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1.  Introduction to Structural Engineering 

1.1 STRUCTURAL ENGINEERING 

Structural engineering is the field of engineering covering the design and construction of 
structural systems to provide functionality as specified by the project owner. Examples of 
functional requirements for a structure include: Defining space in a building for occupants, 
equipment, or business operations; providing a road surface for a bridge; impounding water in a 
reservoir for a dam; or resisting operational loads for an automobile or aircraft. 

Structural engineering requires the application of specialized civil engineering knowledge, 
training, and experience to evaluate, analyze, design, specify, detail, and observe the construction 
of force-resisting elements of structures. Such expertise includes consideration of strength, 
stability, deflection, stiffness, ductility, potential modes of failure, and other characteristics that 
affect the behavior of a structure (Structural Engineers Association of Northern California).  

1.2 LOADS ON STRUCTURES 

Structures exist to resist loads. Loads are the result of interactions between the structure and its 
environment. Dead loads are the loads produced by gravity acting on the structure itself and on 
items that are permanently fixed to the structure. Live loads are the loads produced by gravity 
acting on items that are in or on the structure but are not fixed in magnitude or position. 
Examples include occupants, equipment, or vehicles. Snow, ice, and water pressure, are another 
form of gravity loads, which are generally treated separately from live loads because of the 
difference in their origin and loading duration. Wind produces pressure on the surface of a 
structure, inducing wind loads. When the ground moves during an earthquake, earthquake loads 
are caused by the acceleration of the building mass as it vibrates in response to the ground 
movement. Other loads can be induced by volume change due to shrinkage or change in 
temperature.  

The performance of a structural system is important to occupants/users, owners, and society 
as a whole. For most structures, the primary performance requirement is safety. A safe structure 
is one that has an acceptably low probability of collapse over the life of the structure, and a low 
probability of producing other life-threatening falling hazards. A second performance 
requirement is serviceability, that is, the capability to resist routine loads and other effects 
without disturbing occupants or requiring repair. Requirements of serviceability may involve 
limitations on displacements, floor vibration, or crack width. Other performance considerations 
can include durability. Modern designs may also consider aspects of sustainability. 
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1.3 STRUCTURAL SYSTEMS 

There is a wide variety of structural systems from which the structural engineer can choose. The 
choice will depend on many factors, possibly including the functional and performance 
requirements, the required height or span length, the local materials and construction practices, 
and the creativity of the design team. Structural systems are continuously evolving as new ideas, 
performance objectives, and materials enable and promote innovation. Before the advent of 
modern analysis methods, evolution in structural engineering was largely by trial and error, with 
limits in structural systems being exposed by structural failures. Today, computer simulation is 
increasingly effective in identifying optimal systems that provide required safety and 
serviceability with low risk of failure.   

Commonly used structures can be classified into categories based on the type of primary 
stress resisted by members of the structures under design loads. The main categories are: 

Tensile structures: Structures in which members are subjected to pure tension under design 
loads are known as tensile structures. Tensile structures tend to be very efficient because tensile 
stress is distributed uniformly over the cross-sectional area of members without concern for 
instability. A cable is an example of tensile structure. 

Compressive structures: Structures in which members are subjected to pure compression 
under design loads are known as compressive structures. Compressive structures tend to be 
efficient because compressive stress is distributed uniformly over the cross-sectional area. 
Susceptibility to buckling may reduce efficiency of compressive structures, either because of 
requirements to reduce stress by increasing cross sections or, alternatively, to provide additional 
members to brace the compression member and thereby increase stability. An arch is an example 
of a compressive structure. 

Trusses: Trusses are composed of straight members connected at their ends to form a stable 
configuration. The connections ideally are pins, but in actual structures they might be rigid 
connections.  

Frames: Frames are structures that resist loads through combinations of shear and moment, 
with or without axial forces. Common frame members include slabs, beams, columns, and walls. 
(Sometimes walls are considered separately from frames.) Frames may be less efficient than 
other structures because the members resist loads through bending action, which generally makes 
less efficient use of the material capacities. However, members can be optimized to improve 
efficiency, as in, for example, I-beams that are configured efficiently resist bending and shearing 
stresses. Frames have the functional advantage of providing rectilinear open spaces in which the 
members are aligned with floors and walls.  

(Structural) Walls: Slender structural walls resist lateral and vertical loads through 
combinations of shear, moment, and axial forces. Low-rise walls, and infill panels in structural 
frames, are a special case in which the wall resists lateral forces primarily in shear, with little 
flexural action.   

Additionally, structural systems can be made up of combinations of different types of 
structural members. For example, a suspension bridge uses cables (tensile structures), towers 
(primarily compressive structures, but sometimes trusses), and bridge decks (frame members). 
Some examples are shown in Figure 1.1 
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Figure 1.1  Berkeley I-80 pedestrian bridge. Photo by Daniel Ramirez from Honolulu, 
USA - Uploaded by Kurpfalzbilder.de. Licensed under CC BY 2.0 via Wikimedia 
Commons - http://commons.wikimedia.org/wiki/File:Berkeley_I-
80_bridge_02.jpg#mediaviewer/File:Berkeley_I-80_bridge_02.jpg 

 

 

Figure 1.2    Carquinez Bridge. Photo from http://www.ketchum.org/carquinez.html 
 

http://www.ketchum.org/carquinez.html
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1.3 STRUCTURAL ENGINEERING WORK 

1.3.1 Structural design and structural analysis 

For any facility design, the structural engineer generally will work as part of a team engaged in 
the design of the facility. The structural engineer’s tasks are oriented toward developing a 
structural system that fits within the functional space of the facility and that provides an efficient 
load path for both vertical and lateral loads. The design and analysis tasks include the following: 

x Identify a concept for a structural system that will be capable of efficiently providing a 
load path. For the pedestrian bridge of Figure 1.1, the concept is an arch spanning across 
a freeway, with tension hangers that support the suspended walkway. For the suspension 
bridge of Figure 1.2, the arch (compression) is replaced with a cable (tension), which 
requires two support towers. The remainder of the system with hangers and bridge deck 
is similar to the pedestrian walkway. For the building of Figure 1.3, the concept is a 
beam-column frame that resists vertical and lateral forces.  

x Estimate the loads. Once the general concept is developed, preliminary member sizes 
can be estimated using experience or, where experience is lacking, by making an 
educated guess. Given the preliminary member sizes, design loads can be estimated. As 
the loads depend on the member sizes, some iteration may be required.  

x Analyze the structure. Given a structural idealization and design loads, the structure can 
be analyzed to determine the structure reactions and the member internal forces and 
moments. The analysis may also determine deflections of individual members or of the 
entire structure.  

x Develop final member/structure proportions. Now that member internal forces and 
moments are determined by analysis, the members and their connections to one another 
can be designed. This step is usually driven by considerations of safety. However, 
serviceability must also be considered.  

x Specify the design. The design intent must be conveyed via design and construction 
documents. The design documents contain the calculations used to demonstrate safety 
and serviceability of the structure. The construction documents contain information on 
how to build the structure, and include documents such as detailed specifications for 
materials and components, and detailed structural drawings that convey unambiguously 
the required dimensions, member sizes, member connections, and any other required 
details.  

 
The process outlined above involves both elements of structural design and structural 

analysis. Structural analysis (the third bullet) involves the determination of the reactions, internal 
actions, and deformations/deflections of the structure under the design loads. Structural design is 
a much broader endeavor, involving development of a structural concept, determination of loads, 
structural analysis, proportioning of the elements and their connections, and specifying the 
design. In this regard, structural analysis is an essential tool in the broader endeavor of structural 
design.   
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Figure 1.3  Idealized model, loads and reactions for a building concept. 
 

 

1.3.2 Structural engineering design phases 

Structural design generally does not involve the development of a grand equation that defines the 
structural system given a set of owner requirements. Rather, structural design is a process that is 
iterative, developing gradually from the owner requirements to the final design. Structural design 
may develop in tiered phases, as follows: 

x Conceptual or Schematic Design: In this phase, the structural engineer establishes a 
primary structural system, including alternative schemes where appropriate, considering 
materials, systems, and budgets; describes the primary structural system, detailing 
significant primary structural elements and materials; explains in writing to the client the 
proposed new structural system and the alternatives, including the short and long term 
advantages and disadvantages; and recommends the preferred structural system. Note that 
the engineer might explore multiple design schemes including alternative structural 
systems or alternative materials. The designs are carried through in sufficient detail to be 
able to make a recommendation on a preferred system. By the end of this stage, the 
design may be sufficiently developed to be considered a preliminary design.  

x Design Development: In the design development phase, the selected preliminary design is 
developed in sufficient detail to produce the final design and construction documents. 
During this phase, the engineer will carry out detailed structural analysis and calculations 
to consider the performance requirements for safety and serviceability, considering such 
elements as structural strength, deflections, vibrations, lateral drift, concrete and masonry 
crack control, and foundation settlement.  

x Contract Documents Stage: In this phase, the engineer will document the structural 
calculations that support the design, prepare structural design drawings, and prepare 
materials and other specifications. 

x Construction Stage: In this phase, the engineer will attend construction meetings and 
review submittals from the contractor to confirm conformance with the design intent or, 
where required, to make adjustments to the design to facilitate proper implementation of 
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the design intent. In some cases, the structural engineer will provide inspection services 
to verify that the structure was constructed in accordance with the intent.  
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2.  Analysis of Beams and Frames 

2.1. INTRODUCTION 

Beams and frames are structural members that resist loads through shear and bending moment, 
with or without axial forces. Beams can be made of wood, steel, or reinforced concrete. Frames 
are usually either steel or reinforced concrete. This chapter introduces methods of analysis of 
statically determinate beams and frames. In later chapters we will see how to design structural 
systems using beams and frames.  

2.2. IDEALIZATIONS 

For the purpose of conducting structural analysis, structural engineers usually idealize the 
geometry of the structural framing, its supports, and its loads. The following conventions are 
common.  

2.2.1. Structural members 

Structural members commonly are represented by line members located at the member 
centerlines. See Figure 2.1. The lines have structural properties associated with the axial, shear, 
bending, and other important structural properties of the original member.  

 

Figure 2.1 Idealization of structural members by line members. 

2.2.2. Structural supports 

The most common structural supports are idealized as being fixed, pinned, or roller supports. 
Some unusual support conditions, such as a sliding support that is free to translate in one 
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direction, but restrained against translation in other directions and restrained against rotation, can 
also be represented. Figure 2.2 illustrates some commonly used symbols to represent the support 
conditions and the types of reactions that these can resist.  

 

Figure 2.2 Some support representations and the reactions they can resist. 
 
The idealizations of Figure 2.2 are used to idealize real boundary conditions in actual 

structures. See example in Figure 2.3. 
 

 
Figure 2.3  Bridge structure and its idealization. 
 

2.2.3. Loads 

Loads are usually point loads (actually concentrated loads distributed over a very short distance) 
or distributed loads. Distributed loads can be uniform from one end to the other, as occurs when 
people are distributed uniformly throughout a room, or can vary from one end to the other, as 
occurs with snow drifts. Inclined surfaces can have distributed vertical loads, for example, the 
gravity load associated with roof shingles. Inclined surfaces also can have distributed loads 
acting normal to the surface, as occurs with wind loads. See Figure 2.4.  
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Figure 2.4 Load idealizations. 

 

2.3. EQUILIBRIUM 

First we will examine an individual element and then later examine behavior of the whole 
system.  A beam provides a simple starting point. 

 

Figure 2.5 Free body diagram of beam. 
 

Consider the free body diagram of a beam (Figure 2.5). Considering only actions within the 
plane of the paper, the three equilibrium requirements are: 

¦ ¦¦ === 000 XOY FandMF  (2.1) 
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Figure 2.6 Free body diagram of a differential length of a beam. 
 
We can write the equilibrium equations for a differential length of a beam (Figure 2.6), 

resulting in the following expressions. 
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The integral form of the equilibrium equations has a useful interpretation for construction of 
shear and moment diagrams, as will be illustrated later.  

2.4. STATIC DETERMINACY 

Equilibrium must always be satisfied. The number of equilibrium equations is related to the free-
body diagrams for the structure. For a two-dimensional FBD, there are three independent 
equilibrium equations. A three-dimensional FBD has six independent equilibrium equations. 

Although the equilibrium equations must be satisfied, they may not be sufficient to determine 
all the forces in a structure. In such cases the statics equations are indeterminate and the structure 
is called statically indeterminate.  

Consider the case where a structure is cut into m free body diagrams. There are 3 equations 
per free body diagram, and, therefore, 3m equations of equilibrium. Suppose also that there are r 
unknown forces acting at the boundaries of the m free body diagrams. The system can only be 

Neglecting higher order terms, dx2, dVdx 
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solved by equations of equilibrium if r = 3m. Put differently, the degree of static indeterminacy 
can be expressed as  

݊ = ݎ െ 3𝑚𝑚 (2.2) 

 
where n = degree of static indeterminacy 

r = number of unknown forces 
m = number of free body diagrams or parts of the structure.   
 

Cases of Static Indeterminacy  

n = 0 
The structure is statically determinate and can be solved by 

equations of equilibrium alone. 

n > 0 
The structure is statically indeterminate, and cannot be 

solved by equations of equilibrium alone.  

n < 0 
The structure cannot satisfy some equilibrium conditions, that 

is, it is unstable. 

 
Figure 2.7 illustrates three examples checking the degree of static indeterminacy for beams. 
Figure 2.8 illustrates examples for frames. 
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Figure 2.7 Examples for degree of static indeterminacy for beams.   

 
 

 
Figure 2.8 Examples for degree of static indeterminacy for frames. 



CE 120 Reader  

 Page 2.7  

2.5. STABILITY 

To be stable a structure must have a configuration and set of external supports that allow 
equilibrium to be satisfied under all imaginable loading combinations. (Stability of slender 
members, such as Euler buckling of columns, is a different issue not to be confused with stability 
as defined here.) The following paragraphs consider some common examples.  

Figure 2.9a considers a simply supported beam. In this example, n = r – 3m = 0. Therefore, 
the beam is statically determinate and stable.  

Figure 2.9b illustrates a special case. Although n = r – 3m = 0, the structure is unstable 
because equilibrium of forces in the horizontal direction cannot be satisfied. In general, if the 
reactions are all collinear, the beam is unstable. As a more general condition, if all of the 
reactions have projections that intersect a single point, moment equilibrium about that point 
cannot be satisfied and the beam is unstable. For the case in Figure 2.9b, the point is located an 
infinite distance above (or below) the beam. 

Figure 2.9c appears to be stable if checked as a single free body diagram. However, if we cut 
through the hinge, exposing two free body diagrams, we find that n < 0, that is, the beam is 
unstable. In general, if there is a hinge or other unusual condition along the beam span, cut the 
beam into two distinct free body diagrams and make the check on that group of free body 
diagrams.  
 

 
Figure 2.9 Stability checks for beams. 

 

Stability of frames with multiple hinges can be difficult to assess by equations alone. 
Sometimes, inspection and intuition are required. See Figure 2.10. 
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Figure 2.10 Unstable frame. 
 
Importantly, stability is a property of a structure, and is independent of the loading. A 

structure that can resist a narrowly defined loading, but that will be unable to resist a more 
general loading, is defined as being unstable.   

2.5. ANALYSIS FOR REACTIONS 

For beams and frames that are stable and statically determinate, the equations of equilibrium can 
be used to establish the reactions and any internal member forces. Here we focus on calculation 
of the reactions. The general procedure is: 

• Draw a free body diagram, showing all external forces and replacing reaction points with 
the unknown reactions. 

• Check that the free body diagram is stable and determinate. 
• Apply equations of equilibrium to solve for the reactions.  

 
The approach is illustrated in the following examples. 
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Figure 2.11 Propped cantilever with concentrated force. 

In Figure 2.11, note how the positive direction for summing forces and moments is noted. 
For example, for summing forces in the x direction, the arrow from left to right indicates that all 
forces are taken positive in that direction. By showing the positive direction in the summation 
sign, it is easier to keep track of the sign on all the forces. Of course, positive could be defined in 
the opposite direction as well. Regardless, selecting a direction and showing it consistently is a 
big help to keeping the signs straight and getting the correct answer.  

The next example (Figure 2.12) considers the same structure, but this time with a distributed 
load along segment BC. Because the uniformly distributed load is internal to the free body 
diagram, for the purpose of solving the equilibrium equations it is acceptable to replace the 
distributed load by its resultant acting at the centroid of the distributed load. 
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Figure 2.12 Propped cantilever with distributed loads. 

The next example considers a beam with an internal hinge. For such structures, the usual 
approach is to cut the structure into multiple free body diagrams (FBDs) by cutting through the 
internal hinges. Remember, each cut creates a new FBD with three new equations, but exposes 
only two additional unknown forces, so by cutting at the hinge the number of unknowns is 
reduced by 1. Once the structure is separated into multiple FBDs, equilibrium equations are 
applied to one or more of the FBDs to solve for the reactions and the hinge forces. Usually it is 
possible to solve for all of the forces on one of the FBDs first, and then move on to the remaining 
FBDs to solve the forces there. In the example shown in Figure 2.13, the structure is separated 
into segments abd and cde. By inspection, it is possible to solve for the unknown forces acting 
cde using first moments about point c and then moments about point e. Having solved cde, we 
next move on with the known hinge force of 0.5 and solve abc by summing moments about a and 
then about b. Note that this structure will require a tie down at point a for this loading.  
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Figure 2.13 Beam with internal hinge. 

2.6. INTERNAL FORCES 

Once the reactions have been determined, it is possible to determine the internal forces. For two-
dimensional structures, the important forces are shears, moments, and axial forces. Two 
approaches are commonly considered by structural engineers. One of the approaches is to cut the 
structure at multiple locations, calculate the internal forces, and then calculate the internal force 
diagrams from these section cuts. An alternative approach is to use the differential relations 
between load, shear, and moment derived in Section 2.3. The following text illustrates these 
approaches. 

2.6.1. Shear and moment diagrams by sectional cuts 

We return to the example of Figure 2.12, with the assignment to calculate and plot the variations 
of shear and moment along the beam span, commonly known as the shear and moment 
diagrams.  

The solution for the reactions is shown in Figure 2.12, and we copy those solutions into 
Figure 2.14. To write the algebraic expressions for the shear and moment diagrams, we begin at 
a convenient location, in this case point A at the left end of the beam, and draw a FBD extending 
a distance x to the right of that point. Summing forces and moments, we can write the algebraic 
expressions for the shear and moment along span AB. The discontinuity in loading at point B 
requires that we draw a new FBD, this time extending from A through B and extending a 
distance x beyond B. (Notice that we are redefining the variable x.) Again summing forces and 
moments, we obtain expressions for the shear and moment along span BC. 

The shear and moment diagrams are plotted at the bottom of Figure 2.14. Notice that the sign 
convention for the shear and moment diagrams are always shown next to the diagrams. The 
convention used in this reader is shown in the figure. Notice that, in the solution of the shears V 
and moments M for each FBD, we have consistently drawn V and M in the positive directions. 
By so doing, the algebraic expressions have the correct signs for plotting in the shear and 
moment diagrams. It can be instructive to also show the orientation of curvature in the moment 
diagrams. Although this is redundant with the sign convention shown to the left of the diagram, it 
is convenient to be able to sketch the direction of curvature, as we will use this later in sketching 
deflected shapes. 

 



CE 120 Reader  

 Page 2.12  

 
Figure 2.14 Shear and moment diagrams by section cuts. 

2.6.2. Shear and moment diagrams using relations between load, shear, and moment 

Section 2.3 derived differential relations between load w, shear V, and moment M. We repeat 
those relations here.  

݀𝑉𝑉
ݔ݀ = െ𝑤𝑤(ݔ) (2.3) 

ܯ݀
ݔ݀ = 𝑉𝑉(ݔ) (2.4) 

It is important to understand the physical meaning of these two equations. Specifically, Eqs. (2.3) 
and (2.4) state the following: 

• The slope of the shear diagram at any point is equal to the negative of the externally 
applied distributed load at that point; and 

• The slope of the moment diagram at any point is equal to the shear at that point. 
Consequently, the moment is maximum (zero slope) where the shear is zero. 
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If we integrate both sides of Eqs. (2.3) and (2.4) as was done in Section 2.3, we can also state 
the following:  

• The change in shear between any two points along a member is equal to the negative of 
the area of the loading between those two points; and 

• The change in moment between any two points a long a member is equal to the area of 
the shear diagram between those two points.  

 
These observations provide us very important tools for drawing shear and moment diagrams 

without having to take multiple section cuts as was done in the example of Figure 2.14. To 
illustrate the procedure, we repeat the example of Figure 2.14 in Figure 2.15, with the following 
main points: 

• Shear diagram: Using the adopted sign convention, the shear starts at -1.25k. If there is 
any question about the direction of the shear diagram, draw a FBD, as shown to the right 
of the shear diagram. To the right of point A, the shear is acting upward, which is defined 
as negative shear. Shear is the integral of the loading. Therefore, from A to B there is no 
change in the shear. At point B, the concentrated reaction causes a 6.25k change in the 
shear, resulting in 5k shear force just to the right of point B. See the FBD of point B to 
demonstrate the sign of the shear force. Along BC, the load is 1 klf, so the shear diagram 
has to have a negative slope of -1 kip per foot. Alternatively, we can note that the change 
in shear along BC is the negative of the area of the loading diagram, or -1 klf x 5 ft = -5k. 
Because the load is constant along BC, the slope of the shear diagram is constant along 
BC. Note that the shear reaches 0k at point C, as it must at the free end. 

• Moment diagram: Along AB, the shear is constant, therefore the slope of the moment 
diagram is constant. The total change in moment along AB is the area under the shear 
diagram, resulting in moment equal to -12.5 k-ft at point B. Along BC, the change in 
moment diagram again must be equal to the area of the shear diagram along BC, resulting 
in zero moment at point C, as required at the free end. Note that the shear is greatest near 
point B and gradually reduces to zero at point C. Therefore, the slope of the moment 
diagram must be steepest at point B and must gradually reduce to zero at point C. It is 
important to be able to draw the slope of the moment diagram correctly along the span. 
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Figure 2.15 Shear and moment diagrams using relations between load, shear, and 

moment. 
   

2.7. DEFLECTED SHAPES  

Serviceability requirements usually require that deflections be limited to allowable values that 
are specified as part of the building code or as part of building-specific performance 
requirements. Therefore, structural engineers need to be able to calculate deflections and verify 
that calculated values do not exceed the allowable values. We will consider methods for 
calculating deflections, and methods for determining allowable values, later in this reader.  

In the present section, we are interested only in being able to sketch deflected shapes, without 
attempting to calculate actual deflection values. This skill is important for several reasons: 

• It gives the engineer a sense of the direction of displacements. This can be important for 
checking analysis results obtained from computer analyses.  

• It gives a sense of the direction of curvature, so that locations of concrete beam cracking 
and requirement placement of reinforcement can be identified. 

• It identifies approximate locations of points of inflection; this can be useful for 
approximate analysis of statically indeterminate structures.  

2.7.1. Curvature in beams and columns 

In beams and columns of usual proportions, deflections are primarily due to flexural curvature. 
Effects of shear and axial deformations can usually be ignored without serious impact on the 
final answer (although exceptions can be found). Here we consider only flexural curvature. 
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Curvature is defined as the rate of change of angle along the length of a flexural member. 
Referring to Figure 2.16, curvature is defined as  

ߢ =
ߠ݀
 (2.5) ݔ݀

For linear-elastic response, we can relate curvature ., moment M, and flexural rigidity EI by  

ߢ =
ߠ݀
ݔ݀ =

ܯ
 𝐼𝐼ܧ

(2.6) 

 

 
Figure 2.16 Flexural curvature of a beam. 

2.7.2. Rules for sketching deflected shapes 

The following rules are applied to sketching deflected shapes: 
1. Ignore axial and shear deformations (actually, assume them to be zero). 
2. The sense of curvature must be consistent with the sign of the moment. 
3. The boundary conditions must be satisfied.  
4. Rigid joints between members should not change angle in the deflected position. 

 
Rule 3 warrants additional discussion. As shown in Figure 2.17, a member framing into a fixed 
support is not permitted to displace or rotate at that end. A member framing into a pinned support 
is permitted to rotate at the support, but not permitted to displace in any direction. A member 
framing into a roller support is permitted to rotate and translate parallel to the roller direction, but 
it is not permitted to displace perpendicular to the roller direction. 
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Figure 2.17 Requirements for satisfying boundary conditions.  

2.7.3. Examples of deflected shape sketches 

Some examples of sketching deflected shapes follow.  

 
Figure 2.18 Deflected shape for beam of Figure 2.15. 
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Figure 2.19 Deflected shape for beam. Note the cantilever segment has no moment and, 
therefore, no curvature (it remains straight). 

2.8. FRAMES 

Frames are assemblies of beams and columns. Analysis of frames follows the same procedures 
used for beams, but the details are somewhat more complicated because of the two-dimensional 
nature of frames versus the single dimension of beams.  

Figure 2.20 illustrates the analysis of a frame under vertical loads, including determination of 
reactions; axial force, shear, and moment diagrams; and deflected shape. The following points 
are worth consideration: 

• Determinacy and stability: The checks here are the same as were used for beams. 
• Reactions: Similar to procedures for beams. 
• Internal forces: Note that the shear in the beam causes axial force in the supporting 

column. Thus, in the “exploded diagram” of the system (third diagram from the top), the 
12k beam shear and the 12k external load combine to produce 24k axial compression in 
the column. 

• P-V-M diagrams: Be certain to show the convention for axial force. Here we take tension 
as positive axial force. The shear convention, also shown, is consistent for beams and 
columns, regardless their inclination. The moment convention, however, is ambiguous for 
beams and columns, depending on the direction the moment convention indicator is 
rotated. It can be a good idea to sketch the curvature, as is done here.  

• Deflected shape: Sketching the deflected shape of a frame can take some practice and 
trial and error iterations. Important aspects of this deflected shape are 1) the horizontal 
deflections of the beam-column joints are equal, 2) the vertical deflection of the beam-
column joints is zero, 3) the 90-degree angles at the beam-column joints are maintained 
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in the deformed shape, 4) the columns are straight because there is no moment for this 
applied loading, and 5) the two support column ends remain in contact with the “ground.”   

 

 
Figure 2.20 Frame under vertical loads. 
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Figure 2.21 solves the same frame under lateral loads.  
 

 
Figure 2.21 Frame under lateral loads.  

2.9. SUPERPOSITION OF EFFECTS 

The principle of superposition states that the effects of individual loadings can be added to 
obtain the combined effect for combined loadings. The principle of superposition can be used to 
calculate reactions, internal forces and moments, and deflections. Figure 2.22 illustrates the use 
of the principle for the determination of beam moments under the action of a concentrated load 
and a uniformly distribute load. Figure 2.23 illustrates the solution of a frame under combined 
vertical and lateral loading by superimposing results from the individual loads (see Figure 2.20 
and Figure 2.21). 
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Figure 2.22 Illustration of the principle of superposition for determination of moments. 
 

 
Figure 2.23 Solution of moment diagrams for combined vertical and lateral loading of a 

frame. 
There are two important conditions for which the principle of superposition does not hold:  
1) It does not hold for structures whose geometry changes significantly under imposed 

loads; and  
2) It does not hold for structures whose materials respond in the nonlinear range under either 

the individual or the combined loadings.  
The first condition is almost always satisfied for properly designed beams and frames, but it is 
generally not satisfied for cable structures whose geometry depends on the loading. The second 
condition strictly is not satisfied for design earthquake loadings because structures may well 
yield under such loads. Regardless, it is common to use the principle of superposition even for 
earthquake loadings even if the required condition of linearity is not satisfied.  
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2.10. FRAME EXAMPLES 

Example 1: Find the reactions, internal force diagrams, and displaced shape of the frame shown. 
 

 
Determination of the displaced shape may require some iterations, as it may not be 

immediately obvious how to make the shape compatible with the moment diagram and the 
boundary conditions. In Attempt #1, the curvature of the beam is imposed. It is immediately seen 
that the left column is pointing away from the lower left support, which is incorrect. In Attempt 
#2, the left column is held in place and the beam curvature is imposed, resulting in uplift of the 
right end of the beam relative to the right-hand column, which is incorrect. In Attempt #3, we 
rotate the structure to the right to bring the upper right-hand pins back into contact. Checking, the 
members are on their supports, the columns are straight as required because there is no moment 
in them, and the rigid corner in the upper left retains its right angle. This is the correct displaced 
shape.  
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                   Attempt #1             Attempt #2          Attempt #3 

 
 

Example 2: Reconsider the frame of example 1, but with lateral force wL applied as shown. 
Determine the reactions, internal forces, and displaced shape.  

 
The reactions are 

obtained by sequentially 
summing moments about the 
lower left support, about the 
lower right support, 
recognizing that the shear in 
the right-hand column is 
zero, and summing forces in 
the horizontal direction to 
obtain the left-hand 
horizontal reaction. 

 
 

Calculate moments, shears and axial loads. 
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Example 3: Combine Gravity and Lateral Loads 
 
Superpose results of Examples 1 and 2. 
 

 
 

Example 4: Frame with inclined member 
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Draw Moment Diagram 

 
 

Determine Shear and Axial Diagrams (Resolve forces at angle.) 

� � � � kNkNVkNkNP 69.1515.26
5
392.2015.26

5
4

====  

Joint Equilibrium Inclined Member (Axial and Shear) 

 
  

 80 
 

53.85 kN 

66.15 
 

40 
 

53.85 kN 

53.85 kN FBD at 
 40 

53.85 13.85 

M=169.3 kNm 
=53.85(5) – 40(2.5) 

26.15 kN 

138.5 
 26.15 kN 

26.1
 

138.5 
 

FBD at 
 

20 
 

66.15 
 

M=84.2 kNm 
=66.15(1.5) – 20(0.75) 

46.1
 

2.5 

138.5 kNm 
169.3 

 

84.2 kNm 

Maximum Moment somewhere in here. 

Moment Diagram (Check and complete!) 

 

 

52.92 
 

40 
 26.15 kN 

138.5 
 

V 

20.92 

P 

138.5 
 

3 
4 5 15.69 

24 
 

32 
 

39.69 
 



CE 120 Reader  

 Page 2.25  

Shear Diagram  Axial Force Diagram 

 
 

Note that in the inclined member the shear does not reduce to zero. Therefore, the maximum 
moment does not occur along the length but instead is at the top end of the member (138.5 kNm).  
The shear diagram has a negative slope so our moment diagram shape is correct. 

 
Example 5: Gable-frame with three hinges. 

 
 
Types of distributed load on inclined member: 
 

1. Load per unit length, e.g. dead load 

 
 

2. Projected load, e.g. live and snow load 

 
 

 Area=Mmax=181.2 kNm 53.85 kN 

15.69 kN 
-20.92 kN 

-53.85 kN 
compression -52.92 kN 

26.15 kN 

36.69 kN 
6.73 m 

20'

12'

12'

16' 16'
Single frame

20'

12'

12'

16' 16'

20'

12'

12'

16' 16'
Single frame

L
w

Total load = wL

L
w

Total load = wL

L

w
Total load = wL cos ԧ

ԧ
L

w
Total load = wL cos ԧ

ԧ
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3. Normal load, e.g. wind load 

 
 
Dead load analysis 
 

 

 

L
w

Total load = wL
(normal to member)

L
w

Total load = wL
(normal to member)

500 lb/ft

H o H
V V

ȈMo=(0.5)(20)(8)+(0.5)(20)(24)-V(32)=0
ĺ V=10 kips

+

(500)(20) (500)(20)

H

p

V=10

(500)(20) H

ȈMp=-(0.5)(20)(8)+10(16)-H(24)=0
ĺ H=3.33 kips

+

500 lb/ft

H o H
V V

ȈMo=(0.5)(20)(8)+(0.5)(20)(24)-V(32)=0
ĺ V=10 kips

++

(500)(20) (500)(20)

H

p

V=10

(500)(20) H

ȈMp=-(0.5)(20)(8)+10(16)-H(24)=0
ĺ H=3.33 kips

++

Column

3.33 k
10 k

cos ԧ=4/5
sin ԧ=3/5

(3.33)(12)=40 k-ft

3.33 k 40 k-ft
V

ȈFx=-N+(3.33)(4/5)+(10)(3/5)=0 ĺ N=8.67 kips
ȈFy=-V-(3.33)(3/5)+(10)(4/5)=0 ĺ V=6.0 kips

3.33 k
10 k

Joint
(differential length)

10 k

ԧ N

xy

ԧ
3.33 k ԧ 10 k

Decompose forces

Roof

500 k/ft

6 k

8.67 k

3.33 k
0

Resolve distributed load
dx

w dx ԧw sin ԧ dx

w co
s ԧ dx

w co
s ԧ

w sin
 ԧ

+

40 k-ft

40 k-ft

0

6 k 8.67 k40 k-ft

400 lb/ft

+ 300 lb/ft
2 k

2.67 k
=

Column

3.33 k
10 k

cos ԧ=4/5
sin ԧ=3/5

(3.33)(12)=40 k-ft

3.33 k 40 k-ft
V

ȈFx=-N+(3.33)(4/5)+(10)(3/5)=0 ĺ N=8.67 kips
ȈFy=-V-(3.33)(3/5)+(10)(4/5)=0 ĺ V=6.0 kips

3.33 k
10 k

Joint
(differential length)

10 k

ԧ N

xy

ԧ
3.33 k

ԧ
3.33 k ԧ 10 kԧ 10 k

Decompose forces

Roof

500 k/ft

6 k

8.67 k

3.33 k
0

Resolve distributed load
dx

w dx ԧw sin ԧ dx

w co
s ԧ dx

w co
s ԧ

w sin
 ԧ

+

40 k-ft

40 k-ft

0

6 k 8.67 k40 k-ft

400 lb/ft

+ 300 lb/ft
2 k

2.67 k
=
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Internal Force Diagrams 

 
 

Live Load Analysis 

 

-10

-10
-8.67

-2.67

AOS: axis of symmetry

N.F.D.
[kips]

[-ive]=compression

3.33

3.33

6 2

S.F.D.
[kips]

Signs as indicated

AOSS: axis of skew symmetry

15'

40

AOS: axis of symmetry

B.M.D.
[kips-ft]

Signs as indicated
on compression side

40

5

(0.4)(20)2/8=20

10'

10'

Note:

-10

-10
-8.67

-2.67

AOS: axis of symmetry

N.F.D.
[kips]

[-ive]=compression

3.33

3.33

6 2

S.F.D.
[kips]

Signs as indicated

AOSS: axis of skew symmetry

15'

40

AOS: axis of symmetry

B.M.D.
[kips-ft]

Signs as indicated
on compression side

40

5

(0.4)(20)2/8=20

10'

10'
(0.4)(20)2/8=20

10'

10'

Note:

500 lb/ft

H o H
V V

ȈMo=(0.5)(32)(16)-V(32)=0
ĺ V=8 kips

+

H

p

V=8

(500)(16)
H

ȈMp=-(0.5)(16)(8)+8(16)-H(24)=0
ĺ H=2.67 kips

+

500 lb/ft

H o H
V V

ȈMo=(0.5)(32)(16)-V(32)=0
ĺ V=8 kips

++

H

p

V=8

(500)(16)
H

ȈMp=-(0.5)(16)(8)+8(16)-H(24)=0
ĺ H=2.67 kips

++
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Internal Force Diagrams 

 

Column

2.67 k
8 k

cos ԧ=4/5
sin ԧ=3/5

(2.67)(12)=32 k-ft

2.67 k 32 k-ft
V

ȈFx=-N+(2.67)(4/5)+(8)(3/5)=0 ĺ N=6.93 kips
ȈFy=-V-(2.67)(3/5)+(8)(4/5)=0 ĺ V=4.8 kips

2.67 k
8 k

Joint
(differential length)

8 k

ԧ N

xy

ԧ
2.67 k ԧ 8 k

Decompose forces

32 k-ft

Column

2.67 k
8 k

cos ԧ=4/5
sin ԧ=3/5

(2.67)(12)=32 k-ft

2.67 k 32 k-ft
V

ȈFx=-N+(2.67)(4/5)+(8)(3/5)=0 ĺ N=6.93 kips
ȈFy=-V-(2.67)(3/5)+(8)(4/5)=0 ĺ V=4.8 kips

2.67 k
8 k

Joint
(differential length)

8 k

ԧ N

xy

ԧ
2.67 k

ԧ
2.67 k ԧ 8 kԧ 8 k

Decompose forces
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Roof
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4.8 k

6.93 k

2.67 k
0

Resolve distributed load
dx

w cos ԧ dx
ԧ
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ԧ

+
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0
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w cos2 ԧ dx
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Roof
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0

Resolve distributed load
dx
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4

(0.32)(20)2/8=16

10'
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10'
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Note:
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Wind Load Analysis 

 
 

 

500 lb/ft

H1 o H2

R1 R2

ȈMo=(10)(4/5)(8)+(10)(3/5)(18)-R2(32)=0
ĺ R2=5.375 kips

+

ȈMp=(10)(10)-2.625(16)-H1(24)=0
ĺ H1=2.417 kips

+(0.5)(2
0)=10 k

18'

ȈMA=(10)(4/5)(24)-(10)(3/5)(18)-R1(32)=0
ĺ R1=2.625 kips

+

A

Check: -(10)(4/5)+5.375+2.625=0.0 ĺ OK

H1

p

H2

2.625 k

5.375 k

10 k

H2

(10)(4/5)-2.625=
5.375 k

5.375 k
H2

H2:5.375=16:24
ĺH2=(5.375)(16/24)=3.583 kips

500 lb/ft

H1 o H2

R1 R2

ȈMo=(10)(4/5)(8)+(10)(3/5)(18)-R2(32)=0
ĺ R2=5.375 kips

++

ȈMp=(10)(10)-2.625(16)-H1(24)=0
ĺ H1=2.417 kips

++(0.5)(2
0)=10 k

18'

ȈMA=(10)(4/5)(24)-(10)(3/5)(18)-R1(32)=0
ĺ R1=2.625 kips

++

A

Check: -(10)(4/5)+5.375+2.625=0.0 ĺ OK

H1

p

H2

2.625 k

5.375 k

10 k

H2

(10)(4/5)-2.625=
5.375 k

5.375 k
H2

H2:5.375=16:24
ĺH2=(5.375)(16/24)=3.583 kips

Column

2.417 k
2.625 k

cos ԧ=4/5
sin ԧ=3/5

(2.417)(12)=29 k-ft

2.417 k 29 k-ft
V

ȈFx=N-(2.417)(4/5)+(2.625)(3/5)=0 ĺ N=0.358 kips
ȈFy=-V+(2.417)(3/5)+(2.625)(4/5)=0 ĺ V=3.55 kips

2.417 k
2.625 k

Joint
(differential length)

2.625 k

ԧ
N

xy

ԧ
3.583 k

ԧ5.375 k

Decompose forces

Roof

500 k/ft

3.55 k

0.358 k

0.358 k

0.5(20)-3.55
=6.45 k

29 k-ft

29 k-ft

0

3.583 k

5.375 k

5.375 k

3.583 k
5.375 k

5.375 k

3.583 k

3.583 k

3.583(12)=
43 k-ft

43 k-ft

4.3 k

3.225 k

2.866 k
2.150 k

N=-3.225-2.866=-6.091 k
V=-4.3+2.15=-2.15 k

Column

2.417 k
2.625 k

cos ԧ=4/5
sin ԧ=3/5

(2.417)(12)=29 k-ft

2.417 k 29 k-ft
V

ȈFx=N-(2.417)(4/5)+(2.625)(3/5)=0 ĺ N=0.358 kips
ȈFy=-V+(2.417)(3/5)+(2.625)(4/5)=0 ĺ V=3.55 kips

2.417 k
2.625 k

Joint
(differential length)

2.625 k

ԧ
N

xy

ԧ
3.583 k

ԧ5.375 k

Decompose forces

Roof

500 k/ft

3.55 k

0.358 k

0.358 k

0.5(20)-3.55
=6.45 k

29 k-ft

29 k-ft

0

3.583 k

5.375 k

5.375 k

3.583 k
5.375 k

5.375 k

3.583 k

3.583 k

3.583(12)=
43 k-ft

43 k-ft

4.3 k

3.225 k

2.866 k
2.150 k

N=-3.225-2.866=-6.091 k
V=-4.3+2.15=-2.15 k
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Internal Force Diagrams 

 
 

Displaced Shape of Gable Frame 

 
 

 

1) Dead
2) Live Similar Shape: Members can not change length, so must sway out

3) Wind Load

IP: Inflection PointIP

1) Dead
2) Live Similar Shape: Members can not change length, so must sway out

3) Wind Load

IP: Inflection PointIP
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3.  Analysis of Truss Structures 

3.1. TRUSS STRUCTURES 

Truss structures are frameworks of pin-connected members. In a simple truss, the truss members 
are arranged in triangular patterns. The simplest of such truss structures comprise three members 
with three joints and two supports (Figure 3.1a). Simple trusses can be constructed from this 
simplest truss by adding one joint and two members (Figure 3.1b). Other truss types can be 
assembled by combining simple trusses, as in the compound truss, or using other complex truss 
configurations. Our main interest here is simple trusses, as these are the most common in current 
practice. 

Trusses can be made of wood or steel. Reinforced concrete trusses are unusual. 
 

 
Figure 3.1 Some idealized trusses. 

Trusses were very common for bridges in the past, but are less common now. Today they are 
more commonly used in residential construction, both for roof structures and prefabricated floor 
joists (Figure 3.2), as the lateral bracing of buildings (Figure 3.3), and for towers. 

  
(a) (b) 

Figure 3.2 Wood trusses. (a) roof truss. (b) floor truss-joist. 
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Figure 3.3 Steel braced frame (actually a truss) as lateral-force-resisting system in 

building. 
In an idealized truss, the members are connected by pins that do not transmit moment. In 

many real trusses, however, the members are connected by hardware that enables moment 
transfer (Figure 3.4). Most trusses do not develop significant deformations, such that the 
rotations and resulting moments at these connections are relatively small. In practice, such 
connections are commonly treated as if they are ideally pinned, without significant errors in the 
resulting member forces.  

 

  
(a) (b) 

Figure 3.4 Lift bridge, Sacramento River Delta. (a) Overall view. (b) Typical connection. 
Ideally, loads are only applied at the joints of trusses. With this assumed loading, and the 

assumption of pinned connections, truss members only resist axial forces, either tensile or 
compressive. In residential construction, however, it is not unusual for floor and roof trusses to 
support some distributed roof or floor loads between the joints, resulting in bending moments in 
the members that should be considered in design.  

This reader often considers structures as two-dimensional objects (it is a convenience when 
discussing this subject on a 2-dimensional sheet of paper or computer screen). However, actual 
structures exist in three dimensions. Figure 3.5 depicts a bridge truss structure in three 
dimensions. The type of truss depicted on either side of the deck is known as a Pratt truss (its 
diagonals slope downward toward the center). (See http://en.wikipedia.org/wiki/Truss_bridge for 
a summary of different bridge truss types.) The floor beams of the deck are located such that they 
transmit their reactions at the joints along the bottom chord of the truss. Under this loading, the 
top chord of each truss is in compression. The compressive force will cause the pin-ended 

http://en.wikipedia.org/wiki/Truss_bridge
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compression chord to buckle unless it is braced by another truss that connects the top chords of 
the two trusses. The trusses also require some lateral bracing to prevent the entire truss from 
flopping over on its side. Sway bracing is provided to support the trusses against this failure 
mode.  

 
Figure 3.5 Parts of a truss bridge structure. (Science and Industry, Members of a Truss 

Bridge by Benj. F. La Rue, Home Study Magazine, Published by the Colliery 
Engineer Company, Vol 3, No. 2, March 1898, pages 67-68.) 

3.2. STATIC DETERMINACY 

For each joint in a truss, two equations can be written, specifically ∑𝐹𝑥 = 0 and ∑𝐹𝑦 = 0. Thus, 
the number of equations is equal to 2j, where j = the number of joints. For each member there is 
one unknown force, plus there are unknown forces for each reaction. Defining r = number of 
members plus number of unknown reactions, we can write that the degree of static indeterminacy 
is 

𝑛 = 𝑟 − 2𝑗 (3.1) 

where n = degree of static indeterminacy 
r = number of unknown forces = number of members plus number unknown reactions 
j = number of joints in the truss.   

 

3.3. STABILITY 

A truss structure having n < 0 [see Eq. (3.1)] is classified as being unstable. Similar to beams and 
frames, however, one must also check whether the reactions are co-linear (such that the truss 
cannot resist forces perpendicular to the co-linear direction), whether all of the reactions point to 
a single point (in which case the truss cannot resist moment about that point), or whether there is 
an internal instability. Figure 3.6 shows five examples, with the following key points 

a) This truss structure has 5 joints, 7 members, and three unknown reactions. It is stable and 
determinate. 

b) This truss structure is indeterminate to the 1st degree. 
c) Even though n = 0, this truss structure is unstable because the reactions are all co-linear. 

In this case, the truss cannot resist horizontal forces. 
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d) In this structure, the projection of all of the reactions coincides at point o. Thus, this 
structure cannot resist moment about point o, and is therefore unstable. 

e) Although n = 0, this truss is unstable because panel bcfg lacks a diagonal member and 
will form a mechanism. The reason this is unstable even though n = 0 is because panel 
cdgh has an extra diagonal. That panel actually is indeterminate, but that is not relevant 
given that the structure as a whole is unstable.  

 

 
 
 

Figure 3.6 Stable and unstable truss examples. 

3.4. TRUSS ANALYSIS 

There are two traditional methods of analysis for statically determinate trusses, the method of 
joints and the method of sections. These are illustrated in the following sections. 
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3.4.1. Method of joints 

The method of joints is based on the requirement that all joint must be in equilibrium. The 
method of joints can be an efficient method when it is required to find the forces in all members 
of a truss. The procedure generally proceeds along the following lines: 

1. Find the reactions. 
2. Proceed to find the member forces working joint by joint. 
3. Check that the joints are in equilibrium with the previously calculated reactions.  
 
Figure 3.7 presents an example. 

 

 

Figure 3.7 Truss structure solution by method of joints. 
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3.4.2. Method of sections 

The method of sections is based on the requirement that all free body diagrams (FBDs) must be 
in equilibrium. By strategically selecting FBDs, it may be possible to isolate unknown forces in 
individual members and solve them directly. The method of sections can be an efficient method 
when it is required to find the forces in all members of a truss, and it can be especially efficient if 
only a few forces are required. The procedure generally proceeds along the following lines: 

1. Find the reactions. Note that sometimes it is not necessary to find the reactions in order to 
find the member forces.  

2. Create FBDs to isolate member forces and use equilibrium to solve for them.  
 

Figure 3.8 and Figure 3.9 present examples.  
 

 
Figure 3.8 Truss structure solution by method of sections. Example 1 
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Figure 3.9 Truss structure solution by method of sections. Example 2. 
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4.  Analysis of Cable Structures 

4.1. CABLE STRUCTURES 

Cables are used in many engineered structures. They are the main load carrying elements in 
suspension bridges and cable-stayed bridges (Figure 4.1). They are used as elements of tensile 
membranes, which are a structural form for long-span roofs. In addition, they are used for 
permanent guys on structures such as derricks and radio towers and for temporary guys during 
erection. Cables in permanent structures are usually made of steel, and usually comprise smaller 
steel wires bound together to form a larger cable. Cables (or rope) can also be made of natural or 
synthetic fibers.  
  

  
Figure 4.1 Suspension bridge (Golden Gate Bridge) and cable-stayed bridge (Millau 

Viaduct, France. 
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Figure 4.2 Tensile membrane structure (Denver International Airport). 

4.2. BEHAVIOR AND EQUILIBRIUM OF CABLES 

Cables resist forces in pure axial tension only. Thus, a cable of negligible weight and supporting 
a single concentrated load must take the form of two line segments (Figure 4.3). If the load 
moves along the cable, the cable must change shape such that it remains in tension without shear 
or moment (Figure 4.3). We assume that the cable is sufficiently flexible to change shape 
without developing moment. This is a unique characteristic of cables that we do not find for 
beams, frames, or trusses. 
 

 
Figure 4.3 Changing shape of a cable as a function of the position of applied loads.  

Another observation we can make about cables is that, at the point of external load 
application, the vertical forces in the cable must sum to balance the applied load. Thus, in Figure 
4.3, the sum of the vertical components of Fab and Fbc must be equal to W. Also, if the applied 
forces are only vertical, which is a common case, then the horizontal components of Fab and Fbc 
in Figure 4.3 must be equal and opposite. In general, a horizontally spanning cable supporting 
vertical loads will develop a component of cable tension acting in the horizontal direction and, 
consequently, will require horizontal reactions to support the cable tension. The shallower the 
sag in the cable, the greater the horizontal reaction.  
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In a traditional suspension bridge (e.g., the Golden Gate Bridge), the horizontal component 
of tension in the main cable is resisted by an external anchorage (Figure 4.4a). In this type of 
bridge, the towers and anchorages are constructed first, then cable is spun between anchorage 
blocks, and finally the deck segments are lifted into place. In a self-anchoring suspension bridge 
(e.g., the Eastern replacement span of the San Francisco-Oakland Bay Bridge), the horizontal 
component of tension in the main cable is resisted by compression in the bridge deck (Figure 
4.4b). This requires that the deck be constructed on falsework (which is later removed) before 
the cable is spun. A cable-stayed bridge (Figure 4.4c) supports loads by cables that extend 
directly from the tower, with the horizontal load resisted by the deck in compression. 
Construction begins with the main towers, and then segments of the deck are individually 
constructed and supported by cables, starting at the tower and building outward without 
falsework. 
 

 
Figure 4.4 Different types of cable-supported bridges. 

4.3. ANALYSIS OF CABLES UNDER CONCENTRATED LOADS 

When a cable of negligible weight supports concentrated loads, it will form into a shape 
comprising multiple line segments. For example, consider the cable of Figure 4.5. For this cable, 
there are nine unknowns, these being four reactions at the supports, three cable forces, and the 
elevations h1 and h2 at the loading points. We can write two equations of force equilibrium at 
each of points a, b, c, and d, giving us eight equations, or one short of the number of unknowns. 
To complete the problem, we will need to know something about the geometry of the cable. If 
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we know the length of the cable, we can use the Pythagorean theorem to relate the total length of 
the cable to each of the segment lengths, written in terms of the horizontal positions of each of 
the points. This type of problem is somewhat onerous to solve. A more tractable solution is 
obtained if the elevation of the cable at one of the loading points is known instead of the cable 
length. This latter approach is assumed for all of the problems in this reader. Once the cable is 
solved, locating all of the points, the length can be determined readily. 

Figure 4.5 shows the complete solution of the cable reactions, forces, and length for the case 
where h1 = 15 ft. The solution is completed as follows: 

1. Moments and forces are summed on the FBD of the entire structure, producing Rdy 
and Ray.  

2. To solve for the horizontal reaction at a, we create a FBD of segment ab and sum 
moments about point b. The cable tension Tab is then equal to the vector formed by 
Rax and Ray. Because the tension force must be aligned with the cable, we can also 
solve Tab in terms of the geometry of the cable, from which we can see how the 
tension force varies with the sag h1.  

3. To solve the cable force Tbc, create a FBD of segment abc and solve for the force. 
Note that the height h2 is determined by equilibrium. 

4. Check that the cable for Tbc is in equilibrium with the reactions at d. OK. 
5. Show final solution on a sketch of the cable. The cable length is obtained using the 

Pythagorean theorem. 
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Figure 4.5 Example 1: Cable supporting concentrated forces. 
 
Some key points are: 

1. The horizontal component of the cable force is constant provided all externally 
applied forces are vertical. 

2. Decreasing the sag increases the cable tension and the horizontal reactions. 
3. The shape (for example, h2) is determined by equilibrium. 

 
The next example considers a cable with supports at different elevations (Figure 4.6). This 

variation complicates the solution mildly, as the vertical reactions cannot be solved directly but 
must be solved using simultaneous equations. Overall, however, the approach is the same as for 
Example 1.  
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Figure 4.6 Example 2: Cable supporting vertical forces. 

4.4. ANALYSIS OF CABLES UNDER UNIFORM HORIZONTALLY DISTRIBUTED 
LOADS 

Cables provide an effective means of supporting uniformly distributed loads over long spans, as 
is done in suspension bridges. We first need to establish the shape of a cable under uniform 
horizontally distributed load. Consider the cable shown in Figure 4.7, with x, y = (0, 0) at point 
of zero slope. Summing moments about point “o”, we arrive at the equation for the shape of the 
cable as 

ݕ =
𝑤𝑤
2𝐹𝐹௛

 (4.1) 2ݔ

Thus, a cable under uniform horizontally distributed load is in the shape of a parabola. 
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Figure 4.7 Cable under uniform horizontally distributed load. 
 

We can use statics to analyze complicated suspension bridge structures. In the following 
pages, we conduct an approximate analysis of the Golden Gate Bridge. (The main approximation 
is ignoring the weight of the cable.) Figure 4.8 shows the geometry and loading. The bridge deck 
is found to weigh 25.2 klf, or 12.6 klf per cable. The cable itself weighs 3.4 klf. Although not 
negligible in the final design, for a preliminary analysis we will ignore the weight of the cable.   

 

 
Figure 4.8 Geometry and loading of the Golden Gate Bridge. 
 

We first analysis for the cable forces in the center span. Summing forces in the vertical 
direction produces the vertical force in the cable just to the right of the tower at point b. At 
midspan, the cable must be horizontal, so the only unknown is the horizontal force To. Summing 
moments about point b produces the force To at mid-span. Because there are no horizontal 
external forces applied to the bridge, the horizontal force in the cable just to the right of the 
tower at point b must also be To.  
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Figure 4.9 Cable forces in the center span of the Golden Gate Bridge. 
 

We next solve for the geometry of the center span. This is done by summing moments about 
point “o” along the span, as shown in Figure 4.10. The shape is a parabola. 

 
Figure 4.10 Geometry of the center span of the Golden Gate Bridge. 
 

We next solve for the forces in the side span, as shown in Figure 4.11. We do not want the 
tower to resist forces along the longitudinal axis of the bridge, so the system should be designed 
such that the horizontal component of the cable force just to the left of point b is also To = 59,000 
kips, thereby balancing the horizontal force to the right of point b. Summing moments about 
point a, we calculate the vertical force in the cable to the left of point b. The cable tension to the 
left of point b is obtained as the vector sum of the horizontal and vertical forces. At the 
anchorage, the horizontal component of the cable force remains 59,100 kips. We can find the 
vertical force at point a by summing forces in the vertical direction. The cable tension at the 
anchorage is also determined.  
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Figure 4.11 Forces in the side span of the Golden Gate Bridge. 
 

The geometry of the side span similarly is determined by equilibrium (Figure 4.12). We can 
differentiate the equation for the geometry to obtain the slope, which tells us the ratio of the 
vertical to horizontal cable forces at any point.  

 

 
Figure 4.12 Geometry of the side span of the Golden Gate Bridge. 
 

Now that we have solved for the cable forces, we can check the cable stresses. The maximum 
cable force is Tmax = 67,100 kips. Given the cable area of A = 1000 in.2, the cable stress is ߪ =
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67,100 1000 = 67⁄  ksi. The allowable stress for the steel used in the Golden Gate Bridge is 96 
ksi, so the design is acceptable, even including the cable self-weight. 

Tower forces are solved in Figure 4.13. We would need to know the weight w of the tower to 
complete its analysis and design. 

 

 
Figure 4.13 Tower forces in the Golden Gate Bridge. 
 

Finally, we examine the anchorage forces (Figure 4.14). The cable force is 61,700 kips. This 
includes a component in the vertical direction. Thus, the net vertical force acting on the bottom 
surface of the anchorage block is the weight W of the block minus the vertical component of 
cable tension. We would want to consult with a geotechnical engineer to determine resistance of 
the anchorage block. The resistance might involve friction along the base of the block, or a 
combination of friction and passive bearing pressure along the front face.  
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Figure 4.14 Anchorage forces for the Golden Gate Bridge. 
 

We have found that a cable assumes a parabolic shape under the action of a uniform 
horizontally distributed load. A cable subjected to its own weight and free of any other loads will 
take the form of a catenary. For most structural applications, however, the ratio of the cable sag 
to span is small, in which case the catenary shape is very close to a parabola.  
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5.  Principle of Virtual Displacements for 
Determination of Forces and Influence Lines 

5.1. INTRODUCTION 

This chapter introduces the principle of virtual displacements as a new method for the 
determination of reactions and internal forces and moments in structures. This new method can 
streamline the necessary calculations. It is also useful for construction of influence lines, which 
themselves will serve as a powerful tools for determining load patterns that produce maximum 
design effects.  

5.2. WORK AND VIRTUAL WORK 

To begin, we define work as the vector product of force and the displacement through which it 
moves (Figure 5.1). We denote work by the variable W. For a force moving through a differential 
displacement, the differential work is defined as ݀𝑊𝑊 = തܲ ή ݀ȟഥ. Integrating, we obtain the work 
as 𝑊𝑊 = ׬ തܲ ή ݀ȟഥ୼

଴ . If തܲ is a constant, then the work is simply 𝑊𝑊 = തܲ ή ȟഥ. 
 

 
Figure 5.1 Force moving through a differential displacement. 
 

Work can be either real work or virtual work. Real work is the work done by a real force (or 
moment) and the conjugate1 displacement (or rotation) produced by that force. For example, 
consider a cantilever with horizontal force Q0 at the free end (Figure 5.2). The reactions required 
for equilibrium are horizontal force H and moment M0 at the base. Load Q0 induces the 
displacements shown. Because the top displacement G is conjugate to Q0, that is, it is at the same 
location and in the same direction as Q0, the real work done by Q0 is the product Q0G. We note 
that the reactions H and M0 at the base perform no work, because there is no displacement of the 
structure that is conjugate to either H or M0. Put more simply, horizontal force H at the base of 
the structure undergoes zero horizontal displacement and therefore produces no real work; 
likewise for M0.  

 

 
1 As used here, conjugate means at the same location and in the same direction. 
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Figure 5.2 Equilibrium and deflections of a cantilever loaded laterally at its free end. 
 

In structural engineering we are mainly interested in real forces and real displacements. 
However, we will use virtual forces and virtual displacements as constructs to calculate real 
displacements and real forces (we’ll see how later). A virtual force is a force that is imagined to 
act on a structure, but it does not correspond to any real states of equilibrium arising from the 
real loads on the structure. Using the example of Figure 5.2, subjected to a real force Q0 and 
experiencing real displacement G, we could imagine a virtual moment m applied at the free end 
(Figure 5.3). Obviously, this virtual moment has nothing to do with the real equilibrium or the 
real displacements. (You may be wondering why we would do this. As we will see Chapter 6, we 
would apply virtual moment m as shown in order to calculate the rotation of the free end in the 
direction of m for a beam loaded by the real load Q0.)    

 
Figure 5.3 Introduction of a virtual force to a cantilever. 
 

Similarly, we could introduce a virtual displacement to the cantilever of Figure 5.2, as shown 
in Figure 5.4. Obviously this virtual displacement field has nothing to do with the real 
displacements. (We will see later in this chapter that imposing a virtual rotation at point a as 
shown can be used to determine the moment at point a.) 
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Figure 5.4 Introduction of a virtual displacement to a cantilever. 
 

Virtual work is work that is produced by either virtual forces or virtual displacements. It is 
work that exists “in effect” or is “imagined,” but is not real work. We denote virtual work by the 
variable 𝛿𝛿𝑊𝑊. Virtual work can be one of either (a) or (b): 

a) Virtual work produced by real forces moving through virtual (or imagined) 
displacements. We will use this for the purpose of finding the real forces (reactions, or 
internal forces and moments); 

b) Virtual work produced by virtual (or imagined) forces moving through real 
displacements. We will use this for the purpose of finding the real displacements. 

 
In this chapter, we only consider virtual work produced by real forces moving through virtual 

displacements. We will consider the case of virtual forces moving through real displacements in 
the next chapter.  

5.3. PRINCIPLE OF VIRTUAL DISPLACEMENTS 

To derive the principle of virtual displacements, we first consider the case of a virtual 
displacement and then of a virtual rotation, as follows: 

1) Consider a rigid body subjected to a virtual (or imagined) displacement vector ȟഥ. The 
virtual work is 𝛿𝛿𝑊𝑊 = ∑ పܲഥ ή ȟഥ = (∑ పܲഥ) ή ȟഥ. If a rigid body is in equilibrium, we know that 
∑ పܲഥ = ∑𝐹𝐹ത = 0. Therefore, the virtual work done is also zero, that is 𝛿𝛿𝑊𝑊 = 0.  

2) Next, consider a rigid body subjected to a virtual (or imagined) rotation vector Ʌത about an 
arbitrary point “o.” Defining the distance di from point “o” to the applied loads Pi, the 
virtual work is 𝛿𝛿𝑊𝑊 = ∑ పܲഥ ή ݀𝑖𝑖 ή Ʌത = (∑ పܲഥ݀𝑖𝑖) ή Ʌത = (ഥܯ∑) ή Ʌത. If a rigid body is in 
equilibrium, we know that ∑ܯഥ = 0. Therefore, the virtual work done is also zero, that is 
𝛿𝛿𝑊𝑊 = 0.  

Because any displacement of a rigid body can be made up of a translation plus a rotation, we 
have 𝛿𝛿𝑊𝑊 = 0 for any virtual displacement. We can thus state the principle of virtual 
displacements as follows: 

Principle of Virtual Displacements: For any rigid body in equilibrium, the work done by the 
forces acting on that rigid body as they move through any compatible set of virtual 
displacements is zero.  

To use the principle of virtual displacements, the following rules generally apply: 
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1) The virtual displacement should be a rigid body displacement, that is, one that does not 
deform the structure. Such deformations do additional work that would need to be 
considered in the solution. It is acceptable, however, for rotations to occur at any in-span 
hinges. Such hinges are locations of zero moment; hence, no additional work is done by 
the hinge.   

2) The virtual displacement should expose a single reaction or internal force whose value is 
being sought. 

3) In calculating virtual work, include the work done by all forces acting on the rigid body, 
including: 
a) External forces, including self-weight; 
b) the reactions (if the structure has been separated from its supports); 
c) and any internal forces if such internal forces have been exposed by cutting through 

the structure to create a free body diagram (FBD).  
 
Virtual work done by a concentrated load P moving through a virtual displacement G in the 

same direction as P is GW = PG��If P and G are in opposite directions, the work is -PG� If P is at an 
angle relative to G, the work is done by the component of P parallel to G. For distributed loads 
(Figure 5.5), we can integrate virtual work along beam segment ab to obtain the virtual work as  

𝛿𝛿𝑊𝑊 = න (𝑤𝑤𝑥𝑥݀ݔ) ή 𝛿𝛿ݔ
𝐿𝐿

଴
 (5.1) 

For uniformly distributed load w oriented perpendicular to the beam, the virtual work is  

𝛿𝛿𝑊𝑊 = න (𝑤𝑤𝑥𝑥݀ݔ) ή 𝛿𝛿ݔ
𝐿𝐿

଴
= න 𝑤𝑤(𝛿𝛿ݔ݀ݔ)

𝐿𝐿

଴
= 𝑤𝑤න ݔ𝛿𝛿ݔ݀

𝐿𝐿

଴
= 𝑤𝑤 × ఋܣ  (5.2) 

in which AG = area under the virtual displacement diagram along the distributed loading. 
Alternatively, it can be shown that the virtual work for uniformly distributed load perpendicular 
to a beam is  

𝛿𝛿𝑊𝑊 = න (𝑤𝑤𝑥𝑥݀ݔ) ή 𝛿𝛿ݔ
𝐿𝐿

଴
= 𝑅𝑅 × 𝛿𝛿ோ (5.3) 

in which R = the resultant of the distributed load and GR = the virtual displacement of the 
resultant R.  

 
Figure 5.5 Work done by distributed load. 
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5.4. EXAMPLES USING THE PRINCIPLE OF VIRTUAL DISPLACEMENTS 

The following examples illustrate how we can use the principle of virtual displacements.  
 
Example 1:  For the structure shown, find R1.  

 
Here we require a virtual displacement field that avoids bending the beam and that produces 

work in the unknown reaction R1 but does not produce any work by other unknown forces. The 
correct displacement field is shown. 
 

 
Figure 5.6 Example 1. 
 

The virtual work equation is written as follows: 

𝛿𝛿𝑊𝑊 = ൬െ6 ×
5
ത൰ݑ4 + 𝑅𝑅1 × തݑ + ൬െ10 ×

1
ത൰ݑ2 = 0 

 
׵ 𝑅𝑅1 =  ݏ݌݅݇ 12.5

 
We can use a similar procedure to solve for R2 = 3.5 kips. Check these results with the results 
you would obtain using equations of equilibrium. The answers should be identical.  
 
Example 2: Determine MA.  

 
The solution is obtained by cutting the beam at A to form two FBDs. Imposing a unit virtual 

displacement at point A produces rotations of each of the FBDs by amount 1/6. Thus, the 
moment on each of the FBDs, shown according to the positive sign convention used in this 
reader, produces work equal to MA/6. Note that shears VA are exposed at A, but one of them does 
virtual work 1 x VA whereas the other does virtual work -1 x VA, so no net work is done by the 
shear.  
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Figure 5.7 Example 2. 
 

𝛿𝛿𝑊𝑊 = ൬ܯ஺ ×
1
6൰ + ൬ܯ஺ ×

1
6൰ + (െ10 × 1) + ൬6 ×

1
2൰ = 0 

 
׵ ஺ܯ = 21 k-ft 

 
Example 3: Determine shear VA just to the left of the 10-kip load.  

 
The solution is obtained by cutting the beam at A to form two FBDs, and imposing a unit 

displacement such that the rotation of the left-hand FBD of the beam is equal and opposite that 
of the right-hand FBD. By having equal and opposite rotations, the virtual work done by the 
moments MA cancels, and the only unknown quantity doing virtual work is the unknown shear 
we are trying to calculate.  

 

Figure 5.8 Example 3. 
 

𝛿𝛿𝑊𝑊 = (𝑉𝑉஺ × 1) െ ൬6 ×
1
4൰ െ ൬10 ×

1
2൰ = 0 

 
׵ 𝑉𝑉஺ = 6.5 kips just to the left of the 10-kip load. 
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Example 4: Find the moment MA over the interior roller support?   

 
See solution below.    

 
Figure 5.9 Example 4. 
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Example 5: Find the shear just to the right of the interior roller support?   

 
See solution below. 

 
Figure 5.10 Example 5. 
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Example 6: Find the shear to the left of the interior roller support.   
 

 
 

Figure 5.11 Example 6. 
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Example 7: Solve for shear and moment at point A. 
 

 
Figure 5.12 Example 7. 
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Example 8: What virtual displacements are required to determine (a) the moment at B and (b) 
the horizontal reaction at A?  

 
See solution below.  

 
 

Figure 5.13 Example 8. 
 

5.5. INFLUENCE LINES 

So far we have performed the following steps in analyzing structures: 

• Given the geometry and support conditions of a structure, and 
• given the magnitude and position of the loads,   
• calculate the reactions and internal forces at locations of interest in the structure. 
 
The preceding steps apply if the magnitude and position of loads is known. This is generally 

the case for dead loads (as they are calculated based on known quantities that are fixed in both 
magnitude and position). The same may not be true for live loads, whose magnitude and position 
may vary. The structural engineer needs to determine the maximum internal forces that a live 
load can produce in a structure. In very simple structures it may be possible by inspection to 
identify how to place live loads so as to produce maximum effects, but for more complicated 
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structures a rigorous method will be required. In this section, we will introduce influence lines as 
a method for determining how to place live loads.  

An influence line is defined as the plot of the forces or moments at one point in a structure as 
a function of the position of a unit load placed anywhere in the structure.  

To illustrate the concept of the influence line, we first consider a simply supported beam 
(Figure 5.14a). We wish to calculate the influence line for the vertical reaction R1. For this 
purpose, a unit load is positioned a distance x from the left-hand support. Summing moments 
about the roller at the right-hand end, we can write 𝑅𝑅1(ݔ)ܮ െ ܮ)1 െ (ݔ = 0 ՜ 𝑅𝑅1(ݔ) = �1 െ 𝑥𝑥

𝐿𝐿
�. 

We can plot this function beneath the beam, as shown in Figure 5.14b. This plot is the influence 
line for the vertical reaction R1(x). We can repeat the exercise for the vertical reaction R2(x). The 
influence line for R2(x) is plotted in Figure 5.14c. 

 

 
Figure 5.14 Example 9: Influence lines for reactions of simply supported beam. 
 

The shape of the influence in Figure 5.14 looks like the virtual displaced shape for a beam in 
which the virtual displacement is unity at the location and in the direction of the internal force 
that we are seeking. This is explored further in Figure 5.15, where a unit virtual displacement has 
been imposed at R1(x). We can write the virtual work equation using methods presented earlier 
in this chapter as 

𝑅𝑅1(ݔ) × 1 െ 1 × 𝛿𝛿𝑥𝑥 = 0 ՜ 𝑅𝑅1(ݔ) = 𝛿𝛿𝑥𝑥 = �1 െ
ݔ
 �ܮ

 
This demonstrates the following principle: The influence line for a force or moment is equal to 
the virtual displaced shape having a unit displacement in that force or moment, provided no 
other unknown reactions or internal forces do any virtual work. (This was first expressed by the 
Muller-Breslau principle in1880.) 
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Figure 5.15 Unit virtual displacement of simply supported beam at R1(x). 
 

Example 10: Calculate the influence line for moment at center of simply supported beam. The 
solution is shown in Figure 5.16. To determine the relations between the angles and the height of 
the virtual displaced shape at the center of the beam, consider the following: 

1. The vertical displacement of AB and BC must be equal such that the shear does not 
contribute to the virtual work.  

2. Therefore, we can write: ߠ஺ × ஺஻ܮ =  .஻஼ܮ஼ߠ
3. We also know that we want ߠ஺ + ஼ߠ = 1. 
4. Solving these two equations in two unknowns, we find ߠ஺ = ஼ߠ = 0.5. 
5. Therefore, the height of the virtual displacement diagram at B is 𝛿𝛿஻ = ஺ߠ

𝐿𝐿
2

= 𝐿𝐿
ସ
. 

 
Example 11 will present an alternative way of calculating the angles.  
 

 
Figure 5.16 Example 10. 
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5.6. USE OF INFLUENCE LINES TO CALCULATE MAXIMUM LOAD EFFECTS 

The previous section introduced influence lines. In this section we demonstrate the use of 
influence lines to calculate maximum load effects. We do this through an example. 
 
Example 11: Consider the beam of Figure 5.17a. The beam is loaded by 200 plf dead load, 300 
plf live load, plus a concentrated live load if 4 kips. Calculate the maximum positive (bottom in 
tension) moment at point D. 
 

We begin by sketching a virtual displaced shape for which positive moment at D will do 
positive virtual work while no other unknown quantity does work. We give the shape a 
displacement amplitude of ݑത at point D (see Figure 5.17b). To get the influence line for positive 
moment at D, we need the total rotation at D to be equal to 1. Therefore, divide the virtual 
displacement amplitude of Figure 5.17b by the quantity ଷ

1଴
തݑ , which is the rotation at D as shown 

in Figure 5.17b. This gives us the influence line of Figure 5.17c. 
The influence line tells us that positive moment at D will be produced wherever the influence 

line for +MD is positive. Thus, we should place distributed load along CE, we should place the 
concentrated live load at point D (because the ordinate of the influence line is most positive 
there), and dead load should be placed across the entire span AE (by definition, dead load cannot 
be moved). Figure 5.17d shows the loading that will produce the greatest value of +MD.  
 

 
Figure 5.17 Example 11. 
 

We next use the principle of virtual work to calculate the moment at D, as follows: 
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Dead load: 

ftkipM D �=»¼
º

«¬
ª ��= 67.1)15)(

3
10(

2
1)10)(

3
10(

2
1)2.0(  

 
Uniform live load: 

ftkipM D �=»¼
º

«¬
ª= 50.7)15)(

3
10(

2
1)3.0(  

 
Concentrated live load: 

33.13)
3

10)(4( ftkipM D �==
 

 
Use superposition to obtain the total moment: 

𝐷𝐷ܯ = 1.67 ݇ െ ݐ݂ + 7.50 ݇ െ ݐ݂ + 13.33 ݇ െ ݐ݂ =  22.5 ݇ െ  ݐ݂
 

One can also find minimum bending moment at D, in this case by placing the dead load 
uniformly along AE, distributed live load along AC, and concentrated live load at B. The 
resulting moment is 1.67 – 5 - 13.33 = -16.7 k-ft.  

Thus, Beam AE must be designed such that it can resist bending moments at point D in the 
range of +22.50 kip-ft to –16.66 kip-ft. 
  



CE 120 Reader 

 
Page 6. 1 

6.  Principle of Virtual Forces for Determination 
of Displacements 

6.1. INTRODUCTION 

This chapter introduces the principle of virtual forces as a method for the determination of 
displacements in structures.  

6.2. WORK AND VIRTUAL WORK1 

To begin, we define work as the vector product of force and the displacement through which it 
moves (Figure 6.1). We denote work by the variable W. For a force 𝑃̅ moving through a 
differential displacement 𝑑Δ̅, the differential work is defined as 𝑑𝑊 = 𝑃̅ ∙ 𝑑Δ̅. Integrating, we 
obtain the work as 𝑊 = ∫ 𝑃̅ ∙ 𝑑Δ̅Δ

0 . If 𝑃̅ is a constant, then the work is simply 𝑊 = 𝑃̅ ∙ Δ̅. 
 

 
Figure 6.1 Force moving through a differential displacement. 
 

Work can be either real work or virtual work. Real work is the work done by a real force (or 
moment) and the conjugate2 displacement (or rotation) produced by that force. For example, 
consider a cantilever with horizontal force Q0 at the free end (Figure 6.2). The reactions required 
for equilibrium are horizontal force H and moment M0 at the base. Load Q0 induces the 
displacements shown. Because the top displacement G is conjugate to Q0, that is, it is at the same 
location and in the same direction as Q0, the real work done by Q0 is the product Q0G. We note 
that the reactions H and M0 at the base perform no work, because there is no displacement of the 
structure that is conjugate to either H or M0. Put more simply, horizontal force H at the base of 
the structure undergoes zero horizontal displacement and therefore produces no real work; 
likewise for M0.  

 

                                                 
1 Note: This section repeats the text of Section 5.2. 
2 As used here, conjugate means at the same location and in the same direction. 
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Figure 6.2 Equilibrium and deflections of a cantilever loaded laterally at its free end. 
 

In structural engineering we are mainly interested in real forces and real displacements. 
However, we will use virtual forces and virtual displacements as constructs to calculate real 
displacements and real forces (we’ll see how later). A virtual force is a force that is imagined to 
act on a structure, but it does not correspond to any real states of equilibrium arising from the 
real loads on the structure. Using the example of Figure 6.2, subjected to a real force Q0 and 
experiencing real displacement G, we could imagine a virtual moment m applied at the free end 
(Figure 6.3). Obviously, this virtual moment has nothing to do with the real equilibrium or the 
real displacements. (You may be wondering why we would do this. As we will see later in this 
chapter, we would apply virtual moment m as shown in order to calculate the rotation of the free 
end in the direction of m for a beam loaded by the real load Q0.)    

 
Figure 6.3 Introduction of a virtual force to a cantilever. 
 

Similarly, we could introduce a virtual displacement to the cantilever of Figure 6.2, as shown 
in Figure 6.4. Obviously this virtual displacement field has nothing to do with the real 
displacements. (As discussed in Chapter 5, we can use the virtual rotation at point a to determine 
the moment at point a.) 
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Figure 6.4 Introduction of a virtual displacement to a cantilever. 
 

Virtual work is work that is produced by either virtual forces or virtual displacements. It is 
work that exists “in effect” or is “imagined,” but is not real work. We denote virtual work by the 
variable 𝛿𝑊. Virtual work can be one of either (a) or (b): 

a) Virtual work produced by real forces moving through virtual (or imagined) 
displacements. We will use this for the purpose of finding the real forces (reactions, or 
internal forces and moments); 

b) Virtual work produced by virtual (or imagined) forces moving through real 
displacements. We will use this for the purpose of finding the real displacements. 

 
In this chapter, we emphasize virtual work produced by virtual forces moving through real 

displacements. Chapter 5 considers virtual work due to real forces moving through virtual 
displacements.   

6.3. PRINCIPLE OF CONSERVATION OF ENERGY 

When a deformable body is acted on by external forces, those external forces do external work 
Wext equal to the product of the external forces and the conjugate external displacements (that is, 
the displacements at the locations and in the direction of the applied external forces). Internal 
stresses and deformations are also developed, the internal stresses being in equilibrium with the 
external forces, and internal deformations being compatible with the external deformations. As 
the internal stresses move through the internal deformations, they do internal work Wint. The 
principle of conservation of energy states that the work done by the external forces acting on a 
deformable body is transformed into internal work or strain energy within the body as it deforms. 
This is expressed by Eq. (6.1). 

𝑊𝑒𝑥𝑡 = 𝑊𝑖𝑛𝑡 (6.1) 

The principle of conservation of energy is applicable to any type of structure. To derive the 
general principle, consider the planar deformable body of Figure 6.5a in equilibrium under a set 
of external forces P. External work Wext is done by these forces moving through the conjugate 
deformations around the exterior of the body. Next consider a small particle internal to the 
deformable body, such as the one shaded. This particle is acted in by a set of internal forces Pi 
that are in equilibrium with the external forces. Although these forces Pi are internal to the 
deformable body, they can also be considered as external forces acting on the particle. These 
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forces do external work on the particle defined by 𝑑𝑊𝑒𝑥𝑡 = 𝑃𝑖 ∙ 𝛿𝑖, in which Gi are conjugate 
displacements around the particle due to the deformations of the deformable body. Part of this 
work, dWR, will be due to rigid body movements of the particle, and the remainder, dWint, will be 
due to deformations of the particle. According to the principle of virtual displacements, the work 
done by a set of forces in equilibrium moving through a rigid body displacement is zero, hence, 
dWR = 0. Thus, at the particle level, we can write 𝑑𝑊𝑒𝑥𝑡 = 𝑑𝑊𝑅 + 𝑑𝑊𝑖𝑛𝑡 = 𝑑𝑊𝑖𝑛𝑡. We can add 
up the work done on all the particles of the deformable body, resulting in the expression 𝑊𝑒𝑥𝑡 =
𝑊𝑖𝑛𝑡. The term on the left-hand side is the sum of all of the external work done on all of the 
particles. Note, however, that adjacent particles are subjected to equal and opposite forces, such 
that the external work terms for forces acting between individual particles must all cancel, 
leaving only the external work acting around the free surface of the deformable body. The term 
on the right-hand side is the sum of all of the internal work done on all of the particles. Thus, we 
have demonstrated that the external work acting on the outside of the deformable body and the 
internal work within the deformable body are equal, as expressed by Eq. (6.1). 

 

 
Figure 6.5 Deformable body in equilibrium under external forces P. 
 

We can demonstrate the principle numerically for a linear-elastic rod of constant cross-
sectional area A and length L subjected to concentrated forces at the free end (Figure 6.6). Under 
load P, the rod elongates by GP. Note that the force P increases from zero to P in proportion with 
the elongation of the rod, that is, 𝑃𝑥 = 𝑃 𝑥

𝛿𝑃
. The external work is 

 

𝑊𝑒𝑥𝑡,𝑃 = ∫ 𝑃𝑥𝑑𝑥
𝛿𝑃

0
=

𝑃𝛿𝑃

2  (6.2) 

Note that Wext,P is equal to the diagonally cross-hatched triangular area in Figure 6.6c.  
To derive the internal work due to the application of load P, consider the internal 

deformations and forces at a point along the rod (Figure 6.6b). The axial strain is 𝜖𝑃 = 𝑃
𝐴
. The 

differential internal work along dx is 𝑑𝑊𝑖𝑛𝑡,𝑃 = ∫ 𝑃 𝑥
𝜖𝑃

𝜖𝑃
0 𝑑𝑥. Integrating this along the length we 

obtain the total internal work due to application of the load P as 

𝑊𝑖𝑛𝑡,𝑃 = ∫ ∫ 𝑃
𝑥
𝜖𝑃

𝑑𝑥
𝜖𝑃

0

𝐿

0
=

𝑃𝐿𝜖𝑃

2 =
𝑃𝛿𝑃

2  (6.3) 
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Note that this is equal to the external work Wext,P, demonstrating again that Wext = Wint. 

 
Figure 6.6 Internal work on a axially loaded linear-elastic rod subjected to force P. 
 

Suppose now that the load P is already in place and an unrelated force F is added to the rod 
causing an additional displacement GF (Figure 6.7). In this case, the external work done by the 
pre-existing force P is simply  

𝑊𝑒𝑥𝑡,𝑃 = 𝑃𝛿𝐹  (6.4) 

which is represented by the vertically cross-hatched rectangular area of Figure 6.7c. The internal 
work done by the pre-existing force P is   

𝑊𝑖𝑛𝑡,𝑃 = ∫ 𝑃𝜖𝐹𝑑𝑥 = 𝑃𝜖𝐹𝐿 = 𝑃𝛿𝐹 
𝐿

0
 (6.5) 

Equations (6.4) and (6.5) again demonstrate that Wext = Wint. 
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Figure 6.7 Internal work on a axially loaded linear-elastic rod subjected to force P + F. 
 

6.4. PRINCIPLE OF VIRTUAL FORCES  

In Figure 6.7, the force P was assumed to be a real force. However, the results apply equally 
to the case where P is a virtual force, that is a force that is imagined to act on the structure. This 
leads to the principle of virtual forces, which can be stated as follows: For a deformable body 
that is in equilibrium under a virtual force system and remains in equilibrium while it is 
subjected to real deformations due to a real force system, the external virtual work done by the 
external virtual forces is equal to the internal virtual work done by the internal virtual stresses.  

We will use the principle of virtual forces to calculate the real displacements. Before we can 
do this, we need to develop expressions for internal work. This is done in Section 6.5.  

It will also be useful to establish a convention for designating real versus virtual forces, 
shears, and moments, as follows: 

x Real forces, shears, and moments are designated with upper case letters P, V, and M. 
x Virtual forces, shears, and moments are designated with lower case letters p, v, and m. 

6.5. INTERNAL VIRTUAL WORK 

As a structure deforms, internal virtual work is done by internal virtual stresses/forces acting 
through real internal deformations. We need to be able to calculate this internal work. Figure 6.8 
shows conjugate real internal displacements associated with virtual axial force, shear, and 
bending moment. (We could also show real forces, but our interest here is to apply the principle 
of virtual forces to the solution of displacement problems.) Internal work associated with each is 
described in the following text.  
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Figure 6.8 Conjugate internal displacements and forces for axial, shear, and bending 

actions. 
 

Axial Force 

Virtual axial force px is applied to a differential element of length dx. The internal real 
displacement that is conjugate to this force is the elongation of the element, which is equal to 
εxdx, where εx is axial strain. The differential internal work performed by axial force px in 
differential element dx is given by the following expression:  

𝑑𝑊𝑖 = 𝑝𝑥 ∙ 𝜖𝑥𝑑𝑥 (6.6) 

For a member of length L, with constant axial stiffness EA, subjected to constant axial force p,  

𝑊𝑖𝑛𝑡 = ∫ 𝑝𝑥𝜖𝑥𝑑𝑥 = 𝑝𝜖𝐿
𝐿

0
 (6.7) 

If the real axial strain is due to a real axial force P in the member, then the internal work can be 
expressed as 

𝑊𝑖𝑛𝑡 = ∫ 𝑝𝑥𝜖𝑥𝑑𝑥 = 𝑝𝜖𝐿 = 𝑝
𝑃𝐿
𝐸𝐴

𝐿

0
 (6.8) 

Note that in Eq. (6.8), the term p represents the virtual internal force and the term 𝑃𝐿
𝐸𝐴

 represents 
the real elongation under real axial force P. The real elongation could alternatively be due to 
temperature change or fabrication error that results in a change of length in the absence of 
externally applied force.  

 
Shear Force 

Virtual shear force vx is applied to a differential element of length dx. The internal conjugate real 
displacement is the vertical displacement of the force on the right side of the differential element, 
which is equal to γxdx, where γx is shear strain. The differential internal work performed by shear 
force vx in differential element dx is thus given by the following expression:  

𝑑𝑊𝑖 = 𝑣𝑥 ∙ 𝛾𝑥𝑑𝑥 (6.9) 

 
Bending Moment 

Virtual bending moment mx is applied to a differential element of length dx. The internal 
conjugate displacement is the angle of rotation of one side of the element relative to the other. 
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This is equal to the change in slope of the element, which is given by the expression (dθ/dx)dx, 
where θ is the slope. But change of slope dθ/dx is approximately equivalent to curvature Nx, so 
we can express the real internal conjugate displacement as Nxdx. The internal work performed by 
moment mx in differential element dx is thus given by the following expression:  

𝑑𝑊𝑖 = 𝑚𝑥 ∙ 𝜅𝑥𝑑𝑥 (6.10) 

6.6. APPLICATIONS OF THE PRINCIPLE OF VIRTUAL FORCES 

The primary application of the principle of virtual forces is in the calculation of displacements. 
The steps in the method are as follows: 

1. Consider a real state of deformation that is produced by some real effect. For example, 
the real state of deformation could be the external and internal displacements of the 
structure due to dead load, or due to a uniform drop in temperature.  

2. Identify a displacement of interest, including both its location and its direction. The 
displacement can be a translation, a rotation, or a relative movement between two points. 
Apply a unit virtual force at the location and in the direction of the displacement of 
interest, and calculate the internal virtual stresses/forces and reactions resulting from the 
application of the unit virtual force.  

3. Write the expressions for Wext and Wint, where  
x Wext = work of the unit virtual force and its reactions moving through the real 

displacements of the structure; and 
x Wint = work of the internal forces produced by the unit virtual force moving 

through the real internal deformations of the structure. 
4.  Set Wext = Wint and solve for the displacement of interest.  
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6.6.1. Deflections of beams and frames by integration of the work equations 

For beams and frames, deflections are primarily due to flexural curvature. Therefore, in the 
examples that follow, only flexural curvature is considered.  

 
Example 1: For the beam shown in Figure 6.9, calculate the downward deflection at the point of 
load application.  

On the left-hand side, we show the real system, including the real load P and tip deflection G, 
the real moment diagram M, and the real curvature N resulting from M. On the right-hand side, 
we show the virtual force system selected to determine the real displacement G. Because we want 
the downward displacement at the free end of the cantilever, we place a unit load at that point 
and in the downward direction. The virtual moment diagram m is shown. 

To solve the problem, we set Wext = Wint. The external work is the product of the virtual unit 
force and the real deflection. The internal virtual work is obtained by integrating the product of 
the virtual moment and the real curvature, in accordance with Eq. (6.10). We then solve for the 
deflection, which is given in the boxed equation at the bottom of the figure. 

 

 
Figure 6.9 Deflection at free end of a cantilever with concentrated load. 
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Example 2: For the same beam and loading as Example 1, determine the end rotation.  
The real loading, tip rotation, and curvature are shown on the left-hand side of Figure 6.10. 

The virtual external force is a unit moment at the location and in the direction of the rotation that 
is being sought. Setting Wext = Wint, we solve to find the end rotation. We can check the answer 
by noting that the change in rotation from the fixed end to the free end is the area under the 
curvature diagram. Therefore, 𝜃 = 1

2
(𝑃𝑙

𝐸𝐼
) 𝑙 = 𝑃𝑙2

2𝐸𝐼
, which matches the result shown in Figure 6.10. 

 

 
Figure 6.10 Rotation at free end of a cantilever with concentrated load. 
 

6.6.2. Deflections of beams and frames by simplified relations 

For beams and frames in linearly elastic structures, the internal virtual work generally is of the 
form  

𝑊𝑖𝑛𝑡 = ∫ (𝑚𝑥) (
𝑀𝑥

𝐸𝐼 ) 𝑑𝑥
𝑙

0
 (6.11) 

If we assume the common case of EI = constant and mx = linear function = a + bx, then 

𝑊𝑖𝑛𝑡 = ∫ (𝑎 + 𝑏𝑥) (
𝑀𝑥

𝐸𝐼 ) 𝑑𝑥
𝑙

0
 

=
1

𝐸𝐼 [𝑎 ∫ 𝑀𝑥𝑑𝑥 + 𝑏 ∫ 𝑥𝑀𝑥𝑑𝑥
𝑙

0

𝑙

0
] 

(6.12) 

Let Am = area under the real moment diagram. Then,  
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𝑊𝑖𝑛𝑡 =
𝐴𝑚

𝐸𝐼 [𝑎 + 𝑏
∫ 𝑥𝑀𝑥𝑑𝑥𝑙

0
𝐴𝑚

] (6.13) 

Noting that the fraction to the right of coefficient b defines the centroid of the real moment 
diagram, we can now write  

𝑊𝑖𝑛𝑡 =
𝐴𝑚

𝐸𝐼
[𝑎 + 𝑏𝑥𝑚̅̅ ̅̅ ] =

1
𝐸𝐼 𝐴𝑚𝑚𝑥𝑚̅̅̅̅̅ (6.14) 

in which Am = area under the real moment diagram, 𝑥𝑚̅̅ ̅̅  = centroidal location of the real moment 
diagram, and 𝑚𝑥𝑚̅̅̅̅̅ = value of the virtual moment diagram at the centroid of the real moment 
diagram. Using Eq. (6.14) requires some practice, but once the analyst becomes skilled at its use, 
the calculations of displacements by virtual work become greatly simplified.  

 
Example 3: Rework Example 1 using Eq. (6.14).  

The real loading, displacement, and moment diagrams are shown on the left-hand side of 
Figure 6.11. The centroid of the real moment diagram is located at 𝑥𝑚̅̅ ̅̅ = 2

3
𝑙 from the free end of 

the beam. Turning now to the right-hand side of Figure 6.11, we show the virtual loading and 
virtual moment diagram. We seek 𝑚𝑥𝑚̅̅̅̅̅, which is the value of the virtual moment diagram at the 
centroid of the real moment diagram. As shown, this value is − 2

3
𝑙. We then set Wext = Wint, with 

Wint defined according to Eq. (6.14). The answer matches the answer obtained in Example 2. 
 

 
Figure 6.11 Example 3 using Eq. (6.14). 
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Example 4: Rework Example 2 using Eq. (6.14).  
The real loading, rotation, and moment diagrams are shown on the left-hand side of Figure 

6.12. The centroid of the real moment diagram is located at 𝑥𝑚̅̅ ̅̅ = 2
3

𝑙 from the free end of the 
beam. Turning now to the right-hand side of Figure 6.12, we show the virtual loading and virtual 
moment diagram. We seek 𝑚𝑥𝑚̅̅̅̅̅, which is the value of the virtual moment diagram at the 
centroid of the real moment diagram. As shown, this value is −1. We then set Wext = Wint, with 
Wint defined according to Eq. (6.14). The answer matches the answer obtained in Example 2. 

 

 
Figure 6.12 Example 4 using Eq. (6.14). 
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Example 5: Find the tip displacement for the beam shown in Figure 6.13. 
As in the previous examples, we draw the real and virtual parts of the solution. Note that the 

real loading involves a force at mid-span, but the displacement is sought at the free end of the 
beam. Thus, it is required to place the unit virtual load at the free end of the beam. We next 
locate the centroid 𝑥𝑚̅̅ ̅̅  of the real moment diagram, find the value of the virtual moment diagram 
at that position along the beam, and solve the problem using Eq. (6.14). 

 

 
Figure 6.13 Example 5 using Eq. (6.14). 
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Example 6: Find the midspan deflection for the beam shown in Figure 6.14. 
We first draw the real and virtual parts of the solution, with the virtual unit load at the 

midspan where the deflection is sought. Note that the virtual moment diagram does not consist of 
a single line segment as was assumed in the derivation of Eq. (6.14), so we cannot directly apply 
Eq. (6.14) without modification. To solve the problem, we split the beam into two separate parts, 
one involving segment ab and the other involving segment bc, such that the virtual moment 
diagram is a straight line segment along each part. Having done this, we proceed as usual to find 
the centroid of the real moment diagram and the value of the virtual moment diagram at that 
location. Given symmetry of the beam, the loading, and the virtual moment diagram, we simply 
solve segment ab and multiply by 2 to obtain the answer.   

 
Figure 6.14 Example 6 using Eq. (6.14). 
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Example 7: Find the horizontal displacement at point D due to a point load Q at B. 
Real and virtual systems are shown. Centroids of the real moment diagrams are at 2

3
𝑙 for 

members AB and BC. Values of the virtual moment diagram at these locations are 2
3

ℎ and h, 

respectively. Areas of the real moment diagrams are 𝑄ℎ2

2
 and 𝑄ℎ𝐿

2
 for members AB and BC 

respectively. Thus, the answer is 𝛿𝐷 = 1
𝐸𝐼𝑐

𝑄ℎ2

2
2
3

ℎ + 1
𝐸𝐼𝐺

𝑄ℎ𝐿
2

ℎ = 𝑄ℎ3

3𝐸𝐼𝑐
+ 𝑄ℎ2𝐿

2𝐸𝐼𝐺
 . 

 

 
Figure 6.15 Example 7. 
 

Example 8: Find the vertical displacement at the free end of the L-shaped frame due to the 
temperature differential shown.  

The real curvatures in this example are due to temperature differential, rather than externally 
applied force. The real curvatures are calculated based on the temperature differential. Virtual 
moments are due to a unit load at free end of the frame. To solve the problem, we could use Eq. 
(6.10) to define dWint, and then integrate dWint along the column and beam. Alternatively, we 
could observe that Eq. (6.14) uses Am/EI, which is the area of the moment diagram divided by 
EI, but this is identically equal to the area under the real curvature diagram. Values of the virtual 
moment diagrams at the centroids of the real curvature diagrams are 8m for the column and 4m 
for the beam. Thus, the deflection is 𝛿 = (0.00016/𝑚)(6𝑚)(8𝑚) + (0.00024/
𝑚)(8𝑚)(4𝑚) = 0.01536𝑚 = 15.4 𝑚𝑚. 

 

 
Figure 6.16 Example 8 - Deflection due to temperature differential. 
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6.6.3. Deflection of Truss Structures 

Truss deflections are due primarily to axial deformation of the truss members (plus deflections of 
the supports, if any). In general, we do not consider deformations due to bending or shear. Thus, 
the internal work Wint of interest is the work due to axial forces acting through axial deformations 
of the truss members, as defined by Eq. (6.8). When considering internal virtual work, we are 
interested in the virtual work of virtual axial forces acting through real axial deformations.  

 
Example 9: For the truss in Figure 6.17, calculate the downward deflection of point c under the 
action of a 5 kip load.  

The solution is separated into real and virtual parts. The real forces in the truss members and 
the real deflection�G are shown in the sketch on the left-hand side. Because we seek the 
downward deflection at point c, we place a unit virtual work at point c and calculate the virtual 
internal forces, all shown in the sketch on the right-hand side. To facilitate the calculations, we 
create a table in which we identify the members, member lengths, the real forces Pi, the resulting 
member elongations Gi, the virtual forces pi, and finally the virtual work in each member piGi. We 
sum up the piGi terms to obtain the total internal virtual work Wint, equate this to the external 
virtual work Wext = 1 u G, and solve for the deflection G. 

 

 
Figure 6.17 Example 9. 
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Example 10: Calculate the downward deflection of joint L1, δ(L1), due to the shown loads.   
The solution proceeds in similar fashion as for Example 9. 
 

 
Member Length 

Li (m) 
Real Force,  

Pi (kN) 
Real 

elongation,  
Gi = PiLi/EAi 

Virtual 
Force,  

pi 

Internal Virtual 
Work,  

piGi 
L0L1 4.0 50 0.002 0.667 0.00133 
L1L2 4.0 100 0.0040 1.000 0.00400 
L2L3 4.0 50 0.0025 0.333 0.00067 
L0U0 2.83 -70.7 -0.002 -0.943 0.00189 
U0L1 2.83 70.7 0.002 0.943 0.00189 
L1U1 2.83 0 0 0.471 0 
U1L2 2.83 0 0 -0.471 0 
L2U2 2.83 70.7 0.000707 0.471 0.00094 
U2L3 2.83 -70.7 -0.000707 -0.471 0.00094 
U0U1 4.0 -100 -0.0010 -1.333 0.00533 
U1U2 4.0 -100 -0.0010 -0.667 0.00267 

 

∑  0.0197 m  
Wext = Wint � 1 u δ(L1) = 0.0197 m, or δ(L1) ~ 20 mm. 

Figure 6.18 Example 10. 
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Example 11: Reconsider the truss of Example 10. The external loads are removed. Instead, 
various members are subjected to temperature change T, as indicated in the third column of the 
table within Figure 6.19. The coefficient of thermal expansion is α=12×10-6/oC. Calculate the 
downward deflection δ(L1) of joint L1.  

The solution requires determination of the real change in length of each of the members due 
to the real temperature change. Column 4 in the table below lists the strain due to temperature 
change. Column 5 repeats the internal forces due to the unit load applied at joint L1. Column 6 
determines the internal virtual work associated with the product of the internal virtual force and 
the internal real deformation. The internal virtual work is summed, equated with external virtual 
work, and the deflection is solved.  

 
Member Length 

Li (m) 
Real Temp. 

Change, 
Ti (oC) 

Real strain,  
εi 

Virtual Force,  
pi 

Internal 
Virtual 
Work,  

pi u Hi u Li 
L0L1 4.0 -10 -0.00012 0.667 -0.00032 
L1L2 4.0 -10 -0.00012 1.000 -0.00032 
L2L3 4.0 0 0 0.333 0 
L0U0 2.83 0 0 -0.943 0 
U0L1 2.83 0 0 0.943 0 
L1U1 2.83 0 0 0.471 0 
U1L2 2.83 0 0 -0.471 0 
L2U2 2.83 0 0 0.471 0 
U2L3 2.83 0 0 -0.471 0 
U0U1 4.0 +10 +0.00012 -1.333 -0.00064 
U1U2 4.0 +10 +0.00012 -0.667 -0.00032 

∑     -0.00176 m 

Wext = Wint � 1 u δ(L1) = 0.00176 m, or δ(L1) ~ 2 mm. 

Figure 6.19 Example 11. 
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Example 12: Reconsider the truss of Example 10. All loads are removed, but the support at L3 
settles by 30 mm, as shown in Figure 6.20. What is the downward movement at point L1? 

To solve this problem, we treat the displacement at L3 as a real external displacement. We 
then apply a downward unit virtual force at joint L1 (the location where we want to find the 
vertical movement) and calculate the external virtual reaction at joint L3, which is 0.33 upward. 
The settlement at joint L3 does not create any internal stresses or strains, so there is no internal 
work. Consequently, the work equation becomes 𝑊𝑒𝑥𝑡 = (1)(𝛿(𝐿1)) + (−0.333)(30 𝑚𝑚) = 0. 
Therefore, 𝛿(𝐿1) = 10 𝑚𝑚, which we can confirm by inspection of the geometry.  

 

 
Figure 6.20 Example 12. 
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7.  Use of Computer Software for Structural 
Analysis 

7.1. INTRODUCTION 

Computer methods are an integral part of modern structural engineering. In addition to software 
for routine numerical work (such as EXCEL and MATLAB), specialized structural engineering 
software is used to calculate response of structures to external loads, both static and dynamic, 
and structural engineers interact with geotechnical engineers using specialized software for soil-
structure interaction and with construction engineers, architects, and owners using Building 
Information Management (BIM) software.  

This chapter introduces the use of specialized structural engineering software that is used to 
calculate response of structures to external loads. The discussion is limited to static loading. 
Emphasis is on how to set up the structural analysis problem and how to interpret and check the 
results. For the theory and its implementation in computer software, the student is referred to CE 
121. 

7.2. STRUCTURAL IDEALIZATIONS 

As with hand calculations, structural analysis using computer software generally requires some 
idealization of the real-world problem. As an example, consider the three-dimensional structure 
of Figure 7.1. Although some computer software will enable the structure to be modeled using 
numerical representations of the members that very closely replicate the entire structure, most 
analyses are done on a much more simplified representation of the structure. For example, the 
structure of Figure 7.1 might be idealized as a three-dimensional frame comprising beams, 
columns, beam-column joints, and supports as shown in Figure 7.2. 
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Figure 7.1 Three-dimensional structure and loading. 
 

 
Figure 7.2 Three-dimensional frame model of the structure of Figure 7.1. 
 

While three-dimensional models are widely used in engineering practice today, some 
problems are further idealized as being two dimensional. Figure 7.3 depicts a two-dimensional 
model that might be used to analyze for the internal forces and deformations of the primary 
vertical and lateral-load-resisting system of the subject building in the longitudinal direction. 
Two-dimensional models are used in CE 120, in part because they provide an good introduction 
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to the issues of using structural analysis software, and in part because some student versions of 
software have limited functionality that is more suitable for analysis of two-dimensional 
structures.  

 
Figure 7.3 Two-dimensional idealization of the longitudinal framing of the structure of 
Figure 7.1. 
 

 

7.3. GEOMETRY AND CONNECTIVITY 

To set up a problem for structural analysis, most software packages require the analyst to 
establish a system for numbering the joints and the members. Figure 7.4 illustrates a common 
implementation. First, joints are numbered in some logical sequence from 1 through n, where n = 
the number of joints in the structure. In the example shown, n = 12. Next, the members are 
numbered in some logical sequence from 1 through m, where m = the number of members in the 
structure. In the example shown, m = 14. Note that the numbering sequence for joints and 
members is somewhat arbitrary. A logical sequence is one that is relatively easy for the analyst 
to keep track of. In the early days of structural analysis software, when computer speeds were 
much slower than they are today, the numbering scheme was important to the solution time. 
While such aspects can still affect software speed, the consequences are not so important for 
most problems that we will be solving.  
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Figure 7.4 Geometry, connectivity, and global and local coordinate systems. 
 

Our structural models will be limited to those that can be reasonably represented by line 
elements (beam-column elements). Note that each line element must be assigned a member 
number and an i end and a j end. In Figure 7.4, beam 12 extends between joints 9 and 10, with 
the i end attached at joint 9 and the j end attached at joint 10. As another example, column 8 
extends from joint 8 to joint 12, with the i end attached at joint 8 and the j end attached at joint 
12. There is no restriction that the i end has to be attached to the joint with the lesser number 
while the j end is attached to the joint with the greater number. Rather, the analyst just needs to 
know which end (i or j) is attached to which joint. To facilitate keeping track of input and output 
quantities, it generally is best to number members in a consistent way, that is, all beams from left 
to right and columns from bottom to top. 

A global coordinate system X-Y (or X-Y-Z in 3-dimensional problems) needs to be 
established such that the locations of all the joints can be defined. It is up to the analyst to 
establish this coordinate system. In the example of Figure 7.4, the origin of the X-Y coordinate 
system coincides with joint 1.  

Additionally, a local coordinate system x-y-z has to be established for every line member. In 
most software packages, the x-axis has its origin at end i and extends along the member axis to 
joint j. As shown in Figure 7.4, for some members the local coordinate system may be parallel to 
the global coordinate system (for example, member 12) while for some other members the local 
coordinate system is rotated relative to the global coordinate system (for example, member 8). 
For the members, the structural analysis software will need to define a rule to relate x, y, and z 
axes. Most software will use the right-hand rule. 

Once all the joint positions are established, and the members are connected to the joints, the 
next step is to define the boundary conditions for the global system and for the individual 
members. At the global level, software will need to know which of the joints correspond to 
support points, and it will need to know the type of support. In the example of Figure 7.4, joints 
1 through 4 would be identified as pinned supports. Depending on the software, the analyst may 
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simply be able to specify that these are pinned supports, or she might need to specify which 
degrees of freedom are fixed and which are restrained. For fixed supports, the support is fixed 
against translation in X and Y directions and against rotation in the Z direction. Stated 
differently, the three degrees of freedom within the plane are fixed. Pinned supports would be 
fixed against translation in X and Y directions but would be free to rotate in the Z direction. 
Roller supports would be fixed against translation in one direction but would be free to translate 
in the orthogonal direction and to rotate in the Z direction. 

Member connectivity also needs to be specified. In the example of Figure 7.4, all members 
except member 9 are rigidly connected to the joints such that they can transfer axial force, shear, 
and moment. For member 9, the i end has a pin that enables rotation without moment about the 
local z axis. Thus, for member 9, end i would be specified to have a release about the z axis. 
Note that some software may have restrictions about the number of members that can have 
releases at a joint. The restriction relates to avoiding singularities in the stiffness matrices used in 
the calculations. The software will issue an error if this problem arises.  

7.4. LOADS 

Most software for structural analysis permits two types of loads, as follows: 
x Nodal loads – these are loads (forces or moments) applied directly to the joints/nodes. 
x Member loads – these are loads applied directly to the members, and can be either 

concentrated loads or distributed loads. The position and direction (positive or negative) 
of loads usually needs to be specified. In some software, the member loads are defined 
relative to the local coordinate system of the member; thus, a concentrated load of -5 kips 
at x = 3 ft on member 9 in Figure 7.4 would be a load in the negative y direction (that is, 
downward in the global coordinate system) at 3 feet to the right of end i. Alternatively, 
the software may define the loads in the global coordinate system, or may provide the 
option of using either the local or the global coordinate system.  

7.5. UNITS 

Software for structural analysis uses consistent units, solving the structural analysis problem 
solely as a numerical solution. Thus, the analyst is required to specify all input data in consistent 
units, with the output being in those same units. For example, the input could be in US 
customary units of kips and inches, as in: 

x lengths and coordinates are in inches; 
x member properties – Areas are in.2, moments of inertia are in.4; 
x forces are kips, kips per in., or ksi, and moments are kip-in.; 
x member stiffnesses are kip/in, and material properties are ksi; 

The output would all be in the same units, as in: 
x deflections in inches; 
x forces and reactions in kips; moments in kip-in. 
x etc. 
 
Some software will have built-in member properties, in which case may be necessary to 

specify the system of units being used.  
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7.6. MEMBER PROPERTIES 

The analyst generally will be required to specify the member material properties. These 
properties include quantities such as the Young’s Modulus, E; shear modulus, G; cross-sectional 
area, A; and moment of inertia, I. The units should be consistent with the units selected for the 
problem, as noted in Section 7.5. 

Most software permits the analyst to specify a member material type, which will include all 
the relevant properties (E, G, A, I, etc.) for that member type. Then the member type can be 
assigned to any of the members. For the structure shown in Figure 7.4, if all the beams have the 
same cross sections and materials, then the analyst can define material type Beam 1 and assign 
that material type to members 9 through 14. 

7.7. COMPUTER ANALYSIS OUTPUT 

Output from computer analysis will include support reactions; joint rotations and deflections; and 
member internal forces. The results should always be checked to be certain they are consistent 
with expectations. Usually, it is a good idea to start with a simple problem for which the results 
are known and verify that the computer results are consistent with that known answer.  

Different software packages treat member internal forces differently. Some will define 
member moments as being positive for moment that puts the local y side of the member in 
tension, others will define positive moments if they put the local y side of the member in 
compression, and yet others will define moments as positive if they act clockwise or counter-
clockwise on the ends of the member i and j. The analyst needs to examine the results to be 
certain that the sign convention is understood. Free-body cuts can be used to check results. 

7.8. EXAMPLES 

Some examples are outlined below. 
 

Example 1: Use computer software to analyze a simply supported beam under uniformly 
distributed load (Figure 7.5a). Check that the output results are consistent with known solutions.  

 
Solution: The software RISA 2D is used. There problem involves one member and two nodes 
(Figure 7.5b). The output results are shown in Figure 7.5c. The results can be checked by hand 
calculations.  

x The maximum shears should be 𝑉 = ± 𝑤𝑙
2

= ± 2×20
2

= ±20 𝑘𝑖𝑝𝑠. OK. 

x The maximum moment should be 𝑀 = 𝑤𝑙2

8
= 2×202

8
= 100 𝑘 − 𝑓𝑡. OK. 

x First, we get all the input quantities in consistent units of kips and inches. The load is w = 
2 klf = 0.167 kip/in. The span is l = 20 ft = 240 in. Using results from Chapter 6, the 
maximum deflection should be 𝛿 = 5

384
𝑤𝑙4

𝐸𝐼
= 5

384
0.167𝑘/𝑖𝑛.×240𝑖𝑛.4

29000𝑘𝑠𝑖×395𝑖𝑛.4
= 0.629 𝑖𝑛. OK. 
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Figure 7.5 Example 1. 
 

Example 2: Use computer software to analyze how the answer to Example 1 is affected if the 
ends are fixed against rotation rather than being simply supported (Figure 7.6a).  

 
Solution: The software RISA 2D is used. The output results are in Figure 7.6c, with the 
following observations: 

x The shears are unaffected by fixing the beam ends. 𝑉 = ± 𝑤𝑙
2

= ± 2×20
2

= ±20 𝑘𝑖𝑝𝑠. 
x The moments are strongly affected by end fixity, as should be expected. The fixed end 

moments are 𝑀 = 𝑤𝑙2

12
. The midspan moments are 𝑀 = 𝑤𝑙2

8
. 

x The deflections are decreased from 0.629 in. to 0.126 in., or to one-fifth of the deflection 
of the simply supported beam. 
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Figure 7.6 Example 2. 
 

Example 3: Use computer software to determine the vertical reactions in a continuous beam 
subjected to uniformly distributed load w.  

 
Solution: The software RISA 2D is used. The output results are in Figure 7.7. We can check that 
the sum of vertical reactions balances the vertical loads. OK. The shears are similar to wl/2, 
obtained for a simply supported beam or a fixed-fixed beam. OK. Interestingly, the exterior 
reactions are close to wl/2 and the interior reactions are close to wl. We will use this result in the 
tributary area method introduced in Chapter 9.  

 
Figure 7.7 Example 3: Continuous beam. 
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8.  Building Codes 

8.1. INTRODUCTION 

A building code is a set of rules that specify minimum acceptable requirements for the design 
and construction of a building. The main purpose of a building code is to protect the welfare, 
safety, and health of the public. Building codes cover a range of subjects, from administration 
and enforcement, general building requirements, loads, and material-specific design 
requirements. This chapter introduces the building codes that are widely used in the United 
States, with emphasis on those codes that are used in California. Subsequent chapters will 
present requirements from these codes related to loads, design methods, and proportioning and 
detailing of structural members in wood, steel, and reinforced concrete.  

8.2. BUILDINGS CODES IN THE UNITED STATES 

Different countries have different laws governing the construction of buildings. The organization 
of building codes in the different countries follows from those laws. For example, in some 
countries the construction of buildings is under the jurisdiction of the national government. In 
others, however, enforcement of building requirements is delegated to entities other than the 
national government. In the United States, the tenth amendment of the U.S. Constitution reads: 

The powers not delegated to the United States by the Constitution, nor prohibited by it to 
the States, are reserved to the States respectively, or to the people. 

Because the U.S. Constitution does not address building regulation, the power to establish and 
enforce laws for buildings and other construction is passed, through the 10th amendment, to the 
individual states. Some states have adopted state-wide building codes, while others have 
delegated code adoption to the local level. Regardless, there is no national building code in the 
United States. 

The wide range of code adoption possibilities in the various states has the potential to lead to 
an equally wide range of different codes in different states and local regions. This would make it 
very difficult for an engineer in one city to perform designs in another city or state. To solve this 
problem, the building regulation community in the United States has developed a series of model 
codes. A model building code is a document that is written in a building code format such that it 
can be adopted by a responsible jurisdiction and thereby can become the legally binding building 
code.  
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8.3. BUILDINGS CODES IN CALIFORNIA 

In the State of California, the main building codes are those illustrated in Figure 8.1. They 
include: 

x The California Building Code (CBC) – This code is developed by the California Building 
Standards Commission (http://www.bsc.ca.gov). Established by the California Building 
Standards Law, the California Building Standards Commission is organized within the 
Department of General Services of the State of California. It is charged with codifying 
and publishing approved building standards in one state building standards code 
(California Code of Regulations, Title 24). At the time of this writing, the current version 
of the CBC was published in 2013. The CBC mainly adopts the provisions of the 
International Building Code.  

x The International Building Code (IBC) – This model code is developed by the 
International Code Council, which is non-profit association that develops model codes 
and standards for buildings. The IBC addresses the establishment of a Department of 
Building Safety and a building official, who is an officer or other designated authority 
charged with the administration and enforcement of the building code for buildings 
constructed within the jurisdiction1. It also covers building use categories and specific 
requirements for different use categories; fire protection systems; accessibility and 
egress; and height limits. At the time of this writing, the current version of the IBC was 
published in 2012. It references ASCE 7 for determination of loads and load effects, and 
it references materials codes for design of structures using wood, steel, and reinforced 
concrete.  

x ASCE 7 – This document has the title Minimum Design Loads for Buildings and Other 
Structures (ASCE/SEI 7-10). ASCE 7 provides requirements for general structural design 
and includes means for determining dead, live, soil, flood, snow, rain, atmospheric ice, 
earthquake, and wind loads, as well as their combinations, which are suitable for 
inclusion in building codes and other documents. At the time of this writing, the current 
version of ASCE 7 was published in 2010.  

x Materials Codes – There are different materials codes, one or more for each of the main 
structural materials.  

o National Design Specification (NDS) for Wood Construction contains 
requirements for wood construction.  

o Steel Construction Manual (AISC) contains requirements for structural steel 
construction.  

o Building Code Requirements for Structural Concrete (ACI 318) contains 
requirements for reinforced and prestressed concrete construction.  

The aforementioned building codes cover most of the requirements in California, and other 
states adopt almost the exact same set of requirements from the IBC, ASCE 7, and the materials 
codes. However, each local jurisdiction can adopt exceptions to the provisions of these codes in 
order to accommodate special conditions that affect the jurisdiction and that are not adequately 
covered in the more generally adopted codes. Therefore, it is important to check with the local 
building official to determine any local requirements.  

                                                 
1 A jurisdiction is defined as a governmental unit that has adopted a code under due legislative authority, and that 
has authority over the construction of buildings within a geographic region.   

http://www.bsc.ca.gov/
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Figure 8.1 Building Codes adopted in California. 
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9.  Gravity Loads and Load Paths 

9.1. INTRODUCTION 

This chapter introduces how a structural engineer determines the gravity loads and the loading 
combinations for design of a structure. The concept of a load path is introduced and used to 
identify how a structure resists vertical and lateral loads. The loads and methods generally follow 
the procedures of ASCE 7-10.1  

9.2. LOAD TYPES 

Loads on structures can be either externally applied forces (e.g., self-weight, live loads, wind 
loads) or imposed deformations (e.g., expansion due to temperature change or foundation 
settlement). In some documents, loads are referred to by the term actions. We will use the two 
terms loads and actions interchangeably in this text.  

Building codes classify loads based on their origin. This is convenient because some loads 
are determined by the structure itself, some by its occupancy, and some by the environment in 
which the structure is located. The different load types have different variability, duration, and 
directionality effects that may need to be considered in design. The main load types that are 
considered in ASCE 7 are: 

D = dead load 
E = earthquake load 
F = load due to fluids with well-defined pressures and maximum heights 
Fa = flood load 
H = load due to lateral earth pressure, ground water pressure, or pressure of bulk materials 
L = live load 
Lr = roof live load 
R = rain load 
S = snow load 
T = self-straining load 
W = wind load 

 
Among these, the following merit additional discussion: 
Dead load (D) – These are loads due to self-weight and items that are permanently attached 

to a structure, such as floor finishes, HVAC (heating, ventilation, and air 

 
1 ASCE 7-10, Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10), American Society of 
Civil Engineers, 2010,  
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conditioning). Dead loads are constant in magnitude, direction, and position in the 
structure. 

Live load (L) – These are loads due to occupancy and use, such as occupants, furnishings, 
and traffic. Some live loads may be relatively long-term, such as books in a library 
stack. However, live loads are usually considered to be short term loadings that are not 
constant in magnitude or location. 

Snow load (S), Rain load (R), Wind load (W), and Earthquake Load (E) – These are 
loads attributed to the environment, and are generally of short duration.  

 
This chapter is concerned mainly with gravity loads, with emphasis on dead, live, rain, and 

snow loads. Subsequent chapters consider wind and earthquake loading.  

9.3. DEAD LOADS 

Dead loads include self-weight of the structure and items that are permanently attached to the 
structure. For some structural materials, self-weight may be tabulated on a unit-area basis. For 
others, the unit density is used with the volume of material to calculate the self-weight. Some 
pieces of fixed equipment such as roof chillers introduce large concentrated loads that should be 
considered directly. Others dead loads such as HVAC may be applied as concentrated or line 
loads, but their exact position in the structure is not known at the time the structure is designed 
and their magnitude is not large relative to other loads, and, therefore, as a matter of 
convenience, they are treated as average uniformly distributed loads. Distributed floor, roof, and 
wall (or cladding) loads refer to loads per square foot (or square meter) of the floor, roof, or wall 
surface, respectively.   

Table 9.1 lists major dead loads tabulated in ASCE 7-10. Table 9.2 lists unit densities from 
ASCE 7-10. 
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Table 9.1 Minimum Design Dead Loads  

Component  Load (psf) 
CEILINGS   
Acoustical fiber board  1 
Gypsum board (per 1/8-in. thickness)  0.55 
Mechanical duct allowance  4 
Plaster on tile or concrete  5 
Plaster on wood lath  8 
Suspended steel channel system  2 
Suspended metal lath and cement plaster  15 
Suspended metal lath and gypsum plaster  10 
Wood furring suspension system  2.5 
COVERINGS, ROOF, AND WALL   
Asbestos-cement shingles  4 
Asphalt shingles  2 
Cement tile  16 
Clay tile (for mortar add 10 psf)   
Book tile, 2-in.  12 
Book tile, 3-in.  20 
Ludowici  10 
Roman  12 
Spanish  19 
Composition:   

Three-ply ready roofing  1 
Four-ply felt and gravel  5.5 
Five-ply felt and gravel  6 

Copper or tin  1 
Corrugated asbestos-cement roofing  4 
Deck, metal, 20 gage  2.5 
Deck, metal, 18 gage  3 
Decking, 2-in. wood (Douglas fir)  5 
Decking, 3-in. wood (Douglas fir)  8 
Fiberboard, 1/2-in.  0.75 
Gypsum sheathing, 1/2-in.  2 
Insulation, roof boards (per inch thickness)   

Cellular glass  0.7 
Fibrous glass  1.1 
Fiberboard  1.5 
Perlite  0.8 
Polystyrene foam  0.2 
Urethane foam with skin  0.5 

Plywood (per 1/8-in. thickness)  0.4 
Rigid insulation, 1/2-in.  0.75 
Skylight, metal frame, 3/8-in. wire glass  8 
Slate, 3/16-in.  7 
Slate, 1/4-in.  10 
Waterproofing membranes:   

Bituminous, gravel-covered  5.5 
Bituminous, smooth surface  1.5 
Liquid applied  1 
Single-ply, sheet  0.7 

Wood sheathing (per inch thickness)  3 
Wood shingles  3 
FLOOR FILL   
Cinder concrete, per inch  9 
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Table 9.1 Minimum Design Dead Loads (continued) 
Component    Load (psf) 
Lightweight concrete, per inch    8 
Sand, per inch    8 
Stone concrete, per inch    12 
FLOORS AND FLOOR FINISHES     
Asphalt block (2-in.), 1/2-in. mortar    30 
Cement finish (1-in.) on stone–concrete fill    32 
Ceramic or quarry tile (3/4-in.) on 1/2-in. mortar bed    16 
Ceramic or quarry tile (3/4-in.) on 1-in. mortar bed    23 
Concrete fill finish (per inch thickness)    12 
Hardwood flooring, 7/7-in.    4 
Linoleum or asphalt tile, 1/4-in.    1 
Marble and mortar on stone–concrete fill    33 
Slate (per mm thickness)    15 
Solid flat tile on 1-in. mortar base    23 
Subflooring, 3/4-in.    3 
Terrazzo (1-1/2-in.) directly on slab    19 
Terrazzo (1-in.) on stone–concrete fill    32 
Terrazzo (1-in.), 2-in. stone concrete    32 
Wood block (3-in.) on mastic, no fill    10 
Wood block (3-in.) on 1/2-in. mortar base    16 
FLOORS, WOOD-JOIST (NO PLASTER)     
DOUBLE WOOD FLOOR 
Joint sizes (in.) 12-in. spacing (1b/ft2) 

 
16-in. spacing (1b/ft2) 

  
24-in. spacing (1b/ft2) 

 

2 × 6 6 5  5  
2 × 8 6 6  5  
2 × 10 7 6  6  
2 × 12 8 7  6  

FRAME PARTITIONS     
Movable steel partitions    4 
Wood or steel studs, 1/2-in. gypsum board each side    8 
Wood studs, 2 × 4, unplastered    4 
Wood studs, 2 × 4, plastered one side    12 
Wood studs, 2 × 4, plastered two sides 
FRAME WALLS 

   20 

Exterior stud walls: 
2 × 4 @ 16-in., 5/8-in. gypsum, insulated, 3/8-in. sidin 

 
g 

   
11 

2 × 6 @ 16-in., 5/8-in. gypsum, insulated, 3/8-in. sidin g   12 
Exterior stud walls with brick veneer    48 
Windows, glass, frame, and sash 
 
 
 

   8 
Clay brick wythes: 
  4 in. 

    
39 

8 in.    79 
12 in.    115 
16 in.    155 

Hollow concrete masonry unit wythes: 

 
    Wythe thickness (in inches) 

Density of unit (105 pcf) 
 

 

4 6 8 10 12 

No grout 22 24 31 37 43 
48 in. o.c.  29 38 47 55 
40 in. o.c. grout  30 40 49 57 
32 in. o.c. spacing  32 42 52 61 
24 in. o.c.  34 46 57 67 
16 in. o.c.  40 53 66 79 
Full grout  55 75 95 115 
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Table 9.1 Minimum Design Dead Loads (continued)     
Component      Load (psf) 

Density of unit (125 pcf)      
No grout  26 28 36 44 50 
48 in. o.c.   33 44 54 62 
40 in. o.c. grout  34 45 56 65 
32 in. o.c. spacing  36 47 58 68 
24 in. o.c.   39 51 63 75 
16 in. o.c.   44 59 73 87 
Full grout   59 81 102 123 
Density of unit (135 pcf)      
No grout  29 30 39 47 54 
48 in. o.c.   36 47 57 66 
40 in. o.c. grout  37 48 59 69 
32 in. o.c. spacing  38 50 62 72 
24 in. o.c.   41 54 67 78 
16 in. o.c.   46 61 76 90 
Full grout   62 83 105 127 
Solid concrete masonry unit wythes (incl. concrete brick):      
Wythe thickness (in mm) 4 6 8 10 12 

Density of unit (105 pcf) 32 51 69 87 105 
Density of unit (125 pcf) 38 60 81 102 124 
Density of unit (135 pcf) 41 64 87 110 133 

 

Table 9.2 Minimum Densities for Design Loads from Materials (after ASCE 7-10) 
 

 

Material 
Density 
(lb/ft3) 

Density 
(kN/m3) 

 

Material 
Density 
(lb/ft3) 

Density 
(kN/m3) 

Aluminum 170 27 Soil, submerged 70 11.0 
Pitch 69 10.8 River mud, submerged 90 14.1 
Tar 75 11.8 Sand or gravel, submerged 60 9.4 
Cast-stone masonry (cement, stone, 144 22.6 Sand or gravel and clay, submerged 65 10.2 
sand)   Glass 160 25.1 
Cement, portland, loose 90 14.1 Gypsum, wallboard 50 7.9 
Ceramic tile 150 23.6 Ice 57 9.0 
Concrete, plain, normalweight 144 22.6 Masonry, brick   
Concrete, reinforced, normalweight 150 23.6 Hard (low absorption) 130 20.4 
Concrete, lightweight, structural 70–105 11.0–

 
Medium (medium absorption) 115 18.1 

Copper 556 87.3 Soft (high absorption) 100 15.7 
Clay, dry 63 9.9 Masonry, concrete   
Clay, damp 110 17.3 Lightweight units 105 16.5 
Clay, submerged 80 12.6 Medium weight units 125 19.6 
Clay and gravel, dry 100 15.7 Normal weight units 135 21.2 
Gravel, dry 104 16.3 Particleboard 45 7.1 
Silt, moist, loose 78 12.3 Plywood 36 5.7 
Silt, moist, packed 96 15.1 Steel, cold-drawn 492 77.3 
Silt, flowing 108 17.0 Terra cotta, architectural   
Sand and gravel, dry, loose 100 15.7 Voids filled 120 18.9 
Sand and gravel, dry, packed 110 17.3 Voids unfilled 72 11.3 
Sand and gravel, wet 120 18.9 Fir, Douglas, coast region 34 5.3 
   Redwood 28 4.4 
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Example 1: Consider the two normalweight reinforced concrete T beams shown in Figure 9.1. 
Calculate the weight that must be supported by one T beam per foot of length. 

The solution is provided in tabular form. 
Element Unit Weight Weight/ft 

Waterproofing 
membrane 

5.5 psf 5.5 ݂ݏ݌ ×
36
12 ݐ݂ ×  ݐ1݂

= ,ℎݐ𝑔𝑔݈݊݁ ݐ݋݋݂ ݎ݁݌ ܾ݈ 16.5  ݂݈݌ 16.5 ݎ݋

Insulation board 
1.1 psf per 
inch 1.1

݂ݏ݌
݅݊ × 2" ×

36
12 ݐ݂ =  ݂݈݌ 6.6

Reinforced 
concrete 

150 pcf 
݂ܿ݌ 150 × ቆ൬

4
12 ݐ݂ ×

36
12 ൰ݐ݂ + ൬

14
12 ݐ݂ ×

10
12 ൰ቇݐ݂ × ݐ݂ 1

=  ݂݈݌ 295.8
Total per T beam  16.5 + 6.6 + 295.8 = 319 plf 

 

 
Figure 9.1 Example 1, beam cross section. 

 

9.4. LIVE LOADS 

9.4.1. Basic requirements 

Live load is a load produced by the use and occupancy of the building, not including 
construction or environmental loads (wind load, snow load, rain load, earthquake load, 
or flood load). Roof live load is a load on a roof produced (1) during maintenance by workers, 
equipment, and materials, or (2) during the life of the structure by movable objects, such as 
planters or other similar small decorative appurtenances that are not occupancy related. Table 9.3 
tabulates minimum live loads as specified by ASCE 7.  

Note that the live loads specified in Table 9.3 include both a uniformly distributed live load 
L0 and a concentrated live load. The structure is to be designed to support the uniformly 
distributed live load or the concentrated live load, whichever produces the greater load effect. 
The concentrated load is to be uniformly distributed over an area 2.5 ft (762 mm) by 2.5 ft (762 
mm) and shall be located so as to produce the maximum load effects in the members. 

In office buildings or other buildings where partitions will be erected or rearranged, provision 
for partition weight should be made, whether or not partitions are shown on the plans. According 
to ASCE 7, partition live load shall not be less than 15 psf (0.72 kN/m2), except partition live 
load is not required where the minimum specified live load exceeds 80 psf (3.83 kN/m2). 
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Table 9.3 Minimum Uniformly Distributed Live Loads, Lo, and Minimum Concentrated 
Live Loads 

Occupancy or Use                                                                     Uniform psf (kN/m2)             Conc. lb (kN)  
Assembly areas 

Fixed seats (fastened to floor) 
 

60 (2.87)a 
 

Lobbies 
Movable seats 
Platforms (assembly) 
Stage floors 
Other assembly areas 

100 (4.79)a
 

100 (4.79)a
 

100 (4.79)a
 

150 (7.18)a
 

100 (4.79)a 

 

Corridors   
First floor 100 (4.79)  
Other floors Same as occupancy served except as indicated 

Dining rooms and restaurants 100 (4.79)a  
Garages 

Passenger vehicles only 
 

40 (1.92)a,b,c 
 

Hotels (see Residential) 

Libraries 

Reading rooms 60 (2.87) 1,000 (4.45) 
Stack rooms 150 (7.18)a,h 1,000 (4.45) 
Corridors above first floor 80 (3.83) 1,000 (4.45) 

Manufacturing 
Light 

 
125 (6.00)a 

 
2,000 (8.90) 

Heavy 250 (11.97)a 3,000 (13.40) 
Office buildings   

File and computer rooms shall be designed for heavier loads based   
on anticipated occupancy   
Lobbies and first-floor corridors 100 (4.79) 2,000 (8.90) 
Offices 50 (2.40) 2,000 (8.90) 
Corridors above first floor 80 (3.83) 2,000 (8.90) 

Residential 
One- and two-family dwellings 

Uninhabitable attics without storage                                                   10 (0.48)l
 

Uninhabitable attics with storage                                                        20 (0.96)m
 

Habitable attics and sleeping areas                                                      30 (1.44) 
All other areas except stairs                                                                 40 (1.92) 

All other residential occupancies 
Private rooms and corridors serving them                                          40 (1.92) 

Public roomsa  and corridors serving them                                              100 4.79)  

Roofs 
Ordinary flat, pitched, and curved roofs 20 (0.96)n  
Roofs used for roof gardens 100 (4.79)  
Roofs used for other occupancies 
Roofs used for other special purposes 

Same as occupancy served 
o 

 
o 

All other construction                                                                              20 (0.96) 
Primary roof members, exposed to a work floor  

Single panel point of lower chord of roof trusses or 
any point along primary structural members 
supporting roofs over manufacturing, storage 
warehouses, and repair garages 

2,000 (8.9) 

All other primary roof members                                                                                                                          300 (1.33) 
All roof surfaces subject to maintenance workers                                                                                                 300 (1.33)  
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Table 9.3 Minimum Uniformly Distributed Live Loads, Lo, and Minimum Concentrated 
Live Loads (continued) 
Occupancy or Use                                                                     Uniform psf (kN/m2)             Conc. lb (kN)  

Schools 
Classrooms 40 (1.92) 1,000 (4.45) 
Corridors above first floor     

     
 

80 (3.83) 1,000 (4.45) 
First-floor corridors     

     
 

100 (4.79) 1,000 (4.45) 
Stairs and exit ways 100 (4.79) 300r 

One- and two-family dwellings only 40 (1.92) 300r 
Storage areas above ceilings 20 (0.96)  
Storage warehouses (shall be designed for heavier loads if required   

for anticipated storage)  
Light 

 
125 (6.00)a 

 

Heavy 250 (11.97)a  
Stores   

Retail   
First floor 100 (4.79) 1,000 (4.45) 
Upper floors 75 (3.59) 1,000 (4.45) 

Wholesale, all floors 125 (6.00)a 1,000 (4.45) 
 
a Live load reduction for this use is not permitted by Section 4.7 unless specific exceptions apply. 
b Floors in garages or portions of a building used for the storage of motor vehicles shall be designed for the uniformly 
distributed live loads of Table 4-1 or the following concentrated load: (1) for garages restricted to passenger vehicles 
accommodating not more than nine passengers, 3,000 lb (13.35 kN) acting on an area of 4.5 in. by 4.5 in. (114 mm by 114 
mm); and (2) for mechanical parking structures without slab or deck that are used for storing passenger vehicles only, 2,250 
lb (10 kN) per wheel. 
c Design for trucks and buses shall be in accordance with AASHTO LRFD Bridge Design Specifications; however, provisions 
for fatigue and dynamic load allowance therein are not required to be applied. 
h The loading applies to stack room floors that support nonmobile, double-faced library book stacks subject to the following 
limitations: (1) The nominal book stack unit height shall not exceed 90 in. (2,290 mm); (2) the nominal shelf depth shall not 
exceed 12 in. (305 mm) for each face; and (3) parallel rows of double-faced book stacks shall be separated by aisles not less 
than 36 in. (914 mm) wide. 
l Uninhabitable attic areas without storage are those where the maximum clear height between the joist and rafter is less than 
42 in. (1,067 mm), or where there are not two or more adjacent trusses with web configurations capable of accommodating 
an assumed rectangle 42 in. (1,067 mm) in height by 24 in. (610 mm) in width, or greater, within the plane of the trusses. 
This live load need not be assumed to act concurrently with any other live load requirement. 
m Uninhabitable attic areas with storage are those where the maximum clear height between the joist and rafter is 42 in. (1,067 
mm) or greater, or where there are two or more adjacent trusses with web configurations capable of accommodating an 
assumed rectangle 42 in. (1,067 mm) in height by 24 in. (610 mm) in width, or greater, within the plane of the trusses. For 
attics constructed of trusses, the live load need only be applied to those portions of the bottom chords where both of the 
following conditions are met: 

3 The attic area is accessible from an opening not less than 20 in. (508 mm) in width by 30 in. (762 mm) in length 
that is located where the clear height in the attic is a minimum of 30 in. (762 mm); and 

4 The slope of the truss bottom chord is no greater than 2 units vertical to 12 units horizontal (9.5% slope). 
The remaining portions of the bottom chords shall be designed for a uniformly distributed nonconcurrent live load of not 

less than 10 lb/ft2 (0.48 kN/m2). 
n Where uniform roof live loads are reduced to less than 20 lb/ft2  (0.96 kN/m2) in accordance with Section 4.8.2 and are 
applied to the design of structural members arranged so as to create continuity, the reduced roof live load shall be applied to 
adjacent spans or to alternate spans, whichever produces the greatest unfavorable load effect. 
o Roofs used for other special purposes shall be designed for appropriate loads as approved by the authority having jurisdiction. 
r Minimum concentrated load on stair treads (on area of 2 in. by 2 in. [50 mm by 50 mm]) is to be applied nonconcurrent with 
the uniform load. 
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9.4.2. Live load reductions 

Live load in a building is variable both in magnitude and position. While it is reasonable to 
assume that an office may contain a safe weighing 2000 lb over a 2.5 ft by 2.5 ft area, resulting 
in a local pressure of 500 psf, it is not reasonable to assume that an office will be filled (wall-to-
wall) with safes. Instead, a 12 ft by 12 ft office might have one safe, file cabinets, and desk 
weighing around 4000 lb plus a small gathering of 20 people weighing around 3000 lb. Thus, the 
average floor live load is around (4000 + 3000 lb)/144 ft2 = 50 psf. Note that this is 0.1 times the 
average pressure under the safe. Considering an entire building, it is increasingly unlikely that 
every room has a safe and a small gathering, so a live load smaller than 50 psf would be 
reasonable. We therefore recognize that the value of live load should vary with the size of the 
loaded area.  
Floors 
According to ASCE 7, it is permitted to reduce the uniformly distributed floor live loads, L0, in 
Table 9.3 where the following conditions are satisfied: 

1. The live load, L0, shall be restricted to floor loads. (The live load reduction specified here 
is not applicable to roofs. See roof reduction later.) 

2. The live load shall not exceed 100 psf (4.79 kN/m2). (These are storage loads, and it is 
possible that the storage facility will be completely filled.) 

3. The reduction shall not apply to assembly uses, or to garages. 
4. The value of the influence area KLLAT shall be at least 400 ft2 (37.2 m2). 

Where all of the aforementioned conditions are satisfied, it is permitted to reduce the design live 
load in accordance with the following formula: 

ܮ = ଴ܮ ቆ0.25 +
15

ඥܭ𝐿𝐿𝐿𝐿்ܣ
ቇ , US customary units 

ܮ = ଴ܮ ቆ0.25 +
4.57

ඥܭ𝐿𝐿𝐿𝐿்ܣ
ቇ , SI units 

(9.1) 

where 
L = reduced design live load per ft2 (m2) of area supported by the member; 
L0 = unreduced design live load per ft2 (m2) of area supported by the member (see Table 9.3); 
KLL = live load element factor (see Table 4-2); 
AT = tributary area in ft2 (m2); 

 
Additionally, the live load for members supporting multiple floors is limited as follows: 

5. L shall not be less than 0.5L0 for members supporting one floor; and 
6. L shall not be less than 0.4L0 for members supporting two or more floors. 
 



CE 120 Reader  

  
Page 9. 10 

Table 9.4 Live Load Element Factor, KLL. 
Element ࡸࡸࡷ

כ  
w/o 

cantilever 
slabs 

w/ 
cantilever 

slabs 
Interior columns  4 4 
Edge columns 4 3 
Corner columns  * 2 
Interior beams 2 2 
Edge beams 2 * 

All other members not identified, including:  
Edge beams with cantilever slabs 
Cantilever beams 
One-way slabs 
Two-way slabs 
Members without provisions for continuous shear transfer 
normal to their span 

1 1 

*It is permitted to calculate KLL rather than using the tabulated values. 
 
Tabulated values of KLL in Table 9.4 cover most conditions, but there are some conditions for 

which it is useful to be able to calculate KLL. For this purpose, we define  

𝐿𝐿𝐿𝐿ܭ =
ூܣ
்ܣ

 (9.2) 

in which  
AI = the influence area for the member. The influence area is that area of the structure for 

which an applied load will appreciably affect the member under consideration. In 
general, AI is greater than the tributary area AT. 

AT = tributary area for the member. The tributary area is an area of the structure whose loads 
can be considered to produce the member load. For a floor under uniformly distributed 
loading, the product of the loading and the tributary area is equal to the load transmitted 
to the member. (The tributary area concept will be described in greater detail later in this 
chapter.) 

Figure 9.2 illustrates typical influence areas and tributary areas for a structure with regular 
bay spacings. For example, consider the corner column at the intersection of axes K and 2. The 
tributary area AT extends from the column half-way to adjacent columns, and also includes the 
area of the cantilever slabs. The live load times that area would produce a good estimate of the 
total live load supported by the column. The influence area AI extends all the way to the adjacent 
columns, as any load placed within the panel bounded by axes J to L and 1 to 3 will contribute to 
and thereby influence the column. For this example, assuming the cantilever span nLa = 0.5La, 
we obtain KLL = AI/AT = 9/4 = 2.25. Table 9.4 lists KLL = 2 for this case, which is close to the 
calculated value. Values for other members are listed in the inset table of Figure 9.2. 

 



CE 120 Reader  

  
Page 9. 11 

 
Figure 9.2 Typical tributary areas and influence areas. 

 
Example – Consider a typical interior column from the example in Figure 9.2. The floor 
supports typical office loading. Assume L3 = L4 = 30 ft and L10 = L11 = 20 ft. Find the design live 
load for (a) a column supporting a single floor and (b) a column supporting five floors.  

Solution: A tabular solution is provided 
Case L0 AT KLL KLLAT > 400ft2 L [Eq. (9.1)] Limit P (L x AT) 

1 floor 50 psf 1x30x20=600ft2 4 Yes 0.56L0 0.50L0 16.8 kips 
5 floors 50 psf 5x600=3000ft2 4 Yes 0.39 L0 0.40L0 60 kips 

Discussion: To solve this problem, we find the office load from Table 9.3. For live load 
reduction to be applicable, the influence area AI = KLLAT must be at least 400 ft2, which is 
satisfied in both cases. The reduced live load is calculated from Eq. (9.1), but must not exceed 
the limit 0.5L0 for floors supporting one floor and 0.4L0 for floors supporting more than one 
floor. The final axial force is 0.56L0AT for 1 floor and 0.40L0AT for 5 floors.  

 

Roofs 
ASCE 7 treats live load reductions for roofs differently from how floors are treated. The main 
points are considered below. 

For ordinary flat, pitched, and curved roofs, and awning and canopies other than those of 
fabric construction supported by a skeleton structure, live load reductions are permitted. On such 
structures, the minimum roof live load shall be 12 psf (0.58 kN/m2).  
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௥ܮ = 12 ݁ݎ଴𝑅𝑅1𝑅𝑅2,𝑤𝑤ℎ݁ܮ ≤ ௥ܮ ≤ 20, US customary units 

௥ܮ = 0.58 ݁ݎ଴𝑅𝑅1𝑅𝑅2,𝑤𝑤ℎ݁ܮ ≤ ௥ܮ ≤ 0.96, SI units 
(9.3) 

where 
Lr =  reduced roof live load per ft2 (m2) of horizontal projection supported by the member 
L0  =  unreduced design roof live load per ft2 (m2) of horizontal projection supported by the 

member 
 
The reduction factors R1 and R2 shall be determined as follows: 

𝑅𝑅1 = ்ܣ ݎ݋݂ 1 ≤  2ݐ݂ 200

= 1.2 െ ்ܣ0.001 2ݐ݂ 200 ݎ݋݂  < ்ܣ <  2ݐ600݂

= ்ܣ ݎ݋݂ 0.6 ≥  ݏݐ݅݊ݑ ݕݎ𝑚𝑚𝑎𝑎݋ݐݏݑܿ 𝑆𝑆ܷ,2ݐ݂ 600

𝑅𝑅1 = ்ܣ ݎ݋݂ 1 ≤ 18.6 𝑚𝑚2 

= 1.2 െ ்ܣ0.011 𝑚𝑚2 18.6 ݎ݋݂  < ்ܣ < 55.7 𝑚𝑚2 

= ்ܣ ݎ݋݂ 0.6 ≥ 55.7 𝑚𝑚2 

 

(9.4) 

𝑅𝑅2 = 𝐹𝐹 ݎ݋݂ 1 ≤ 4 

= 1.2 െ 0.05𝐹𝐹 ݂4 ݎ݋ < 𝐹𝐹 < 12 

= 𝐹𝐹 ݎ݋݂ 0.6 ≥ 12 
(9.5) 

where, for a pitched roof, F = number of inches of rise per foot (in SI: F = 0.12 × slope, with 
slope expressed in percentage points) and, for an arch or dome, F = rise-to-span ratio multiplied 
by 32. 

9.4.3. Impact Loads 

The live loads specified in ASCE 7 can be assumed to include adequate allowance for ordinary 
impact conditions. However, provision shall be made in the structural design for uses and loads 
that involve unusual vibration and impact forces. Such effects include: 

Elevators - All elements subject to dynamic loads from elevators should be designed for 
impact loads and deflection limits prescribed by ASME A17.1. 

Machinery - For the purpose of design, the weight of machinery and moving loads should be 
increased as follows to allow for impact: (1) light machinery, shaft- or motor-driven, 20 
percent; and (2) reciprocating machinery or power-driven units, 50 percent. All 
percentages should be increased by alternative factors where specified by the 
manufacturer. 

9.4.4. Placement for Maximum Load Effect 

The design must consider the possibility that live loads will be placed in patterns that produce the 
maximum load effects. Influence lines, introduced in Chapter 5, are an efficient tool for 
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identifying where to place loads for maximum effects. The reader is referred to Chapter 5 for 
additional discussion.  

The term pattern load describes a load being positioned in a pattern that may produce 
maximum load effects. For example, storage loads can be placed in alternate bays, with the bays 
between those storage loads being unloaded so as to form corridors (Figure 9.3 b and c). This 
loading will produce maximum positive moments in the loaded bays. Alternatively, two adjacent 
bays can be fully loaded with the next bays unloaded. This loading, along with alternate bays 
also being loaded, will produce the maximum negative moments at supports (Figure 9.3 d, e, f, 
and g).   

 

 
Figure 9.3 Pattern loads for maximum moment effects. 

 

9.5. SNOW LOADS 

Snow loads vary with geographic location. Snow loads on structures also vary with configuration 
of the structure, and must consider exposure and local projections where drifts can accumulate 
(Figure 9.4). The interested reader should refer to ASCE 7 and to local codes. 

 

 
Figure 9.4 Configuration of snow drifts on lower roofs. (From ASCE 7) 
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9.6. LOAD PATHS AND TRIBUTARY AREA CONCEPT 

9.6.1. Load paths 

Roof and floor systems commonly are constructed using a series of surface structural elements 
supported by larger elements capable of spanning greater distances to the supporting columns or 
walls. For example, consider the framing system shown in Figure 9.5. Floor load is applied to 
surface elements (which could be wood planks, plywood, or concrete slab). Although these 
elements are continuous in EW and NS directions, the shortest and, hence, stiffest load path is in 
the NS direction, where they are supported by joists. The joists support the reactions from the 
surface elements plus their own weight, and span EW to supporting beams. The beams support 
the joist loads plus self-weight, and span those loads NS to girders. The girders in turn span EW 
to supporting columns, which transmit loads through axial forces to the foundations or other 
supporting elements.  
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Figure 9.5 Load path for gravity loads in a floor framing system. 

 
The structural elements need not be stacked atop one another as implied by the exploded 

diagram of Figure 9.5. Greater economy in construction and operations can sometimes be 
achieved by framing structural members into one another such that they have the same top 
elevation (Figure 9.6). Regardless, the conceptualization of the load path is the same as depicted 
in Figure 9.5.  
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Figure 9.6 Joists framed into beams so as to have the same top elevation. (a) Wood framing 

(Southern Forest Products Association); (b) Reinforced concrete framing (Idees Deco 
Maison). 

 
The surface elements of Figure 9.5 are supported only by joists, such that it is certain that the 

surface elements frame in one direction between joists. Such surface elements or slabs are 
referred to as one-way elements. Where the joists, beams, and girders all frame together at the 
same top elevation, the framing action of the surface element occurs in two directions. Such 
surface elements or slabs are referred to as two-way elements and, in reinforced concrete 
construction, two-way slabs.  

To better understand the behavior of two-way elements, consider a rectangular slab 
supported on un-yielding walls around the perimeter (Figure 9.7). Two strips of the slab that 
intersect at the mid-span must have the same deflection, G. Idealizing the system as two strips 
supporting uniformly distributed load w, we can write 

𝛿𝛿𝑎𝑎 = 𝛿𝛿௕ =
5𝑤𝑤𝑎𝑎݈𝑎𝑎ସ

𝐼𝐼𝑎𝑎ܧ384
=

5𝑤𝑤௕݈௕ସ

𝐼𝐼௕ܧ384
 (9.6) 

Recognizing that this representation of the two-way slab is a major simplification, it is not 
unreasonable to further simplify it by assuming EIa = EIb. Thus, we arrive at  

𝑤𝑤௕

𝑤𝑤𝑎𝑎
=
݈𝑎𝑎ସ

݈௕ସ
 (9.7) 

According to Eq. (9.7), the amount of load carried in the b direction, wb, is 16 times that 
carried in the a direction, wa, when la/lb = 2. We could change the assumptions of the idealization 
but the conclusion will remain effectively the same, specifically: 

For a slab having length-to-width ratio of 2 or greater, it is reasonable to assume that 
the slab is a one-way element framing in the short-span direction.  
For a slab having length-to-width ratio less than approximately 2, the slab should be 
designed as a two-way element with some load framing in each direction. 

This text only addresses one-way elements. 
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Figure 9.7 Two-way slab supported on unyielding walls. 

 

9.6.2. Tributary width and tributary area 

The tributary width or tributary area concept is an approximate analysis method used for 
estimating the load path in structural systems. To develop the basis for the method, consider the 
continuous and discontinuous beams supporting uniformly distributed loads shown in Figure 9.8. 
The continuous beam was analyzed using the computer software RISA 2D, while the 
discontinuous beam was analyzed by hand. From the results we can observe the following: 

• The reactions for the continuous beam are similar to the reactions from the discontinuous 
beam. The exterior reactions in the continuous beam are conservatively estimated by the 
results from the discontinuous beam, while the first interior reaction is underestimated 
by 14%.   

• The shear diagrams for the continuous and discontinuous beams are also similar.  
• The moment diagrams for the two beams are markedly different.  

From the preceding observations, we conclude that reactions can be reasonably approximated by 
modeling the beam as a discontinuous beam. Moments, however, are strongly affected by 
continuity and cannot be accurately estimated by considering the beam to be discontinuous.  

 

 
Figure 9.8 Comparison of reactions, shears, and moments for continuous and discontinuous 

beams. 
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We can obtain the same results as obtained in Figure 9.8 by using the tributary width 
concept. According to the tributary width concept, the load transferred to a beam support is equal 
to the load acting within the tributary width, where the tributary width is a width extending 
halfway to each of the adjacent supports (Figure 9.9). This method works very well where loads 
are uniformly distributed. Where loads are not uniformly distributed, it is preferably to treat the 
beam as a discontinuous beam, as in Figure 9.8b, and calculate the reactions using equilibrium, 
or, alternatively, to analyze it as a continuous beam, as in Figure 9.8a. Treating the beam as a 
discontinuous beam, for a concentrated load halfway between two supports, half the concentrated 
load would be transferred to one support and half to the other. If the concentrated load was 
positioned three-quarters of the way along the support, three quarters of the load would go to the 
closer support with the remainder going to the more distant support.  

 

 
Figure 9.9 Tributary widths for a continuous beam. 

 
The concept can be expanded to tributary areas, as depicted in Figure 9.10. For a beam along 

axis 2 between axes a and b, the tributary area is AT1. For the girder along axis c between axes 1 
and 2, the tributary area AT2 is the area from two beams supported by the girder. We could also 
add the small area immediately above the girder, but this is too detailed for the approximate 
nature of the calculation. For the interior column at the intersection of axes 3 and b, the area is 
AT3. A similar approach is used for the corner column at 4d. 

 

 
Figure 9.10 Tributary areas for a floor system. 
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Example: For the floor system shown in Figure 9.11, determine the design gravity loads for a 
typical (a) slab, (b) interior joist, (c) interior beam, and (d) interior column supporting a single 
floor. The solution is shown in the figure. Note that the labelled depth of the interior joist and 
beam include the depth of the slab. 

 

 
Figure 9.11 Tributary area and live load reduction example. 
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Example (continued) 
 

 
 
 

 

Slab This is a one-way slab. Special rules apply to live load reduction of one-way slabs.   
Per ASCE 7-10, the tributary area is limited to the product of the span and a width of   
1.5 times the span:  

 A
T
כ’6 =  כ 1.5)   6’) = 54 ft

2
 

 K
LL
כ  A

T
54ft = 54 כ 1 = 

2 
 < 400 ft

2 
, no live load reduction is permitted 

  

 w
D
 = 30 psf + 56 psf = 86 psf 

 w
L
 = 100 psf           

Joist A
T
ft 177 = (’3  – ’32.5)כ’6 = 

2
 

 K
LL

כ   A
T
ft 177כ2 = 

2
 = 354 ft

2 
 < 400 ft

2 
, no live load reduction is permitted 

  

 w
D
 = (86 psf)(͸Ԣ) + 100 plf = 616 plf 

 w
L
 = (100 psf) (6) = 600 plf    

   

Beam A
T
כ ’32.5 =   30’ = 975 ft

2
 

 K
LL

כ   A
T
כ 2 =   975 ft

2
 = 1950 ft

2 
 > 400 ft

2 
, reduction is permitted 

 L = L
0
 (0.25 + 1ହ

ξ1ଽହ଴
) = 0.59   L

0
, not permitted to be less than 0.50 L

0
  

 w
L
 = (0.59)(100psf) = 59 psf  

 Because there are several joists, we treat the load as being uniformly distributed: 

 w
D
 = (616 plf)(32.5’ – 3’)

6’
 +�ଷ଺

12
Ԣ� �2଴.ହ

12
Ԣ� (150 ݂ܿ݌) = 3030 plf + 769 plf = 3.8 klf  

 w
L
 = (59 psf)(32.5’) = 1.9 klf     

Column (supporting ‘single floor) 

 A
T
 = 975 ft

2
 

 K
LL

כ   A
T
ft 975 כ 4 = 

2
 = 3900 ft

2 
 > 400 ft

2 
, reduction is permitted 

 L = L
0
 (0.25 + 1ହ

ξଷଽ଴଴
) = 0.49   L

0
 < 0.50L

0
 ĺ /   0.5/

0
  

 w
L
 = (0.50)(100psf) = 50 psf  

 P
D
 = (3.8 klf)(4x6’) + (0.616 klf)(32.5’-2’) = 110 kips 

 The calculation of P
D
 missed a small portion of the girder weighting approximately: 

 �ଷ଺
12
� �2଴.ହ

12
� (30ᇱ െ 4 כ 6ᇱ െ ʹԢ) (150 ݂ܿ݌) = 3.1 kips, so the correct P

D
 is: 

   

 P
D
 = 110 + 3.1k = 113 kips 

 P
L
 = (50 psf)(32.5’)(30’) = 48.8 kips 
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10.  Wind Loads and Load Paths 

10.1. INTRODUCTION 

This chapter introduces how a structural engineer determines the wind loads for design of a 
structure. The concept of a load path for wind loading is introduced and used to identify how a 
structure resists vertical and lateral loads. Examples of lateral-force-resisting systems are shown. 
The loads and methods generally follow the procedures of ASCE 7-10.1  

10.2. GENERAL NATURE OF WIND LOADS 

Globally, wind arises from differential heating between the equator and the poles, leading to 
buoyancy forces and movement of the air. As heated air rises near the equator and moves north, 
it is further affected by the Coriolis effect as the planet rotates. Regionally, wind is affected by 
differences in atmospheric pressure, with air moving from regions of high pressure to low 
pressure.  

Wind speed for building design is based on meteorological records for different regions. 
Design wind speed is based on recordings of the wind speed sustained for 3 seconds at elevation 
of 33 ft above the ground. Traditionally, design has been based on a speed having a 50-year 
return period (equivalent to a 2% probability of exceedance annually), with design loads factored 
by 1.6 to achieve an appropriate level of safety. In regions not prone to hurricanes, this factor 
increases the return period to approximately 700 years. In 2010, ASCE 7-10 revised the design 
basis to use the basic wind speed associated with a return period of 700 years (equivalent to an 
annual exceedance probability of 0.00140), but with a load factor of 1.0. As shown in Figure 
10.1, the basic wind speed for ordinary buildings in California is 110 mph.  

 

 
1 ASCE 7-10, Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10), American Society of 
Civil Engineers, 2010,  
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Figure 10.1 Basic wind speed in miles per hour (meters per second) for Risk Category II 
Buildings (After ASCE 7-10). 

 
Locally, wind is affected by topographic effects, which can slow or divert the moving air 

mass. Friction of the surface of the earth leads to variation of wind speed with height (Figure 
10.2). This effect is incorporated in the ASCE 7 wind design provisions through a wind exposure 
coefficient. ASCE 7 also includes terrain effects, such as wind speed-up as a mass of air moving 
across a flat plane is constricted by sudden rise in the land elevation. (Details of terrain effects 
are not covered in this text.) 

 

Figure 10.2 Velocity profile of wind as affected by surface roughness. 
 

When wind passes by a structure, the paths of some of the air particles are diverted around 
the structure (Figure 10.3). This causes an increase in the velocity necessary to maintain 
continuity of the flowing air. Where the velocity increases, the pressure reduces. This can create 
an uplift on a roof (Figure 10.3a) or outward pressure (suction) on the side walls (Figure 10.3b).  
Pressure is also created on windward walls and suction on leeward walls. ASCE 7 contains 
pressure coefficients to account for these effects. (Uplift on roofs can carry away a poorly 
anchored roof.) 
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Figure 10.3 Flow of air particles around structures and the resulting air pressures. (Drawing 
from Uang et al., 2011)2. 

 
 
In wind engineering, where the static pressure can be ignored, the stagnation pressure is the 

pressure exerted on an object when all kinetic energy has been converted to pressure energy.  
The stagnation pressure is:  

𝑠𝑠ݍ =
𝑉𝑉2ߩ

2  (10.1) 

in which U = mass density of air and V = wind velocity. Importantly, the stagnation pressure is 
proportional to the square of the wind velocity. 

When air particles are diverted around an object, as in the figure above, a pressure coefficient 
is used to express the a portion of the stagnation pressure gets transferred to the building. This is 
discussed in further detail later in this chapter.  

In the next three pages from Uang et al. (2011), wind loading is introduced in more detail. 
Note that while the discussion of vortex shedding is correct, the example of the Tacoma Narrows 
bridge is not. The Tacoma Narrows bridge actually failed due to aeroelastic flutter, a slightly 
different type of wind excitation. 

 
2   Fundamentals of Structural Analysis, Leet, Uang, and Gilbert, McGraw-Hill, 2011. 
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Note that wind loading can occur from any direction. 

Dynamic interaction between wind and the structure can occur 
for flexible buildings, especially high-rise buildings. Wind 
tunnel testing is commonly done for tall buildings to determine 
how the building responds to wind loading. Models are typically 
mounted on a platform that can be rotated to study effects of 
directionality. In addition to studying dynamic response, wind 
tunnel testing also enables measurement of local pressures, 
which is useful for designing the cladding for the building.   
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10.3. ASCE 7 DIRECTIONAL PROCEDURE FOR DETERMINING WIND DESIGN 
FORCES 

ASCE 7 contains a variety of procedures for determining the wind forces for design of the main 
wind force-resisting system (MWFRS). In this text we use only the directional procedure. The 
directional procedure uses the traditional method of determining wind pressures that act on each 
building surface. This text considers only walls of rigid, enclosed, Risk Category II buildings. 
Roofs, partially enclosed or open buildings, and buildings in other risk categories are not 
included. See ASCE 7 for those other building types and elements.  

The ASCE 7 procedure can be broken into a series of seven steps. 
 
Step 1:  Establish the building risk category. Risk categories are from Table 1.5.1 of ASCE 7-10, 

which is reproduced below as Table 10.1. 
 

Step 2:  Determine the basic wind speed, V, for the applicable risk category. See Figure 10.1. 
Note that this text only provides the wind speed for Risk Category II buildings. See 
ASCE 7 for other risk categories. For Risk Category II buildings in California, V = 110 
mph. 

 
Step 3: Determine wind load parameters: 

➢  Exposure category. Three exposure categories are defined. See Figure 10.2. The 
following lines describe these categories in greater detail: 

B: Urban and suburban, or wooded areas with low structures; 
C: Open terrain with scattered obstructions generally less than 30 ft high; 
D: Flat, unobstructed areas exposed to wind flowing over open water for a distance 

of at least 5000 ft or 20 times the building height, whichever is greater.  
➢  Wind directionality factor, Kd – This factor accounts for the reduced probability of 

maximum winds coming from any given direction and for the reduced probability of the 
maximum pressure developing for any given wind direction. See Table 10.2. 

➢  Topographic factor, Kzt. This factor accounts for effects such as wind speed-up over hills, 
ridges, and escarpments. This text considers only flat topography, for which Kzt = 1.0. 

➢  Gust Effect Factor, G -  This factor accounts for the loading effects in the along-wind 
direction due to wind turbulence–structure interaction. For rigid structures such as those 
considered in this text (period of vibration T ≤ �s�, G = 0.85.  

➢  Enclosure classification, as follows: 
• Open building – a building having each wall at least 80% open 
• Partially enclosed building – a building having (a) total area of openings in a wall 

that receives positive external pressure exceeding the sum of areas of openings in the 
balance of the building envelope by more than 10%, AND (b) the total area of 
openings in a wall that receives positive pressure exceeds 4 ft2. 

• Enclosed building – a building that is neither open or partially enclosed. This text 
only considers enclosed buildings.   

➢  Internal pressure coefficient, (GCpi) – This factor accounts for the change in internal 
pressure than can occur in enclosed and partially enclosed buildings. For enclosed 
buildings, (GCpi) = ±0.18. Note that this pressure acts internally on all of the walls. As 
such, the pressures cancel when considering the main wind force-resisting system.  
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Step 4:  Determine velocity pressure exposure coefficient, Kz or Kh. These coefficients account 

for both the height above grade and the exposure category. See Table 10.3. 
 
Step 5: Determine velocity pressure qz or qh. See Eq. (10.2).  
 

௭ݍ =  ݏݐܷ݅݊ ݕݎ𝑚𝑚𝑎𝑎݋ݐݏݑ𝑆𝑆 𝐶𝐶ܷ (݂ݏ݌) 𝑑𝑑𝑉𝑉2ܭ௭𝑡𝑡ܭ௭ܭ0.00256

௭ݍ = ܰ)  𝑑𝑑𝑉𝑉2ܭ௭𝑡𝑡ܭ௭ܭ0.613 𝑚𝑚2) ⁄ 𝑆𝑆𝐼𝐼 ܷ݊݅(10.2) ݏݐ 

Note that qz refers to pressure varying as a function of elevation z above the base, 
whereas qh is used to define the pressure at the mean roof height h of the building. The 
latter is used to define pressure on the side and leeward walls, where pressures are 
constant over height, with the value depending on the mean roof height h. 
 

Step 6:  Determine external pressure coefficients, Cp or CN. The coefficients vary with the 
windward, leeward, and side walls as shown in Figure 10.4. The coefficients shown 
apply only to enclosed and partially enclosed buildings. ASCE 7 also contains 
coefficients for different types of roofs and for open buildings, but these are not covered 
in this text.  

 
Step 7: Calculate wind pressure, p, on each building surface, in accordance with Eq. (10.3).  

݌ = 𝐶𝐶௣ܩݍ െ  𝐶𝐶௣𝑖𝑖൯ (10.3)ܩ𝑖𝑖൫ݍ

in which 
q = qz for windward walls evaluated at height z above the ground; 
q = qh for leeward walls, side walls, and roofs, evaluated at height h; 
qi = qh for windward walls, side walls, leeward walls, and roofs of enclosed buildings; 
G = gust-effect factor; 
Cp = external pressure coefficient from Figure 10.4; 
(GCpi) = internal pressure coefficient, which for enclosed buildings is ±0.18. 

 
Note that the pressure varies with height on the windward wall. On the leeward and side 

walls, however, the pressure is determined at the mean roof height h and is constant over 
building height. See Figure 10.4. 

Note that (GCpi) is applied in two combinations, (a) with all surfaces subjected to negative 
pressure and (b) with all surfaces subjected to positive pressure. Thus, in a typical building the 
forces on one side of the building will cancel those on the other, so there is no effect on the main 
wind force-resisting system. Consequently, it will not be included in calculations for the main 
wind force-resisting system in this text.  
  



CE 120 Reader 

  
Page 10. 9 

Table 10.1 Risk Category of Buildings and Other Structures for Flood, Wind, Snow, 
Earthquake, and Ice Loads 

Use or Occupancy of Buildings and Structures Risk 

Category 

Buildings and other structures that represent a low risk to human life in the event of failure 
I 

All buildings and other structures except those listed in Risk Categories I, III, and IV 
II 

Buildings and other structures, the failure of which could pose a substantial risk to human life. 

Buildings and other structures, not included in Risk Category IV, with potential to cause 
a substantial economic impact and/or mass disruption of day-to-day civilian life in the 
event of failure. 

Buildings and other structures not included in Risk Category IV (including, but not limited to, 
facilities that manufacture, process, handle, store, use, or dispose of such substances as 
hazardous fuels, hazardous chemicals, hazardous waste, or explosives) containing toxic or 
explosive substances where the quantity of the material exceeds a threshold quantity established 
by the authority having jurisdiction and is sufficient to pose a threat to the public if released.a 

III 

Buildings and other structures designated as essential facilities.  

Buildings and other structures, the failure of which could pose a substantial hazard to the 
community. 

Buildings and other structures (including, but not limited to, facilities that 
manufacture, process, handle, store, use, or dispose of such substances as 
hazardous fuels, hazardous chemicals, or hazardous waste) containing 
sufficient quantities of highly toxic substances where the quantity of the 
material exceeds a threshold quantity established by the authority having 
jurisdiction and is sufficient to pose a threat to the public if released.a 

Buildings and other structures required to maintain the functionality of other Risk Category IV 
structures. 

IV 

a Buildings and other structures containing toxic, highly toxic, or explosive substances shall be eligible 
for classification to a lower Risk Category if it can be demonstrated to the satisfaction of the authority 
having jurisdiction by a hazard assessment as described in Section 1.5.3 that a release of the substances 
is commensurate with the risk associated with that Risk Category. 
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Table 10.2 Wind directionality factor, Kd. 

 
 
 

Table 10.3 Velocity pressure exposure coefficient, Kz. 
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Figure 10.4 Illustration of external pressure coefficients acting on plan and elevation of 
building.  

 

 

Table 10.4 Wall Pressure Coefficients, Cp. (Interpolation is permitted.) 

Surface L/B Cp Use With 
Windward Wall All values 0.8 qz 

 

Leeward Wall 
0-1 -0.5  

qh 2 -0.3 
t4 -0.2 

Side Wall All values -0.7 qh 

 
 

Example 1: For the purpose of determining the forces on the Main Wind Force-Resisting System 
(MWFRS), determine the wind pressure distribution on the four sides of an eight-story office 
building shown in Figure 10.5. The building measures 60 ft by 60 ft in plan, with total height of 
99 ft. Floor elevations are in Table 10.5. The building is located in Walnut Creek, California. 
Use the ASCE 7-10 Directional Procedure.  

 
Step 1:  The building is Risk Category II (Table 10.1). 

 
Step 2:  The basic wind speed is V = 110 mph. 
 
Step 3: Determine wind load parameters: 

➢  Exposure category: B  
➢  Wind directionality factor: From Table 10.2, Kd = 0.85. 
➢  Topographic factor: Kzt = 1.0. 
➢  Gust Effect Factor: G = 0.85.  
➢  Enclosure classification: This is an enclosed building.  
➢  Internal pressure coefficient: For enclosed buildings, (GCpi) = ±0.18. However, the 

internal pressures cancel for the purpose of determining the total force on the MWFRS. 
Therefore, ignore (GCpi). 
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Step 4:  Determine velocity pressure exposure coefficient: Values of Kz can be read from Table 
10.3. For this example, we will interpolate between values in that table to determine 
values at the centerline of each floor level, so that we can readily use that pressure along 
with tributary area concepts to determine the total loads. 

 
Step 5: Determine velocity pressure qz or qh. See Eq. (10.2).  
 
Step 6:  Determine external pressure coefficients: Values of Cp are shown in Figure 10.4 and 

Table 10.4.  
 
Step 7: Calculate wind pressure, p, on each building surface, in accordance with Eq. (10.3). We 

will ignore (GCpi) because it cancels out for the purpose of finding the total building 
lateral force. The pressure distribution on the windward face is presented in the table 
below. Note that Kz values are interpolated from Table 10.3. For example, level 8 is at 
elevation 99 ft, giving an interpolated value of Kz = [(99 ft – 90 ft)/(100 ft – 90 ft)](0.99 
- 0.96) + 0.96 = 0.99. 

 
Table 10.5 Example 1. 

Level Elevation, 
z, ft 

Kz ݍ௭ = ݌ 𝑑𝑑𝑉𝑉2, psfܭ௭𝑡𝑡ܭ௭ܭ0.00256 =  𝐶𝐶௣, psfܩ௭ݍ

8 99 0.99 (0.00256)(0.99)(1)(0.85)(110)2 = 26.1 (25.3)(0.85)(0.8) = 17.7 
7 87 0.95 25.0 17.0 
6 75 0.91 24.0 16.3 
5 63 0.86 22.6 15.4 
4 51 0.81 21.3 14.5 
3 39 0.75 19.7 13.4 
2 27 0.68 17.9 12.2 
1 15 0.57 15.0 10.2 
 
The pressure on the leeward face is evaluated at the mean roof height, or 99 ft. Therefore, the 

pressure on the leeward face is p = qhGCp = (26.1 psf)(0.85)(-0.5) = -11.1 psf. The pressure on 
the side walls is also evaluated at the mean roof height, or 99 ft. Therefore, the pressure on the 
side walls is p = qhGCp = (26.1 psf)(0.85)(-0.7) = -15.5 psf. 

Figure 10.5 presents the solution for Example 1. 
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Figure 10.5 Solution to Example 1 (Building not to scale). 
 

10.4. TRANSFER OF WIND FORCES THROUGH A BUILDING 

Wind loads are applied mainly as pressure acting on the exterior surface of a building (some 
additional internal pressure may also apply). Usually, the building is clad with a façade that is 
supported by the floor slabs/beams (Figure 10.6). Therefore, for the purpose of determining the 
wind forces, we can assume that the façade spans vertically from one floor to another. The 
tributary area method can be used to determine the force per floor.  

 

 

Figure 10.6 Sample façade details. 
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Figure 10.7 illustrates the load path for wind forces applied to the windward side of a 
building. Similar effects occur on the other sides. Considering the top story only, wind pressure p 
actions on cladding panel abcd. Panel abcd is supported by the roof slab along line ab and the 
floor slab below that along line cd. The roof and floor slabs act as diaphragms to connect the 
framing system together and transfer lateral forces to the vertical elements of the lateral-force-
resisting system (or main wind force-resisting sysem). In this example, structural walls 
(sometimes referred to as shear walls) are the vertical elements of the lateral-force-resisting 
system. Therefore, the diaphragm spans between the shear walls. The walls resist lateral forces 
from each of the floor diaphragms in a similar manner, and transfer these forces and the resulting 
moments down to the foundation.  

 

 

Figure 10.7 Load path for wind forces. 
 

Diaphragms commonly are idealized as beams spanning horizontally between the vertical 
elements of the lateral-force-resisting system. Thus, as shown in Figure 10.8, we can calculate 
shears and moments in the diaphragm. 

 

 

Figure 10.8 Diaphragm shear and moment. 
 

Moment is usually resisted by tension and compression chords concentrated near the 
boundaries of the diaphragm (Figure 10.9). Given the concentrated resistance to moment, 
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equilibrium requires shear flow in the diaphragm to be constant, similar to the nearly constant 
shear flow in an I-beam. Figure 10.9 illustrates the uniformly distributed shear stresses in the 
diaphragm near the vertical elements of the lateral-force-resisting system. The shear stress 
located far from the vertical element needs to be collected and dragged back to the vertical 
element. A collector is the element provided to collect the distributed diaphragm shear and drag 
it to the vertical element. In Figure 10.9, collector element ghij acts in compression along gh and 
in tension along ij.  

 

Figure 10.9 Collector and chord elements of a diaphragm. 
 

Example 2:  A four-story building is located near the eight-story building of Example 1. The 
building has a light frame and stiff structural walls (Figure 10.10). Calculate the force per foot of 
length acting on each diaphragm; the forces, shears, and moments on one the walls; and the 
internal forces on the first-story diaphragm.  

 
Solution: Figure 10.10 shows the lateral pressures acting on windward and leeward walls. Note 
that the pressures on the windward wall are the same as the pressures on the lower four stories of 
eight-story tall building, but the pressures on the leeward and side walls are different because the 
building height is less. The pressures on the side wall do not contribute to the diaphragm and 
wall forces for the direction under consideration, and are not shown. In the table under the 
building drawing, we list the height ȟℎ𝑖𝑖 of each story, the total height hi of the level above the 
base, the tributary height htrib for each diaphragm, the sum of pressures on the windward and 
leeward walls, the distributed force on each diaphragm (fi = pi × htrib), and the total force Fi on 
the diaphragm at each level.  

The next table summarizes the forces on a single wall (each wall resists half the forces Fi 
determined in the previous step). Forces are summed to obtain wall shears, and multiplied by 
heights to obtain wall moments. These are plotted at the bottom of the sheet.  

The next sheet continues with forces on the first-level diaphragm. Shears and moments are 
calculated and shear and moment diagrams are plotted. Shear stress at the edge of the diaphragm 
is calculated assuming uniform shear flow. The stress acts along lengths of the collectors, 
enabling determination of the collector compressive and tensile forces.  
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Figure 10.10 Example 2. 
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Figure 10.10: Example 2 (continued) 

 

10.5. DISTRIBUTION OF DIAPHRAGM FORCES – RIGID VERSUS FLEXIBLE 
DIAPHRAGMS 

In the previous examples the diaphragm was supported by only two vertical elements of the 
lateral-force-resisting system, such that the distribution of forces to the vertical elements could 
be determined by equilibrium alone. Where multiple vertical elements support the diaphragm, 
structural analysis using computer software is sometimes done to determine the distribution of 
forces. However, two idealized cases are often considered to simplify the analysis problem, as 
follows: 

• Rigid diaphragm: If the diaphragm is very stiff compared with the stiffness of the 
vertical elements, it is common to idealize the diaphragm as being rigid. Examples 
include concrete diaphragms or concrete fill on metal deck diaphragms supported by 
frames or by wood construction. In this case, assuming the diaphragm to translate 
without rotation, the distribution of forces to the various elements will be in proportion 
with the relative stiffness of the elements (Figure 10.11a). Pure translation without 
rotation occurs where the center of resistance of the vertical elements coincides with the 
centroid of the applied lateral forces. Where this does not occur, the analysis needs to 



CE 120 Reader 

  
Page 10. 18 

include effects of diaphragm plan rotation. This can be solved by hand calculations, but 
it is more commonly done by computer software. 

• Flexible diaphragm: If the diaphragm is very flexible compared with the stiffness of the 
vertical elements, it is common to idealize the diaphragm as being completely flexible. 
Examples include wood diaphragms supported by concrete or masonry walls, or by steel 
braced frames. In this case, the diaphragm is idealized as having zero stiffness (similar to 
a cable), in which the reactions to the vertical elements can be determined by tributary 
area method (Figure 10.11b).  

 

 

Figure 10.11 Rigid versus flexible diaphragm idealizations. 
 

10.6. LATERAL-FORCE-RESISTING SYSTEMS 

Lateral-force-resisting systems are considered to comprise vertical elements (such as shear walls) 
and horizontal elements (diaphragms). Figure 10.12 shows the main types of vertical elements. 
Shear walls (also called structural walls) can be made of reinforced concrete, reinforced 
masonry, or plywood. Braced frames are usually made of steel construction. Rigid frames can be 
either reinforced concrete or structural steel. Rigid frames with fixed supports are somewhat 
unusual in modern construction.  

 

 

Figure 10.12 Vertical elements of lateral-force-resisting systems. Figures from Schodek and 
Bechthold, 20143). 

 
The vertical elements of the lateral-force-resisting system should be placed so that the center 

of resistance is close to the centroid of the applied lateral forces, thereby minimizing torsion. 

 
3 Structures, D.L. Schodek and M. Bechthold, 7th edition, Pearson Education, 2014. 



CE 120 Reader 

  
Page 10. 19 

Figure 10.13 shows braced frames, shear walls, and moment-resisting frames in a one-story 
structure.  

 

 

Figure 10.13 Positioning of vertical elements of the lateral-force-resisting system. Figures 
from Schodek and Bechthold, 20144). 

 
 

To be effective, lateral-force-resisting systems need to have diaphragms capable of 
transferring horizontal forces to the vertical elements of the lateral-force-resisting system. Figure 
10.14 shows the two main options: (a) In steel structures the diaphragm can be composed of 
horizontal trusses within the plane of the diaphragm. (b) In wood, steel, concrete, or masonry 
structures, a solid diaphragm composed of wood, reinforced concrete, or reinforced concrete on 
metal deck can serve as the diaphragm. 

 

Figure 10.14 Diaphragms of lateral-force-resisting systems. Figures from Schodek and 
Bechthold, 2014). 

 
Lateral forces can act in any direction. Therefore, lateral bracing is required along both 

principal directions of the structural system. Figure 10.15b shows beam-column framing in each 

 
4 Structures, D.L. Schodek and M. Bechthold, 7th edition, Pearson Education, 2014. 
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bay of a structure. Figure 10.15c shows the option of providing bracing only around the 
perimeter of the structure. Figure 10.15d shows a plan with distributed walls, including a 
centrally located core wall. Figure 10.15e shows a plan with end bracing. Figure 10.15f shows a 
plan in which some wings are inadequately braced.  

 

 

Figure 10.15 Location of vertical elements within the floor plan. Figures from Schodek and 
Bechthold, 2014). 

 
Figure 10.16 shows a typical structural steel system. Diaphragms are composed of reinforced 

concrete on metal deck. The vertical elements in one direction are moment-resisting frames, 
while those in the orthogonal direction are steel braced frames.  
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Figure 10.16 Lateral-force-resisting system in a steel building. Figures from Schodek and 
Bechthold, 2014). 

 
Tall buildings require an efficient system of elements to resist lateral forces. In some 

buildings the entire perimeter of the building is designed to act as a tube to resist shear and 
overturning moment (Figure 10.17).  

Figure 10.18 illustrates some options for lateral-force-resisting systems of tall buildings. 
Figure 10.18a illustrates a moment frame system. Figure 10.18b illustrates a dual system 
involving a moment frame and core wall. In many modern buildings, the core wall acts alone to 
resist lateral forces. The outrigger system of Figure 10.18c can improve the efficiency of very 
tall buildings by engaging the axial stiffness of the exterior columns as outriggers of the core 
wall. Figure 10.18d depicts a tube system in which a closely spaced grid of beams and columns 
provides a stiff box around the perimeter of the building. Figure 10.18e and f depict steel braced 
frame options.  
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Figure 10.17 Tube structures to resist overturning moments in tall buildings. Figures from 
Schodek and Bechthold, 2014). 
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Figure 10.18 Different framing systems for tall buildings. Figures from Schodek and 
Bechthold, 2014). 
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11.  Earthquake Loads and Load Paths 

11.1. INTRODUCTION 

This chapter introduces how a structural engineer determines the earthquake loads for design of a 
structure. The concept of a load path for earthquake loading is introduced and used to identify 
how a structure resists lateral loads. Examples of lateral-force-resisting systems are shown. The 
loads and methods generally follow the procedures of ASCE 7-10.1  

11.2. GENERAL NATURE OF EARTHQUAKE LOADS 

11.2.1. Earthquakes and Earthquake Hazards 

The term earthquake refers generally to any event that generates seismic waves. Earthquakes can 
be due to natural or man-made causes. From an earthquake engineering perspective, however, 
the earthquakes of greatest interest are due to rupture along geologic faults. The vast majority of 
such earthquakes occur near boundaries of tectonic plates, and are the result of energy release 
and fault rupture as plate boundaries slip past one another along a zone of geologic faults. Intra-
plate earthquakes, occurring distant from the tectonic plate boundaries, can also be important, as 
in the New Madrid earthquake fault zone in the Central United States, or the volcanic-origin 
earthquakes of Hawaii.   

Ground shaking is the main cause of earthquake damage to buildings. For this reason, 
earthquake ground shaking hazard is the main focus of most seismic designs and performance 
assessments. Other seismic hazards that may cause damage to buildings include surface fault 
rupture, liquefaction and associated settlement and lateral spreading, differential settlement of 
foundation material, landsliding, and tsunami. These latter effects should be included in 
assessment and design where they may occur.  

Earthquake ground shaking has been recorded using strong motion instruments since the 
1933 Long Beach, California earthquake. Instruments typically record the acceleration at a point 
in two horizontal directions and the vertical direction. Acceleration recordings can be processed 
to remove errors and noises, and then integrated to obtain velocity and displacement records. 
Figure 11.1 shows examples of recorded accelerations and derived velocities from several 
earthquakes.  
  

 
1 ASCE 7-10, Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10), American Society of 
Civil Engineers, 2010,  
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Figure 11.1 Selected recorded ground accelerations and corresponding ground velocities 
(plotted at the same scale). SS = strike-slip faulting; RV = reverse faulting; TH = thrust 
faulting; SUB = subduction intraslab earthquake; S = soil site; R = rock site; SR = soft 
rock site; DIR = record includes fault rupture directivity effects. Distance measure is 
from the recording site to surface projection of fault rupture plane (epicentral distance 
for the Nisqually earthquake) (after Bozorgnia and Campbell, 2004). 
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The nature of ground shaking at a building site is a function of several factors, including 
earthquake magnitude, style of faulting, depth to top of fault rupture, source-to-site distance, site 
location on hanging wall or footwall of dipping faults, near-surface soil response, sedimentary 
basin depth/depth to basement rock, and other effects related to the three-dimensional wave 
propagation from the source to the site. The following paragraphs describe some of the main 
effects.  

Earthquake magnitude is a measure of the energy released in an earthquake, and therefore 
relates to the rupture area and displacement along the fault. Larger-magnitude earthquakes 
generally have longer fault rupture lengths. Because it takes time for rupture to extend along a 
fault, we should anticipate that larger-magnitude earthquakes generally have a potential for 
longer shaking duration at a site. The larger energy release also creates a potential for higher 
shaking intensity at a site, especially for longer period ground motions. A given fault can be 
capable of generating earthquakes with magnitudes ranging from the low end to some upper 
bound constrained by the length of the fault. Generally, smaller-magnitude earthquakes occur 
more frequently, with larger-magnitude earthquakes occurring less frequently. Some faults and 
fault segments, however, tend to repeatedly generate characteristic earthquakes of comparable 
magnitude.   

Earthquake hazard experts develop and use empirical or simulation-based ground motion 
attenuation models (or ground motion prediction equations) to estimate how ground motion 
intensity varies with magnitude and distance from the fault. Figure 11.2 shows the median 
attenuation for peak horizontal ground acceleration from Campbell and Bozorgnia [2014]. The 
model shows that peak ground acceleration at short distances is nearly independent of magnitude 
for moment magnitude greater than about M 6.5, and that ground motion only slightly attenuates 
within approximately 5 km of the fault. For additional discussion on attenuation models, see 
Bozorgnia et al. (2014). 
  

 

Figure 11.2 Expected attenuation of ground motion with rupture distance showing its 
dependence on moment magnitude (M) (after Campbell and Bozorgnia, 2014). 

 
Ground motions in close proximity to the seismic source (within approximately 10 km) can 

be significantly influenced by near-fault effects referred to as rupture directivity. Fault rupture 
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releases energy in the form of waves that propagate from the rupture source. Because the 
velocity at which rupture propagates and the velocity at which resulting waves propagate are 
usually similar, the progression of rupture along the fault results in a buildup of energy in the 
direction of rupture. Earthquake rupture toward a site tends to produce strongly impulsive ground 
motions, an effect referred to as forward-directivity. The impulsive motion may be especially 
strong in the fault-normal direction. In contrast, earthquake rupture away from a site, referred to 
as either neutral-directivity or backward-directivity, produces waves that are continually sent 
toward the site from increasing distance, and therefore tends to produce longer-duration motion 
of relatively lower amplitude. Figure 11.3 illustrates an example of the effect of rupture 
directivity on earthquake ground motion.  
 

 

Figure 11.3 Velocity records from the 1979 Imperial Valley, California, earthquake at the 
Bonds Corner and El Centro Differential Array strong ground motion recording sites. 
Note the shorter duration, impulsive motion at El Centro #8 (forward-directivity) and 
longer duration lower amplitude motion at Bonds Corner (backward-directivity). (Bolt, 
2004). 

 
Ground shaking at a site also is affected by near-surface soil flexibility. Soft soil deposits 

tend to amplify earthquake ground motions, especially for longer periods. Complicating the 
problem, nonlinear response of soft sites may result in de-amplification as the intensity of input 
motions increases. Building codes have developed site amplification factors based on a 
geotechnical site classification system and the intensity of input motions. As an alternative to 
building code site amplification factors, geotechnical engineers sometimes use one-dimensional 
and three-dimensional modeling procedures to estimate site amplification effects.  

Ground shaking at a site is influenced by other geologic factors. Thrust faults, especially if 
the rupture does not reach the surface, generate higher than average ground motions especially at 
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shorter periods. Furthermore, shaking tends to be higher on the hanging wall (that is, the portion 
of the earth’s crust above the fault plane) for thrust faults. As earthquake waves travel from the 
source to the site, complex geologic structures can reflect and refract earthquake ground motions, 
resulting in focusing of earthquake energy at some sites. On the other hand, normal faults, 
generally produce ground motions either comparable or less than those generated by strike-slip 
faults.  

While some of these effects can be anticipated based on knowledge of the geologic setting, 
others depend on details of the faulting mechanism and source-to-site path, which cannot be 
known before an earthquake. Thus, quantification of uncertainty in forward estimation of ground 
shaking is an important topic in earthquake engineering, and earthquake ground motion 
commonly is described in probabilistic terms that enable general statements about the expected 
shaking and the variability about that expectation.   

11.2.2. Dynamic Response of Structures 

Consider the planar, one-story structure shown in Figure 11.4a. Assume the axial stiffness of the 
columns and the overall stiffness of the supported mass are infinite, such that displacement can 
occur only due to flexural and shear deformations of the columns. Under these conditions, the 
only possible movement of the mass is lateral sway. Thus, we say this structure has a single 
degree of freedom (SDOF).  

When an earthquake occurs, seismic waves travel from the source to the site, causing 
displacement of the supports (Figure 11.4b). If we take the structure at rest, and suddenly impose 
a lateral ground displacement ug, internal shear forces V and moments M will develop in the 
supporting columns (Figure 11.4c). Equilibrium requires that the mass m accelerate such that an 
inertial force ma is developed to equilibrate the sum of the column shears. Thus, ground motion 
causes the structure to respond dynamically.  

 

 

Figure 11.4 Dynamic equilibrium of a SDOF structure. 

 
Structural analysis methods, usually employed in computer software, enable calculation of 

the dynamic response of a SDOF structure given an input ground motion. Figure 11.5 illustrates 
examples of dynamic response calculations for SDOF structures having different vibration 
periods, these being either T = 0.5s, 1.0s, or 2.0s. The input ground motion is one recorded at El 
Centro, CA in 1940. For the structure having T = 0.5s, the maximum absolute value of the 
displacement response is 2.48 in. For the structures having T = 1.0s and 2.0s, the maximum 
displacements (6.61 in. and 8.84 in.) occur at different times. We could repeat similar 
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calculations for different vibration periods. If we plotted the absolute values of the peak 
responses for all periods of interest, we would obtain the plot shown at the bottom of Figure 
11.5. We call this a displacement response spectrum, that is, it is a plot of the maximum absolute 
values of the relative displacement u as a function of the vibration period T of the structure. 
Building codes commonly substitute the variable Sd for u, where  Sd = maximum displacement of 
the oscillator relative to the ground. 

 

 

Figure 11.5 Construction of displacement response spectrum, for viscous damping equal to 2% 
of critical damping. (After Chopra, 1980) 
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Similarly, we could plot maximum velocity and maximum acceleration response spectra. As 

an alternative, it is common to define pseudo-velocity Sv = ωSd (ω = circular frequency = 2π/T) 

and pseudo-acceleration Sa = ω2Sd. The pseudo-velocity and pseudo-acceleration values are 
approximately the same as the absolute velocity and absolute acceleration values. Figure 11.6 
presents examples of Sa, Sv, and Sd response spectra for an oscillator having damping equal to 5% 
of the critical value subjected to the three components of an earthquake ground motion record. 
From these response spectra, we can determine peak values of response to this earthquake 
record. For example, for a vibration period T = 1s, the maximum response in the S48W direction 
is relative displacement of Sd = 1.8 in. (45 cm), pseudo-acceleration of Sa = 1.82g. Knowing the 
pseudo-acceleration, we can write the base shear as V = ma = Sa W⁄g, where W is weight and g is 
gravity acceleration. 

 

 

Figure 11.6 Linear elastic pseudo-acceleration (Sa), pseudo-velocity (Sv), and relative 
displacement (Sd) response spectra for 5% damping for the ground motion recorded at 
the Rinaldi Receiving Station during the 1994 Northridge, CA earthquake. 

 

11.2.3. Design Response Spectra in U.S. Building Codes 

Building codes in the United States use the USGS seismic hazard analysis resources along with 
site amplification factors and a standard response spectrum shape to determine response spectra 
for seismic design. For most of the United States, the spectral values are approximately equal to 
pseudo-acceleration response values having 2% probability of exceedance in 50 years. The 
spectral values were adjusted up or down so that the probability of collapse for an individual 
facility was equal to approximately 1% in 50 years. Near known active faults with significant 
slip rates and characteristic earthquakes with magnitudes in excess of about 6.0, the design 
values are limited by 1.8 times median response spectral values associated with a characteristic 
earthquake on the fault. The resulting spectral response values are referred to as the Risk-
Targeted Maximum Considered Earthquake, designated MCER level. For design, the Design 
Earthquake level is set at DE = ⅔MCER, in anticipation of structural safety margin factor of 1.5 
inherent in the design procedures.  

The specific procedure for establishing the design response spectra is as follows: 
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Step 1:  Use the USGS resources (http://earthquake.usgs.gov/designmaps) to determine the 5%-
damped spectral response pseudo-accelerations at short-period, SS, and 1-s period, S1, at 
the Risk-Targeted Maximum Considered Earthquake (MCER) shaking level.  

Step 2:  Adjust the values for effects of geotechnical site class, as SaMS SFS =  and 11 SFS vM = . 

For this purpose, first determine the geotechnical site class in accordance with Table 
11.1. (A geotechnical engineer usually provides this information.) Then use Table 11.2 
and Table 11.3 to obtain site coefficients Fa and Fv. 

Step 3: Adjust the values to the design level using Eqs. (11.1) and (11.2). 
  

 SaMSDS SFSS
3

2

3

2
==  (11.1) 

111
3

2

3

2 SFSS vMD ==  (11.2) 

Step 4: Given values of SDS and SD1, the design response spectrum is defined using the standard 
spectrum shape shown in Figure 11.7.  

 
Note that the USGS site has a tool that will calculate all the quantities in these four steps.  
 

Table 11.1 Geotechnical site class definitions (after ASCE 7, 2010). 

Site Class 
Soil shear wave velocity, sv , 

ft/s (m/s) 

Standard penetration 

resistance, N  

Soil undrained shear strength, 

us , psf (Pa) 

A. Hard rock > 5000 (1520) N/A N/A 

B. Rock 2500 (760) to 5000 (1520) N/A N/A 

C. Very dense soil 
and soft rock 

1200 (370) to 2500 (760) > 50 > 2000 (0.096) 

D. Stiff soil 600 (180) to 1200 (370) 15 to 50 1000 (0.048) to 2000 (0.096) 

E. Soft clay soil 

< sv 600 (180) < 15 < 1000 (0.048) 

Any profile with more than 10 ft (3 m) of soil having the following characteristics: 
- Plasticity index PI > 20 
- Moisture content w ≥ 40%, and 

- Undrained shear strength us  < 500 psf (0.024 Pa) 

F. Soils requiring site 
response analysis 

Soils vulnerable to failure or collapse under seismic loading, peats and/or highly 
organic clays, very high plasticity clays, or very thick soft/medium stiff clay.* 

*Simplified description. See ASCE 7 for complete description. 

 

http://earthquake.usgs.gov/designmaps
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Table 11.2 Site coefficient Fa to modify SS values (after ASCE 7, 2010) 

Site Class Mapped Maximum Considered Earthquake Spectral 
Response Acceleration Parameter at Short Period 

SS ≤ 0.25 SS = 0.5 SS = 0.75 SS = 1.0 SS ≥ 1.25 

A 0.8 0.8 0.8 0.8 0.8 

B 1.0 1.0 1.0 1.0 1.0 

C 1.2 1.2 1.1 1.0 1.0 

D 1.6 1.4 1.2 1.1 1.0 

E 2.5 1.7 1.2 0.9 0.9 

F Site-specific analysis required. 

Note: Use straight-line interpolation for intermediate values of SS. 
 

Table 11.3 Site coefficient Fv to modify S1 values (after ASCE 7, 2010) 

Site Class Mapped Maximum Considered Earthquake Spectral 
Response Acceleration Parameter at Short Period 

S1 ≤ 0.1 S1 = 0.2 S1 = 0.3 S1 = 0.4 S1 ≥ 0.5 

A 0.8 0.8 0.8 0.8 0.8 

B 1.0 1.0 1.0 1.0 1.0 

C 1.7 1.6 1.5 1.4 1.3 

D 2.4 2.0 1.8 1.6 1.5 

E 3.5 3.2 2.8 2.4 2.4 

F Site-specific analysis required. 

Note: Use straight-line interpolation for intermediate values of SS. 

 

 

Figure 11.7 Design response spectrum (after ASCE 7). 

 
In this figure,  

T = fundamental period of the structure, in seconds (s) 

DS

D
S S

ST 1=  
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STT 2.00 =  
TL = long-period transition period. Values for TL are 4s or greater, which is beyond the range 
of interest for this text. See ASCE 7 for details. 

 
Example 1: Construct the pseudo-acceleration (Sa) design response spectrum and the 
corresponding relative displacement (Sd) response spectrum for a site at site with latitude 34.045 
and longitude -118.264 in the City of Los Angeles. The site is determined to be site class C.  
 
Solution: Using the USGS resources, SS = 2.320g, S1 = 0.815g, and TL = 8s. From Table 11.2 
and Table 11.3, Fa = 1.0 and Fv = 1.3. From Eqs. (11.1) and (11.2), SDS = 1.547g and SD1 = 
0.707g. Using the standard spectrum shape in Figure 11.7, the pseudo-acceleration design 
response spectrum is as shown in Figure 11.8(a). The corresponding displacement design 
response spectrum (Figure 11.8b) is derived from the pseudo-acceleration design response 

spectrum using the relation Sd = Sa /ω2. 
 

 

Figure 11.8 Pseudo-acceleration and displacement response spectra for the Design Earthquake 
(DE), site class C, for a site in the City of Los Angeles. 

 

11.2.4. Distribution of Response Over Building Height 

Vibration of a building results in acceleration of the building mass, which produces inertial 
forces that are the product of acceleration and mass. In practical building analysis, it is common 
to lump the building mass (or weight) at the floor levels, where most of the mass (weight) is 
actually located. For example, in Figure 11.9(a), the roof mass (weight) can be approximated as 
the mass of the floor itself plus the mass of the vertical elements including cladding over half the 
story height below the roof level. For the third level, the mass would be the mass of the floor 
itself plus the mass of the vertical elements including cladding over half the story height above 
and below that level. If we can approximate the individual floor level accelerations as the 
building vibrations back and forth (Figure 11.9c), then the design forces can be obtained as the 
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product of mass and acceleration, that is, 𝐹𝐹𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑚𝑚𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑤𝑤𝑖𝑖/𝑔𝑔, as shown in Figure 11.9(d). As 
we shall see later in this chapter, building codes have expressions to approximate these force 
distributions.  

 

 

Figure 11.9 Distribution of lateral forces over building height. 

 

11.3. EARTHQUAKE DEMANDS ON BUILDING STRUCTURES 

11.3.1. Linear-Elastic Response of Structures 

Earthquake demands on buildings will vary from earthquake to earthquake, and maximum 
expected demands will vary from region to region. For buildings located in regions of high 
seismicity, the maximum expected earthquake shaking levels may produce lateral displacements 
of several inches relative to the ground, with lateral forces for linear-elastic systems approaching 
or even exceeding the weight of the building. Except for very special structures, it will not be 
economically feasible to design buildings with conventional structural systems to respond 
linearly to such strong shaking. Some nonlinear response may have to be accepted.  

We can demonstrate this for sites in the highly seismic western United States using the 
Design Earthquake (DE) response spectrum presented in Example 1. Adopting the rule of thumb 
that vibration period of a building is T ≈ N/10, where N = number of stories, we can estimate that 
a five-story building has a vibration period around 0.5s. From Figure 11.8, for T = 0.5s, Sa = 1.4g 
and Sd = 3.5 in. (89 mm). The corresponding base shear can be estimated to be Vb = SaW/g = 
1.4W.  

While it is possible to design a structure to remain linear-elastic under the forces determined 
above, doing so would require considerable expense. It might also require use of a massive 
structural system that would interfere with the functional purpose of the building. Neither the 
expense nor the functional disruption can be justified in most building projects, especially 
considering the rarity of design-level earthquake shaking and the limited resources available for 
building construction. Therefore, ASCE 7 allows for inelastic response of a building during 
strong shaking. The next section provides a brief overview of inelastic response to earthquake 
ground motions.         

11.3.2. Inelastic Response of Structures 

Consider the single-degree-of-freedom oscillator shown in Figure 11.10(a). The mass M (= W/g) 
is set equal to 1 kip-s2/in. and the stiffness K is set equal to 39.5 kip/in., resulting in linear period 
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T = 1s. Damping is modeled as viscous with damping ratio equal to 5% of the critical value. The 
force-displacement relation (Figure 11.10b) has stiffness-degrading behavior that approximates 
behavior of reinforced concrete construction. By setting the yield force Vy sufficiently high, the 
response will be linear-elastic. For strength lower than the linear-elastic force demand, behavior 
follows the relation shown in Figure 11.10(b).   

 

 

Figure 11.10 (a) Single-degree-of-freedom (SDOF) oscillator, (b) force-displacement 
response. 

 
Response of the oscillator is calculated using the software BISPEC (2009). Figure 11.11 

plots the displacement response history for linear response and for moderately nonlinear 
response. For linear response (Figure 11.11a), the maximum displacement is 17.9 in. (455 mm), 
consistent with the spectral displacement Sd that can be read from the linear response spectrum at 

T = 1s (Figure 11.6). The maximum restoring force in the spring can be obtained as Ve = K × Sd = 

39.5 kip/in. × 17.9 in. = 705 kips (3140 kN).  
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Figure 11.11  Calculated response of an oscillator having initial period T = 1s and 5% damping 
subjected to the ground motion recorded at the Rinaldi Receiving Station during the 
1994 Northridge, CA earthquake. (a) R = 1 corresponds to linear-elastic response, (b) R 
= 2 corresponds to inelastic response for the oscillator having yield strength equal to 
half the elastic strength demand. The hysteretic relation between spring force and 
relative displacement is shown in the inset. 

 
We now introduce the response modification coefficient, R, defined by  

 ye VVR =  (11.3) 

in which Ve = the force developed in the spring for linear-elastic response and Vy = the yield 
force of the spring. Linear-elastic response requires R = 1 (or less). R = 2 corresponds to an 
oscillator having a yield base shear equal to half the elastic shear force for a linear-elastic 
oscillator. The response modification coefficient is used to define design strength requirements 
for seismic designs complying with ASCE 7, as will be discussed subsequently. 

The nonlinear oscillator whose response is plotted in Figure 11.11(b) was defined to have R = 
2, that is, yield strength equal to 705 kips / 2 = 353 kips. The effects of yielding are apparent in 
two characteristics of the response history. First, the apparent vibration period is elongated 
relative to the initial period of T = 1s; this is because yielding results in effective stiffness 
degradation in the load-displacement relation. Second, nonlinear response is apparent in the 
permanent offset of 4.9 in. (120 mm). 

An important observation from Figure 11.11 is that the peak displacements for linear 
response (17.9 in.) and nonlinear response with R = 2 (18.6 in.) are nearly equal. If we were to 
further investigate this observation for R = 3, 4, and 6 we would find peak displacements of 21.0 
in., 19.5 in., and 16.4 in., respectively. Apparently, for this structure and this ground motion 
record, the peak displacement is relatively insensitive to the strength within this range of 
strengths.  
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The observation that the peak displacement for nonlinear response is approximately equal to 
the peak displacement for linear response is known as the equal displacement rule. We should 
note that it is not a mathematically derived result, but instead is an empirical observation that 
holds on average for many structures and many ground motions.  

11.4. ASCE 7 EQUIVALENT LATERAL FORCE PROCEDURE FOR DETERMINING 
EARTHQUAKE DESIGN FORCES 

ASCE 7 provides several different methods for establishing earthquake design forces for 
buildings. Here we emphasize the Equivalent Lateral Force procedure, illustrated using a series 
of steps that can generally be followed when using the procedure.  

 
Steps 1 through 4: See Section 11.2.3. 
 
Step 5:  Determine Importance Factor and Risk Category (ASCE 7 Section 11.5). 
a. Risk category is defined in ASCE 7 Table 1.5-2. In this text, see Table 11.4. Risk 

Category II is typical. 
b. Read Seismic Importance Factor from ASCE 7 Table 1.5-2. In this text, see Table 11.4. I 

= 1.0 is typical 
 
Step 6: Determine Seismic Design Category (ASCE 7 Section 11.6). In this text, see Table 11.5 

and Table 11.6. 
 

Step 7: Determine the values of R, Cd, and Ωo based on the vertical elements of the seismic 
force resisting system. These are in ASCE 7 Table 12.2-1, which is partially reproduced 
as Table 11.7 in this text. Factor R, previously defined by Eq. (11.3), reflects the 
inherent capability of the framing system to respond in the inelastic range. Factor Cd is 
used to adjust the calculated displacement to a value similar to that obtained by the equal 

displacement rule (see Section 11.3.2). Factor  Ωo is a system overstrength factor that is 
used to estimate how large some critical design forces can be if the structure yields 
during the earthquake and develops its actual strength.  

 
(Sections 12.4.2 through 12.6 of ASCE 7 cover a range of subjects including vertical seismic 
loading, factors for low redundancy, overstrength effects, and effects of loading in two 
orthogonal directions. In CE 120, we will not consider these effects.) 
 
Step 8: Determine the effective seismic weight, W, of the building. The effective seismic weight 

includes the dead load; a minimum of 25 percent of the floor live in areas used for 
storage; weight of partitions; total operating weight of permanent equipment; snow 
loads; and weight of landscaping and other materials at roof gardens and similar areas. 
The weights associated with each floor level are defined to include the tributary weight 
of slabs, beams, columns, walls, cladding, etc. For this purpose, the tributary weight of 
elements spanning between floors is taken as the weight within half story height above 
and below the floor under consideration.  
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Step 9:  Calculate the fundamental period of the structure, T, in the direction under 
consideration. As an alternative to performing an analysis to determine the fundamental 
period, T, it is permitted to use the approximate building period, Ta, calculated in 
accordance with Eq. . 

𝑇𝑇𝑎𝑎 = 𝐶𝐶𝑡𝑡ℎ𝑛𝑛𝑥𝑥 (11.4) 

where  
 
hn is the structural height defined as the vertical distance from the base to the highest 

level of the seismic force-resisting system of the structure. For pitched or sloped 
roofs, the structural height is from the base to the average height of the roof. 

Ct and x are determined from Table 11.8. ASCE 7 contains some alternative equations 
not presented here.  

 
Step 10: Calculate the seismic base shear V in accordance with the following: 

𝑉𝑉 = 𝐶𝐶𝑠𝑠𝑊𝑊 (11.5) 

where  
 
Cs = the seismic response coefficient, defined below 
W = the effective seismic weight  

 
The seismic response coefficient is defined by the following five expressions: 

𝐶𝐶𝑠𝑠 =
𝑆𝑆𝐷𝐷𝐷𝐷
�𝑅𝑅𝐼𝐼𝑒𝑒

�
 

(11.6) 

where 
 
SDS =  the design spectral response acceleration parameter in the short period range as 

determined in Step 3.  
R =  the response modification factor from Table 11.7 
Ie =  the importance factor from Table 11.4. 
 
The value of Cs computed in accordance with Eq. (11.6) need not exceed the following: 

𝐶𝐶𝑠𝑠 =
𝑆𝑆𝐷𝐷1
𝑇𝑇 �𝑅𝑅𝐼𝐼𝑒𝑒

�
 for 𝑇𝑇 ≤  𝑇𝑇𝐿𝐿  

(11.7) 

𝐶𝐶𝑠𝑠 =
𝑆𝑆𝐷𝐷1𝑇𝑇𝐿𝐿
𝑇𝑇2 �𝑅𝑅𝐼𝐼𝑒𝑒

�
 for 𝑇𝑇 >  𝑇𝑇𝐿𝐿  

(11.8) 

Furthermore, Cs shall not be less than 

𝐶𝐶𝑠𝑠 = 0.044𝑆𝑆𝐷𝐷𝐷𝐷𝐼𝐼𝑒𝑒 ≥ 0.01  (11.9) 

In addition, for structures located where S1 ≥ 0.6g, Cs shall not be less than  
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𝐶𝐶𝑠𝑠 = 0.5𝑆𝑆1 (𝑅𝑅 𝐼𝐼𝑒𝑒⁄ )⁄  (11.10) 

 
Step 11:  Determine the vertical distribution of seismic forces. The lateral seismic force (Fx) (kip 

or kN) induced at any level shall be determined from the following equations: 

𝐹𝐹𝑥𝑥 = 𝐶𝐶𝑣𝑣𝑥𝑥𝑉𝑉 (11.11) 

 

𝐶𝐶𝑣𝑣𝑥𝑥 =
𝑤𝑤𝑥𝑥ℎ𝑥𝑥𝑘𝑘

∑ 𝑤𝑤𝑖𝑖ℎ𝑖𝑖𝑘𝑘𝑛𝑛
𝑖𝑖=1

 (11.12) 

 
where 
 
Cvx =  vertical distribution factor 
V =  total design lateral force or shear at the base of the structure (kip or kN) 
wi and wx = the portion of the total effective seismic weight of the structure (W) located 

or assigned to Level i or x 
hi and hx = the height (ft or m) from the base to Level i or x 
k =  an exponent related to the structure period as follows: 

For structures having T ≤ 0.5 s, k = 1 
For structures having T ≥ 2.5 s, k = 2 
For other structures, k shall be 2 or shall be determined by linear interpolation 
between 1 and 2. 

 
Step 12:  Determine the horizontal distribution of forces, if required. In general, the force at 

every level is distributed in proportion with the mass distribution of that level. ASCE 7 
also contains provisions for determination of inherent and accidental torsion, but we 
will not consider torsion in this text.  

 
Step 13:  Determine the story drifts. The deflection at Level x (δx) (in. or mm) is calculated in 

accordance with Equation (11.13): 

𝛿𝛿𝑥𝑥 =
𝐶𝐶𝑑𝑑𝛿𝛿𝑥𝑥𝑒𝑒
𝐼𝐼𝑒𝑒

 (11.13) 

where 
 
Cd = the deflection amplification factor in Table 11.7 
δxe = the deflection determined by an elastic analysis. 
Ie = the importance factor in Table 11.4. 
 
Note that the deflection δxe is calculated for seismic forces that have been reduced by 
divisor (R/Ie) in Step 10. Thus, the deflection δx from Eq. (11.13) is the deflection for 
unreduced forces factored by Cd/R, which is approximately 1.0. This, therefore, brings 
the deflections effectively back to values expected based on the equal displacement 
rule.   
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Table 11.4 Risk Category of Buildings and Other Structures for Flood, Wind, Snow, 
Earthquake, and Ice Loads, and Seismic Importance Factor 

Use or Occupancy of Buildings and Structures 
Risk 

Category 

Seismic 
Importance 
Factor, Ie 

Buildings and other structures that represent a low risk to human life in the event of 

failure 

I 1.0 

All buildings and other structures except those listed in Risk Categories I, III, and IV II 1.0 

Buildings and other structures, the failure of which could pose a substantial risk to 
human life. 

Buildings and other structures, not included in Risk Category IV, with 

potential to cause a substantial economic impact and/or mass disruption of 

day-to-day civilian life in the event of failure. 

Buildings and other structures not included in Risk Category IV (including, but not 

limited to, facilities that manufacture, process, handle, store, use, or dispose of such 

substances as hazardous fuels, hazardous chemicals, hazardous waste, or explosives) 

containing toxic or explosive substances where the quantity of the material exceeds a 

threshold quantity established by the authority having jurisdiction and is sufficient to 

pose a threat to the public if released.a 

III 1.25 

Buildings and other structures designated as essential facilities.  

Buildings and other structures, the failure of which could pose a substantial hazard 
to the community. 

Buildings and other structures (including, but not limited to, 

facilities that manufacture, process, handle, store, use, or 

dispose of such substances as hazardous fuels, hazardous 

chemicals, or hazardous waste) containing sufficient quantities 

of highly toxic substances where the quantity of the material 

exceeds a threshold quantity established by the authority 

having jurisdiction and is sufficient to pose a threat to the 

public if released.a 

Buildings and other structures required to maintain the functionality of other Risk 
Category IV structures. 

IV 1.5 

a Buildings and other structures containing toxic, highly toxic, or explosive substances shall be eligible 

for classification to a lower Risk Category if it can be demonstrated to the satisfaction of the authority 

having jurisdiction by a hazard assessment as described in Section 1.5.3 that a release of the substances 

is commensurate with the risk associated with that Risk Category. 
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Table 11.5 Seismic Design Category based on short-period response acceleration parameter, SDS 
(after ASCE 7) 

Value of SDS 

Risk Category 

I or II III IV 

SDS < 0.167 A A A 

0.167 ≤ SDS < 0.33 B B C 

0.33 ≤ SDS < 0.50 C C D 

0.50 ≤ SDS D D D 

 
 

Table 11.6 Seismic Design Category based on 1 s period response 
acceleration parameter, SD1 (after ASCE 7)a 

Value of SD1 

Risk Category 

I or II III IV 

SD1 < 0.067 A A A 

0.067 ≤ SD1 < 0.133 B B C 

0.133 ≤ SD1 < 0.20 C C D 

0.20 ≤ SD1 D D D 
a Risk Category I, II, or III structures located where S1 ≥ 0.75 shall be 
assigned to Seismic Design Category E. Additional requirements apply 
for Risk Category IV. 

 

Table 11.7 Design coefficients and factors for seismic force-resisting systems (after ASCE 7)a 

Seismic Force-Resisting System 

Response 
Modification 
Coefficient, 

R 

System 
Overstrength 

Factor, Ω0 

Deflection 
Amplification 

Factor, Cd 

Structural System 
Limitations and Building 

Height (ft) Limitb 

Seismic Design 
Category 

B C D E F 

A. BEARING WALL SYSTEMS         

Special reinforced concrete shear walls 5 2.5 5 NL NL 160 160 100 

Light-frame (wood) walls sheathed with wood 
structural panels rated for shear resistance 

6½ 3 4 NL NL 65 65 65 

         

B. BUILDING FRAME SYSTEMS         

Steel special concentrically braced frames 6 2 5 NL NL 160 160 160 

Special reinforced concrete shear walls 6 2.5 5 NL NL 160 160 100 

Steel buckling-restrained braced frames 8 2.5 5 NL NL 160 160 100 

         

C. MOMENT-RESISTING FRAME 
SYSTEMS 

        

Steel special moment frames 8 3 5.5 NL NL NL NL NL 

Special reinforced concrete moment frames 8 3 5.5 NL NL NL NL NL 

         

D. DUAL SYSTEMS WITH SPECIAL 
MOMENT FRAMES CAPABLE OF 
RESISTING AT LEAST 25% OF 
PRESCRIBED SEISMIC FORCES 

        

Steel special concentrically braced frames 7 2.5 5.5 NL NL NL NL NL 

Special reinforced concrete shear walls 7 2.5 5.5 NL NL NL NL NL 

         
aPartial presentation. See ASCE-7 for complete description. 
bNL = Not Limited; NP = Not Permitted. 40 ft = 12.2 m, 100 ft = 30.5m, 160 ft = 48.4 m. Heights are measured from the base of the structure.  
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Table 11.8 Values of approximate period parameters Ct and x 

Structure Type Ct x 
Steel moment-resisting frames 0.028 (0.0724)a 0.8 

Concrete moment-resisting frames 0.016 (0.0466)a 0.9 

Steel eccentrically braced frames 0.03 (0.0731)a 0.75 

Steel buckling-restrained frames 0.03 (0.0731)a 0.75 

All other structural systems 0.02 (0.0488)a 0.75 
aMetric equivalents are shown in parentheses. 

 
 

Example 2: A 3-story tall concrete office building is located in Los Angeles, CA (Lat 34.045, 
Long -118.264). The site is site class C. The structural system comprises a special reinforced 
concrete bearing wall as a core wall surrounded by gravity framing. The structural system and 
various design loads are summarized in the sketch below. Find the design base shear, the 
distribution of lateral forces over height, and the wall shears and moments. You may treat the 
core wall as a single solid wall for this example.  
 
Solution: The sketch below shows the structural system and design loads. Steps 1 through 4 are 
taken from Example 1. The remainder of the solution is in Steps 5-11. 

 
Figure 11.12 Example 2 

 



CE 120 Reader  

  
Page 11. 20 

 

 
 

Figure 11.12 Example 2 (continued) 

partitions 
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11.5. TRANSFER OF SEISMIC FORCES THROUGH A BUILDING 

Seismic forces are generally assumed to act only at the floor levels because the mass of the floors 
usually comprises the majority of the building mass. The forces are generated by the mass of the 
floor system undergoing accelerations. Thus, the forces should be distributed horizontally across 
the floor in proportion with the distribution of seismic mass. Small irregularities caused by minor 
openings or by distribution of cladding, columns, and walls, are commonly ignored. Figure 11.13 
illustrates a basic structural framing system and illustrates how inertial forces are distributed 
across the floor for loading toward the north. Once the lateral force distribution is identified, the 
transfer of forces through the building follows the general procedures presented in Chapter 10 for 
wind loading.  

 

 

Figure 11.13 (a) Basic structural framing and (b) transfer of inertial loads in a diaphragm. 
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11.6. DISTRIBUTION OF DIAPHRAGM FORCES – RIGID VERSUS FLEXIBLE 
DIAPHRAGMS 

Concepts for rigid and flexible diaphragms in earthquake-resisting buildings are the same as 
those for wind-resisting buildings. See discussion in Chapter 10.  

11.7. LATERAL-FORCE-RESISTING SYSTEMS 

As with wind-resisting buildings, the lateral-force-resisting systems for earthquake resistance are 
considered to comprise vertical elements (such as shear walls) and horizontal elements 
(diaphragms). The discussion of these elements for wind design in Chapter 10 is largely 
applicable for earthquake resistance. Please refer to Chapter 10 for more information. 

One important distinction between main-wind-force-resisting systems and seismic-force-
resisting systems lies in the performance expectations and, consequently, the required detailing 
of the structural system. Buildings are expected to resist wind forces in the effectively linear-
elastic range of response, without yielding of the structural system. In contrast, as discussed in 
Section 11.2.4, buildings resisting strong earthquake shaking may need to be capable of 
responding well beyond the linear range of response. Consequently, the structure needs to be 
configured, detailed, and constructed so that it can perform adequately even though it is yielding 
during the design earthquake.  

The International Building Code, ASCE 7, and the materials codes impose restrictions on the 
types of structural systems that can be used for earthquake resistance. Those codes also specify 
strict requirements for proportioning, detailing, and inspecting the construction of these buildings 
so that they can perform properly. Table 11.7 identifies some of the types of structural systems 
that are permitted in regions of highest seismicity, including the West Coast of the United States. 
The different structural systems are defined as: 

• A structural wall is a wall that is designed to resist lateral (and perhaps vertical) loads 
within the plane of the wall. A structural wall is also sometimes referred to as a shear 
wall. A special structural wall is one that is proportioned and detailed to enable it to meet 
the performance requirements in regions of highest seismicity. Structural walls (shear 
walls) can be either of reinforced concrete (Figure 11.14) or light-frame (wood) sheathed 
with plywood (Figure 11.15). 

• A moment-resisting frame is a vertical element in which beams, columns, and beam-
column joints are connected to compose a rigid framework that resists lateral and vertical 
forces through moment, shear, and axial forces in the members (Figure 11.16). A special 
moment frame is one that is proportioned and detailed to enable it to meet the 
performance requirements in regions of highest seismicity. 

• A concentrically braced frame is a vertical truss in which beams, columns, and diagonal 
bracing members are arranged such that their axes intersect at joints (Figure 11.17). (An 
eccentric braced frame is one in which the diagonals are intentionally offset from the 
joints.) Braced frames are almost exclusively made of steel members. A steel special 
concentrically braced frame is one that is proportioned and detailed to enable it to meet 
the performance requirements in regions of highest seismicity. Diagonals of steel braced 
frames have a tendency to buckle under compressive loading. A steel buckling-restrained 
braced frame is one that has specially detailed diagonals that are restrained from buckling 
(Figure 11.18). 
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• A bearing wall system is a structural system with structural walls providing support for 
all or major portions of the vertical loads, in addition to providing earthquake force 
resistance. Bearing walls can be either of (a) special reinforced concrete shear walls or 
(b) Light-frame (wood) walls sheathed with wood structural panels (plywood) rated for 
shear resistance.  

• A building frame system is a structural system with an essentially complete space frame 
providing support for vertical loads. Seismic force resistance is provided by shear walls 
or braced frames. 

• A dual system is a combination of moment-resisting frames and either structural walls or 
braced frames, proportioned to resist the design earthquake loads in proportion with their 
respective rigidities, except the moment-resisting frames must be capable of resisting at 
least 25% of the prescribed earthquake forces.  

 

 

Figure 11.14 Elevations of various types of reinforced concrete structural walls. (Moehle, 
McGraw-Hill, 2014) 

 
 

 

Figure 11.15 Locations and details of wood shear walls (ABAG) 
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Figure 11.16 Reinforced concrete moment-resisting frame under construction (Cary 
Kopczynski & Company, Seattle). 

 
 

 

Figure 11.17 Elevations of various types of steel concentrically braced frames. (NIST GCR 
13-917-24) 
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Figure 11.18 Buckling-restrained braced frame in Stanley Hall, UC Berkeley. 

 
In a typical building the majority of the mass is in the floor system. An important 

consideration in laying out the seismic force-resisting system is to locate the vertical elements 
such that the center of resistance is close to the center of mass, thereby reducing plan torsional 
effects. The fundamental problem is illustrated in Figure 11.19, in which severe eccentricity 
between the centers of mass and resistance results in torsion that needs to be considered in 
design. In a building with rectangular plan, an ideal location for the vertical elements of the 
seismic force-resisting system is around the building perimeter, such that the centers of mass and 
resistance coincide and high torsional resistance is provided. This location for vertical elements 
may not be ideal from the perspective of overturning resistance or building function. 

 

Figure 11.19 Building in which location of the vertical elements of the seismic force-resisting 
system results in severe torsion problem. 

 
The vertical elements of the seismic force-resisting system are required to transmit the 

accumulated seismic forces to the foundation system. Generally, it is preferable for the vertical 
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elements to be continuous over height. Figure 11.20 illustrates two examples of discontinuous 
vertical elements. Figure 11.20(a) shows a structural wall in the first story that terminates at the 
first elevated level; the sudden discontinuity in stiffness and strength can result in distress in the 
story immediately above the wall cutoff. In Figure 11.20(b), a wall in the upper stories is 
discontinuous in the first story. The resulting discontinuity in stiffness and strength can result in 
a weak first story that is highly vulnerable to earthquake effects. The condition is exacerbated by 
the overturning forces from the wall, which must be resisting in the first story by the supporting 
columns. Seismic building codes may prohibit the type of discontinuity shown in Figure 11.20(b) 
for buildings in highly seismic zones because it is known to result in poor performance. 

 

 

Figure 11.20 Buildings with discontinuous vertical elements of the seismic force-resisting 
system. 
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12.  Design Methods 

12.1. INTRODUCTION 

Previous chapters have addressed design loads and analysis for reactions, internal forces, and 
deflections under applied loads. The next step in design is to proportion the structure such that it 
will meet performance expectations with an appropriate degree of reliability. In general, a 
structure must be designed such that is will be both serviceable under normal loads and safe 
under unusually severe loads. This chapter introduces design methods that are commonly used to 
check serviceability and safety. Subsequent chapters will illustrate use of these methods for 
wood, steel, and reinforced concrete structures.  

12.2. DESIGN AND BEHAVIOR OF STRUCTURES 

The design of any structure should consider both serviceability under expected loads and safety 
under extreme loads. Figure 12.1 illustrates the general nature of the problem.  

x Under service loads, which include calculated dead loads plus the tabulated live loads 
from ASCE 7, the structure should perform in a serviceable manner. Specific 
serviceability requirements might include (a) a limit on the maximum deflection and (b) a 
restriction on maximum stresses so as to control cracking and crack width.  

x Because of the life safety consequences of structural failure, there should be only a small 
probability that the load effects will exceed the ultimate ability of the structure to resist 
those loads over a specified life of the structure. In general, there exists some variability 
in the loads and in the ability of a structure to resist those loads (Figure 12.2). To ensure a 
small probability of failure, the expected resistance of the structure will need to exceed 
the expected load effects by some margin. This will be provided either through (a) a 
factor of safety in the design or (b) a load-and-resistance factor design method that 
amplifies the loads and decreases the resistance in consideration of the variability. Both 
methods will be described later in this chapter.  

x In addition to providing a margin of safety between the expected load effects and the 
expected resistance, we normally design structures to provide some warning of 
impending failure in the event that the loads approach the capacity. For example, this 
might be achieved by designing the structure so that it will yield  and deform in a ductile 
manner prior to its final failure, as illustrated for the beam in Figure 12.1(c). We may also 
introduce a capacity design method intended to control the mechanism by which the 
structure fails. 
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Figure 12.1 Load-deflection response of a reinforced concrete beam. 

 
 

 
Figure 12.2 Controlling the risk of failure. 

 

12.3. LIMIT STATE DESIGN 

A limit state is a condition of a structural member (or structural system) beyond which the 
structural member (or system) no longer satisfies a performance requirement. In relation to the 
discussion in Section 12.2, the two most commonly limit states considered in design are the 
serviceability limit state and the ultimate limit state. Limit states design is a process by which the 
various limit states are identified and then the design is carried out to ensure that the limit state is 
not exceeded. The methods described in the remainder of this chapter are used as part of the limit 
state design procedure. 
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12.4. DEFLECTION LIMITS 

According to the International Building Code (IBC), structural systems and members thereof 
shall be designed to have adequate stiffness to limit deflections and lateral drift, as defined in the 
following subsections. 

12.4.1. Deflections Under Vertical Loads 

The deflections of structural members are not to exceed the values of Table 12.1. In that table, l 
= the member span, L refers to the deflection calculated due to live load only, S refers to the 
deflection calculated due to snow load only, and KD + L refers to the deflection calculated due to 
combined dead plus live load that occurs after the member is constructed, that is, it is the 
deflection due to live load plus any long-term deflection under dead loads. For example, wood 
and concrete members creep under sustained dead loads, and therefore, K ≠ 0. Steel does not 
creep, therefore, K = 0. See The deflections are calculated using service loads without load 
factors.  

 

Table 12.1 Deflection limits 

Construction L S K D + L 

Roof members:    

Supporting plaster ceiling 𝑙 360⁄  𝑙 360⁄  𝑙 240⁄  
Supporting non-plaster ceiling 𝑙 240⁄  𝑙 240⁄  𝑙 180⁄  
Not supporting ceiling 𝑙 180⁄  𝑙 180⁄  𝑙 120⁄  

Floor members 𝑙 360⁄  − 𝑙 240⁄  

Exterior walls and interior partitions:    

With brittle finishes − 𝑙 240⁄  − 
With flexible finishes − 𝑙 120⁄  − 
 

Table 12.2 Values of K for creep deflection 
Wood Reinforced Concrete Structural Steel 

Unseasoned Seasoned   
1.0 0.5 Take CE 123 0 

 

12.4.2. Deflections Under Wind Loads  

Here we are concerned with the lateral drift or sway of a building under design wind loads. 
Building codes traditionally have not contained limits on lateral drift under wind loading. 
However, it is traditional to limit the lateral drift of the entire building to hn/500 and the lateral 
drift of individual stories to hi/400, where hn = height from base to roof level and hi = individual 
story height. These limits generally are sufficient to avoid damage to cladding and nonstructural 



CE 120 Reader 

  
Page 12. 4 

walls and partitions. These limits traditionally have been associated with 50-year wind speeds 
(some designers use shorter or longer periods). Most designers consider the 700-year wind 
speeds currently in ASCE 7 to be excessively conservative for checking lateral drift under wind 
loading. The 700-year wind loads can be converted approximately to 50-year wind loads by 
dividing by 1.6. 

Wind tunnel testing can be used to study the dynamic response of tall buildings under wind 
loading. From such tests, an engineer can determine the floor accelerations as a function of 
vibration frequency and wind return period. It is common to design a building such that 
occupants will not feel discomfort for wind return periods in the range of 1 to 10 years. Studies 
of occupant perception show that the acceptable floor accelerations are a function of the 
vibration frequency.  

12.4.3. Deflections Under Earthquake Loads 

ASCE 7 specifies allowable story drifts under design earthquake loads. Recall that design 
earthquake loads are modified from the linear-elastic loads by dividing by factor R/Ie, where R = 
response modification factor and Ie = importance factor. To estimate the lateral drifts for design, 
the drifts calculated with these R/Ie reduced forces need to be adjusted by factor Cd/Ie, where Cd 
= deflection amplification factor. See Chapter 11 for the various factors. The calculated story 
drifts are not to exceed values listed in Table 12.3. Note that these drifts are much larger than 
those permitted for wind design. The smaller drifts for wind design are because the design basis 
is for linear-elastic response with minimal damage to structural and nonstructural elements, 
whereas the larger drifts for seismic design are because the design basis is for nonlinear response 
that accepts the occurrence of some damage to structural and nonstructural elements in the 
design earthquake.  
 

Table 12.3 Allowable story drift, 'a 
 Risk Category 
 I or II III IV 
Structures, other than masonry shear wall structures, 4 
stories or less above the base, with interior walls, 
partitions, ceilings, and exterior wall systems that have 
been designed to accommodate the story drifts. 

0.025hsx 0.020hsx 0.015hsx 

Masonry cantilever shear wall structures 0.010hsx 0.010hsx 0.010hsx 

Other masonry shear wall structures 0.007hsx 0.007hsx 0.007hsx 

All other structures 0.020hsx 0.015hsx 0.015hsx 
   

12.5. ALLOWABLE (WORKING) STRESS DESIGN METHOD 

The allowable stress design (ASD) method, alternatively known as the working stress design 
(WSD) method, is one of two commonly used methods to design for the ultimate limit state. (The 
other method is the load and resistance factor method, described in Section 12.6.) The basic 
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approach for the ASD method is to keep the stresses due to service loads well below the stress 
capacities of the materials, thereby providing a margin of safety. The specific steps in the ASD 
method are as follows: 
 
Step 1:  Apply the service loads to a linear-elastic model of the structure, and calculate the 

internal forces such as axial force (P), shear (V), and moment (M).  
 

Step 2:  Calculate the internal stresses due to the internal forces P, V, and M using methods of 
linear-elastic structural mechanics. Specifically, shear stress is calculated as v = VQ/Ib 
and normal stress due to combined axial force and moment is calculated as V = P/A ± 
Mc/I.  

 
Step 3:  Check that the stresses from Step 2 do not exceed allowable stresses. The allowable 

stresses are specified by the applicable building code.  
 
The ASD method is widely used for wood design, as discussed in Chapter 13. It is also used 

for checking soil bearing pressures for foundation design. It was formerly used for steel, 
reinforced concrete, and reinforced masonry design, but current practice for those materials 
generally uses the LRFD method.  

12.6. LOAD AND RESISTANCE FACTOR DESIGN METHOD (LRFD) 

The load and resistance factor design (LRFD) method is the preferred method (compared with 
ASD) to design for the ultimate limit state.  

General approach 
The LRFD method can be expressed generically through Eq. (12.1). 

𝜙𝑆𝑛 ≥ 𝑈 (12.1) 

in which ISn is referred to as the design strength, I = strength reduction factor, Sn = nominal 
strength, and U = factored load effect. In practice, Eq. (12.1) is applied to internal member forces 
such as shear and moment, as in  

𝜙𝑉𝑛 ≥ 𝑉𝑢 (12.2) 

𝜙𝑀𝑛 ≥ 𝑀𝑢 (12.3) 

in which Vn = nominal shear strength, Mn = nominal moment strength, Vu = shear due to factored 
loads, and Mu = moment due to factored loads. Nominal strengths are strengths that are 
calculated using methods specified in the building codes.  

Although the LRFD method refers to an ultimate limit state approaching the failure or 
collapse state, structural analysis for the limit state is usually done using assumptions of linear-
elastic behavior. Thus, the ultimate limit state for the structural system as a whole is presumed to 
be reached for the loading that first causes a member cross section to reach the design strength 
ISn.  

Load and resistance factors for the LRFD method are established considering variability and 
uncertainty in different load effects and material properties, the accuracy and variability of 
nominal strengths, the brittleness of different failure modes, and the consequences of failure. For 
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buildings assigned to Risk Category II of ASCE 7, the intended annual probabilities of failure for 
load conditions that do not include earthquake are 3 x 10-5/yr for failure that is not sudden and 
does not lead to wide-spread progression of damage, 3 x 10-6/yr for failure that is either sudden 
or leads to widespread progression of damage, and 7 x 10-7/yr for failure that is sudden and 
results in widespread progression of damage (ASCE 7).   

ASCE 7 factored load combinations  
The factored load effect is represented by U in Eq. (12.1). In practice, the quantity U is the 
maximum (or minimum) load effect determined through a series of load combinations. Each load 
combination considers one or more load cases, whose load factors have been adjusted to achieve 
approximately uniform reliability.  
The main load cases are listed below, and refer to the load itself or to its effect on internal 
moments and forces: 

D = dead load 
E = earthquake load 
F = load due to fluids with well-defined pressures and maximum heights 
H = load due to lateral earth pressure, ground water pressure, or pressure of bulk materials 
L = live load 
Lr = roof live load 
S = snow load 
W = wind load 

 
The basic load combinations consider different combinations of the load cases, as follows: 
  

1. 1.4𝐷 
2. 1.2𝐷 + 1.6𝐿 + 0.5(𝐿𝑟 or 𝑆 or 𝑅) 
3. 1.2𝐷 + 1.6(𝐿𝑟 or 𝑆 or 𝑅) + (𝛼𝐿𝐿 or 0.5𝑊) 
4. 1.2𝐷 + 1.0𝑊 + 𝛼𝐿𝐿 + 0.5(𝐿𝑟 or 𝑆 or 𝑅) 
5. 1.2𝐷 + 1.0𝐸 + 𝛼𝐿𝐿 + 0.2𝑆 
6. 0.9𝐷 + 1.0𝑊 
7. 0.9𝐷 + 1.0𝐸 

 
In combinations 3, 4, and 5, the factor DL applied to L is equal to 1.0 for garages, for areas 

occupied as places of public assembly, and for any occupancies in which L > 100 psf (4.8 kPa). 
Otherwise, DL = 0.5.  

Where fluid loads F are present, they are to be included with the same load factor as dead 
load D in combinations 1 through 5 and 7. 

Where loads H are present, they are to be included as follows: 
1.  Where the effect of H adds to the primary variable load effect, include H with a load 

factor of 1.6; 
2.  Where the effect of H resists the primary variable load effect, include H with a load 

factor of 0.9 where the load is permanent or a load factor of 0.0 for all other 
conditions. 

In any of the load combinations, effects of one or more loads not acting, or effects of loads 
acting in the opposite direction (where possible) are to be investigated. The most unfavorable 
effects from both wind and earthquake loads are to be investigated, where appropriate, but they 
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need not be considered to act simultaneously. Additional effects of flood, atmospheric ice loads, 
and self-restraining loads are not covered in this reader. See ASCE 7 for additional details. 

For earthquake-resistant design, the engineer must consider the effects of earthquake 
directionality. In general, this includes effects of earthquake loads in two principal horizontal 
directions plus vertical earthquake shaking effects. Effects of overstrength on design loads must 
also be considered in some special cases. These details are not covered in this text.  

Figure 12.3 illustrates the application of the load combinations for a planar system 
considering the load cases D, L, and E. Basic load combinations 1 and 2 consider only D and 
combined D and L. In this illustration, both D and L are taken at their full intensities. To obtain 
the worst shear at beam mid-span, however, L should be placed on only half of the beam span. 
The building code requires that this latter loading case also be considered.   

Diagrams 5a and 5b in Figure 12.3 illustrate ASCE 7 load combination 5; note that E must be 
considered both from left to right and from right to left. Illustrations 7a and 7b in Figure 12.3 
illustrate load combination 7. In a typical structure, load combination 5 results in higher axial 
compression in columns while load combination 7 results in higher axial tension in columns. 
Both load combinations must be considered in design. Not shown in these diagrams is the effect 
of vertical earthquake loads, which must be considered in accordance with ASCE 7.  
 

 
Figure 12.3 Load cases and load combinations in load and resistance factor design. 
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Resistance factors, I 
In Eq. (12.1), the term ISn is referred to as the design strength, which is the product of strength 
reduction factor I�and nominal strength Sn. Nominal strength is determined using nominal 
strength equations (which are covered in later chapters of this reader). The strength reduction 
factors have numerical values less than 1.0, and are provided (1) to allow for the possibility of 
under-strength members due to variations in material strengths and dimensions, (2) to allow for 
inaccuracies in the design equations, (3) to reflect the available ductility and required reliability 
of the member under the load effects being considered, and (4) to reflect the importance of the 
member in the structure. See later chapters on steel and reinforced concrete design to find the I 
factors applicable to those materials.  
 
Example 1: A weightless, one-bay, one-story frame has configuration and loading shown in 
Figure 12.4. Dead load D is 3 klf (44 kN/m), live load L is 1.8 klf (26 kN/m), and earthquake 
load E is 45 kips (200 kN). Use the LRFD method to determine the required beam moment 
strengths at the faces of the beams (Sections 1 and 2).  
 

 
Figure 12.4 Example 1. 

 
 
Solution: The load cases and load combinations are shown in Figure 12.3. The structure is 
modeled using flexural stiffness equal to 0.3EIg for beams and columns and analyzed for the load 
cases using computer software for structural analysis. The results of the load cases are then 
combined using the load combinations. Calculated moments at sections 1 and 2 are tabulated 
below. 

 
 Moments, k-ft (kN-m) 

Load case Section 1 Section 2 
D -51.6 (-70.2) -51.6 (-70.2) 
L -31.0 (-42.1) -31.0 (-42.1) 
E 203 (275) -203 (-275) 
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Load 
Combination   

1.4D -72.2 (-98.2) -72.2 (-98.2) 
1.2D + 1.6L -111 (-152) -111 (-152) 

1.2D + 0.5L + E 125 (170) -280 (-381) 
1.2D + 0.5L - E -280 (-381) 125 (170) 

0.9D + E 156 (212) -249 (-339) 
0.9D - E -249 (-339) 156 (212) 

Minimum -280 (-381) -280 (-381) 
Maximum 156 (212) 156 (212) 

 
Example 2: Determine the required nominal moment strengths of the beam at sections 1 and 2 
considering the loading of Example 1. Assume the strength reduction factor is I = 0.9 for beam 
moment strength. 
 
Solution: From Example 1, the required moment strengths are Mu = -280 k-ft and +156 k-ft. 
Thus, the required nominal moment strengths are Mn = Mu/I = -311 k ft and +173 k-ft. The 
beams would need to be designed to provide at least these nominal strengths. 

12.7. CAPACITY DESIGN 

Capacity design is a design method for controlling the yielding mechanism of a structure that is 
expected to respond inelastically to a design loading or an overload. A common application is in 
design of earthquake-resistant structures. The capacity design method involves the following 
steps: 
Step 1: Select a target yielding mechanism for the structural system, identifying all the member 

sections that are intended to yield. The selected mechanism should be one that can be 
detailed for ductile response.  

Step 2: Apply the design loads to the structural system, and proportion the selected yielding 
sections for required strength.  

Step 3: Determine the internal forces that will develop within the structure when the structure, 
as designed in Step 2, forms the intended mechanism with each yielding section 
developing the expected member strength. 

Step 4: Design the yielding regions for ductile response. Design the remainder of the structure to 
have strength necessary to resist the internal forces determined in Step 3. 

 
 
Example 3: A steel rod supports a service live load of 100 kips. The steel rod has yield stress of 
60 ksi and ultimate strength of 90 ksi. The strength reduction factor for axial tension is I = 0.9. 
Use capacity design to select an appropriate yield mechanism, design for that mechanism, and 
then design the rest of the structure to ensure it will not fail in any other mechanism in the event 
of an overload.  
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Figure 12.5 Example 3. 

 
 
Solution: It is preferable to have the rod yield in tension rather than to have the connecting bolts 
yield in tension. Therefore, use the steps in capacity design, as follows: 
 
Step 1: The target yielding mechanism is yielding of the steel rod.  
 
Step 2: The controlling load combination is U = 1.2D + 1.6L = 1.6 x 100 kips = 160 kips. 
Therefore, the steel rod requires tensile strength Tu = 160 kips. The required nominal tensile 
strength is Tn = Tu/I = 160/0.9 = 178 kips. The yield strength is 60 ksi. Therefore, the required 
area of the steel rod is 178 kips / 60 ksi = 2.96 in.2 Select a rod having cross-sectional area A = 3 
in.2 
 
Step 3: Under a severe overload, the steel rod can develop tensile strength of 90 ksi x 3 in.2 = 270 
kips. Thus, the design load for the bolts is Tu = 270 kips.  
 
Step 4: Design the bolts. Assuming the bolts have tensile capacity of 50 ksi, with I = 0.9, the 
required bolt nominal strength is Tn = Tu/I = 270 kips / 0.9 = 300 kips. The required bolt area is 
A = 300 kips / 50 ksi = 6 in.2 
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13.  Design of Wood Structures 

13.1. INTRODUCTION 

This chapter introduces wood as a structural material and describes design of simple elements of 
wood construction. Wood design can be carried out using either allowable stress design or Load 
and Resistance Factor Design (LRFD). In this chapter we only consider allowable stress design. 
At UC Berkeley, CE 124 provides more in depth treatment of the design of wood structures.  

13.2. WOOD CHARACTERISTICS 

Wood is a natural, renewable material that is processed from trees. Trees have evolved to be able 
to resist normal stresses due to axial forces and bending moments acting either along the axis of 
the trunk or the branches (Figure 13.1). 

 

Figure 13.1 Primary actions in the trunk and branches of a tree. 
 

Figure 13.2 illustrates the structure of a tree trunk. The trunk grows from the inside outward, 
putting on a new layer of growth in each growing season. Growing seasons generally repeat once 
annually, hence, a tree has annual rings, the number of rings identifying the age of the three in years. The 
cells are oriented primarily vertically. This affects the physical properties of lumber sawn from a tree. The 
fibers are stronger in the direction parallel to the cells than perpendicular to the cells. Thus, we say that 
wood is stronger parallel to the grain than perpendicular to the grain. As wood dries out, water is lost 
from the cells. This results in shrinkage perpendicular to the grain of the wood, with significantly less 
shrinkage parallel to the grain.  
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Figure 13.2 Structure of a tree trunk. (www.quora.com) 
 

13.3. TYPES OF LUMBER 

Sawn lumber 

Sawn lumber refers to boards that are sawn directly from a tree. Figure 13.3 illustrates different 
boards that might be obtained from a log using the plain sawn method. This method refers to 
cutting the log in a single plane and perpendicular to that plane, as shown.  

 

Figure 13.3 Illustration of boards sawn using the plain sawn method. Other methods are the 
quarter sawn and rift sawn methods. (http://www.forestryforum.com) 
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Dimensional lumber is a term used for lumber that is cut to standardized width and depth. In 

the United States, the nominal dimensions refer to the dimensions in inches of the original sawn 
piece. Rough-sawn lumber refers to lumber that is sawn and then shrinks somewhat from the 
original dimensions as drying occurs. Lumber used in most construction is sanded after it is 
sawn, which reduces the dimensions, and shrinkage further reduces the dimensions, resulting in 
what is referred to as the dressed size. The dressed size is smaller than the nominal size by which 
the lumber is specified.  

 
Plywood 

Plywood is manufactured from sheets of cross-laminated veneer that are bonded under heat and 
pressure with adhesives (Figure 13.4). By alternating the grain direction of the veneers from 
layer to layer, or “cross-orienting,” panel strength and stiffness in both directions are maximized. 
Plywood is used as flooring and to form shear walls in wood-frame construction. In the United 
States, plywood comes in 4 ft by 8 ft sheets. 

 

 

Figure 13.4 Plywood 
 

 
Glued laminated timber  

Glued laminated timber, also known as glulam, is composed of several layers of dimensional 
timber glued together with adhesives, creating structural member that can be used as vertical 
columns or horizontal beams (Figure 13.5). Whereas dimensional sawn lumber is limited in size 
because of limitations in log sizes and because of splitting that occurs as a result of restrained 
shrinkage of sawn wood, glulams can be made in large sizes with different pieces of dimensional 
lumber placed optimally to achieve desired member properties. Glulam can also be produced in 
curved shapes, offering extensive design flexibility. 
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Figure 13.5 Glulams 
 

Parallams 

Parallel strand lumber (PSL), or the brand name parallam, is made from clipped veneer strands 
aligned and bonded with adhesive (Figure 13.6). It is used for beams, headers, columns, posts, 
and other uses. Parallams generally have higher strength, and can be constructed in large sizes, 
than dimensional sawn lumber.  

 

 

Figure 13.6 Photograph of a parallam. 
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I-Joists 

I-joists are "I"-shaped structural members designed for use in floor and roof construction. An I-
joist consists of top and bottom flanges united with webs. The flanges resist bending stresses and 
the web resists shear stresses. Figure 13.7 shows floor I-joists framing into glulam girders. 

 

 

 

Figure 13.7 I-Joists framing into a glulam. (APA – The Engineered Wood Association) 

 
 

Roof trusses 

Roof and floor trusses are prefabricated trusses made of wood, typically with metal gussets to 
connect the truss members. Figure 13.8 shows a typical configuration for a roof truss in 
residential construction. 

 

 

Figure 13.8 Roof trusses (http://www.renovation-headquarters.com/roof-truss-uplift.htm) 
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13.4. MECHANICAL PROPERTIES OF WOOD
1
 

13.4.1. Basic properties 

Lumber strengths depend on the direction of the stress relative to the wood grain. The allowable 
stresses in building codes are identified with capital letters (as opposed to the actual stresses due 
to applied loads, which will be identified with lower case letters). The properties of interest are: 
allowable fiber stress in bending (Fb), allowable tension parallel-to-grain (Ft), allowable 
horizontal shear (Fv), allowable compression parallel-to-grain (Fc), and allowable compression 
perpendicular-to-grain (Fc٣ ). The modulus of elasticity (E) is also of interest.  

Values for the allowable stresses vary depending on wood species, the grade (quality) of the wood 
within the species, and the type of member in which the wood is used. These aspects are covered in 
classes that are devoted to the subject of wood design. For CE 120, we will assume the properties in Table 
13.1 for wood (based on Douglas Fir, 2” to 4” thick, 5” and wider). 

 
 

Table 13.1 Basic allowable unit stresses for structural lumber 

Species and 
Commercial 

Grade 

Allowable Unit Stresses in psi 
Extreme Fiber in 

Bending, Fb 
Tension 
Parallel 

to 
Grain, 

Ft 

Horizontal 
Shear 

Stress, Fv 

Compression 
Perpendicular 
to Grain, Fc٣ 

Compression 
Parallel to 
Grain, Fc 

Modulus 
of 

Elasticity, 
E 

Single-
member 
Uses 

Repetitive-
member 
Uses* 

Douglas Fir – Larch (North) 
Dense Select 
Structural 2100 2400 1400 95 730 1650 1,900,000 

Select 
Structural 1800 2050 1200 95 625 1400 1,800,000 

Dense No. 1 1800 2050 1200 95 730 1450 1,900,000 
No. 1 1500 1750 1000 95 625 1250 1,800,000 
Dense No. 2 1450 1700 775 95 730 1250 1,700,000 
No. 2 1250 1450 650 95 625 1050 1,700,000 
No. 3 and 
Stud 725 850 375 95 625 675 1,500,000 

Appearance 1500 1750 1000 95 625 1500 1,800,000 
* 6SaFLnJ ≤ �4 Ln. 
 

13.4.2. Adjustment Factors 

The basic allowable unit stresses must be adjusted for various factors, as noted below: 
Size factor, CF 

Large members may split because of restrained shrinkage as the member dries. The size factor 
CF accounts for this effect (Figure 13.9). 
 

 
1 http://www.wwpa.org/TECHGUIDE/DesignValues/tabid/855/Default.aspx 
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Figure 13.9 Size factor CF. 

Form factor, Cf 
This factor adjusts for different cross-sectional shapes. In CE 120, use Cf = 1.0. 
 
Load duration factor, LDF 

Strength of wood is a function of the loading rate. The basic allowable stresses are intended for 
use under 10-year loadings, corresponding to the case of dead plus live load (D + L). For other 
durations, a load duration factor applies  

 

Figure 13.10 Load duration factor, LDF. 

13.5. DIMENSIONAL PROPERTIES OF SAWN LUMBER 

As noted previously, lumber is cut to standard dimensions, is sanded, and then shrinks as it dries. 
Consequently, the nominal dimensions by which a member is designated are different from the 
actual dimensions. Table 13.2 lists section properties of dressed dimensional lumber.   
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Table 13.2 Section properties of dimensional lumber 
Nominal 

b x h, 
inches 

Surfaced Size, 
b x h, inches 

Area 
ܣ = ܾℎ, 

in.2 

Section 
Modulus, 
𝑆𝑆 = ௕௛మ

଺
, in.3 

Moment of 
Inertia, 

𝐼𝐼 = ௕௛య

12
, in.4 

Board Feet 
per Lineal 

Foot of 
Piece 

 

2 ×���2 1.5 ×��� 1.5 2.25 0.562 0.422 0.33 
2 ×���3 1.5 ×��� 2.5 3.75 1.56 1.95 0.50 
2 ×���4 1.5 ×��� 3.5 5.25 3.06 5.36 0.67 
2 ×���6 1.5 ×��� 5.5 8.25 7.56 20.80 1.00 
2 ×���8 1.5 ×��� 7.25 10.88 13.14 47.63 1.33 
2 ×�10 1.5 ×��� 9.25 13.88 21.39 98.93 1.67 
2 ×�12 1.5 ×�11.25 16.88 31.64 177.98 2.00  
2 ×�14 1.5 ×�13.25 19.88 43.89 290.78 2.33 

3 ×���3 2.5 ×��� 2.5 6.25 2.60 3.26 0.75 
3 ×���4 2.5 ×��� 3.5 8.75 5.10 8.93 1.00 
3 ×���6 2.5 ×��� 5.5 13.75 12.60 34.66 1.50 
3 ×���8 2.5 ×��� 7.25 18.12 21.90 79.39 2.00 
3 ×�10 2.5 ×��� 9.25 23.12 35.65 164.89 2.50 
3 ×�12 2.5 ×�11.25 28.12 52.73 296.63 3.00 
3 ×�14 2.5 ×�13.25 33.12 73.15 484.63 3.50 
3 ×�16 2.5 ×�15.25 38.12 96.90 738.87 4.00 

4 ×���4 3.5 ×��� 3.5 12.25 7.15 12.51 1.33 
4 ×���6 3.5 ×��� 5.5 19.25 17.65 48.53 2.00 
4 ×���8 3.5 ×��� 7.25 25.38 30.66 111.15 2.67 
4 ×�10 3.5 ×��� 9.25 32.38 49.91 230.84 3.33 
4 ×�12 3.5 ×�11.25 39.38 73.83 415.28 4.00 
4 ×�14 3.5 ×�13.25 46.38 102.41 678.48 4.67 
4 ×�16 3.5 ×�15.25 53.38 135.66 1034.42 5.33 

6 ×���6 5.5 ×��� 5.5 30.25 27.73 76.26 3.00 
6 ×���8 5.5 ×��� 7.5 41.25 51.56 193.36 4.00 
6 ×�10 5.5 ×��� 9.5 52.25 82.73 392.96 5.00 
6 ×�12 5.5 ×�11.5 63.25 121.23 697.07 6.00 
6 ×�14 5.5 ×�13.5 74.25 167.06 1127.67 7.00 
6 ×�16 5.5 ×�15.5 85.25 220.23 1706.78 8.00 
6 ×�18 5.5 ×�17.5 96.25 280.73 2456.38 9.00 
6 ×�20 5.5 ×�19.5 107.25 348.56 3398.48 10.00 

8 ×���8 7.5 ×��� 7.5 56.25 70.31 263.67 5.33 
8 ×�10 7.5 ×��� 9.5 71.25 112.81 535.86 6.67 
8 ×�12 7.5 ×�11.5 86.25 165.31 950.55 8.00 
8 ×�14 7.5 ×�13.5 101.25 227.81 1537.73 9.33 
8 ×�16 7.5 ×�15.5 116.25 300.31 2327.42 10.67 
8 ×�18 7.5 ×�17.5 131.25 382.81 3349.61 12.00 
8 ×�20 7.5 ×�19.5 146.25 475.31 4634.30 13.33 
8 ×�22 7.5 ×�21.5 161.25 577.81 6211.48 14.67 
8 ×�24 7.5 ×�23.5 176.25 690.31 8111.17 16.00 

10 ×�10 9.5 ×��� 9.5 90.25 142.90 678.76 8.33 
10 ×�12 9.5 ×�11.5 109.25 209.40 1204.03 10.00 
10 ×�14 9.5 ×�13.5 128.25 288.56 1947.80 11.67 
10 ×�16 9.5 ×�15.5 147.25 380.40 2948.07 13.33 
10 ×�18 9.5 ×�17.5 166.25 484.90 4242.84 15.00 
10 ×�20 9.5 ×�19.5 185.25 602.06 5870.11 16.67 
10 ×�22 9.5 ×�21.5 204.25 731.90 7867.88 18.33 

12 ×�12 11.5 ×�11.5 132.25 253.48 1457.51 12.00 
12 ×�14 11.5 ×�13.5 155.25 349.31 2357.86 14.00 
12 ×�16 11.5 ×�15.5 178.25 460.48 3568.71 16.00 
12 ×�18 11.5 ×�17.5 201.25 586.98 5136.07 18.00 
12 ×�20 11.5 ×�19.5 224.25 728.81 7105.92 20.00 
12 ×�22 11.5 ×�21.5 247.25 885.98 9524.28 22.00 
12 ×�24 11.5 ×�23.5 270.25 1058.48 12437.13 24.00 
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13.6. DESIGN OF WOOD BEAMS 

Wood beam design is commonly done using the allowable stress method. Design considers the 

following four criteria: 

o Deflections, G 

o Flexural stresses, fb 

o Shear stresses, fv 

o Bearing stresses, fc٣ 

Deflections 

Deflections commonly control the design of wood beams. The limits from Chapter 12 are 
repeated in Table 13.3 and Table 13.4. In these tables, l = the member span, L refers to the 
deflection calculated due to live load only, S refers to the deflection calculated due to snow load 
only, and KD + L refers to the deflection calculated due to combined dead plus live load that 
occurs after the member is constructed, that is, it is the deflection due to live load plus any long-
term deflection under dead loads. For wood, the long-term deflection depends on whether the 
wood is put into service in unseasoned (wet) condition or seasoned (dry) condition. The 
deflections are calculated using service loads without load factors.  

 
Table 13.3 Deflection limits 

Construction L S K D + L 

Roof members:    
Supporting plaster ceiling ݈ 360⁄  ݈ 360⁄  ݈ 240⁄  
Supporting non-plaster ceiling ݈ 240⁄  ݈ 240⁄  ݈ 180⁄  
Not supporting ceiling ݈ 180⁄  ݈ 180⁄  ݈ 120⁄  

Floor members ݈ 360⁄  െ ݈ 240⁄  

Exterior walls and interior partitions:    
With brittle finishes െ ݈ 240⁄  െ 
With flexible finishes െ ݈ 120⁄  െ 
 

Table 13.4 Values of K for creep deflection 

Wood 
Unseasoned Seasoned 

1.0 0.5 
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Flexural stresses, fb 
The allowable stress design method is used to limit the design stresses. The flexural stress acting 
on the beam is calculated as  

௕݂ =
ܯ
𝑆𝑆  (13.1) 

in which M is moment due to service loads and S is section modulus. The design requirement is 
that the bending stresses under service loads, fb, do not exceed the adjusted allowable bending 
stress, that is: 

௕݂ ≤ 𝐶𝐶ி × 𝐶𝐶௙ × 𝐹𝐹ܦܮ ×  𝐹𝐹௕ (13.2) 

in which fb = the calculated normal stress due to bending moment and Fb = the tabulated 
allowable bending stress.   
Shear stresses, fv 
The shear stress acting on the beam is calculated as  

𝑣݂𝑣 =
𝑉𝑉ܳ
𝐼𝐼ܾ = 1.5

𝑉𝑉
ܣ  (13.3) ݏ݊݋݅ݐܿ݁ݏ ݎ𝑎𝑎݈ݑ𝑎𝑎݊𝑔𝑔ݐܿ݁ݎ ݎ݋݂

in which V is moment due to service loads and A is cross-sectional area. The design requirement 
is that the shear stresses under service loads, fv, do not exceed the adjusted allowable horizontal 
shear stress, that is: 

𝑣݂𝑣 ≤ 𝐹𝐹ܦܮ ×  𝐹𝐹𝑣𝑣 (13.4) 

in which fv = the calculated normal stress due to shear and Fv = the tabulated allowable 
horizontal shear stress.   
Bearing at support, fc٣ 

The bearing stress acting on the beam at its supports is calculated as  

௖݂ୄ =
𝑅𝑅
௕ܣ

 (13.5) 

in which R is reaction at the support due to service loads and Ab is bearing area between the end 
of the beam and its support. The design requirement is that the bearing stresses under service 
loads, fc٣, do not exceed the adjusted allowable bearing stress perpendicular to the grain of the 
wood, that is: 

௖݂ୄ ≤ 𝐹𝐹ܦܮ × 𝐹𝐹௖ୄ (13.6) 

in which ௖݂ୄ= the calculated normal stress due to bearing and 𝐹𝐹௖ୄ = the tabulated allowable 
bearing stress perpendicular to the grain of the wood.  
Additional considerations: 

• Need to ensure lateral stability by bracing beams at their ends and possibly along their spans.  
• Cross-grain bending is not allowed as the strength is very weak. See Figure 13.11. 
• Never notch a beam, as this can lead to splitting and reduced strength. See Figure 13.12. 
• In CE 120, we only cover bearing perpendicular to the grain, not at an angle to the grain. See Figure 

13.13. 
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Figure 13.11 Cross-grain bending is not allowed. 
 

 

 

Figure 13.12 Avoid notching the end of beams.  
 

 

 

Figure 13.13 End bearing between beams and supports. 
 

(a) Bearing perpendicular to grain. (b) Bearing at angle to grain. (Not covered.)
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Example 1: Wood beam design. See below. 
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13.7. WOOD COMPRESSION MEMBERS 

In CE120, we consider only pure compression members. 

 
Pure compression [post on the left or top chord on right] 

 
We do not consider members with axial compression and bending, as below. 

 
Bending + Compression (not considered) 

 
Design of compression members must consider: 

• Slenderness effects on member axial strength, and   
• Bearing on the supporting elements. 

 

Slenderness effects 
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The axial stress acting on the column is calculated as  

௖݂ =
ܲ
 (13.7) ܣ

in which P is axial force due to service loads and A is cross-sectional area of the compression 
member. The design requirement is that the axial stress under service loads, fc, shall not exceed 
the adjusted allowable axial stress parallel to the grain of the wood, that is: 

௖݂ ≤ 𝐹𝐹ܦܮ × 𝐹𝐹௖ × 𝐶𝐶௣ = 𝐹𝐹௖כ × 𝐶𝐶௣ (13.8) 

in which ௖݂= the calculated axial stress due, 𝐹𝐹௖ = the tabulated allowable bearing stress parallel to 
the grain of the wood, and Cp = a slenderness adjustment factor. 

Possible cross-sections for axially-loaded wood members are: 

 
 

The slenderness effect, represented by Cp, is determined as follows. Buckling will occur about the 
y-axis with weaker moment of inertia. 

 

Define general slenderness ratio =  
r

kL  where k  is the effective length factor.  

� � 12112gyration of radius
3

d
bd

bd
A
I

r y ====  

In wood design, we will replace 
r

kL  by 12
d
kL . Therefore, the critical load is given by 
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� � � � � �

2 2 2

2 2 212cr
EI EA EAP

kL kL r kL d
π π π

= = =  

Buckling is assumed to occur at deformations exceeding the linear elastic limit, and this 

therefore requires a modified modulus of elasticity written as ܧ௠ = ா
(1.ହ)/(଴.଼ହ) = ா

1.଻଺
 in which E 

is the tabulated modulus. Thus, the buckling stress for pure buckling of a very slender member 

becomes 

௖݂௥ = ௖ܲ௥

ܣ =
௠ܧ2ߨ

ݎ݈݇� �
2 = 0.82

௠ܧ

�݈݇݀ �
2 ؠ 𝐹𝐹௖ா 

(13.9) 

in which FcE = the Euler buckling stress for pure buckling.  
For less slender members, crushing of the wood fibers may limit the axial stress, preventing 

achieving the pure Euler buckling state. Factor Cp represents this effect. Cp is expressed by: 

𝐶𝐶௣ =
1 + 𝐹𝐹௖ா 𝐹𝐹௖כ⁄

2ܿ െ ඨቆ
1 + 𝐹𝐹௖ா 𝐹𝐹௖כ⁄

2ܿ ቇ
2

െ
𝐹𝐹௖ா 𝐹𝐹௖כ⁄
ܿ  (13.10) 

in which c = buckling and crushing interaction factor = 0.8 for sawn lumber, FcE is defined by 
Eq. (13.9), and 𝐹𝐹௖כ = 𝐹𝐹ܦܮ × 𝐹𝐹௖ . Equation (13.10) is plotted in comparison with the Euler 
buckling equation in Figure 13.14. Note that it is not permitted to design members having kl/d 
exceeding 50. 

 

 

Figure 13.14 Allowable stress as effected by slenderness and crushing factor Cp. 
 

Bearing on the supporting elements 

Bearing pressure on the supporting members must not exceed allowable bearing stress. 
Normally, this is the allowable compressive stress acting perpendicular to the grain of the 
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supporting member, that is Fc٣. Some building codes permit this stress to be increased because of 
local effects, but this is not considered in CE 120. Therefore, the design requirement is given by  

௖݂ୄ ≤ 𝐹𝐹ܦܮ × 𝐹𝐹௖ୄ (13.11) 

in which ௖݂ୄ= the calculated normal stress due to bearing and 𝐹𝐹௖ୄ = the tabulated allowable 
bearing stress perpendicular to the grain of the wood.  
 

 
Example 2: The compression member below is a 2x4 made of Douglass Fir and is stud grade. 
Assume bearing is not a concern. 
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14.  Design of Steel Structures 

14.1. INTRODUCTION 

This chapter introduces steel as a structural material and describes design of simple elements of 
steel construction. Steel design can be carried out using either allowable stress design or Load 
and Resistance Factor Design (LRFD). This chapter presents only LRFD, as it is more prevalent 
in professional practice. The design provisions are covered in detail in Steel Construction 
Manual (AISC). At UC Berkeley, CE 122 provides more in-depth treatment of the design of steel 
structures.  

14.2. STEEL CHARACTERISTICS 

Structural steel is a steel construction material that is available in standard shapes and sizes, and 
in a range of material properties. Figure 14-1 illustrates some of the available shapes and their 
designations. For example, the wide-flange shape, which can be very efficient for beams and 
columns, is designated W in U.S. practice. Each of these shapes is produced in a variety of sizes 
and weights. Properties for W sections are presented later in this chapter.  
 

 
Figure 14-1 Sample sections for structural steel members.  
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The designer can also specify that rolled plates and standard shapes be welded together to 

produce a variety of built-up members (Figure 14-2). 
 

 
 

Figure 14-2  Sample built-up members. 
 

14.3. MECHANICAL PROPERTIES OF STRUCTURAL STEEL 

Modern structural steels are referred to by their ASTM designations. The standard designation is 
A#, where # is a number referring to a specific ASTM standard. Examples include ASTM A36 
and A53. ASTM A36 is a standard steel alloy that is a common structural steel in the United 
States. It is readily welded by all welding processes. ASTM A 53 is a carbon steel alloy used in 
structural pipe and tubing. 

Figure 14-3 shows stress-strain relations for structural steels. Lower-strength steels usually 
show a distinct yield plateau, followed by strain-hardening. Higher-strength steels may or may 
not show a distinct yield plateau. The elastic modulus of structural steel is relatively independent 
of the strength, and can be taken as Es = 30,000 ksi. Yield strength of structural steel varies with 
the ASTM designation. ASTM A36 steel has nominal yield strength of 36 ksi. For design 
purposes, we will assume the steel has an elasto-plastic stress-strain relation, that is, it is linearly 
elastic until the yield stress, and then strains without hardening beyond the yield point. The 
assumed behavior for A36 steel is shown by the broken line in Figure 14-3 
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Figure 14-3  Steel stress-strain relations.  
 

Unit weight of structural steel is 490 pcf.  
Fire resistance is a measure of the ability of a building element to resist a fire. Structural 

steel material properties are sensitive to high temperatures that can occur during fires in 
buildings or on bridges. Therefore, structural steels require fire protection measures to avoid fire-
induced failures. Fire protection can be achieved by encasing structural steel in reinforced 
concrete or by applying spray-on fire-resistive coatings (Figure 14-4).  
 

 
Figure 14-4 Fire protection of structural steel members. Top: Intumescent paint before and 

after fire exposure (http://vmp-holding.com/). Bottom: Cementitious fire spray 
(http://www.sharpfibre.com/). 

 

14.4. SECTION PROPERTIES OF WIDE FLANGE MEMBERS 

The standard shapes shown in Figure 14-1 are available in a wide variety of standard sizes. 
Section designations along with the dimensional and structural properties can be downloaded 
from http://www.aisc.org/content.aspx?id=2868. Section properties for W sections are tabulated 
at the end of this chapter. For example, a W21X44 has approximate depth of 21 inches and 

http://vmp-holding.com/
http://www.sharpfibre.com/
http://www.aisc.org/content.aspx?id=2868
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weight of 44 plf. Actual properties, as tabulated are weight W = 44.0 plf, area A = 13.0 in.2, depth 
d = 20.7 in., etc.    

14.5. DESIGN STRENGTHS FOR STRUCTURAL STEEL BEAMS 

Design of structural steel members usually is done in accordance with the Load and Resistance 
Factor (LRFD) method, which was introduced in Chapter 12. To use the LRFD method, we need 
to define nominal and design strengths for structural steel members. For our purposes, we are 
interested in the moment and shear strengths. 

Design moment strength, IMn 
Consider the symmetric cross section of a wide flange member (Figure 14-5a). The member is 
assumed to be made using steel that has an elasto-plastic stress strain relation, with yield stress fy. 
Under the action of applied moments, the member develops longitudinal strains that vary linearly 
over the member depth as shown in Figure 14-5b. Yielding of the extreme fiber (Figure 
14-5c)occurs when the strain at the extreme fiber reaches Hy. The moment at the onset of yielding 
is designated as the yield moment My. From principles of linear-elastic structural mechanics, up 
to the onset of yielding and for axial force P = 0, we can relate the moment and extreme fiber 
stress by 

݂ =
ܿܯ
𝐼𝐼  (14.1) 

in which c = distance from neutral axis to extreme point on section, f = stress at extreme point on 
section, M = applied moment, and I = moment of inertia of the cross section about the neutral 
axis. Setting f = fy and solving for moment M, we obtain 

௬ܯ = ௬݂𝐼𝐼
ܿ = ௬݂𝑆𝑆 (14.2) 

in which My = yield moment. In the right side of Eq. (14.2), we have substituted S = I/c, in which 
S is referred to as the section modulus. 

 
Figure 14-5  Moment strength of structural steel cross section. 

 
If we continue to bend the section until the beam reaches extreme fiber strain 2Hy, the 

stresses will take on the profile shown in Figure 14-5d. Note that the beam has reached the yield 
strain at half the depth c measured from the neutral axis toward the extreme fiber, which explains 
the yield stress occurring over the outer quarter of the beam depth at both top and bottom of the 
beam cross section.  
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If we imagined bending the beam to infinite curvature, such that the beam achieved infinite 
strain over the full depth, then the beam would be fully yielded over its full depth, as shown in 
Figure 14-5e. This condition defines the nominal moment strength Mn, also known as the plastic 
moment. We write the nominal moment strength as 

𝑛𝑛ܯ  = ௬݂ܼ (14.3) 

in which Z is defined as the plastic modulus. 
In the LRFD method, the design moment strength is defined as IMn, where Mn is defined by 

Eq. (14.3) and I = 0.9. 
 
Example 1: What is the yield moment for an A36 W21X44 section bent about the strong axis? The 
section carries zero axial force. 
 
Solution: See Figure 14-6. The strong axis is the horizontal axis for which the flanges will resist 
maximum tension and compression. From the section table at the end of the chapter, this is axis X. 
The section modulus for bending about the strong axis is Sx = 81.6 in.3 From Eq. (14.2), the yield 
moment under zero axial force is ܯ௬ = ௙೤ூ

௖ = ௬݂𝑆𝑆 = ଷ.݊݅ 81.6)(݅ݏ݇ 36) ) = 2940 ݇ െ ݅݊.     
 

 
Figure 14-6 Cross-sectional dimensions of W21X44 (not drawn to scale) and stress conditions 

for yield moment My. 
 

Example 2: Use first principles to calculate the plastic modulus Z for an A36 W21X44 section bent 
about the strong axis. 
 
Solution: The cross-sectional dimensions read from the section table (end of this chapter) are shown 
in Figure 14-7a. The stress profile associated with development of the plastic moment Mn is shown in 
Figure 14-7b. Axial force Pn = 0.  
 
Because of symmetry of the cross section and of the stresses about the X axis, we know that the 
neutral axis depth c must be half the section depth. However, for the more general case, we set depth 
c as a variable and use the requirements of equilibrium of axial forces to solve for c. Assuming that 
the web extends through full depth and that the flange therefore has width equal to flange width 
minus web width, the stress resultants are as follows: 

𝐶𝐶௙ = ௪൫ݐ ௙ܾ െ ௪൯ݐ ௬݂ 
𝐶𝐶௪ = ௪ܿݐ ௬݂ 

𝑇𝑇௙ = ௪൫ݐ ௙ܾ െ ௪൯ݐ ௬݂ 
𝑇𝑇௪ = ݀)௪ݐ െ ܿ) ௬݂ 
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Summing axial forces on the free-body diagram of Figure 14-7c: 
ȭ𝐹𝐹𝑥𝑥ሬሬሬሬሬሬԦ = 𝑛ܲ𝑛 + 𝑇𝑇௙ + 𝑇𝑇௪ െ 𝐶𝐶௙ െ 𝐶𝐶௪ = 0 (14.4) 

Substituting the expressions for the stress resultants in Eq. (14.5) and solving for c we obtain c = d/2. 
The stress resultants can now be solved as  
 
Cw = Tw = (tw)(d/2)(fy) = (0.35)(20.7/2)(36) = 130 kips.    
Cf = Tf = (tf)(bf - bw)(fy) = (0.45)(6.5 – 0.35)(36) = 99.6 kips. 
 
The centroidal locations of each of these resultants is shown in Figure 14-7c. 
 
Summing moments about the neutral axis in Figure 14-7c, clockwise positive, we can write 

ȭܯ = 𝑛𝑛ܯ െ 10.13𝑇𝑇௙ െ 5.18𝑇𝑇௪ െ 10.13𝐶𝐶௙ െ 5.18𝐶𝐶௪ = 0 (14.5) 
Substituting the resultants into this expression, and solving for Mn, results in Mn = 3370 k-in. Using 
Eq. (14.3), we solve for plastic modulus Z = Mn/fy = 3370 k-in./36 ksi = 93.6 in.3 Note that the value 
given in the section table (at the end of this chapter) is Z = 95.4 in.3 The small discrepancy is due to 
approximations in defining the shape in this example problem.    

    

 
Figure 14-7 Cross-sectional dimensions of W21X44 (not drawn to scale) and stress conditions 

for nominal (plastic) moment Mn. 
 

Design shear strength, IVn 
Consider the member shown in Figure 14-8. The nominal shear strength is defined by the 

shear yield stress fyv and the cross-sectional area of the web tw d. According to the von Mises 
yield criterion, the shear yield strength is ௬݂𝑣𝑣 = ௙೤

ξଷ
= 0.577 ௬݂. In design of steel members, this is 

approximated by ௬݂𝑣𝑣 = 0.6 ௬݂. Thus, the nominal shear strength is defined as 
 

𝑉𝑉𝑛𝑛 = 0.6 ௬݂ݐ௪݀ (14.6) 
 

In the LRFD method, the design shear strength is defined as IVn, where Vn is defined by Eq. 
(14.6) and I = 0.9. 
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Figure 14-8 Cross section and shear deformed shape of W section. 

14.6. DESIGN EXAMPLES 

The examples of this section illustrate how to organize calculations and check required strength 
and serviceability for beams. The design methods and deflection limits are described in Chapter 
12. 

 
Example 3: A cantilever beam supports uniformly distributed service dead load of 3.5 klf and 
concentrated service live load of 8 kips (Figure 14-9). The member supports a floor. Select a 
minimum weight A36 W21 section that satisfies design requirements considering bending moment, 
shear, and deflections.  

 
Figure 14-9 Example 3: Cantilever beam design. 
 

Solution: The beam and loading are shown in Figure 14-9. The self-weight of the W section is 
conservatively estimate at 100 plf. Therefore, the dead load is shown as wD = 3.5 klf + 0.1 klf = 3.6 
klf. Two load cases are of interest, q1 for dead load and q2 for live load. We will assume that the 
design is controlled by maximum moments, and then check shears and deflections. 
 
Using the LRFD method, the design load combinations are LC1 and LC2, as follows: 
 
LC1: Mu = 1.4MD = 1.4 x 125 k-ft = 175 k-ft. 
LC2: Mu = 1.2MD + 1.6ML = 1.2 x 125 k-ft + 1.6 x 66.6 k-ft = 257 k-ft = 3080 k-in. Åcontrols 
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The strength design requirement is expressed by ܯ௨ ≤ 𝑛𝑛ܯ߶ = ߶ × ܼ × ௬݂. Solving for Z we find 
ܼ ≥ ௨ܯ ߶ ௬݂ = 3080 ݇ െ ݅݊. (0.9 × (݅ݏ݇ 36 =⁄⁄ 95.1 ݅݊.ଷ  The lightest W21 that satisfies this 
requirement is a W21X44, which has Zx = 95.4 in.3  Note that this section weighs 44 plf, which is 
within the assumed conservatively assumed value of 100 plf.  
 
We next check shear. The controlling load case is Vu = 1.2VD + 1.6VL = 1.2 x 30k + 1.6 x 8k = 48.8 
kips. The strength design requirement is expressed by 𝑉𝑉௨ ≤ ߶𝑉𝑉𝑛𝑛 = ߶ × ௪݀ݐ × ௬݂𝑣𝑣. The selected 
W21X44 has tw = 0.35 in. and d = 20.7 in. Using I = 0.9, we find ߶𝑉𝑉𝑛𝑛 =  ,which exceeds Vu ,ݏ݌݅݇ 141
therefore, this section meets requirements for shear.  
 
Lastly, we check deflections. The selected W21X 44 has Ix = 843 in.4. The steel modulus is E = 
30,000 ksi. From Chapter 12, the allowable deflection under live load is ݈ 360⁄ = 100" / 360 =
 0.28 ݅݊. The deflection under service live load is 𝛿𝛿𝐿𝐿 = ௉ಽ௟య

ଷாூ =
[ଷ("100)(ݏ݌݅݇ 8)] ଷ.݊݅ 843)(݅ݏ݇ 30,000)(3)] )] = 0.11 ݅݊.⁄   The calculated deflection is less than 
allowable, so the design satisfies the deflection requirement.  
    

 
Example 4: A propped cantilever beam supports uniformly distributed service dead load of 1 klf 
(including self-weight) and uniformly distributed service live load of 2 klf. Find the design moments 
Mu at points b and c and select a minimum weight A36 W18 section considering moment strength 
only. 
 
Solution: The beam and loading are shown in Figure 14-10.  
 
First, define the different load cases involving dead and live loads. Note that live load can be placed 
either in span ac, span cd, or span ad. We can use influence lines to identify that loadings in spans ac 
and cd are critical. Calculate moment diagrams for each load case.  
 
Second, combine the different load cases using the load combinations required for LRFD. Three 
different load combinations are required, case 1 involving only dead load, and cases 2 and 3 involving 
dead load plus live load in two different patterns. Using the principle of superposition, the moment 
values for the different load combinations are simply linear combinations of the various load cases. 
For example, in load case 2, the load combination is 1.2MD + 1.6ML, which for point b results in Mu = 
1.2 x 34 k-ft + 1.6 x 100 k-ft = 201 k-ft. 
 
The largest moment along the span is 201 k-ft = 2410 k-in.1 Thus, the required nominal (plastic) 
moment strength is Mn = Mu/I = 2410 k-in. / 0.9 = 2680 k-in. Then, according to Eq. (14.3), the 
required plastic modulus is Z = Mn/fy = 2680/36 = 74.4 in.3 Select a W18X40, which provides Z = 
78.4 in.3   
 
The final design would also need to consider shear and deflections. Those aspects are not considered 
in this example.  

 
1 Note that the maximum moment in span abc does not occur exactly at mid-span point b. However, we want a 
practical method of combining moments for multiple load cases, which requires us to select a single point for 
superposition of results. Furthermore, the value at b is very nearly the maximum value for the loading considered, 
such that it is acceptable to design the beam based on the moment at b rather than exploring to find the exact 
maximum moment. For some other loading cases, especially those involving heavy concentrated loads, this 
approximation might not be sufficient. 
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Figure 14-10  Example 4: Propped cantilever beam design. 
 

 
 
 
 



W Shapes – Properties for designing 
 
W = weight in plf 
A = area, in.2 
I in moment of inertia, in.4 
Z = plastic modulus, in.3 
S = section modulus, in.3 
r = radius of gyration, in.  
J = torsional constant, in.3 
All other dimensions in inches.   

AISC_Manual_Label W A d bf tw tf Ix Zx Sx rx Iy Zy Sy ry J 
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W33X152 152 44.9 33.5 11.6 0.635 1.06 8160 559 487 13.5 273 73.9 47.2 2.47 12.4 
W33X141 141 41.5 33.3 11.5 0.605 0.960 7450 514 448 13.4 246 66.9 42.7 2.43 9.70 
W33X130 130 38.3 33.1 11.5 0.580 0.855 6710 467 406 13.2 218 59.5 37.9 2.39 7.37 
W33X118 118 34.7 32.9 11.5 0.550 0.740 5900 415 359 13.0 187 51.3 32.6 2.32 5.30 

                
W30X148 148 43.6 30.7 10.5 0.650 1.18 6680 500 436 12.4 227 68.0 43.3 2.28 14.5 
W30X132 132 38.8 30.3 10.5 0.615 1.00 5770 437 380 12.2 196 58.4 37.2 2.25 9.72 
W30X124 124 36.5 30.2 10.5 0.585 0.930 5360 408 355 12.1 181 54.0 34.4 2.23 7.99 
W30X116 116 34.2 30.0 10.5 0.565 0.850 4930 378 329 12.0 164 49.2 31.3 2.19 6.43 
W30X108 108 31.7 29.8 10.5 0.545 0.760 4470 346 299 11.9 146 43.9 27.9 2.15 4.99 
W30X99 99.0 29.0 29.7 10.5 0.520 0.670 3990 312 269 11.7 128 38.6 24.5 2.10 3.77 
W30X90 90.0 26.3 29.5 10.4 0.470 0.610 3610 283 245 11.7 115 34.7 22.1 2.09 2.84 

                
W27X178 178 52.5 27.8 14.1 0.725 1.19 7020 570 505 11.6 555 122 78.8 3.25 20.1 
W27X161 161 47.6 27.6 14.0 0.660 1.08 6310 515 458 11.5 497 109 70.9 3.23 15.1 
W27X146 146 43.2 27.4 14.0 0.605 0.975 5660 464 414 11.5 443 97.7 63.5 3.20 11.3 
W27X129 129 37.8 27.6 10.0 0.610 1.10 4760 395 345 11.2 184 57.6 36.8 2.21 11.1 
W27X114 114 33.6 27.3 10.1 0.570 0.930 4080 343 299 11.0 159 49.3 31.5 2.18 7.33 
W27X102 102 30.0 27.1 10.0 0.515 0.830 3620 305 267 11.0 139 43.4 27.8 2.15 5.28 
W27X94 94.0 27.6 26.9 10.0 0.490 0.745 3270 278 243 10.9 124 38.8 24.8 2.12 4.03 
W27X84 84.0 24.7 26.7 10.0 0.460 0.640 2850 244 213 10.7 106 33.2 21.2 2.07 2.81 

                
W24X162 162 47.8 25.0 13.0 0.705 1.22 5170 468 414 10.4 443 105 68.4 3.05 18.5 
W24X146 146 43.0 24.7 12.9 0.650 1.09 4580 418 371 10.3 391 93.2 60.5 3.01 13.4 
W24X131 131 38.6 24.5 12.9 0.605 0.960 4020 370 329 10.2 340 81.5 53.0 2.97 9.50 
W24X117 117 34.4 24.3 12.8 0.550 0.850 3540 327 291 10.1 297 71.4 46.5 2.94 6.72 
W24X104 104 30.7 24.1 12.8 0.500 0.750 3100 289 258 10.1 259 62.4 40.7 2.91 4.72 
W24X103 103 30.3 24.5 9.00 0.550 0.980 3000 280 245 10.0 119 41.5 26.5 1.99 7.07 
W24X94 94.0 27.7 24.3 9.07 0.515 0.875 2700 254 222 9.87 109 37.5 24.0 1.98 5.26 
W24X84 84.0 24.7 24.1 9.02 0.470 0.770 2370 224 196 9.79 94.4 32.6 20.9 1.95 3.70 
W24X76 76.0 22.4 23.9 8.99 0.440 0.680 2100 200 176 9.69 82.5 28.6 18.4 1.92 2.68 
W24X68 68.0 20.1 23.7 8.97 0.415 0.585 1830 177 154 9.55 70.4 24.5 15.7 1.87 1.87 
W24X62 62.0 18.2 23.7 7.04 0.430 0.590 1550 153 131 9.23 34.5 15.7 9.80 1.38 1.71 
W24X55 55.0 16.2 23.6 7.01 0.395 0.505 1350 134 114 9.11 29.1 13.3 8.30 1.34 1.18 

                
W21X147 147 43.2 22.1 12.5 0.720 1.15 3630 373 329 9.17 376 92.6 60.1 2.95 15.4 
W21X132 132 38.8 21.8 12.4 0.650 1.04 3220 333 295 9.12 333 82.3 53.5 2.93 11.3 
W21X122 122 35.9 21.7 12.4 0.600 0.960 2960 307 273 9.09 305 75.6 49.2 2.92 8.98 
W21X111 111 32.6 21.5 12.3 0.550 0.875 2670 279 249 9.05 274 68.2 44.5 2.90 6.83 
W21X101 101 29.8 21.4 12.3 0.500 0.800 2420 253 227 9.02 248 61.7 40.3 2.89 5.21 
W21X93 93.0 27.3 21.6 8.42 0.580 0.930 2070 221 192 8.70 92.9 34.7 22.1 1.84 6.03 



W Shapes – Properties for designing 
 
W = weight in plf 
A = area, in.2 
I in moment of inertia, in.4 
Z = plastic modulus, in.3 
S = section modulus, in.3 
r = radius of gyration, in.  
J = torsional constant, in.3 
All other dimensions in inches.   

AISC_Manual_Label W A d bf tw tf Ix Zx Sx rx Iy Zy Sy ry J 
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W21X83 83.0 24.4 21.4 8.36 0.515 0.835 1830 196 171 8.67 81.4 30.5 19.5 1.83 4.34 
W21X73 73.0 21.5 21.2 8.30 0.455 0.740 1600 172 151 8.64 70.6 26.6 17.0 1.81 3.02 
W21X68 68.0 20.0 21.1 8.27 0.430 0.685 1480 160 140 8.60 64.7 24.4 15.7 1.80 2.45 
W21X62 62.0 18.3 21.0 8.24 0.400 0.615 1330 144 127 8.54 57.5 21.7 14.0 1.77 1.83 
W21X55 55.0 16.2 20.8 8.22 0.375 0.522 1140 126 110 8.40 48.4 18.4 11.8 1.73 1.24 
W21X48 48.0 14.1 20.6 8.14 0.350 0.430 959 107 93.0 8.24 38.7 14.9 9.52 1.66 0.803 
W21X57 57.0 16.7 21.1 6.56 0.405 0.650 1170 129 111 8.36 30.6 14.8 9.35 1.35 1.77 
W21X50 50.0 14.7 20.8 6.53 0.380 0.535 984 110 94.5 8.18 24.9 12.2 7.64 1.30 1.14 
W21X44 44.0 13.0 20.7 6.50 0.350 0.450 843 95.4 81.6 8.06 20.7 10.2 6.37 1.26 0.770 

                
W18X119 119 35.1 19.0 11.3 0.655 1.06 2190 262 231 7.90 253 69.1 44.9 2.69 10.6 
W18X106 106 31.1 18.7 11.2 0.590 0.940 1910 230 204 7.84 220 60.5 39.4 2.66 7.48 
W18X97 97.0 28.5 18.6 11.1 0.535 0.870 1750 211 188 7.82 201 55.3 36.1 2.65 5.86 
W18X86 86.0 25.3 18.4 11.1 0.480 0.770 1530 186 166 7.77 175 48.4 31.6 2.63 4.10 
W18X76 76.0 22.3 18.2 11.0 0.425 0.680 1330 163 146 7.73 152 42.2 27.6 2.61 2.83 
W18X71 71.0 20.9 18.5 7.64 0.495 0.810 1170 146 127 7.50 60.3 24.7 15.8 1.70 3.49 
W18X65 65.0 19.1 18.4 7.59 0.450 0.750 1070 133 117 7.49 54.8 22.5 14.4 1.69 2.73 
W18X60 60.0 17.6 18.2 7.56 0.415 0.695 984 123 108 7.47 50.1 20.6 13.3 1.68 2.17 
W18X55 55.0 16.2 18.1 7.53 0.390 0.630 890 112 98.3 7.41 44.9 18.5 11.9 1.67 1.66 
W18X50 50.0 14.7 18.0 7.50 0.355 0.570 800 101 88.9 7.38 40.1 16.6 10.7 1.65 1.24 
W18X46 46.0 13.5 18.1 6.06 0.360 0.605 712 90.7 78.8 7.25 22.5 11.7 7.43 1.29 1.22 
W18X40 40.0 11.8 17.9 6.02 0.315 0.525 612 78.4 68.4 7.21 19.1 10.0 6.35 1.27 0.810 
W18X35 35.0 10.3 17.7 6.00 0.300 0.425 510 66.5 57.6 7.04 15.3 8.06 5.12 1.22 0.506 

                
W16X100 100 29.4 17.0 10.4 0.585 0.985 1490 198 175 7.10 186 54.9 35.7 2.51 7.73 
W16X89 89.0 26.2 16.8 10.4 0.525 0.875 1300 175 155 7.05 163 48.1 31.4 2.49 5.45 
W16X77 77.0 22.6 16.5 10.3 0.455 0.760 1110 150 134 7.00 138 41.1 26.9 2.47 3.57 
W16X67 67.0 19.6 16.3 10.2 0.395 0.665 954 130 117 6.96 119 35.5 23.2 2.46 2.39 
W16X57 57.0 16.8 16.4 7.12 0.430 0.715 758 105 92.2 6.72 43.1 18.9 12.1 1.60 2.22 
W16X50 50.0 14.7 16.3 7.07 0.380 0.630 659 92.0 81.0 6.68 37.2 16.3 10.5 1.59 1.52 
W16X45 45.0 13.3 16.1 7.04 0.345 0.565 586 82.3 72.7 6.65 32.8 14.5 9.34 1.57 1.11 
W16X40 40.0 11.8 16.0 7.00 0.305 0.505 518 73.0 64.7 6.63 28.9 12.7 8.25 1.57 0.794 
W16X36 36.0 10.6 15.9 6.99 0.295 0.430 448 64.0 56.5 6.51 24.5 10.8 7.00 1.52 0.545 
W16X31 31.0 9.13 15.9 5.53 0.275 0.440 375 54.0 47.2 6.41 12.4 7.03 4.49 1.17 0.461 
W16X26 26.0 7.68 15.7 5.50 0.250 0.345 301 44.2 38.4 6.26 9.59 5.48 3.49 1.12 0.262 

                
W14X132 132 38.8 14.7 14.7 0.645 1.03 1530 234 209 6.28 548 113 74.5 3.76 12.3 
W14X120 120 35.3 14.5 14.7 0.590 0.940 1380 212 190 6.24 495 102 67.5 3.74 9.37 
W14X109 109 32.0 14.3 14.6 0.525 0.860 1240 192 173 6.22 447 92.7 61.2 3.73 7.12 
W14X99 99.0 29.1 14.2 14.6 0.485 0.780 1110 173 157 6.17 402 83.6 55.2 3.71 5.37 
W14X90 90.0 26.5 14.0 14.5 0.440 0.710 999 157 143 6.14 362 75.6 49.9 3.70 4.06 



W Shapes – Properties for designing 
 
W = weight in plf 
A = area, in.2 
I in moment of inertia, in.4 
Z = plastic modulus, in.3 
S = section modulus, in.3 
r = radius of gyration, in.  
J = torsional constant, in.3 
All other dimensions in inches.   
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W14X82 82.0 24.0 14.3 10.1 0.510 0.855 881 139 123 6.05 148 44.8 29.3 2.48 5.07 
W14X74 74.0 21.8 14.2 10.1 0.450 0.785 795 126 112 6.04 134 40.5 26.6 2.48 3.87 
W14X68 68.0 20.0 14.0 10.0 0.415 0.720 722 115 103 6.01 121 36.9 24.2 2.46 3.01 
W14X61 61.0 17.9 13.9 10.0 0.375 0.645 640 102 92.1 5.98 107 32.8 21.5 2.45 2.19 
W14X53 53.0 15.6 13.9 8.06 0.370 0.660 541 87.1 77.8 5.89 57.7 22.0 14.3 1.92 1.94 
W14X48 48.0 14.1 13.8 8.03 0.340 0.595 484 78.4 70.2 5.85 51.4 19.6 12.8 1.91 1.45 
W14X43 43.0 12.6 13.7 8.00 0.305 0.530 428 69.6 62.6 5.82 45.2 17.3 11.3 1.89 1.05 
W14X38 38.0 11.2 14.1 6.77 0.310 0.515 385 61.5 54.6 5.87 26.7 12.1 7.88 1.55 0.798 
W14X34 34.0 10.0 14.0 6.75 0.285 0.455 340 54.6 48.6 5.83 23.3 10.6 6.91 1.53 0.569 
W14X30 30.0 8.85 13.8 6.73 0.270 0.385 291 47.3 42.0 5.73 19.6 8.99 5.82 1.49 0.380 
W14X26 26.0 7.69 13.9 5.03 0.255 0.420 245 40.2 35.3 5.65 8.91 5.54 3.55 1.08 0.358 
W14X22 22.0 6.49 13.7 5.00 0.230 0.335 199 33.2 29.0 5.54 7.00 4.39 2.80 1.04 0.208 

                
W12X336 336 98.9 16.8 13.4 1.78 2.96 4060 603 483 6.41 1190 274 177 3.47 243 
W12X305 305 89.5 16.3 13.2 1.63 2.71 3550 537 435 6.29 1050 244 159 3.42 185 
W12X279 279 81.9 15.9 13.1 1.53 2.47 3110 481 393 6.16 937 220 143 3.38 143 
W12X252 252 74.1 15.4 13.0 1.40 2.25 2720 428 353 6.06 828 196 127 3.34 108 
W12X230 230 67.7 15.1 12.9 1.29 2.07 2420 386 321 5.97 742 177 115 3.31 83.8 
W12X210 210 61.8 14.7 12.8 1.18 1.90 2140 348 292 5.89 664 159 104 3.28 64.7 
W12X190 190 56.0 14.4 12.7 1.06 1.74 1890 311 263 5.82 589 143 93.0 3.25 48.8 
W12X170 170 50.0 14.0 12.6 0.960 1.56 1650 275 235 5.74 517 126 82.3 3.22 35.6 
W12X152 152 44.7 13.7 12.5 0.870 1.40 1430 243 209 5.66 454 111 72.8 3.19 25.8 
W12X136 136 39.9 13.4 12.4 0.790 1.25 1240 214 186 5.58 398 98.0 64.2 3.16 18.5 
W12X120 120 35.2 13.1 12.3 0.710 1.11 1070 186 163 5.51 345 85.4 56.0 3.13 12.9 
W12X106 106 31.2 12.9 12.2 0.610 0.990 933 164 145 5.47 301 75.1 49.3 3.11 9.13 
W12X96 96.0 28.2 12.7 12.2 0.550 0.900 833 147 131 5.44 270 67.5 44.4 3.09 6.85 
W12X87 87.0 25.6 12.5 12.1 0.515 0.810 740 132 118 5.38 241 60.4 39.7 3.07 5.10 
W12X79 79.0 23.2 12.4 12.1 0.470 0.735 662 119 107 5.34 216 54.3 35.8 3.05 3.84 
W12X72 72.0 21.1 12.3 12.0 0.430 0.670 597 108 97.4 5.31 195 49.2 32.4 3.04 2.93 
W12X65 65.0 19.1 12.1 12.0 0.390 0.605 533 96.8 87.9 5.28 174 44.1 29.1 3.02 2.18 
W12X58 58.0 17.0 12.2 10.0 0.360 0.640 475 86.4 78.0 5.28 107 32.5 21.4 2.51 2.10 
W12X53 53.0 15.6 12.1 10.0 0.345 0.575 425 77.9 70.6 5.23 95.8 29.1 19.2 2.48 1.58 
W12X50 50.0 14.6 12.2 8.08 0.370 0.640 391 71.9 64.2 5.18 56.3 21.3 13.9 1.96 1.71 
W12X45 45.0 13.1 12.1 8.05 0.335 0.575 348 64.2 57.7 5.15 50.0 19.0 12.4 1.95 1.26 
W12X40 40.0 11.7 11.9 8.01 0.295 0.515 307 57.0 51.5 5.13 44.1 16.8 11.0 1.94 0.906 
W12X35 35.0 10.3 12.5 6.56 0.300 0.520 285 51.2 45.6 5.25 24.5 11.5 7.47 1.54 0.741 
W12X30 30.0 8.79 12.3 6.52 0.260 0.440 238 43.1 38.6 5.21 20.3 9.56 6.24 1.52 0.457 
W12X26 26.0 7.65 12.2 6.49 0.230 0.380 204 37.2 33.4 5.17 17.3 8.17 5.34 1.51 0.300 
W12X22 22.0 6.48 12.3 4.03 0.260 0.425 156 29.3 25.4 4.91 4.66 3.66 2.31 0.848 0.293 
W12X19 19.0 5.57 12.2 4.01 0.235 0.350 130 24.7 21.3 4.82 3.76 2.98 1.88 0.822 0.180 
W12X16 16.0 4.71 12.0 3.99 0.220 0.265 103 20.1 17.1 4.67 2.82 2.26 1.41 0.773 0.103 



W Shapes – Properties for designing 
 
W = weight in plf 
A = area, in.2 
I in moment of inertia, in.4 
Z = plastic modulus, in.3 
S = section modulus, in.3 
r = radius of gyration, in.  
J = torsional constant, in.3 
All other dimensions in inches.   
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W12X14 14.0 4.16 11.9 3.97 0.200 0.225 88.6 17.4 14.9 4.62 2.36 1.90 1.19 0.753 0.0704 
                

W10X45 45.0 13.3 10.1 8.02 0.350 0.620 248 54.9 49.1 4.32 53.4 20.3 13.3 2.01 1.51 
W10X39 39.0 11.5 9.92 7.99 0.315 0.530 209 46.8 42.1 4.27 45.0 17.2 11.3 1.98 0.976 
W10X33 33.0 9.71 9.73 7.96 0.290 0.435 171 38.8 35.0 4.19 36.6 14.0 9.20 1.94 0.583 
W10X30 30.0 8.84 10.5 5.81 0.300 0.510 170 36.6 32.4 4.38 16.7 8.84 5.75 1.37 0.622 
W10X26 26.0 7.61 10.3 5.77 0.260 0.440 144 31.3 27.9 4.35 14.1 7.50 4.89 1.36 0.402 
W10X22 22.0 6.49 10.2 5.75 0.240 0.360 118 26.0 23.2 4.27 11.4 6.10 3.97 1.33 0.239 
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15.  Design of Reinforced Concrete Structures 

15.1. INTRODUCTION 

This chapter introduces reinforced concrete as a structural material and describes design of 
simple elements of reinforced concrete construction. Reinforced concrete design is almost 
always carried out using the Load and Resistance Factor Design (LRFD) method. However, in 
the terminology of the American Concrete Institute Building Code, it is known as the strength 

design method. The design provisions are covered in detail in the Building Code Requirements 

for Structural Concrete (ACI 318-14) and Commentary. At UC Berkeley, CE 123 provides more 
in-depth treatment of the design of reinforced concrete structures.  

15.2. REINFORCED CONCRETE CONSTRUCTION 

Reinforced concrete refers to construction made of concrete that is reinforced with (usually) steel 
reinforcement. Concrete is very efficient in resisting compressive stress but less effective in 
resisting tensile stress. By appropriate proportioning and placement of steel reinforcement within 
concrete, the reinforcement can provide the required tensile resistance. Steel can also resist 
compression and can control cracking in concrete construction. Concrete cover over the 
reinforcement provides protection against fire and corrosive agents.  

Reinforced concrete is widely used in building and infrastructure projects. Figure 15-1 shows 
some examples. 
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(a) Mid-rise concrete building, UC 

Berkeley campus. (Image courtesy of 
Studios Architecture)  

(b) High-rise moment frame-wall building in 
Pacific Northwest of United States. 
(Photograph courtesy of Cary Kopczynski) 

 

(c) Hoover Dam and Hoover Dam Bypass (http://www.atkinsglobal.com/en-
gb/projects/hoover-dam-bypass) 

Figure 15-1 Reinforced concrete construction examples. 
 

Reinforced concrete can be either cast-in-place or precast. In cast-in-place construction, the 
reinforcement is supported in formwork and concrete is cast to form the members in their final 
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position (Figure 15-2). In precast construction, individual members are cast in a precast yard, 
shipped to the site, and connected together to complete the structure (Figure 15-3).  
 

 
Figure 15-2 Casting concrete in a reinforced concrete building. 

 

 
 

Figure 15-3 Construction of the San Francisco Oakland Bay Bridge Skyway. Note the segmental 
precast construction, in which precast segments are hoisted into position, then prestressed 

and grouted in place. (http://www.hatchertechnical.com/)  
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Whether cast-in-place or precast, the members can be either prestressed or non-prestressed. 
In non-prestressed construction, the reinforcing steel is held in place in the forms with the 
concrete cast around the reinforcement, without any prestressing of the reinforcement. In this 
case, the reinforcement experiences stress only under application of external load (or volume 
change due to effects of shrinkage and temperature change). In prestressed concrete, the 
reinforcement is stressed before the application of external load. This can be done in one of two 
ways. In pre-tensioned concrete, the reinforcement is prestressed in tension (usually in 
precasting beds at a precasting plant), the concrete is cast, and then the reinforcement is released. 
Because the reinforcement is bonded to the concrete, it transfers compressive force to the 
concrete, thereby prestressing it. In post-tensioned concrete, the prestressing steel is placed in 
greased conduits, the concrete is cast, and after the concrete has hardened the prestressing steel is 
stressed in tension and held in tension through anchorages within the concrete.  

Figure 15-4 illustrates some of the differences in behavior of non-prestressed and prestressed 
concrete. If the non-prestressed beam is cast without camber, then under load the resulting 
moments will induce curvature, leading to deflections and possibly concrete cracking. In 
contrast, the prestressed beam develops an initial upward deflection due to the eccentrically 
placed prestressing steel. External load will produce curvature in the opposite direction. In the 
ideal design, the prestressing is designed to exactly counter the deflection under load, such that 
there is no deflection in the final design. In this condition, there also is no tensile strain or 
cracking in the concrete. Of course, the non-prestressed beam can be built with an initial camber 
to achieve the same result of zero deflection under design load, but tensile strain and possible 
cracking are still likely. Apart from this simple introduction, prestressed concrete is beyond the 
scope of CE 120 and this Reader.  

 

 
Figure 15-4 Non-prestressed and prestressed beams. 

 



CE 120 Reader 

  
Page 15. 5 

15.3. MECHANICAL PROPERTIES OF CONCRETE AND REINFORCEMENT 

15.3.1. Concrete 

Concrete is a composite material consisting mainly of aggregates held together by a binding 
agent. Aggregate usually includes fine aggregates (sand) and course aggregates (gravel or 
crushed stone). The binding agent is usually portland cement. Through addition of controlled 
amounts of mixing water, portland cement gains an adhesive characteristic. In addition to 
aggregates, cement, and water, modern concretes usually have admixtures, which are added 
before or during mixing. Some admixtures can improve workability, thereby reducing required 
water and improving potential strength. Others can modify setting and hardening characteristics 
of the plastic concrete and can improve thermal and freeze-thaw cracking resistance. 

Concrete compressive strength is the property most commonly specified by structural 
engineers. The specified strength is generally given the designation fc

'. Unless another age is 
indicated in the design drawings or specifications, the specified strength generally refers to the 
28-day compressive strength, which can be checked by conducting a standard uniaxial 
compression test on concrete cylinders.  

Figure 15-5 shows a standard cylinder test and measured stress-strain relations for 
normalweight aggregate concrete samples of various strengths. In some markets such as the San 
Francisco Bay Area, the maximum compressive strength that can be obtained using local 
aggregates is around 10,000 psi (70 MPa). In other markets (for example, Seattle and Chicago) 
superior aggregate qualities enable compressive strengths of around 20 ksi (140 MPa).  

 

 

 

 

 

 

 

 

(a) 
(b) 

Figure 15-5 (a) Uniaxial compression test on 6 x 12 in. (150 x 300 mm) cylinder at UC 
Berkeley laboratories (photo courtesy of L. Stepanov). (b) Stress-strain relations 
of normalweight concretes under uniaxial compressive loading (after Wischers, 

1979, as reported by ACI 363R-92, 1992) 

Although the stress-strain relation for concrete is nonlinear even at low stress levels, we 
commonly assume it to be linear for stresses up to around 0.5fc

'. The commonly accepted 
definition of concrete modulus is a chord modulus from the stress-strain point at 50 microstrain 
to the stress-strain point at 0.4fc

' (ASTM C469). ACI 318 uses Eq. (15-1) as an empirical 
estimate of the concrete modulus.  
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'5.133
ccc

fwE = , psi 

'5.1043.0
ccc

fwE = , MPa 
(15-1) 

in which wc = density of concrete in lb/ft3 (kg/m3). For normalweight aggregate, this can be 
simplified to  

'000,57
cc

fE = , psi 

'4700
cc

fE = , MPa 
(15-2) 

Note that these empirical equations define modulus (units of force per area) in terms of ඥ ௖݂
ᇱ, 

which has units of square root of force per area). Therefore, the constant must also have units of 
square root of force per area. Consequently, these equations only work using either psi or MPa 
units for ௖݂ᇱ, with the result that Ec has corresponding units of psi or MPa.  

Concrete density for concrete with normal-weight aggregate is around 145 pcf. The density 
of reinforced concrete is somewhat higher. Standard practice is to take the density of reinforced 

concrete at 150 pcf. Light-weight concretes are achieved by using light-weight aggregates, 
allowing densities for structural lightweight concrete around 120 pcf.   

15.3.2. Steel 

Steels used in reinforced concrete include bars and wires for nonprestressed applications, and 
strands, wires, and bars for prestressed applications. In this reader, we consider only bars for 
nonprestressed applications.  

Standard, nonprestressed bars are produced in standard sizes. Table 15-1 lists the standard 
sizes used in the United States. The bars can be identified in one of two ways, either using U.S. 
customary inch-lb units or metric units. In the U.S. customary unit system, the bar size number is 
approximately equal to the nominal diameter in eighths of an inch. The same bar can also be 
identified by its nominal diameter in mm. Thus, a No. 3 bar (3/8-inch diameter) in the U.S. 
customary system is the same as a No. 10 bar (10-mm diameter) in the metric system.  

 

Table 15-1 ASTM standard reinforcement bar sizes (ASTM A615) 
Bar size, no. 
U.S. (metric) 

Nominal diameter, 
in. (mm) 

Nominal area, in.2 
(mm2) 

3 (10) 
4 (13) 
5 (16) 
6 (19) 
7 (22) 
8 (25) 
9 (29) 
10 (32) 
11 (36) 
14 (43) 
18 (57) 

0.375 (9.5) 
0.500 (12.7) 
0.625 (15.9) 
0.750 (19.1) 
0.875 (22.2) 
1.000 (25.4) 
1.128 (28.7) 
1.270 (32.3) 
1.410 (35.8) 
1.693 (43.0) 
2.257 (57.3) 

0.11 (71) 
0.20 (129) 
0.31 (199) 
0.44 (284) 
0.60 (387) 
0.79 (510) 
1.00 (645) 
1.27 (819) 

1.56 (1006) 
2.25 (1452) 
4.00 (2581) 

 
ASTM standards control the deformation patterns on deformed bars to ensure appropriate 

bond characteristics while avoiding sharp-cornered deformations that reduce fatigue life (Figure 
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15-6). In addition, standard markings identify the bar characteristics. Various types of 
reinforcement can provide enhanced corrosion resistance in highly corrosive environments. 
Epoxy-coated reinforcement is one option (Figure 15-6 b and c). In the United States, green 
epoxy coating indicates the epoxy was applied before fabricating (cutting, bending) 
reinforcement. This practice ensures a uniform coating with minimal cost, but fabrication after 
coating can cause damage to the epoxy coating. Purple or grey epoxy coating indicates the epoxy 
was applied after the bars were fabricated – these bars should not be bent after coating. Other 
alternatives are zinc coated reinforcement, stainless steel reinforcement, and galvanized 
reinforcement.  

 
(a) 

 

(b) 
 

(c) 

 

  Figure 15-6 Photograph of No 11 (No. 35 metric) reinforcing bars (a) uncoated (A615), (b) 
green epoxy coating (ASTM A775), and (c) grey (alternately purple) epoxy coating 

(ASTM A934). Bar deformation patterns other than those shown are also used. 

Reinforcement grade refers to the nominal yield strength of the reinforcement in ksi (MPa). 
In the United States, deformed reinforcing bars are available in Grades 40 (280), 50 (350), 60 
(420), 75 (520), 80 (550), 100 (690), and 120 (830), where the number refers to the nominal 
yield strength in ksi (MPa). In general, only Grade 60 (420) bars are widely available. Most 
producers can provide 60-ft (18-m) lengths of stock without special order.  

Figure 15-7 plots characteristic stress-strain relations for different types of deformed 
reinforcement. The initial modulus is approximately Es = 29,000 ksi (200,000 MPa). Actual yield 
strength tends to be higher than the specified strength, followed by strain-hardening. For design 
purposes, the steel is assumed to be linear to the nominal yield point, followed by plastic yielding 
without strain-hardening. The design relation for Grade 60 reinforcement is shown as the broken 
line in the figure.  

 

No. 35 - uncoated

No. 35 – Green – 203 Pm (8 mils)

No. 35 – Grey – 203 Pm (8 mils)

No. 35 - uncoated

No. 35 – Green – 203 Pm (8 mils)

No. 35 – Grey – 203 Pm (8 mils)

No. 35 - uncoated

No. 35 – Green – 203 Pm (8 mils)

No. 35 – Grey – 203 Pm (8 mils)

No. 35 - uncoated

No. 35 – Green – 203 Pm (8 mils)

No. 35 – Grey – 203 Pm (8 mils)
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  Figure 15-7 Characteristic engineering stress versus engineering strain relations for 
A615, A706, and A1035 deformed bars in tension.  

 

15.4. TYPICAL REINFORCED CONCRETE BEAMS AND COLUMNS 

Reinforced concrete beams are built in a variety of cross-sectional shapes, including rectangular, 
flanged (where a beam is monolithic with the floor slab that it supports), I-shaped (common in 
precast bridges), and box-shaped (common in bridge construction). Beams are commonly 
provided with both longitudinal and transverse reinforcement, as shown in Figure 15-8.  

To understand the requirements for reinforcement, considering the simply-supported beam 
shown in Figure 15-8. The shear and moment diagrams corresponding to the uniform load are 
shown. Bending moment results in flexural tension along the bottom face of the beam. Under 
service loads, this flexural tension is likely to be sufficient to induce cracks. The cracks initiate at 
the maximum moment section (midspan) and propagate perpendicular to the flexural tension 
stress, that is, they propagate vertically into the beam. Longitudinal reinforcement, shown blue, 
is provided to resist flexural tension across these cracks.  

As load increases, flexural tension cracking spreads away from the beam midspan. These 
additional cracks initiate as flexurally driven cracks, oriented vertically. As they propagate 
upward into the beam, however, the presence of shear stress causes the direction of principal 
tensile stress to rotate, as suggested by the square element drawn near point c. Consequently, the 
orientation of the cracks changes as they propagate upward into the beam. These cracks are 
sometimes referred to as diagonal tension cracks, or simply as shear cracks. Transverse 

reinforcement, shown green, is provided to cross these cracks, thereby preventing them from 
opening excessively and helping to resist shear forces acting on the beam. The individual pieces 
of transverse reinforcement in a beam are commonly referred to as stirrups.  
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Figure 15-8 Longitudinal and transverse reinforcement in beams. 

 
In a building or bridge frame, the beams and columns can be cast monolithically to form a 

moment-resisting frame. Figure 15-9 illustrates a moment-resisting frame. Note that effective 
moment transfer at the connections requires that the beam and column longitudinal 
reinforcement be extended into and be anchored within the beam-column joints. These subjects 
are discussed further in CE 123. 

 

 
Figure 15-9 One-bay, one-story, moment-resisting frame comprising beam, columns, and 

beam-column joints. 
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15.5. DESIGN STRENGTHS FOR REINFORCED CONCRETE BEAMS 

Design of reinforced concrete members usually is done in accordance with the Load and 
Resistance Factor (LRFD) method, which was introduced in Chapter 12. ACI 318 refers to this 
method as the strength design method. To use the strength design method, we need to define 
nominal and design strengths for reinforced concrete members. For our purposes, we are 
interested in the moment and shear strengths of beams. 

Design moment strength, IMn 

Consider the beam cross section shown in Figure 15-10. The member is assumed to have one 
layer of longitudinal reinforcement, with yield stress fy, positioned with its centroid a distance d 
from the extreme compression fiber. Under the action of applied moments, the member develops 
longitudinal strains that vary linearly over the member depth as shown in Figure 15-10b. For 
practical longitudinal steel ratios (0.005 ≤ ߩ ≤ 0.02, where ߩ = 𝑠𝑠ܣ ܾ݀⁄ ), the beam longitudinal 
reinforcement will yield well before the compression zone crushes. Beam strength is reached 
when the concrete crushes at a concrete compressive strain around Hcu = 0.003. Consequently, the 
stresses acting on the beam cross section at failure are as shown in Figure 15-10c. Note that the 
vertical line in Figure 15-10c represents a thin slice of the beam cross section. It is a free-body 

diagram showing the nominal moment acting on one side of the slice and the internal stresses 
acting on the other side.  

 
Figure 15-10  Moment strength of reinforced concrete beam. 

 
We can solve for Mn in Figure 15-10c by summing moments about any convenient point. To 

simplify the challenge of integrating over the concrete compressive stress block of Figure 
15-10c, we replace it by an equivalent rectangular compressive stress block, as shown in Figure 
15-10d. The stress intensity 0.85 ௖݂

ᇱ is suitable for all concrete compressive strengths. The depth 
of the stress block is E1c, where E1 varies from 0.85 to 0.65 as a function of the concrete 
compressive strength. For the purpose of calculating the nominal moment strength, we do not 
need to define the precise value of E1, as this term cancels in the moment equations. Given this 
simplified stress block, the stress resultants of Figure 15-10e can be determined as 

𝑇𝑇𝑠𝑠 = 𝑠𝑠ܣ ௬݂ (15-3) 
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in which As = area of longitudinal tension reinforcement and fy = steel yield stress. For the 
commonly used Grade 60 reinforcement, fy = 60 ksi. Additionally,   

𝐶𝐶௖ = 0.85 ௖݂
ᇱܾ(15-4) 1ܿߚ 

Summing axial forces on the free-body diagram of Figure 15-10e, we find that Ts = Cc, and 
substituting in Eq. (15-3) and (15-4), we find that the neutral axis depth c is  

ܿ =
𝑠𝑠ܣ ௬݂

0.85 ௖݂
ᇱܾ1ߚ

 (15-5) 

Summing moments about the centroid of the rectangular stress block, we find 
𝑛𝑛ܯ = 𝑇𝑇𝑠𝑠 × ݆݀ (15-6) 

in which j is a multiplier on the effective depth d, and jd can be solved as 
 

݆݀ = ݀ െ
1ܿߚ

2 = ݀ െ
1
2
𝑠𝑠ܣ
ܾ

௬݂

0.85 ௖݂
ᇱ = ݀ ቆ1 െ 0.59

𝑠𝑠ܣ
ܾ݀

௬݂

௖݂
ᇱቇ = ݀ ቆ1 െ ߩ0.59 ௬݂

௖݂
ᇱቇ (15-7) 

in which U = As/bd. For practical designs in which 0.005 ≤ ߩ ≤ 0.02, and for fy = 60 ksi and ௖݂ᇱ 
= 5 ksi, the value of the term in parentheses is 0.86 ≤ ݆ ≤ 0.96. A good rule of thumb is to use 
jd = 0.9d as an approximation. Thus, in CE 120, the nominal moment strength can be written as 

𝑛𝑛ܯ = 𝑠𝑠ܣ ௬݂ × 0.9݀ (15-8) 

In the strength design method, as in the LRFD method, the design strength is given by IMn, 
in which I = strength reduction factor. For moment strength design, I = 0.9.  

 
Example 1: What is the design moment strength IMn for the section shown in Figure 15-11? 
Concrete has f ’c = 4 ksi and steel is Grade 60.  
 
Solution: See Figure 15-11. For No. 8 longitudinal bars, according to Table 15-1, the diameter is 1 
inch and the cross-sectional area is 0.79 in.2 (Note that we could calculate these quantities knowing 
the nominal diameter is 8/8 inches.) Therefore, the total steel area is As = 3 x 0.79 = 2.37 in.2 To find 
the effective depth d, assume typical concrete cover of 1.5 inches over the stirrups, add 0.5 in. for the 
stirrup diameter and 0.5 in. for half the longitudinal bar diameter, leading to d = 24” – 1.5” - 0.5” - 
0.5” = 21.5 in. The nominal moment strength is Mn = As x fy x 0.9d = (2.37 in.2)(60 ksi)(0.9 x 21.5 in.) 
= 2750 k-in. The design moment strength is IMn = 0.9 x 2750 k-in. =  2480 k-in.   

 

 
Figure 15-11 Cross-sectional dimensions of beam for Examples 1 and 2. 
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Design shear strength, IVn 
As discussed in Section 15.4, shear tends to produce cracks that are inclined relative to the beam 
longitudinal axis. Transverse reinforcement is required to control crack widths, thereby enabling 
the interlocked segments of concrete on either side of a crack to continue to transfer some shear, 
and also providing additional shear strength directly through the reinforcement. The nominal 
shear strength is defined as follows: 

 
𝑉𝑉𝑛𝑛 = 𝑉𝑉௖ + 𝑉𝑉𝑠𝑠 (15-9) 

 
in which Vc = shear strength attributable to the concrete and Vs = shear strength attributable to the 
transverse reinforcement.  

The shear strength attributable to the concrete is based test observations, and is expressed as 
 

𝑉𝑉௖ = 2ඥ ௖݂
ᇱܾ݀, psi 

 
𝑉𝑉௖ = 0.17ඥ ௖݂

ᇱܾ݀, MPa 
(15-10) 

 
in which Vc = concrete contribution to shear strength (lb or Newtons), fc

’ = concrete compressive 
strength in psi or MPa, b = width of the web of the beam in inches or mm, and d = effective 
depth of the beam in inches or mm. 

The shear strength attributable to transverse reinforcement is obtained by cutting a 45-degree 
crack through the beam and summing the vertical force resisted by the stirrups. We can write that 
the number n of stirrups crossed by a crack is to d as one stirrup is to the spacing s, that is, n = 
d/s. Therefore, the total force resisted by stirrups along a 45-degree crack is 

 

𝑉𝑉𝑠𝑠 = 𝑣𝑣ܣ݊ ௬݂𝑡𝑡 =
𝑣𝑣ܣ ௬݂𝑡𝑡݀
ݏ  (15-11) 

 

 
Figure 15-12 Contribution Vs of transverse reinforcement to shear strength. 

 
In the strength design method, as in the LRFD method, the design strength is given by IVn, in 

which I = strength reduction factor. For shear strength design of concrete beams, I = 0.75. 
 
Example 2: What is the design shear strength IVn for the section shown in Figure 15-11? Concrete 
has f ’c = 4 ksi and steel is Grade 60.  
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Solution: From Eq. (15-10), 𝑉𝑉௖ = 2ඥ ௖݂
ᇱܾ݀ = 2ξ4000 × 12 × 21.5 = 32,600 ݈ܾ. From Eq. (15-11), 

𝑉𝑉𝑠𝑠 = ஺ೡ௙೤೟𝑑𝑑
𝑠𝑠 = (2×଴.2଴)(଺଴,଴଴଴)(21.ହ)

1଴ = 51,600 ݈ܾ. From Eq. (15-9),   
𝑉𝑉𝑛𝑛 = 𝑉𝑉௖ + 𝑉𝑉𝑠𝑠 = 32,600 ݈ܾ + 51,600 ݈ܾ = 84,200 ݈ܾ =  = The design shear strength is IVn .ݏ݌݅݇ 84.2
0.75 x 84.2 kips =  63.2 kips. 

 

15.6. ADDITIONAL DESIGN CONSIDERATIONS 

Design of reinforced concrete beams should consider additional aspects, some of which are 
building code requirements and others of which are practical construction considerations. A few 
of these are summarized below: 
Cover and spacing of reinforcement 

Concrete cover over reinforcement is important to protect reinforcement from corrosion and fire, 
and to ensure the reinforcement is adequately bonded to the surrounding concrete. Different 
conditions require different cover. For most practical designs, clear cover over reinforcement 
should not be less than 1.5 inches. For footings exposed to earth, clear cover should not be less 
than 3 inches.  

Placement of concrete requires that reinforcement be spaced to facilitate flow of concrete 
around the reinforcement. As a minimum, bar spacing should not be less than the larger of 1 inch 
and the bar diameter.  

 
Beam dimensions 

Beams can have any cross sections required for serviceability and strength. Beams deeper than 
36 inches require additional reinforcement along the side faces to control cracking. The ratio of 
beam width b to beam depth h is not constrained by codes. However, efficient designs commonly 
fall in the range 1 ≤ ௛

௕
≤ 2. 

 
Longitudinal reinforcement ratios 

To control performance within acceptable objectives, building codes place limits on the 
minimum and maximum amounts of longitudinal reinforcement. As a practical matter, the 
longitudinal reinforcement ratio ߩ = 𝑠𝑠ܣ ܾ݀⁄  should fall in the range 0.005 ≤ ߩ ≤ 0.02. These 
limits will satisfy building code requirements.  

 
Moment design constraints 

Sometimes the size of the beam is restricted by architectural requirements. In this case, moment 
design requires only the selection of the reinforcement to meet the strength requirements.  

Other times, the size of the beam is not constrained. In this case, it is best to select a design 
with modest longitudinal reinforcement ratio, as this will ease construction and avoid deflection 
problems. Combining Eq. (15-6) and (15-7),  
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𝑛𝑛ܯ = 𝑇𝑇𝑠𝑠 × ݆݀ = 𝑠𝑠ܣ ௬݂݀ ቆ1 െ ߩ0.59 ௬݂

௖݂
ᇱቇ =

𝑠𝑠ܣ
ܾ݀ ௬݂ܾ݀2 ቆ1 െ ߩ0.59 ௬݂

௖݂
ᇱቇ

= ߩ ௬݂ܾ݀2 ቆ1 െ ߩ0.59 ௬݂

௖݂
ᇱቇ~0.9ߩ ௬݂ܾ݀2 

(15-12) 

If we assume a ratio for b/d, for example b/d = ½, then this expression becomes 
 

~𝑛𝑛ܯ
ߩ0.9 ௬݂݀ଷ

2  (15-13) 

Using Eq. (15-13), with an assumed steel ratio 0.01 (which is known to produce reasonably 
efficient designs that perform well), we can quickly solve for required depth d and the estimate 
the beam depth h ~ d + 2.5 inches. This and other approaches will be practiced in CE 123. 

 
Transverse reinforcement spacing and limits 

In California and other seismically active regions, building codes require that transverse 
reinforcement be provided even if the concrete cross section provides adequate strength for 
design loads without transverse steel. Therefore, always provide stirrups in beams.  

Stirrups need to intersect all possible shear (diagonal) cracks. Therefore, building codes 
require that maximum spacing of stirrups not exceed d/2. Some additional requirements may 
apply.  

In addition, the spacing of stirrups should not exceed the spacing required based on 
consideration of the required strength. That is, the following design requirement must always be 
satisfied: ߶𝑉𝑉𝑛𝑛 ≥ 𝑉𝑉௨,𝑤𝑤ℎ݁݁ݎ 𝑉𝑉௨ = 𝑉𝑉௖ + 𝑉𝑉𝑠𝑠.  
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15.7. DESIGN EXAMPLES 

Example 3: Select dimensions and longitudinal reinforcement required for a beam to resist the loads 
shown. Consider moment only. Concrete has f ’c = 4 ksi and steel is Grade 60.  
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Example 4: Given the properties and loads given below, select spacing of transverse reinforcement.  
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