*
foot2/second meter2/second 9.290 304 E � 2*
centipoise newton second/meter2 1.00 E � 3*
lbm/foot second newton second/meter2 1.488 163 9 E � 0
lbf second/foot2 newton second/meter2 4.788 025 8 E � 1
poise newton second/meter2 1.00 E � 1*
poundal second/foot2 newton second/meter2 1.488 163 9 E � 0
slug/foot second newton second/meter2 4.788 025 8 E � 1
rhe meter2/newton second 1.00 E � 1*

Volume

acre foot meter3 1.233 481 837 547 52 E � 3*
barrel (petroleum, 42 gallons) meter3 1.589 873 E � 1
board foot meter3 2.359 737 216 E � 3*
bushel (U.S.) meter3 3.523 907 016 688 E � 2*
cord meter3 3.624 556 3 E � 0
cup meter3 2.365 882 365 E � 4*
dram (U.S. fluid) meter3 3.696 691 195 312 5 E � 6*
fluid ounce (U.S.) meter3 2.957 352 956 25 E � 5*
foot3 meter3 2.831 684 659 2 E � 2*
gallon (U.K. liquid) meter3 4.546 087 E � 3
gallon (U.S. liquid) meter3 3.785 411 784 E � 3*
inch3 meter3 1.638 706 4 E � 5*
liter meter3 1.00 E � 3*
ounce (U.S. fluid) meter3 2.957 352 956 25 E � 5*
peck (U.S.) meter3 8.809 767 541 72 E � 3*
pint (U.S. liquid) meter3 4.731 764 73 E � 4*
quart (U.S. liquid) meter3 9.463 529 5 E � 4
stere meter3 1.00 E � 0*
tablespoon meter3 1.478 676 478 125 E � 5*
teaspoon meter3 4.928 921 593 75 E � 6*
yard3 meter3 7.645 548 579 84 E � 1* 
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Answers to
Selected Even-Numbered 
Homework Problems

ANS-1

Chapter 1
1.2 (a) FL3, ML4T�2; (b) F 2L�5T 2, M 2L�3T �2; 

(c) FT, MLT �1

1.4 Dimensionless
1.8 Yes
1.10 1 2, �1 2
1.14 (a) 4.66 � 104 ft; (b) 5.18 � 10�2 lb ft3;

(c) 3.12 � 10�3 slugs ft3;
(d) 2.36 � 10�2 ft . lb s;
(e) 5.17 � 10�6 ft s

1.16 1.25, 1.25
1.18 (a) 0.240 mi3; (b) 4.41 � 105 lb
1.20 1150 kg m3, 11.3 kN m3

1.22 9770 N m3; 996 kg m3; 0.996
1.24 12.0 kN m3; 1.22 � 103 kg m3; 1.22
1.28 0.335; 3290 N m3

1.30 oxygen
1.34 668 lb
1.36 893 s�1

1.38 6.44 � 10�3 slugs ft3; 0.622 lb
2.60 � 10�3 N . s m2; � (blood) �(water)
� 3.74

1.40 184
1.42 0.6 N . s m2, 1.3 � 10�2 lb . s ft2

1.44 0.552 U � N m2 acting to left on plate
1.46
1.48 7.22�
1.50 (a) No; (b) Not correct

1.52

1.54 (a) 12.7 ft2 rev; 4.73 � 10�3 lb . s ft2

1.56 9.53 � 10�4 ft . lb
1.60 1.06
1.62 1.78 kg m3

1.64 (a) 343 m s; (b) 1010 m s; (c) 446 m s
1.66 4.74 psi (abs)
1.68 0.842 psi (abs); 5.81 kPa (abs)
1.70 1.80 � 10�2 ft
1.72 (a) 24.5 deg

���
�

��

t �
2� R3

i /��

Ro � Ri

d � 0.571 b�1	/U3
��

��

��
�

�
��

��
��

�
�
�

�
��

Chapter 2
2.2 505 kPa
2.4 0.0797 psi
2.6 1.53
2.8 No
2.10 10.2 psia
2.14 (a) 0.759 m, 0.759 m; (b) 10.1 m, 10.3 m; 

(c) 12.3 m, 13.0 m
2.16 �7.7 psi
2.18 26.1
2.20 103 kPa; 230 mm
2.22 �802 lb ft2

2.24 82.1 lb ft3

2.26 0.424 psi
2.28 23.8 ft
2.30 78.4 lb
2.32 0.202 m
2.34 1140 N
2.36
2.38 9100 lb
2.40 21,200 lb; 12.19 ft
2.42 92.4 kN; 0.0723 m along gate below centroid
2.46 33,900 lb
2.50 8740 lb; 21,300 lb
2.52 6300 lb
2.54 941 kN
2.56 1.88 ft
2.58 426 kN; 2.46 m below surface
2.60 48.2 ft; 61.1 ft; 71.8 ft; 81.1 ft; 89.1 ft
2.62 294 kN; 328 kN; yes
2.64 22,500 lb
2.66 3370 lb, 882 lb
2.68 64.4 kN
2.70 585 lb acting vertically downward along

vertical axis of bottle
2.72 46.8 lb/ft3

2.76 54,600 lb
2.80 2480 kg
2.82 (a) 68.9 lb ft2; (b) 57.4 lb�

/ � 3d 
 11.31�1d 2 
 18.61d 
 12821/2 4 �2

�
�
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ANS-2 Answers to Selected Even-Numbered Homework Problems

Chapter 3
3.2 (a) �194(1 
 x) � 62.4 lb ft3;

(b) 38.6 psi
3.4 �9.99 kPa m
3.6 13.7 m s
3.8 p 
 1⁄2�V 2 
 �g0z � 1⁄2�cz2 � constant
3.10 �1.19 lb ft3

3.12 12.0 kPa; �20.1 kPa
3.16 10.8 lb ft2; 102 lb ft2

3.18 194 mph
3.20 3.21 N m2

3.22 0.14 in.
3.24 �76.0 lb ft2, 88.0 lb ft2

3.26 3.26 m
3.28 9.80 kPa
3.32 2.34
3.36 4
3.38 0.127 psi
3.40 Q � 1.56 D2 where Q m3 s, D m
3.42 0.0156 m3 s for any D
3.44 2.54 � 10�4 m3 s
3.46 h H � 1 [1 
 (d D)4]
3.48 2.94 m
3.50 B is 6.59 ft above A
3.52 �125 lb ft2

3.54 86.3 Pa
3.56 1.31 ft
3.58 0.0132 m3 s
3.60 0.0758 ft3 s, 499 lb ft2, 488 lb ft2,

�11.7 lb ft2

3.62 7.53 ft
3.64 1.38 ft3 s
3.66 36.5 s
3.68 3000 ft3 s, 2000 ft3 s, 2120 ft3 s
3.76 68.8 lb ft2

3.78 6.10 � 10�3 m3 s
3.80 6.51 m, 25.4 m; 6.51 m, �9.59 m

Chapter 4
4.2 x � �2, y � 2
4.6 y � e(x2/2 � 1) � 1
4.8 x � �h(u0 y0) ln (1 � y h)
4.10 2c2x2, 2c2y3; (x, y) � (0, 0)
4.14 (a) 0.5 m s2, 1.0 m s2; (b) positive
4.18 �1.65 � 1011 ft s2; �5.12 � 109

4.20 0; 100 N m2 . s
4.22 �60 m s2, 6.12
4.24 �28.4 �C s, �25.1 �C s
4.26 K r3

4.28 7440 m s2, 8860 m s2��
�

��
�

�
�

��

��

�
�

���

�

�
���

�

�

���
�

�
���

��

�

��

�

�
�

�
4.30 �25,600 ft s2; �25 ft s2

4.32 5.0 m3 s
4.34 1.32 ft3 s

Chapter 5
5.4 1.57 in.
5.6 70.1 m s
5.8 3.66 slugs s
5.10 3.18 ft
5.12 20.8 ft
5.14 (a) 45.8 ft s; (b) 20.4 ft s
5.16 150 liters s
5.18 3.52 gpf
5.20 (a) 0.00456 slug s (increasing); (b) 2.28 � 10�4

(slug ft3) s
5.22 2.69 lb
5.24 352 lb
5.26 482 N down
5.28 9.27 N
5.30 (a) W1 � 9.8 lb; (b) W2 
 14.7 lb
5.32 (a) right; (b) right; (c) right; (d) left
5.34 3.94 ft3 s
5.36 214 lb
5.38 0.108 kg
5.40 1.36 kPa
5.42 78.5 kN
5.44 �185 kN, 45.8 kN
5.48 97 lb, 0 lb
5.50 13.3 lb
5.52 (a) 231 N . m; (b) 200 N . m; (c) 116 N . m
5.54 (a) 185 rad s; (b) 160 rad s; 92.5 rad s
5.56 0.0825 ft, 39.6 hp
5.58 (a) 43 deg; (b) 53.4 ft . lb s
5.60 pump, 7050 kW
5.62 turbine, �147 ft . lb slug
5.66 Right to left, 0.32 ft
5.70 566 (ft . lb) slug
5.72 B to A
5.74 734 ft
5.76 4.54 � 106 W
5.78 930 kW
5.80 (a) 4.08 hp; (b) 9.94 ft
5.82 0.052 m3 s
5.84 1.67 ft3 s
5.86 (a) 54.1 ft; (b) 46.3 ft3 s
5.88 �197 kPa
5.90 28 hp
5.92 1.75 hp
5.94 (a) 4.29 m s; (b) 558 N . m s
5.96 2.36 ft

��

�
�

�

�

�

�

���

�

��
�

�
��

�
�

�
�

��
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Answers to Selected Even-Numbered Homework Problems ANS-3

Chapter 6
6.2 2x, 4xt 2, �2y, 4yt 2; 5.66 ft s2

6.4 12xy2 ; No
6.6 (a) 0; (b) 
6.8
6.10 �3x2 2 
 x3 3 
 f (y)
6.12
6.14 (a) 

(b) 
6.16 y � �2y; (b) 1.41 ft s
6.22 (a) Yes; (b) Yes, if A � B; 

(c) y2 � (B A)x2 
 C
6.26 (a) Yes; (b) �18� (x2y 
 y3)
6.28
6.30
6.32 (a) (b) q � 2xiyj

6.34
6.36 80.0 mph, 53.3 mph, 40.0 mph
6.38 (a) 0 ; (b) p�2 4�2r3

6.40
6.42 h2 � m 2 A
6.44 7.50 m2 s
6.46 8.49 � 10�4 m s
6.48
6.52 978 lb ft
6.54 falls in range of

6.58 �5.98 kPa, �6.02 kPa, 45.0 Pa
6.60 (a) �2x; (b) 2� � �x3

6.62 30 �xy, 0, 0
6.66 311 lb ft, 1.35 ft s
6.68 (a) 0.0111 ft3 s; (b) 0.00630 in. gap
6.72 y b � 1 3
6.74 (a) (b) 
6.76
6.78 (a) Yes; (b) 57.1 N m
6.82 1.20 Pa

Chapter 7
7.4 (a) 103 m s; (b) 444 m s
7.6
7.8 2
7.10
7.12
7.14
7.16
7.18 (a) 

(b) 
7.22 V � 18.1 ��d 2 �
7.24 Omit � and �

�
V � 22wb��� dD2

VD2��w � �1b�d, d�D2;
Qd 5/2g1/2 � � 1�g��a, h�d2
�b�V � �1h �b, k �b3V 2�2
¢  pD1 � 1V�2 � �1D2 �D1, �D1V��2
¢  p�D2��2 � � 1Q�D3�2

q�b3/2g1/2 � � 1H�b, ��b3/2g1/2�2
��

�
U� 11 � �2 ��12

�U�b2�r3
0 ��/� 1r0 � ri2;
��

�
��

2x 3 î;

�90°
�0ps/0� � 4�U 2

 sin �  cos �;
�

uA � U � 1�/H2��
�

�
�

 sin  � � 1�/2�rU2 ln 1r�42
�/

�0.75/
� � 2xy;

� � Ucy 31 � 1
3 1y /h22 4 
 C ; No  �

� � 3x2y � y3

�

�
� � �Vx 
 C, � � �Vr cos  � 
 C
yr � V  sin  �, y� � V  cos  �;

y � �y2�2x 
 f 1x2
��

	
#

� �r0�� 1r0 � ri2
�1y�2 
 z2 î 
 5z�2 ĵ � y�2  k̂, no

k̂
�

7.26 Not correct
7.28 (a) Correct; (b) t � 1.36 �
7.30 Colder
7.32 (a) 0.303, 30.3; (b) Yes
7.34 129 m/s
7.36 109 mm
7.38 (a) (b) 31.1 lb
7.40 0.274 lb
7.42 (a) � � 15 �m; (b) 80 km/hr
7.46 (a) 

(b) 0.410 gpm, 2.46 in.
7.48 (a) 5.2 m s; (b) 678 N; (c) 4070 W
7.50 (a)

(b) 1.90 ft s; (c) No
7.52 0.440 ft, 2.80 ft3 s
7.54 (a) (b) yes; (c) 7.54 ft s
7.56 (a) (b) 0.333 ft; 

(c)

Chapter 8
8.2 (a) 8.93 � 104; (b) 8.93 � 10�8

8.4 1.0 ft
8.6 0.0883 m
8.8 laminar, fully developed
8.10 3 m, 8.83 N m2

8.12 (b) to (a)
8.14 2.01 ft s
8.16 Vmax � 2 m s, V � 1 m/s, Q � 1.3 � 10�3 m3 s
8.18 �3.80 K
8.22 1.89 m s, 7.42 � 10�3 m3 s
8.24 0.102 ft
8.26 2.4 � 10�4 m3 s
8.30 0.0404
8.32 0.649 Pa m
8.34 Yes
8.36 0.0162
8.38 0.0132 ft
8.40 Smaller pipe
8.42
8.44 9.00
8.46 0.260 lb ft2

8.48 56.7
8.50 87.1
8.52 0.0110 psi
8.54 440 ft; 0.234 psi; 511 hp
8.56 0.211 psi ft
8.58 1.50 ft2

8.60 48.0 psi
8.62 5.68
8.64 16.5 ft

�

�

/eq � KLD�f

�

�

��

��
�

�

p � 1V/Vm2
2 pm, No

p��V 2 � �1/�/i2;
�nD�V � �1VD�	2;

�
�

R �Eib
2 � � 1b�d,V 2�gd, �iV

2�Ei2;
�

V/2�Q � �1/i �/, Q 2/5g, �Q�/�2;

d��V 2D 2 � �1d�D2;
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ANS-4 Answers to Selected Even-Numbered Homework Problems

8.66 9 �p1

8.68 0.325 psi
8.70 84.0 ft
8.72 78.1 psi
8.74 379 kW
8.76 155 hp
8.78 5.46 � 10�4 m3 s
8.82 0.108 ft3 s, 0.440 ft3 s
8.84 0.442 ft
8.86 0.491 ft
8.88 0.031 m by 0.053 m
8.90 (a) 0.548; (b) 1.52
8.92 Q1 � 0.0284 m3 s, Q2 � 0.0143 m3 s,

Q3 � 0.0141 m3 s
8.94 32.4 kPa
8.96 (a) 67.3 kPa; (b) 64.8 kPa
8.98 0.115 ft3 s
8.100 5.77 ft
8.102 0.0936 ft3 s

Chapter 9
9.2 (a) (b) 2.40
9.4 0.159 lb; 0.833
9.6 No
9.10 2�0, 5�0, 10�0

9.16 0.0130 m; 0.0716 N m2; 0.0183 m; 
0.0506 N m2

9.20
9.24 y � 0.0251 
 6.58 � 10�3 x1/2

9.26 0.171 ft, 0.134 ft
9.30

9.32 3.65 kN
9.36 d2 d1 � 1.414
9.38 48.8 lb
9.40 0.50 lb
9.42 378 lb
9.44 18,800 N � m
9.46 0.0206
9.50 (a) 567 ft s; (b) 118 ft s; (c) 13.5 ft s
9.54 1.29 lb; 129 lb
9.60 3590 m s2

9.62 (a) 4.31 MN; (b) 4.17 MN
9.64 21.6 ft s
9.66 53.5 kW; 4.46 kW
9.68 0.526 hp; 2.06 hp
9.70 0.225
9.72 41.6 ft s
9.74 0.288
9.76 11.2 ft

�

�

�

���

�

1700�1.40 � 106 U 4
d � 33.0 U 2 30.455� 1log 11.40 � 106U2 22.58 �


 � 4.792vx/U
�

�

0.06 112 �U 22;

�

�

�
��

��
�

9.78 1.72 U
9.80 0.327
9.82 146 mph
9.94 28.4
9.86 2.60
9.88 0.206

Chapter 10
10.4 25 m s2

10.10 2.45 m, 0.388 m
10.12 1.42 ft; 4.14 ft
10.14 1.77 ft; 1.97 ft
10.16 1.83 ft
10.18 2 ft or 3.51 ft; 2 ft or 1.38 ft
10.20 3.44 m
10.22 (a) 1.80 lb ft2; (b) 0.0469; (c) 0.636
10.24 33.0 ft3 s
10.26 2.61 m3 s
10.28 23.7
10.30 Yes
10.32 11.7 m3 s; 12.2 m3 s
10.34 23.7
10.36 18.2 m3 s
10.38 17.3 m3 s
10.40 1.49 ft
10.42 2.23 ft; 0.756
10.44 10.66 m
10.46 1.22 m
10.48 0.841 m
10.50 2.53 ft; No
10.52 Greater
10.54 0.452 in.
10.56 0.000505
10.58 Yes
10.60 0.00759 ft3 s
10.66 153 ft3 s
10.68 4.36 ft s
10.70 4.70 ft
10.72 20.1 s
10.74 2.05 m3 s; 0.333 m
10.76 0.406 m
10.80

Chapter 11
11.4 55.4 deg; CCW; turbine
11.10 11.5 m
11.12 61.3 ft
11.14 ha � 94.5 � 0.00176 Q2

11.16 1400 gal min; 79.0%; downstream
11.18 158 gal min; Yes�

�


 18/15212g H 5/2 4
Q � Cw 3 12/3212g b H 3/2

�

�
�

�

�
�

��

�
�

�

�
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Answers to Selected Even-Numbered Homework Problems ANS-5

11.20 (a) 0.0529 m3 s; (b) 13%
11.22 873 gpm
11.24 1850 gpm; 41.7 ft, 24.1 hp
11.26 1900 rpm
11.28 (a) 18.3 ft; (b) Radial-flow
11.30 (a) �722 ft . lb; (b) 955 rpm, broken shaft
11.34 �12.8 MW

� 11.36 �7020 ft2/s2

11.38 0.300 ft
11.40 26,600 N; 37.6 m s; 707 kg s
11.42 23,500 hp; 190 rpm
11.44 Francis; 378 ft3 s
11.46 Impulse

�

��
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I-1

Index

Absolute pressure, 11, 39
Absolute temperature, 7
Absolute velocity, 131, 146
Absolute viscosity, 14

of air, 461, 462
of common gases, 11, 458
of common liquids, 10, 458
of U.S. Standard Atmosphere, 463, 464
of water, 460

Acceleration, 69, 110
centrifugal, 114
convective, 113, 114
field, 110, 176
gravitational, 7, 463, 464
local, 112
normal, 69
particle, 110
streamwise, 69

Acoustic velocity, 19
of air, 461, 462
of water, 460

Adiabatic flow, 153
Adverse pressure gradient, 340
Air, table of properties of, 461, 462
Airfoil, 357, video V3.1, video V9.18
Alternate depths, 376
Angle:

of attack, 357
of contact, 22

Angular deformation, 178, 181, video V6.3
Angular momentum, see Moment-of-momentum
Angular momentum flow, 144, video V5.10
Archimedes’ principle, 57, video V2.7
Area:

centroid, 49, 51
moment of inertia, 50, 51
product of inertia, 50, 51

Aspect ratio, 246
Atmosphere, standard, 39

properties of, 39, 463, 464
Atmospheric pressure, 11

Available energy, 158
Average velocity, 127, 280
Axial-flow machine, 404
Axial-flow pump, 423
Axial-flow turbine, 434
Axisymmetric flow, 322

Backward curved blade, 412
Barometer, mercury, 41
Basic differential equations of fluid

motion, 191
Basic dimensions, 4, 240, 242
Bends, 293
Bernoulli equation, 73

derivation from F � ma, 70, 193, video V3.2
derivation from first law of

thermodynamics, 157
extended, 160
irrotational flow, 196
physical interpretation, 75
restrictions on use of, 94, 194
unsteady flow, 95

Best efficiency point, 415
Best hydraulic cross section, 384
BG units, see British gravitational system of units
Blade velocity, 149
Blasius, H., 253, 331
Blasius formula, 253, 290
Blasius solution, 331
Blower, 403
Blunt bodies, 322, video V9.2, video V9.10
Body force, 34, 134, 189
Boiling, 21, 87
Bottom slope, 374
Bound vortex, 361, video V4.6
Boundary conditions:

inviscid flow, 211
no-slip, 13, 211, video V1.4, video V6.11
numerical methods, 443
pipe exit, 81

Boundary element method, 444
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Boundary layer:
concept of, 277, 325, video V1.4, video V6.11, video

V6.12
displacement thickness, 330
effect of pressure gradient on, 338
effect of wall roughness, 336, 349
equations, 330
flat plate, 328
laminar:

approximate solution, 328, 333
Blasius solution, 331

momentum integral equation for, 332, 333
momentum thickness, 330
pressure gradient, 338
separation, 327, 340
thickness, 329
transition, 329, 334, video V9.5
turbulent, 329, 336
velocity profiles, 335, 341, video V9.3

Bourdon pressure gage, 47, video V2.3
Brake horsepower, 415
British gravitational system of units, 7
Broad crested weir, 393, video V10.14
Buckingham pi theorem, 240
Bulk modulus, 17

of common liquids, 10
of elasticity, 17

Buoyant force, 57, video V1.1, video V2.6,
video V2.7

Canal, 381
Capillary action, 22
Capillary tube viscometer, video V1.5
Casing, 410
Cauchy number, 250
Cavitation, 21, 87
Center of buoyancy, 57
Center of pressure, 50
Centrifugal pump, 410
Centroid, 49

of common areas, 51
CFD, 230, 443, video V6.15
Channel flow, see Open channel flow
Chezy coefficient, 378
Chezy equation, 378, 380
Chord length, 358
Circulation, 205

about an airfoil, 361
origin of, 361

Colebrook formula, 288
Completely turbulent flow, 287
Composite body drag, 352
Compressibility criterion, 94
Compressible flow, 94, 349

turbomachines, 436, video V11.6
Compressible fluid, 17, 34, video V1.7
Compressor, 403, video V11.6
Computational fluid dynamics (CFD), 230, 443,

video V6.15
Confined flow, 82
Conservation:

of energy, see First law of thermodynamics 
of linear momentum, 188

of mass, 83, 126, 132, 182, 467, video V5.1,
video V5.2

Contact angle, 22
Continuity equation:

compressible flow, 84
cylindrical coordinates, 184
differential form, 183
finite control volume, 84, 127

general, 467
incompressible flow, 84, 131, video V5.3
rectangular coordinates, 183
unsteady flow, 127

Continuum hypothesis, 3
Contraction coefficient, 82, 91, 396
Control surface, 115
Control volume, 115

fixed, 116, 126
general, 465
guidelines for selection, 120
infinitesimal, 176
moving, 131
velocity, 131

Convective acceleration, 113
Convective derivative, 113
Conversion factors, 8, 470
Core flow, 277
Couette flow, 224
Critical depth, 376, 393
Critical flow, open channel, 371, 376
Critical Reynolds number, 335
Curl operator, 180
Curved surface, forces on, 54
Cylinder:

drag coefficient for, 347
inviscid flow around, 212
large Reynolds number flow around, 328,

video V6.15
low Reynolds number flow around, 327
pressure distribution on surface of, 214, 341
rotating, 216, 362

Cylindrical coordinates, 184, 187

D’Alembert’s paradox, 215
Darcy-Weisbach equation, 287
Deep water wave, 373
Deformation:

angular, 178, 181, video V6.3
linear, 178
rate of, 181
volumetric, 178

Del (gradient) operator:
cylindrical coordinates, 197
rectangular coordinates, 35

Density, 9
of air, 461, 462
of common gases, 11
of common liquids, 10
of U.S. Standard Atmosphere, 463, 464
of water, 10, 460

Derivative:
convective, 113
local, 113
material, 111
substantial, 111

Differential analysis, 176
Dilatation rate, 178
Dimensional analysis, 238, 239, 246
Dimensional homogeneity, 3, 240
Dimensionless groups, 240

list of, 250
Dimensionless products, 240
Dimensions:

basic, 3, 240, 242
of common physical quantities, 4
reference, 241, 242, 247

Discharge coefficient:
nozzle, 310
orifice, 309
sluice gate, 396

I-2 Index
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Venturi meter, 311
weir, 392–394

Discretization, 430
Displacement thickness, 330
Distorted model, 259, video V7.12, video V7.20
Doublet, 207

strength of, 208
Drag, 321, 341

form, 342
friction, 331, 342
in potential flow, 214
pressure, 342

Drag coefficient, 263, 325, 342, 343
airfoil, 357
composite body, 352
cylinder, 347
effect of compressibility on, 349
effect of Froude number on, 352, video V9.12
effect of Mach number on, 349
effect of Reynolds number on, 344, 347
effect of shape on, 343, 346, video V9.7,

video V9.13
effect of surface roughness on, 260, 349
ellipse, 343, video V9.11
flat plate parallel to flow, 331, 337
friction, 331, 337, 342
from model studies, 263, video V7.15
pressure, 342
selected three-dimensional objects, 355
selected two-dimensional objects, 354
sphere, 347, 350, video V7.7
streamlined body, 344

Drowned outflow, 396
Drum gate, 396
Duct, 298
Dynamic pressure, 78
Dynamic similarity, 256
Dynamic viscosity, 14

of air, 461, 462
of common gases, 11, 458
of common liquids, 10, 458
of U.S. Standard Atmosphere, 463, 464
of water, 460

Eddy viscosity, 284
Efficiency, 160, 420, 434

overall, 415
Elbows, losses in, 293
Elevation head, 76, 93
Energy:

available, 158
internal, 152
kinetic, 76, 152
per unit mass, 152
per unit weight, 160
specific, 375
stored, 152
useful, 158

Energy equation, see First law of
thermodynamics

Energy line, 92, 302, 375
Enthalpy, 155
Entrance length, 278
Entrance loss, 291
Entrance region, 277, 291, video V8.10
Equations:

general homogeneous, 5
of motion, 191
restricted homogeneous, 5

Equation of state, 11
Equipotential line, 200

Eulerian description of motion, 105
Euler number, 250
Euler turbomachine equation, 409
Euler’s equations, 193
Exit pipe loss, 292, video V8.10
Extended Bernoulli equation, 160
Extensive property, 116
External flow, 321
Eye, 410

Fan, 150, 403
Favorable pressure gradient, 340
Field representation, 103, 176, video V4.2
Finite control volume analysis, 126, 465
Finite difference:

grid method, 444
Finite element:

mesh method, 444
First law of thermodynamics, 152,

154, 468
video V5.13, video V5.14

First moment of area, 49
Fittings, losses in, 293
Flap, airfoil, 359, video V9.17, video 9.18
Flat plate:

Blasius solution, 331
momentum integral equation, 332, 333
roughness effect, 337

Floating body, 59, video V2.7
Flow coefficient, 421, 434
Flowfield, 103
FlowLab, 443, 455
Flow measurement:

external flow:
Pitot-static tube, 79, video V3.8
Pitot tube, 93, video V3.8

internal flow:
nozzle meter, 89, 309
nutating disk meter, 313, video V8.14
orifice meter, 89, 309
rotameter, video V8.13
Venturi meter, 89, 310, video V3.10

open channel flow:
sluice gate, 91, 394
weir, 390, video V10.13

pipe, 309
Flow meters, see Flow measurement
Flow net, 200
Flowrate, 111

mass, 82, 127
volume, 82, 127

Flow separation, 327, video V9.6, video V9.8
Flow visualization, 105, video V4.6, video V4.9,

video V7.16, video V9.13
Fluid:

definition, 3
ideal, 194
inviscid, 192
Newtonian, 14
non-Newtonian, 14, video V1.6

Fluid dynamics, 9
Fluid kinematics, 102, 176
Fluid machines, 150, 403, videos V11.1–V11.6
Fluid particle, 69
Fluid properties:

graphs of, 458, 459
tables of, 10, 11, 460–464

Fluid statics, 9, 32
equilibrium in, 34
forces in, 47
pressure height relation, 36, 37

Index I-3
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Force:
anchoring, 134, 139
body, 34, 134, 189
buoyant, 57, video V2.7
compressibility, 250
drag, 214, 321, 341
gravity, 134, 250
hydrostatic:

on curved surfaces, 54, video V2.5
on plane surfaces, 47, video V2.2

inertia, 249
lift, 214, 217, 321, 357
pressure, 47, 54, 322
reaction, 139
surface, 34, 134, 189
surface tension, 21, video V1.9, video V1.10
viscous, 13, 322

Forced vortex, 204
Form drag, 342
Forward curved blade, 412
Forward difference, 445
Francis turbine, 433
Free jet, 81, video V3.9
Free outflow, 396
Free-stream velocity, 339
Free surface, 37
Free vortex, 75, 204, video V3.6, video V6.4
Friction drag, see Drag
Friction factor, 287

data correlation for, 287
Moody chart, 287, 288
non circular duct, 298
smooth pipe, 287
wholly turbulent, 287

Friction slope, 375
Frictionless, 192
Frontal area, 325
Froude number, 250, 352, 371, 374, video V7.4,

video V10.5
Fully developed flow, 277

laminar, 278, video V8.9
turbulent, 282

Gage fluid, 43
Gage pressure, 11, 40, 139
Gas constant, 11

for common gases, 11
ideal gas equation of state, 11

Geometric similarity, 256
Grade line:

energy, 92, 302, 379
hydraulic, 92

Gradient:
operator, 35, 111, 177
pressure, 35

Gradually varied flow, 370, 385
Gravity, acceleration of, 7, 189, 463, 464
Grid, 446
Guide vanes, 293

Haaland equation, 288
Hagen, G., 227
Hagen–Poiseuille flow, 227, 281,

video V6.13
Half body, 209, video V6.5
Head, 76, 92

coefficient, 420, 434
elevation, 76, 93
piezometric, 93
pressure, 37, 76, 93, 160
pump, 160, 419
total, 92

turbine, 160, 434
velocity, 76, 93
weir, 391

Head loss, 160
in enlargements and contractions, 292
in entrances, 291, video V8.10
in exits, 292, video 8.10
in gradual contractions, 297
in hydraulic jumps, 388, video V10.11,

video V10.12
in mitered bends, 293
in open channels, 375
in pipe bends, 293
in pipe entrances, 291
in pipes, 286, 290
in sudden area changes, 292
in valves and fittings, 293
major, 286
minor, 286, 290, video V8.12

Head loss coefficient, 290
Head rise coefficient, 420
Heat transfer, 152

relationship between head loss, internal 
energy, and, 158

Horseshoe vortex, 361, video V4.6, video V9.1, video
V9.19, video V10.9

Hydraulically smooth wall, 287
Hydraulic diameter, 298
Hydraulic grade line, 92
Hydraulic jump, 386, video V10.11,

video V10.12
depth ratio across, 387
head loss across, 388

Hydraulic radius, 379
Hydrometer, video V2.7
Hydrostatic force:

on curved surfaces, 54, video V2.5
on plane surfaces, 47, video V2.4

Hydrostatic pressure, 36, 78
Hydrostatic pressure distribution, 36

Ideal fluid, 194
Ideal gas law, 11
Impeller, 410
Impulse turbine, 426, 427, video V11.5
Inclined tube manometer, 46
Incompressible flow, 94, 132
Incompressible fluid, 17, 36, 94, 178, 184
Infinitesimal control volume, 176
Inlet guide vane, 294
Intensive property, 116
Internal energy, 152
International system of units, 7
Inviscid core, 277
Inviscid flow, 69, 192

fluid, 192
Irrotational flow, 180, 195, 196
Irrotational vortex, 204, video V3.6, video V6.4
Isentropic process, 18
Isothermal:

atmosphere, 39
process, 18

Jet exit pressure, 81
Joule, 8
Jump, hydraulic 386, video 10.11, video 10.12

Kaplan turbine, 433
Karman vortex trail, 347, video V6.15, video V7.5, video

V9.8, video V9.8
Kilogram, 8

I-4 Index
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Index I-5

Kinematics of fluid flow, 102, 176
Kinematic similarity, 256
Kinematic viscosity, 15

of air, 461, 462
of common gases, 11, 459
of common liquids, 10, 459
of water, 460

Kinetic energy, 76, 152
coefficient, 163

Kutta–Joukowski law, 218

Lagrangian description of flow, 105, video V4.4, video
V4.5

Laminar boundary layer:
Blasius solution, 331
description of, 325
effect of pressure gradient, 338
flat plate:

approximate solution, 333
exact solution, 331
friction coefficient for, 331
thickness of, 329

Laminar flow, 106, 275, video V4.7, video V8.4
between parallel plates, 222
in a boundary layer, 328
in a pipe, 227, 275, video V6.13, video V8.2
past a cylinder, 341

Laplace’s equation, 197
Laplacian operator, 197
Length scale, 258
Lift, 217, 321, 357
Lift coefficient, 325, 357

airfoil, 357
rotating cylinder or sphere, 217

Lift/drag polar diagram, 358
Lift/drag ratio, 358
Linear deformation, 178
Linear momentum, see Newton’s second law of motion
Linear momentum equation, 133, 134, 468
Linear momentum flow, 133, video V5.4,

video V5.11
Local acceleration, 113
Local derivative, 113
Loss, 158
Loss, major and minor, see Head loss
Loss coefficient, 290
Low Reynolds number flow, 325, 344, video V1.2, video

V7.7

Mach number, 20, 95, 250, 349, video V1.8
Magnus effect, 218, 362
Major loss, see Head loss
Manning coefficient, 380

values of, 380
Manning equation, 378, 380
Manometer, 42

differential, 45
inclined tube, 46
piezometer tube, 42, video V2.2
U-tube, 43

Mass, units of, 7
Mass flowrate, 82, 127
Material derivative, 111, 177
Measurement, flow, see Flow measurement
Mechanical energy equation, 160
Meter, flow, see Flow measurement
Method of repeating variables, 241
Method of superposition, 209, video V6.5
Methods of description:

Eulerian, 105
Lagrangian, 105

Minor loss, see Head loss
Minor loss coefficient, see Head loss coefficient
Mixed-flow machine, 404
Mixed-flow pump, 423
Mixed-flow turbine, 433
Mixing length, 284
Model:

definition, 238, 254
design conditions, 255
distorted, 259, video V7.12, video V7.16,

video V7.18
true, 259

Modeling laws, 255
Model scales, 258, video V7.1
Model studies, 260, videos V7.8–V7.20
Moment of inertia, 50, 51

of common areas, 51
Moment-of-momentum, 144, 145, 409, 468,

video V5.10
Momentum:

angular, see Moment-of-momentum
linear, see Newton’s second law of motion

Momentum equation:
for differential control volume, 188
for inertial finite control volume, 133, 134, 468
for inviscid flow, 192
for viscous flow, 220

Momentum flux, 133, video V5.5, video V5.8
Momentum integral equation, 332, 333
Momentum thickness, 330
Moody chart, 287, 288
Multiple pipe system, see Pipe systems

Nappe, 391
Navier, L., 220
Navier–Stokes equations:

cylindrical coordinates, 221
rectangular coordinates, 220

Newton, 8
Newtonian fluid, 14, 219
Newton’s second law of motion, 69, 133, 188
Noncircular duct, 298
Non-Newtonian fluid, 14, video V1.6
Non uniform flow, 162, 370
Non viscous, 192
Normal depth, 380
Normal stress, 153, 189, 219

in a Newtonian fluid, 219
work, 153

No-slip condition, 13, 211, video V1.4,
video V6.11, video V6.12

Nozzle, 136, video V5.3
Nozzle discharge coefficient, 310
Nozzle meter, 89, 309
Numerical methods, 230, video V6.15
Nutating disk meter, 313, video V8.14

One-dimensional flow, 105
Open channel flow, 370

critical flow, 371
energy equation for, 375
gradually varied flow, 370, 385
hydraulic jump, 386, video V10.11, video V10.12
laminar, 371
Manning equation for, 378
most efficient, 385
normal depth, 380
rapidly varied flow, 370, 386, video V10.8
surface wave propagation, 371
uniform flow, 370, 378
varied flow, 370, video V10.6
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I-6 Index

Open channels:
characteristics of, 370, video V10.6 
geometric properties of, 379, video V10.7
optimum cross sections, 385
regimes of flow in, 370
shear stress in, 379

Orifice:
flow through, 82
reentrant, 292

Orifice discharge coefficient, 309
Orifice meter, 89, 309

Parallel plates, 222
Pascal, 11
Pascal’s law, 34
Pathline, 108, video V4.11
Pelton wheel, 426, 427, video V5.6, video 

V5.12, video V11.4
Perfect gas law, 11
Physical properties of fluids:

of air, 461, 462
of common gases, 11
of common liquids, 10
of U.S. Standard Atmosphere, 463, 464
of water, 10, 460

Piezometer, 42, video V2.2
Piezometric head, 93, video V2.2
Pipe:

developing flow in, 277
fittings, 293
flowrate, 309
fully developed flow in, 227, 278
head loss, see Head loss
hydraulically smooth, 287
laminar flow in, 227, 275, 278, video V6.13, video

V8.2
noncircular, 298
relative roughness of, 286
smooth, 287
transitional flow in, 275, video V8.2
turbulent flow in, 275, 282, video V8.2

Pipe system components, 275
Pipe systems, 274, 307, video V6.14

parallel, 307
series, 307

Pi terms, 240, 241
Pi theorem, 240
Pitot-static tube, 79, video V3.8
Pitot tube, 93, video V3.8
Plane Poiseuille flow, 227
Planform area, 325
Poise, 15
Poiseuille, J., 227
Poiseuille flow, 227, 281, video V6.13

plane, 227
Poiseuille’s law, 228, 281
Polar coordinates, 184, 187
Polar diagram, lift-drag, 358
Position vector, 103
Positive displacement machine, 403, video V11.3
Potential, velocity, 196
Potential energy, 76
Potential flow theory, 197, 219

basic plane flows, 119, 208, video V6.10
doublet, 207
sink, 202
source, 202
uniform flow, 201
vortex, 203

superposition of basic plane, 209
flows, 209, video V6.5

flow past cylinder, 212, video V6.6,
video V6.7

flow past half-body, 209, video V6.5
flow past rotating cylinder, 216

Potential function, 196
Pound force, 7
Power, 147, 153, 411

coefficient, 420
units of, 4

Power law velocity profile, 285
Power specific speed, 443
Prandtl, L., 325, 331
Prandtl boundary layer equations, 330
Prediction equation, 255
Pressure:

absolute, 11, 39
at a jet exit, 81, 139
at a point, 33, 192, 220
atmospheric, 11
center of, 50
coefficient, 343 
definition, 11, 33, 220
dynamic, 78
gage, 11, 40, 139
hydrostatic, 36, 78
measurement of, 40, 78, video V2.2,

video V2.3
stagnation, 78, video V3.7
static, 78
suction, 40
total, 79
vapor, 21
vacuum, 40

Pressure coefficient, 343
Pressure distribution, video V2.1, video V6.1

airfoil, 323
cylinder, inviscid flow, 214, 341
cylinder, viscous flow, 341
hydrostatic, 36
in a rotating fluid, 60
in rigid-body motion, 60
standard atmosphere, 39, 463, 464

Pressure drag, see Drag
Pressure force, 47
Pressure gradient, 36

adverse, 340
effect on boundary layer, 338
favorable, 340

Pressure head, 37, 76, 93, 160
Pressure prism, 52
Pressure tap, 93
Pressure transducer, 47
Primary quantities, 4
Product of inertia, 50

of common areas, 51
Profile, velocity, see Velocity profile
Properties:

of air, 461, 462
of common gases, 11
of common liquids, 10
of U.S. Standard Atmosphere, 39, 463, 464
of water, 10, 460

Prototype, 254
Pump, 403

axial-flow, 423
blades, 424
centrifugal, 410
efficiency, 415
geometrically similar, 420
head, 160, 419
mixed-flow, 423
performance curve, 414
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Index I-7

positive displacement, 403, video V11.3
propeller, 424
scaling laws, 421
selection of, 416
similarity laws, 419
specific speed, 422
stage, 424, video V11.6

Radial-flow machine, 404, 433
Rankine oval, 212
Rapidly varied flow, 370, 386
Rate of angular deformation, 181,

video V6.3
Rate of shearing strain, 13, 181
Rate of work, 153
Reaction turbine, 426, 433
Rectangular weir, 391
Reentrant entrance, 291
Reference dimensions, 241, 242, 247
Relative roughness, 286
Relative velocity, 131, 146, 406
Repeating variable, 241
Reynolds, O., 249, 275
Reynolds number, 15, 249, 250

critical, see Transition to turbulence
properties of flows with low, 325, video V1.2, video

V7.3
properties of flows with large, 325, video V1.1, video

V7.3
Reynolds pipe flow experiment, 275,

video V8.2
Reynolds transport theorem, 116, 119, 126, 465
Rheology, 3
Right-hand rule, 146
Rigid body motion of fluid, 60
Rotameter, video V8.13
Rotating cylinder viscometer, 30
Rotation, 179

vector, 180
Rotor, 424
Roughness:

effect on drag, 263, 349
effect on models, 260, 262, video V7.13
in open channels, 380
in pipes, 286, 289
on flat plates, 337
relative, 286
typical values of, 289

Roughness coefficient, Manning, 380
Round-off error, 446

Scale:
length, 258
model, 258

Scaling laws for pumps, 421
Second moment of area, 50

of common areas, 51
Secondary flow, 292
Secondary quantities, 4
Separation, video V6.8, video V6.9, video V8.11, video

V9.6, video V9.13
in a boundary layer, 327, 340
in a pipe, 292
on an airfoil, 359

Separation location, 327
definition, 340
on a cylinder, 327, 341

Shaft:
power, 147, 409
torque, 147, 153, 409
work, 147, 153, 409

Shallow water wave, 373
Sharp crested weir, 390, video V10.13
Shearing strain, rate of, 13, 181, video V6.3
Shearing stress, 13, 154, 189, 221

distribution in a pipe, 279
in a boundary layer, 331
in a Newtonian fluid, 14, 219
in open channel flow, 389
turbulent, 284

Shear stress work, 154
Shock wave, 349, video V1.8
Similarity:

dynamic, 256
geometric, 256
kinematic, 256
pump, 419

Similarity requirements, 255
Similitude, 238
Sink, 202

strength of, 202
Siphon, 88
SI units, 7

prefixes, 8
Slope:

energy line, 92, 302, 375
of channel bottom, 374

Slug, 7
Sluice gate:

discharge coefficient, 396
flow rate under a, 91
force on a, 143
free outflow, 396
submerged, 396

Sound, speed of, 19
ideal gas, 19
of air, 461, 462
of water, 460

Source, 202, video V6.5
strength of, 202

Specific energy, 375
Specific energy diagram, 376
Specific gravity, 10
Specific heat:

constant pressure, 18
constant volume, 18

Specific heat ratio, 18
of air, 461, 462
of common gases, 11

Specific speed, 422, 434
Specific volume, 9
Specific weight, 10

of air, 461, 462
of common gases, 11
of common liquids, 10
of water, 460

Speed, 69
Speed of sound, 19, video V1.8

ideal gas, 19
of air, 461, 462
of water, 459

Sphere:
compressible flow past, 349
drag coefficient for, 347, 350
effect of surface roughness, 349
low Reynolds number flow past, 344
rotating, 362

Stability, 59, video V2.9, video V2.10
Stagnation point, 78, video V3.3
Stagnation pressure, 78, video V3.8
Stagnation pressure probe, see Pitot tube
Stagnation streamline, 78, video V3.3, video V3.3,

video V4.9
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Stall, 359, video V9.15
Standard atmosphere, 39

properties of, 40, 463, 464
State, equation of, 11
Static fluid, pressure variation in, 36
Static pressure, 78
Static pressure tap, 93
Stator, 424
Steady flow, 69, 105, video V4.7
Stoke, 15
Stokes, G., 220, 345
Stokes’ law, 252, 345, video V7.7
Stormer viscometer, 30
Streakline, 107, video V3.1, video V4.1,

video V4.10
Stream function, 185
Streamline, 69, 106, video V4.9

equation of, 106, 186
Streamline bodies, 322, 343, video V9.2,

video V9.14
Streamline coordinates, 114, video V4.13
Streamline curvature, 69
Stress:

components, 219
compressive, 153, 190
Newtonian fluid, 14, 219
normal, 153, 189, 219
notation, 190
shearing, 13, 154, 190, 219
sign convention, 190
tangential, 154

Stress field, 190
Strouhal number, 250, video V7.5
Structured grid, 446
Subcritical flow, 371, 374, 376, video V10.5
Submerged area, forces on, 47
Substantial derivative, 111, 177
Suction, 40
Sudden contraction, 292
Sudden expansion, 292
Supercritical flow, 371, 374, 376, video V10.5
Superposition, 209, video V6.5

direct method, 219
inverse method, 219
irrotational flow by method of, 209

Surface force, 34, 134, 189
Surface tension, 21, video V1.9, video V1.10,

video V7.6, video V10.3
effect on models, 264
of common liquids, 10
of water, 460

Surface wave, 371, video V9.12, video V10.1,
video V10.2, video V10.4

System, 116
relationship between control volume 

and, 116
System curve, 416, 417
System equation, 416
Systems of units, 6

Tangential stress work, 154
Temperature:

absolute, 7
Celsius, 7
centigrade, 7
Fahrenheit, 7
Kelvin, 7
Rankine, 7

Thermodynamics:
first law of, 152

Three-dimensional flow, 105

Three-reservoir problem, 308
Time average, 284
Torque, 144, 147

shaft, 147, 153, 409
Total head, 92
Total pressure, 79
Trailing vortex, 361, video V4.6, video V9.1,

video V9.19
Tranquil flow, 371
Transition to turbulence, video V9.4

in a boundary layer flow, 329, 334, video V9.5
in a pipe flow, 275, 283, video V8.2, video V8.3, video

V8.8
in an open channel flow, 371
in flow past a sphere or cylinder, 341, 349

Triangular weir, 392, video V10.13
True model, 256
Turbine, 426

axial-flow, 434
Francis, 433
head, 160, 434
impulse, 426, 427, video V11.5
Kaplan, 433
Pelton, 426, 427, video V5.6, video V11.4
radial-flow, 433
reaction, 426, 433
specific speed, 434

Turbine head, 160, 434
Turbomachine, 403

axial-flow 404, 423, 434
compressible flow, 436
efficiency, 420, 434
flow coefficient, 421, 434
head coefficient, 420, 434
mixed-flow, 404, 423, 433
power coefficient, 420, 434
radial-flow, 404, 423, 433
rotary sprinkler, 145, video V4.11, video V5.10, video

V11.2
specific speed, 422, 434

Turbulence:
characteristics of, 106, 283, 336, video V1.1,

video V8.1, video V8.7
mixing in, 283, video V8.5, video, 8.6, video V8.7

Turbulent boundary layer, 329, 336
effect on separation, 341
velocity profiles in, 335

Turbulent pipe flow, 275, 282, video V8.2
mean velocity, 285
shear stress, 284
velocity profile, 285, video V8.2

power law, 285
Turbulent stresses, 284
Two-dimensional flow, 105

U-tube manometer, 43
Underflow gate, 396, video V10.15
Uniform flow:

at a section, 127
in a pipe, 279
in an open channel, 370, 378
potential, 201

Uniform flow field, 201
U.S. Standard Atmosphere, see Standard atmosphere
Units, 4

conversion factors, 8, 470
system of, 6

Unsteady flow, 95, 105, 112, video V4.7, video V4.12,
video V5.7, video V5.9

Unstructured grid, 446
Upstream velocity, 322

I-8 Index
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Index I-9

Vacuum, 40
Valve losses, 294
Valves, 295
Vane, 134
Vapor pressure, 21, 41

in barometer tubes, 41
effect on cavitation, 21
of common liquids, 10
of water, 460

Varied flow, 370
Velocity:

absolute, 131, 146
average, 127, 280
particle, 103
relative, 131, 146

Velocity distribution, see Velocity profile
Velocity field, 103, 176, video V4.2, video V4.3,

video V6.2
Velocity gradient, 13
Velocity head, 76, 93
Velocity measurement, see Flow measurement
Velocity potential, 196
Velocity profile:

in a boundary layer:
between flat plates, 223, 225
effect of pressure gradient on, 338
laminar, 335
turbulent, 335

in a pipe:
laminar, 228, 280, video V8.9
turbulent, 285, video V8.9

Velocity triangle, 406
Vena contracta, 82, 91
Venturi discharge coefficient, 311
Venturi meter, 89, 310, video V3.10
Viscometer:

capillary tube, video V1.5
rotating cylinder, 30
Stormer, 30

Viscosity, 12, video V1.3
absolute or dynamic, 14
eddy, 284
kinematic, 15
of air, 461, 462
of common gases, 11, 458, 459
of common liquids, 10, 458, 459
of U.S. Standard Atmosphere, 463, 464
of water, 460

Viscous flow, 219
Viscous stresses, 219
Visualization, flow, 105, video V4.6, video V4.9, video

V7.16, video V9.13
Volume flowrate, 82, 127
Volumetric dilatation, 178
Volute, 410

Vortex:
bound, 361, video V4.6, video V9.19
combined, 205, video V3.4, video V4.8
forced, 204
free, 75, 204, video V3.6, video V6.4
horseshoe, 361
irrotational, 204
Karman trail, 347, video V6.15, video V9.8,

video V9.8
rotational, 204
strength of, 206
trailing, 361, video V3.5, video V4.6, video V9.1,

video V9.19
Vortex street, 347, video V6.15, video V7.2, video V9.9
Vorticity, 180

Wake, 325, video V9.6
flat plate, 325
streamlined object, 322
vortex street, 347, video V6.15, video V9.9

Wall shear stress, 279
Water, table of properties, 460
Watt, 8
Wave:

gravity, 371
shock, 349
surface, 371, video V9.12

Wave length, 373
Wave motion, 371, video V7.4
Wave speed:

open channel flow, 371
sound, 19

Weber number, 250, video V7.6
Weight, 7, 134
Weir, 390

broad crested, 393, video V10.14
head, 391
rectangular, 391
sharp crested, 390, video V10.13
triangular, 392, video V10.13

Weir coefficient, 392–394
Wetted perimeter, 378, 398
Wholly turbulent flow, 287
Wind tunnel, 296, video V7.15, video V9.7
Wing loading, 358
Windmill, 406, video V11.1
Work, 152

normal stress, 153
rate of, 153
shaft, 147, 153
shear stress, 154
sign convention for, 153
tangential stress, 154
units of, 8

Work-energy equation, 154
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Index of Fluids Phenomena Videos
Available on www.wiley.com/college/young. In the ebook, these videos can be accessed by clicking on the video
thumbnails shown below. Use the registration code included with this new text to access the videos.

V1.1
Mt. St. Helens 
Eruption

V1.2
E. coli swimming

V1.3
Viscous fluids

V1.4
No-slip condition

V1.5
Capillary tube 
viscometer

V1.6
Non-Newtonian 
behavior

V1.7
Water balloon

V1.8
As fast as a speeding
bullet

V1.9
Floating razor blade

V1.10
Capillary rise

V2.1
Pressure on a car

V2.2
Blood pressure 
measurement

V2.3
Bourdon gage

V2.4
Hoover dam

V2.5
Pop bottle

V2.6
Atmospheric 
buoyancy

V2.7
Cartesian Diver

V2.8
Hydrometer

V2.9
Stability of a floating
cube

V2.10
Stability of a model
barge

V3.1
Streamlines past an
airfoil

V3.2
Balancing ball

V3.3
Flow past a biker

V3.5
Aircraft wing tip 
vortex

V3.6
Free vortex

V3.7
Stagnation point flow

V3.8
Airspeed indicator

V3.9
Flow from a tank

V3.10
Venturi channel

V3.11
Oscillations in a 
U-tube

V3.12
Flow over a cavity

V4.1
Streaklines

V4.2
Velocity field

V4.3
Cylinder-velocity
vectors

V4.4
Follow the particles
(experiment)

V3.4
Hydrocyclone 
separator
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V4.5
Follow the particles
(computer)

V4.6
Flow past a wing

V4.7
Flow types

V4.8
Jupiter red spot

V4.9
Streamlines

V4.10
Streaklines

V4.11
Pathlines

V4.12
Unsteady flow

V4.13
Streamline 
coordinates

V5.1
Sink flow

V5.3
Flow through a 
contraction

V5.4
Smokestack plume
momentum

V5.5
Marine propulsion

V5.6
Force due to a water
jet

V5.7
Running on water

V5.8
Fire hose

V5.9
Jelly fish

V5.10
Rotating lawn 
sprinkler

V5.11
Impulse-type lawn
sprinkler

V5.12
Pelton wheel turbine

V5.13
Energy transfer

V5.14
Water plant aerator

V6.2
Spinning football-
velocity vectors

V6.3
Shear deformation

V6.4
Vortex in a beaker

V6.5
Half-body

V6.6
Circular cylinder

V6.7
Ellipse

V6.8
Circular cylinder
with separation

V6.9
Potential and viscous
flow

V6.10
Potential flow

V6.11
No-slip boundary
condition

V6.12
Liquid–liquid 
no-slip

V5.2
Shop vac filter

V6.1
Spinning football-
velocity contours

V6.13
Laminar flow

V6.14
Complex pipe flow

V6.15
CFD example

V7.1 
Real and model flies

V7.2 
Flow past a flat plate

V7.3 
Reynolds number

V7.4
Froude number
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V7.11 
Model of fish 
hatchery pond

V7.12
Distorted river model

V7.13 
Wind engineering
models

V7.14
Model airplane test
in water

V7.15 
Large scale wind
tunnel

V7.16 
Wind tunnel train
model

V7.17 
River flow model

V7.19 
Dam model

V7.20 
Testing of large yacht
model

V8.1
Turbulent jet

V8.2
Laminar/turbulent
pipe flow

V8.3
Intermittent turbulent
burst in pipe flow

V8.4
Stirring color into
paint

V8.5
Laminar and 
turbulent mixing

V8.6
Stirring cream into
coffee

V8.7
Turbulence in a bowl

V8.8
Laminar to turbulent
flow from a pipe

V8.9
Laminar/turbulent
velocity profiles

V8.10
Entrance/exit flows

V8.11
Separated flow in a
diffuser

V8.13
Rotameter

V8.14
Water meter

V9.1
Space shuttle landing

V9.2
Streamlined and
blunt bodies

V9.3
Laminar boundary
layer

V9.4
Laminar/turbulent
transition

V9.5
Transition on flat
plate

V9.6
Snow drifts

V9.7
Skydiving practice

V9.8
Karman vortex street

V9.9
Oscillating sign

V9.10
Flow past a flat plate

V7.18
Boat model

V8.12
Car exhaust system

V9.11
Flow past an ellipse

V9.12
Jet ski

V7.5 
Strouhal number

V7.6 
Weber number

V7.7 
Stokes flow

V7.8 
Model airplane

V7.9 
Environmental 
models

V7.10
Flow past an ellipse
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V10.3
Water strider

V10.4
Sinusoidal waves

V10.5
Bicycle through a
puddle

V10.6
Merging channels

V10.8
Erosion in a channel

V10.9
Bridge pier scouring

V10.10
Big Sioux River
bridge collapse

V10.11
Hydraulic jump in a
river

V10.12
Hydraulic jump in
a sink

V10.13
Triangular weir

V10.14
Low-head dam

V10.15
Spillway gate

V10.16
Unsteady under and
over

V11.1
Windmills

V10.7
Uniform channel
flow

V11.3
Windshield Washer
Pump

V11.4
Dental drill

V11.5
Flow in a compressor
stage

VA.1
Pouring a liquid

VA.2
Dynamic grid

VA.3
Tornado simulation

V9.19
Wing tip vortices

V10.1
Off-shore oil drilling
platform

CFX

V10.2
Filling your car’s gas
tank

V9.13
Drag on a truck

V9.14
Automobile 
streamlining

V9.15
Stalled airfoil

V9.16
Bat flying

V9.17
Trailing edge flap

V9.18
Leading edge flap

V11.2
Self-propelled lawn
sprinkler
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■ TA B L E  1 . 2

Conversion Factors from BG Units to SI Unitsa

To convert from to Multiply by

Acceleration ft/s2 m/s2 3.048 E � 1
Area ft2 m2 9.290 E � 2
Density slugs/ft3 kg/m3 5.154 E � 2
Energy Btu J 1.055 E � 3

ft�lb J 1.356
Force lb N 4.448
Length ft m 3.048 E � 1

in. m 2.540 E � 2
mile m 1.609 E � 3

Mass slug kg 1.459 E � 1
Power ft�lb/s W 1.356

hp W 7.457 E � 2
Pressure in. Hg (60 �F) N/m2 3.377 E � 3

lb/ft2 (psf) N/m2 4.788 E � 1
lb/in.2 (psi) N/m2 6.895 E � 3

Specific weight lb/ft3 N/m3 1.571 E � 2
Temperature �F �C TC � (5/9)(TF � 32�)

�R K 5.556 E � 1
Velocity ft/s m/s 3.048 E � 1

mi/hr (mph) m/s 4.470 E � 1
Viscosity (dynamic) lb�s/ft2 N � s/m2 4.788 E � 1
Viscosity (kinematic) ft2/s m2/s 9.290 E � 2
Volume flowrate ft3/s m3/s 2.832 E � 2

gal/min (gpm) m3/s 6.309 E � 5

aIf more than four-place accuracy is desired, refer to Appendix E.
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■ TA B L E  1 . 3

Conversion Factors from SI Units to BG Unitsa

To convert from to Multiply by

Acceleration m/s2 ft/s2 3.281
Area m2 ft2 1.076 E � 1
Density kg/m3 slugs/ft3 1.940 E � 3
Energy J Btu 9.478 E � 4

J ft�lb 7.376 E � 1
Force N lb 2.248 E � 1
Length m ft 3.281

m in. 3.937 E � 1
m mile 6.214 E � 4

Mass kg slug 6.852 E � 2
Power W ft�lb/s 7.376 E � 1

W hp 1.341 E � 3
Pressure N/m2 in. Hg (60 �F) 2.961 E � 4

N/m2 lb/ft2 (psf) 2.089 E � 2
N/m2 lb/in.2 (psi) 1.450 E � 4

Specific weight N/m3 lb/ft3 6.366 E � 3
Temperature �C �F TF � 1.8 TC � 32�

K �R 1.800
Velocity m/s ft/s 3.281

m/s mi/hr (mph) 2.237
Viscosity (dynamic) N�s/m2 lb�s/ft2 2.089 E � 2
Viscosity (kinematic) m2/s ft2/s 1.076 E � 1
Volume flowrate m3/s ft3/s 3.531 E � 1

m3/s gal/min (gpm) 1.585 E � 4

aIf more than four-place accuracy is desired, refer to Appendix E.
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