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Preface 

The fourteenth edition of Design of Concrete Structures has the same dual objectives 
as the previous work: first to establish a firm understanding of the behavior of structural 
concrete, then to develop proficiency in the methods used in current design practice. It 
has been updated in accordance with the provisions of the 2008 American Concrete 
Institute (ACI) Building Code. 

It is generally recognized that mere training in special design skills and codified 
procedures is inadequate for successful professional practice. As new research becomes 
available and new design methods are continually introduced, these procedures are 
subject to frequent changes. To understand and keep abreast of these rapid develop
ments and to engage safely in innovative design, the engineer needs a thorough ground
ing in the basic performance of concrete and steel as structural materials, and in the 
behavior of reinforced concrete members and structures. On the other hand, the main 
business of the structural engineer is to design structures safely, economically, and 
efficiently. Consequently, with this basic understanding as a firm foundation, famil
iarity with current design procedures is essential. This edition, like the preceding ones, 
addresses both needs. 

The text not only presents the basic mechanics of structural concrete and methods 
for the design of individual members for bending, shear, torsion, and axial forces, but 
also provides much detail pertaining to applications in the various types of structural 
systems, including an extensive presentation of slabs, footings, foundations, and retain
ing walls. The important topic of joint design is included. The chapter on flexural 
design has been expanded to improve the presentation of both the basic material and 
the example problems, coverage of seismic design is updated, and an introduction to 
prestressed concrete is included, as in previous editions. 

There have been a number of significant changes in the 2008 ACI Building Code, 
which governs design practice in most of the United States and serves as a model code 
in many other countries as well. Among these are a reorganization of the provisions 
for both slender column and earthquake design, the former with some simplification 
compared to earlier Codes and the latter with some important additions; and the addition 
of headed studs for use as shear reinforcement in two-way slabs and headed deformed 
bars as another option for use in anchoring reinforcement. 

In addition to changes in the ACI Code, the text includes the modified compres
sion field theory method of shear design as updated in the 2008 Interim Revisions to 
the American Association of State Highway and Transportation Officials (AASHTO) 
LRFD Bridge Design Specifications. 

A feature of the text is the comprehensive presentation of all aspects of slab 
design. A chapter covering one-way and two-way edge-supported and column-supported 
slabs, including the new Code material on headed studs, is followed by chapters on slab 
analysis and design based on the theory of plasticity covering, respectively, the yield 
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line method for analysis and the strip method for design of slabs, both particularly 
useful for innovative structures. 

A special strength of the text is the analysis chapter, which includes load com
binations for use in design, a description of envelope curves for moment and shear, 
guidelines for proportioning members under both gravity and lateral loads, and 
procedures for developing preliminary designs of reinforced concrete structures. 

Most present-day design is carried out using computer programs, either general
purpose, commercially available software or individual programs written for special 
needs. Step-by-step procedures are given throughout the book to guide the student and 
engineer through the increasingly complex methodology of current design, with the 
emphasis on understanding the design process. Once mastered, these procedures are 
easily converted into flowcharts to aid in programming. References are given, where 
appropriate, to the more widely used commercial programs. 

The text will be found suitable for either a one or two-semester course in the 
design of concrete structures. If the curriculum permits only a single course (probably 
taught in the fourth undergraduate year), the following will provide a good basis: the 
introduction and treatment of materials found in Chapters 1 and 2, respectively; the 
material on flexure, shear, and anchorage in Chapters 3, 4, and 5; Chapter 6 on serv
iceability; Chapter 8 on short columns; and the introduction to one and two-way slabs 
found in the first four sections of Chapter 13. Time may or may not permit classroom 
coverage of frame analysis or building systems, Chapters 12 and 18, but these 
could well be assigned as independent reading, concurrent with the earlier work of 
the course. In the authors' experience, such complementary outside reading tends to 
enhance student motivation. 

The text is more than adequate for a second course, most likely taught in the first 
year of graduate study. The authors have found that this is an excellent opportunity to 
provide students with a more general understanding of reinforced concrete structural 
design, often beginning with Chapters 12 and 18 and followed by the increasingly 
important topics of torsion, Chapter 7; slender columns, Chapter 9; the strut-and-tie 
method, Chapter 10; and the design and detailing of joints, Chapter 11. It should also 
offer an opportunity for a much expanded study of slabs, including the remaining sec
tions of Chapter 13, plus the methods for slab analysis and design based on plasticity 
theory found in Chapters 14 and 15, yield line analysis and the strip method of design. 
Other topics appropriate to a second course include foundations and retaining walls, 
Chapters 16 and 17, and the introduction to seismic design in Chapter 20. Pres tressed 
concrete is sufficiently important to justify a separate course. If time constraints do 
not permit this, Chapter 19 provides an introduction and can be used as the text for a 
one-credit-hour course. 

At the end of each chapter, the user will find extensive reference lists, which 
provide an entry into the literature for those wishing to increase their knowledge 
through independent study. For professors, the instructor's solution manual is avail
able online at www.mhhe.com/concrete. 

A word must be said about units. In the United States, regrettably, the transition 
from U.S. Customary System units to the metric system has proceeded very slowly, and 
in many quarters not at all. This is in part because of the expense to the construction 
industry of the conversion, but perhaps also because of perceived shortcomings 
in the SI metric system (use of derived units such as the pascal, elimination of the 
convenient centimeter, etc.) compared with the traditional European metric system. 
Although most basic science courses are taught using SI units, in most upper-class and 
graduate design courses, inch-pound units are customarily used, reflecting conditions 
of practice here. Accordingly, inch-pound units are used throughout the text, although 
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graphs and basic data in Chapter 2 are given in dual units. Appendix B gives the SI 
equivalents of inch-pound units. An SI version of the ACI Building Code is available. 

A brief historical note may be of interest. This book is the fourteenth edition of 
a textbook originated in 1923 by Leonard C. Urquhart and Charles E. O'Rourke, both 
professors of structural engineering at Cornell University at that time. Over its remark
able 86-year history, new editions have kept pace with research, improved materials, 
and new methods of analysis and design. The second, third, and fourth editions firmly 
established the work as a leading text for elementary courses in the subject area. 
Professor George Winter, also of Cornell, collaborated with Urquhart in preparing the 
fifth and sixth editions. Winter and the present senior author were responsible for the 
seventh, eighth, and ninth editions, which substantially expanded both the scope and 
the depth of the presentation. The tenth, eleventh, and twelfth editions were prepared 
by Professor Nilson subsequent to Professor Winter's passing in 1982, the latter with 
Professor David Darwin of the University of Kansas serving as a contributor. 

Professors Nilson and Darwin were joined by Professor Charles Dolan of the 
University of Wyoming beginning with the thirteenth edition. All three have been 
deeply involved in research and teaching in the fields of reinforced and prestressed 
concrete, as well as professional Code-writing committees, and have spent significant 
time in professional practice, invaluable in developing the perspective and structural 
judgement that sets this book apart. 

Special thanks are due to reviewers and former students for their many helpful 
comments and suggestions for this and previous editions. In particular, the authors 
would like to thank the following reviewers: Paul Barr, Utah State University; Robert 
N. Emerson, Oklahoma State University; A. Fafitis, Arizona State University; R. Craig 
Henderson, Tennessee Technological University; Max Porter, Iowa State University; 
Pizhong Qiao, The University of Akron; Aziz Saber, Louisiana Tech University; and 
Eric Steinberg, Ohio University. Thanks are also due to the McGraw-Hill project team, 
notably Debra Hash, Sponsoring Editor; Lorraine Buczek, Developmental Editor; and 
Melissa Leick, Project Manager. 

We gladly acknowledge our indebtedness to the original authors. Although it is 
safe to say that neither Urquhart nor O'Rourke would recognize very much of the 
detail, the approach to the subject and the educational philosophy that did so much to 
account for the success of the early editions would be familiar. We acknowledge with 
particular gratitude the influence of Professor George Winter in developing a point of 
view that has shaped the work in the chapters that follow. 

ELECTRONIC TEXTBOOK OPTIONS 

Arthur H. Nilson 
David Darwin 
Charles W. Dolan 

Ebooks are an innovative way for students to save money and create a greener envi
ronment at the same time. An ebook can save students about half the cost of a tradi
tional textbook and offers unique features like a powerful search engine, highlighting, 
and the ability to share notes with classmates using ebooks. 

McGraw-Hill offers two ebook options: purchasing a downloadable book from 
VitalSource or a subscription to the book from CourseSmart. To talk about the ebook 
options, contact your McGraw-Hill Sales Representative or visit the sites directly at 
www.vitalsource.com and www.coursesmart.com. 



Introduction 

1.1 CONCRETE, REINFORCED CONCRETE, 
AND PRESTRESSED CONCRETE 

Concrete is a stonelike material obtained by permitting a carefully proportioned 
mixture of cement, sand and gravel or other aggregate, and water to harden in forms 
of the shape and dimensions of the desired structure. The bulk of the material consists 
of fine and coarse aggregate. Cement and water interact chemically to bind the aggre
gate particles into a solid mass. Additional water, over and above that needed for this 
chemical reaction, is necessary to give the mixture the workability that enables it to 
fill the forms and surround the embedded reinforcing steel prior to hardening. 
Concretes with a wide range of properties can be obtained by appropriate adjustment 
of the proportions of the constituent materials. Special cements (such as high early 
strength cements), special aggregates (such as various lightweight or heavyweight 
aggregates), admixtures (such as plasticizers, air-entraining agents, silica fume, and 
fly ash), and special curing methods (such as steam-curing) permit an even wider vari
ety of properties to be obtained. 

These properties depend to a very substantial degree on the proportions of the 
mix, on the thoroughness with which the various constituents are intermixed, and on 
the conditions of humidity and temperature in which the mix is maintained from the 
moment it is placed in the forms until it is fully hardened. The process of controlling 
conditions after placement is known as curing. To protect against the unintentional 
production of substandard concrete, a high degree of skillful control and supervision 
is necessary throughout the process, from the proportioning by weight of the individ
ual components, through mixing and placing, until the completion of curing. 

The factors that make concrete a universal building material are so pronounced 
that it has been used, in more primitive kinds and ways than at present, for thousands 
of years, starting with lime mortars from 12,000 to 6000 BCE in Crete, Cyprus, 
Greece, and the Middle East. The facility with which, while plastic, it can be deposited 
and made to fill forms or molds of almost any practical shape is one of these factors. 
Its high fire and weather resistance is an evident advantage. Most of the constituent 
materials, with the exception of cement and additives, are usually available at low cost 
locally or at small distances from the construction site. Its compressive strength, like 
that of natural stones, is high, which makes it suitable for members primarily subject 
to compression, such as columns and arches. On the other hand, again as in natural 
stones, it is a relatively brittle material whose tensile strength is small compared with 
its compressive strength. This prevents its economical use in structural members that 
are subject to tension either entirely (such as in tie-rods) or over part of their cross 
sections (such as in beams or other flexural members). 

1 
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To offset this limitation, it was found possible, in the second half of the 
nineteenth century, to use steel with its high tensile strength to reinforce concrete, 
chiefly in those places where its low tensile strength would limit the carrying capacity 
of the member. The reinforcement, usually round steel rods with appropriate surface 
deformations to provide interlocking, is placed in the forms in advance of the concrete. 
When completely surrounded by the hardened concrete mass, it forms an integral part 
of the member. The resulting combination of two materials, known as reinforced 
concrete, combines many of the advantages of each: the relatively low cost, good 
weather and fire resistance, good compressive strength, and excellent formability of 
concrete and the high tensile strength and much greater ductility and toughness of 
steel. It is this combination that allows the almost unlimited range of uses and possi
bilities of reinforced concrete in the construction of buildings, bridges, dams, tanks, 
reservoirs, and a host of other structures. 

In more recent times, it has been found possible to produce steels, at relatively low 
cost, whose yield strength is 3 to 4 times and more that of ordinary reinforcing steels. 
Likewise, it is possible to produce concrete 4 to 5 times as strong in compression as the 
more ordinary concretes. These high-strength materials offer many advantages, includ
ing smaller member cross sections, reduced dead load, and longer spans. However, there 
are limits to the strengths of the constituent materials beyond which certain problems 
arise. To be sure, the strength of such a member would increase roughly in proportion 
to those of the materials. However, the high strains that result from the high stresses that 
would otherwise be permissible would lead to large deformations and consequently 
large deflections of such members under ordinary loading conditions. Equally impor
tant, the large strains in such high-strength reinforcing steel would induce large cracks 
in the surrounding low tensile strength concrete, cracks that not only would be unsightly 
but also could significantly reduce the durability of the structure. This limits the useful 
yield strength of high-strength reinforcing steel to 80 ksit according to many codes and 
specifications; 60 ksi steel is most commonly used. 

A special way has been found, however, to use steels and concretes of very high 
strength in combination. This type of construction is known as prestressed concrete. 
The steel, in the form of wires, strands, or bars, is embedded in the concrete under high 
tension that is held in equilibrium by compressive stresses in the concrete after hard
ening. Because of this precompression, the concrete in a flexural member will crack 
on the tension side at a much larger load than when not so precompressed. Prestressing 
greatly reduces both the deflections and the tensile cracks at ordinary loads in such 
structures, and thereby enables these high-strength materials to be used effectively. 
Prestressed concrete has extended, to a very significant extent, the range of spans of 
structural concrete and the types of structures for which it is suited. 

1.2 STRUCTURAL FORMS 

The figures that follow show some of the principal structural forms of reinforced con
crete. Pertinent design methods for many of them are discussed later in this volume. 

Floor support systems for buildings include the monolithic slab-and-beam floor 
shown in Fig. 1.1, the one-way joist system of Fig. 1.2, and the flat plate floor, 
without beams or girders, shown in Fig. 1.3. The flat slab floor of Fig. 1.4, frequently 
used for more heavily loaded buildings such as warehouses, is similar to the flat plate 
floor, but makes use of increased slab thickness in the vicinity of the columns, as well 

t Abbreviation for kips per square inch, or thousands of pounds per square inch. 



FIGURE 1.1 
One-way reinforced concrete 
floor slab with monolithic 
supporting beams. (Porrland 

Ce111e111 Aswcim/011.) 

FIGUREI.2 
One-way joist floor system, 
wilh closely spaced ribs 
supported by monolilhic 
concrete beams; Lransverse 
ribs provide for lateral 
distiibulion of localized 
loads. (Portland Ceme111 

Associarion.) 
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as flared column tops, to reduce stresses and increase strength in the support region. 
The choice among these and other systems for floors and roofs depends upon func
tional requirements, loads, spans, and permissible member depths, as well as on cost 
and esthelic factors. 

Where long clear spans are required for roofs, concrete shells permit use of 
extremely thin surfaces, often thinner, relatively, than an eggshell. The folded plate roof 
of Fig. 1.5 is simple to form because it is composed of flat surfaces; such roofs have 
been employed for spans of 200 ft and more. The cylindrical shelJ of Fig. 1.6 is also 
relatively easy to form because it has only a single curvature; it is similar to the folded 
plate in its structural behavior and range of spans and loads. Shells of this type were 
once quite popular in the United States and remain popular in other parts of the world. 

Doubly curved shell surfaces may be generated by simple mathematical curves 
such as circular arcs, parabolas, and hyperbolas, or they may be composed of complex 
combinations of shapes. The hyperbolic paraboloid shape, defined by a concave 
downward parabola moving along a concave upward parabolic path, has been widely 
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FIGUREl.3 
Flat plate floor slab, carried 
directly by columns without 
beams or girders. (Portland 
Cement Association.) 

FIGURE 1.4 
Flat slab floor. without 
beams but with slab 
thickness increased at the 
columns and with flared 
column tops to provide for 
local concentration of forces. 
(U11ivers;ty of Somhem Maine.) 

used. It has the interesting property that the doubly curved surface contains two 
systems of straight-line generators, pennitting straight-fonn lumber to be used. The 
complex dome of Fig. 1.7, which provides shelter for performing arts events, consists 
essentially of a circular dome but includes monolithic, upwardly curved edge surfaces 
to provide stiffening and strengthening in that critical region. 



FIGURE 1.5 
Folded plate roof of 125 ft 
span that, in addition 10 

carrying ordinary roof loads, 
carries the second floor as 
well from a system of cable 
hangers; the ground floor is 
kept free of columns. 

FIGURE 1.6 
Cylindrical shell roof 
providing column-free 
interior space. 
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Bridge design bas provided the opportunity for some of the most challenging 
and creative applications of structural engineering. The award-winning Napoleon Bona
parte Broward Bridge, shown in Fig. 1.8, is a six-lane, cable-stayed structure that spans 
St. John's River at Dame Point, Jacksonville, Florida. Its 1300 ft center span is the 
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FIGUREl.7 
Spherical shell in Lausanne, 
Switzerland. Upwardly 
curved edges provide 
stiffening for the central 
dome. 

FIGURE 1.8 
Napoleon Bonaparte 
Broward Bridge, with a 
1300 ft center span at Dame 
Point, Jacksonville, Florida. 
(f/NTB Corporation. Kansas 
City, Missouri.) 

second longest of its Lype in the western hemisphere. Figure 1.9 shows the Bennett 
Bay Centennial Bridge, a four-span continuous, segmentally cast-in-place box girder 
structure. Special attention was given to estbetics in this award-winning design. The 
spectacular Natchez Trace Parkway Bridge in Fig. 1.10, a two-span arch structure using 
hollow precast concrete elements, carries a two-lane highway L55 ft above the valley 



FIGURE 1.9 
Bennett Bay Centennial 
Bridge, Coeur d'Alene, 
Idaho, a four-span continuous 
concrete box girder structure 
of length 1730 ft. (HNTB 
Corporation, Ka11sas City, 
Missouri.) 

FIGURE 1.10 
Natchez Trace Parkway 
Bridge near Frank.Jin, 
Tennessee, an award-winning 
two-span concrete arch 
structure rising 155 ft above 
the valley floor. (Figg 
E11gineering Group, Tallahassee. 
Florida.) 

INTRODUCTCON 7 
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FIGURE 1.11 
Circular concrete tanks used 
as a part of Lhe wastewater 
purification facility at 
Howden, England. 
(Nonhumbrian Water Authority 

with ll1der and Jo11es, 

Architects.) 

floor. This structure has won many honors, including awards from the American 
Society of Civil Engineers and the National Endowment for the Arts. 

Cylindrical concrete tanks are widely used for storage of water or in waste purifi
cation plants. The design shown in Fig. 1.11 is proof that a sani tary engineering 
facility can be esthetically pleasing as well as functional. Cylindrical tanks are often 
prestressed circumferentially to maintain compression in the concrete and e)jminate 
the cracking that would otherwise result from internal pressure. 

Concrete structures may be designed to provide a wide array of surface textures, 
colors, and structural forms. Figure 1.12 shows a precast concrete building containing 
both color changes and architectural finishes. 

The forms shown in Figs. 1.1 to 1.12 hardly constitute a complete inventory but 
are illustrative of the shapes appropriate to the properties of reinforced or prestressed 
concrete. They illustrate the adaptabi lity of the material to a great variety of one
dimensional (beams, girders, col.umns), two-dimensional (slabs, arches, rigid frames), 
and three-dimensional (shells, tanks) strnctures and structural components. This variability 
allows the shape of the structure to be adapted to its function in an economical manner, 
and furnishes the architect and design engineer with a wide variety of possibilities for 
esthetically satisfying structural solutions. 

1.3 LOADS 

Loads that act on structures can be divided into three broad categories: dead loads, ]jve 
loads, and environmental loads. 

Dead loads are those that are constant in magnitude and fixed in location through
out the Lifetime of the structure. Usually the major part of the dead load is the weight 
of the structure itself. This can be calculated with good accuracy from the design con
figuration, dimensions of the structure, and density of the material. For buildings, floor 



FIGURE 1.12 
Coocrete structures cao be 
produced in a wide range of 
colors, finishes, and 
architectural detailing. 
(Courtesy of Rocky Mountain 
Prestress Corp.) 
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fill, finish floors, and plastered ceilings are usuaJly included as dead loads, and an 
allowance is made for suspended loads such as piping and lighting fixtures. For 
bridges, dead loads may include wearing surfaces, sidewalks, and curbs, and an 
allowance is made for piping and other suspended loads. 

Live loads consist chiefly of occupancy loads in buildings and traffic loads on 
bridges. They may be either fully or partially in place or not present at all, and may 
also change in location. Their magnitude and distribution at any given time are uncer
tain, and even their maximum intensities throughout the lifetime of the structure are 
not known with precision. The minimum live loads for which the floors and roof of a 
building should be designed are usually specified in the building code that governs at 
the site of construction. Representative values of minimum live loads to be used in a 
wide variety of buildings are found in Minimum Design Loads for Buildings and Other 
Structures (Ref. 1. l), a portion of which is reprinted in Table 1.1. The table gives uni
formly distributed live loads for various types of occupancies; these include impact 
provisions where necessary. These loads are expected maxima and considerably 
exceed average values. 

In addition to these unifonnJy distributed loads, it is recommended that, as an 
alternative to the uniform load, floors be designed to support safely certain concen
trated loads if these produce a greater stress. For example, according to Ref. 1.1, office 
floors are to be designed to carry a load of 2000 lb distributed over an area 2.5 ft square 
(6.25 ft2), to allow for the weight of a safe or other heavy equipment, and stair treads 
must safely support a 300 lb load applied on the center of the tread. Certain reductions 
are often permitted in live loads for members supporting large areas, on the premise that 
ii is not likely that the entire area would be fully loaded at one time (Refs. Ll and 1.2). 
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TABLE 1.1 
Minimum uniformly distributed live loads 

Occupancy or Use 

Apartments ( see residential) 
Access floor systems 

Office use 
Computer use 

Armories and drill rooms 
Assembly areas and theaters 

Fixed seats (fastened to floor) 
Lobbies 
Movable seats 
Platforms (assembly) 
Stage floors 

Balconies (exterior) 

Live Load, 
psfa 

50 
100 
150 

60 
100 
100 
100 
150 
100 

Occupancy or Use 

Dining rooms and restaurants 
Dwellings ( see residential) 
Fire escapes 

On single-family dwellings only 
Garages (passenger cars only) 

Trucks and busesh 
Grandstands (see stadium and arena bleachers) 
Gymnasiums, main floors and balconiesc 
Hospitals 

Operating rooms, laboratories 
Patient rooms 

Live Load, 
psfa 

100 

100 
40 
40 

100 

60 
40 
80 

On one and two-family residences 
only, and not exceeding 100 ft2 

Bowling alleys, poolrooms, and similar 
recreational areas 

60 

75 

40 

Corridors above first floor 
Hotels ( see residential) 
Libraries 

Reading rooms 
Stack roomsd 

60 
150 
80 Catwalks for maintenance access 

Corridors 
First floor 100 

Corridors above first floor 
Manufacturing 

Light 125 
Other floors, same as occupancy 

served except as indicated 
Dance halls and ballrooms 100 

Heavy 250 
Marquees and canopies 75 
Office buildings 

Decks (patio and roof) 
Same as area served, or for the 

File and computer rooms shall be designed for 
heavier loads based on anticipated occupancy 

type of occupancy accommodated Lobbies and first-floor corridors 100 

(continued) 

Tabulated live loads cannot always be used. The type of occupancy should be 
considered and the probable loads computed as accurately as possible. Warehouses for 
heavy storage may be designed for loads as high as 500 psf or more; unusually heavy 
operations in manufacturing buildings may require an increase in the 250 psf value 
specified in Table 1. 1; special provisions must be made for all definitely located heavy 
concentrated loads. 

Live loads for highway bridges are specified by the American Association of 
State Highway and Transportation Officials (AASHTO) in its LRFD Bridge Design 
Specifications (Ref. 1.3). For railway bridges, the American Railway Engineering and 
Maintenance-of-Way Association (AREMA) has published the Manual of Railway 
Engineering (Ref. 1.4 ), which specifies traffic loads. 

Environmental loads consist mainly of snow loads, wind pressure and suction, 
earthquake loads (i.e., inertia forces caused by earthquake motions), soil pressures on 
subsurface portions of structures, loads from possible ponding of rainwater on flat sur
faces, and forces caused by temperature differentials. Like live loads, environmental 
loads at any given time are uncertain in both magnitude and distribution. Reference 1.1 
contains much information on environmental loads, which is often modified locally 
depending, for instance, on local climatic or seismic conditions. 

Figure 1.13, from the 1972 edition of Ref. 1.1, gives snow loads for the 
continental United States and is included here for illustration only. The 2005 edition 



TABLE 1.1 
(Continued) 

Occupancy or Use 

Offices 
Corridors above first floor 

Penal institutions 
Cell blocks 
Corridors 

Residential 
Dwellings (one and two-family) 

Uninhabitable attics without storage 
Uninhabitable attics with storage 
Habitable attics and sleeping areas 
All other areas except stairs and balconies 

Hotels and multifamily houses 
Private rooms and corridors serving them 
Public rooms and corridors serving them 

Reviewing stands, grandstands, and bleachersc 
Roofs 

Ordinary flat, pitched, and curved roofs 
Roofs used for promenade purposes 

Live Load, 
psfa 

50 
80 

40 
100 

10 
20 
30 
40 

40 
100 

20 
60 

Roofs used for roof gardens or assembly purpose 100 
Roofs used for other special purposes! 
Awnings and canopies 

Fabric construction supported by a 5 
lightweight rigid skeleton structureK 

All other construction 20 

a Pounds per square foot. 
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Occupancy or Use 

Schools 
Classrooms 
Corridors above first floor 
First-floor corridors 

Sidewalks, vehicular driveways, and yards 
subject to truckinge 

Stadiums and arenas 
Bleachersc 
Fixed seats (fastened to floor)" 

Stairs and exit ways 
One and two-family residences only 

Storage areas above ceilings 
Storage warehouses (shall be designed for 

Live Load, 
psfa 

40 
80 

100 
250 

100 
60 

100 
40 
20 

heavier loads if required for anticipated storage) 
Light 125 
Heavy 250 

Stores 
Retail 

First floor 100 
Upper floors 73 

Wholesale, all floors 125 
Walkways and elevated platforms 60 

(other than exitways) 
Yards and terraces, pedestrians 100 

b Garages accommodating trucks and buses shall be designed in accordance with an approved method that contains provisions for truck and bus loadings. 
' In addition to the vertical live loads, the design shall include horizontal swaying forces applied to each row of seats as follows: 24 lb per linear seat 

applied in the direction parallel to each row of seats and 10 lb per linear ft of seat applied in the direction perpendicular to each row of seats. The 
parallel and perpendicular horizontal swaying forces need not be applied simultaneously. 

d The loading applies to stack room floors that support nonmobile, double-faced library bookstacks subject to the following limitations: (a) The 
nominal bookstack unit height shall not exceed 90 in.; (b) the nominal shelf depth shall not exceed 12 in. for each face; and (c) parallel rows of 
double-faced bookstacks shall be separated by aisles not less than 36 in. wide. 

'Other uniform loads in accordance with an approved method that contains provisions for truck loadings shall also be considered where appropriate. 
!Roofs used for other special purposes shall be designed for appropriate loads as approved by the authority having jurisdiction. 
g Nonreducible. 

Source: From Ref. I.I. Used by permission of the American Society of Civil Engineers. 

of Ref. 1.1 gives much more detailed information. In either case, specified values 
represent not average values, but expected upper limits. A minimum roof load of 
20 psf is often specified to provide for construction and repair loads and to ensure 
reasonable stiffness. 

Much progress has been made in developing rational methods for predicting 
horizontal forces on structures due to wind and seismic action. Reference 1.1 summa
rizes current thinking regarding wind forces and has much information pertaining to 
earthquake loads as well. Reference 1.5 presents detailed recommendations for lateral 
forces from earthquakes. 

Reference I.I specifies design wind pressures per square foot of vertical wall sur
face. Depending upon locality, these equivalent static forces vary from about 10 to 50 psf. 
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FIGURE 1.13 
Snow load in pounds per 
square foot (psf) on the 
ground, 50-year mean 
recurrence interval. (From 

Minimum Design Loads for 

Buildings and Other Structures, 

ANSI A58.l-1972, American 

National Standards Institute, 

New York, NY, 1972.) 

Factors include basic wind speed, exposure (urban vs. open terrain, for example), height 
of the structure, the importance of the structure (i.e., consequences of failure), and gust 
effect factors to account for the fluctuating nature of the wind and its interaction with 
the structure. 

Seismic forces may be found for a particular structure by elastic or inelastic 
dynamic analysis, considering expected ground accelerations and the mass, stiffness, 
and damping characteristics of the construction. However, often the design is based on 
equivalent static forces calculated from provisions such as those of Refs. 1.1 and 1.5. 
The base shear is found by considering such factors as location, type of structure and 
its occupancy, total dead load, and the particular soil condition. The total lateral force 
is distributed to floors over the entire height of the structure in such a way as to approx
imate the distribution of forces obtained from a dynamic analysis. 

1.4 SERVICEABILITY, STRENGTH, AND STRUCTURAL SAFETY 

To serve its purpose, a structure must be safe against collapse and serviceable in use. 
Serviceability requires that deflections be adequately small; that cracks, if any, be kept 
to tolerable limits; that vibrations be minimized; etc. Safety requires that the strength 
of the structure be adequate for all loads that may foreseeably act on it. If the strength 
of a structure, built as designed, could be predicted accurately, and if the loads and 
their internal effects (moments, shears, axial forces) were known accurately, safety 
could be ensured by providing a carrying capacity just barely in excess of the known 
loads. However, there are a number of sources of uncertainty in the analysis, design, 
and construction of reinforced concrete structures. These sources of uncertainty, 
which require a definite margin of safety, may be listed as follows: 

1. Actual loads may differ from those assumed. 
2. Actual loads may be distributed in a manner different from that assumed. 
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3. The assumptions and simplifications inherent in any analysis may result in 
calculated load effects-moments, shears, etc.-different from those that, in fact, 
act in the structure. 

4. The actual structural behavior may differ from that assumed, owing to imperfect 
knowledge. 

5. Actual member dimensions may differ from those specified. 
6. Reinforcement may not be in its proper position. 
7. Actual material strength may be different from that specified. 

In addition, in the establishment of a safety specification, consideration must be 
given to the consequences of failure. In some cases, a failure would be merely an 
inconvenience. In other cases, loss of life and significant loss of property may be 
involved. A further consideration should be the nature of the failure, should it occur. 
A gradual failure with ample warning permitting remedial measures is preferable to a 
sudden, unexpected collapse. 

It is evident that the selection of an appropriate margin of safety is not a simple 
matter. However, progress has been made toward rational safety provisions in design 
codes (Refs. 1.6 to 1.11). 

a. Variability of Loads 

Since the maximum load that will occur during the life of a structure is uncertain, it 
can be considered a random variable. In spite of this uncertainty, the engineer must 
provide an adequate structure. A probability model for the maximum load can be 
devised by means of a probability density function for loads, as represented by the fre
quency curve of Fig. 1.14a. The exact form of this distribution curve, for any particular 
type of loading such as office loads, can be determined only on the basis of statistical 
data obtained from large-scale load surveys. A number of such surveys have been com
pleted. For types of loads for which such data are scarce, fairly reliable information 
can be obtained from experience, observation, and judgment. 

In such a frequency curve (Fig. 1.14a ), the area under the curve between two 
abscissas, such as loads Q1 and Q2, represents the probability of occurrence of loads 
Q of magnitude Q1 < Q < Q2. A specified service load Qd for design is selected con
servatively in the upper region of Q in the distribution curve, as shown. The probabil
ity of occurrence of loads larger than Qd is then given by the shaded area to the right 
of Qd. It is seen that this specified service load is considerably larger than the mean 
load Q acting on the structure. This mean load is much more typical of average load 
conditions than the design load Qd. 

b. Strength 

The strength of a structure depends on the strength of the materials from which it is 
made. For this purpose, minimum material strengths are specified in standardized 
ways. Actual material strengths cannot be known precisely and therefore also consti
tute random variables (see Section 2.6). Structural strength depends, furthermore, on 
the care with which a structure is built, which in turn reflects the quality of supervi
sion and inspection. Member sizes may differ from specified dimensions, reinforce
ment may be out of position, poorly placed concrete may show voids, etc. 

Strength of the entire structure or of a population of repetitive structures, e.g., 
highway overpasses, can also be considered a random variable with a probability den
sity function of the type shown in Fig. 1.14b. As in the case of loads, the exact form 
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FIGURE 1.14 
Frequency curves for 
(a) loads Q, (b) strengths S, 
and (c) safety margin M. 

~ ..... 

0 

0 

Sd Sn S 
(b) Strength S 

(c) Safety margin M = S - Q 

of this function cannot be known but can be approximated from known data, such as 
statistics of actual, measured materials and member strengths and similar information. 
Considerable information of this type has been, or is being, developed and used. 

c. Structural Safety 

A given structure has a safety margin M if 

M=S-Q>O (1.1) 

i.e., if the strength of the structure is larger than the load acting on it. Since Sand Q 
are random variables, the safety margin M = S - Q is also a random variable. A plot 
of the probability function of M may appear as in Fig. 1.14c. Failure occurs when M 
is less than zero. Thus, the probability of failure is represented by the shaded area in 
the figure. 

Even though the precise form of the probability density functions for S and Q, 
and therefore for M, is not known, much can be achieved in the way of a rational 
approach to structural safety. One such approach is to require that the mean safety 
margin M be a specified number f3 of standard deviations <rm above zero. It can be 
demonstrated that this results in the requirement that 

(1.2) 

~here if, s is a partial safety coefficient smaller than one applied to the mean streng_!!l 
S and if, L is a partial safety coefficient larger than one applied to the mean load Q. 
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The magnitude of each partial safety coefficient depends on the variance of the 
quantity to which it applies, S or Q, and on the chosen value of {3, the reliability 
index of the structure. As a general guide, a value of the safety index {3 between 3 
and 4 corresponds to a probability of failure of the order of 1: 100,000 (Ref. 1.8). 
The value of {3 is often established by calibration against well-proved and estab
lished designs. 

In practice, it is more convenient to introduce partial safety coefficients with 
respect to code-specified loads which, as already noted, considerably exceed average 
values, rather than with respect to mean loads as in Eq. (1.2); similarly, the partial 
safety coefficient for strength is applied to nominal strength generally computed 
somewhat conservatively, rather than to mean strengths as in Eq. (1.2). A restatement 
of the safety requirement in these terms is 

(1.3a) 

in which <p is a strength reduction factor applied to nominal strength Sn and y is a load 
factor applied to calculated or code-specified design loads Qd. Furthermore, recogniz
ing the differences in variability between, say, dead loads D and live loads L, it is both 
reasonable and easy to introduce different load factors for different types of loads. The 
preceding equation can thus be written 

(1.3b) 

in which yd is a load factor somewhat greater than 1.0 applied to the calculated dead 
load D and y 1 is a larger load factor applied to the code-specified live load L. When 
additional loads, such as the wind load W, are to be considered, the reduced probabil
ity that maximum dead, live, and wind or other loads will act simultaneously can be 
incorporated by using modified load factors such that 

</)Sn;:::: 'Yd.D + Y1.L + 'Yw,w + . . . (1.3c) 
l l l 

Present U.S. design specifications follow the format of Eqs. (1.3b) and (1.3c). 

1.5 DESIGN BASIS 

The single most important characteristic of any structural member is its actual strength, 
which must be large enough to resist, with some margin to spare, all foreseeable loads 
that may act on it during the life of the structure, without failure or other distress. It is 
logical, therefore, to proportion members, i.e., to select concrete dimensions and rein
forcement, so that member strengths are adequate to resist forces resulting from certain 
hypothetical overload stages, significantly above loads expected actually to occur in 
service. This design concept is known as strength design. 

For reinforced concrete structures at loads close to and at failure, one or both of 
the materials, concrete and steel, are invariably in their nonlinear inelastic range. That 
is, concrete in a structural member reaches its maximum strength and subsequent frac
ture at stresses and strains far beyond the initial elastic range in which stresses and 
strains are fairly proportional. Similarly, steel close to and at failure of the member is 
usually stressed beyond its elastic domain into and even beyond the yield region. 
Consequently, the nominal strength of a member must be calculated on the basis of 
this inelastic behavior of the materials. 

A member designed by the strength method must also perform in a satisfactory 
way under normal service loading. For example, beam deflections must be limited to 
acceptable values, and the number and width of flexural cracks at service loads must 
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be controlled. Serviceability limit conditions are an important part of the total design, 
although attention is focused initially on strength. 

Historically, members were proportioned so that stresses in the steel and con
crete resulting from normal service loads were within specified limits. These limits, 
known as allowable stresses, were only fractions of the failure stresses of the materi
als. For members proportioned on such a service load basis, the margin of safety was 
provided by stipulating allowable stresses under service loads that were appropriately 
small fractions of the compressive concrete strength and the steel yield stress. We now 
refer to this basis for design as service load design. Allowable stresses, in practice, 
were set at about one-half the concrete compressive strength and one-half the yield 
stress of the steel. 

Because of the difference in realism and reliability, the strength design method 
has displaced the older service load design method. However, the older method pro
vides the basis for some serviceability checks and is the design basis for many older 
structures. Throughout this text, strength design is presented almost exclusively. 

1.6 DESIGN CODES AND SPECIFICATIONS 

The design of concrete structures such as those of Figs. 1.1 to 1.12 is generally done 
within the framework of codes giving specific requirements for materials, structural 
analysis, member proportioning, etc. The International Building Code (Ref. 1.2) is an 
example of a consensus code governing structural design and is often adopted by local 
municipalities. The responsibility of preparing material-specific portions of the codes 
rests with various professional groups, trade associations, and technical institutes. In 
contrast with many other industrialized nations, the United States does not have an 
official, government-sanctioned, national code. 

The American Concrete Institute (ACI) has long been a leader in such efforts. 
As one part of its activity, the American Concrete Institute has published the widely 
recognized Building Code Requirements for Structural Concrete and Commentary 
(Ref. 1.12), which serves as a guide in the design and construction of reinforced con
crete buildings. The ACI Code has no official status in itself. However, it is generally 
regarded as an authoritative statement of current good practice in the field of rein
forced concrete. As a result, it has been incorporated into the International Building 
Code and similar codes, which in turn are adopted by law into municipal and regional 
building codes that do have legal status. Its provisions thereby attain, in effect, legal 
standing. Most reinforced concrete buildings and related construction in the United 
States are designed in accordance with the current ACI Code. It has also served as a 
model document for many other countries. The commentary incorporated in Ref. 1.12 
provides background material and rationale for the Code provisions. The American 
Concrete Institute also publishes important journals and standards, as well as recom
mendations for the analysis and design of special types of concrete structures such as 
the tanks shown in Fig. 1.11. 

Most highway bridges in the United States are designed according to the require
ments of the AASHTO bridge specifications (Ref. 1.3) which not only contain the 
provisions relating to loads and load distributions mentioned earlier, but also include 
detailed provisions for the design and construction of concrete bridges. Many of the 
provisions follow ACI Code provisions closely, although a number of significant dif
ferences will be found. 

The design of railway bridges is done according to the specifications of the 
AREMA Manual of Railway Engineering (Ref. 1.4 ). It, too, is patterned after the ACI 
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Code in most respects, but it contains much additional material pertaining to railway 
structures of all types. 

No code or design specification can be construed as a substitute for sound engi
neering judgment in the design of concrete structures. In structural practice, special 
circumstances are frequently encountered where code provisions can serve only as a 
guide, and the engineer must rely upon a firm understanding of the basic principles of 
structural mechanics applied to reinforced or prestressed concrete, and an intimate 
knowledge of the nature of the materials. 

1.7 SAFETY PROVISIONS OF THE ACI CODE 

The safety provisions of the ACI Code are given in the form of Eqs. (1.3b) and (1.3c) 
using strength reduction factors and load factors. These factors are based to some extent 
on statistical information but to a larger degree on experience, engineering judgment, 
and compromise. In words, the design strength <f>Sn of a structure or member must be 
at least equal to the required strength U calculated from the factored loads, i.e., 

Design strength 2: required strength 

or 

(1.4) 

The nominal strength Sn is computed (usually somewhat conservatively) by accepted 
methods. The required strength U is calculated by applying appropriate load factors to 
the respective service loads: dead load D, live load L, wind load W, earthquake load 
E, earth pressure H, fluid pressure F, snow load S, rain load R, and environmental 
effects T that may include settlement, creep, shrinkage, and temperature change. 
Loads are defined in a general sense, to include either loads or the related internal 
effects such as moments, shears, and thrusts. Thus, in specific terms for a member sub
jected, say, to moment, shear, and axial load 

</>Mn 2: Mu 

<f>Vn 2= Vu 

<f>Pn 2: Pu 

(I.Sa) 

(I.Sb) 

(I.Sc) 

where the subscripts n denote the nominal strengths in flexure, shear, and axial load, 
respectively, and the subscripts u denote the factored load moment, shear, and axial 
load. In computing the factored load effects on the right, load factors may be applied 
either to the service loads themselves or to the internal load effects calculated from the 
service loads. 

The load factors specified in the ACI Code, to be applied to calculated dead loads 
and those live and environmental loads specified in the appropriate codes or standards, 
are summarized in Table 1.2. These are consistent with the concepts introduced in 
Section 1.4 and with SEI/ASCE 7, Minimum Design Loads for Buildings and Other 
Structures (Ref. 1.1 ), and allow design of composite structures using combinations of 
structural steel and reinforced concrete. For individual loads, lower factors are used for 
loads known with greater certainty, e.g., dead load, compared with loads of greater vari
ability, e.g., live loads. Further, for load combinations such as dead plus live loads plus 
wind forces, reductions are applied to one load or the other that reflect the improbabil
ity that an excessively large live load coincides with an unusually high windstorm. The 
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TABLE 1.2 
Factored load combinations for determining required strength 
U in the ACI Code 

Conditiona 

Basich 

Dead plus fluidb 
Snow, rain, temperature, 

and wind 

Earthquake 

Factored Load or Load Effect U 

U = l.2D + l.6L 
U = l.4(D + F) 

U = l.2(D + F + T) + l.6(L + H) + 0.5(L, or S or R) 

U = l.2D + l.6(L, or Sor R) + (l.OL or 0.8W) 

U = l.2D + l.6W + l.OL + 0.5 (L, or Sor R) 
U = 0.9D + l.6W + l.6H 
U = l.2D + l.OE + l.OL + 0.2S 
U = 0.9D + l.OE + l.6H 

" Where the following represent the loads or related internal moments or forces resulting from the listed 
factors: D = dead load; E = earthquake; F = fluids; H = weight or pressure from soil; L = live load; 
L, = roof live load; R = rain; S = snow; T = cumulative effects of temperature, creep, shrinkage, and 
differential settlement; W = wind. 

b The ACI Code includes For H loads in the load combinations. The "basic" load condition of 1.2D + I .6L 
reflects the fact that most buildings have neither F nor H loads present and that I .4D rarely governs design. 

factors also reflect, in a general way, uncertainties with which internal load effects are 
calculated from external loads in systems as complex as highly indeterminate, inelastic 
reinforced concrete structures which, in addition, consist of variable-section members 
(because of tension cracking, discontinuous reinforcement, etc.). Finally, the load fac
tors also distinguish between two situations, particularly when horizontal forces are 
present in addition to gravity, i.e., the situation where the effects of all simultaneous 
loads are additive, as distinct from that in which various load effects counteract one 
another. For example, in a retaining wall the soil pressure produces an overturning 
moment, and the gravity forces produce a counteracting stabilizing moment. 

In all cases in Table 1.2, the controlling equation is the one that gives the largest 
factored load effect U. 

The strength reduction factors </> in the ACI Code are given different values 
depending on the state of knowledge, i.e., the accuracy with which various strengths 
can be calculated. Thus, the value for bending is higher than that for shear or bearing. 
Also, </> values reflect the probable importance, for the survival of the structure, of the 
particular member and of the probable quality control achievable. For both these rea
sons, a lower value is used for columns than for beams. Table 1.3 gives the </> values 
specified in the ACI Code. 

The joint application of strength reduction factors (Table 1.3) and load factors 
(Table 1.2) is aimed at producing approximate probabilities of understrength of the 
order of 1/100 and of overloads of 1/1000. This results in a probability of structural 
failure of the order of 1/100,000. 

In addition to the values given in Table 1.3, ACI Code Appendix B, "Alternative 
Provisions for Reinforced and Prestressed Concrete Flexural and Compression 
Members," allows the use of load factors and strength reduction factors from previous 
editions of the ACI Code. The load factors and strength reduction factors of ACI Code 
Appendix B are calibrated in conjunction with the detailed requirements of that appen
dix. Consequently, they may not be interchanged with the provisions of the main body 
of the Code. 



TABLE 1.3 
Strength reduction factors in the ACI Code 

Strength Condition 

Tension-controlled sectionsa 
Compression-controlled sectionsb 

Members with spiral reinforcement 
Other reinforced members 

Shear and torsion 
Bearing on concrete 
Post-tensioned anchorage zones 
Strut-and-tie modelsc 
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Strength Reduction 
Factor cf, 

0.90 

0.75 
0.65 
0.75 
0.65 
0.85 
0.75 

a Chapter 19 discusses reductions in cp for pretensioned members where strand embedment is less than the 
development length. 

b Chapter 3 contains a discussion of the linear variation of cp between tension and compression-controlled 
sections. Chapter 8 discusses the conditions that allow an increase in cp for spirally reinforced columns. 

c Strut-and-tie models are described in Chapter 10. 

1.8 FUNDAMENTAL ASSUMPTIONS FOR REINFORCED 
CONCRETE BEHAVIOR 

The chief task of the structural engineer is the design of structures. Design is the deter
mination of the general shape and all specific dimensions of a particular structure so 
that it will perform the function for which it is created and will safely withstand the 
influences that will act on it throughout its useful life. These influences are primarily 
the loads and other forces to which it will be subjected, as well as other detrimental 
agents, such as temperature fluctuations, foundation settlements, and corrosive influ
ences. Structural mechanics is one of the main tools in this process of design. As here 
understood, it is the body of knowledge that permits one to predict with a good degree 
of certainty how a structure of given shape and dimensions will behave when acted 
upon by known forces or other mechanical influences. The chief items of behavior that 
are of practical interest are (1) the strength of the structure, i.e., that magnitude of 
loads of a given distribution which will cause the structure to fail, and (2) the defor
mations, such as deflections and extent of cracking, that the structure will undergo 
when loaded under service conditions. 

The fundamental propositions on which the mechanics of reinforced concrete is 
based are as follows: 

1. The internal forces, such as bending moments, shear forces, and normal and shear 
stresses, at any section of a member are in equilibrium with the effects of the 
external loads at that section. This proposition is not an assumption but a fact, 
because any body or any portion thereof can be at rest only if all forces acting on 
it are in equilibrium. 

2. The strain in an embedded reinforcing bar (unit extension or compression) is the 
same as that of the surrounding concrete. Expressed differently, it is assumed that 
perfect bonding exists between concrete and steel at the interface, so that no slip 
can occur between the two materials. Hence, as the one deforms, so must the other. 
With modern deformed bars (see Section 2.14), a high degree of mechanical 
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interlocking is provided in addition to the natural surface adhesion, so this 
assumption is very close to correct. 

3. Cross sections that were plane prior to loading continue to be plane in the 
member under load. Accurate measurements have shown that when a reinforced 
concrete member is loaded close to failure, this assumption is not absolutely 
accurate. However, the deviations are usually minor, and the results of theory 
based on this assumption check well with extensive test information. 

4. In view of the fact that the tensile strength of concrete is only a small fraction of 
its compressive strength (see Section 2.9), the concrete in that part of a member 
which is in tension is usually cracked. While these cracks, in well-designed 
members, are generally so narrow as to be hardly visible (they are known as 
hairline cracks), they evidently render the cracked concrete incapable of resisting 
tension stress. Correspondingly, it is assumed that concrete is not capable of 
resisting any tension stress whatever. This assumption is evidently a simplifica
tion of the actual situation because, in fact, concrete prior to cracking, as well as 
the concrete located between cracks, does resist tension stresses of small magni
tude. Later in discussions of the resistance of reinforced concrete beams to shear, 
it will become apparent that under certain conditions this particular assumption is 
dispensed with and advantage is taken of the modest tensile strength that concrete 
can develop. 

5. The theory is based on the actual stress-strain relationships and strength proper
ties of the two constituent materials (see Sections 2.8 and 2.14) or some reason
able equivalent simplifications thereof. The fact that nonelastic behavior is 
reflected in modern theory, that concrete is assumed to be ineffective in tension, 
and that the joint action of the two materials is taken into consideration results in 
analytical methods which are considerably more complex, and also more chal
lenging, than those that are adequate for members made of a single, substantially 
elastic material. 

These five assumptions permit one to predict by calculation the performance of 
reinforced concrete members only for some simple situations. Actually, the joint 
action of two materials as dissimilar and complicated as concrete and steel is so com
plex that it has not yet lent itself to purely analytical treatment. For this reason, meth
ods of design and analysis, while using these assumptions, are very largely based on 
the results of extensive and continuing experimental research. They are modified and 
improved as additional test evidence becomes available. 

1.9 BEHAVIOR OF MEMBERS SUBJECT TO AXIAL LOADS 

Many of the fundamentals of the behavior of reinforced concrete, through the full range 
of loading from zero to ultimate, can be illustrated clearly in the context of members 
subject to simple axial compression or tension. The basic concepts illustrated here will 
be recognized in later chapters in the analysis and design of beams, slabs, eccentrically 
loaded columns, and other members subject to more complex loadings. 

a. Axial Compression 

In members that sustain chiefly or exclusively axial compression loads, such as build
ing columns, it is economical to make the concrete carry most of the load. Still, some 
steel reinforcement is always provided for various reasons. For one, very few members 



FIGURE 1.15 
Reinforced concrete 
columns. 
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are truly axially loaded; steel is essential for resisting any bending that may exist. For 
another, if part of the total load is carried by steel with its much greater strength, the 
cross-sectional dimensions of the member can be reduced-the more so, the larger the 
amount of reinforcement. 

The two chief forms of reinforced concrete columns are shown in Fig. 1.15. 
In the square column, the four longitudinal bars serve as main reinforcement. They 
are held in place by transverse small-diameter steel ties that prevent displacement 
of the main bars during construction operations and counteract any tendency of the 
compression-loaded bars to buckle out of the concrete by bursting the thin outer 
cover. On the left is shown a round column with eight main reinforcing bars. These 
are surrounded by a closely spaced spiral that serves the same purpose as the 
more widely spaced ties but also acts to confine the concrete within it, thereby 
increasing its resistance to axial compression. The discussion that follows applies 
to tied columns. 

When axial load is applied, the compression strain is the same over the entire 
cross section and, in view of the bonding between concrete and steel, is the same in 
the two materials (see propositions 2 and 3 in Section 1.8). To illustrate the action of 
such a member as load is applied, Fig. 1.16 shows two typical stress-strain curves, one 
for a concrete with compressive strengthJ; = 4000 psi and the other for a steel with 
yield stress Jy = 60,000 psi. The curves for the two materials are drawn on the same 
graph using different vertical stress scales. Curve b has the shape that would be 
obtained in a concrete cylinder test. The rate of loading in most structures is consider
ably slower than that in a cylinder test, and this affects the shape of the curve. Curve c, 
therefore, is drawn as being characteristic of the performance of concrete under slow 
loading. Under these conditions, tests have shown that the maximum reliable com
pressive strength of reinforced concrete is about 0.85J:, as shown. 

Longitudinal bars 
and spiral reinforcement 

□ 
Longitudinal bars 
and lateral ties 
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FIGURE 1.16 
Concrete and steel stress-
strain curves. 

60 

50 

40 

'iii 'iii 
::it!. 30 ::it!. 

..,E, ...§ 

20 

10 

0 

6 

5 

di 
I 

I 
4 I 

I 
I 

I 
I 

I 
3 I 

I. 

2 

b 

a Steel 
b Concrete, fast loading 
c Concrete, slow loading 
d Elastic concrete 

0L---'----'----'----'------''-----' 
0 0.001 0.002 0.003 

ELASTIC BEHAVIOR At low stresses, up to aboutJ;/2, the concrete is seen to behave 
nearly elastically, i.e., stresses and strains are quite closely proportional; the straight 
line d represents this range of behavior with little error for both rates of loading. For 
the given concrete, the range extends to a strain of about 0.0005. The steel, on the 
other hand, is seen to be elastic nearly to its yield point of 60 ksi, or to the much 
greater strain of about 0.002. 

Because the compression strain in the concrete, at any given load, is equal to the 
compression strain in the steel, 

le J. 
€ =-=€, =-
c Ee s Es 

from which the relation between the steel stress fs and the concrete stress fc is obtained as 

E. t. = E 1c = nfc 
C 

where n = E/Ec is known as the modular ratio. 

Let 

(1.6) 

Ac = net area of concrete, i.e., gross area minus area occupied by reinforcing bars 
Ag = gross area 
A.1 = total area of reinforcing bars 
P = axial load 

Then 



FIGURE 1.17 
Transformed section in axial 
compression. 

Actual section 

(a) 

or 

Transformed section 
At= Ac+ nAst 

(b) 

= 
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Transformed section 
At= Ag+ (n-1)Ast 

(c) 

(1.7) 

The term Ac + nAst can be interpreted as the area of a fictitious concrete cross 
section, the transformed area, which when subjected to the particular concrete stress 
fc results in the same axial load P as the actual section composed of both steel and con
crete. This transformed concrete area is seen to consist of the actual concrete area plus 
n times the area of the reinforcement. It can be visualized as shown in Fig. 1.17. That 
is, in Fig. 1.17 b the three bars along each of the two faces are thought of as being 
removed and replaced, at the same distance from the axis of the section, with added 
areas of fictitious concrete of total amount nAsr· Alternatively, as shown in Fig. 1.17 c, 
one can think of the area of the steel bars as replaced with concrete, in which case one 
has to add to the gross concrete area Ag so obtained only (n - l)Asr to obtain the same 
total transformed area. Therefore, alternatively, 

(1.8) 

If load and cross-sectional dimensions are known, the concrete stress can be 
found by solving Eq. (1.7) or (1.8) for fc, and the steel stress can be calculated from 
Eq. (1.6). These relations hold in the range in which the concrete behaves nearly 
elastically, i.e., up to about 50 to 60 percent of J;. For reasons of safety and servicea
bility, concrete stresses in structures under normal conditions are kept within this 
range. Therefore, these relations permit one to calculate service load stresses. 

EXAMPLE 1.1 A column made of the materials defined in Fig. 1.16 has a cross section of 16 X 20 in. and is 
reinforced by six No. 9 (No. 29) bars, disposed as shown in Fig. 1.17. (See Tables A.1 and A.2 
of Appendix A for bar diameters and areas and Section 2.14 for a description of bar size des
ignations.) Determine the axial load that will stress the concrete to 1200 psi. The modular ratio 
n may be assumed equal to 8. (In view of the scatter inherent in Ee, it is customary and satis
factory to round off the value of n to the nearest integer.) 

SOLUTION. One finds Ag = 16 X 20 = 320 in2, and from Appendix A, Table A.2, two No. 9 
(No. 29) bars provide steel area Ast = 6.00 in2 or 1.88 percent of the gross area. The load 
on the column, from Eq. (1.8), is P = 1200[320 + (8 - 1)6.00] = 434,000 lb. Of this total 
load, the concrete is seen to carry Pc = fcAc = f/Ag - Ast) = 1200(320 - 6) = 377,000 lb, 
and the steel Ps = f,A., 1 = (nfc)Ast = 9600 X 6 = 57,600 lb, which is 13.3 percent of the total 
axial load. 
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INELASTIC RANGE Inspection of Fig. 1.16 shows that the elastic relationships that 
have been used so far cannot be applied beyond a strain of about 0.0005 for the given 
concrete. To obtain information on the behavior of the member at larger strains and, 
correspondingly, at larger loads, it is therefore necessary to make direct use of the 
information in Fig. 1.16. 

EXAMPLE 1.2 One may want to calculate the magnitude of the axial load that will produce a strain or unit 
shortening Ee = Es = 0.0010 in the column of Example I.I. At this strain the steel is seen to be 
still elastic, so that the steel stress/,= E/is = 0.001 X 29,000,000 = 29,000 psi. The concrete 
is in the inelastic range, so that its stress cannot be directly calculated, but it can be read from 
the stress-strain curve for the given value of strain. 

1. If the member has been loaded at a fast rate, curve b holds at the instant when the entire 
load is applied. The stress for E = 0.001 can be read asfc = 3200 psi. Consequently, 
the total load can be obtained from 

P = fcAc + /,Ast (1.9) 

which applies in the inelastic as well as in the elastic range. Hence, P = 3200(320 - 6) 
+ 29,000 X 6 = 1,005,000 + 174,000 = 1,179,000 lb. Of this total load, the steel is 
seen to carry 174,000 lb, or 14.7 percent. 

2. For slowly applied or sustained loading, curve c represents the behavior of the concrete. 
Its stress at a strain of 0.001 can be read as fc = 2400 psi. Then P = 2400 X 314 + 
29,000 X 6 = 754,000 + 174,000 = 928,000 lb. Of this total load, the steel is seen to 
carry 18.8 percent. 

Comparison of the results for fast and slow loading shows the following. Owing 
to creep of concrete, a given shortening of the column is produced by a smaller load 
when slowly applied or sustained over some length of time than when quickly applied. 
More important, the farther the stress is beyond the proportional limit of the concrete, 
and the more slowly the load is applied or the longer it is sustained, the smaller the share 
of the total load carried by the concrete and the larger the share carried by the steel. In 
the sample column, the steel was seen to carry 13.3 percent of the load in the elastic 
range, 14.7 percent for a strain of 0.001 under fast loading, and 18.8 percent at the 
same strain under slow or sustained loading. 

STRENGTH The one quantity of chief interest to the structural designer is strength, 
i.e., the maximum load that the structure or member will carry. Information on stresses, 
strains, and similar quantities serves chiefly as a tool for determining carrying capac
ity. The performance of the column discussed so far indicates two things: (1) in the 
range of large stresses and strains that precede attainment of the maximum load and 
subsequent failure, elastic relationships cannot be used; (2) the member behaves dif
ferently under fast and under slow or sustained loading and shows less resistance to the 
latter than to the former. In usual construction, many types of loads, such as the weight 
of the structure and any permanent equipment housed therein, are sustained, and others 
are applied at slow rates. For this reason, to calculate a reliable magnitude of compres
sive strength, curve c of Fig. 1.16 must be used as far as the concrete is concerned. 

The steel reaches its tensile strength (peak of the curve) at strains on the order 
of 0.08 (see Fig. 2.15). Concrete, on the other hand, fails by crushing at the much 
smaller strain of about 0.003 and, as seen from Fig. 1.16 (curve c), reaches its maxi
mum stress in the strain range of 0.002 to 0.003. Because the strains in steel and con
crete are equal in axial compression, the load at which the steel begins to yield can be 
calculated from the information in Fig. 1.16. 
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If the small knee prior to yielding of the steel is disregarded, i.e., if the steel is 
assumed to be sharp-yielding, the strain at which it yields is 

h 
E=-

y Es 
(1.10) 

or 

'= = 
60

•
000 

- 0 00207 
Y 29,000,000 - . 

At this strain, curve c of Fig. 1.16 indicates a stress of 3200 psi in the concrete; there
fore, by Eq. (1.9), the load in the member when the steel starts yielding is PY= 3200 x 
314 + 60,000 x 6 = 1,365,000 lb. At this load the concrete has not yet reached its full 
strength, which, as mentioned before, can be assumed as 0.85.fc' = 3400 psi for slow or 
sustained loading, and therefore the load on the member can be further increased. During 
this stage of loading, the steel keeps yielding at constant stress. Finally, the nominal 
capacityt of the member is reached when the concrete crushes while the steel yields, i.e., 

Pn = 0.85f~Ac + JyAst (1.11) 

Numerous careful tests have shown the reliability of Eq. (1. 11) in predicting the ulti
mate strength of a concentrically loaded reinforced concrete column, provided its slen
derness ratio is small so that buckling will not reduce its strength. 

For the particular numerical example, Pn = 3400 x 314 + 60,000 x 6 = 
1,068,000 + 360,000 = 1,428,000 lb. At this stage the steel carries 25.2 percent of the load. 

SUMMARY In the elastic range, the steel carries a relatively small portion of the total 
load of an axially compressed member. As member strength is approached, there occurs a 
redistribution of the relative shares of the load resisted by concrete and steel, the latter tak
ing an increasing amount. The nominal capacity, at which the member is on the point of 
failure, consists of the contribution of the steel when it is stressed to the yield point plus 
that of the concrete when its stress has attained a value of 0.85J;, as reflected in Eq. (1.11 ). 

b. Axial Tension 

The tension strength of concrete is only a small fraction of its compressive strength. It 
follows that reinforced concrete is not well suited for use in tension members because 
the concrete will contribute little, if anything, to their strength. Still, there are situations 
in which reinforced concrete is stressed in tension, chiefly in tie-rods in structures such 
as arches. Such members consist of one or more bars embedded in concrete in a sym
metric arrangement similar to compression members (see Figs. 1. 15 and 1.17). 

When the tension force in the member is small enough for the stress in the concrete 
to be considerably below its tensile strength, both steel and concrete behave elastically. 
In this situation, all the expressions derived for elastic behavior in compression in 
Section 1.9a are identically valid for tension. In particular, Eq. (1.7) becomes 

p = fclAc + nAst) 

where fer is the tensile stress in the concrete. 

(1.12) 

t Throughout this book quantities that refer to the strength of members, calculated by accepted analysis methods, are furnished with the subscript n, 
which stands for "nominal." This notation is in agreement with the ACI Code. It is intended to convey that the actual strength of any member is 
bound to deviate to some extent from its calculated, nominal value because of inevitable variations of dimensions, materials properties, and other 
parameters. Design in all cases is based on this nominal strength, which represents the best available estimate of the actual member strength. 
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However, when the load is further increased, the concrete reaches its tensile 
strength at a stress and strain on the order of one-tenth of what it could sustain in com
pression. At this stage, the concrete cracks across the entire cross section. When this 
happens, it ceases to resist any part of the applied tension force, since, evidently, no 
force can be transmitted across the air gap in the crack. At any load larger than that 
which caused the concrete to crack, the steel is called upon to resist the entire tension 
force. Correspondingly, at this stage, 

P = f,Ast (1.13) 

With further increased load, the tensile stress fs in the steel reaches the yield 
pointJ;,. When this occurs, the tension members cease to exhibit small, elastic defor
mations but instead stretch a sizable and permanent amount at substantially constant 
load. This does not impair the strength of the member. Its elongation, however, 
becomes so large (on the order of 1 percent or more of its length) as to render it use
less. Therefore, the maximum useful strength Pm of a tension member is the force that 
will just cause the steel stress to reach the yield point. That is, 

(1.14) 

To provide adequate safety, the force permitted in a tension member under normal 
service loads should be limited to about ½Pm· Because the concrete has cracked at loads 
considerably smaller than this, concrete does not contribute to the carrying capacity of 
the member in service. It does serve, however, as fire and corrosion protection and 
often improves the appearance of the structure. 

There are situations, though, in which reinforced concrete is used in axial tension 
under conditions in which the occurrence of tension cracks must be prevented. A case 
in point is a circular tank (see Fig. 1.11). To provide watertightness, the hoop tension 
caused by the fluid pressure must be prevented from causing the concrete to crack. In 
this case, Eq. (1.12) can be used to determine a safe value for the axial tension force P 
by using, for the concrete tension stress fct• an appropriate fraction of the tensile 
strength of the concrete, i.e., of the stress that would cause the concrete to crack. 
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PROBLEMS 
1.1. A 16 X 20 in. column is made of the same concrete and reinforced with the 

same six No. 9 (No. 29) bars as the column in Examples 1.1 and 1.2, except 
that a steel with yield strength/y = 40 ksi is used. The stress-strain diagram of 
this reinforcing steel is shown in Fig. 2.15 for Jy = 40 ksi. For this column 
determine (a) the axial load that will stress the concrete to 1200 psi; (b) the 
load at which the steel starts yielding; (c) the maximum load; and (d) the share 
of the total load carried by the reinforcement at these three stages of loading. 
Compare results with those calculated in the examples for Jy = 60 ksi, keeping 
in mind, in regard to relative economy, that the price per pound for reinforcing 
steels with 40 and 60 ksi yield points is about the same. 

1.2. The area of steel, expressed as a percentage of gross concrete area, for the col
umn of Problem 1.1 is lower than would often be used in practice. Recalculate 
the comparisons of Problem 1.1, using/y of 40 ksi and 60 ksi as before, but for 
a 16 X 20 in. column reinforced with eight No. 11 (No. 36) bars. Compare 
your results with those of Problem 1.1. 

1.3. A square concrete column with dimensions 22 X 22 in. is reinforced with a 
total of eight No. 10 (No. 32) bars arranged uniformly around the column 
perimeter. Material strengths are Jy = 60 ksi and J; = 4000 psi, with stress
strain curves as given by curves a and c of Fig. 1.16. Calculate the percentages 
of total load carried by the concrete and by the steel as load is gradually 
increased from 0 to failure, which is assumed to occur when the concrete strain 
reaches a limit value of 0.0030. Determine the loads at strain increments of 
0.0005 up to the failure strain, and graph your results, plotting load percentages 
vs. strain. The modular ratio may be assumed at n = 8 for these materials. 

1.4. A 20 X 24 in. column is made of the same concrete as used in Examples 1.1 
and 1.2. It is reinforced with six No. 11 (No. 36) bars with/y = 60 ksi. For this 
column section, determine (a) the axial load that the section will carry at a 
concrete stress of 1400 psi; (b) the load on the section when the steel begins to 
yield; (c) the maximum load if the section is loaded slowly; and (d) the maxi
mum load if the section is loaded rapidly. The area of one No. 11 (No. 36) bar 
is 1.56 in2• Determine the percent of the load carried by the steel and the 
concrete for each combination. 

1.5. A 24 in. diameter column is made of the same concrete as used in Examples 
1.1 and 1.2. The area of reinforcement equals 2.1 percent of the gross cross 
section (that is, As = 0.021Ag) and/y = 60 ksi. For this column section, deter
mine (a) the axial load the section will carry at a concrete stress of 1200 psi; 
(b) the load on the section when the steel begins to yield; (c) the maximum 
load if the section is loaded slowly; (d) the maximum load if the section is 
loaded rapidly; and (e) the maximum load if the reinforcement in the column 
is raised to 6.5 percent of the gross cross section and the column is loaded 
slowly. Comment on your answer, especially the percent of the load carried by 
the steel and the concrete for each combination. 



Materials 

2.1 INTRODUCTION 

The structures and component members treated in this text are composed of concrete 
reinforced with steel bars, and in some cases prestressed with steel wire, strand, or 
alloy bars. An understanding of the materials characteristics and behavior under load 
is fundamental to understanding the performance of structural concrete, and to safe, 
economical, and serviceable design of concrete structures. Although prior exposure to 
the fundamentals of material behavior is assumed, a brief review is presented in this 
chapter, as well as a description of the types of bar reinforcement and prestressing 
steels in common use. Numerous references are given as a guide for those seeking 
more information on any of the topics discussed. 

2.2 CEMENT 

A cementitious material is one that has the adhesive and cohesive properties necessary 
to bond inert aggregates into a solid mass of adequate strength and durability. This 
technologically important category of materials includes not only cements proper but 
also limes, asphalts, and tars as they are used in road building, and others. For making 
structural concrete, hydraulic cements are used exclusively. Water is needed for the 
chemical process (hydration) in which the cement powder sets and hardens into one 
solid mass. Of the various hydraulic cements that have been developed, port/and 
cement, which was first patented in England in 1824, is by far the most common. 

Portland cement is a finely powdered, grayish material that consists chiefly of 
calcium and aluminum silicates. t The common raw materials from which it is made 
are limestones, which provide CaO, and clays or shales, which furnish SiO2 and 
Al2O3• These are ground, blended, fused to clinkers in a kiln, and cooled. Gypsum is 
added and the mixture is ground to the required fineness. The material is shipped in 
bulk or in bags containing 94 lb of cement. 

Over the years, five standard types of portland cement have been developed. Type 
I, normal portland cement, is used for over 90 percent of construction in the United 
States. Concretes made with Type I portland cement generally need one to two weeks 
to reach sufficient strength so that forms of beams and slabs can be removed and 

t See ASTM C150, "Standard Specification for Portland Cement." This and other ASTM references are published and periodically updated by 
ASTM International (formerly the American Society for Testing and Materials), West Conshohoken, PA. 
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reasonable loads applied; they reach their design strength after 28 days and continue to 
gain strength thereafter at a decreasing rate. To speed construction when needed, high 
early strength cements such as Type III have been developed. They are costlier than 
ordinary portland cement, but within 7 to 14 days they reach the strength achieved 
using Type I at 28 days. Type III portland cement contains the same basic compounds 
as Type I, but the relative proportions differ and it is ground more finely. 

When cement is mixed with water to form a soft paste, it gradually stiffens until 
it becomes a solid. This process is known as setting and hardening. The cement is 
said to have set when it has gained sufficient rigidity to support an arbitrarily defined 
pressure, after which it continues for a long time to harden, i.e., to gain further 
strength. The water in the paste dissolves material at the surfaces of the cement grains 
and forms a gel that gradually increases in volume and stiffness. This leads to a rapid 
stiffening of the paste 2 to 4 hours after water has been added to the cement. 
Hydration continues to proceed deeper into the cement grains, at decreasing speed, 
with continued stiffening and hardening of the mass. The principal products of hydra
tion are calcium silicate hydrate, which is insoluble, and calcium hydroxide, which 
is soluble. 

In ordinary concrete, the cement is probably never completely hydrated. The gel 
structure of the hardened paste seems to be the chief reason for the volume changes 
that are caused in concrete by variations in moisture, such as the shrinkage of concrete 
as it dries. 

For complete hydration of a given amount of cement, an amount of water equal 
to about 25 percent of that of cement, by weight-i.e., a water-cement ratio of 0.25-,
is needed chemically. An additional amount must be present, however, to provide 
mobility for the water in the cement paste during the hydration process so that it can 
reach the cement particles and to provide the necessary workability of the concrete 
mix. For normal concretes, the water-cement ratio is generally in the range of about 
0.40 to 0.60, although for high-strength concretes, ratios as low as 0.21 have been 
used. In this case, the needed workability is obtained through the use of admixtures. 

Any amount of water above that consumed in the chemical reaction produces 
pores in the cement paste. The strength of the hardened paste decreases in inverse 
proportion to the fraction of the total volume occupied by pores. Put differently, 
since only the solids, and not the voids, resist stress, strength increases directly as 
the fraction of the total volume occupied by the solids. That is why the strength of 
the cement paste depends primarily on, and decreases directly with, an increasing 
water-cement ratio. 

The chemical process involved in the setting and hardening liberates heat, 
known as heat of hydration. In large concrete masses, such as dams, this heat is dissi
pated very slowly and results in a temperature rise and volume expansion of the 
concrete during hydration, with subsequent cooling and contraction. To avoid the seri
ous cracking and weakening that may result from this process, special measures must 
be taken for its control. 

2.3 AGGREGATES 

In ordinary structural concretes the aggregates occupy 65 to 75 percent of the volume 
of the hardened mass. The remainder consists of hardened cement paste, uncombined 
water (i.e., water not involved in the hydration of the cement), and air voids. The latter 
two do not contribute to the strength of the concrete. In general, the more densely the 
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aggregate can be packed, the better the durability and economy of the concrete. For this 
reason the gradation of the particle sizes in the aggregate, to produce close packing, is 
of considerable importance. It is also important that the aggregate have good strength, 
durability, and weather resistance; that its surface be free from impurities such as loam, 
clay, silt, and organic matter that may weaken the bond with cement paste; and that no 
unfavorable chemical reaction take place between it and the cement. 

Natural aggregates are generally classified as fine and coarse. Fine aggregate 
(typically natural sand) is any material that will pass a No. 4 sieve, i.e., a sieve with 
four openings per linear inch. Material coarser than this is classified as coarse aggre
gate. When favorable gradation is desired, aggregates are separated by sieving into 
two or three size groups of sand and several size groups of coarse aggregate. These 
can then be combined according to grading charts to result in a densely packed aggre
gate. The maximum size of coarse aggregate in reinforced concrete is governed by the 
requirement that it shall easily fit into the forms and between the reinforcing bars. For 
this purpose it should not be larger than one-fifth of the narrowest dimension of the 
forms or one-third of the depth of slabs, nor three-quarters of the minimum distance 
between reinforcing bars. Requirements for satisfactory aggregates are found in 
ASTM C33, "Standard Specification for Concrete Aggregates," and authoritative 
information on aggregate properties and their influence on concrete properties, as well 
as guidance in selection, preparation, and handling of aggregate, is found in Ref. 2.1. 

The unit weight of stone concrete, i.e., concrete with natural stone aggregate, 
varies from about 140 to 152 pounds per cubic foot (pcf) and can generally be 
assumed to be 145 pcf. For special purposes, lightweight concretes, on one hand, and 
heavy concretes, on the other, are used. 

A variety of lightweight aggregates are available. Some unprocessed aggregates, 
such as pumice or cinders, are suitable for insulating concretes, but for structural 
lightweight concrete, processed aggregates are used because of better control. These 
consist of expanded shales, clays, slates, slags, or pelletized fly ash. They are light in 
weight because of the porous, cellular structure of the individual aggregate particle, 
which is achieved by gas or steam formation in processing the aggregates in rotary 
kilns at high temperatures (generally in excess of 2000°F). Requirements for satisfac
tory lightweight aggregates are found in ASTM C330, "Standard Specification for 
Lightweight Aggregates for Structural Concrete." 

Three classes of lightweight concrete are distinguished in Ref. 2.2: low-density 
concretes, which are chiefly employed for insulation and whose unit weight rarely 
exceeds 50 pcf; moderate strength concretes, with unit weights from about 60 to 
85 pcf and compressive strengths of 1000 to 2500 psi, which are chiefly used as fill, 
e.g., over light-gage steel floor panels; and structural concretes, with unit weights from 
90 to 120 pcf and compressive strengths comparable to those of stone concretes. Simi
larities and differences in structural characteristics of lightweight and stone concretes 
are discussed in Sections 2.8 and 2.9. 

Heavyweight concrete is sometimes required for shielding against gamma and 
X-radiation in nuclear reactors and similar installations, for protective structures, and 
for special purposes, such as counterweights of lift bridges. Heavy aggregates are used 
for such concretes. These consist of heavy iron ores or barite (barium sulfate) rock 
crushed to suitable sizes. Steel in the form of scrap, punchings, or shot (as fines) is 
also used. Unit weights of heavyweight concretes with natural heavy rock aggregates 
range from about 200 to 230 pcf; if iron punchings are added to high-density ores, 
weights as high as 270 pcf are achieved. The weight may be as high as 330 pcf if ores 
are used for the fines only and steel for the coarse aggregate. 
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2.4 PROPORTIONING AND MIXING CONCRETE 

FIGURE2.1 
Effect of water-cement ratio 
on 28-day compressive and 
flexural tensile strength. 
(Adapted from Ref. 2.3.) 

The various components of a mix are proportioned so that the resulting concrete has 
adequate strength, proper workability for placing, and low cost. The third calls for use 
of the minimum amount of cement (the most costly of the components) that will 
achieve adequate properties. The better the gradation of aggregates, i.e., the smaller the 
volume of voids, the less cement paste is needed to fill these voids. In addition to the 
water required for hydration, water is needed for wetting the surface of the aggregate. 
As water is added, the plasticity and fluidity of the mix increase (i.e., its workability 
improves), but the strength decreases because of the larger volume of voids created by 
the free water. To reduce the free water while retaining the workability, cement must be 
added. Therefore, as for the cement paste, the water-cement ratio is the chief factor that 
controls the strength of the concrete. For a given water-cement ratio, one selects the 
minimum amount of cement that will secure the desired workability. 

Figure 2.1 shows the decisive influence of the water-cement ratio on the com
pressive strength of concrete. Its influence on the tensile strength, as measured by the 
nominal flexural strength or modulus of rupture, is seen to be pronounced but much 
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smaller than its effect on the compressive strength. This seems to be so because, in 
addition to the void ratio, the tensile strength depends strongly on the strength of bond 
between coarse aggregate and cement mortar (i.e., cement paste plus fine aggregate). 
According to tests at Cornell University, this bond strength is only slightly affected by 
the water-cement ratio (Ref. 2.4). 

It is customary to define the proportions of a concrete mix in terms of the total 
weight of each component needed to make up 1 yd3 of wet concrete, such as 517 lb of 
cement, 300 lb of water, 1270 lb of sand, and 1940 lb of coarse aggregate, plus the 
total volume of air, in percent, when air is deliberately entrained in the mix (typically 
4 to 7 percent). The weights of the fine and coarse aggregates are based on material in 
the saturated su,face dry condition, in which, as the description implies, the aggre
gates are fully saturated but have no water on the exterior of the particles. 

Various methods of proportioning are used to obtain mixes of the desired prop
erties from the cements and aggregates at hand. One is the trial-batch method. 
Selecting a water-cement ratio from information such as that in Fig. 2.1, one produces 
several small trial batches with varying amounts of aggregate to obtain the required 
strength, consistency, and other properties with a minimum amount of paste. Concrete 
consistency is most frequently measured by the slump test. A metal mold in the shape 
of a truncated cone 12 in. high is filled with fresh concrete in a carefully specified 
manner. Immediately upon being filled, the mold is lifted off, and the slump of the 
concrete is measured as the difference in height between the mold and the pile of con
crete. The slump is a good measure of the total water content in the mix and should be 
kept as low as is compatible with workability. Slumps for concretes in building con
struction generally range from 2 to 5 in., although higher slumps are used with the aid 
of chemical admixtures. 

The so-called ACI method of proportioning makes use of the slump test in 
connection with a set of tables that, for a variety of conditions (types of structures, 
dimensions of members, degree of exposure to weathering, etc.), permit one to esti
mate proportions that will result in the desired properties (Ref. 2.5). These preliminary 
selected proportions are checked and adjusted by means of trial batches to result in 
concrete of the desired quality. Inevitably, strength properties of a concrete of given 
proportions scatter from batch to batch. It is therefore necessary to select proportions 
that will furnish an average strength sufficiently greater than the specified design 
strength for even the accidentally weaker batches to be of adequate quality (for details, 
see Section 2.6). Discussion in detail of practices for proportioning concrete is beyond 
the scope of this volume; this topic is treated fully in Refs. 2.5 and 2.6, both for stone 
concrete and for lightweight aggregate concrete. 

If the results of trial batches or field experience are not available, the ACI Code 
allows concrete to be proportioned based on other experience or information, if 
approved by the registered design professional overseeing the project. This alternative 
may not be applied for specified compressive strengths greater than 5000 psi. 

On all but the smallest jobs, batching is carried out in special batching plants. 
Separate hoppers contain cement and the various fractions of aggregate. Proportions 
are controlled, by weight, by means of manually operated or automatic scales con
nected to the hoppers. The mixing water is batched either by measuring tanks or by 
water meters. 

The principal purpose of mixing is to produce an intimate mixture of cement, 
water, fine and coarse aggregate, and possible admixtures of uniform consistency 
throughout each batch. This is achieved in machine mixers of the revolving-drum type. 
Minimum mixing time is 1 min for mixers of not more than 1 yd3 capacity, with an 
additional 15 sec for each additional 1 yd3• Mixing can be continued for a considerable 
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time without adverse effect. This fact is particularly important in connection with 
ready mixed concrete. 

On large projects, particularly in the open country where ample space is avail
able, movable mixing plants are installed and operated at the site. On the other hand, 
in construction under congested city conditions, on smaller jobs, and frequently in 
highway construction, ready mixed concrete is used. Such concrete is batched in a 
stationary plant and then hauled to the site in trucks in one of three ways: (1) mixed 
completely at the stationary plant and hauled in a truck agitator, (2) transit-mixed, i.e., 
batched at the plant but mixed in a truck mixer, or (3) partially mixed at the plant with 
mixing completed in a truck mixer. Concrete should be discharged from the mixer or 
agitator within a limited time after the water is added to the batch. Although specifi
cations often provide a single value for all conditions, the maximum mixing time 
should be based on the concrete temperature because higher temperatures lead to 
increased rates of slump loss and rapid setting. Conversely, lower temperatures 
increase the period during which the concrete remains workable. A good guide for 
maximum mixing time is to allow 1 hour at a temperature of 70°F, plus (or minus) 
15 min for each 5°F drop (or rise) in concrete temperature for concrete temperatures 
between 40 and 90°F. Ten minutes may be used at 95°F, the practical upper limit for 
normal mixing and placing. 

Much information on proportioning and other aspects of design and control of 
concrete mixtures will be found in Refs. 2.7 and 2.8. 

2.5 CONVEYING, PLACING, COMPACTING, AND CURING 

Conveying of most building concrete from the mixer or truck to the form is done in 
bottom-dump buckets or by pumping through steel pipelines. The chief danger during 
conveying is that of segregation. The individual components of concrete tend to seg
regate because of their dissimilarity. In overly wet concrete standing in containers or 
forms, the heavier coarse aggregate particles tend to settle, and the lighter materials, 
particularly water, tend to rise. Lateral movement, such as flow within the forms, tends 
to separate the coarse gravel from the finer components of the mix. 

Placing is the process of transferring the fresh concrete from the conveying 
device to its final place in the forms. Prior to placing, loose rust must be removed from 
reinforcement, forms must be cleaned, and hardened surfaces of previous concrete lifts 
must be cleaned and treated appropriately. Placing and consolidating are critical in their 
effect on the final quality of the concrete. Proper placement must avoid segregation, 
displacement of forms or of reinforcement in the forms, and poor bond between 
successive layers of concrete. Immediately upon placing, the concrete should be 
consolidated, usually by means of vibrators. Consolidation prevents honeycombing, 
ensures close contact with forms and reinforcement, and serves as a partial remedy to 
possible prior segregation. Consolidation is achieved by high-frequency, power-driven 
vibrators. These are of the internal type, immersed in the concrete, or of the external 
type, attached to the forms. The former are preferable but must be supplemented by the 
latter where narrow forms or other obstacles make immersion impossible (Ref. 2.9). 

Fresh concrete gains strength most rapidly during the first few days and weeks. 
Structural design is generally based on the 28-day strength, about 70 percent of which 
is reached at the end of the first week after placing. The final concrete strength depends 
greatly on the conditions of moisture and temperature during this initial period. The 
maintenance of proper conditions during this time is known as curing. Thirty percent 
of the strength or more can be lost by premature drying out of the concrete; similar 
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amounts may be lost by permitting the concrete temperature to drop to 40°F or lower 
during the first few days unless the concrete is kept continuously moist for a long time 
thereafter. Freezing of fresh concrete may reduce its strength by 50 percent or more. 

To prevent such damage, concrete should be protected from loss of moisture for 
at least 7 days and, in more sensitive work, up to 14 days. When high early strength 
cements are used, curing periods can be cut in half. Curing can be achieved by keeping 
exposed surfaces continually wet through sprinkling, ponding, or covering with plastic 
film or by the use of sealing compounds, which, when properly used, form 
evaporation-retarding membranes. In addition to improving strength, proper moist
curing provides better shrinkage control. To protect the concrete against low temper
atures during cold weather, the mixing water, and occasionally the aggregates, is heated; 
temperature insulation is used where possible; and special admixtures are employed. 
When air temperatures are very low, external heat may have to be supplied in addition 
to insulation (Refs. 2. 7, 2.8, 2.10, and 2.11 ). 

2.6 QUALITY CONTROL 

The quality of mill-produced materials, such as structural or reinforcing steel, is ensured 
by the producer, who must exercise systematic quality controls, usually specified by per
tinent ASTM standards. Concrete, in contrast, is produced at or close to the site, and its 
final qualities are affected by a number of factors, which have been discussed briefly. 
Thus, systematic quality control must be instituted at the construction site. 

The main measure of the structural quality of concrete is its compressive strength. 
Tests for this property are made on cylindrical specimens of height equal to twice the 
diameter, usually 6 X 12 in. or 4 X 8 in. Impervious molds of this shape are filled with 
concrete during the operation of placement as specified by ASTM C 172, "Standard 
Method of Sampling Freshly Mixed Concrete," and ASTM C3 l, "Standard Practice for 
Making and Curing Concrete Test Specimens in the Field." The cylinders are moist
cured at about 70°F, generally for 28 days, and then tested in the laboratory at a 
specified rate of loading. The compressive strength obtained from such tests is known 
as the cylinder strength 1; and is the main property specified for design purposes. 

To provide structural safety, continuous control is necessary to ensure that the 
strength of the concrete as furnished is in satisfactory agreement with the value called 
for by the designer. The ACI Code specifies that two 6 X 12 in. or three 4 X 8 in. 
cylinders must be tested for each 150 yd3 of concrete or for each 5000 ft2 of surface 
area actually placed, but not less than once a day. As mentioned in Section 2.4, the 
results of strength tests of different batches mixed to identical proportions show 
inevitable scatter. The scatter can be reduced by closer control, but occasional tests 
below the cylinder strength specified in the design cannot be avoided. 

To ensure adequate concrete strength in spite of such scatter, the ACI Code stip
ulates that concrete quality is satisfactory if 

1. No individual strength test result (the average of two or three cylinder tests 
depending on cylinder size) falls below the required!; by more than 500 psi when 
1; is 5000 psi or less or by more than 0.101; when!; is more than 5000 psi, and 

2. Every arithmetic average of any three consecutive strength tests equals or 
exceeds!;. 

It is evident that if concrete were proportioned so that its mean strength were just 
equal to the required strength!;, it would not pass these quality requirements, because 
about one-half of its strength test results would fall below the required 1;. It is 



FIGURE2.2 
Frequency curves and 
average strengths for various 
degrees of control of 
concretes with specified 
design strength J;. (Adapted 

from Ref 2.12.) 
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therefore necessary to proportion the concrete so that its mean strength/;,, used as the 
basis for selection of suitable proportions, exceeds the required design strength J; by 
an amount sufficient to ensure that the two quoted requirements are met. The mini
mum amount by which the required mean strength must exceed J; can be determined 
only by statistical methods because of the random nature of test scatter. Requirements 
have been derived, based on statistical analysis, to be used as a guide to proper pro
portioning of the concrete at the plant so that the probability of strength deficiency at 
the construction site is acceptably low. 

The basis for these requirements is illustrated in Fig. 2.2, which shows three 
normal frequency curves giving the distribution of strength test results. The specified 
design strength is J;. The curves correspond to three different degrees of quality con
trol, curve A representing the best control, i.e., the least scatter, and curve C the worst 
control, with the most scatter. The degree of control is measured statistically by the 
standard deviation <r (<r a for curve A, <r b for curve B, and <r c for curve C), which is rel
atively small for producer A and relatively large for producer C. All three distributions 
have the same probability of strength less than the specified value J;; i.e., each has the 
same fractional part of the total area under the curve to the left of J;. For any normal 
distribution curve, that fractional part is defined by the index f3s, a multiplier applied 
to the standard deviation <r; f3s is the same for all three distributions of Fig. 2.2. It is 
seen that, to satisfy the requirement that, say, 1 test in 100 will fall below J; (with the 
value of f3s thus determined), for producer A with the best quality control the mean 
strength J;, can be much closer to the specified J; than for producer C with the most 
poorly controlled operation. 

On the basis of such studies, the ACI Code requires that concrete production 
facilities maintain records from which the standard deviation achieved in the particular 
facility can be determined. It then stipulates the minimum amount by which the required 
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average compressive strength J;,, aimed at when selecting concrete proportions, must 
exceed the specified compressive strengthJ;. In accordance with ACI Code 5.3.1, the 
value of J;, is equal to the larger of the values in Eqs. (2.1) and (2.2). 

J;, = J; + 1.34ss (2.1) 

or 

, _ {J; + 2.33ss - 500 

fer - 0.9J; + 2.33ss 
for J; $ 5000 psi 

for J; > 5000 psi 

(2.2a) 

(2.2b) 

where ss is the standard deviation of the test sample. 
Equation (2.1) provides a probability of 1 in 100 that averages of three 

consecutive tests will be below the specified strength J;. Equations (2.2a) and 
(2.2b) provide a probability of 1 in 100 that an individual strength test will be more 
than 500 psi below the specified I; for J; up to 5000 psi or below 0.90J; for J; over 
5000 psi. 

To use Eqs. (2.1) and (2.2), ACI Code 5.3.1 requires that a minimum of 30 con
secutive test results be available. The tests must represent concrete with (1) a specified 
compressive strength within 1000 psi of J; for the project and (2) materials, quality 
control, and conditions similar to those expected for the building in question. If fewer 
than 30 but at least 15 tests are available, the equations may still be used, but ss must 
be multiplied by a factor from Table 2.1. If fewer than 15 tests have been made, 
the average strength must exceed J; by at least 1000 psi for J; less than or equal to 
3000 psi, by at least 1200 psi forJ; between 3000 and 5000 psi, and by 0.IOJ; + 700 psi 
for J; over 5000 psi, according to the ACI Code. 

It is seen that this method of control recognizes the fact that occasional deficient 
batches are inevitable. The requirements forJ;, ensure (1) a small probability that such 
strength deficiencies as are bound to occur will be large enough to represent a serious 
danger and (2) an equally small probability that a sizable portion of the structure, as 
represented by three consecutive strength tests, will be made of below-par concrete. 

Both the requirements described earlier in this section for determining if con
crete, as produced, is of satisfactory quality and the process just described of select
ing J;, are based on the same basic considerations but are applied independently, as 
demonstrated in Examples 2.1 and 2.2. 

TABLE 2.1 
Modification factors for sample standard deviation s5 when less 
than 30 tests are available 

No. of Testst 

Less than 15 

15 
20 
25 

30 or more 

tlnterpolate for intermediate values. 

Modification Factor for Sample 
Standard Deviationt* 

See paragraph following 
Eqs. (2.1) and (2.2) 

1.16 
1.08 
1.03 
1.00 

tToe sample standard deviation ss must be multiplied by the modification factor prior to use in Eqs. (2.1) and (2.2). 
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EXAMPLE 2.1 A building design calls for specified concrete strength J; of 4000 psi. Calculate the average 
required strengthJ;, if (a) 30 consecutive tests for concrete with similar strength and materials 
produce a sample standard deviation ss of 535 psi, (b) 15 consecutive tests for concrete with 
similar strength and materials produce a sample standard deviation ss of 510 psi, and (c) less 
than 15 tests are available. 

SOLUTION. (a) 30 tests available. Using ss = 535 psi, Eq. (2.1) gives 

J;, = J: + 1.34ss = 4000 + 1.34 X 535 = 4720 psit 

Because the specified strength!: is less than 4000 psi, Eq. (2.2a) must be used. 

J:, = J: + 2.33ss - 500 = 4000 + 2.33 X 535 - 500 = 4750 psi 

The required average strength!;, is equal to the larger value, 4750 psi. 
(b) 15 tests available. Because only 15 tests are available, ss, given as 510 psi, must be multi

plied by 1.16, the factor from Table 2.1. 

1.16 X ss = 1.16 X 510 = 590 psi 

Again, using Eqs. (2.1) and (2.2a), 

J:, = 4000 + 1.34 X 590 = 4790 psi 

J:, = 4000 + 2.33 X 590 - 500 = 4870 psi 

The larger value, 4870 psi, is selected as the required average strengthf:,. 
(c) Less than 15 tests available. Because J: is between 3000 and 5000 psi, the required aver

age strength is 

J;, = J; + 1200 = 4000 + 1200 = 5200 psi 

This example demonstrates that in cases where test data are available, good quality control, 
represented by a low sample standard deviation ss, can be used to reduce the required aver
age strength J:,. The example also demonstrates that a lack of certainty in the value of the 
standard deviation due to the limited availability of data results in higher values for J:,, as 
shown in parts (b) and (c). As additional test results become available, the higher safety 
margins can be reduced. 

EXAMPLE 2.2 The first eight compressive strength test results for the building described in Example 2.lc are 
4730, 4280, 3940, 4370, 5180, 4870, 4930, and 4850 psi. 

(a) Are the test results satisfactory, and (b) in what fashion, if any, should the mixture 
proportions of the concrete be altered? 

SOLUTION. 

(a) For concrete to be considered satisfactory, no individual test may fall below I: -500 psi and 
every arithmetic average of any three consecutive tests must equal I:. The eight tests meet these 
criteria. No test is less thanl;-500 psi = 4000 - 500 = 3500 psi, and the average of all sets 
of three consecutive tests exceedsf: [for example, (4730 + 4280 + 3940)/3 = 4320, (4280 + 
3940 + 4370)/3 = 4200, etc.]. 

(b) To determine if the mixture proportions must be altered, we note that the solution 
to Example 2. lc requires that J;, equal or exceed 5200 psi. The average of the first eight 
tests is 4640 psi, well below the value of J:,. Thus, the mixture proportions should be mod
ified by decreasing the water-cement ratio to increase the concrete strength. Once at least 
15 tests are available, the value off, can be recalculated using Eqs. (2.1) and (2.2) with the 

t ASTM International specifies that concrete cylinder strengths be recorded to the nearest 10 psi. Hence the values used for test results andJ;, are 
rounded accordingly. 
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appropriate factor for Ss from Table 2.1. The mixture proportions can then be adjusted 
based on the new value of I:r, the strength of the concrete being produced, and the level of 
quality control, as represented by the sample standard deviation S

8
• 

In spite of scientific advances, building in general and concrete making in par
ticular retain some elements of an art; they depend on many skills and imponderables. 
It is the task of systematic inspection to ensure close correspondence between plans 
and specifications and the finished structure. Inspection during construction should be 
carried out by a competent engineer, preferably the one who produced the design or 
one who is responsible to the design engineer. The inspector's main functions in regard 
to materials quality control are sampling, examination, and field testing of materials; 
control of concrete proportioning; inspection of batching, mixing, conveying, placing, 
compacting, and curing; and supervision of the preparation of specimens for labora
tory tests. In addition, the inspector must inspect foundations, formwork, placing of 
reinforcing steel, and other pertinent features of the general progress of work; keep 
records of all the inspected items; and prepare periodic reports. The importance of 
thorough inspection to the correctness and adequate quality of the finished structure 
cannot be emphasized too strongly. 

This brief account of concrete technology represents the merest outline of an impor
tant subject. Anyone in practice who is actually responsible for any of the phases of 
producing and placing concrete must be familiar with the details in much greater depth. 

2.7 ADMIXTURES 

In addition to the main components of concretes, admixtures are often used to improve 
concrete performance. There are admixtures to accelerate or retard setting and harden
ing, to improve workability, to increase strength, to improve durability, to decrease per
meability, and to impart other properties (Ref. 2.13 ). The beneficial effects of particular 
admixtures are well established. Chemical admixtures should meet the requirements of 
ASTM C494, "Standard Specification for Chemical Admixtures for Concrete." 

Air-entraining agents are probably the most commonly used admixtures. They 
cause the entrainment of air in the form of small dispersed bubbles in the concrete. 
These improve workability and durability ( chiefly resistance to freezing and thawing) 
and reduce segregation during placing. They decrease concrete density because of the 
increased void ratio and thereby decrease strength; however, this decrease can be 
partially offset by a reduction of mixing water without loss of workability. The chief 
use of air-entrained concretes is in pavements, but they are also used for structures, 
particularly for exposed elements (Ref. 2.14 ). 

Accelerating admixtures are used to reduce setting time and accelerate early 
strength development. Calcium chloride is the most widely used accelerator because 
of its cost effectiveness, but it should not be used in prestressed concrete and should 
be used with caution in reinforced concrete in a moist environment, because of its ten
dency to promote corrosion of steel. Nonchloride, noncorrosive accelerating admix
tures are available, the principal one being calcium nitrite (Ref. 2.13). 

Set-retarding admixtures are used primarily to offset the accelerating effect of 
high ambient temperature and to keep the concrete workable during the entire placing 
period. This helps to eliminate cracking due to form deflection and also keeps concrete 
workable long enough that succeeding lifts can be placed without the development of 
"cold" joints. 
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Certain organic compounds are used to reduce the water requirement of a 
concrete mix for a given slump. Such compounds are termed plasticizers. Reduction 
in water demand may result in either a reduction in the water-cement ratio for a given 
slump and cement content or an increase in slump for the same water-cement ratio and 
cement content. Plasticizers work by reducing the interparticle forces that exist between 
cement grains in the fresh paste, thereby increasing the paste fluidity. High-range 
water-reducing admixtures, or superplasticizers, are used to produce high-strength 
concrete (see Section 2.12) with a very low water-cement ratio while maintaining the 
higher slumps needed for proper placement and compaction of the concrete. They are 
also used to produce flowable concrete at conventional water-cement ratios. 
Superplasticizers differ from conventional water-reducing admixtures in that they do 
not act as retarders at high dosages; therefore, they can be used at higher dosage rates 
without severely slowing hydration (Refs. 2.13, 2.15, and 2.16). The specific effects 
of water-reducing admixtures vary with different cements, changes in water-cement 
ratio, mixing temperature, ambient temperature, and other job conditions, and trial 
batches are generally required. 

When superplasticizers are combined with viscosity-modifying admixtures, they 
can be used to produce self-consolidating concrete (SCC). Self-consolidating 
concrete is highly fluid and does not require vibration to remove entrapped air. The 
viscosity modifying agents allow the concrete to remain cohesive even with a very 
high degree of fluidity. As a result, SCC can be used for members with congested 
reinforcement, such as beam-column joints in earthquake-resistant structures, and is 
widely used for precast concrete, especially precast prestressed concrete, a manufac
tured product (prestressed concrete is discussed in Chapter 19). The high fluidity of 
the mix, however, has been shown to have a negative impact on the bond strength 
between the concrete and prestressing steel located in the upper portions of a mem
ber, a shortcoming that should be considered in design (Ref. 2.17) but is not currently 
addressed in the ACI Code, and the composition of SCC mixtures may result in 
moduli of elasticity, creep, and shrinkage properties that differ from those of more 
traditional mixtures. 

Fly ash and silica fume are pozzolans, highly active silicas, that combine with 
calcium hydroxide, the soluble product of cement hydration (Section 2.2), to form 
more calcium silicate hydrate, the insoluble product of cement hydration (Refs. 2.18 
and 2.19). Pozzolans qualify as supplementary cementitious materials, also referred 
to as mineral admixtures, which are used to replace a part of the portland cement in 
concrete mixes. Fly ash, which is specified under ASTM C618, "Standard Speci
fication for Coal Fly Ash and Raw or Calcified Natural Pozzolan for Use in 
Concrete," is precipitated electrostatically as a by-product of the exhaust fumes of 
coal-fired power stations. It is very finely divided and reacts with calcium hydroxide 
in the presence of moisture to form a cementitious material. It tends to increase the 
strength of concrete at ages over 28 days. Silica fume, which is specified under 
ASTM C 1240, "Standard Specification for Silica Fume Used in Cementitious 
Mixtures," is a by-product resulting from the manufacture, in electric-arc furnaces, of 
ferro-silicon alloys and silicon metal. It is extremely finely divided and is highly 
cementitious when combined with portland cement. In contrast to fly ash, silica fume 
contributes mainly to strength gain at early ages, from 3 to 28 days. Both fly ash and 
silica fume, particularly the latter, have been important in the production of high
strength concrete (see Section 2.12). 

Ground granulated blast-furnace slag (GGBFS), which is specified under 
ASTM C989, "Standard Specification for Ground Granulated Blast-Furnace Slag for 
Use in Concrete and Mortar," is another supplementary cementitious material. It is 
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produced by water quenching and grinding slag from the production of pig iron, the 
key ingredient used to make steel (Ref. 2.20). GGBFS consists primarily of calcium 
silicates, making it very similar to portland cement. As a result of the similarity, slag 
can be used in higher quantities than fly ash or silica fume, and the resulting material 
generally has similar or improved properties to those exhibited by concrete made with 
100 percent portland cement. 

When blast furnace slag, silica fume, fly ash, or a combination is used, it is cus
tomary to refer to the water-cementitious material ratio rather than the water-cement 
ratio. This typically may be as low as 0.25 for high-strength concrete, and ratios as low 
as 0.21 have been used (Refs. 2.21 and 2.22). 

Historically, the high durability and high thermal mass of concrete structures 
have played a key role in sustainable development, that is, development that mini
mizes both its impact on the environment and the resources used both during and after 
construction. In sustainable development, the "cost" of concrete lies primarily in the 
manufacture of portland cement. The production of a ton of portland cement requires 
roughly the energy needed to operate a typical U.S. household for two weeks and 
generates approximately 0.9 ton of CO2 (a greenhouse gas). The latter translates to 
about 250 lb of CO2 for every cubic yard of concrete that is placed. The energy and 
greenhouse gases involved in the production of concrete, however, can be viewed as 
investments because properly designed reinforced concrete structures that take advan
tage of concrete's thermal mass provide significant reductions in the energy and CO2 

needed for heating and cooling, and concrete's inherent durability results in structures 
with long service lives. Because by-products, such as the mineral admixtures fly ash 
and blast furnace slag, involve minimal energy usage or greenhouse gas production, 
they have the potential to further improve the sustainability of concrete construction 
when used as a partial replacement for portland cement. 

2.8 PROPERTIES IN COMPRESSION 

a. Short-Term Loading 

Performance of a structure under load depends to a large degree on the stress-strain 
relationship of the material from which it is made, under the type of stress to which 
the material is subjected in the structure. Since concrete is used mostly in compres
sion, its compressive stress-strain curve is of primary interest. Such a curve is obtained 
by appropriate strain measurements in cylinder tests (Section 2.6) or on the compres
sion side in beams. Figure 2.3 shows a typical set of such curves for normal-density 
concrete, obtained from uniaxial compressive tests performed at normal, moderate 
testing speeds on concretes that are 28 days old. Figure 2.4 shows corresponding 
curves for lightweight concretes having a density of 100 pcf. 

All of the curves have somewhat similar character. They consist of an initial 
relatively straight elastic portion in which stress and strain are closely proportional, 
then begin to curve to the horizontal, reaching the maximum stress, i.e., the compres
sive strength, at a strain that ranges from about 0.002 to 0.003 for normal-density 
concretes, and from about 0.003 to 0.0035 for lightweight concretes (Refs. 2.23 and 
2.24), the larger values in each case corresponding to the higher strengths. All curves 
show a descending branch after the peak stress is reached; however, the characteristics 
of the curves after peak stress are highly dependent upon the method of testing. If 
special procedures are followed in testing to ensure a constant strain rate while 
cylinder resistance is decreasing, long stable descending branches can be obtained 
(Ref. 2.25). In the absence of special devices, unloading past the point of peak stress 
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FIGURE2.3 FIGURE2.4 
Typical compressive stress-strain curves for normal-density 
concrete with wc = 145 pcf. (Adapted from Refs. 2.23 and 2.24.) 

Typical compressive stress-strain curves for lightweight 
concrete with wc = 100 pcf. (Adapted from Refs. 2.23 and 2.24.) 

may be rapid, particularly for the higher-strength concretes, which are generally more 
brittle than low-strength concrete. 

In present practice, the specified compressive strength J; is commonly in the 
range from 3000 to 5000 psi for normal-density cast-in-place concrete, and up to 
about 8000 psi for precast prestressed concrete members. Lightweight concrete 
strengths are somewhat below these values generally. The high-strength concretes, 
with J; to 15,000 psi or more, are used with increasing frequency, particularly for 
heavily loaded columns in high-rise concrete buildings and for long-span bridges 
(mostly prestressed) where a significant reduction in dead load may be realized by 
minimizing member cross section dimensions. (See Section 2.12.) 

The modulus of elasticity Ec (in psi units), i.e., the slope of the initial straight 
portion of the stress-strain curve, is seen to be larger as the strength of the concrete 
increases. For concretes in the strength range to about 6000 psi, it can be computed 
with reasonable accuracy from the empirical equation found in the ACI Code 

E = 33w1.5 Vf',' C C C (2.3) 

where w c is the unit weight of the hardened concrete in pcf and J; is its strength in psi. 
Equation (2.3) was obtained by testing structural concretes with values of wc from 90 to 
155 pcf. For normal sand-and-stone concretes, with wc = 145 pcf, Ec may be taken as 

(2.4) 

For compressive strengths in the range from 6000 to 12,000 psi, the ACI Code equa
tion may overestimate Ec for both normalweight and lightweight material by as much 
as 20 percent. Based on research at Cornell University (Refs. 2.23 and 2.24 ), the 
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FIGURE2.5 
Effect of age on compressive 
strength/; for moist-cured 
concrete. (Adapted from Ref 

2.26.) 

following equation is recommended for normal-density concretes with/; in the range 
of 3000 to 12,000 psi, and for lightweight concretes from 3000 to 9000 psi: 

( 
W )1.5 

Ee= (40,000~ + 1,000,000) 
14

; (2.5) 

where terms and units are as defined above for the ACI Code equations. When coarse 
aggregates with high moduli of elasticity are used, however, Eq. (2.4) may underesti
mate Ee- Thus, in cases where Ee is a key design criterion, it should be measured, 
rather than estimated, using Eq. (2.3), (2.4), or (2.5). 

Information on concrete strength properties such as those discussed is usually 
obtained through tests made 28 days after placing. However, cement continues to 
hydrate, and consequently concrete continues to harden, long after this age, at a decreas
ing rate. Figure 2.5 shows a typical curve of the gain of concrete strength with age for 
concrete made using Type I (normal) cement and also Type III (high early strength) 
cement, each curve normalized with respect to the 28-day compressive strength. High 
early strength cements produce more rapid strength gain at early ages, although the 
rate of strength gain at later ages is generally less. Concretes using Type III cement are 
often used in precasting plants, and often the strength J; is specified at 7 days, rather 
than 28 days. 

Note that the shape of the stress-strain curve for various concretes of the same 
cylinder strength, and even for the same concrete under various conditions of loading, 
varies considerably. An example of this is shown in Fig. 2.6, where different 
specimens of the same concrete are loaded at different rates of strain, from one 
corresponding to a relatively fast loading (0.001 per minute) to one corresponding to 
an extremely slow application of load (0.001 per 100 days). It is seen that the 
descending branch of the curve, indicative of internal disintegration of the material, 
is much more pronounced at fast than at slow rates of loading. It is also seen that the 
peaks of the curves, i.e., the maximum strengths reached, are somewhat smaller at 
slower rates of strain. 

When compressed in one direction, concrete, like other materials, expands in the 
direction transverse to that of the applied stress. The ratio of the transverse to the 
longitudinal strain is known as Poisson's ratio and depends somewhat on strength, 
composition, and other factors. At stresses lower than about 0.7J;, Poisson's ratio for 
concrete falls within the limits of 0.15 to 0.20. 
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FIGURE2.6 
Stress-strain curves at 
various strain rates, 
concentric compression. 
(Adapted from Ref 2.27.) 
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In some engineering materials, such as steel, strength and the stress-strain relation
ships are independent of rate and duration of loading, at least within the usual ranges 
of rate of stress, temperature, and other variables. In contrast, Fig. 2.6 illustrates the 
fact that the influence of time, in this case of rate of loading, on the behavior of con
crete under load is pronounced. The main reason is that concrete creeps under load, 
while steel does not exhibit creep under conditions prevailing in buildings, bridges, 
and similar structures. 

Creep is the slow deformation of a material over considerable lengths of time at 
constant stress or load. The nature of the creep process is shown schematically in 
Fig. 2. 7. This particular concrete was loaded after 28 days with resulting instantaneous 
strain einst· The load was then maintained for 230 days, during which time creep was 
seen to have increased the total deformation to almost 3 times its instantaneous value. 
If the load were maintained, the deformation would follow the solid curve. If the load 
is removed, as shown by the dashed curve, most of the elastic instantaneous strain einst 

is recovered, and some creep recovery is seen to occur. If the concrete is reloaded at 
some later date, instantaneous and creep deformations develop again, as shown. 

Creep deformations for a given concrete are practically proportional to the 
magnitude of the applied stress; at any given stress, and even at the same ratio of stress 
to compressive strength, high-strength concretes show less creep than lower-strength 
concretes (Ref. 2.28). As seen in Fig. 2.7, with elapsing time, creep proceeds at a 
decreasing rate and ceases after 2 to 5 years at a final value which, depending on 
concrete strength and other factors, is about 1.2 to 3 times the magnitude of the instan
taneous strain. If, instead of being applied quickly and thereafter kept constant, the 
load is increased slowly and gradually, as is the case in many structures during and 
after construction, then instantaneous and creep deformations proceed simultaneously. 
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FIGURE2.7 
Typical creep curve (concrete 
loaded to 600 psi at age 
28 days). 
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The effect is shown in Fig. 2.6; i.e., the previously discussed difference in the shape 
of the stress-strain curve for various rates of loading is chiefly the result of the creep 
deformation of concrete. 

For stresses not exceeding about one-half the cylinder strength, creep strains are 
approximately proportional to stress. Because initial elastic strains are also propor
tional to stress in this range, this permits definition of the creep coefficient 

(2.6) 

where Ecu is the final asymptotic value of the additional creep strain and Eci is the ini
tial, instantaneous strain when the load is first applied. Creep may also be expressed 
in terms of the specific creep Seu• defined as the additional time-dependent strain per 
psi stress. It can easily be shown that 

(2.7) 

In addition to the stress level, creep depends on the average ambient relative 
humidity, being more than twice as large for 50 percent as for 100 percent humidity 
(Ref. 2.8). This is so because part of the reduction in volume under sustained load is 
caused by outward migration of free pore water, which evaporates into the surround
ing atmosphere. Other factors of importance include the type of cement and aggregate, 
age of the concrete when first loaded, and concrete strength (Ref. 2.8). The creep 
coefficient for high-strength concrete is much less than that for low-strength concrete. 
However, sustained load stresses are apt to be higher so that the creep deformation 
may be as great for high-strength concrete, even though the creep coefficient is less. 

The values of Table 2.2, quoted from Ref. 2.29 and extended for high-strength 
concrete based on research at Cornell University, are typical values for average 
humidity conditions, for concretes loaded at the age of 7 days. 
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TABLE 2.2 
Typical creep parameters 

Compressive 
Strength Specific Creep ocu 

psi MPa 10-6 per psi 10-6 per MPa Creep coefficient Ccu 

3,000 21 1.00 145 3.1 
4,000 28 0.80 116 2.9 
6,000 41 0.55 80 2.4 
8,000 55 0.40 58 2.0 

10,000 69 0.28 41 1.6 
12,000 83 0.22 33 1.4 

To illustrate, if the concrete in a column withJ; = 4000 psi is subject to a long
time load that causes sustained stress of 1200 psi, then after several years under load 
the final value of the creep strain will be about 1200 X 0.80 X 10-6 = 0.00096. Thus, 
if the column were 20 ft long, creep would shorten it by about ¼ in. 

The creep coefficient at any time Cct can be related to the ultimate creep coeffi
cient Ccu· In Ref. 2.26, Branson suggests the equation 

t0.60 

(2.8) 

where t = time in days after loading. 
In many special situations, e.g., slender members or frames, or in prestressed 

construction, the designer must take account of the combined effects of creep and 
shrinkage (Section 2.11 ). In such cases, rather than rely on the sample values of Table 
2.2, more accurate information on creep parameters should be obtained, such as from 
Ref. 2.26 or 2.29. 

Sustained loads affect not only the deformation but also the strength of concrete. 
The cylinder strength J; is determined at normal rates of test loading (about 
35 psi/sec). Tests by Rusch (Ref. 2.27) and at Cornell University (Refs. 2.30 and 2.31) 
have shown that, for concentrically loaded unreinforced concrete prisms and cylin
ders, the strength under sustained load is significantly smaller thanJ;, on the order of 
75 percent oft; for loads maintained for a year or more. Thus, a member subjected to 
a sustained overload causing compressive stress of over 75 percent oft; may fail after 
a period of time, even though the load is not increased. 

c. Fatigue 

When concrete is subject to fluctuating rather than sustained loading, its fatigue 
strength, as for all other materials, is considerably smaller than its static strength. 
When plain concrete in compression is stressed cyclically from zero to maximum 
stress, its fatigue limit is from 50 to 60 percent of the static compressive strength, for 
2,000,000 cycles. A reasonable estimate can be made for other stress ranges using the 
modified Goodman diagram (see Ref. 2.29). For other types of applied stress, such as 
flexural compressive stress in reinforced concrete beams or flexural tension in unrein
forced beams or on the tension side of reinforced beams, the fatigue limit likewise 
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appears to be about 55 percent of the corresponding static strength. These figures, 
however, are for general guidance only. It is known that the fatigue strength of 
concrete depends not only on its static strength but also on moisture condition, age, 
and rate of loading (see Ref. 2.32). 

2.9 PROPERTIES IN TENSION 

While concrete is best employed in a manner that uses its favorable compressive 
strength, its behavior in tension is also important. The conditions under which cracks 
form and propagate on the tension side of reinforced concrete flexural members 
depend strongly on both the tensile strength and the fracture properties of the concrete, 
the latter dealing with the ease with which a crack progresses once it has formed. Con
crete tensile stresses also occur as a result of shear, torsion, and other actions, and in 
most cases member behavior changes upon cracking. Thus, it is important to be able 
to predict, with reasonable accuracy, the tensile strength of concrete and to understand 
the factors that control crack propagation. 

a. Tensile Strength 

There are considerable experimental difficulties in determining the true tensile strength 
of concrete. In direct tension tests, minor misalignments and stress concentrations in 
the gripping devices are apt to mar the results. For many years, tensile strength has 
been measured in terms of the modulus of rupture fr, the computed flexural tensile 
stress at which a test beam of plain concrete fractures. Because this nominal stress is 
computed on the assumption that concrete is an elastic material, and because this 
bending stress is localized at the outermost surface, it is apt to be larger than the 
strength of concrete in uniform axial tension. It is thus a measure of, but not identical 
with, the real axial tensile strength. 

More recently the result of the split-cylinder test has established itself as a 
measure of the tensile strength of concrete. A concrete cylinder, the same as is used for 
compressive tests, is inserted in a compression testing machine in the horizontal posi
tion, so that compression is applied uniformly along two opposite generators. Pads are 
inserted between the compression platens of the machine and the cylinder to equalize 
and distribute the pressure. It can be shown that in an elastic cylinder so loaded, a 
nearly uniform tensile stress of magnitude 2P /( TTdL) exists at right angles to the plane 
ofload application. Correspondingly, such cylinders, when tested, split into two halves 
along that plane, at a stress fct that can be computed from the above expression. P is 
the applied compressive load at failure, and d and L are the diameter and length of the 
cylinder, respectively. Because of local stress conditions at the load lines and the pres
ence of stresses at right angles to the aforementioned tension stresses, the results of 
the split-cylinder tests likewise are not identical with (but are believed to be a good 
measure of) the true axial tensile strength. The results of all types of tensile tests show 
considerably more scatter than those of compression tests. 

Tensile strength, however determined, does not correlate well with the compres
sive strength J;. It appears that for sand-and-gravel concrete, the tensile strength 
depends primarily on the strength of bond between hardened cement paste and 
aggregate, whereas for lightweight concretes it depends largely on the tensile strength 
of the porous aggregate. The compressive strength, on the other hand, is much less 
determined by these particular characteristics. 
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Better correlation is found between the various measures of tensile strength and 
the square root of the compressive strength. The direct tensile strength, for example, 
ranges from about 3 to 5~ for normal-density concretes, and from about 2 to 3~ 
for all-lightweight concrete. Typical ranges of values for direct tensile strength, split
cylinder strength, and modulus of rupture are summarized in Table 2.3. In these 
expressions, t: is expressed in psi units, and the resulting tensile strengths are 
obtained in psi. 

These approximate expressions show that tensile and compressive strengths are 
by no means proportional, and that any increase in compressive strength, such as that 
achieved by lowering the water-cement ratio, is accompanied by a much smaller per
centage increase in tensile strength. 

The ACI Code recommends that the modulus of rupture f, be taken to equal 
7.5vf: for normalweight concrete, and that this value be multiplied by 0.85 for 
"sand-lightweight" and 0.75 for "all-lightweight" concretes, giving values of 6.4 vJ: 
and 5.6vf:, respectively, for those materials. 

b. Tensile Fracture 

The failure of concrete in tension involves both the formation and the propagation 
of cracks. The field of fracture mechanics deals with the latter. While reinforced 
concrete structures have been successfully designed and built for over 150 years 
without the use of fracture mechanics, the brittle response of high-strength concretes 
(Section 2.12), in tension as well as compression, increases the importance of the 
fracture properties of the material as distinct from tensile strength. Research dealing 
with the shear strength of high-strength concrete beams and the bond between rein
forcing steel and high-strength concrete indicates relatively low increases in these 
structural properties with increases in concrete compressive strength (Refs. 2.33 and 
2.34). While shear and bond strength are associated with the VJ: for normal
strength concrete, tests of high-strength concrete indicate that increases in shear and 
bond strengths are well below values predicted using VJ:, indicating that concrete 
tensile strength alone is not the governing factor. An explanation for this behavior is 
provided by research at the University of Kansas and elsewhere (Refs. 2.35 and 
2.36) that demonstrates that the energy required to fully open a crack (i.e., after the 
crack has started to grow) is largely independent of compressive strength, water
cement ratio, and age. Design expressions reflecting this research are not yet 
available. The behavior is, however, recognized in the ACI Code by limitations on 
the maximum value of VJ: that may be used to calculate shear and bond strength, 
as will be discussed in Chapters 4 and 5. 

TABLE 2.3 
Approximate range of tensile strengths of concrete 

Direct tensile strength f,' 
Split-cylinder strength!,., 

Modulus of rupture f,. 

Normalweight 
Concrete, psi 

3 to 5v'f: 
6 to sv'f: 
8 to !2v'f: 

Lightweight 
Concrete, psi 

2 to 3v'f: 
4 to 6v'f: 
6 to sv'f: 
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2.10 STRENGTH UNDER COMBINED STRESS 

In many structural situations, concrete is subjected simultaneously to various stresses 
acting in various directions. For instance, in beams much of the concrete is subject 
simultaneously to compression and shear stresses, and in slabs and footings to com
pression in two perpendicular directions plus shear. By methods well known from the 
study of engineering mechanics, any state of combined stress, no matter how complex, 
can be reduced to three principal stresses acting at right angles to one another on an 
appropriately oriented elementary cube in the material. Any or all of the principal stresses 
can be either tension or compression. If any one of them is zero, a state of biaxial stress 
is said to exist; if two of them are zero, the state of stress is uniaxial, either simple com
pression or simple tension. In most cases, only the uniaxial strength properties of a 
material are known from simple tests, such as the cylinder strengthJ; and the tensile 
strength J;. For predicting the strengths of structures in which concrete is subject to 
biaxial or triaxial stress, it would be desirable to be able to calculate the strength of 
concrete in such states of stress, knowing from tests only either f,_' or J: andJ;. 

In spite of extensive and continuing research, no general theory of the strength 
of concrete under combined stress has yet emerged. Modifications of various strength 
theories, such as maximum stress, maximum strain, the Mohr-Coulomb, and the octa
hedral shear stress theories, all of which are discussed in structural mechanics texts, 
have been adapted with varying partial success to concrete. At present, none of these 
theories has been generally accepted, and many have obvious internal contradictions. 
The main difficulty in developing an adequate general strength theory lies in the 
highly nonhomogeneous nature of concrete, and in the degree to which its behavior at 
high stresses and at fracture is influenced by microcracking and other discontinuity 
phenomena (Refs. 2.8 and 2.37). 

However, the strength of concrete has been well established by tests, at least for 
the biaxial stress state (Refs. 2.38 and 2.39). Results may be presented in the form of 
an interaction diagram such as Fig. 2.8, which shows the strength in direction 1 as a 
function of the stress applied in direction 2. All stresses are normalized in terms of the 
uniaxial compressive strength J;. It is seen that in the quadrant representing biaxial 
compression a strength increase as great as about 20 percent over the uniaxial com
pressive strength is attained, the amount of increase depending upon the ratio of / 2 to 
f 1• In the biaxial tension quadrant, the strength in direction 1 is almost independent of 
stress in direction 2. When tension in direction 2 is combined with compression in 
direction 1, the compressive strength is reduced almost linearly, and vice versa. For 
example, lateral compression of about one-half the uniaxial compressive strength will 
reduce the tensile strength by almost one-half compared with its uniaxial value. This 
fact is of great importance in predicting diagonal tension cracking in deep beams or 
shear walls, for example. 

Experimental investigations into the triaxial strength of concrete have been few, 
due mainly to the practical difficulty of applying load in three directions simultane
ously without introducing significant restraint from the loading equipment (Ref. 2.40). 
From information now available, the following conclusions can be drawn relative to 
the triaxial strength of concrete: (1) in a state of equal triaxial compression, concrete 
strength may be an order of magnitude larger than the uniaxial compressive strength; 
(2) for equal biaxial compression combined with a smaller value of compression in the 
third direction, a strength increase greater than 20 percent can be expected; and (3) for 
stress states including compression combined with tension in at least one other direc
tion, the intermediate principal stress is of little consequence, and the compressive 
strength can be predicted safely based on Fig. 2.8. 



FIGURE 2.8 
Strength of concrete in 
biaxial stress. (Adaptedfrom 

Ref 2.39.) 
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In fact, the strength of concrete under combined stress cannot yet be calculated 
rationally, and, equally important, in many situations in concrete structures it is nearly 
impossible to calculate all of the acting stresses and their directions; these are two of 
the main reasons for continued reliance on tests. Because of this, the design of rein
forced concrete structures continues to be based more on extensive experimental infor
mation than on consistent analytical theory, particularly in the many situations where 
combined stresses occur. 

2.11 SHRINKAGE AND TEMPERATURE EFFECTS 

The deformations discussed in Section 2.8 were induced by stresses caused by exter
nal loads. Influences of a different nature cause concrete, even when free of any external 
loading, to undergo deformations and volume changes. The most important of these 
are shrinkage and the effects of temperature variations. 

a. Shrinkage 

As discussed in Sections 2.2 and 2.4, any workable concrete mix contains more water 
than is needed for hydration. If the concrete is exposed to air, the larger part of this 
free water evaporates in time, the rate and completeness of drying depending on 
ambient temperature and humidity conditions. As the concrete dries, it shrinks in 
volume, due initially to the capillary tension that develops in the water remaining in 
the concrete (Ref. 2.8). Conversely, if dry concrete is immersed in water, it expands, 
regaining much of the volume loss from prior shrinkage. Shrinkage, which continues 
at a decreasing rate for several months, depending on the configuration of the member, 
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FIGURE2.9 
Effect of water content on 
drying shrinkage. (From 

Ref 2.3.) 

is a detrimental property of concrete in several respects. When not adequately 
controlled, it will cause unsightly and often deleterious cracks, as in slabs, walls, 
etc. In structures that are statically indeterminate (and most concrete structures are), 
it can cause large and harmful stresses. In prestressed concrete it leads to partial 
loss of initial prestress. For these reasons it is essential that shrinkage be minimized 
and controlled. 

As is clear from the nature of the process, a key factor in determining the amount 
of final shrinkage is the unit water content of the fresh concrete. This is illustrated in 
Fig. 2.9, which shows the amount of shrinkage for varying amounts of mixing water. 
The same aggregates were used for all tests, but in addition to and independently of 
the water content, the amount of cement was also varied from 376 to 1034 lb/yd3 of 
concrete. This very large variation of cement content causes a 20 to 30 percent varia
tion in shrinkage strain for water contents between 250 to 350 lb/yd3, the range used 
for most structural concretes. Increasing the cement content increases the cement paste 
constituent of the concrete, where the shrinkage actually takes place, while reducing 
the aggregate content. Since most aggregates do not contribute to shrinkage, an 
increase in aggregate content can significantly decrease shrinkage. This is shown in 
Fig. 2.10, which compares the shrinkage of concretes with various aggregate contents 
with the shrinkage obtained for neat cement paste (cement and water alone). For 
example, increasing the aggregate content from 71 to 74 percent (at the same water
cement ratio) results in a 20 percent reduction in shrinkage (Ref. 2.29). Increased 
aggregate content may be obtained through the use of (1) a larger maximum size 
coarse aggregate (which also reduces the water content required for a given workabil
ity), (2) a concrete with lower workability, and (3) chemical admixtures to increase 
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FIGURE2.10 
Influence of aggregate 
content in concrete (by 
volume) on tbe ratio of the 
shrinkage of concrete to the 
shrinkage of neat cement 
paste. (Adapted from Ref 2.29, 

based on data in Ref 2.41.) 

0.8 

.Q 

"§ 0.6 
Q) 
Cl 
]! 
.§ 0.4 
.s::: 
Cl) 

0.2 

20 

MATERIALS 51 

40 60 80 100 
Aggregate content, % 

workability at lower water contents. It is evident that an effective means of reducing 
shrinkage involves both a reduction in water content and an increase in aggregate con
tent. In addition, prolonged and careful curing is beneficial for shrinkage control. 

Values of final shrinkage for ordinary concretes are generally on the order of 
400 X 10-6 to 800 X 10-6, depending on the initial water content, ambient tempera
ture and humidity conditions, and the nature of the aggregate. Highly absorptive 
aggregates with low moduli of elasticity, such as some sandstones and slates, result in 
shrinkage values 2 or more times those obtained with less absorptive materials, such 
as granites and some limestones. Some lightweight aggregates, in view of their great 
porosity, easily result in much larger shrinkage values than ordinary concretes. 

For some purposes, such as predicting the time-dependent loss of force in 
prestressed concrete beams, it is important to estimate the amount of shrinkage as a func
tion of time. Long-term studies (Ref. 2.26) show that, for moist-cured concrete at any 
time t after the initial 7 days, shrinkage can be predicted satisfactorily by the equation 

t 
€ ----e 

sh,t - 35 + t sh,u (2.9) 

where € sh,t is the unit shrinkage strain at time t in days and € sh,u is the ultimate value 
after a long period of time. Equation (2.9) pertains to "standard" conditions, defined 
in Ref. 2.26 to exist for humidity not in excess of 40 percent and for an average 
thickness of member of 6 in., and it applies both for normalweight and lightweight 
concretes. Modification factors are applied for nonstandard conditions, and separate 
equations are given for steam-cured members. 

For structures in which a reduction in cracking is of particular importance, such 
as bridge decks, pavement slabs, and liquid storage tanks, the use of expansive 
cement concrete is appropriate. Shrinkage-compensating cement is constituted and 
proportioned such that the concrete will increase in volume after setting and during 
hardening. When the concrete is restrained by reinforcement or other means, the 
tendency to expand will result in compression. With subsequent drying, the shrink
age so produced, instead of causing a tension stress in the concrete that would result 
in cracking, merely reduces or relieves the expansive strains caused by the initial 
expansion (Ref. 2.42). Expansive cement is produced by adding a source of reactive 
aluminate to ordinary portland cement; approximately 90 percent of shrinkage
compensating cement is made up of the constituents of conventional portland cement. 



52 DESIGN OF CONCRETE STRUCTURES Chapter 2 

Of the three main types of expansive cements produced, only type K is commercially 
available in the United States; it is about 20 percent more expensive than ordinary 
portland cement (Ref. 2.43). Requirements for expansive cement are given in ASTM 
C845, "Standard Specification for Expansive Hydraulic Cement." The usual admix
tures can be used in shrinkage-compensating concrete, but trial mixes are necessary 
because some admixtures, particularly air-entraining agents, are not compatible with 
certain expansive cements. 

b. Effect of Temperature Change 

Like most other materials, concrete expands with increasing temperature and contracts 
with decreasing temperature. The effects of such volume changes are similar to those 
caused by shrinkage; i.e., temperature contraction can lead to objectionable cracking, 
particularly when superimposed on shrinkage. In indeterminate structures, deforma
tions due to temperature changes can cause large and occasionally harmful stresses. 

The coefficient of thermal expansion and contraction varies somewhat, depend
ing upon the type of aggregate and richness of the mix. It is generally within the 
range of 4 X 10-6 to 7 X 10-6 per 0 F. A value of 5.5 X 10-6 is generally accepted 
as satisfactory for calculating stresses and deformations caused by temperature changes 
(Ref. 2.8). 

2.12 HIGH-STRENGTH CONCRETE 

There are a number of applications in which high-strength concrete will provide 
improved structural performance. Although the exact definition is arbitrary, the term 
generally refers to concrete having uniaxial compressive strength in the range of about 
8000 to 20,000 psi or higher. Such concretes can be made using carefully selected but 
widely available cements, sands, and stone; certain admixtures including high-range 
water-reducing superplasticizers, fly ash, and silica fume; plus very careful quality 
control during production (Refs. 2.44 and 2.45). In addition to higher strength in 
compression, most other engineering properties are improved, leading to use of the 
alternative term high-performance concrete. 

The most common application of high-strength concretes has been in the columns 
of tall concrete buildings, where normal concrete would result in unacceptably large 
cross sections, with loss of valuable floor space. It has been shown that the use of the 
more expensive high-strength concrete mixes in columns not only saves floor area but 
also is more economical than increasing the amount of steel reinforcement. Concrete 
of up to 12,000 psi was specified for the lower-story columns of 311 South Wacker 
Drive in Chicago ( see Fig. 2.11 ), a pioneering structure with a total height of 946 ft. 
Formerly holding the height record, it has been superseded by taller buildings; the 
present record is held by the tallest building and the tallest structure of any type in the 
world, the Burj Dubai in Dubai, United Arab Emirates, shown in Fig. 18.2, which has 
a total height in excess of 2100 ft. 

For bridges, too, smaller cross sections bring significant advantages, and the 
resulting reduction in dead load permits longer spans. The higher elastic modulus and 
lower creep coefficient result in reduced initial and long-term deflections, and in the 
case of prestressed concrete bridges, initial and time-dependent losses of prestress 
force are less. Other recent applications of high-strength concrete include offshore oil 
structures, parking garages, bridge deck overlays, dam spillways, warehouses, and 
heavy industrial slabs (Ref. 2.46). 
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FIGURE2.ll FIGURE2.12 
311 Soulh Wacker Drive, Chicago, which is among lhe 
world's tallest buildings. High-strength concrete with/; = 
12,000 psi was used in the lower stories. (Courresy of Pon/and 

Cemem Associa1ion.) 

High-strength concrete Lest cylinder after uniaxial loading to 
failure; note the typically smooth fracture surface, with little 
aggregate interlock. 

An essential requirement for high-strength concrete is a low water--cementitious 
material ratio. For normal concretes, this usually falls in the range from about 0.40 to 0.60 
by weight, but for high-strength mixes it may be 0.25 or even lower. To permit proper 
placement of what would otherwise be a zero slump mix, high-range water-reducing 
admixtures, or superplasticizers, are essential and may increase slumps to as much as 6 
or 8 in. Other additives include fly ash and, most notably, silica fume (see Section 2.7). 

Much research in recent years has been devoted to establishing the fundamental 
and engineering properties of high-strength concretes, as well as the engineering char
acteristics of structural members made with the material (Refs. 2.33, 2.34, and 2.47 to 
2.53). A large body of information is now available, permitting the engineer to use 
high-strength concrete with confidence when its advantages justify the higher cost. The 
compressive strength curves in Figs. 2.3 and 2.4 illustrate important differences com
pared with normal concrete, including a higher elastic modulus and an extended range 
of linear elastic response. Creep coefficients are reduced, as indicated in Table 2.2. 
Disadvantages include brittle behavior in compression (see Fig. 2. 12), somewhat 
reduced ultimate strain capacity, and an increased tendency to crack when drying 
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shrinkage is restrained (Ref. 2.54), the latter resulting from the lower creep exhibited 
by the material. Strength under sustained load is a higher fraction of standard cylinder 
strength (Refs. 2.30 and 2.31), and high-strength concrete exhibits improved durability 
and abrasion resistance (Refs. 2.51 and 2.55). As broader experience is gained in prac
tical applications, and as design codes are gradually updated to recognize the special 
properties of higher-strength concretes now available, much wider use can be expected. 

2.13 REINFORCING STEELS FOR CONCRETE 

The useful strength of ordinary reinforcing steels in tension as well as compression, 
i.e., the yield strength, is about 15 times the compressive strength of common struc
tural concrete and well over 100 times its tensile strength. On the other hand, steel is 
a high-cost material compared with concrete. It follows that the two materials are best 
used in combination if the concrete is made to resist the compressive stresses and the 
steel the tensile stresses. Thus, in reinforced concrete beams, the concrete resists the 
compressive force, longitudinal steel reinforcing bars are located close to the tension 
face to resist the tension force, and usually additional steel bars are so disposed that 
they resist the inclined tension stresses that are caused by the shear force in the beams. 
However, reinforcement is also used for resisting compressive forces primarily where 
it is desired to reduce the cross-sectional dimensions of compression members, as in 
the lower-floor columns of multistory buildings. Even if no such necessity exists, a 
minimum amount of reinforcement is placed in all compression members to safeguard 
them against the effects of small accidental bending moments that might crack and 
even fail an unreinforced member. 

For most effective reinforcing action, it is essential that steel and concrete 
deform together, i.e., that there be a sufficiently strong bond between the two materi
als to ensure that no relative movements of the steel bars and the surrounding concrete 
occur. This bond is provided by the relatively large chemical adhesion that develops 
at the steel-concrete interface, by the natural roughness of the mill scale of hot-rolled 
reinforcing bars and by the closely spaced rib-shaped surface deformations with 
which reinforcing bars are furnished to provide a high degree of interlocking of the 
two materials. 

Additional features that make for the satisfactory joint performance of steel and 
concrete are the following: 

1. The thermal expansion coefficients of the two materials, about 6.5 X 10-6 for 
steel vs. an average of 5.5 X 10-6 for concrete, are sufficiently close to forestall 
cracking and other undesirable effects of differential thermal deformations. 

2. While the corrosion resistance of bare steel is poor, the concrete that surrounds 
the steel reinforcement provides excellent corrosion protection, minimizing cor
rosion problems and corresponding maintenance costs. 

3. The fire resistance of unprotected steel is impaired by its high thermal conduc
tivity and by the fact that its strength decreases sizably at high temperatures. 
Conversely, the thermal conductivity of concrete is relatively low. Thus, damage 
caused by even prolonged fire exposure, if any, is generally limited to the outer 
layer of concrete, and a moderate amount of concrete cover provides sufficient 
thermal insulation for the embedded reinforcement. 

Steel is used in two different ways in concrete structures: as reinforcing steel and 
as prestressing steel. Reinforcing steel is placed in the forms prior to casting of the 
concrete. Stresses in the steel, as in the hardened concrete, are caused only by the loads 



FIGURE2.13 
Types of deformed 
reinforcing bars. 
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on the structure, except for possible parasitic stresses from shrinkage or similar causes. 
In contrast, in prestressed concrete structures, large tension forces are applied to the 
reinforcement prior to letting it act jointly with the concrete in resisting external loads. 
The steels for these two uses are very different and will be discussed separately. 

2.14 REINFORCING BARS 

The most common type of reinforcing steel (as distinct from prestressing steel) is in 
the form of round bars, often called rebars, available in a large range of diameters 
from about} to 1} in. for ordinary applications and in two heavy bar sizes of about I¾ 
and 2¼ in. These bars are furnished with surface deformations for the purpose of 
increasing resistance to slip between steel and concrete. Minimum requirements for 
these deformations (spacing, projection, etc.) have been developed in experimental 
research. Different bar producers use different patterns, all of which satisfy these 
requirements. Figure 2.13 shows a variety of current types of deformations. 

For many years, bar sizes have been designated by numbers, Nos. 3 to 11 being 
commonly used and Nos. 14 and 18 representing the two special large-sized bars pre
viously mentioned. Designation by number, instead of by diameter, was introduced 
because the surface deformations make it impossible to define a single easily mea
sured value of the diameter. The numbers are so arranged that the unit in the number 
designation corresponds closely to the number of ½ in. of diameter size. A No. 5 bar, 
for example, bas a norninal diameter of i in. Bar sizes are rolled into the surface of 
the bars for easy identification. 

For a number of years, ASTM standards have included a second designation for 
bar size, the International System of Units (Sn, with the size being identified using the 
nominal diameter in millimeters. To limit the number of bar designations, reinforcing 
bar producers in the United States have converted to SI for marking the bars. Thus, 
Nos. 3 to 11 bars are marked with Nos. 10 to 36, and Nos. 14 and 18 bars with Nos. 43 
and 57. Both systems are still used in the ASTM standards, and the older, customary 
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system is used in the 2008 ACI Code. To recognize the dual system of identifying and 
marking the bars, the customary bar designation system is retained throughout this text, 
followed by the SI bar designations in parentheses, such as No. 6 (No. 19). Table A.1 
of Appendix A gives areas and weights of standard bars. Tables A.2 and A.3 give similar 
information for groups of bars. 

a. Grades and Strengths 

In reinforced concrete, a long-term trend is evident toward the use of higher-strength 
materials, both steel and concrete. Reinforcing bars with 40 ksi yield stress, once stan
dard, have largely been replaced by bars with 60 ksi yield stress, both because they are 
more economical and because their use tends to reduce steel congestion in the forms. 
Bars with a yield stress of 75 ksi are often used in columns, and bars with a yield stress 
of 100 ksi are allowed to be used as confining reinforcement. Table 2.4 lists all presently 
available reinforcing steels, their grade designations, the ASTM specifications that 
define their properties (including deformations) in detail, and their two main minimum 
specified strength values. Grade 40 bars are no longer available in sizes larger than 
No. 6 (No. 19) and Grade 50 bars are available in sizes up to No. 8 (No. 25).t 

The conversion to SI units described above also applies to the strength grades. 
Thus, Grade 40 is also designated as Grade 280 (for a yield strength of 280 MPa), 
Grade 60 is designated Grade 420, Grade 75 is designated Grade 520, and Grade 100 
is designated Grade 690. The values 280, 420, 520, and 690 result in minimum yield 
strengths of 40.6, 60.9, 75.4, and 100.1 ksi; i.e., reinforcing steel is slightly stronger than 
implied by the grade in ksi. Grades based on inch-pound units will be used in this text. 

Welding of reinforcing bars in making splices, or for convenience in fabricating 
reinforcing cages for placement in the forms, may result in metallurgical changes that 
reduce both strength and ductility, and special restrictions must be placed both on the 
type of steel used and the welding procedures. The provisions of ASTM A 706 relate 
specifically to welding. 

The ACI Code permits reinforcing steels up to J;, = 80 ksi for most applications. 
Such high-strength steels usually yield gradually but have no yield plateau (see Fig. 2.15). 
In this situation it is required that at the specified minimum yield strength the total 
strain not exceed 0.0035. This is necessary to make current design methods, which 
were developed for sharp-yielding steels with a yield plateau, applicable to such 
higher-strength steels. Under special circumstances, steel in this higher-strength range 
has its place, e.g., in lower-story columns of high-rise buildings. 

To allow bars of various grades and sizes to be easily distinguished, which is 
necessary to avoid accidental use of lower-strength or smaller-size bars than called for 
in the design, all deformed bars are furnished with rolled-in markings. These identify 
the producing mill (usually with an initial), the bar size (Nos. 3 to 18 under the inch
pound system and Nos. 10 to 57 under the SI), the type of steel (S for carbon steel, 
W for low-alloy steel, a rail sign for rail steel, A for axle steel, and CS for low-carbon 
chromium steel, corresponding, respectively, to ASTM Specifications A615, A706, 
A996 for both rail and axle steel, and A1035), and an additional marking to identify 
higher-strength steels. Grade 60 ( 420) bars have either one longitudinal line or the 
number 60 (4); Grade 75 (520) bars have either two longitudinal lines or the number 
75 (5); Grade 100 (690) bars have either three longitudinal bars or the number 100 (6). 
The identification marks are shown in Fig. 2.14. As mentioned earlier, SI markings are 
used exclusively for bars rolled by mills in the United States. 

t In practice, very little Grade 50 reinforcement is produced. 



TABLE 2.4 
Summary of minimum ASTM strength requirements 

ASTM 
Product Specification 

Reinforcing bars A615 

A706 

A996 

Al035 

Deformed bar mats A184 

Zinc-coated bars A767 

Epoxy-coated bars A775, A934 

Stainless-steel barsh A955 

Wire 
Plain A82 

Deformed A496 

Welded wire reinforcement 
Plain A185 

Wl.2 and larger 
Smaller than Wl.2 

Deformed A497 

Prestressing tendons 
Seven-wire strand A416 

Wire A421 

Bars A722 

Compacted strandb A779 

a But not Jess than 1.25 times the actual yield strength. 
b Not listed in ACI 318. 
c Minimum strength depends on wire size. 

Designation 

Grade 40 
Grade 60 
Grade 75 

Grade 60 

Grade 40 
Grade 50 
Grade 60 

Grade 100 

Grade 250 
(stress-relieved) 

Grade 250 
(low-relaxation) 

Grade 270 
(stress-relieved) 

Grade 270 
(low-relaxation) 

Stress-relieved 

Low-relaxation 

Type I (plain) 
Type II ( deformed) 

Type 245 
Type 260 
Type 270 
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Minimum Yield Minimum Tensile 
Strength, psi (MPa) Strength, psi (MPa) 

40,000 (280) 60,000 (420) 
60,000 (420) 90,000 (620) 
75,000 (520) 100,000 (690) 

60,000 (420) 80,000 (550)a 
[78,000 (540) maximum] 

40,000 (280) 60,000 (420) 
50,000 (350) 80,000 (550) 
60,000 (420) 90,000 (620) 

100,000 (690) 150,000 (1030) 

Same as reinforcing bars 

Same as reinforcing bars 

Same as reinforcing bars 

Same as reinforcing bars 

70,000 (480) 80,000 (550) 

75,000 (515) 85,000 (585) 

65,000 (450) 75,000 (515) 
56,000 (385) 70,000 (485) 

70,000 (480) 80,000 (550) 

212,500 (1465) 250,000 ( 1725) 

225,000 (1555) 250,000 ( 1725) 

229,500 (1580) 270,000 (1860) 

243,000 (1675) 270,000 (1860) 

199,750 (1375) to 235,000 (1620) to 
212,500 (1465)< 250,000 (1725)" 

211,500 (1455) to 235,000 (1620) to 
225,000 (1550)" 250,000 ( 1725)" 

127,500 (800) 150,000 (1035) 
120,000 (825) 150,000 (1035) 

241,900 (1480) 247,000 (1700) 
228,800 (1575) 263,000 (1810) 
234,900 (1620) 270,000 (1860) 



Inch-pound 

Longitudinal ribs 

Grade line 
(one line only) 

Grade 60 

Longitudinal ribs 

Grade line 
(two lines only) 

Grade 75 

Longitudinal rib 

Letter or symbol 
for producing mill 

Bar size No. 6 

Type steel 

Grades 40 and 50 

(a) 

(b) 

(c) 

SI 

Longitudinal ribs 

Grade line 
(one line only) 

Grade420 

Longitudinal ribs 

Grade line 
(two lines only) 

Grade 520 

Longitudinal rib 

Letter or symbol 
for producing mill 

Type steel 

Grades 280 and 350 



MATERIALS 59 

FIGURE2.14 b. Stress-Strain Curves 
Marking system for 
reinforcing bars meeting 
ASTM Specifications A615, 
A706, and A996: (a) Grades 
60 and 420; (b) Grades 75 
and 520; (c) Grades 40, 50, 
280, and 350. (Adapted from 

Ref 2.56.) (Facing page.) 

c. 

FIGURE 2.15 
Typical stress-strain curves 
for reinforcing bars. 

The two chief numerical characteristics that determine the character of bar reinforce
ment are its yield point (generally identical in tension and compression) and its 
modulus of elasticity Es. The latter is practically the same for all reinforcing steels (but 
not for prestressing steels) and is taken as Es = 29,000,000 psi. 

In addition, however, the shape of the stress-strain curve, and particularly of its 
initial portion, has significant influence on the performance of reinforced concrete 
members. Typical stress-strain curves for U.S. reinforcing steels are shown in 
Fig. 2.15. The complete stress-strain curves are shown in the left part of the figure; the 
right part gives the initial portions of the curves magnified 10 times. 

Low-carbon steels, typified by the Grade 40 curve, show an elastic portion 
followed by a yield plateau, i.e., a horizontal portion of the curve where strain 
continues to increase at constant stress. For such steels, the yield point is that stress 
at which the yield plateau establishes itself. With further strains, the stress begins 
to increase again, though at a slower rate, a process that is known as strain
hardening. The curve flattens out when the tensile strength is reached; it then turns 
down until fracture occurs. Higher-strength carbon steels, e.g., those with 60 ksi 
yield stress or higher, either have a yield plateau of much shorter length or enter 
strain-hardening immediately without any continued yielding at constant stress. In 
the latter case, the ACI Code specifies that the yield stress /y be the stress corre
sponding to a strain of 0.0035, as shown in Fig. 2.15. Low-alloy, high-strength 
steels rarely show any yield plateau and usually enter strain-hardening immediately 
upon beginning to yield. · 

Fatigue Strength 

In highway bridges and some other situations, both steel and concrete are subject to 
large numbers of stress fluctuations. Under such conditions, steel, just like concrete 
(Section 2.8c), is subject to fatigue. In metal fatigue, one or more microscopic cracks 
form after cyclic stress has been applied a significant number of times. These fatigue 

140 140 
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]i 80 
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40 40 
Grade 40 
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0 0 0 0 
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cracks occur at points of stress concentrations or other discontinuities and gradually 
increase with increasing numbers of stress fluctuations. This reduces the remaining 
uncracked cross-sectional area of the bar until it becomes too small to resist the 
applied force. At this point the bar fails in a sudden, brittle manner. 

For reinforcing bars it has been found (Refs. 2.32 and 2.57) that the fatigue 
strength, i.e., the stress at which a given stress fluctuation betweenfmax andfmin can be 
applied 2 million times or more without causing failure, is practically independent of 
the grade of steel. It has also been found that the stress range, i.e., the algebraic dif
ference between maximum and minimum stress,f1 = f max - f min, that can be sustained 
without fatigue failure depends onfmin· Further, in deformed bars the degree of stress 
concentration at the location where the deformation joins the main cylindrical body of 
the bar tends to reduce the safe stress range. This stress concentration depends on the 
ratio r/h, where r is the base radius of the deformation and hits height. The radius r 
is the transition radius from the surface of the bar to that of the deformation; it is a 
fairly uncertain quantity that changes with roll wear as bars are being rolled. 

On the basis of extensive tests (Ref. 2.57), the following formula has been devel
oped for design: 

r 
fr = 21 - 0.33fmin + 8 h (2.10) 

where fr = safe stress range, ksi 
!min = minimum stress; positive if tension, negative if compression 
r/h = ratio of base radius to height of rolled-on deformation (in the common 

situation where r/h is not known, a value of 0.3 may be used) 

Where bars are exposed to fatigue regimes, stress concentrations such as welds 
or sharp bends should be avoided since they may impair fatigue strength. 

d. Coated Reinforcing Bars 

Galvanized or epoxy-coated reinforcing bars are often specified to minimize corrosion 
of reinforcement and consequent spalling of concrete under severe environmental con
ditions, such as in bridge decks or parking garages subject to deicing chemicals, port 
and marine structures, and wastewater treatment plants. 

ASTM A 767, "Standard Specification for Zinc-Coated (Galvanized) Steel Bars 
for Concrete Reinforcement," includes requirements for the zinc coating material, the 
galvanizing process, the class or weight of coating, finish and adherence of coating, 
and the method of fabrication. Bars are usually galvanized after cutting and bending. 
Supplementary requirements pertain to coating of sheared ends and repair of damaged 
coating if bars are fabricated after galvanizing. 

Epoxy-coated bars, presently more widely used than galvanized bars, are gov
erned by ASTM A 775, "Standard Specification for Epoxy-Coated Reinforcing Steel 
Bars," which includes requirements for the coating material, surface preparation 
prior to coating, method of application, and limits on coating thickness, and by 
ASTM A934, "Standard Specification for Epoxy-Coated Prefabricated Steel 
Reinforcing Bars." Under ASTM A775, the coating is applied to straight bars in a 
production-line operation, and the bars are cut and bent after coating. Under ASTM 
A934, bars are bent to final shape prior to coating. Cut ends and small spots of dam
aged coating are suitably repaired after fabrication. Extra care is required in the field 
to ensure that the coating is not damaged during shipment and placing and that 
repairs are made if necessary. 
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2.15 WELDED WIRE REINFORCEMENT 

Apart from single reinforcing bars, welded wire reinforcement (also described as 
welded wire fabric) is often used for reinforcing slabs and other surfaces, such as shells, 
and for shear reinforcement in thin beam webs, particularly in prestressed beams. 
Welded wire reinforcement consists of sets of longitudinal and transverse cold-drawn 
steel wires at right angles to each other and welded together at all points of intersec
tion. The size and spacing of wires may be the same in both directions or may be 
different, depending on the requirements of the design. 

The notation used to describe the type and size of welded wire fabric involves a 
letter-number combination. ASTM uses the letter "W" to designate smooth wire and 
letter "D" to describe deformed wire. The number following the letter gives the cross
sectional area of the wire in hundredths of a square inch. For example, a W5.0 wire is 
a smooth wire with a cross-sectional area of 0.05 in2• A W5.5 wire has a cross-sectional 
area of 0.055 in2• D6.0 indicates a deformed wire with a cross-sectional area of 
0.06 in2• Welded wire fabric having a designation 4 X 4 - W5.0 X W5.0 has wire 
spacings 4 in. in each way with smooth wire of cross-sectional area 0.05 in2 in each 
direction. Sizes and spacings for common types of welded wire fabric and cross
sectional areas of steel per foot, as well as weight per 100 ft2, are shown in Table A.12 
of Appendix A. 

ASTM Specifications A185 and A497 pertain to smooth and deformed welded 
wire fabric, respectively, as shown in Table 2.4. Because the yield stresses shown ar.e 
specified at a strain of 0.005, the ACI Code requires that J;, be taken equal to 60 ksi 
unless the stress at a strain of 0.0035 is used. 

2.16 PRESTRESSING STEELS 

Prestressing steel is used in three forms: round wires, stranded cable, and alloy steel 
bars. Prestressing wire ranges in diameter from 0.192 to 0.276 in. It is made by cold
drawing high-carbon steel after which the wire is stress-relieved by heat treatment to 
produce the prescribed mechanical properties. Wires are normally bundled in groups of 
up to about 50 individual wires to produce prestressing tendons of the required strength. 
Stranded cable, more common than wire in U.S. practice, is fabricated with six wires 
wound around a seventh of slightly larger diameter. The pitch of the spiral winding is 
between 12 and 16 times the nominal diameter of the strand. Strand diameters range 
from 0.250 to 0.700 in. Alloy steel bars for prestressing are available in diameters from 
0.750 to 1.375 in. as plain round bars and from 0.625 to 2.50 in. as deformed bars. 
Specific requirements for prestressing steels are found in ASTM A421, "Standard 
Specification for Uncoated Stress-Relieved Steel Wire for Prestressed Concrete"; 
ASTM A416, "Standard Specification for Steel Strand, Uncoated Seven-Wire Stress
Relieved for Prestressed Concrete"; and ASTM A 722, "Standard Specification for 
Uncoated High-Strength Steel Bar for Prestressing Concrete." Table A.15 of Appendix 
A provides design information for U.S. prestressing steels. 

a. Grades and Strengths 

The tensile strengths of prestressing steels range from about 2.5 to 6 times the yield 
strengths of commonly used reinforcing bars. The grade designations correspond to 
the minimum specified tensile strength in ksi. For the widely used seven-wire strand, 
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FIGURE 2.16 
Typical stress-strain curves 
for prestressing steels. 

three grades are available: Grade 250 U;,u = 250 ksi), Grade 270, and Grade 300, 
although the last is not yet recognized in ASTM A421. Grade 270 strand is used most 
often. For alloy steel bars, two grades are used: the regular Grade 150 is most com
mon, but special Grade 160 bars may be ordered. Round wires may be obtained in 
Grades 235, 240, and 250, depending on diameter. 

b. Stress-Strain Curves 

Figure 2.16 shows stress-strain curves for prestressing wires, strand, and alloy bars of 
various grades. For comparison, the stress-strain curve for a Grade 60 reinforcing bar 
is also shown. It is seen that, in contrast to reinforcing bars, prestressing steels do not 
show a sharp yield point or yield plateau; i.e., they do not yield at constant or nearly 
constant stress. Yielding develops gradually, and in the inelastic range the curve con
tinues to rise smoothly until the tensile strength is reached. Because well-defined 
yielding is not observed in these steels, the yield strength is somewhat arbitrarily defined 
as the stress at a total elongation of 1 percent for strand and wire and at 0. 7 percent for 
alloy steel bars. Figure 2.16 shows that the yield strengths so defined represent a good 
limit below which stress and strain are fairly proportional, and above which strain 
increases much more rapidly with increasing stress. It is also seen that the spread 
between tensile strength and yield strength is smaller in prestressing steels than in 
reinforcing steels. It may further be noted that prestressing steels have significantly 
less ductility. 
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While the modulus of elasticity Es for bar reinforcement is taken as 29,000,000 psi, 
the effective modulus of prestressing steel varies, depending on the type of steel 
(e.g., strand vs. wire or bars) and type ofuse, and is best determined by test or supplied 
by the manufacturer. For unhanded strand (i.e., strand not embedded in concrete), the 
modulus may be as low as 26,000,000 psi. For bonded strand, Es is usually about 
27,000,000 psi, while for smooth round wires Es is about 29,000,000 psi, the same 
as for reinforcing bars. The elastic modulus of alloy steel bars is usually taken as 
Es = 27,000,000 psi. 

c. Relaxation 

When prestressing steel is stressed to the levels that are customary during initial ten
sioning and at service loads, it exhibits a property known as relaxation. Relaxation is 
defined as the loss of stress in stressed material held at constant length. (The same 
basic phenomenon is known as creep when defined in terms of change in strain of a 
material under constant stress.) To be specific, if a length of prestressing steel is 
stressed to a sizable fraction of its yield strength/PY (say, 80 to 90 percent) and held at 
a constant strain between fixed points such as the ends of a beam, the steel stress /2, 
will gradually decrease from its initial value /p;· In prestressed concrete members this 
stress relaxation is important because it modifies the internal stresses in the concrete 
and changes the deflections of the beam some time after initial prestress was applied. 

The amount of relaxation varies, depending on the type and grade of steel, the 
time under load, and the initial stress level. A satisfactory estimate for ordinary stress
relieved strand and wires can be obtained from Eq. (2.11), which was derived from 
more than 400 relaxation tests of up to 9 years' duration: 

(2.11) 

where JP is the final stress after t hours, /p; is the initial stress, and f PY is the nominal 
yield stress (Ref. 2.58). In Eq. (2.11 ), log tis to the base 10, and/p;//py not less than 0.55; 
below that value essentially no relaxation occurs. 

The tests on which Eq. (2.11) is based were carried out on round, stress-relieved 
wires and are equally applicable to stress-relieved strand. In the absence of other infor
mation, results may be applied to alloy steel bars as well. 

Low-relaxation strand has replaced stress-relieved strand as the industry stan
dard. According to ASTM A416, such steel must exhibit relaxation after 1000 hours 
of not more than 2.5 percent when initially stressed to 70 percent of specified tensile 
strength and not more than 3.5 percent when loaded to 80 percent of tensile strength. 
For low-relaxation strand, Eq. (2.11) is replaced by 

J;, log t (J;,; ) - = 1 - - - - 0.55 
ft,; 45 J;,y 

(2.12) 

REFERENCES 
2.1. "Guide for Use of Normal Weight and Heavyweight Aggregate in Concrete," ACI Committee 221, AC/ 

Manual of Concrete Practice, Part 1, 2009. 
2.2. "Guide for Structural Lightweight Aggregate Concrete," ACI Committee 213, AC! Manual of Concrete 

Practice, Part 1, 2009. 



64 DESIGN OF CONCRETE STRUCTURES Chapter 2 

2.3. G. E. Troxell, H. E. Davis, and J. W. Kelly, Composition and Properties of Concrete, 2nd ed., McGraw
Hill, New York, 1968. 

2.4. T. T. C. Hsu and F. 0. Slate, "Tensile Bond Strength between Aggregate and Cement Paste or Mortar," J. 
AC/, vol. 60, no. 4, 1963, pp. 465--486. 

2.5. "Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete," ACI 
Committee 211, ACI Manual of Concrete Practice, Part 1, 2009. 

2.6. "Standard Practice for Selecting Proportions for Structural Lightweight Concrete," ACI Committee 211, 
ACI Manual of Concrete Practice, Part I, 2009. 

2.7. S. A. Kosmatka, B. Kerkhoff, and W. C. Panarese, Design and Control of Concrete Mixtures, 14th ed., 
Portland Cement Association, Skokie, IL, 2003. 

2.8. S. Mindess, J. F. Young, and D. Darwin, Concrete, 2nd ed., Prentice-Hall, Upper Saddle River, NJ, 2003. 
2.9. "Guide for Consolidation of Concrete," ACI Committee 309, ACI Manual of Concrete Practice, Part 2, 

2009. 
2.10. "Guide for Measuring, Transporting, and Placing Concrete," ACI Committee 304, ACI Manual of 

Concrete Practice, Part 2, 2009. 
2.11. "Cold Weather Concreting," ACI Committee 306, AC[ Manual of Concrete Practice, Part 2, 2009. 
2.12. "Recommended Practice for Evaluation of Strength Test Results of Concrete," ACI Committee 214, ACI 

Manual of Concrete Practice, Part 1, 2009. 
2.13. "Chemical Admixtures for Concrete," ACI Committee 212, AC/ Manual of Concrete Practice, Part I, 

2009. 
2.14. K. C. Hover, "Why Is There Air in Concrete?" Coner. Construction, vol. 38, no. I, 1993, pp. 11-15. 
2.15. "Guide for the Use of High-Range Water-Reducing Admixtures (Superplasticizers) in Concrete," ACI 

Committee 212, AC[ Manual of Concrete Practice, Part I, 2009. 
2.16. A. A. Ramezanianpour, V. Sivasundaram, and V. M. Malhotra, "Superplasticizers: Their Effect on the 

Strength Properties of Concrete," Coner. Intl., vol. 17, no. 4, 1995, pp. 30---35. 
2.17. R. J. Peterman, "The Effects of As-Cast Depth and Concrete Fluidity on Strand Bond," PCI J., vol. 52, 

no.3,2007,pp. 72-101. 
2.18. "Use of Fly Ash in Concrete," ACI Committee 232, ACI Manual of Concrete Practice, Part I, 2009. 
2.19. "Guide for the Use of Silica Fume in Concrete," ACI Committee 234, ACI Manual of Concrete Practice, 

Part I , 2009. 
2.20. "Guide to Use of Slag Cement in Concrete and Mortar;' ACI Committee 233, ACI Manual of Concrete 

Practice, Part 1, 2009. 
2.21. V. M. Malhotra, "Fly Ash, Silica Fume, and Rice-Husk Ash in Concrete: A Review," Coner. Intl., vol. 15, 

no.4, 1993,pp.23-28. 
2.22. G. Detwiler, "High-Strength Silica Fume Concrete-Chicago Style," Coner. Intl., vol. 14, no. 10, 1992, 

pp. 32-36. 
2.23. R. L. Carrasquillo, A. H. Nilson, and F. 0. Slate, "Properties of High Strength Concrete Subject to Short 

Term Loads," J. AC!, vol. 78, no. 3, 1981, pp. 171-178. 
2.24. F. 0. Slate, A. H. Nilson, and S. Martinez, "Mechanical Properties of High-Strength Lightweight 

Concrete," J. AC!, vol. 83, no. 4, 1986, pp. 606-613. 
2.25. P. T. Wang, S. P. Shah, and A. E. Naaman, "Stress-Strain Curves of Normal and Lightweight Concrete in 

Compression," J. AC/, vol. 75, no. 11, 1978, pp. 603-611. 
2.26. D. E. Branson, Deformation of Concrete Structures, McGraw-Hill, New York, 1977. 
2.27. H. Riisch, "Researches toward a General Flexural Theory for Structural Concrete," J. AC!, vol. 32, no. I, 

1960, pp. 1-28. 
2.28. A. S. Ngab, A. H. Nilson, and F. 0. Slate, "Shrinkage and Creep of High-Strength Concrete," J. AC!, 

vol. 78, no. 4, 1981, pp. 255-261. 
2.29. A. M. Neville, Properties of Concrete, 4th ed., John Wiley & Sons, Inc., New York, 1996. 
2.30. M. M. Smadi, F. 0. Slate, and A. H. Nilson, "High, Medium, and Low-Strength Concretes Subject to 

Sustained Overloads," J. AC!, vol. 82, no. 5, 1985, pp. 657-664. 
2.31. M. M. Smadi, F. 0. Slate, and A. H. Nilson, "Shrinkage and Creep of High, Medium, and Low-Strength 

Concretes, Including Overloads," AC/ Mater. J., vol. 84, no. 3, 1987, pp. 224-234. 
2.32. "Fatigue of Concrete Structures," Special Publication SP-75, American Concrete Institute, Detroit, MI, 

1982. 
2.33. M. P. Collins and D. Kuchma, "How Safe Are Our Large, Lightly Reinforced Concrete Beams, Slabs, and 

Footings?" AC! Struct. J., vol. 96, no. 4, 1999, pp. 482--490. 
2.34. J. Zuo and D. Darwin, "Splice Strength of Conventional and High Relative Rib Area Bars in Normal and 

High Strength Concrete," AC! Struct. J., vol. 97, no. 4, 2000, pp. 630---641. 
2.35. D. Darwin, S. Barham, R. Kozul, and S. Luan, "Fracture Energy of High-Strength Concrete," AC! Mater. 

J., vol. 98, no. 5, 2001, pp. 410--417. 



MATERIALS 65 

2.36. E. A. Jensen and W. Hansen, "Fracture Energy Test for Highway Concrete-Determining the Effect of 
Coarse Aggregate on Crack Propagation Resistance," Transp. Res. Rec. 1730, 2001, pp. 10-16. 

2.37. T. T. C. Hsu, F. 0. Slate, G. M. Sturman, and G. Winter, "Microcracking of Plain Concrete and the Shape 
of the Stress-Strain Curve," J. AC!, vol. 60, no. 2, 1963, pp. 209-224. 

2.38. H. Kupfer, H. K. Hilsdorf, and H. Rusch, "Behavior of Concrete under Biaxial Stresses," J. AC!, vol. 66, 
no. 8, 1969, pp. 656-666. 

2.39. M. E. Tasuji, F. 0. Slate, and A. H. Nilson, "Stress-Strain Response and Fracture of Concrete in Biaxial 
Loading," J. ACJ, vol. 75, no. 7, 1978, pp. 306-312. 

2.40. K. H. Gerstle et al., "Strength of Concrete under Multiaxial Stress States," Proc. Douglas McHenry 
International Symposium on Concrete and Concrete Structures, ACI Special Publication SP-55, 
American Concrete Institute, 1978, pp. I 03-131. 

2.41. G. Pickett, "Effect of Aggregate on Shrinkage of Concrete and Hypothesis Concerning Shrinkage," J. 
ACJ, vol. 52, no. 6, 1956, pp. 581-589. 

2.42. "Standard Practice for the Use of Shrinkage-Compensating Cements," ACI Committee 223, ACI Manual 
of Concrete Practice, Part I, 2009. 

2.43. A. Neville, "Whither Expansive Cement," Coner. Intl., vol. 16, no. 9, 1994, pp. 34---35. 
2.44. "State-of-the-Art Report on High-Strength Concrete," ACI Committee 363, AC/ Manual of Concrete 

Practice, Part 5, 2002. 
2.45. S. P. Shah and S. H. Ahmad (eds.), High-Pe,formance Concrete: Properties and Applications, McGraw

Hill, New York, 1994. 
2.46. H. G. Russell, S. H. Gehler, and D. Whiting, "High-Strength Concrete: Weighing the Benefits," Civ. Eng., 

vol. 59, no. 11, 1989, pp. 59-61. 
2.47. A. H. Nilson, "High-Strength Concrete-An Overview of Cornell Research," Proc. of Symposium on 

Utilization of High-Strength Concrete, Stavanger, Norway, 1987, pp. 27-38. 
2.48. A. H. Nilson, "Properties and Performance of High-Strength Concrete," Proc. of IABSE Symposium on 

Concrete Structures for the Future, Paris-Versailles, 1987, pp. 389-394. 
2.49. A. H. Nilson, "Design Implications of Current Research on High-Strength Concrete," High-Strength 

Concrete, Special Publication SP-87, American Concrete Institute, Detroit, MI, 1985, pp. 85-118. 
2.50. K. A. Paulson, A. H. Nilson, and K. C. Hover, "Long-Term Deflection of High-Strength Concrete 

Beams," AC/ Mater. J., vol. 88, no. 2, 1991, pp. 197-206. 
2.51. A. E. Fiorato, "PCA Research on High-Strength Concrete," Coner. Intl., vol. 11, no. 4, 1989, pp. 44---50. 
2.52. N. J. Carino and J. R. Clifton, "High-Performance Concrete: Research Needs to Enhance Its Use," Coner. 

Intl., vol. 13, no. 9, 1991, pp. 70-76. 
2.53. A. Azizinamini, R. Pavel, E. Hatfield, and S. K. Ghosh, "Behavior of Spliced Reinforcing Bars Embedded 

in High-Strength Concrete," AC! Struct. J., vol. 96, no. 5, 1999, pp. 826-835. 
2.54 D. Darwin, J. Browning, and W. D. Lindquist, "Control of Cracking in Bridge Decks: Observations from 

the Field," Cement, Concrete and Aggregates, ASTM International, vol. 26, no. 2, 2004, pp. 148-154. 
2.55. D. Whiting, "Durability of High-Strength Concrete," Proc. of Katharine and Bryant Mather International 

Conference, Special Publication SP-100, American Concrete Institute, Detroit, Ml, 1987, pp. 169-186. 
2.56. Manual of Standard Practice, 28th ed., Concrete Reinforcing Steel Institute, Schaumburg, IL, 2009. 
2.57. W. G. Corley, J. M. Hanson, and T. Helgason, "Design of Reinforced Concrete for Fatigue," J. Struct. 

Div., ASCE, vol. 104, no. ST6, I 978, pp. 921-932. 
2.58. W. G. Corley, M. A. Sozen, and C. P. Siess, "Time-Dependent Deflections of Prestressed Concrete 

Beams," Highway Res. Board Bull. No. 307, 1961, pp. 1-25. 

PROBLEMS 
2.1. The specified concrete strength!; for a new building is 6000 psi. Calculate the 

required average strengthJ; for the concrete (a) if there are no prior test results 
for concrete with a compressive strength within 1000 psi of J; made with sim
ilar materials, (b) if 20 test results for concrete withf: = 5000 psi made with 
similar materials produce a sample standard deviation ss of 580 psi, and (c) if 
30 tests withJ; = 5500 psi made with similar materials produce a sample stan
dard deviation ss of 590 psi. 

2.2. Ten consecutive strength tests are available for a new concrete mixture with 
J: = 4000 psi: 4590, 4750, 5280, 4210, 4460, 4170, 3750, 5110, 4640, and 
4170 psi. 
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(a) Do the strength results represent concrete of satisfactory quality? Explain 
your reasoning. 

(b) IfJ:r has been selected based on 30 consecutive test results from an earlier 
project with a sample standard deviation ss of 510 psi, must the mixture 
proportions be adjusted? Explain. 



Flexural Analysis 
and Design of Beams 

3.1 INTRODUCTION 

The fundamental assumptions upon which the analysis and design of reinforced 
concrete members are based were introduced in Section 1.8, and the application of 
those assumptions to the simple case of axial loading was developed in Section 1.9. 
The student should review Sections 1.8 and 1.9 at this time. In developing methods for 
the analysis and design of beams in this chapter, the same assumptions apply, and 
identical concepts will be used. This chapter will include analysis and design for 
flexure, including the dimensioning of the concrete cross section and the selection and 
placement of reinforcing steel. Other important aspects of beam design including 
shear reinforcement, bond, and anchorage of reinforcing bars, and the important ques
tions of serviceability (e.g., limiting deflections and controlling concrete cracking) 
will be treated in Chapters 4, 5, and 6. 

3.2 BENDING OF HOMOGENEOUS BEAMS 

Reinforced concrete beams are nonhomogeneous in that they ate made of two entirely 
different materials. The methods used in the analysis of reinforced concrete beams are 
therefore different from those used in the design or investigation of beams composed 
entirely of steel, wood, or any other structural material. The fundamental principles 
involved are, however, essentially the same. Briefly, these principles are as follows. 

At any cross section there exist internal forces that can be resolved into compo
nents normal and tangential to the section. Those components that are normal to the 
section are the bending stresses (tension on one side of the neutral axis and compres
sion on the other). Their function is to resist the bending moment at the section. The 
tangential components are known as the shear stresses, and they resist the transverse 
or shear forces. 

Fundamental assumptions relating to flexure and flexural shear are as follows: • 
1. A cross section that was plane before loading remains plane under load. This 

means that the unit strains in a beam above and below the neutral axis are 
proportional to the distance from that axis. 

2. The bending stress fat any point depends on the strain at that point in a manner 
given by the stress-strain diagram of the material. If the beam is made of a 
homogeneous material whose stress-strain diagram in tension and compression is 
that of Fig. 3. la, the following holds. If the maximum strain at the outer fibers is 
smaller than the strain EP up to which stress and strain are proportional for the 
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FIGURE3.1 
Elastic and inelastic stress 
distributions in homogeneous 
beams. 
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given material, then the compression and tension stresses on either side of the 
axis are proportional to the distance from the axis, as shown in Fig. 3.lb. 
However, if the maximum strain at the outer fibers is larger than E P' this is no 
longer true. The situation that then occurs is shown in Fig. 3. lc; i.e., in the outer 
portions of the beam, where E > EP' stresses and strains are no longer propor
tional. In these regions, the magnitude of stress at any level, such asf2 in Fig. 3.lc, 
depends on the strain e2 at that level in the manner given by the stress-strain dia
gram of the material. In other words, for a given strain in the beam, the stress at 
a point is the same as that given by the stress-strain diagram for the same strain. 

3. The distribution of the shear stresses v over the depth of the section depends on 
the shape of the cross section and of the stress-strain diagram. These shear 
stresses are largest at the neutral axis and equal to zero at the outer fibers. The 
shear stresses on horizontal and vertical planes through any point are equal. 

4. Owing to the combined action of shear stresses (horizontal and vertical) and flex
ure stresses, at any point in a beam there are inclined stresses of tension and com
pression, the largest of which form an angle of 90° with each other. The intensity 
of the inclined maximum or principal stress at any point is given by 

t = [_ ± -Jf2 + l/2 
2 4 

(3.1) 

where f = intensity of normal fiber stress 
v = intensity of tangential shearing stress 

The inclined stress makes an angle a with the horizontal such that tan 2a = 2v /f 
5. Since the horizontal and vertical shearing stresses are equal and the flexural 

stresses are zero at the neutral plane, the inclined tensile and compressive stresses 
at any point in that plane form an angle of 45° with the horizontal, the intensity 
of each being equal to the unit shear at the point. 
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6. When the stresses in the outer fibers are smaller than the proportional limit JP, 
the beam behaves elastically, as shown in Fig. 3.lb. In this case the following 
pertains: 
(a) The neutral axis passes through the center of gravity of the cross section. 
(b) The intensity of the bending stress normal to the section increases directly with 

the distance from the neutral axis and is a maximum at the extreme fibers. The 
stress at any given point in the cross section is represented by the equation 

My 
J=

I 

where f = bending stress at a distance y from neutral axis 
M = external bending moment at section 
I = moment of inertia of cross section about neutral axis 

The maximum bending stress occurs at the outer fibers and is equal to 

Mc M 
fmax = / = S 

where c = distance from neutral axis to outer fiber 
S = I/c = section modulus of cross section 

(3.2) 

(3.3) 

(c) The shear stress (horizontal equals vertical) vat any point in the cross section is 
given by 

VQ 
v=-

lb 
(3.4) 

where V = total shear at section 
Q = statical moment about neutral axis of that portion of cross section lying 

between a line through point in question parallel to neutral axis and near
est face (upper or lower) of beam 

I = moment of inertia of cross section about neutral axis 
b = width of beam at a given point 

(d) The intensity of shear along a vertical cross section in a rectangular beam varies 
as the ordinates of a parabola; the intensity being zero at the outer fibers of the 
beam and a maximum at the neutral axis. For a total depth h, the maximum is 
~V/bh, since at the neutral axis Q = bh2/8 and/= bh3/12 in Eq. (3.4). 

The remainder of this chapter deals only with bending stresses and their effects 
on reinforced concrete beams. Shear stresses and their effects are discussed separately 
in Chapter 4. 

3.3 REINFORCED CONCRETE BEAM BEHAVIOR 

Plain concrete beams are inefficient as flexural members because the tensile strength 
in bending (modulus of rupture, see Section 2.9) is a small fraction of the compressive 
strength. As a consequence, such beams fail on the tension side at low loads long 
before the strength of the concrete on the compression side has been fully utilized. For 
this reason, steel reinforcing bars are placed on the tension side as close to the extreme 
tension fiber as is compatible with proper fire and corrosion protection of the steel. In 
such a reinforced concrete beam, the tension caused by the bending moments is chiefly 
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FIGURE3.2 
Behavior of reinforced 
concrete beam under 
increasing load. 
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resisted by the steel reinforcement, while the concrete alone is usually capable of 
resisting the corresponding compression. Such joint action of the two materials is 
ensured if relative slip is prevented. This is achieved by using deformed bars with 
their high bond strength at the steel-concrete interface (see Section 2.14) and, if 
necessary, by special anchorage of the ends of the bars. A simple example of such a 
beam, with the customary designations for the cross-sectional dimensions, is shown 
in Fig. 3.2. For simplicity, the discussion that follows will deal with beams of rec
tangular cross section, even though members of other shapes are very common in 
most concrete structures. 

When the load on such a beam is gradually increased from zero to the magni
tude that will cause the beam to fail, several different stages of behavior can be clearly 
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distinguished. At low loads, as long as the maximum tensile stress in the concrete is 
smaller than the modulus of rupture, the entire concrete is effective in resisting stress, 
in compression on one side and in tension on the other side of the neutral axis. In 
addition, the reinforcement, deforming the same amount as the adjacent concrete, is 
also subject to tensile stresses. At this stage, all stresses in the concrete are of small 
magnitude and are proportional to strains. The distribution of strains and stresses in 
concrete and steel over the depth of the section is shown in Fig. 3.2c. 

When the load is further increased, the tensile strength of the concrete is soon 
reached, and at this stage tension cracks develop. These propagate quickly upward to 
or close to the level of the neutral plane, which in turn shifts upward with progressive 
cracking. The general shape and distribution of these tension cracks is shown in 
Fig. 3.2d. In well-designed beams, the width of these cracks is so small (hairline 
cracks) that they are not objectionable from the viewpoint of either corrosion protec
tion or appearance. Their presence, however, profoundly affects the behavior of the 
beam under load. Evidently, in a cracked section, i.e., in a cross section located at a 
crack such as a-a in Fig. 3.2d, the concrete does not transmit any tensile stresses. 
Hence, just as in tension members (Section 1.9b), the steel is called upon to resist the 
entire tension. At moderate loads, if the concrete stresses do not exceed approximately 
J;/2 stresses and strains continue to be closely proportional (see Fig. 1.16). The 
distribution of strains and stresses at or near a cracked section is then that shown in 
Fig. 3.2e. When the load is still further increased, stresses and strains rise corre
spondingly and are no longer proportional. The ensuing nonlinear relation between 
stresses and strains is that given by the concrete stress-strain curve. Therefore, just as 
in homogeneous beams (see Fig. 3.1), the distribution of concrete stresses on the com
pression side of the beam is of the same shape as the stress-strain curve. Figure 3.2f 
shows the distribution of strains and stresses close to the ultimate load. 

Eventually, the carrying capacity of the beam is reached. Failure can be caused 
in one of two ways. When relatively moderate amounts of reinforcement are employed, 
at some value of the load the steel will reach its yield point. At that stress, the 
reinforcement yields suddenly and stretches a large amount (see Fig. 2.15), and the 
tension cracks in the concrete widen visibly and propagate upward, with simultaneous 
significant deflection of the beam. When this happens, the strains in the remaining 
compression zone of the concrete increase to such a degree that crushing of the 
concrete, the secondary compression failure, ensues at a load only slightly larger than 
that which caused the steel to yield. Effectively, therefore, attainment of the yield point 
in the steel determines the carrying capacity of moderately reinforced beams. Such 
yield failure is gradual and is preceded by visible signs of distress, such as the 
widening and lengthening of cracks and the marked increase in deflection. 

On the other hand, if large amounts of reinforcement or normal amounts of 
steel of very high strength are employed, the compressive strength of the concrete 
may be exhausted before the steel starts yielding. Concrete fails by crushing when 
strains become so large that they disrupt the integrity of the concrete. Exact criteria 
for this occurrence have yet to be established, but it has been observed that 
rectangular beams fail in compression when the concrete strains reach values of 
about 0.003 to 0.004. Compression failure through crushing of the concrete is 
sudden, of an almost explosive nature, and occurs without warning. For this reason 
it is good practice to dimension beams in such a manner that should they be over
loaded, failure would be initiated by yielding of the steel rather than by crushing of 
the concrete. 

The analysis of stresses and strength in the different stages just described will be 
discussed in the next several sections. 
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FIGURE3.3 
Uncracked transformed beam 
section. 

(a) 

a. Stresses Elastic and Section Uncracked 

As long as the tensile stress in the concrete is smaller than the modulus of rupture, so 
that no tension cracks develop, the strain and stress distribution as shown in Fig. 3.2c 
is essentially the same as in an elastic, homogeneous beam (Fig. 3.lb). The only 
difference is the presence of another material, the steel reinforcement. As shown in 
Section 1.9a, in the elastic range, for any given value of strain, the stress in the steel 
is n times that of the concrete [Eq. (1.6)]. In the same section, it was shown that one 
can take account of this fact in calculations by replacing the actual steel-and-concrete 
cross section with a fictitious section thought of as consisting of concrete only. In this 
"transformed section," the actual area of the reinforcement is replaced with an equiv
alent concrete area equal to nAs located at the level of the steel. The transformed, 
uncracked section pertaining to the beam of Fig. 3.2b is shown in Fig. 3.3. 

Once the transformed section has been obtained, the usual methods of analysis 
of elastic homogeneous beams apply. That is, the section properties (location of neu
tral axis, moment of inertia, section modulus, etc.) are calculated in the usual manner, 
and, in particular, stresses are computed with Eqs. (3.2) to (3.4). 

EXAMPLE 3.1 A rectangular beam has the dimensions (see Fig. 3.2b) b = 10 in., h = 25 in., and d = 23 in. 
and is reinforced with three No. 8 (No. 25) bars so that As = 2.37 in2• The concrete cylinder 
strengthJ; is 4000 psi, and the tensile strength in bending (modulus of rupture) is 475 psi. The 
yield point of the steel.{y is 60,000 psi, the stress-strain curves of the materials being those of 
Fig. 1.16. Determine the stresses caused by a bending moment M = 45 ft-kips. 

SOLUTION. With a value n = Es/Ee = 29,000,000/3,600,000 = 8, one has to add to the 
rectangular outline an area (n - I)As = 7 X 2.37 = 16.59 in2, disposed as shown on Fig. 3.4, 
to obtain the uncracked, transformed section. Conventional calculations show that the location 
of the neutral axis of this section is given by y = 13.2 in. from the top of the section, and its 
moment of inertia about this axis is 14,740 in4• For M = 45 ft-kips = 540,000 in-lb, the 
concrete compression stress at the top fiber is, from Eq. (3.3), 

+ = My = 540,000 X 13.2 = 484 si 
Jc I 14 740 p 

' 
and, similarly, the concrete tension stress at the bottom fiber, 11.8 in. from the neutral axis, is 

540,000 X 11.8 
32 

. 
fer = 14 740 = 4 pSl 

' 



FIGURE3.4 
Transformed beam section of 
Example 3.1. 
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3 No. 8 (No. 25) 

Since this value is below the given tensile bending strength of the concrete, 475 psi, no tension 
cracks will form, and calculation by the uncracked, transformed section is justified. The stress 
in the steel, from Eqs. (1.6) and (3.2), is 

f, = n My= s(540,000 X 9.8) = 2S?Opsi 
s I 14,740 

By comparingfc andfs with the concrete cylinder strength and the yield point, respectively, it 
is seen that at this stage the actual stresses are quite small compared with the available strengths 
of the two materials. 

b. Stresses Elastic and Section Cracked 

When the tensile stress fc1 exceeds the modulus of rupture, cracks form, as shown in 
Fig. 3.2d. If the concrete compressive stress is less than approximately ½J; and the 
steel stress has not reached the yield point, both materials continue to behave elasti
cally, or very nearly so. This situation generally occurs in structures under normal 
service conditions and loads, since at these loads the stresses are generally of the order 
of magnitude just discussed. At this stage, for simplicity and with little if any error, it 
is assumed that tension cracks have progressed all the way to the neutral axis and that 
sections plane before bending are plane in the deformed member. The situation with 
regard to strain and stress distribution is that shown in Fig. 3.2e. 

To compute stresses, and strains if desired, the device of the transformed section 
can still be used. One need only take account of the fact that all of the concrete that is 
stressed in tension is assumed cracked, and therefore effectively absent. As shown in 
Fig. 3.5a, the transformed section then consists of the concrete in compression on one 
side of the axis and n times the steel area on the other. The distance to the neutral axis, 
in this stage, is conventionally expressed as a fraction kd of the effective depth d. 
(Once the concrete is cracked, any material located below the steel is ineffective, 
which is why dis the effective depth of the beam.) To determine the location of the 
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FIGURE3.5 
Cracked transformed section. 
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neutral axis, the moment of the tension area about the axis is set equal to the moment 
of the compression area, which gives 

(kd)2 
b-

2
- - nAs(d - kd) = 0 (3.5) 

Having obtained kd by solving this quadratic equation, one can determine the 
moment of inertia and other properties of the transformed section as in the preceding 
case. Alternatively, one can proceed from basic principles by accounting directly for 
the forces that act on the cross section. These are shown in Fig. 3.5b. The concrete 
stress, with maximum value fc at the outer edge, is distributed linearly as shown. The 
entire steel area As is subject to the stress fs. Correspondingly, the total compression 
force C and the total tension force Tare 

C = fE_bkd 
2 

and T=Asfs (3.6) 

The requirement that these two forces be equal numerically has been taken care of by 
the manner in which the location of the neutral axis has been determined. 

Equilibrium requires that the couple constituted by the two forces C and T be 
equal numerically to the external bending moment M. Hence, taking moments about 
C gives 

M = Tjd = Asfsjd (3.7) 

where jd is the internal lever arm between C and T. From Eq. (3. 7), the steel stress is 

(3.8) 

Conversely, taking moments about T gives 

M = Cjd = fj_ bkdjd = fj_ kjbd2 

2 2 
(3.9) 
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from which the concrete stress is 

2M 
fc = kjbd2 (3.10) 

In using Eqs. (3.6) through (3.10), it is convenient to have equations by which k andj 
may be found directly, to establish the neutral axis distance kd and the internal lever 
arm jd. First defining the reinforcement ratio as 

then substituting As = pbd into Eq. (3.5) and solving fork, one obtains 

k = Y(pn) 2 + 2pn - pn 

From Fig. 3.5b it is seen thatjd = d - kd/3, or 

. k 
J = 1 - 3 

(3.11) 

(3.12) 

(3.13) 

Values of k andj for elastic cracked section analysis, for common reinforcement ratios 
and modular ratios, are found in Table A.6 of Appendix A. 

EXAMPLE 3.2 The beam of Example 3.1 is subject to a bending moment M = 90 ft-kips (rather than 45 ft
kips as previously). Calculate the relevant properties and stresses. 

SOLUTION. If the section were to remain uncracked, the tensile stress in the concrete would 
now be twice its previous value, that is, 864 psi. Since this exceeds by far the modulus of 
rupture of the given concrete (475 psi), cracks will have formed and the analysis must be 
adapted consistent with Fig. 3.5. Equation (3.5), with the known quantities b, n, and As inserted, 
gives the distance to the neutral axis kd = 7.6 in., or k = 7.6/23 = 0.33. From Eq. (3.13), 
j = 1 - 0.33/3 = 0.89. With these values the steel stress is obtained from Eq. (3.8) as fs = 
22,300 psi, and the maximum concrete stress from Eq. (3.10) asfc = 1390 psi. 

Comparing the results with the pertinent values for the same beam when subject to 
one-half the moment, as previously calculated, one notices that (1) the neutral plane has 
migrated upward so that its distance from the top fiber has changed from 13.2 to 7.6 in.; 
(2) even though the bending moment has only been doubled, the steel stress has increased 
from 2870 to 22,300 psi, or about 7.8 times, and the concrete compression stress has 
increased from 484 to 1390 psi, or 2.9 times; (3) the moment of inertia of the cracked trans
formed section is easily computed to be 5910 in4, compared with 14,740 in4 for the 
uncracked section. This affects the magnitude of the deflection, as discussed in Chapter 6. 
Thus, it is seen how radical is the influence of the formation of tension cracks on the behav
ior of reinforced concrete beams. 

c. Flexural Strength 

It is of interest in structural practice to calculate those stresses and deformations that 
occur in a structure in service under design load. For reinforced concrete beams, this 
can be done by the methods just presented, which assume elastic behavior of both 
materials. It is equally, if not more, important that the structural engineer be able to 
predict with satisfactory accuracy the strength of a structure or structural member. By 
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FIGURE 3.6 
Stress distribution at ultimate 
load. 

making this strength larger by an appropriate amount than the largest loads that can be 
expected during the lifetime of the structure, an adequate margin of safety is ensured. 
In the past, methods based on elastic analysis, like those just presented or variations 
thereof, have been used for this purpose. It is clear, however, that at or near the 
ultimate load, stresses are no longer proportional to strains. In regard to axial com
pression, this has been discussed in detail in Section 1.9, and in regard to bending, it 
has been pointed out that at high loads, close to failure, the distribution of stresses and 
strains is that of Fig. 3.2/rather than the elastic distribution of Fig. 3.2e. More realis
tic methods of analysis, based on actual inelastic rather than assumed elastic behavior 
of the materials and on results of extremely extensive experimental research, have 
been developed to predict the member strength. They are now used almost exclusively 
in structural design practice. 

If the distribution of concrete compressive stresses at or near ultimate load (Fig. 3.2/) 
had a well-defined and invariable shape-parabolic, trapezoidal, or otherwise-it 
would be possible to derive a completely rational theory of bending strength, just as 
the theory of elastic bending with its known triangular shape of stress distribution 
(Figs. 3.lb and 3.2c and e) is straightforward and rational. Actually, inspection of 
Figs. 2.3, 2.4, and 2.6, and of many more concrete stress-strain curves that have been 
published, shows that the geometric shape of the stress distribution is quite varied and 
depends on a number of factors, such as the cylinder strength and the rate and duration 
of loading. For this and other reasons, a wholly rational flexural theory for reinforced 
concrete has not yet been developed (Refs. 3.1 to 3.3). Present methods of analysis, 
therefore, are based in part on known laws of mechanics and are supplemented, where 
needed, by extensive test information. 

Let Fig. 3.6 represent the distribution of internal stresses and strains when the 
beam is about to fail. One desires a method to calculate that moment Mn (nominal 
moment) at which the beam will fail either by tension yielding of the steel or by 
crushing of the concrete in the outer compression fiber. For the first mode of failure, 
the criterion is that the steel stress equal the yield point,.fs = Jy. It has been mentioned 
before that an exact criterion for concrete compression failure is not yet known, but 
that for rectangular beams, strains of 0.003 to 0.004 have been measured immediately 
preceding failure. If one assumes, usually slightly conservatively, that the concrete is 
about to crush when the maximum strain reaches Eu = 0.003, comparison with a great 
many tests of beams and columns of a considerable variety of shapes and conditions 
of loading shows that a satisfactorily accurate and safe strength prediction can be 

l 
d 

J 
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made (Ref. 3.4). In addition to these two criteria (yielding of the steel at a stress of 
Jy and crushing of the concrete at a strain of 0.003), it is not really necessary to know 
the exact shape of the concrete stress distribution in Fig. 3.6. What is necessary is to 
know, for a given distance e of the neutral axis, (1) the total resultant compression 
force C in the concrete and (2) its vertical location, i.e., its distance from the outer 
compression fiber. 

In a rectangular beam, the area that is in compression is be, and the total com
pression force on this area can be expressed as C = favbe, where fav is the average 
compression stress on the area be. Evidently, the average compressive stress that can 
be developed before failure occurs becomes larger, the higher the cylinder strength/; 
of the particular concrete. Let 

Then 

fav a=-
J; 

(3.14) 

(3.15) 

For a given distance e to the neutral axis, the location of C can be defined as some 
fraction {3 of this distance. Thus, as indicated in Fig. 3.6, for a concrete of given 
strength it is necessary to know only a and {3 to completely define the effect of the 
concrete compressive stresses. 

Extensive direct measurements, as well as indirect evaluations of numerous 
beam tests, have shown that the following values for a and /3 are satisfactorily accurate 
(see Ref. 3.5, where a is designated as k1k3 and /3 as k2 ): 

a equals 0.72 forJ; ::; 4000 psi and decreases by 0.04 for every 1000 psi above 
4000 up to 8000 psi. For J; > 8000 psi, a = 0.56. 

{3 equals 0.425 forJ; :5 4000 psi and decreases by 0.025 for every 1000 psi above 
4000 up to 8000 psi. For J; > 8000 psi, /3 = 0.325. 

The decrease in a and /3 for high-strength concretes is related to the fact that such 
concretes are more brittle; i.e., they show a more sharply curved stress-strain plot with 
a smaller near-horizontal portion (see Figs. 2.3 and 2.4). Figure 3.7 shows these 
simple relations. 

If this experimental information is accepted, the maximum moment can be 
calculated from the laws of equilibrium and from the assumption that plane cross 
sections remain plane. Equilibrium requires that 

C=T or (3.16) 

Also, the bending moment, being the couple of the forces C and T, can be written as 
either 

M = Tz = Asfs(d - {3e) (3.17) 

or 

M = Cz = af;be(d - {3e) (3.18) 

For failure initiated by yielding of the tension steel, fs = Jy. Substituting this 
value in Eq. (3.16), one obtains the distance to the neutral axis 

AJy 
e=--

af;b 
(3.19a) 
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FIGURE3.7 
Variation of a and f3 with 
concrete strengthJ;. 0.8 
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Alternatively, using As = pbd, the neutral axis distance is 

pfy<l 
C = af; 

10,000 

(3.19b) 

giving the distance to the neutral axis when tension failure occurs. The nominal 
moment Mn is then obtained from Eq. (3.17) with the value for c just determined, and 
fs = Jy; that is, 

(3.20a) 

With the specific, experimentally obtained values for a and /3 given previously, this 
becomes 

_ 2 ( Pfy) 
Mn - pfyhd 1 - 0.59 /; (3.20b) 

If, for larger reinforcement ratios, the steel does not reach yield at failure, then 
the strain in the concrete becomes Eu = 0.003, as previously discussed. The steel stress 
fs, not having reached the yield point, is proportional to the steel strain Es; i.e., accord
ing to Hooke's law, 

fs = EsEs 

From the strain distribution of Fig. 3.6, the steel strain Es can be expressed in terms of 
the distance c by evaluating similar triangles, after which it is seen that 

Then, from Eq. (3.16), 

d-c 
fs = EuEs-

C 
(3.21) 

(3.22) 
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and this quadratic may be solved for c, the only unknown for the given beam. With both 
c and ls known, the nominal moment of the beam, so heavily reinforced that failure 
occurs by crushing of the concrete, may be found from either Eq. (3.17) or Eq. (3.18). 

Whether or not the steel has yielded at failure can be determined by comparing 
the actual reinforcement ratio with the balanced reinforcement ratio Pb• representing 
that amount of reinforcement necessary for the beam to fail by crushing of the con
crete at the same load that causes the steel to yield. This means that the neutral axis 
must be so located that at the load at which the steel starts yielding, the concrete 
reaches its compressive strain limit Eu- Correspondingly, setting ls = J;, in Eq. (3.21) 
and substituting the yield strain EY for J;,/Es, one obtains the value of c defining the 
unique position of the neutral axis corresponding to simultaneous crushing of the 
concrete and initiation of yielding in the steel 

(3.23) 

Substituting that value of c into Eq. (3.16), with Asls = pbdf;,, one obtains for the bal
anced reinforcement ratio 

(3.24) 

EXAMPLE 3.3 Determine the nominal moment Mn at which the beam of Examples 3.1 and 3.2 will fail. 

SOLUTION. For this beam the reinforcement ratio p = As/(bd) = 2.37 /(10 X 23) = 0.0103. 
The balanced reinforcement ratio is found from Eq. (3.24) to be 0.0284. Since the amount of steel 
in the beam is less than that which would cause failure by crushing of the concrete, the beam will 
fail in tension by yielding of the steel. Its nominal moment, from Eq. (3.20b), is 

( 
0.0103 X 60 000) 

Mn = 0.0103 X 60,000 X 10 X 232 1 - 0.59 
4000 

' 

= 2,970,000 in-lb = 248 ft-kips 

When the beam reaches Mn, the distance to its neutral axis, from Eq. (3.19b), is 

0.0103 X 60,000 X 23 
C = -------- = 4.94 

0.72 X 4000 

It is informative to compare this result with those of Examples 3.1 and 3.2. In 
the previous calculations, it was found that at low loads, when the concrete had not yet 
cracked in tension, the neutral axis was located at a distance of 13.2 in. from the 
compression edge; at higher loads, when the tension concrete was cracked but stresses 
were still sufficiently small to be elastic, this distance was 7 .6 in. Immediately before 
the beam fails, as has just been shown, this distance has further decreased to 4.9 in. 
For these same stages of loading, the stress in the steel increased from 2870 psi in 
the uncracked section, to 22,300 psi in the cracked elastic section, and to 60,000 psi 
at the nominal moment capacity. This migration of the neutral axis toward the 
compression edge and the increase in steel stress as load is increased is a graphic 
illustration of the differences between the various stages of behavior through which a 
reinforced concrete beam passes as its load is increased from zero to the value that 
causes it to fail. The examples also illustrate the fact that nominal moments cannot be 
determined accurately by elastic calculations. 
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3.4 DESIGN OF TENSION-REINFORCED RECTANGULAR BEAMS 

For reasons that were explained in Chapter 1, the present design of reinforced concrete 
structures is based on the concept of providing sufficient strength to resist hypotheti
cal overloads. The nominal strength of a proposed member is calculated based on the 
best current knowledge of member and material behavior. That nominal strength is 
modified by a strength reduction factor <p, less than unity, to obtain the design 
strength. The required strength, should the hypothetical overload stage actually be 
realized, is found by applying load factors -y, greater than unity, to the loads actually 
expected. These expected service loads include the calculated dead load, the calcu
lated or legally specified live load, and environmental loads such as those due to wind, 
seismic action, or temperature. Thus reinforced concrete members are proportioned so 
that, as shown in Eq. (1.5), 

Mu =s; </JMn 

Pu =s; </>Pn 

vu :s; </> vn 
where the subscripts n denote the nominal strengths in flexure, thrust, and shear, respec
tively, and the subscripts u denote the factored load moment, thrust, and shear. The 
strength reduction factors <p normally differ, depending upon the type of strength to be 
calculated, the importance of the member in the structure, and other considerations 
discussed in detail in Chapter 1. 

A member proportioned on the basis of adequate strength at a hypothetical 
overload stage must also perform in a satisfactory way under normal service load 
conditions. In specific terms, the deflection must be limited to an acceptable value, 
and concrete tensile cracks, which inevitably occur, must be of narrow width and well 
distributed throughout the tensile zone. Therefore, after proportioning for adequate 
strength, deflections are calculated and compared against limiting values ( or otherwise 
controlled), and crack widths limited by specific means. This approach to design, 
referred to in Europe, and to some extent in U.S. practice, as limit states design, is the 
basis of the 2008 ACI Code, and it is the approach that will be followed in this and 
later chapters. 

a. Equivalent Rectangular Stress Distribution 

The method presented in Section 3.3c for calculating the flexural strength of reinforced 
concrete beams, derived from basic concepts of structural mechanics and pertinent 
experimental research information, also applies to situations other than the case of rec
tangular beams reinforced on the tension side. It can be used and gives valid answers 
for beams of other cross-sectional shapes, reinforced in other manners, and for mem
bers subject not only to simple bending but also to the simultaneous action of bending 
and axial force (compression or tension). However, the pertinent equations for these 
more complex cases become increasingly cumbersome and lengthy. What is more 
important, it becomes increasingly difficult for the designer to visualize the physical 
basis for the design methods and formulas; this could lead to a blind reliance on for
mulas, with a resulting lack of actual understanding. This is not only undesirable on 
general grounds but also, practically, is more likely to lead to numerical errors in design 
work than when the designer at all times has a clear picture of the physical situation in 
the member being dimensioned or analyzed. Fortunately, it is possible, essentially by a 



FIGURE3.8 
Actual and equivalent 
rectangular stress 
distributions at ultimate load. 
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conceptual trick, to formulate the strength analysis of reinforced concrete members in 
a different manner, which gives the same answers as the general analysis just devel
oped but which is much more easily visualized and much more easily applied to cases 
of greater complexity than that of the simple rectangular beam. Its consistency is 
shown, and its application to more complex cases has been checked against the results 
of a vast number of tests on a great variety of types of members and conditions of 
loading (Ref. 3.4). 

It was noted in the preceding section that the actual geometric shape of the 
concrete compressive stress distribution varies considerably and that, in fact, one need 
not know this shape exactly, provided one does know two things: (1) the magnitude C 
of the resultant of the concrete compressive stresses and (2) the location of this resul
tant. Information on these two quantities was obtained from the results of experimen
tal research and expressed in the two parameters a and {3. 

Evidently, then, one can think of the actual complex stress distribution as 
replaced by a fictitious one of some simple geometric shape, provided that this ficti
tious distribution results in the same total compression force C applied at the same 
location as in the actual member when it is on the point of failure. Historically, a 
number of simplified, fictitious equivalent stress distributions have been proposed by 
investigators in various countries. The one generally accepted in this country, and 
increasingly abroad, was first proposed by C. S. Whitney (Ref. 3.4) and was subse
quently elaborated and checked experimentally by others (see, for example, Refs. 3.5 
and 3.6). The actual stress distribution immediately before failure and the fictitious 
equivalent distribution are shown in Fig. 3.8. 

It is seen that the actual stress distribution is replaced by an equivalent one of 
simple rectangular outline. The intensity yf: of this equivalent constant stress and its 
depth a = {3 1c are easily calculated from the two conditions that (1) the total 
compression force C and (2) its location, i.e., distance from the top fiber, must be the 
same in the equivalent rectangular as in the actual stress distribution. From Fig. 3.8a 
and b the first condition gives 

___ _.----------i-

-------~=====:: -----------
Actual 

(a) 

{3c 
• * 

C = af~cb 

T= Asfs 

from which 

1 a 
r 
a 

]~_L 

------
------

Equivalent 

C 
y = a

a 

---

fs 

(b) 
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TABLE 3.1 
Concrete stress block parameters 

f~, psi 

::54000 5000 6000 7000 ~aooo 
a 0.72 0.68 0.64 0.60 0.56 

/3 0.425 0.400 0.375 0.350 0.325 

/31 = 2{3 0.85 0.80 0.75 0.70 0.65 

'Y = a//31 0.85 0.85 0.85 0.86 0.86 

With a = f31c, this gives 1' = a//31• The second condition simply requires that in the 
equivalent rectangular stress block, the force C be located at the same distance f3c 
from the top fiber as in the actual distribution. It follows that /3 1 = 2/3. 

To supply the details, the upper two lines of Table 3.1 present the experimental 
evidence of Fig. 3.7 in tabular form. The lower two lines give the just-derived param
eters /31 and 1' for the rectangular stress block. It is seen that the stress intensity factor 
1' is essentially independent of J: and can be taken as 0.85 throughout. Hence, regard
less of J:, the concrete compression force at failure in a rectangular beam of width b is 

C = 0.85J;ab (3.25) 

Also, for the common concretes with 1: :5 4000 psi, the depth of the rectangular 
stress block is a = 0.85c, with c being the distance to the neutral axis. For higher
strength concretes, this distance is a = f31c, with the /31 values shown in Table 3.1. 
This is expressed in ACI Code 10.2.7.3 as follows: Forf: between 2500 and 4000 psi, 
/31 shall be taken as 0.85; for I: above 4000 psi, /31 shall be reduced linearly at a rate 
of 0.05 for each 1000 psi of strength in excess of 4000 psi, but /31 shall not be taken 
as less than 0.65. In mathematical terms, the relationship between /3 1 andJ; can be 
expressed as 

1: - 4000 
/31 = 0.85 - 0.05 1000 and 0.65 ::5 /3, ::5 0.85 (3.26) 

The equivalent rectangular stress distribution can be used for deriving the equations 
that have been developed in Section 3.3c. The failure criteria, of course, are the same 
as before: yielding of the steel at.fs = J;, or crushing of the concrete at eu = 0.003. 
Because the rectangular stress block is easily visualized and its geometric properties 
are extremely simple, many calculations are carried out directly without reference to 
formally derived equations, as will be seen in the following sections. 

b. Balanced Strain Condition 

A reinforcement ratio Pb producing balanced strain conditions can be established 
based on the condition that, at balanced failure, the steel strain is exactly equal to eY 
when the strain in the concrete simultaneously reaches the crushing strain of Eu = 
0.003. Referring to Fig. 3.6, 

(3.27) 
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which is seen to be identical to Eq. (3.23). Then from the equilibrium requirement that 
C=T 

from which 

(3.28) 

This is easily shown to be equivalent to Eq. (3.24). 

c. Underreinforced Beams 

A compression failure in flexure, should it occur, gives little if any warning of distress, 
while a tension failure, initiated by yielding of the steel, typically is gradual. Distress 
is obvious from observing the large deflections and widening of concrete cracks asso
ciated with yielding of the steel reinforcement, and measures can be taken to avoid 
total collapse. In addition, most beams for which failure initiates by yielding possess 
substantial strength based on strain-hardening of the reinforcing steel, which is not 
accounted for in the calculations of Mn. 

Because of these differences in behavior, it is prudent to require that beams be 
designed such that failure, if it occurs, will be by yielding of the steel, not by crushing 
of the concrete. This can be done, theoretically, by requiring that the reinforcement 
ratio p be less than the balance ratio Pb given by Eq. (3.28). 

In actual practice, the upper limit on p should be below Pb for the following 
reasons: (1) for a beam with p exactly equal to Pb• the compressive strain limit of the 
concrete would be reached, theoretically, at precisely the same moment that the steel 
reaches its yield stress, without significant yielding before failure; (2) material prop
erties are never known precisely; (3) strain-hardening of the reinforcing steel, not 
accounted for in design, may lead to a brittle concrete compression failure even though 
p may be somewhat less than pb; ( 4) the actual steel area provided, considering 
standard reinforcing bar sizes, will always be equal to or larger than required, based 
on selected reinforcement ratio p, tending toward overreinforcement; and (5) the extra 
ductility provided by beams with lower values of p increases the deflection capability 
substantially and thus provides warning prior to failure. 

d. ACI Code Provisions for Underreinforced Beams 

While the nominal strength of a member may be computed based on principles of 
mechanics, the mechanics alone cannot establish safe limits for maximum rein
forcement ratios. These limits are defined by the ACI Code. The limitations take two 
forms. First, the Code addresses the minimum tensile reinforcement strain allowed 
at nominal strength in the design of beams. Second, the Code defines strength 
reduction factors that may depend on the tensile strain at nominal strength. Both 
limitations are based on the net tensile strain E I of the reinforcement farthest from 
the compression face of the concrete at the depth d1• The net tensile strain is exclu
sive of prestress, temperature, and shrinkage effects. For beams with a single layer 
of reinforcement, the depth to the centroid of the steel d is the same as d1• For beams 
with multiple layers of reinforcement, d, is greater than the depth to the centroid of 
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the reinforcement d. Substituting d1 ford and Er for EY in Eq. (3.27), the net tensile 
strain may be represented as 

(3.29) 

Then based on Eq. (3.28), the reinforcement ratio to produce a selected value of net 
tensile strain is 

J. , d 
p = 0.85,81 ....E.. _!_ Eu 

Jy d Eu+ Er 
(3.30a) 

or somewhat conservatively 

J. , E 

p = 0.85,81 ....E.. u 

Jy Eu+ Er 
(3.30b) 

To ensure underreinforced behavior, ACI Code 10.3.5 establishes a minimum 
net tensile strain E1 at the nominal member strength of 0.004 for members subjected to 
axial loads less than 0.1 OJ;A

8
, where A

8 
is the gross area of the cross section. By way 

of comparison Ey, the steel strain at the balanced condition, is 0.00207 forJy = 60,000 psi 
and 0.00259 for Jy = 75,000 psi. 

Using E1 = 0.004 in Eq. (3.30b) provides the maximum reinforcement ratio 
allowed by the ACI Code for beams 

J; Eu 

Pmax = 0.85,8, Jy Eu + 0.004 (3.30c) 

The ACI Code further encourages the use of lower reinforcement ratios by 
allowing higher strength reduction factors in such beams. The Code defines a tension
controlled member as one with a net tensile strain greater than or equal to 0.005. The 
corresponding strength reduction factor is cf> = 0.9.t The Code additionally defines a 
compression-controlled member as having a net tensile strain of less than 0.002. The 
strength reduction factor for compression-controlled members is 0.65. A value of 0.75 
may be used if the members are spirally reinforced. A value of Er = 0.002 corresponds 
approximately to the yield strain for steel with/y = 60,000 psi yield strength. Between 
net tensile strains of 0.002 and 0.005, the strength reduction factor varies linearly, and 
the ACI Code allows a linear interpolation of cf> based on Er, as shown in Fig. 3.9. Based 
on Eq. (3.30b), the maximum reinforcement ratio for a tension-controlled beam is 

J; Eu 
Po.oos = 0.85,81 Jy Eu + 0.005 (3.30d) 

A comparison of Eqs. (3.30c) and (3.30d) shows that, for a given concrete cross 
section, using E1 = 0.004 will result in a higher reinforcement ratio, and thus a higher 
nominal flexural strength, than using E1 = 0.005. This higher strength, however, 
cannot be used to full advantage in design because the increase in flexural strength is 
canceled by the drop in cf> as E1 decreases from 0.005 to 0.004. As a result, the 
maximum practical reinforcement ratio for beams is attained at a net tensile strain of 
0.005. Values of Er below 0.005 are not recommended for the design of members with 
low axial loads. 

t The selection of a net tensile strain of 0.005 is intended to encompass the yield strain of all reinforcing steel including high-strength bars and 
prestressing tendons. 



FIGURE3.9 
Variation of strength 
reduction factor with net 
tensile strain in the steel. 

FIGURE3.10 
Net tensile strain and c/d1 

ratios. 
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0.80 

cf, = 0.75 + (E, - 0.002)50 
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0.70 

0.65 

E1 = 0.002 

c/d1 = 0.600 

~Other 

cp = 0.65 + (Er - 0.002)(250/3) 
cf,= 0.65 + 0.25[1/(c/d1) - 5/3] 

Net tensile strain E1 = 0.005 

c/d1 = 0.375 

Calculation of the nominal moment capacity frequently involves determination 
of the depth of the equivalent rectangular stress block a. Since c = a/{31, it is some
times more convenient to compute c/d1 ratios than either p or the net tensile strain. The 
assumption that plane sections remain plane ensures a direct correlation between net 
tensile strain and the c/d1 ratio, as shown in Fig. 3.10. The maximum value of c/d1 for 
E1 ~ 0.005 is 0.375. 

Comparing Eqs. (3.30a) and (3.30b), it can be seen that the maximum rein
forcement ratios in Eqs. (3.30c) and (3.30d) are exact for beams with a single layer of 
reinforcement and slightly conservative for beams with multiple layers of reinforce
ment, where d, is greater than d. Because E1 ~ 0.004 (better yet E1 ~ 0.005) ensures 

Eu= 0.003 Eu = 0.003 Eu = 0.003 ~t~---
c 

Et= 0.005 Et= 0.004 Et= 0.002 

C 0.003 
dt 0.003 + 0.005 = 0.375 C 0.003 

dt 0.003 + 0.004 = 0.429 C 0.003 
dt 0.003 + 0.002 = 0.500 

(a) 
Tension-controlled 

member 

(b) 
Minimum net tensile 

strain for flexural member 

(c) 
Compression-controlled 

member 
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FIGURE3.11 
Singly reinforced rectangular 
beam. 
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that steel is yielding in tension, fs = Jy at failure, and the nominal flexural strength 
(referring to Fig. 3.11) is given by 

Mn= Asfy( d - ~) (3.31) 

where 

(3.32) 

EXAMPLE 3.4 Using the equivalent rectangular stress distribution, directly calculate the nominal strength of 
the beam previously analyzed in Example 3.3. Recall that b = 10 in., d = 23 in., As = 2.37 in2., 

J; = 4000 psi,_{y = 60,000 psi, and /31 = 0.85. 

SOLUTION. The distribution of stresses, internal forces, and strains is shown in Fig. 3 .11. The 
maximum practical reinforcement ratio is calculated from Eq. (3.30d) as 

4000 0.003 
Po.oos = 0.85 X 0.85 60,000 0.003 + 0.005 = 0.0181 

and comparison with the actual reinforcement ratio of 0.0103 confirms that the member is 
underreinforced and will fail by yielding of the steel. Alternatively, recalling that c = 4.94 in., 

!:... = ~ = 
4

·
94 

= 0.215 
d1 d 23 

which is less than 0.375, the value of c/d1 corresponding to E1 = 0.005, also confirming that the 
member is underreinforced. The depth of the equivalent stress block is found from the equilib
rium condition that C = T. Hence 0.85J;ab = A.,_[y, or a = 2.37 X 60,000/(0.85 X 4000 X 10) 
= 4.18. The nominal moment is 

Mn = AJy( d - ~) = 2.37 X 60,000(23 - 2.09) = 2,970,000 in-lb = 248 ft-kips 

The results of this simple and direct numerical analysis, based on the equivalent 
rectangular stress distribution, are identical with those previously determined from the 
general strength analysis described in Section 3.3c. 
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It is convenient for everyday design to combine Eqs. (3.31) and (3.32) as 
follows. Noting that As = pbd, Eq. (3.32) can be rewritten as 

pfy<i 

a= 0.85/; 

This is then substituted into Eq. (3.31) to obtain 

_ 2 ( Pfy) Mn - pfyhd 1 - 0.59 J; 

(3.33) 

(3.34) 

which is identical to Eq. (3.20b) derived in Section 3.3c. This basic equation can be 
simplified further as follows: 

M = Rbd2 
n (3.35) 

in which 

( 
Pfy) 

R = P/y 1 - 0.59 J; (3.36) 

The flexural resistance factor R depends only on the reinforcement ratio and the 
strengths of the materials and is easily tabulated. Tables A.Sa and A.Sb of Appendix A 
give R values for ordinary combinations of steel and concrete and the full practical 
range of reinforcement ratios. 

In accordance with the safety provisions of the ACI Code, the nominal flexural 
strength Mn is reduced by imposing the strength reduction factor cf> to obtain the design 
strength 

(3.37) 

or, alternatively, 

_ 2 ( Pfy) cf>Mn - cf>pfyhd 1 - 0.59 J; (3.38) 

or 

cf>M n = cf>Rbd2 (3.39) 

EXAMPLE 3.4 Calculate the design moment capacity <f,Mn for the beam analyzed earlier in Example 3.4. 
(continued) 

SOLUTION. Comparing p with Po.oos or c/d1 for the beam with the value of c/d1 corresponding 
to e1 = 0.005 demonstrates that e1 > 0.005. Therefore, <p = 0.90 and the design capacity is 

</JMn = 0.9 X 248 = 223 ft-kips 

e. Minimum Reinforcement Ratio 

Another mode of failure may occur in very lightly reinforced beams. If the flexural 
strength of the cracked section is less than the moment that produced cracking of the 
previously uncracked section, the beam will fail immediately and without warning of 
distress upon formation of the first flexural crack. To ensure against this type of 
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failure, a lower limit can be established for the reinforcement ratio by equating the 
cracking moment, computed from the concrete modulus of rupture (Section 2.9), to 
the strength of the cracked section. 

For a rectangular section having width b, total depth h, and effective depth d 
(see Fig. 3.2b), the section modulus with respect to the tension fiber is bh2/6. For 
typical cross sections, it is satisfactory to assume that h/d = 1. 1 and that the internal 
lever arm at flexural failure is 0.95d. If the modulus of rupture is taken as 
fr = 7 .5 Yf:, as usual, then an analysis equating the cracking moment to the flexural 
strength results in 

1.6\!f: 
As.min = /y bd (3.40a) 

This development can be generalized to apply to beams having a T cross section (see 
Section 3.8 and Fig. 3.16). The corresponding equations depend on the proportions of 
the cross section and on whether the beam is bent with the flange (slab) in tension or 
in compression. For T beams of typical proportions that are bent with the flange in 
compression, analysis will confirm that the minimum steel area should be 

2.7\!f: 
As.min = /y bw<f, (3.40b) 

where bw is the width of the web, or stem, projecting below the slab. For T beams 
that are bent with the flange in tension, from a similar analysis, the minimum steel 
area is 

6.2\!f: 
As,min = /y bw<f, (3.40c) 

The ACI Code requirements for minimum steel area are based on the results just 
discussed, but there are some differences. According to ACI Code 10.5, at any section 
where tensile reinforcement is required by analysis, with some exceptions as noted 
below, the area As provided must not be less than 

3 \If: 200bwd 
As,min = -- bwd 2: --- (3.41) 

/y /y 

This applies to both positive and negative bending sections. The inclusion of the 
additional limit of 200bwd//y is merely for historical reasons; it happens to give the 
same minimum reinforcement ratio of 0.005 that was imposed in earlier codes for 
then-common material strengths. Note that in Eq. (3.41) the section width bw is used; 
it is understood that for rectangular sections bw = b. Note further that the ACI 
coefficient of 3 is a conservatively rounded value compared with 2.7 in Eq. (3.40b) for 
T beams with the flange in compression, and is very conservative when applied to 
rectangular beam sections, for which a rational analysis gives 1.6 in Eq. (3.40a). This 
probably reflects the view that the minimum steel for the negative bending sections of 
a continuous T beam (which are, in effect, rectangular sections, as discussed in 
Section 3.8c) should be no less than for the positive bending sections, where the 
moment is generally smaller. 

ACI Code 10.5 treats statically determinate T beams with the flange in tension 
as a special case, for which the minimum steel area is equal to or greater than the value 
given by Eq. (3.41) with bw replaced by either 2bw or the width of the flange, 
whichever is smaller. 
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Note that ACI Code Eq. (3.41) is conveniently expressed in terms of a minimum 
tensile reinforcement ratio Pmin by dividing both sides by bwd. 

According to ACI Code 10.5, the requirements ofEq. (3.41) need not be imposed 
if, at every section, the area of tensile reinforcement provided is at least one-third 
greater than that required by analysis. This provides sufficient reinforcement for large 
members such as grade beams, where the usual equations would require excessive 
amounts of steel. 

For structural slabs and footings of uniform thickness, the minimum area of 
tensile reinforcement in the direction of the span is that required for shrinkage and 
temperature steel (see Section 13.3 and Table 13.2), and the above minimums need not 
be imposed. The maximum spacing of such steel is the smaller of 3 times the total slab 
thickness or 18 in. 

f. Examples of Rectangular Beam Analysis and Design 

Flexural problems can be classified broadly as analysis problems or design problems. 
In analysis problems, the section dimensions, reinforcement, and material strengths 
are known, and the moment capacity is required. In the case of design problems, the 
required moment capacity is given, as are the material strengths, and it is required to 
find the section dimensions and reinforcement. Examples 3.5 and 3.6 illustrate analy
sis and design, respectively. 

EXAMPLE 3.5 Flexural strength of a given member. A rectangular beam has width 12 in. and effective 
depth 17.5 in. It is reinforced with four No. 9 (No. 29) bars in one row. Iffy= 60,000 psi and 
J: = 4000 psi, what is the nominal flexural strength, and what is the maximum moment that 
can be utilized in design, according to the ACI Code? 

SOLUTION. From Table A.2 of Appendix A, the area of four No. 9 (No. 29) bars is 4.00 in2• 

Assuming that the beam is underreinforced and using Eq. (3.32), 

4.00 X 60 
a = 0.85 X 4 X 12 = 5·88 in. 

The depth of the neutral axis is c = a/{31 = 5.88/0.85 = 6.92, giving 

~ = 
6

"
92 

= 0.395 
d, 17.5 

which is between 0.429 and 0.375, the values corresponding, respectively, to e, = 0.004 and 
E1 = 0.005, as shown in Fig. 3.10. Thus, the beam is, as assumed, underreinforced, and from 
Eq. (3.31) 

( 
5.88) Mn= 4.00 X 60 17.5 - -

2
- = 3490 in-kips 

The fact that the beam is unreinforced could also have been established by calculating 
p = 4.00/(12 X 17.5) = 0.190, which just exceeds p0_005, which is calculated using Eq. (3.30d). 

( 
4 )( 0.003 ) 

p0_005 = 0.85 X 0.85 60 0.003 + 0.005 = 0.0181 

Because the net tensile strain E 1 is between 0.004 and 0.005, cf> must be calculated: 
E1 = e.(d - c)/c = 0.003 X 17.5 - 6.92/6.92 = 0.00458. Using linear interpolation from 
Fig. 3.9, cf> = 0.87, and the design strength is taken as 

cf>Mn = 0.87 X 3490 = 3040 in-kips 
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The ACI Code limits on the reinforcement ratio 

Pmax = 0.0206 

3V4000 200 
P . = --- > -- = 0 0033 

mm 60,000 - 60,000 · 

are satisfied for this beam. 

EXAMPLE 3.6 Concrete dimensions and steel area to resist a given moment. Find the concrete cross 
section and the steel area required for a simply supported rectangular beam with a span of 
15 ft that is to carry a computed dead load of 1.27 kips/ft and a service live load of 2.15 kips/ft, 
as shown in Fig. 3.12. Material strengths aref: = 4000 psi and.{y = 60,000 psi. 

FIGURE3.12 
Structural loads for 
Example 3.6. 

SOLUTION. Load factors are first applied to the given service loads to obtain the factored load 
for which the beam is to be designed, and the corresponding moment: 

Wu= 1.2 X 1.27 + 1.6 X 2.15 = 4.96 kips/ft 

Mu = ½ X 4.96 X 152 X 12 = 1670 in-kips 

The concrete dimensions will depend on the designer's choice of reinforcement ratio. To 
minimize the concrete section, it is desirable to select the maximum permissible reinforcement 
ratio. To maintain </> = 0.9, the maximum reinforcement ratio corresponding to a net tensile 
strain of 0.005 will be selected (see Fig. 3.9). Then, from Eq. (3.30d) 

J: Eu ( 4 ) ( 0.003 ) Po.oos = 0.85{31 - 0 = 0.85 X 0.85 -
6 

0 
003 

0 
005 

= 0.0181 
.{y Eu + .005 0 . + . 

Using Eq. (3.30c) gives Pmax = 0.0206, but would require a lower strength reduction factor. 
Setting the required flexural strength equal to the design strength from Eq. (3.38), and substi
tuting the selected values for p and material strengths, 

Mu= </>Mn 

1670 = 0.90 X 0.0181 X 60bd 2
( I - 0.59 O.Ol

8
: X 

60
) 

from which 

bd2 = 2040 in3 

A beam with width b = 10 in. and d = 14.3 in. will satisfy this requirement. The required steel 
area is found by applying the chosen reinforcement ratio to the required concrete dimensions: 

As = 0.0181 X 10 X 14.3 = 2.59 in2 

Two No. 10 (No. 32) bars provide 2.54 in2, which is very close to the required area. 
Assuming 2.5 in. concrete cover from the centroid of the bars, the required total depth 

is h = 16.8 in. In actual practice, however, the concrete dimensions b and h are always 
rounded up to the nearest inch, and often to the nearest multiple of 2 in. (see Section 3.5). The 

Cos;:;:~~ l~=~~~~a~ :· ~ ~2~pk~~~/ft K(««««««<(««(<(««(«««(<4 
(including beam self-weight) k ;i 

l+------15'-0"------
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actual d is then found by subtracting the required concrete cover dimension from h. For the 
present example, b = 10 in. and h = 18 in. will be selected, resulting in effective depth d = 
15.5 in. Improved economy then may be possible, refining the steel area based on the actual, 
larger, effective depth. One can obtain the revised steel requirement directly by solving 
Eq. (3.38) for p, with </>Mn = Mu. A quicker solution can be obtained by iteration. First a 
reasonable value of a is assumed, and As is found from Eq. (3.37). From Eq. (3.32) a revised 
estimate of a is obtained, and As is revised. This method converges very rapidly. For example, 
assume a = 5 in. Then 

1670 
A = -------- = 2.38 in2 

s 0.90 X 60(15.5 - 2.5) 

Checking the assumed a gives 

2.38 X 60 
a = ----- = 4.20 in. 

0.85 X 4 X 10 

This is close enough to the assumed value that no further calculation is required. The required 
steel area of 2.38 in2 could be provided using three No. 8 (No. 25) bars, but for simplicity of 
construction, two No. 10 (No. 32) bars will be used as before. 

A somewhat larger beam cross section using less steel may be more economical, and will 
tend to reduce deflections. As an alternative solution, the beam will be redesigned with a lower 
reinforcement ratio of p = 0.60pmax = 0.60 X 0.0206 = 0.0124. Setting the required strength 
equal to the design strength [Eq. (3.38)] as before, 

1670 = 0.90 X 0.0124 X 60bd 2
( 1 - 0.59 O.Ol2: X 

60
) 

and 

bd2 = 2800 in3 

A beam with b = 10 in. and d = 16.7 in. will meet the requirement, for which 

As= 0.0124 X 10 X 16.7 = 2.07 in2 

Two No. 9 (No. 29) bars are almost sufficient, providing an area of 2.00 in2• If the total con
crete height is rounded up to 20 in., a 17.5 in. effective depth results, reducing the required steel 
area to 1.96 in2• Two No. 9 (No. 29) bars remain the best choice. 

It is apparent that an infinite number of solutions to the stated problem are possi
ble, depending upon the reinforcement ratio selected. That ratio may vary from an 
upper limit of Pmax to a lower limit of 3Vfc/Jy ~ 200/Jy for beams, according to the 
ACI Code. To compare the two solutions (using the theoretical dimensions, unrounded 
for the comparison, and assuming his 2.5 in. greater than din each case), increasing 
the concrete section area by 14 percent achieves a steel saving of 20 percent. The sec
ond solution would certainly be more economical and would be preferred, unless beam 
dimensions must be minimized for architectural or functional reasons. Economical 
designs will typically have reinforcement ratios between 0.50p0_005 and 0.75p0_005 • 

There is a type of problem, occurring frequently, that does not fall strictly into 
either the analysis or the design category. The concrete dimensions are given and are 
known to be adequate to carry the required moment, and it is necessary only to find 
the steel area. Typically, this is the situation at critical design sections of continuous 
beams, in which the concrete dimensions are often kept constant, although the steel 
reinforcement varies along the span according to the required flexural resistance. 
Dimensions b, d, and h are determined at the maximum moment section, usually at 
one of the supports. At other supports, and at midspan locations, where moments are 
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usually smaller, the concrete dimensions are known to be adequate and only the tensile 
steel remains to be found. An identical situation was encountered in the design 
problem of Example 3.6, in which concrete dimensions were rounded up from the 
minimum required values, and the required steel area was to be found. In either case, 
the iterative approach demonstrated in Example 3.6 is convenient. 

EXAMPLE 3.7 Determination of steel area. Using the same concrete dimensions as were used for the 
second solution of Example 3.6 (b = IO in., d = 17.5 in., and h = 20 in.) and the same material 
strengths, find the steel area required to resist a moment M. of 1300 in-kips. 

SOLUTION. Assume a = 4.0 in. Then 

A = l300 = 1.55 in2 

s 0.90 X 60(17.5 - 2.0) 

Checking the assumed a gives 

1.55 X 60 _ 
4

. 
a = ----- - 2.7 m. 

0.85 X 4 X 10 

Next assume a = 2.6 in. and recalculate As: 

A = 1300 = 1.49 in2 
s 0.90 X 60(17.5 - 1.3) 

No further iteration is required. Use As= 1.49 in2• Two No. 8 (No. 25) bars,As = 1.58 in.2, will 
be used. A check of the reinforcement ratio shows p < p0_005 and</> = 0.9. 

As seen in Example 3.5, the strength reduction factor becomes a variable at high 
reinforcement ratios. Example 3.8 demonstrates how the variation in strength reduc
tion factor affects the design process. 

EXAMPLE 3.8 Determination of steel area and variable strength reduction factor. Architectural consid
erations limit the height of a 20 ft long simple span beam to 16 in. and the width to 12 in. The 
following loads and material properties are given: w d = 0. 19 kips/ft, w1 = l .65 kips/ft, J: = 
5000 psi, and..fy = 60,000 psi. Determine the reinforcement for the beam. 

SOLUTION. Calculating the factored loads gives 

w. = 1.2 X 0.79 + 1.6 X 1.65 = 3.59 kips/ft 

Mu= 3.59 X 
2t = 179 ft-kips = 2150 in-kips 

Assume a = 4.0 in. and</> = 0.90. The structural depth is (16 - 2.5) in. = 13.5 in. Calcu
lating As gives 

2150/0.90 . 
2 

60(13.5 - 2.0) = 3.46 m 

Try two No. 10 (No. 32) and one No. 9 (No. 29) bar, As = 3.54 in2. 

Check a = 3.54 X 60/(0.85 X 5 X 12) = 4.16 in. from Eq. (3.32). This is more than 
assumed; therefore, continue to check the moment capacity. 

Mn = 3.54 X 60(13.5 - 4.16/2) = 2426 in-kips 
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Using a <f> of0.90 gives <f>Mn = 2183 in-kips, which is adequate; however, the net tensile strain 
must be checked to validate the selection of <f> = 0.9. In this case c = a/{31 = 4.16/0.80 = 
5.20 in. The c/d ratio is 0.385 > 0.375, so E1 > 0.005 is not satisfied. The corresponding net 
tensile strain is 

13.5 - 5.2 
E1 = 0.003 

5
_
2 

= 0.00479 

A value of E1 = 0.00479 is allowed by the ACI Code, but only if the strength reduction factor is 
adjusted. A linear interpolation from Fig. 3.9 gives <f> = 0.88 and Mu = </>Mn = 2140 in-kips, 
which is less than the required capacity. Try increasing the reinforcement to three No. 10 (No. 32) 
bars, As = 3.81 in2

• Repeating the calculations, 

a = 3.81 X 60 = 4.48 in. 
0.85 X 5 X 12 

4.48 . 
C = -- = 5.60m. 

0.80 

( 
4.48) Mn = 3.81 X 60 13.5 - -

2
- = 2574 in-kips 

0.003(13.5 - 5.60) 
E = ------ = 0.00423 

I 5.60 

<p = 0.483 + 83.3 X 0.00423 = 0.835 

Mu = </>Mn = 0.835 X 2574 = 2150 in-kips 

which meets the design requirements. 
In actuality, the first solution deviates less than 1 percent from the desired value and 

would likely be acceptable. The remaining portion of the example demonstrates the design 
implications of requiring a variable strength reduction factor when the net tensile strain falls 
between 0.005 and 0.004. In this example, the reinforcement increased nearly 8 percent, yet the 
design moment capacity <f>Mn only increased 0.5 percent due to the decreasing strength reduc
tion factor. For this reason, designs with p < Po.oos are desirable. 

In solving these examples, the basic equations have been used to develop famil
iarity with them. In actual practice, however, design aids such as Table A.4 of Appen
dix A, giving values of maximum and minimum reinforcement ratios, and Table A.5, 
providing values of flexural resistance factor R, are more convenient. The example 
problems will be repeated in Section 3.5 to demonstrate use of these aids. 

g. Overreinforced Beams 

According to the ACI Code, all beams are to be designed for yielding of the tension 
steel with e1 not less than 0.004 and thus p :;;;; Pmax· Occasionally, however, such as 
when analyzing the capacity of existing construction, it may be necessary to calculate 
the flexural strength of an overreinforced compression-controlled member, for which 
fs is less than .t;, at flexural failure. 

In this case, the steel strain, in Fig. 3.1 lb, will be less than the yield strain, but 
can be expressed in terms of the concrete strain Eu and the still-unknown distance c to 
the neutral axis: 

d-c 
E =e --

s u C 
(3.42) 
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From the equilibrium requirement that C = T, one can write 

0.85{3d; be = P'=sEsbd 

Substituting the steel strain from Eq. (3.42) in the last equation, and defining ku = c/d, 
one obtains a quadratic equation in ku as follows: 

k~ + mpk u - mp = 0 

Here, p = Asfbd as usual, and m is a material parameter given by 

Solving the quadratic equation for ku, 

mp 

2 

(3.43) 

(3.44) 

The neutral axis depth for the overreinforced beam can then easily be found from 
c = kud, after which the stress-block depth a= {31c. With steel strain '=s then computed 
from Eq. (3.42), and withfs = Es'=s• the nominal flexural strength is 

Mn= Asfs( d -1) (3.45) 

The strength reduction factor <p will equal 0.65 for beams in this range. 

3.5 DESIGN AIDS 

Basic equations were developed in Section 3.4 for the analysis and design of 
reinforced concrete beams, and these were used directly in the examples. In prac
tice, the design of beams and other reinforced concrete members is greatly facili
tated by the use of aids such as those in Appendix A of this text and in Refs. 3.7 
through 3.9. Tables A.1, A.2, A.4 through A.7, and Graph A.1 of Appendix A relate 
directly to this chapter, and the student can scan this material to become familiar 
with the coverage. Other aids will be discussed, and their use demonstrated, in 
later chapters. 

Equation (3.39) gives the flexural design strength </JMn of an underreinforced 
rectangular beam with a reinforcement ratio at or below Pmax· The flexural resistance 
factor R, from Eq. (3.36), is given in Table A.Sa for lower reinforcement ratios or 
Table A.Sb for higher reinforcement ratios. Alternatively, R can be obtained from 
Graph A.1. For analysis of the capacity of a section with known concrete dimensions 
b and d, having known reinforcement ratio p, and with known materials strengths, the 
design strength </JMn can be obtained directly by Eq. (3.39). 

For design purposes, where concrete dimensions and reinforcement are to be 
found and the factored load moment Mu is to be resisted, there are two possible 
approaches. One starts with selecting the optimum reinforcement ratio and then 
calculating concrete dimensions, as follows: 

1. Set the required strength Mu equal to the design strength </JMn from Eq. (3.39): 

Mu= cpRbd2 
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2. With the aid of Table A.4, select an appropriate reinforcement ratio between Pmax 

and Pmin· Often a ratio of about 0.60Pmax will be an economical and practical 
choice. Selection of p :s p0_005 , (€1 :::::: 0.005) ensures that cp will remain equal to 
0.90. For p0_005 < p < Pmw an iterative solution will be necessary. 

3. From Table A.5, for the specified material strengths and selected reinforcement 
ratio, find the flexural resistance factor R. Then 

bd2 = Mu 
cpR 

4. Choose b and d to meet that requirement. Unless construction depth must be 
limited or other constraints exist (see Section 12.6), an effective depth about 2 to 
3 times the width is often appropriate. 

5. Calculate the required steel area 

A.= pbd 

Then, referring to Table A.2, choose the size and number of bars, giving prefer
ence to the larger bar sizes to minimize placement costs. 

6. Refer to Table A.7 to ensure that the selected beam width will provide room for 
the bars chosen, with adequate concrete cover and spacing. (These points will be 
discussed further in Section 3.6.) 

The alternative approach starts with selecting concrete dimensions (see 
Section 12.6 for practical guidelines), after which the required reinforcement is 
found, as follows: 

1. Select beam width b and effective depth d. Then calculate the required R: 

Mu 
R=-

cpbd2 

2. Using Table A.5 for specified material strengths, find the reinforcement ratio 
p < Pmax that will provide the required value of R and verify the selected 
value of cp. 

3. Calculate the required steel area 

A.= pbd 

and from Table A.2 select the size and number of bars. 
4. Using Table A.7, confirm that the beam width is sufficient to contain the selected 

reinforcement. 

Use of design aids to solve the example problems of Section 3.4 will be illus
trated as follows. 

EXAMPLE 3.9 Flexural strength of a given member. Find the nominal flexural strength and design strength 
of the beam in Example 3.5, which has b = 12 in. and d = 17.5 in. and is reinforced with 
four No. 9 (No. 29) bars. Make use of the design aids of Appendix A. Material strengths are 
J; = 4000 psi and.{y = 60,000 psi. 

SOLUTION. From Table A.2, four No. 9 (No. 29) bars provide As = 4.00 in2, and with b = 
12 in. and d = 17.5 in., the reinforcement ratio is p = 4.00/(12 X 17.5) = 0.0190. According 
to Table A.4, this is below Pmax = 0.0206 and above Pmin = 0.0033. Then from Table A.Sb, with 
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J; = 4000 psi,f;, = 60,000 psi, and p = 0.019, the value R = 949 psi is found. The nominal 
and design strengths are (with <p = 0.87 from Example 3.5), respectively, 

as before. 

17.52 

Mn = Rbd2 = 949 X 12 X -- = 3490 in-kips 
1000 

¢Mn = 0.87 X 3490 = 3040 in-kips 

EXAMPLE 3.10 Concrete dimensions and steel area to resist a given moment. Find the cross section of 
concrete and the area of steel required for the beam in Example 3.6, making use of the design 
aids of Appendix A. Mu = 1670 in-kips,J; = 4000 psi, and.I;, = 60,000 psi. Use a reinforce
ment ratio of 0.60pmax· 

SOLUTION. From Table A.4, the maximum reinforcement ratio is Pmax = 0.0206. For econ
omy, a value of p = 0.60Pmax = 0.0124 will be used. For that value, by interpolation from 
Table A.Sa, the required value of R is 663. Then 

2 Mu 1670 X 1000 _ . 3 
bd = </JR = 0.90 X 663 - 2800 m 

Concrete dimensions b = IO in. and d = 16.7 in. will satisfy this, but the depth will be rounded 
to 17.5 in. to provide a total beam depth of 20.0 in. It follows that 

Mu 1670 X 1000 
R = cpbd 2 = 0.90 X 10 X 17.5 2 = 606 psi 

and from Table A.Sa, by interpolation, p = 0.0112. This leads to a steel requirement of 
As= 0.0112 X 10 X 17.5 = 1.96 in2 as before. 

EXAMPLE 3.11 Determination of steel area. Find the steel area required for the beam in Example 3.7, with 
concrete dimensions b = 10 in. and d = 17 .5 in. known to be adequate to carry the factored load 
moment of 1300 in-lb. Material strengths areJ; = 4000 psi and.I;,= 60,000 psi. 

SOLUTION. Note that in cases in which the concrete dimensions are known to be adequate and 
only the reinforcement must be found, the iterative method used earlier is not required. The 
necessary flexural resistance factor is 

Mu 1300 X 1000 
R = cpbd 2 = 0.90 X 10 X 17.5 2 = 

472 
psi 

According to Table A.Sa, with the specified material strengths, this corresponds to a reinforce
ment ratio of p = 0.0085, giving a steel area of 

As= 0.0085 X 10 X 17.5 = 1.49 in2 

as before. Two No. 8 (No. 25) bars will be used. 

The tables and graphs of Appendix A give basic information and are used exten
sively throughout this text for illustrative purposes. The reader should be aware, 
however, of the greatly expanded versions of these tables, plus many other useful aids, 
that are found in Refs. 3.7 through 3.9 and in commercial design software. 
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3.6 PRACTICAL CONSIDERATIONS IN THE DESIGN OF BEAMS 

FIGURE 3.13 
Requirements for concrete 
cover in beams and slabs. 

To focus attention initially on the basic aspects of flexural design, the preceding exam
ples were carried out with only minimum regard for certain practical considerations 
that always influence the actual design of beams. These relate to optimal concrete pro
portions for beams, rounding of dimensions, standardization of dimensions, required 
cover for main and auxiliary reinforcement, and selection of bar combinations. Good 
judgment on the part of the design engineer is particularly important in translating 
from theoretical requirements to practical design. Several of the more important 
aspects are discussed here; much additional guidance is provided by the publications 
of ACI (Refs. 3.7 and 3.8) and CRSI (Refs. 3.9 to 3.11). 

a. Concrete Protection for Reinforcement 

To provide the steel with adequate concrete protection against fire and corrosion, the 
designer must maintain a certain minimum thickness of concrete cover outside of the 
outermost steel. The thickness required will vary, depending upon the type of member 
and conditions of exposure. According to ACI Code 7.7, for cast-in-place concrete, 
concrete protection at surfaces not exposed directly to the ground or weather should 
be not less than ¾ in. for slabs and walls and 1½ in. for beams and columns. If the 
concrete surface is to be exposed to the weather or in contact with the ground, a pro
tective covering of at least 2 in. is required [1½ in. for No. 5 (No. 16) and smaller bars}, 
except that if the concrete is cast in direct contact with the ground without the use of 
forms, a cover of at least 3 in. must be furnished. 

In general, the centers of main flexural bars in beams should be placed 2½ to 
3 in. from the top or bottom surface of the beam to furnish at least 1½ in. of clear cover 
for the bars and the stirrups (see Fig. 3.13). In slabs, 1 in. to the center of the bar is 
ordinarily sufficient to give the required ¾ in. cover. 

To simplify construction and thereby to reduce costs, the overall concrete 
dimensions of beams, b and h, are almost always rounded up to the nearest inch, and 
often to the next multiple of 2 in. As a result, the actual effective depth d, found by 
subtracting the sum of cover distance, stirrup diameter, and one-half the main 

h 

1
1" · 1r-b • 2 mm. 

r 
r 

11 " . 
2 mm. 

d 

L 2r 
_ _L_ 

No. 3 (No. 10) stirrups 

Bars 
Nos. 4 to 10 
(Nos. 1 O to 32) 

1" 

(a) Beam with stirrups 

0 

3" . 
4 mm. 

Bars 
No. 3 or No. 4 
(No. 10 or No. 13) 

(b) Slab 
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reinforcing bar diameter from the total depth h, is seldom an even dimension. For 
slabs, the total depth is generally rounded up to the nearest ½ in. up to 6 in. in depth, 
and to the nearest inch above that thickness. The differences between h and d shown 
in Fig. 3.13 are not exact, but are satisfactory for design purposes for beams with 
No. 3 (No. 10) stirrups and No. IO (No. 32) longitudinal bars or smaller, and for slabs 
using No. 4 (No. 13) or smaller bars. If larger bars are used for the main flexural rein
forcement or for the stirrups, as is frequently the case, the corresponding dimensions 
are easily calculated. 

Recognizing the closer tolerances that can be maintained under plant-control 
conditions, ACI Code 7. 7 .3 permits some reduction in concrete protection for rein
forcement in precast concrete. 

b. Concrete Proportions 

Reinforced concrete beams may be wide and shallow, or relatively narrow and deep. 
Consideration of maximum material economy often leads to proportions with effec
tive depth din the range from about 2 to 3 times the width b (or web width bw for T 
beams). However, constraints may dictate other choices, and as will be discussed in 
Section 12.6, maximum material economy may not translate to maximum structural 
economy. For example, with one-way concrete joists supported by monolithic beams 
( see Chapter 18), use of beams and joists with the same total depth will permit use of 
a single flat-bottom form, resulting in fast, economical construction and permitting 
level ceilings. The beams will generally be wide and shallow, with heavier reinforce
ment than otherwise, but the result will be an overall saving in construction cost. In 
other cases, it may be necessary to limit the total depth of floor or roof construction 
for architectural or other reasons. An advantage of reinforced concrete is its adaptability 
to such special needs. 

c. Selection of Bars and Bar Spacing 

As noted in Section 2.14, common reinforcing bar sizes range from No. 3 to No. 11 
(No. IO to No. 36), the bar number corresponding closely to the number of eighth-inches 
(millimeters) of bar diameter. The two larger sizes, No. 14 (No. 43) n¾ in. (43 mm) 
diameter] and No. 18 (No. 57) [2¼ in. (57 mm) diameter] are used mainly in columns. 

It is often desirable to mix bar sizes to meet steel area requirements more closely. 
In general, mixed bars should be of comparable diameter, for practical as well as 
theoretical reasons, and generally should be arranged symmetrically about the vertical 
centerline. Many designers limit the variation in diameter of bars in a single layer to 
two bar sizes, using, say, No. IO and No. 8 (No. 32 and No. 25) bars together, but not 
Nos. 11 and 6 (Nos. 36 and 19). There is some practical advantage to minimizing the 
number of different bar sizes used for a given structure. 

Normally, it is necessary to maintain a certain minimum distance between 
adjacent bars to ensure proper placement of concrete around them. Air pockets below 
the steel are to be avoided, and full surface contact between the bars and the concrete 
is desirable to optimize bond strength. ACI Code 7.6 specifies that the minimum clear 
distance between adjacent bars not be less than the nominal diameter of the bars, or 
1 in. (For columns, these requirements are increased to 1½ bar diameters and 1½ in.) 
Where beam reinforcement is placed in two or more layers, the clear distance between 
layers must not be less than 1 in., and the bars in the upper layer should be placed 
directly above those in the bottom layer. 
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The maximum number of bars that can be placed in a beam of given width is 
limited by bar diameter and spacing requirements and is also influenced by stirrup 
diameter, by concrete cover requirement, and by the maximum size of concrete 
aggregate specified. Table A. 7 of Appendix A gives the maximum number of bars that 
can be placed in a single layer in beams, assuming 1½ in. concrete cover and the use 
of No. 4 (No. 13) stirrups. When using the minimum bar spacing in conjunction with 
a large number of bars in a single plane of reinforcement, the designer should be aware 
that problems may arise in the placement and consolidation of concrete, especially 
when multiple layers of bars are used or when the bar spacing is smaller than the size 
of the vibrator head. 

There are also restrictions on the minimum number of bars that can be placed 
in a single layer, based on requirements for the distribution of reinforcement to 
control the width of flexural cracks (see Section 6.3). Table A.8 gives the minimum 
number of bars that will satisfy ACI Code requirements, which will be discussed in 
Chapter 6. 

In large girders and columns, it is sometimes advantageous to "bundle" 
tensile or compressive reinforcement with two, three, or four bars in contact to 
provide for better deposition of concrete around and between adjacent bundles. 
These bars may be assumed to act as a unit, with not more than four bars in any 
bundle, provided that stirrups or ties enclose the bundle. No more than two bars 
should be bundled in one plane; typical bundle shapes are triangular, square, or 
L-shaped patterns. Individual bars in a bundle, cut off within the span of flexural 
members, should terminate at different points. ACI Code 7.6.6 requires at least 
40 bar diameters stagger between points of cutoff. Where spacing limitations and 
minimum concrete cover requirements are based on bar diameter, a unit of 
bundled bars is treated as a single bar with a diameter that provides the same 
total area. 

ACI Code 7.6.6 states that bars larger than No. 11 (No. 36) shall not be bundled 
in beams, although the AASHTO Specifications permit bundling of No. 14 and No. 18 
(No. 43 and No. 57) bars in highway bridges. 

3.7 RECTANGULAR BEAMS WITH TENSION 
AND COMPRESSION REINFORCEMENT 

If a beam cross section is limited because of architectural or other considerations, it 
may happen that the concrete cannot develop the compression force required to 
resist the given bending moment. In this case, reinforcement is added in the 
compression zone, resulting in a doubly reinforced beam, i.e., one with compression 
as well as tension reinforcement (see Fig. 3.14). The use of compression reinforce
ment has decreased markedly with the use of strength design methods, which 
account for the full-strength potential of the concrete on the compressive side of the 
neutral axis. However, there are situations in which compressive reinforcement is 
used for reasons other than strength. It has been found that the inclusion of some 
compression steel will reduce the long-term deflections of members (see Section 6.5). 
In addition, in some cases, bars will be placed in the compression zone for 
minimum-moment loading (see Section 12.2) or as stirrup support bars continuous 
throughout the beam span (see Chapter 4). It may be desirable to account for the 
presence of such reinforcement in flexural design, although in many cases they are 
neglected in flexural calculations. 
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Doubly reinforced rectangular beam. 

a. Tension and Compression Steel Both at Yield Stress 

If, in a doubly reinforced beam, the tensile reinforcement ratio p is less than or equal 
to Pb, the strength of the beam may be approximated within acceptable limits by 
disregarding the compression bars. The strength of such a beam will be controlled by 
tensile yielding, and the lever arm of the resisting moment will ordinarily be little 
affected by the presence of the compression bars. 

If the tensile reinforcement ratio is larger than Pb, a somewhat more elaborate 
analysis is required. In Fig. 3.14a, a rectangular beam cross section is shown with 
compression steel A; placed a distance d' from the compression face and with tensile 
steel A. at effective depth d. It is assumed initially that both A; and A. are stressed 
to J;, at failure. The total resisting moment can be thought of as the sum of two parts. 
The first part, Mn 1, is provided by the couple consisting of the force in the compres
sion steel A; and the force in an equal area of tension steel 

(3.46a) 

as shown in Fig. 3.14d. The second part, Mn2, is the contribution of the remaining ten
sion steel A. - A; acting with the compression concrete: 

Mn2 = (A. - A:)J;,( d - ~) (3.46b) 

as shown in Fig. 3.14e, where the depth of the stress block is 

a= 
(As - A:)J;, 

0.85J;b 

With the definitions p = A./bd and p' = A;/bd, this can be written 

(p - p')Jyd 
a= 

0.85/; 

The total nominal resisting moment is then 

(3.47a) 

(3.47b) 

(3.48) 
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In accordance with the safety provisions of the ACI Code, the net tensile strain is 
checked; and if e1 2: 0.005, this nominal capacity is reduced by the factor <P = 0.90 to 
obtain the design strength. For e1 between 0.005 and 0.004, <P must be adjusted, as 
discussed earlier. 

It is highly desirable, for reasons given earlier, that failure, should it occur, 
be precipitated by tensile yielding rather than crushing of the concrete. This can 
be ensured by setting an upper limit on the tensile reinforcement ratio. By setting 
the tensile steel strain in Fig. 3.14b equal to eY to establish the location of the 
neutral axis for the failure condition and then summing horizontal forces shown in 
Fig. 3.14c (still assuming the compressive steel to be at the yield stress at failure), 
it is easily shown that the balanced reinforcement ratio Pb for a doubly reinforced 
beam is 

Pb= Pb+ p' (3.49) 

where Pb is the balanced reinforcement ratio for the corresponding singly reinforced 
beam and is calculated from Eq. (3.28). The ACI Code limits the net tensile strain, not 
the reinforcement ratio. To provide the same margin against brittle failure as for singly 
reinforced beams, the maximum reinforcement ratio should be limited to 

Pmax = Pmax + p' (3.50a) 

Because Pmax establishes the location of the neutral axis, the limitation in Eq. (3.50a) 
will provide acceptable net tensile strains. A check of € 1 is required to determine the 
strength reduction factor <P and to verify net tensile strain requirements are satisfied. 
Substituting p0_005 for Pmax in Eq. (3.50a) will give the maximum reinforcement ratio 
for <P = 0.90. 

Po.oos = Po.oos + p' (3.50b) 

b. Compression Steel below Yield Stress 

The preceding equations, through which the fundamental analysis of doubly rein
forced beams is developed clearly and concisely, are valid only if the compression 
steel has yielded when the beam reached its nominal capacity. In many cases, such as 
for wide, shallow beams, beams with more than the usual concrete cover over the com
pression bars, beams with high yield strength steel, or beams with relatively small 
amounts of tensile reinforcement, the compression bars will be below the yield stress 
at failure. It is necessary, therefore, to develop more generally applicable equations to 
account for the possibility that the compression reinforcement has not yielded when 
the doubly reinforced beam fails in flexure. 

Whether or not the compression steel will have yielded at failure can be deter
mined as follows. Referring to Fig. 3.14b, and taking as the limiting case e; = ey, one 
obtains, from geometry, 

C 

d' 
or 

Summing forces in the horizontal direction (Fig. 3.14c) gives the minimum tensile 
reinforcement ratio Pcy that will ensure yielding of the compression steel at failure: 

_ J; d' €u , 
Pcy = 0.85/3 1 7 -d _ + p (3.51) 

Jy €u €y 
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If the tensile reinforcement ratio is less than this limiting value, the neutral axis 
is sufficiently high that the compression steel stress at failure is less than the yield 
stress. In this case, it can easily be shown on the basis of Fig. 3.14b and c that the 
balanced reinforcement ratio is 

(3.52) 

where 

f; = E.E; = E.[ Eu - ~(Eu+ Ey)] $fy (3.53a) 

To determine Pmax• Er= 0.004 is substituted for Ey in Eq. (3.53a), giving 

f: = E.[ Eu - ~(Eu+ 0.004)] $fy (3.53b) 

Likewise, for Er = 0.005, 

f; = E.[ Eu - ~(Eu+ 0.005)] $/y (3.53c) 

Hence, the maximum reinforcement ratio permitted by the ACI Code is 

- + ,f: 
Pmax = Pmax P /y (3.54a) 

and the maximum reinforcement ratio for <p = 0.90 is 

- + ,f: 
Po.005 = Po.005 P /y (3.54b) 

where..f. is given in Eq. (3.53b). A simple comparison shows that Eqs. (3.52), (3.54a), 
and (3.54b), with..f. given by Eqs. (3.53a), (3.53b), and (3.53c), respectively, are the 
generalized forms of Eqs. (3.49), (3.50a), and (3.50b). 

It should be emphasized that Eqs. (3.53a), (3.53b), and (3.53c) for compression 
steel stress apply only for beams with exact strain values in the extreme tensile steel 
of Ey, Er = 0.004, or Er = 0.005. 

If the tensile reinforcement ratio is less than Pb, as given by Eq. (3.52), and less 
than Pcy• as given by Eq. (3.51), then the tensile steel is at the yield stress at failure but 
the compression steel is not, and new equations must be developed for compression 
steel stress and flexural strength. The compression steel stress can be expressed in 
terms of the still-unknown neutral axis depth as 

(3.55) 

Consideration of horizontal force equilibrium (Fig. 3.14c with compression steel 
stress equal to J;) then gives 

(3.56) 

This is a quadratic equation in c, the only unknown, and is easily solved for c. The 
nominal flexural strength is found using the value offs from Eq. (3.55), and a = {31c 
in the expression 

(3.57) 
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TABLE 3.2 
Minimum beam depths for compression reinforcement to yield 

Et= 0.004 Et= 0.005 

Minimum d Minimum d 
Maximum for d' = 2.5 in., Maximum for d' = 2.5 in., 

f, psi d'/d in. d'/d in. 

40,000 0.23 10.8 0.20 12.3 
60,000 0.13 18.8 0.12 21.5 
75,000 0.06 42.7 0.05 48.8 

This nominal capacity is reduced by the strength reduction factor cp to obtain the 
design strength. 

If compression bars are used in a flexural member, precautions must be taken to 
ensure that these bars will not buckle outward under load, spalling off the outer 
concrete. ACI Code 7 .11.1 imposes the requirement that such bars be anchored in the 
same way that compression bars in columns are anchored by lateral ties (Section 8.2). 
Such ties must be used throughout the distance where the compression reinforcement 
is required. 

For the compression steel to yield, the reinforcement ratio must lie below Pmax 

and above Pcy· The ratio between d' and the steel centroidal depth d to allow· 
yielding of the compression reinforcement can be found by equating Pcy to Pmax (or 
µ0_005 ) and solving for d'/d. Furthermore, if d' is assumed to be 2.5 in., as is often 
the case, the minimum depth of beam necessary for the compression steel to yield 
may be found for each grade of steel. The ratios and minimum beam depths are 
summarized in Table 3.2. Values are included for Er = 0.004, the minimum tensile 
yield strain permitted for flexural members, and Er = 0.005, the net tensile strain 
needed to ensure that cp = 0.90. For beams with less than the minimum depth, the 
compression reinforcement cannot yield unless the tensile reinforcement exceeds 
Pmax· The compression reinforcement may yield in beams that exceed the minimum 
depth in Table 3.2, depending on the relative distribution of the tensile and com
pressive reinforcement. 

c. Examples of Analysis and Design of Beams 
with Tension and Compression Steel 

As was the case for beams with only tension reinforcement, doubly reinforced beam 
problems can be placed in one of two categories: analysis problems or design prob
lems. For analysis, in which the concrete dimensions, reinforcement, and material 
strengths are given, one can find the flexural strength directly from the equations in 
Section 3.7a or 3.7b. First, it must be confirmed that the tensile reinforcement ratio is 
less than Pb given by Eq. (3.52), with compression steel stress from Eq. (3.53a). Once 
it is established that the tensile steel has yielded, the tensile reinforcement ratio defin
ing compression steel yielding is calculated from Eq. (3.51), and the actual tensile 
reinforcement ratio is compared. If it is greater than Pcy• thenJ; = Jy, and Mn is found 
from Eq. (3.48). If it is less than Pcy, then/; < Jy. In this case, c is calculated by solving 
Eq. (3.56),J; comes from Eq. (3.55), and Mn is found from Eq. (3.57). 

For the design case, in which the factored load moment Mu to be resisted is 
known and the section dimensions and reinforcement are to be found, a direct solution 
is impossible. The steel areas to be provided depend on the steel stresses, which are 
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not known before the section is proportioned. It can be assumed that the compression 
steel stress is equal to the yield stress, but this must be confirmed; if it has not yielded, 
the design must be adjusted. The design procedure can be outlined as follows: 

1. Calculate the maximum moment that can be resisted by the underreinforced 
section with p = Pmax, or p0_005 to ensure that cf> = 0.90. The corresponding tensile 
steel area is As = pbd, and, as usual, 

Mn=AJy(d-i) 

with 

AsJ;, 
a= 

0.85f~b 

2. Find the excess moment, if any, that must be resisted, and set M2 = Mn, as 
calculated in step 1. 

Mu 
M 1 =-;;; -M2 

Now As from step 1 is defined as As2, i.e., that part of the tension steel area in the 
doubly reinforced beam that works with the compression force in the concrete. In 
Fig. 3.14e, As - A; = As2• 

3. Tentatively assume thatJ: = J;,. Then 

A'= M1 
s J;,(d - d') 

Alternatively, if from Table 3.2 the compression reinforcement is known not to 
yield, go to step 6. 

4. Add an additional amount of tensile steel As1 = A;. Thus, the total tensile steel 
area As is As2 from step 2 plus As1• 

5. Analyze the doubly reinforced beam to see if J: = J;,; that is, check the tensile 
reinforcement ratio against Pcy· 

6. If p < Pcy, then the compression steel stress is less than J;, and the compression 
steel area must be increased to provide the needed force. This can be done as 
follows. The stress block depth is found from the requirement of horizontal 
equilibrium (Fig. 3.14e), 

a= 
(As - A:)J;, 

0.85J;b 
or a= 

[ As - A; (f;/J;,) ]J;, 

0.85J;b 

and the neutral axis depth is c = a/{31• From Eq. (3.55), 

C - d' 
J; = EuEs---

C 

The revised compression steel area, acting at J:, must provide the same force as 
the trial steel area that was assumed to act at J;,. Therefore, 

A' A' J;, 
s,revised = s,trial J: 

The tensile steel area need not be revised, because it acts at J;, as assumed. 
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EXAMPLE 3.12 Flexural strength of a given member. A rectangular beam, shown in Fig. 3.15, has a width 
of 12 in. and an effective depth to the centroid of the tension reinforcement of 24 in. The tension 
reinforcement consists of six No. 10 (No. 32) bars in two rows. Compression reinforcement 
consisting of two No. 8 (No. 25) bars is placed 2.5 in. from the compression face of the beam. 
Iffy= 60,000 psi and/; = 5000 psi, what is the design moment capacity of the beam? 

FIGURE3.15 
Doubly reinforced beam of 
Example 3.12. 

SOLUTION. The steel areas and ratios are 

As= 7.62 in2 p = 
7

·
62 

= 0.0265 
12 X 24 

A.' = 1.58 in2 ' = 1.
58 = 0.0055 

p 12 X 24 

Check the beam first as a singly reinforced beam to see if the compression bars can be disregarded, 

Pmax = 0.0243 from Table A.4 or Eq. (3.30c) 

The actual p = 0.0265 is larger than Pmax• so the beam must be analyzed as doubly reinforced. 
From Eq. (3.51), with (3 1 = 0.80, 

5 2.5 0.003 
Pcy = 0.85 X 0.80 X 60 X 24 X 0.003 _ 0.00207 + 0.0055 = 0.0245 

The tensile reinforcement ratio is greater than this, so the compression bars will yield when the 
beam fails. The maximum reinforcement ratio thus can be found from Eq. (3.50), 

Pmax = 0.0243 + 0.0055 = 0.0298 

The actual tensile reinforcement ratio is below the maximum value, as required. Then, from 
Eq. (3.47a), 

(7 .62 - 1.58 )60 . 
a= 0.85X5Xl2 = 7.llm. 

7.11 
c = a/ (31 = 

0
_
80 

= 8.89 in. 

= 0 003 ( 
24 

-
8

'
89

) = 0 0051 e, · 8.89 · 

112"1 

-----7'-
I I --r 
I I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

2 No. 8 (No. 25) 

24" 

le • et 
6 No. 10 (No. 32) - --1-------·-·J·-·-·-·-·-·- -___ _. __ . 
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and 

cf>= 0.90 

and from Eq. (3.48), 

( 
7.11) Mn= 1.58 X 60(24 - 2.5) + 6.04 X 60 24 - -

2
- = 9450 in-kips 

The design strength is 

</>Mn = 0.90 X 9450 = 8500 in-kips 

EXAMPLE 3.13 Design of a doubly reinforced beam. A rectangular beam that must carry a service live load 
of 2.47 kips/ft and a calculated dead load of 1.05 kips/ft on an 18 ft simple span is limited in 
cross section for architectural reasons to 10 in. width and 20 in. total depth. If J;, = 60,000 psi 
andJ; = 4000 psi, what steel area(s) must be provided? 

SOLUTION. The service loads are first increased by load factors to obtain the factored load of 
1.2 X 1.05 + 1.6 X 2.47 = 5.21 kips/ft. Then Mu = 5.21 X 182/8 = 211 ft-kips = 2530 in-kips. 
To satisfy spacing and cover requirements (see Section 3.6), assume that the tension steel 
centroid will be 4 in. above the bottom face of the beam and that compression steel, if required, 
will be placed 2.5 in. below the beam's top surface. Then d = 16 in. and d' = 2.5 in. 

First, check the capacity of the section if singly reinforced. Table A.4 shows that p0_005 , 

the maximum value of p for cf> = 0.90, to be 0.0181. While the maximum reinforcement ratio 
is slightly higher, Example 3.8 demonstrated there was no economic efficiency of using 
e1 :S 0.005. So As= 10 X 16 X 0.0181 = 2.90 in2• Then with 

2.90 X 60 . 
a= 0.85 X 4 X 10 = 5·12 m. 

c = a/(31 = 5.12/0.85 = 6.02 in., and the maximum nominal moment that can be developed is 

Mn = 2.90 X 60(16 - 5.12/2) = 2340 in-kips 

Alternatively, using R = 913 from Table A.5b, the nominal moment is Mn = 913 X 10 X 
162/1000 = 2340 in-kips. Because the corresponding design moment <f>Mn = 2100 in-kips is 
less than the required capacity 2530 in-kips, compression steel is needed as well as additional 
tension steel. 

The remaining moment to be carried by the compression steel couple is 

2530 . 
M 1 = -- - 2340 = 470 in-kips 

0.90 

As d is less than the value required to develop the compression reinforcement yield stress 
(Table 3.2), a reduced stress in the compression reinforcement will be used. Using the strain 
distribution in Fig. 3.14b, e; andJ; can be computed as 

e: = 0.003 
6

·
02 

-
2

·
5 

= 0.00175 
6.02 

and J; = 0.00175 X 29,000 = 50.9 ksi 

Try J; = 50 ksi for the compression reinforcement to obtain the required area of compression 
steel. 

470 
A' = ----- = 0.70 in2 

s 50(16 - 2.5) 



FIGUREJ.16 
D<;>ubly reinforced beam of 
Example 3.13. 
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4 No. 9 (No. 29) -< 

The total area of tensile reinforcement at 60 ksi is 

(
50) . 2 A, = 2.90 + 0.70 
60 

= 3.48 m 

Two No. 6 (No. 19) bars will be used for the compression reinforcement and four No. 9 
(No. 29) bars will provide the tensile steel area, as shown in Fig. 3.16. To place the tension bars 
in a 10 in. beam width, two rows of two bars each are used. 

A final check is made to ensure that the selection of reinforcement does not create a 
lower compressive stress than the assumed 50 ksi. 

( /:) (50) . 2 A, - A: /y = 4.0 - 0.88 
60 

= 3.27 m 

which is greater than 2.90 in2 for e1 = 0.005, so </> < 0.90. 

a = 3.27 X 60 = 5_77 in. 
0.85 X 4 X 10 

5.77 . 
C = -

8
- = 6.79m. 

0. 5 
I _ 6.79 - 2.5 _ 

E, - 0.003 
6

_
79 

- 0.0019 

J; = 29,000 X 0.0019 = 55.0 ksi 

which is greater than assumed. Check </>, using d1 = 17 .25 from the strain distribution in 
Fig. 3.14b, and compute the revised Mu. For simplicity, the area of tensile reinforcement is 
not modified. 

= 0003 17.25 - 6.79 = 00046 
e, · 6.79 · 

for which</>= 0.87. Then 

[ ( 
5.77) Mu = 0.87 3.27 X 60 16.0 - -

2
-

+ 0.88 X 55.0(16 - 2.5)] = 2810 in-kips 

This is greater than Mu, so no further refinement is necessary. 
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d. Tensile Steel below the Yield Stress 

All doubly reinforced beams designed according to the ACI Code must be underrein
forced, in the sense that the tensile reinforcement ratio is limited to ensure yielding at 
beam failure. Two cases were considered in Sections 3.7a and 3.7b, respectively: (a) 
both tension steel and compression steel yield and (b) tension steel yields but com
pression steel does not. Two other combinations may be encountered in analyzing the 
capacity of existing beams: ( c) tension steel does not yield, but compression steel does, 
and (d) neither tension steel nor compression steel yields. The last two cases are unusual, 
and in fact, it would be difficult to place sufficient tension reinforcement to create such 
conditions, but it is possible. The solution in such cases is obtained as a simple exten
sion of the treatment of Section 3.7b. An equation for horizontal equilibrium is written, 
in which both tension and compression steel stress are expressed in terms of the 
unknown neutral axis depth c. The resulting quadratic equation is solved for c, after 
which steel stresses can be calculated and the nominal flexural strength determined. 

3.8 T BEAMS 

FIGURE3.17 
Effective flange width of 
T beams. 

With the exception of precast systems, reinforced concrete floors, roofs, decks, etc., are 
almost always monolithic. Forms are built for beam soffits and sides and for the under
side of slabs, and the entire construction is cast at once, from the bottom of the deepest 
beam to the top of the slab. Beam stirrups and bent bars extend up into the slab. It is 
evident, therefore, that a part of the slab will act with the upper part of the beam to resist 
longitudinal compression. The resulting beam cross section is T-shaped rather than 
rectangular. The slab forms the beam flange, while the part of the beam projecting below 
the slab forms what is called the web or stem. The upper part of such a T beam is stressed 
laterally due to slab action in that direction. Although transverse compression at the level 
of the bottom of the slab may increase the longitudinal compressive strength by as much 
as 25 percent, transverse tension at the top surface reduces the longitudinal compressive 
strength (see Section 2.10). Neither effect is usually taken into account in design. 

a. Effective Flange Width 

The next issue to be resolved is that of the effective width of flange. In Fig. 3 .17 a, it 
is evident that if the flange is but little wider than the stem width, the entire flange can 
be considered effective in resisting compression. For the floor system shown in 
Fig. 3.17b, however, it may be equally obvious that elements of the flange midway 
between the beam stems are less highly stressed in longitudinal compression than 
those elements directly over the stem. This is so because of shearing deformation of 
the flange, which relieves the more remote elements of some compressive stress. 

r-- b --J _L_ I+---- b ----Tr 1---,k½.,...,.½.,...,.m..,...,,m..,...,,m..,...,½..,...,l...,....,...,..,...,..½,...,..'1///,...,.m.,...,.m.,...,.½i-,.,-----cr-.-•• --

~~J ~~J 

(a) (b) 



FIGURE 3.18 
Effective cross sections of 
Tbeams. 
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Although the actual longitudinal compression varies because of this effect, it is 
convenient in design to make use of an effective flange width, which may be smaller 
than the actual flange width but is considered to be uniformly stressed at the maximum 
value. This effective width has been found to depend primarily on the beam span and 
on the relative thickness of the slab. 

The criteria for effective width given in ACI Code 8.12 are as follows: 

1. For symmetric T beams, the effective width b shall not exceed one-fourth the 
span length of the beam. The overhanging slab width on either side of the beam 
web shall not exceed 8 times the thickness of the slab or go beyond one-half the 
clear distance to the next beam. 

2. For beams having a slab on one side only, the effective overhanging slab width 
shall not exceed one-twelfth the span length of the beam, 6 times the slab thick
ness, or one-half the clear distance to the next beam. 

3. For isolated beams in which the flange is used only for the purpose of providing 
additional compressive area, the flange thickness shall not be less than one-half 
the width of the web, and the total flange width shall not be more than 4 times the 
web width. 

b. Strength Analysis 

The neutral axis of a T beam may be either in the flange or in the web, depending 
upon the proportions of the cross section, the amount of tensile steel, and the strengths 
of the materials. If the calculated depth to the neutral axis is less than or equal to the 
flange thickness hp the beam can be analyzed as if it were a rectangular beam of width 
equal to b, the effective flange width. The reason is illustrated in Fig. 3.18a, which shows 
a T beam with the neutral axis in the flange. The compressive area is indicated by the 
shaded portion of the figure. If the additional concrete indicated by areas 1 and 2 had 
been added when the beam was cast, the physical cross section would have been rec
tangular with a width b. No bending strength would have been added because areas 1 
and 2 are entirely in the tension zone, and tension concrete is disregarded in flexural 
calculations. The original T beam and the rectangular beam are equal in flexural 
strength, and rectangular beam analysis for flexure applies. 

When the neutral axis is in the web, as in Fig. 3.18b, the preceding argument is 
no longer valid. In this case, methods must be developed to account for the actual 
T-shaped compressive zone. 

In treating T beams, it is convenient to adopt the same equivalent stress distribu
tion that is used for beams of rectangular cross section. The rectangular stress block, 
having a uniform compressive-stress intensity 0.85f;, was devised originally on the 

hr 

LL,CLL/_L L..L.L."- Neutral 
axis 

(2) 
1 :~_I -- ---: N~utral LI (1) -•-•-•- (2) : ax,s 

[ ____ .__ _ _. ____ [ 

~ bw _j 

(a) (b} 
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FIGURE 3.19 
Strain and equivalent stress 
distributions for T beams. 

FIGURE3.20 
Computational model for 
design and analysis of T 
beams. 

(a) (b) (c) 

basis of tests of rectangular beams (see Section 3.4a), and its suitability for T beams 
may be questioned. However, extensive calculations based on actual stress-strain curves 
(reported in Ref. 3.12) indicate that its use for T beams, as well as for beams of circu
lar or triangular cross section, introduces only minor error and is fully justified. 

Accordingly, a T beam may be treated as a rectangular beam if the depth of the 
equivalent stress block is less than or equal to the flange thickness. Figure 3.19 shows 
a tensile-reinforced T beam with effective flange width b, web width bw, effective 
depth to the steel centroid d, and flange thickness h1. If for trial purposes the stress 
block is assumed to be completely within the flange, 

Ash p/yd 
a = -- = -- (3.58) 

0.85J; b 0.85J; 

where p = Asf bd. If a is less than or equal to the flange thickness h1, the member may 
be treated as a rectangular beam of width b and depth d. If a is greater than h1, a T 
beam analysis is required as follows. 

It will be assumed that the strength of the T beam is controlled by yielding of 
the tensile steel. This will nearly always be the case because of the large compressive 
concrete area provided by the flange. In addition, an upper limit can be established for 
the reinforcement ratio to ensure that this is so, as will be shown. 

As a computational device, it is convenient to divide the total tensile steel into 
two parts, as shown in Fig. 3.20. The first part, Asf' represents the steel area that, when 
stressed to J;,, is required to balance the longitudinal compressive force in the over
hanging portions of the flange that are stressed uniformly at 0.85!; (Fig. 3.20b ). Thus, 

0.85J; (b - bw)h1 
Asf = /y 

l+----b-----' 

?__~~□ _J,,,1--~--™-™ __ +_l]~ 
As- - ________ l _____________________ • -

(a) 

Ast 

(b) 

(3.59) 
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The force Ast/2 and the equal and opposite force 0.85 J;(b - bw)ht act with a lever 
ann d - htf 2 to provide the nominal resisting moment 

Mn! = Asth( d - ':;) (3.60) 

The remaining steel area As - Ast• at a stress /2, is balanced by the compression 
in the rectangular portion of the beam (Fig. 3.20c). The depth of the equivalent 
rectangular stress block in this zone is found from horizontal equilibrium. 

(As - Ast)fy 

0.85J; bw 
a= (3.61) 

An additional moment Mn2 is thus provided by the forces (As - Ast)/2 and 0.85J;abw 
acting at the lever arm d - a/2. 

(3.62) 

and the total nominal resisting moment is the sum of the parts: 

Mn = Mn! + Mn2 = Asth( d - ':;) + (As - Ast)h( d - ~) (3.63) 

This moment is reduced by the strength reduction factor cp in accordance with the 
safety provisions of the ACI Code to obtain the design strength. 

As for rectangular beams, the tensile steel should yield prior to sudden crushing 
of the compression concrete, as assumed in the preceding development. Yielding of 
the tensile reinforcement and Code compliance are ensured if the net tensile strain is 
greater than 0.004. From the geometry of the section, 

!:._< '=u 

di - '=u + '=1 
(3.64) 

Setting '=u = 0.003 and 1:1 = 0.004 provides a maximum c/d1 ratio of 0.429, as seen in 
Fig. 3.10. Thus, as long as the depth to the neutral axis is less than 0.429d1, the net 
tensile strain requirements are satisfied, as they are for rectangular beam sections. This 
will occur if Pw = As/bwd is less than 

Pw,max = Pmax + Pt (3.65) 

where Pt= Ast! bwd and Pmax is as previously defined for a rectangular cross section 
[Eq. (3.30c)]. For c/d1 ratios between 0.429 and 0.375, equivalent to Pw between the 
Pw,max from Eq. (3.65) and Pw,o.005 , calculated by substituting p0_005 from Eq. (3.30d) 
for Pmax in Eq. (3.65), the strength reduction factor cp must be adjusted for '=r as shown 
in Fig. 3.9. For Pw ::5 Pw,o.005 or c/d1 ::5 0.375, cp = 0.90. 

The practical result of applying Eq. (3.65) is that the stress block of T beams 
will almost always be within the flange, except for unusual geometry or combinations 
of material strength. Consequently, rectangular beam equations may be applied in 
most cases. 

The ACI Code restriction that the tensile reinforcement ratio for beams not be 
less than Pmin = 3vf:/J; and~ 200/Jy (see Section 3.4d) applies to T beams as well 
as rectangular beams. For T beams, the ratio p should be computed for this purpose 
based on the web width bw. 
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c. Proportions of Cross Section 

When designing T beams, in contrast to analyzing the capacity of a given section, 
normally the slab dimensions and beam spacing will have been established by trans
verse flexural requirements. Consequently, the only additional section dimensions that 
must be determined from flexural considerations are the width and depth of the web 
and the area of the tensile steel. 

If the stem dimensions were selected on the basis of concrete stress capacity in 
compression, they would be very small because of the large compression flange 
width furnished by the presence of the slab. Such a design would not represent the 
optimum solution because of the large tensile steel requirement resulting from the 
small effective depth, because of the excessive web reinforcement that would be 
required for shear, and because of large deflections associated with such a shallow 
member. It is better practice to select the proportions of the web ( 1) so as to keep an 
arbitrarily low web reinforcement ratio Pw or (2) so as to keep web-shear stress at 
desirably low limits (Chapter 4) or (3) for continuous T beams, on the basis of the 
flexural requirements at the supports, where the effective cross section is rectangular 
and of width bw. 

In addition to the main reinforcement calculated according to the preceding 
requirements, it is necessary to ensure the integrity of the compressive flange of T 
beams by providing steel in the flange in the direction transverse to the main span. In 
typical construction, the slab steel serves this purpose. In other cases, additional bars 
must be added to permit the overhanging flanges to carry, as cantilever beams, the 
loads directly applied. According to ACI Code 8.12.5, the spacing of such bars must 
not exceed 5 times the thickness of the flange or in any case exceed 18 in. 

d. Examples of Analysis and Design of T Beams 

For analyzing the capacity of a T beam with known concrete dimensions and tensile 
steel area, it is reasonable to start with the assumption that the stress block depth a does 
not exceed the flange thickness hf. In that case, all ordinary rectangular beam equations 
(see Section 3.4) apply, with beam width taken equal to the effective width of the 
flange. If, upon checking that assumption, a proves to exceed hf, then T beam analysis 
must be applied. Equations (3.59) through (3.63) can be used, in sequence, to obtain the 
nominal flexural strength, after which the design strength is easily calculated. 

For design, the following sequence of calculations may be followed: 

1. Establish flange thickness hf based on flexural requirements of the slab, which 
normally spans transversely between parallel T beams. 

2. Determine the effective flange width b according to ACI limits. 
3. Choose web dimensions bw and d based on either of the following: 

(a) Negative bending requirements at the supports, if a continuous T beam 
(b) Shear requirements, setting a reasonable upper limit on the nominal unit shear 

stress vu in the beam web (see Chapter 4) 
4. With all concrete dimensions thus established, calculate a trial value of As, assum

ing that a does not exceed hf, with beam width equal to flange width b. Use ordi
nary rectangular beam design methods. 

5. For the trial As, check the depth of stress block a to confirm that it does not exceed 
hf. If it should exceed that value, revise As, using the T beam equations. 

6. Check to ensure that E1 :::::: 0.005 or c/d ::5 0.375 to ensure that <p = 0.90. (This 
will almost invariably be the case.) 

7. Check to ensure that Pw :::::: Pw,min· 
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EXAMPLE 3.14 Moment capacity of a given section. The isolated T beam shown in Fig. 3.21 is composed 
of a flange 28 in. wide and 6 in. deep cast monolithically with a web of 10 in. width that extends 
24 in. below the bottom surface of the flange to produce a beam of 30 in. total depth. Tensile 
reinforcement consists of six No. 10 (No. 32) bars placed in two horizontal rows separated by 
1 in. clear spacing. The centroid of the bar group is 26 in. from the top of the beam. The 
concrete has a strength of 3000 psi, and the yield strength of the steel is 60,000 psi. What is the 
design moment capacity of the beam? 

FIGURE 3.21 
T beam of Example 3.14. 

SOLUTION. It is easily confirmed that the flange dimensions are satisfactory according to the 
ACI Code for an isolated beam. The entire flange can be considered effective. For six No. 10 
(No. 32) bars, As = 7 .62 in 2. First check the location of the neutral axis, on the assumption that 
rectangular beam equations may be applied. Using Eq. (3.32) 

7.62 X 60 
a = 0.85 X 3 X 28 = 6.40 in. 

This exceeds the flange thickness, and so a T beam analysis is required. From Eq. (3.59) and 
Fig. 3.19b, 

3 
Asf = 0.85 X 

60 
(28 - 10) X 6 = 4.59 in2 

Then, from Eq. (3.60), 

Mnl = 4.59 X 60 (26 - 3) = 6330 in-kips 

Then, from Fig. 3.19c, 

As - Asf = 7.62 - 4.59 = 3.03 in2 

and from Eqs. (3.58) and (3.59) 

3.03 X 60 
a = 0.85 X 3 X 10 = 7·13 in. 

Mn2 = 3.03 X 60(26 - 3.56) = 4080 in-kips 

.._----28"-----.i 

6" 
r------' _l 

26" 

30" 

ie • ei 
6No. 10(No.32)- 1 ·---·-·r- -----------·-·-· •-.1-• 
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The depth to the neutral axis is c = a/ {31 = 7 .13/0.85 = 8.39 and d1 = 27 .5 in. to the lowest bar. 
The cjd1 ratio is 8.39/27.5 = 0.305 < 0.375, so the E1 > 0.005 requirement is met and¢ = 0.90. 
When the ACI strength reduction factor is incorporated, the design strength is 

¢Mn = 0.90(6330 + 4080) = 9370 in-kips 

EXAMPLE 3.15 Determination of steel area for a given moment. A floor system, shown in Fig. 3.22, 
consists of a 3 in. concrete slab supported by continuous T beams with a 24 ft span, 47 in. on 
centers. Web dimensions, as determined by negative-moment requirements at the supports, are 
bw = 11 in. and d = 20 in. What tensile steel area is required at midspan to resist a factored 
moment of 6400 in-kips ifJy = 60,000 psi andJ; = 3000 psi? 

FIGURE3.22 
T beam of Example 3.15. 

SOLUTION. First determining the effective flange width, 

l6h1 + bw = 16 X 3 + 11 = 59 in. 

Span 12 
-- = 24 X - = 72in 4 4 . 

Centerline beam spacing = 47 in. 

The centerline T beam spacing controls in this case, and b = 41 in. The concrete dimensions 
bw and dare known to be adequate in this case, since they have been selected for the larger neg
ative support moment applied to the effective rectangular section bwd. The tensile steel at 
midspan is most conveniently found by trial. Assuming the stress-block depth a is equal to the 
flange thickness of h1 = 3 in., one gets 

d - ~ = 20 - l.50 = l8.50in. 

Trial: 

Mu 6400 2 A = ----- = ------- = 6.41 in 
s <fJJy(d - a/2) 0.90 X 60 X 18.50 

Checking the assumed value for a, 

a = Asfr = 6.41 X 60 = 3.21 in. 
0.85f;b 0.85 X 3 X 47 

Since a is greater than h1, a T beam design is required and ¢ = 0.90 is assumed. 

0.85J;(b - bw)h1 0.85 X 3 X 36 X 3 . 
A = ------ = ------- = 4.59 m2 

sf Jy 60 

3" 
f----4 7" --j 

lJ lJ 
H 
11" 

-i-
20" 
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<f>Mn1 = cf>As1h( d - ~) = 0.90 X 4.59 X 60 X 18.50 = 4590 in-kips 

<f>Mn2 = Mu - <f>Mnl = 6400 - 4590 = 1810 in-kips 

Assume a = 4.00 in.: 

As - Asf = c/>J;,(d - a/2) 

Check: 

a= 
(As - Asf )J;, 

0.85J;bw 

1810 

0.90 X 60 X (20 - 4.0/2) 

1.86 X 60 
0.85 X 3 X 11 = 3·98 in. 

This is satisfactorily close to the assumed value of 4 in. Then 

1.86 in2 

As = Asf + As - Asf = 4.59 + 1.86 = 6.45 in2 

Checking to ensure that the net tensile strain of 0.005 is met to allow cf> = 0.90, 

a 3.98 
C = - = - = 4.68 

/31 0.85 

C 4.68 
- = - = 0.23 < 0.325 
d1 20 

indicating that the design is satisfactory. 
The close agreement should be noted between the approximate tensile steel area of 

6.41 in2 found by assuming the stress-block depth equal to the flange thickness and the more 
exact value of 6.45 in2 found by T beam analysis. The approximate solution would be satisfac
tory in most cases. 
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PROBLEMS 
3.1. A rectangular beam made using concrete with 1; = 6000 psi and steel with 

Jy = 60,000 psi has a width b = 20 in., an effective depth of d = 17.5 in., and 
a total depth of h = 20 in. The concrete modulus of rupture f,. = 530 psi. The 
elastic moduli of the concrete and steel are, respectively, Ee = 4,030,000 psi 
and Es = 29,000,000 psi. The tensile steel consists of four No. 11 (No. 36) 
bars. 
(a) Find the maximum service load moment that can be resisted without 

stressing the concrete above 0.45!; or the steel above 0.40Jy. 
(b) Determine whether the beam will crack before reaching the service load. 
( c) Compute the nominal flexural strength of the beam. 
(d) Compute the ratio of the nominal flexural strength of the beam to the 

maximum service load moment, and compare your findings to the ACI 
load factors and strength reduction factor. 

3.2. A rectangular, tension-reinforced beam is to be designed for dead load of 
500 lb/ft plus self-weight and service live load of 1200 lb/ft, with a 22 ft simple 
span. Material strengths will be Jy = 60 ksi and 1; = 3 ksi for steel and con
crete, respectively. The total beam depth must not exceed 16 in. Calculate the 
required beam width and tensile steel requirement, using a reinforcement ratio 
of 0.60Pmax· Use ACI load factors and strength reduction factors. The effective 
depth may be assumed to be 2.5 in. less than the total depth. 

3.3. A beam with a 20 ft simple span has cross-sectional dimensions b = l 2 in., 
d = 23 in., and h = 25 in. (see Fig. 3.2b for notation). It carries a uniform 
service load of 2450 lb/ft in addition to its own weight. Material strengths are 
1; = 4000 psi andJ;, = 60,000 psi. Assume a weight of 150 pcf for reinforced 
concrete. 
(a) Check whether this beam, if reinforced with three No. 9 (No. 29) bars, is 

adequate to carry this load with a minimum factor of safety against flex
ural failure of 1.85. If this requirement is not met, select a three-bar rein
forcement of diameter or diameters adequate to provide this safety. 

(b) Determine the maximum stress in the steel and in the concrete under ser
vice load, i.e., when the beam carries its own weight and the specified uni
form load. 

(c) Will the beam show hairline cracks on the tension side under service load? 
3.4. A rectangular reinforced concrete beam with dimensions b = 14 in., d = 25 in., 

and h = 28 in. is reinforced with three No. 10 (No. 32) bars. Material strengths 
arely = 60,000 psi andl; = 5000 psi. 
(a) Find the moment that will produce the first cracking at the bottom surface 

of the beam, basing your calculation on lg, the moment of inertia of the 
gross concrete section. 

(b) Repeat the calculation, using Jut' the moment of inertia of the uncracked 
transformed section. 

(c) Determine the maximum moment that can be carried without stressing the 
concrete beyond 0.45f or the steel beyond 0.60Jy. 

(d) Find the nominal flexural strength of this beam. 
(e) Compute the ratio of the flexural strength from part (d) to the service 

capacity from part (c). 
(f) Comment on your results, paying particular attention to comparing parts 

(a) and (b) and comparing the result in part (e) with the load factors in the 
ACI Code. 
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3.5. A tensile-reinforced beam has b = 12 in. and d = 20 in. to the center of the 
bars, which are placed all in one row. If.t;, = 60,000 psi and/; = 5000 psi, find 
the nominal flexural strength Mn for (a) As = two No. 8 (No. 25) bars, (b) As= 
two No. 10 (No. 32) bars, (c) As = three No. 10 (No. 32) bars. 

3.6. A singly reinforced rectangular beam is to be designed, with effective depth 
approximately 1.5 times the width, to carry a service live load of 2000 lb/ft in 
addition to its own weight, on a 24 ft simple span. The ACI Code load factors 
are to be applied as usual. With .t;, = 60,000 psi and J: = 4000 psi, determine 
the required concrete dimensions b, d, and h, and steel reinforcing bars (a) for 
p = 0.60Pmax and (b) for p = p0_005• Include a sketch of each cross section 
drawn to scale. Allow for No. 4 (No. 13) stirrups. Comment on your results. 

3.7. A four-span continuous beam of constant rectangular cross section is sup
ported at A, B, C, D, and E. The factored moments resulting from analysis 
are as follows: 

At Supports, ft-kips 

Ma= 138 
Mb= 220 
Mc= 200 
Md= 220 
M, = 138 

At Midspan, ft-kips 

Mab= 158 
Mbc = 138 
Med= 138 
Mde = 158 

Determine the required final concrete dimensions for this beam, using d = 1.15b, 
and determine the reinforcement requirements at each critical moment section. 
Your final reinforcement ratio should not exceed= 0.6p0_005 . Use.t;, = 60,000 psi 
and Jc' = 6000 psi. 

3.8. A two-span continuous concrete beam is to be supported by three concrete 
walls spaced 30 ft on centers. A service live load of 1.5 kips/ft is to be carried 
in addition to the self-weight of the beam. Use pattern loading; i.e., consider 
two loading conditions: (1) live load on both spans and (2) live load on a single 
span. A constant rectangular cross section is to be used with d = 2b, but rein
forcement is to be varied according to requirements. Find the required concrete 
dimensions and reinforcement at all critical sections. Allow for No. 3 (No. 10) 
stirrups. Use a span-to-depth ratio of 15 as the first estimate of the depth. 
Adjust the depth if the reinforcement ratio is too high. Include sketches, drawn 
to scale, of the critical cross sections. Use Jy = 60,000 psi and/; = 6000 psi. 

3.9. A rectangular concrete beam measures 12 in. wide and has an effective depth 
of 18 in. Compression steel consisting of two No. 8 (No. 25) bars is located 
2.5 in. from the compression face of the beam. If J: = 4000 psi and .t;, = 
60,000 psi, what is the design moment capacity of the beam, according to the 
ACI Code, for the following alternative tensile steel areas? (a) As = three No. 10 
(No. 32) bars in one layer, (b) As = four No. 10 (No. 32) bars in two layers, (c) 
As = six No. 9 (No. 29) bars in two layers. (Note: Check for yielding of com
pression steel in each case.) Plot Mn versus p and comment on your findings. 

3.10. A rectangular concrete beam of width b = 24 in. is limited by architectural 
considerations to a maximum total depth h = 16 in. It must carry a total fac
tored load moment Mu = 400 ft-kips. Design the flexural reinforcement for 
this member, using compression steel if necessary. Allow 3 in. to the center of 
the bars from the compression or tension face of the beam. Material strengths 
are .t;, = 60,000 psi and J: = 4000 psi. Select reinforcement to provide the 
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FIGURE P3.11 

FIGURE P3.13 

needed areas, and show a sketch of your final design, including provision for 
No. 4 (No. 13) stirrups. 

3.11. For the beam with the triangular cross section shown in Fig. P3.ll, determine 
(a) the balanced reinforcement ratio and (b) the maximum reinforcement ratio 
if € 1 = 0.005. The dimensions of the triangle are such that the width of the 
triangle equals the distance from the apex. Thus, the width at the effective 
depth b equals the effective depth d. Express the reinforcement ratio p in 
terms of b and d. Draw the strain distribution, and stress distribution, and define 
your notation. 

d 

l+----b--+i 

3.12. Develop a design table and graph for the moment capacity of rectangular con
crete beams based on the use of the flexural resistance factor R. (See Table 
A.5a and Graph A.la for examples.) Material strengths are!y = 60,000 psi and 
J; = 8000 psi. The table and graph should begin with Pmin and end at Pmax· 

Your work must show how the maximum and minimum values of p were com
puted. You may use Excel or MathCAD to perform your calculations. Your 
submittal must include a table, a graph, and commentary on how you checked 
the work. 

3.13. A rectangular beam made using concrete with J: = 5000 psi and steel with 
Jy = 60,000 psi has a width b = 18 in., an effective depth d = 21 in., and a 
total depth h = 24 in. The beam is reinforced with four No. 9 (No. 29) bars. 
Compute the nominal moment capacity, assuming (a) an equivalent rectangu
lar stress block, (b) a triangular stress block with a peak value off: , and (c) a 
parabolic stress block with a peak value off: (see Fig. P3.13). Compare and 
comment on your results, knowing that the rectangular stress block correlates 
within 4 percent with test results. 

Triangle 
1 

Area= 2ab 
Parabola 

Area= iab 

3.14. A precast T beam is to be used as a bridge over a small roadway. Concrete 
dimensions are b = 48 in., bw = 16 in., h1 = 5 in., and h = 25 in. The effec
tive depth d = 20 in. Concrete and steel strengths are 6000 psi and 60,000 psi, 
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respectively. Using approximately one-half the maximum tensile reinforcement 
permitted by the ACI Code (select the actual size of bar and number to be 
used), determine the design moment capacity of the girder. If the beam is used 
on a 30 ft simple span, and if in addition to its own weight it must support rail
ings, curbs, and suspended loads totaling 0.475 kip/ft, what uniform service 
live load limit should be posted? 

3.15. A rectangular beam with a width of 8 in., an effective depth of 10 in., and a 
total depth of 12 in. is reinforced with a single fiberglass reinforcing bar that 
has a cross-sectional area of 0.45 in2• The bar has a nominal tensile strength 
of 140,000 psi, a linear stress-strain curve to failure, and a strain at failure of 
1.8 percent. The concrete strength!: = 6000 psi. Determine the nominal flex
ural strength of the section. 

3.16. Compute the maximum and minimum reinforcement ratios for reinforcement 
with an 80 ksi yield point and J: = 4000 to 8000 psi in 1000 psi increments, 
similar to those shown in Table A.4. Using the maximum and minimum 
reinforcement ratios, develop resistance factors and design graphs similar to 
Table A.Sb and Graph A.la. 
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Shear and Diagonal Tension 
in Beams 

4.1 INTRODUCTION 

Chapter 3 dealt with the flexural behavior and flexural strength of beams. Beams must 
also have an adequate safety margin against other types of failure, some of which may 
be more dangerous than flexural failure. This may be so because of greater uncertainty 
in predicting certain other modes of collapse, or because of the catastrophic nature of 
some other types of failure, should they occur. 

Shear failure of reinforced concrete, more properly called diagonal tension 
failure, is one example. Shear failure is difficult to predict accurately. In spite of many 
decades of experimental research (Refs. 4.1 to 4.6) and the use of highly sophisticated 
analytical tools (Refs. 4.7 and 4.8), it is not yet fully understood. Furthermore, if a 
beam without properly designed shear reinforcement is overloaded to failure, shear 
collapse is likely to occur suddenly, with no advance warning of distress. This is in 
strong contrast with the nature of flexural failure. For typically underreinforced 
beams, flexural failure is initiated by gradual yielding of the tension steel, accompa
nied by obvious cracking of the concrete and large deflections, giving ample warning 
and providing the opportunity to take corrective measures. Because of these differ
ences in behavior, reinforced concrete beams are generally provided with special 
shear reinforcement to ensure that flexural failure would occur before shear failure if 
the member were severely overloaded. 

Figure 4.1 shows a shear-critical beam tested under third point loading. With no 
shear reinforcement provided, the member failed immediately upon formation of the 
critical crack in the high-shear region near the right support. 

It is important to realize that shear analysis and design are not really concerned 
with shear as such. The shear stresses in most beams are far below the direct shear 
strength of the concrete. The real concern is with diagonal tension stress, resulting 
from the combination of shear stress and longitudinal flexural stress. Most of this 
chapter deals with analysis and design for diagonal tension, and it provides background 
for understanding and using the shear provisions of the 2008 ACI Code. Members 
without web reinforcement are studied first to establish the location and orientation of 
cracks and the diagonal cracking load. Methods are then developed for the design of 
shear reinforcement according to the present ACI Code, both in ordinary beams and 
in special types of members, such as deep beams. 

Over the years, alternative methods of shear design have been proposed, based 
on variable angle truss models and diagonal compression field theory (Refs. 4.9 and 
4.10). These approaches will be reviewed briefly later in this chapter, with one such 
approach, the modified compression field theory, presented in detail. 



FIGURE4.1 
Shear failure of reinforced 
concrete beam: (a) overall 
view, (b) detail near right 
support. 
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Finally, there are some circumstances in which consideration of direct shear is 
appropriate. One example is in the design of composite members combining precast 
beams with a cast-in-place top slab. Horizontal shear stresses on the interface between 
components are important. The shear-friction theory, useful in this and other cases, 
will be presented following development of methods for the analysis and design of 
beams for diagonal tension. 

4.2 DIAGONAL TENSION IN HOMOGENEOUS ELASTIC BEAMS 

The stresses acting in homogeneous beams were briefly reviewed in Section 3.2. It 
was pointed out that when the material is elastic (stresses proportional to strains), 
shear stresses 

VQ 
v =-

fb 

act at any section in addjtion to the bending stresses 

My 
J=-

I 

except for those locations at which the shear force V happens to be zero. 

(3.4) 

(3.2) 

The role of shear stresses is easily visualized by the performance under load of 
the laminated beam of Fig. 4.2; it consists of two rectangular pieces bonded together 
along the contact surface. If the adhesive is strong enough, the member will deform as 
one single beam, as shown in Fig. 4.2a. On the other hand, if the adhesive is weak, the 
two pieces will separate and slide relative to each other, as shown in Fig. 4.2b. 
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FIGURE4.2 
Shear in homogeneous 
rectangular beams. 

(a) 

(c) 

(b) 

i-dx-J 
(d) 

3 
Vmax = 2Vav 

Evidently, then, when the adhesive is effective, there are forces or stresses acting in it 
that prevent this sliding or shearing. These horizontal shear stresses are shown in 
Fig. 4.2c as they act, separately, on the top and bottom pieces. The same stresses occur 
in horizontal planes in single-piece beams; they are different in intensity at different 
distances from the neutral axis. 

Figure 4.2d shows a differential length of a single-piece rectangular beam acted 
upon by a shear force of magnitude V. Upward translation is prevented; i.e., vertical 
equilibrium is provided by the vertical shear stresses v. Their average value is equal 
to the shear force divided by the cross-sectional area vav = V/ab, but their intensity 
varies over the depth of the section. As is easily computed from Eq. (3.4), the shear 
stress is zero at the outer fibers and has a maximum of 1.5v av at the neutral axis, the 
variation being parabolic as shown. Other values and distributions are found for other 
shapes of the cross section, the shear stress always being zero at the outer fibers and 
of maximum value at the neutral axis. If a small square element located at the neutral 
axis of such a beam is isolated, as shown in Fig. 4.3b, the vertical shear stresses on 
it, equal and opposite on the two faces for reasons of equilibrium, act as shown. 
However, if these were the only stresses present, the element would not be in 
equilibrium; it would spin. Therefore, on the two horizontal faces there exist equili
brating horizontal shear stresses of the same magnitude. That is, at any point within 
the beam, the horizontal shear stresses of Fig. 4.3b are equal in magnitude to the 
vertical shear stresses of Fig. 4.2d. 

It is proved in any strength-of-materials text that on an element cut at 45° these 
shear stresses combine in such a manner that their effect is as shown in Fig. 4.3c. That 
is, the action of the two pairs of shear stresses on the vertical and horizontal faces is 
the same as that of two pairs of normal stresses, one tensile and one compressive, 
acting on the 45° faces and of numerical value equal to that of the shear stresses. If an 
element of the beam is considered that is located neither at the neutral axis nor at the 
outer edges, its vertical faces are subject not only to the shear stresses but also to the 
familiar bending stresses whose magnitude is given by Eq. (3.2) (Fig. 4.3d). The six 
stresses that now act on the element can again be combined into a pair of inclined 



FIGURE4.3 
Stress trajectories in 
homogeneous rectangular 
beam. 
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compressive stresses and a pair of inclined tensile stresses that act at right angles to 
each other. They are known as principal stresses (Fig. 4.3e). Their value, as mentioned 
in Section 3.2, is given by 

(3.1) 

and their inclination a by tan 2a = 2v /f 
Since the magnitudes of the shear stresses v and the bending stresses f change 

both along the beam and vertically with distance from the neutral axis, the inclinations 
as well as the magnitudes of the resulting principal stresses t also vary from one place 
to another. Figure 4.3/ shows the inclinations of these principal stresses for a rectan
gular beam uniformly loaded. That is, these stress trajectories are lines which, at any 
point, are drawn in that direction in which the particular principal stress, tension or 
compression, acts at that point. It is seen that at the neutral axis the principal stresses 
in a beam are always inclined at 45° to the axis. In the vicinity of the outer fibers they 
are horizontal near midspan. 

An important point follows from this discussion. Tensile stresses, which are of 
particular concern in view of the low tensile strength of the concrete, are not confined 
to the horizontal bending stresses f that are caused by bending alone. Tensile stresses 
of various inclinations and magnitudes, resulting from shear alone (at the neutral axis) 
or from the combined action of shear and bending, exist in all parts of a beam and can 
impair its integrity if not adequately provided for. It is for this reason that the inclined 
tensile stresses, known as diagonal tension, must be carefully considered in reinforced 
concrete design. 
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4.3 REINFORCED CONCRETE BEAMS WITHOUT SHEAR 
REINFORCEMENT 

The discussion of shear in a homogeneous elastic beam applies very closely to a plain 
concrete beam without reinforcement. As the load is increased in such a beam, a 
tension crack will form where the tensile stresses are largest and will immediately 
cause the beam to fail. Except for beams of very unusual proportions, the largest 
tensile stresses are those caused at the outer fiber by bending alone, at the section of 
maximum bending moment. In this case, shear has little, if any, influence on the 
strength of a beam. 

However, when tension reinforcement is provided, the situation is quite differ
ent. Even though tension cracks form in the concrete, the required flexural tension 
strength is furnished by the steel, and much higher loads can be carried. Shear stresses 
increase proportionally to the loads. In consequence, diagonal tension stresses of 
significant intensity are created in regions of high shear forces, chiefly close to the 
supports. The longitudinal tension reinforcement has been so calculated and placed 
that it is chiefly effective in resisting longitudinal tension near the tension face. It does 
not reinforce the tensionally weak concrete against the diagonal tension stresses that 
occur elsewhere, caused by shear alone or by the combined effect of shear and flexure. 
Eventually, these stresses attain magnitudes sufficient to open additional tension 
cracks in a direction perpendicular to the local tension stress. These are known as 
diagonal cracks, in distinction to the vertical flexural cracks. The latter occur in 
regions of large moments, the former in regions in which the shear forces are high. In 
beams in which no reinforcement is provided to counteract the formation of large 
diagonal tension cracks, their appearance has far-reaching and detrimental effects. For 
this reason, methods of predicting the loads at which these cracks will form are desired. 

a. Criteria for Formation of Diagonal Cracks 

It is seen from Eq. (3.1) that the diagonal tension stresses t represent the combined 
effect of the shear stresses v and the bending stresses f These in turn are, respectively, 
proportional to the shear force V and the bending moment M at the particular location 
in the beam [Eqs. (3.2) and (3.4)]. Depending on configuration, support conditions, 
and load distribution, a given location in a beam may have a large moment combined 
with a small shear force, or the reverse, or large or small values for both shear and 
moment. Evidently, the relative values of Mand V will affect the magnitude as well as 
the direction of the diagonal tension stresses. Figure 4.4 shows a few typical beams 
and their moment and shear diagrams and draws attention to locations at which 
various combinations of high or low V and M occur. 

At a location of large shear force V and small bending moment M, there will be 
little flexural cracking, if any, prior to the development of a diagonal tension crack. 
Consequently, the average shear stress prior to crack formation is 

V 
v=-

bd 
(4.1) 

The exact distribution of these shear stresses over the depth of the cross section is not 
known. It cannot be computed from Eq. (3.4) because this equation does not account 
for the influence of the reinforcement and because concrete is not an elastic homoge
neous material. The value computed from Eq. (4.1) must therefore be regarded merely 
as a measure of the average intensity of shear stresses in the section. The maximum 



FIGURE4.4 
Typical locations of critical 
combinations of shear and 
moment. 
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value, which occurs at the neutral axis, will exceed this average by an unknown but 
moderate amount. 

If flexural stresses are negligibly small at the particular location, the diagonal 
tensile stresses, as in Fig. 4.3b and c, are inclined at about 45° and are numerically 
equal to the shear stresses, with a maximum at the neutral axis. Consequently, diago
nal cracks form mostly at or near the neutral axis and propagate from that location, as 
shown in Fig. 4.5a. These web-shear cracks can be expected to form when the 
diagonal tension stress in the vicinity of the neutral axis becomes equal to the tensile 
strength of the concrete. The former, as was indicated, is of the order of, and somewhat 
larger than, v = V/bd; the latter, as discussed in Section 2.9, varies from about 3Vf:: 
to about 5 vf::. An evaluation of a very large number of beam tests is in fair agreement 
with this reasoning (Ref. 4.1). It was found that in regions with large shear and small 
moment, diagonal tension cracks form at an average or nominal shear stress v er of 
about 3.5-vf::, that is, 

Ver • fri 

Ver = bd = 3.5 v'f; (4.2a) 

where Ver is that shear force at which the formation of the crack was observed. t Web
shear cracking is relatively rare and occurs chiefly near supports of deep, thin-webbed 
beams or at inflection points of continuous beams. 

t Actually, diagonal tension cracks form at places where a compressive stress acts in addition to and perpendicular to the diagonal tension stress, as 
shown in Fig. 4.3d and e. The crack, therefore, occurs at a location of biaxial stress rather than uniaxial tension. However, the effect of this 
simultaneous compressive stress on the cracking strength appears to be small, in agreement with the information in Fig. 2.8. 
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FIGURE4.5 
Diagonal tension cracking in 
reinforced concrete beams. / 
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The situation is different when both the shear force and the bending moment 
have large values. At such locations, in a well-proportioned and reinforced beam, 
flexural tension cracks form first. Their width and length are well controlled and kept 
small by the presence of longitudinal reinforcement. However, when the diagonal 
tension stress at the upper end of one or more of these cracks exceeds the tensile 
strength of the concrete, the crack bends in a diagonal direction and continues to grow 
in length and width (see Fig. 4.5b). These cracks are known as flexure-shear cracks 
and are more common than web-shear cracks. 

It is evident that at the instant at which a diagonal tension crack of this type 
develops, the average shear stress is larger than that given by Eq. ( 4.1). This is so 
because the preexisting tension crack has reduced the area of uncracked concrete that 
is available to resist shear to a value smaller than that of the uncracked area bd used 
in Eq. (4.1). The amount of this reduction will vary, depending on the unpredictable 
length of the preexisting flexural tension crack. Furthermore, the simultaneous bend
ing stress f combines with the shear stress v to increase the diagonal tension stress t 
further [see Eq. (3.1)]. No way has been found to calculate reliable values of the diag
onal tension stress under these conditions, and recourse must be made to test results. 

A large number of beam tests have been evaluated for this purpose (Ref. 4.1). 
They show that in the presence of large moments (for which adequate longitudinal 
reinforcement has been provided) the nominal shear stress at which diagonal tension 
cracks form and propagate is, in most cases, conservatively given by 

Ver ~ rfi 
Ver= bd = 1.9 YJc (4.2b) 

Comparison with Eq. (4.2a) shows that large bending moments can reduce the shear 
force at which diagonal cracks form to roughly one-half the value at which they would 
form if the moment were zero or nearly so. This is in qualitative agreement with the 
discussion just given. 



FIGURE4.6 
Correlation of Eq. (4.3a) 
with test results. 
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It is evident, then, that the shear at which diagonal cracks develop depends on 
the ratio of shear force to bending moment, or, more precisely, on the ratio of shear 
stress v to bending stress f near the top of the flexural crack. Neither of these can be 
accurately calculated. It is clear, though, that v = K1(V/bd), where, by comparison 
with Eq. (4.1), constant K1 depends chiefly on the depth of penetration of the flexural 
crack. On the other hand [see Eq. (3.10)],f = Ki(V/bd 2), where K2 also depends on 
crack configuration. Hence, the ratio 

V K1 Vd 
-=--
f K2 M 

must be expected to affect that load at which flexural cracks develop into flexure-shear 
cracks, the unknown quantity K1/K2 to be explored by tests. Equation (4.2a) gives the 
cracking shear for very large values of Vd/M, and Eq. (4.2b) for very small values. 
Moderate values of Vd/M result in magnitudes of ve, intermediate between these 
extremes. Again, from evaluations of large numbers of tests (Ref. 4.1 ), it has been 
found that the nominal shear stress at which diagonal flexure-shear cracking develops 
can be predicted from 

Ve, -v7! pVd -v7! 
Ver = bd = 1.9 J: + 2500 M s; 3.5 f: (4.3a) 

where 

Ve,= ve,bd 

and p = As/bd, as before, and 2500 is an empirical constant in psi units. A graph of 
this relation and comparison with test data are given in Fig. 4.6. 
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Apart from the influence of Vd/M, it is seen from Eq. (4.3a) that increasing 
amounts of tension reinforcement, i.e., increasing values of the reinforcement ratio p, 
have a beneficial effect in that they increase the shear at which diagonal cracks 
develop. This is so because larger amounts of longitudinal steel result in smaller and 
narrower flexural tension cracks prior to the formation of diagonal cracking, leaving a 
larger area of uncracked concrete available to resist shear. [For more details on the 
development of Eq. (4.3a), see Ref. 4.1.] 

A brief study of Fig. 4.6 will show that although Eq. (4.3a) captures the overall 
effects of the controlling variables on v er• the match with actual data is far from 
perfect. Of particular concern is the tendency of Eq. (4.3a) to overestimate the shear 
strength of beams with reinforcement ratios p < I .O percent, values that are 
commonly used in practice. The cracking stress predicted in Eq. (4.3a) becomes 
progressively less conservative as J; increases above 5000 psi and as beam depth d 
increases above 18 in. On the other hand, Eq. (4.3a) underestimates the effect of Vd/M 
on v er and ignores the positive effect of flanges (present on most reinforced concrete 
beams) on shear strength. The conservatism of Eq. (4.3a) increases as both flange 
thickness and web width increase (Ref. 4.3), although these factors have less of an 
effect than/;, p, or Vd/M on Ver· 

Considering the three main variables, an improved match with test results is 
obtained with the empirical relationship (Ref. 4.11) 

V ( Vd)
1
/
3 

Ver = b; = 59 J:p M (4.3b) 

Equation (4.3b) was calibrated based on beams with d"' 12 in. It can be modified to 
account for the lower average shear cracking stress exhibited by deeper beams with 
the addition of one term. 

- Ver - (E)l/4( , Vd)l/3 
Ver - bd - 59 d feP M (4.3c) 

b. Behavior of Diagonally Cracked Beams 

In regard to flexural cracks, as distinct from diagonal tension cracks, it was explained 
in Section 3.3 that cracks on the tension side of a beam are permitted to occur and are 
in no way detrimental to the strength of the member. One might expect a similar 
situation in regard to diagonal cracking caused chiefly by shear. The analogy, however, 
is not that simple. Flexural tension cracks are harmless only because adequate longi
tudinal reinforcement has been provided to resist the flexural tension stresses that the 
cracked concrete is no longer able to transmit. In contrast, the beams now being 
discussed, although furnished with the usual longitudinal reinforcement, are not 
equipped with any other reinforcement to offset the effects of diagonal cracking. This 
makes the diagonal cracks much more decisive in subsequent performance and 
strength of the beam than the flexural cracks. 

Two types of behavior have been observed in the many tests on which present 
knowledge is based: 

1. The diagonal crack, once formed, spreads either immediately or at only slightly 
higher load, traversing the entire beam from the tension reinforcement to the 
compression face, splitting it in two and failing the beam. This process is sudden 
and without warning and occurs chiefly in the shallower beams, i.e., beams with 



FIGURE4.7 
Forces at a diagonal crack 
in a beam without web 
reinforcement. 
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span-depth ratios of about 8 or more. Beams in this range of dimensions are very 
common. Complete absence of shear reinforcement would make them very 
vulnerable to accidental large overloads, which would result in catastrophic 
failures without warning. For this reason it is good practice to provide a minimum 
amount of shear reinforcement even if calculation does not require it, because 
such reinforcement restrains growth of diagonal cracks, thereby increasing 
ductility and providing warning in advance of actual failure. Only in situations 
where an unusually large safety factor against inclined cracking is provided, i.e., 
where actual shear stresses are very small compared with v er• as in some slabs and 
most footings, is it permissible to omit shear reinforcement. 

2. Alternatively, the diagonal crack, once formed, spreads toward and partially into 
the compression zone but stops short of penetrating to the compression face. In 
this case no sudden collapse occurs, and the failure load may be significantly 
higher than that at which the diagonal crack first formed. This behavior is chiefly 
observed in the deeper beams with smaller span-depth ratios and will be 
analyzed now. 

Figure 4. 7 a shows a portion of a beam, arbitrarily loaded, in which a diagonal 
tension crack has formed. Consider the part of the beam to the left of the crack, 
shown in solid lines. There is an external upward shear force Vext = R1 - P 1 acting 
on this portion. 

Once a crack is formed, no tension force perpendicular to the crack can be trans
mitted across it. However, as long as the crack is narrow, it can still transmit forces in 
its own plane through interlocking of the surface roughnesses. Sizable interlock forces 
V; of this kind have in fact been measured, amounting to one-third and more of the 
total shear force. The components Vix and V;y of V; are shown in Fig. 4.7a. The other 
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internal vertical forces are those in the uncracked portion of the concrete Vcz and 
across the longitudinal steel, acting as a dowel, Vd. Thus, the internal shear force is 

l1'nt = ¼z + ¼ + V;y 

Equilibrium requires that Vint = Vext so that the part of the shear resisted by the 
uncracked concrete is 

(4.4) 

In a beam provided with longitudinal reinforcement only, the portion of the shear 
force resisted by the steel in dowel action is usually quite small. In fact, the reinforc
ing bars on which the dowel force Vd acts are supported against vertical displacement 
chiefly by the thin concrete layer below. The bearing pressure caused by Vd creates, in 
this concrete, vertical tension stresses as shown in Fig. 4.7b. Because of these stresses, 
diagonal cracks often result in splitting of the concrete along the tension reinforce
ment, as shown. (See also Fig. 4.1.) This reduces the dowel force Vd and also permits 
the diagonal crack to widen. This, in tum, reduces the interface force V; and frequently 
leads to immediate failure. 

Next consider moments about point a at the intersection of Vcz and C; the exter
nal moment Mext,a acts at a and happens to be R1xa - P1(xa - x1) for the loading 
shown. The internal moment is 

Mint,a = T,,z + ¼P - V;m 

Here p is the horizontal projection of the diagonal crack and m is the moment arm of 
the force V; with respect to point a. The designation Tb for Tis meant to emphasize that 
this force in the steel acts at point b rather than vertically below point a. Equilibrium 
requires that Mint,a = Mext,a so that the longitudinal tension in the steel at b is 

Mext,a - ¼P + V;m 
T,, = --------

z 
(4.5) 

Neglecting the forces Vd and V;, which decrease with increasing crack opening, one 
has, with very little error, 

T, _ Mext,a 
b - z (4.6) 

The formation of the diagonal crack, then, is seen to produce the following redis
tribution of internal forces and stresses: 

1. At the vertical section through point a, the average shear stress before crack 
formation was Vextfbd. After crack formation, the shear force is resisted by a com
bination of the dowel shear, the interface shear, and the shear force on the much 
smaller area by of the remaining uncracked concrete. As tension splitting develops 
along the longitudinal bars, Vd and V; decrease; this, in tum, increases the shear 
force and the resulting shear stress on the remaining uncracked concrete area. 

2. The diagonal crack, as described previously, usually rises above the neutral axis 
and traverses some part of the compression zone before it is arrested by the com
pression stresses. Consequently, the compression force C also acts on an area by 
smaller than that on which it acted before the crack was formed. Correspondingly, 
formation of the crack has increased the compression stresses in the remaining 
uncracked concrete. 

3. Prior to diagonal cracking, the tension force in the steel at point b was caused by, 
and was proportional to, the bending moment in a vertical section through the 
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same point b. As a consequence of the diagonal crack, however, Eq. (4.6) shows 
that the tension in the steel at b is now caused by, and is proportional to, the 
bending moment at a. Since the moment at a is evidently larger than that at b, 
formation of the crack has caused a sudden increase in the steel stress at b. 

If the two materials are capable of resisting these increased stresses, equilibrium 
will establish itself after internal redistribution and further load can be applied before 
failure occurs. Such failure can then develop in various ways. For one, if only enough 
steel has been provided at b to resist the moment at that section, the increase of the steel 
force, described in item 3, will cause the steel to yield because of the larger moment at 
a, thus failing the beam. If the beam is properly designed to prevent this occurrence, it 
is usually the concrete at the head of the crack that will eventually crush. This concrete 
is subject simultaneously to large compression and shear stresses, and this biaxial stress 
combination is conducive to earlier failure than would take place if either of these 
stresses were acting alone. Finally, if there is splitting along the reinforcement, it will 
cause the bond between steel and concrete to weaken to such a degree that the rein
forcement may pull loose. This either may be the cause of failure of the beam or may 
occur simultaneously with crushing of the remaining uncracked concrete. 

It was noted earlier that relatively deep beams will usually show continued and 
increasing resistance after formation of a critical diagonal tension crack, but relatively 
shallow beams will fail almost immediately upon formation of the crack. The amount 
of reserve strength, if any, was found to be erratic. In fact, in several test series in 
which two specimens as identical as one can make them were tested, one failed imme
diately upon formation of a diagonal crack, while the other reached equilibrium under 
the described redistribution and failed at a higher load. 

For this reason, this reserve strength is discounted in modem design procedures. 
As previously mentioned, most beams are furnished with at least a minimum of web 
reinforcement. For those flexural members that are not, such as slabs, footings, and 
others, design is based on that shear force Ver or shear stress v er at which formation of 
inclined cracks must be expected. Thus, Eq. (4.3a), or some equivalent of it, has 
become the design criterion for such members. 

4.4 REINFORCED CONCRETE BEAMS WITH WEB 
REINFORCEMENT 

Economy of design demands, in most cases, that a flexural member be capable of 
developing its full moment capacity rather than having its strength limited by prema
ture shear failure. This is also desirable because structures, if overloaded, should not 
fail in the sudden and explosive manner characteristic of many shear failures, but 
should show adequate ductility and warning of impending distress. The latter, as 
pointed out earlier, is typical of flexural failure caused by yielding of the longitudinal 
bars, which is preceded by gradual excessively large deflections and noticeable widen
ing of cracks. Therefore, if a fairly large safety margin relative to the available shear 
strength as given by Eq. (4.3a) or its equivalent does not exist, special shear 
reinforcement, known as web reinforcement, is used to increase this strength. 

a. Types of Web Reinforcement 

Typically, web reinforcement is provided in the form of vertical stirrups, spaced at 
varying intervals along the axis of the beam depending on requirements, as shown in 
Fig. 4.8a. Relatively small bars are used, generally Nos. 3 to 5 (Nos. 10 to 16). Simple 
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FIGURE4.8 
Types of web reinforcement. 
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U-shaped bars similar to Fig. 4.8b are most common, although multiple-leg stirrups such 
as shown in Fig. 4.8c are sometimes necessary. Stirrups are formed to fit around the main 
longitudinal bars at the bottom and hooked or bent around longitudinal bars at the top of 
the member to improve anchorage and provide support during construction. Detailed 
requirements for anchorage of stirrups will be discussed in Chapter 5. 

Alternatively, shear reinforcement may be provided by bending up a part of 
the longitudinal steel where it is no longer needed to resist flexural tension, as 
suggested by Fig. 4.8d. In continuous beams, these bent-up bars may also provide 
all or part of the necessary reinforcement for negative moments. The requirements 
for longitudinal flexural reinforcement often conflict with those for diagonal 
tension, and because the savings in steel resulting from use of the capacity of bent 
bars as shear resistance is small, most designers prefer to include vertical stirrups 
to provide for all the shear requirement, counting on the bent part of the longitudi
nal bars, if bent bars are used, only to increase the overall safety against diagonal 
tension failure. 

Welded wire reinforcement is also used for shear reinforcement, particularly for 
small, lightly loaded members with thin webs, and for certain types of precast, 
prestressed beams. 

b. Behavior of Web-Reinforced Concrete Beams 

Web reinforcement has no noticeable effect prior to the formation of diagonal cracks. 
In fact, measurements show that the web steel is practically free of stress prior to crack 



FIGURE4.9 
Forces at a diagonal crack in 
a beam with vertical stirrups. 
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formation. After diagonal cracks have developed, web reinforcement augments the shear 
resistance of a beam in four separate ways: 

1. Part of the shear force is resisted by the bars that traverse a particular crack. The 
mechanism of this added resistance is discussed below. 

2. The presence of these same bars restricts the growth of diagonal cracks and 
reduces their penetration into the compression zone. This leaves more uncracked 
concrete available at the head of the crack for resisting the combined action of 
shear and compression, already discussed. 

3. The stirrups also counteract the widening of the cracks, so that the two crack 
faces stay in close contact. This makes for a significant and reliable interface 
force V; (see Fig. 4.7). 

4. As shown in Fig. 4.8, the stirrups are arranged so that they tie the longitudinal 
reinforcement into the main bulk of the concrete. This provides some measure of 
restraint against the splitting of concrete along the longitudinal reinforcement, 
shown in Figs. 4.1 and 4.7b, and increases the share of the shear force resisted by 
dowel action. 

From this it is clear that failure will be imminent when the stirrups start 
yielding. This not only exhausts their own resistance but also permits a wider 
crack opening with consequent reduction of the beneficial restraining effects, 
points 2 to 4, above. 

It becomes clear from this description that member behavior, once a crack is 
formed, is quite complex and dependent in its details on the particulars of crack con
figuration (length, inclination, and location of the main or critical crack). The latter, in 
tum, is quite erratic and has so far defied purely analytical prediction. For this reason, 
the concepts that underlie present design practice are not wholly rational. They are 
based partly on rational analysis, partly on test evidence, and partly on successful 
long-time experience with structures in which certain procedures for designing web 
reinforcement have resulted in satisfactory performance. 

BEAMS WITH VERTICAL STIRRUPS. Since web reinforcement is ineffective in the 
uncracked beam, the magnitude of the shear force or stress that causes cracking to 
occur is the same as in a beam without web reinforcement and is approximated by 
Eq. (4.3a). Most frequently, web reinforcement consists of vertical stirrups; the forces 
acting on the portion of such a beam between the crack and the nearby support are 
shown in Fig. 4.9. They are the same as those of Fig. 4.7, except that each stirrup 
traversing the crack exerts a force Avfv on the given portion of the beam. Here Av is the 
cross-sectional area of the stirrup (in the case of the U-shaped stirrup of Fig. 4.8b it is 
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FIGURE4.10 
Redistribution of internal 
shear forces in a beam 
with stirrups. (Adapted from 

Ref. 4.3.) 
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twice the area of one bar), andfv is the tensile stress in the stirrup. Equilibrium in the 
vertical direction requires 
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where Vs = nAvfv is the vertical force in the stirrups, n being the number of stirrups 
traversing the crack. If s is the stirrup spacing and p the horizontal projection of the 
crack, as shown, then n = p / s. 

The approximate distribution of the four components of the internal shear force 
with increasing external shear Vext is shown schematically in Fig. 4.10. It is seen that 
after inclined cracking, the portion of the shear Vs = nAvfv carried by the stirrups 
increases linearly, while the sum of the three other components, Vez + Vd + V;y, stays 
nearly constant. When the stirrups yield, their contribution remains constant at the yield 
value Vs = nAv/2,f' where /2,1 represents the yield strength of the stirrup ( or transverse) 
reinforcement. However, because of widening of the inclined cracks and longitudinal 
splitting, V;y and Vd fall off rapidly. This overloads the remaining uncracked concrete 
and very soon precipitates failure. 

While total shear carried by the stirrups at yielding is known, the individual 
magnitudes of the three other components are not. Limited amounts of test evidence 
have led to the conservative assumption in present-day methods that just prior to 
failure of a web-reinforced beam, the sum of these three internal shear components is 
equal to the cracking shear Ve,• as given by Eq. (4.3a). This sum is generally 
(somewhat loosely) referred to as the contribution of the concrete to the total shear 
resistance and is denoted Ve. Thus Ve = Ve, and 

(b) 



FIGURE4.11 
Forces at a diagonal crack in 
a beam with inclined web 
reinforcement. 
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The number of stirrups n spaced a distance s apart was seen to depend on the 
length p of the horizontal projection of the diagonal crack. This length is conserva
tively assumed to be equal to the effective depth of the beam; thus n = d/s, implying 
a crack somewhat flatter than 45°. Then, at failure, when Vext = Vn, Eqs. (a) and (b) 
yield for the nominal shear strength 

Avfy1d 
V,, = V,: + -- (4.7a) 

s 

where Ve is taken equal to the cracking shear Ver given by Eq. (4.3a); that is, 

Ve = ( 1.9-v'fc + 2500 p:d)bd :s 3.5-v'fc bd (4.3a) 

Dividing both sides of Eq. (4.7a) by bd, the same relation is expressed in terms 
of the nominal shear stress: 

V,, Av/yr 
V =-=v +--

n bd c bs 
(4.7b) 

In Ref. 4.1, the results of 166 beam tests are compared with Eq. (4.7b). It is shown that 
the equation predicts the actual shear strength quite conservatively, the observed 
strength being on average 45 percent larger than predicted; a very few of the individ
ual test beams developed strength just slightly below that of Eq. (4.7b). 

BEAMS WITH INCLINED BARS. The function of inclined web reinforcement (Fig. 4.8d) 
can be discussed in very similar terms. Figure 4.11 again indicates the forces that act 
on the portion of the beam to one side of the diagonal crack that results in eventual 
failure. The crack with horizontal projection p and inclined length i = p/cos 0 is 
crossed by inclined bars horizontally spaced a distance s apart. The inclination of the 
bars is a and that of the crack 0, as shown. The distance between bars measured 
parallel to the direction of the crack is seen from the irregular triangle to be 

s 
a=-------

sin 0(cot 0 + cot a) 
(a) 

The number of bars crossing the crack n = i/a, after some transformation, is 

p 
n = - (1 + cot a tan 0) 

s 
(b) 
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The vertical component of the force in one bar or stirrup is Avfv sin a, so that the total 
vertical component of the forces in all bars that cross the crack is 

V, = nAvfv sin a = Avfv E.(sin a + cos a tan 0) 
s 

(4.8) 

As in the case of vertical stirrups, shear failure occurs when the stress in the web 
reinforcement reaches the yield point. Also, the same assumptions are made as in the 
case of stirrups, namely, that the horizontal projection of the diagonal crack is equal 
to the effective depth d, and that Vez + Vd + V;y is equal to Ve. Lastly, the inclination 
0 of the diagonal crack, which varies somewhat depending on various influences, is 
generally assumed to be 45°. On this basis, when failure is caused by shear, the 
nominal strength is 

AvJ;,1d(sin a+ cos a) 
V,.=¼+--------

s 
(4.9) 

It is seen that Eq. (4.7a), developed for vertical stirrups, is only a special case, for 
a = 90°, of the more general expression (4.9). 

Note that Eqs. (4.7) and (4.9) apply only if web reinforcement is so spaced that 
any conceivable diagonal crack is traversed by at least one stirrup or inclined bar. 
Otherwise web reinforcement would not contribute to the shear strength of the beam, 
because diagonal cracks that could form between widely spaced web reinforcement 
would fail the beam at the load at which it would fail if no web reinforcement were 
present. This imposes upper limits on the permissible spacing s to ensure that the web 
reinforcement is actually effective as calculated. 

To summarize, at this time the nature and mechanism of diagonal tension failure 
are clearly understood qualitatively, but some of the quantitative assumptions that have 
been made in the preceding development cannot be proved by rational analysis. 
However, the calculated results are in acceptable and generally conservative agree
ment with a very large body of empirical data, and structures designed on this basis 
have proved satisfactory. Newer methods, introduced in Section 4.8, provide alterna
tives that are slowly being incorporated into the ACI Code and the AASHTO Bridge 
Specifications (Ref. 4.12). Chapter 10 presents a detailed description of one such 
alternative, the so-called strut-and-tie model, which appears in Appendix A of the 
2008 ACI Code. 

4.5 ACI CODE PROVISIONS FOR SHEAR DESIGN 

According to ACI Code 11.1.1, the design of beams for shear is to be based on the 
relation 

v,, :5 </>V,. (4.10) 

where Vu is the total shear force applied at a given section of the beam due to factored 
loads and Vn = Ve + Vs is the nominal shear strength, equal to the sum of the contri
butions of the concrete and the web steel if present. Thus for vertical stirrups 

and for inclined bars 

<f>AvJ;,rd 
V,, :s cf>¼+ --- (4.lla) 

s 

<f>AvJ;,1d ( sin a + cos a) 
'{, ::; cj,lfc + ---------

s 
(4.llb) 



FIGURE 4.12 
Location of critical section 
for shear design: (a) end
supported beam; (b) beam 
supported by columns; 
(c) concentrated load within 
d of the face of the support; 
(d) member loaded near the 
bottom; (e) beam supported 
by girder of similar depth; 
(f) beam supported by 
monolithic vertical element. 
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where all terms are as previously defined. The strength reduction factor cf, is to be 
taken equal to 0.75 for shear. The additional conservatism, compared with the value 
of cf, = 0.90 for bending for typical beam designs, reflects both the sudden nature of 
diagonal tension failure and the large scatter of test results. 

For typical support conditions, where the reaction from the support surface or 
from a monolithic column introduces vertical compression at the end of the beam, 
sections located less than a distance d from the face of the support may be designed 
for the same shear Vu as that computed at a distanced, as shown in Fig. 4.12a and b. 
However, the critical design section should be taken at the face of the support if 
concentrated loads act within that distance (Fig. 4.12c), if the beam is loaded near its 
bottom edge (as may occur for an inverted T beam, as shown in Fig. 4.12d), or if the 
reaction causes vertical tension rather than compression [ e.g., if the beam is supported 
by a girder of similar depth (Fig. 4.12e) or at the end of a monolithic vertical element 
(Fig. 4.12/)]. 

a. Shear Strength Provided by the Concrete 

The nominal shear strength contribution of the concrete (including the contributions 
from aggregate interlock, dowel action of the main reinforcing bars, and that of the 
uncracked concrete) is basically the same as Eq. (4.3a) with slight notational changes. 
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To permit application of Eq. (4.3a) to T beams having web width bw, the rectangular 
beam width b is replaced by bw with the understanding that for rectangular beams b is 
used for bw. For T beams with a tapered web width, such as typical concrete joists, the 
average web width is used, unless the narrowest part of the web is in compression, in 
which case bw is taken as the minimum width. Further, in Eq. (4.3a), the shear Vand 
moment M are designated Vu and Mu to emphasize that they are the values computed 
at factored loads. Thus, for members subject to shear and flexure, according to ACI 
Code 11.2.2, the concrete contribution to shear strength is 

~ = ( l.9Av'fc + 2500 p:d)b..,d $ 3.5Avf:b..,d (4.12a) 

where Pw = longitudinal reinforcement ratio A.fbwd or Ajbd. With the section dimen
sion bw and din inches and Vud and Mu in consistent units, Ve is expressed in pounds. 
In Eq. (4.12a), the quantity Vud/Mu is not to be taken greater than 1.0. 

The term A in Eq. (4.12a) is a modification factor reflecting the lower tensile 
strength of lightweight concrete compared with normalweight concrete of the same 
compressive strength (see Table 2.2 and Ref. 4.13). Lightweight aggregate concretes 
having densities from 90 to 120 pcf are used widely, particularly for precast elements. 
In accordance with ACI Code 8.6.1, A = 0.85 for "sand-lightweight" concrete and 
0.75 for "all-lightweight" concrete. Linear interpolation between 0.75 and 0.85, based 
on volumetric fractions, is permitted when a portion of the lightweight fine aggregate 
is replaced by normalweight fine aggregate. Linear interpolation between 0.85 and 1.0 
is also permitted for concretes containing normalweight fine aggregate and a blend of 
lightweight and normalweight coarse aggregate. If the average split-cylinder strength 
of lightweight concrete (a good measure of its direct tensile strength) is specified, A= 
fer/(6.1\ll:) $ 1.0. For normalweight concert, A = 1.0. 

While Eq. (4.12a) is perfectly well suited to computerized design or for 
research, for manual calculations its use is tedious because Pw• Vu, and Mu generally 
change along the span, requiring that Ve be calculated at frequent intervals. For this 
reason, an alternative equation for Ve is permitted by ACI Code 11.2.1: 

(4.12b) 

Referring to Fig. 4.6, it is clear that Eq. (4.12b) is very conservative in regions where 
the shear-moment ratio is high, such as near the ends of simple spans or near the 
inflection points of continuous spans; however, because of its simplicity, it is often 
used in practice. 

For members with a circular cross section, ACI Code 11.2.3 provides that 
the area used to calculate Ve in Eqs. (4.12a) and (4.12b) be the product of the diam
eter and the effective depth. The latter may be taken as 0.8 times the diameter of 
the member. 

The tests on which Eqs. (4.12a) and (4.12b) are based used beams with concrete 
compressive strength mostly in the range of 3000 to 5000 psi. More recent experi
mental results (Refs. 4.14 to 4.17) have shown that in beams constructed using high
strength concrete (see Section 2.12) withf: above 6000 psi, the concrete contribution 
to shear strength Ve is less than predicted by those equations. Differences become 
increasingly significant, the higher the concrete strength. For this reason, ACI Code 
11.1.2 places an upper limit of 100 psi on the value of vJ: to be used in Eqs. ( 4.12a) 
and (4.12b), as well as in all other AC/ Code shear provisions. However, values of 
vJ: greater than 100 psi may be used in computing Ve if a minimum amount of web 
reinforcement is used (see Section 4.5b). 



SHEAR AND DIAGONAL TENSION IN BEAMS 139 

b. Minimum Web Reinforcement 

If Vu, the shear force at factored loads, is no larger than <f>Ve, calculated by Eq. (4.12a) 
or alternatively by Eq. ( 4.12b ), then theoretically no web reinforcement is required. 
Even in such a case, however, ACI Code 11.4.6 requires provision of at least a mini
mum area of web reinforcement equal to 

~ r,:; bw5 hws 
Av,min = 0.75 vt -f, 2::: 50-f, 

yt yt 

(4.13) 

where s = longitudinal spacing of web reinforcement, in. 
J;,1 = yield strength of web steel, psi 

Av,min = total cross-sectional area of web steel within distance s, in2 

This provision holds unless Vu is one-half or less of the design shear strength 
provided by the concrete </> Ve- Specific exceptions to this requirement for minimum 
web steel are made for slabs and footings; for concrete joist floor construction; for 
beams with total depth h not greater than 10 in.; and for beams integral with slabs with 
h not greater than 24 in. and not greater than the larger of 2.5 times the thickness of 
the flange and 0.5 times the thickness of the web. These members are excluded 
because of their capacity to redistribute internal forces before diagonal tension failure, 
as confirmed by both tests and successful design experience. In addition, beams 
constructed of steel fiber reinforced, normalweight concrete with J; not exceeding 
6000 psi, total depth h not greater than 24 in., and Vu not greater than </>2 vJ: hwd are 
not required to meet the requirements for minimum web reinforcement because beams 
meeting these requirements have been shown to have shear strength in excess of 
3.5vf:bwd (Ref. 4.18).t 

For high-strength concrete beams, the limitation of 100 psi imposed on the value 
of vf:: used in calculating Ve by Eq. (4.12a) or (4.12b) is waived by ACI Code 
11.1.2.1 if such beams are designed with minimum web reinforcement equal to the 
amount required by Eq. (4.13). In this case, the concrete contribution to shear strength 
may be calculated based on the full concrete compressive strength. Tests described in 
Refs. 4.14 and 4.17 indicate that for beams with concrete strength above about 6000 psi, 
the concrete contribution Ve was significantly less than predicted by the ACI Code 
equations, although the steel contribution Vs was higher. The total nominal shear 
strength Vn was greater than predicted by ACI Code methods in all cases. The use of 
minimum web steel for high-strength concrete beams is intended to enhance the 
post-cracking capacity, thus resulting in safe designs even though the concrete contri
bution to shear strength is overestimated.* 

EXAMPLE 4.1 Beam without web reinforcement. A rectangular beam is to be designed to carry a shear 
force Vu of 27 kips. No web reinforcement is to be used, and/; is 4000 psi. What is the mini
mum cross section if controlled by shear? 

t To qualify, the fiber-reinforced concrete must conform to requirements in ACI Code 5.6.6.2 that specify a minimum deformed steel fiber content 
of 100 lb/yd3 and minimum residual flexural strength values when the concrete is tested in accordance with ASTM Cl 609, "Standard Test Method 
for Flexural Performance of Fiber-Rei,iforced Concrete (Using Beam with Third-Point Loading)." 

I The· shortcomings of the ACI Code "Ve + V," approach to shear design, particularly the provisions relating to the concrete contribution Y,, have 
provided motivation for the development of more rational procedures, as will be discussed in Section 4.8. 
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SOLUTION. If no web reinforcement is to be used, the cross-sectional dimensions must be 
selected so that the applied shear Vu is no larger than one-half the design shear strength <p Ve
The calculations will be based on Eq. (4.12b). Thus, 

V. = ½ <p ( 2A ~ hwd) 

27,000 
bwd = ------ = 569 in2 

0.75 X 1.0 V4000 
A beam with bw = 18 in. and d = 32 in. is required. Alternately, if the minimum amount of 
web reinforcement given by Eq. (4.13) is used, the concrete shear resistance may be taken at 
its full value </JVc, and it is easily confirmed that a beam with bw = 12 in. and d = 24 in. will 
be sufficient. 

c. Region in Which Web Reinforcement Is Required 

If the required shear strength Vu is greater than the design shear strength <p Ve provided 
by the concrete in any portion of a beam, there is a theoretical requirement for web 
reinforcement. Elsewhere in the span, web steel at least equal to the amount given by 
Eq. (4.13) must be provided, unless the factored shear force is less than ½c/J¼. 

The portion of any span through which web reinforcement is theoretically 
necessary can be found from the shear diagram for the span, superimposing a plot of 
the shear strength of the concrete. Where the shear force Vu exceeds <p Ve, shear rein
forcement must provide for the excess. The additional length through which at least 
the minimum web steel is needed can be found by superimposing a plot of <p Vc/2. 

EXAMPLE 4.2 Limits of web reinforcement. A simply supported rectangular beam 16 in. wide having 
an effective depth of 22 in. carries a total factored load of 9 .4 kips/ft on a 20 ft clear span. 
It is reinforced with 7.62 in2 of tensile steel, which continues uninterrupted into the supports. 
If J; = 4000 psi, throughout what part of the beam is web reinforcement required? 

SOLUTION. The maximum external shear force occurs at the ends of the span, where Vu = 9.4 X 
20/2 = 94 kips. At the critical section for shear, a distance d from the support, Vu = 94 -
9.4 X 1.83 = 76.8 kips. The shear force varies linearly to zero at midspan. The variation of Vu 
is shown in Fig. 4. 13a. Adopting Eq. (4.12b) gives 

~ = 2A vJfbwd = 2 X l.OV4000 X 16 X 22 = 44,500 lb 

Hence </JVc = 0.75 X 44.5 = 33.4 kips. This value is superimposed on the shear diagram, and, 
from geometry, the point at which web reinforcement theoretically is no longer required is 

10( 94.0 - 33.4) = 6.45 ft 
94.0 

from the support face. However, according to the ACI Code, at least a minimum amount of web 
reinforcement is required wherever the shear force exceeds <pVe/2, or 16.7 kips in this case. As 
seen from Fig. 4.13a, this applies to a distance 

(
94.0 - 16.7) 22f 10 ---- =8. t 

94.0 

from the support face. To summarize, at least the minimum web steel must be provided within 
a distance of 8.22 ft from the supports, and within 6.45 ft the web steel must provide for the 
shear force corresponding to the shaded area. 



FIGURE4.13 
Shear design example. 
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If the alternative Eq. (4.12a) is used, the variation along the span of Pw, Vu, and Mu must 
be known so that Ve can be calculated. This is shown in tabular form in Table 4.1. 

The factored shear Vu and the design shear capacity </JVe are plotted in Fig. 4.13b. From 
the graph it is found that stirrups are theoretically no longer required 6.39 ft from the support 
face. However, from the plot of <p Vc/2 it is found that at least the minimum web steel is to be 
provided within a distance of 8.26 ft. 

When Figs. 4.13a and b are compared, it is evident that the length over which web 
reinforcement is needed is nearly the same for this example whether Eq. (4.12a) or (4.12b) 
is used. However, the smaller shaded area of Fig. 4.13b indicates that substantially less web
steel area would be needed within that required distance if the more accurate Eq. ( 4.12a) 
were adopted. 
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TABLE 4.1 
Shear design example 

Distance from Mu, vu, 
Support, ft ft-kips kips v• 

C cf,Vc 

0 0 94.0 61.3 46.0 
89 84.6 61.3 46.0 

2 169 75.2 57.8 43.4 
3 240 65.8 51.9 38.9 
4 301 56.4 48.8 36.6 
5 353 47.0 47.0 35.2 
6 395 37.6 45.6 34.2 
7 428 28.2 44.6 33.5 
8 451 18.8 43.8 32.8 
9 465 9.4 43.0 32.3 

10 470 0 42.3 31.7 

d. Design of Web Reinforcement 

The design of web reinforcement, under the provisions of the ACI Code, is based on 
Eq. (4.lla) for vertical stirrups and Eq. (4.llb) for inclined stirrups or bent bars. In 
design, it is usually convenient to select a trial web-steel area Av based on standard 
stirrup sizes [usually in the range from No. 3 to 5 (No. 10 to 16) for stirrups, and 
according to the longitudinal bar size for bent-up bars], for which the required spacing 
s can be found. Equating the design strength c:p Vn to the required strength Vu and trans
posing Eqs. (4.lla) and (4.llb) accordingly, one finds that the required spacing of 
web reinforcement is, for vertical stirrups, 

c:fJAvfrrd 
s = --- (4.14a) 

v,, - c:fJ¼ 

and for bent bars 

v,, - c:p ¼ 
c:fJAvfr1d ( sin a + cos a) 

s= (4.14b) 

It should be emphasized that when conventional U stirrups such as in Fig. 4.8b are 
used, the web area Av provided by each stirrup is twice the cross-sectional area of the 
bar; for stirrups such as those of Fig. 4.8c, Av is 4 times the area of the bar used. 
Equation (4.14a) is applicable to members with circular, as well as rectangular, cross 
sections. For circular members, d is taken as the effective depth, as defined earlier in 
Section 4.5a, and Av is taken as 2 times the area of the bar, hoop, or spiral. 

While the ACI Code requires only that the inclined part of a bent bar make an 
angle of at least 30° with the longitudinal part, bars are usually bent at a 45° angle. 
Only the center three-fourths of the inclined part of any bar is to be considered 
effective as web reinforcement. 

It is undesirable to space vertical stirrups closer than about 4 in.; the size of the 
stirrups should be chosen to avoid a closer spacing. When vertical stirrups are required 
over a comparatively short distance, it is good practice to space them uniformly over 
the entire distance, the spacing being calculated for the point of greatest shear 



FIGURE 4.14 
Maximum spacing of web 
reinforcement as governed 
by diagonal crack 
interception. 
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(minimum spacing). If the web reinforcement is required over a long distance, and if 
the shear varies materially throughout this distance, it is more economical to compute 
the spacings required at several sections and to place the stirrups accordingly, in 
groups of varying spacing. 

Where web reinforcement is needed, the Code requires it to be spaced so that 
every 45° line, representing a potential diagonal crack and extending from the 
middepth d/2 of the member to the longitudinal tension bars, is crossed by at least one 
line of web reinforcement; in addition, the Code specifies a maximum spacing of 
24 in. When Vs exceeds 4-vfcb._,d, these maximum spacings are halved. These limita
tions are shown in Fig. 4.14 for both vertical stirrups and inclined bars, for situations 
in which the excess shear does not exceed the stated limit. 

For design purposes, Eq. (4.13) giving the minimum web-steel area Av is more 
conveniently inverted to permit calculation of maximum spacing s for the selected Av. 
Thus, for the usual case of vertical stirrups, with Vs :5 4-vfcb._,d, the maximum spacing 
of stirrups is the smallest of 

AJy1 AJy1 

Smax = o.1sVJf hw :5 50bw 

Smax = 24 in. 

(4.15a) 

(4.15b) 

(4.15c) 

For longitudinal bars bent at 45°, Eq. (4.15b) is replaced by smax = 3d/4, as confirmed 
by Fig. 4.14. 

To avoid excessive crack width in beam webs, the ACI Code limits the yield 
strength of the reinforcement to f;,1 = 60,000 psi or less for reinforcing bars and 
80,000 psi or less for welded wire reinforcement. In no case, according to the ACI 
Code, is Vs to exceed 8 v],; b.,.,d, regardless of the amount of web steel used. 

EXAMPLE 4.3 Design of web reinforcement. Using vertical U stirrups with.f;,1 = 60,000 psi, design the web 
reinforcement for the beam in Example 4.2. 

SOLUTION. The solution will be based on the shear diagram in Fig. 4.13a. The stirrups must 
be designed to resist that part of the shear shown shaded. With No. 3 (No. 10) stirrups used for 
trial, the three maximum spacing criteria are first applied. For ¢Vs = Vu - </)Ve = 43,400 lb, 
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which is less than 4<f>v/[b,.d = 66,800 lb, the maximum spacing must exceed neither d/2 = 

11 in. nor 24 in. Also, from Eq. (4.15a), 

0.22 X 60,000 

0.75\/4000 X 16 
17.4 in. 

Avfy, 0.22 X 60,000 . 
:S -50_b_w = 50 X 16 = 16·5 m. 

The first criterion controls in this case, and a maximum spacing of 11 in. is imposed. From the 
support to a distanced from the support, the excess shear Vu - <p Ve is 43,400 lb. In this region, 
the required spacing is 

<f>Avfy1d 0.75 X 0.22 X 60,000 X 22 
s = --------'- = ---------- = 5.0 in. 

V,, - </>¼ 43,400 

This is neither so small that placement problems would result nor so large that maximum 
spacing criteria would control, and the choice of No. 3 (No. 10) stirrups is confirmed. Solving 
Eq. (4.14a) for the excess shear at which the maximum spacing can be used gives 

V,, _ </>¼ = <f>Av:ytd 0.75 X 0.22 ;l 60,000 X 22 = 19,S00 lb 

With reference to Fig. 4.13a, this is attained at a distance x1 from the point of zero excess shear, 
where x 1 = 6.45 X 19,800/60,600 = 2.10 ft. This is 4.35 ft from the support face. With this 
information, a satisfactory spacing pattern can be selected. The first stirrup is usually placed at 
a distance s/2 from the support. The following spacing pattern is satisfactory: 

1 space at 2 in. = 2 in. 

7 spaces at 5 in. = 35 in. 

2 spaces at 7 in. = 14 in. 

4 spaces at 11 in. = 44 in. 

Total = 95 in. = 7 ft 11 in. 

The resulting stirrup pattern is shown in Fig. 4.13c. As an alternative solution, it is possible to 
plot a curve showing required spacing as a function of distance from the support. Once the 
required spacing at some reference section, say at the support, is determined, 

0.75 X 0.22 X 60,000 X 22 
s = ---------- = 3.59 in. 0 94,000 - 33,400 

it is easy to obtain the required spacings elsewhere. In Eq. ( 4.14a ), only Vu - <p Ve changes with 
distance from the support. For uniform load, this quantity is a linear function of distance from 
the point of zero excess shear, 6.45 ft from the support face. Hence, at 1 ft intervals, 

s1 = 3.59 X 6.45/5.45 = 4.25 in. 

s2 = 3.59 X 6.45/4.45 = 5.20 in. 

S3 = 3.59 X 6.45/3.45 = 6.70 in. 

s4 = 3.59 X 6.45/2.45 = 9.45 in. 

s5 = 3.59 X 6.45/ 1.45 = 15.97 in. 

This is plotted in Fig. 4.15 together with the maximum spacing of 11 in., and a practical spacing 
pattern is selected. The spacing at a distance d from the support face is selected as the minimum 



FIGURE4.15 
Required stirrup spacings for 
Example 4.3. 

SHEAR AND DIAGONAL TENSION IN BEAMS 145 

12 I Smax = 11" 

10 
l 4 sp. at 11" 

I 

8 
£ 
cii 
C 6 ·c3 
ca 
c.. 

Spacing required y I 
~ h--------' Spacing provided 

____ J 

/ 2 sp. at 7" 
Sd = 5.0" ./' I 

- _J 
CJ) 

4 2" + 7 sp. at 5" -;:::-=--

2 

2 3 4 5 6 7 8 

Distance from support, ft 

requirement, in accordance with the ACI Code. The pattern of No. 3 (No. 10) U-shaped stirrups 
selected (shown on the graph) is identical with the previous solution. In most cases, the expe
rienced designer would find it unnecessary actually to plot the spacing diagram of Fig. 4.15 and 
would select a spacing pattern directly after calculating the required spacing at intervals along 
the beam. 

If the web steel were to be designed on the basis of the excess-shear diagram in 
Fig. 4.13b, the second approach illustrated above would necessarily be selected, and spacings 
would be calculated at intervals along the span. In this particular case, a spacing of 7.07 in. is 
calculated up to 20 in. from the face of the support. The calculated spacing drops to 6.76 in. at 
d from the face of the support, and then increases to 11 in., the maximum permissible spacing, 
4 ft from the support. The following practical spacing could be used: 

1 space at 3 in. = 3 in. 

6 spaces at 7 in. = 42 in. 

4 spaces at 11 in. = 44 in. 

Total = 89 in. = 7 ft 5 in. 

Thus, 11 No. 3 (No. I 0) stirrups would be used, rather than the 14 previously calculated, in each 
half of the span. 

The number of stirrups just calculated represents the minimum for each of the two 
expressions for Ve Although not required by the ACI Code, it is good design practice to 
continue the stirrups ( at maximum spacing) through the middle region of the beam, even though 
the calculated shear is low. Doing so satisfies the dual purposes of providing continuing support 
for the top longitudinal reinforcement that is required wherever stirrups are used and providing 
additional shear capacity in the region to handle load cases not considered in developing the 
shear diagram. If this were done, the number of stirrups would increase from 14 and 11 to 16½ 
and 13½ per half-span (i.e., one stirrup at midspan), respectively. 

4.6 EFFECT OF AXIAL FORCES 

The beams considered in the preceding sections were subjected to shear and flexure 
only. Reinforced concrete beams may also be subjected to axial forces, acting simul
taneously with shear and flexure, due to a variety of causes. These include external 
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axial loads, longitudinal prestressing, and restraint forces introduced as a result of 
shrinkage of the concrete or temperature changes. Beams may have their strength in 
shear significantly modified in the presence of axial tension or compression, as is 
evident from a review of Sections 4.1 through 4.4. 

Prestressed concrete members are treated by somewhat specialized methods, 
according to present practice, based largely on results of testing prestressed concrete 
beams. They will be considered separately in Chapter 19, and only nonprestressed 
reinforced concrete beams will be treated here. 

The main effect of axial load is to modify the diagonal cracking load of the 
member. It was shown in Section 4.3 that diagonal tension cracking will occur when 
the principal tensile stress in the web of a beam, resulting from combined action of 
shear and bending, reaches the tensile strength of the concrete. It is clear that the 
introduction of longitudinal force, which modifies the magnitude and direction of the 
principal tensile stresses, may significantly alter the diagonal cracking load. Axial 
compression will increase the cracking load, while axial tension will decrease it. 

For members carrying only flexural and shear loading, the shear force at which 
diagonal cracking occurs Ve, is predicted by Eq. (4.3a), based on a combination of 
theory and experimental evidence. Furthermore, for reasons that were explained in 
Section 4.4b, in beams with web reinforcement, the contribution of the concrete to 
shear strength Ve is taken equal to the diagonal cracking load Ve,· Thus, according to 
the ACI Code, the concrete contribution is calculated by Eq. (4.12a) or (4.12b). For 
members carrying flexural and shear loading plus axial loads, Ve can be calculated by 
suitable modifications of these equations as follows. 

a. Axial Compression 

In developing Eq. (4.3a) for Ve,• it was pointed out that the diagonal cracking load 
depends on the ratio of shear stress v to bending stress fat the top of the flexural crack. 
While these stresses were never actually determined, they were conveniently 
expressed as 

(a) 

and 

(b) 

Equation (a) relates the concrete shear stress at the top of the flexural crack to the 
average shear stress; Eq. (b) can be used to relate the flexural tension in the concrete 
at the top of the crack to the tension in the flexural steel, through the modular ratio 
n = Esf Ee, as follows: 

or 

fs M 
f= Ko-= Ko--. 

n nAsJd 

M 
f = Ko -----;-bd2 

npJ 
(c) 

where jd is the internal lever arm between C and T, and K0 is an unknown constant. 
Thus, the previous constant K2 is equal to K0/ npj. 



FIGURE4.16 
Beams subject to axial 
compression plus bending 
and shear loads. 
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(a) 

Now consider a beam subject to axial compression N as well as M and V, as 
shown in Fig. 4.16a. In Fig. 4.16b, the external moment, shear, and thrust acting on 
the left side of a small element of the beam, having length dx, are equilibrated by the 
internal stress resultants T, C, and V acting on the right. It is convenient to replace 
the external loads M and N with the statically equivalent load N acting at eccentricity 
e = M/N from the middepth, as shown in Fig. 4.16c. The lever arm of the eccentric 
force N with respect to the compressive resultant C is 

I d h . e = e + - - - Jd 
2 

(d) 

The steel stress fs can now be found taking moments about the point of application of C. 

Ne' 
fs = A "d sl 

from which 

M + N(d - h/2 - jd) 
fs = A "d sl 

Noting that j is very close to i for loads up to that producing diagonal cracking, the 
term in parentheses in the last equation above can be written as (d - 4h)/8. Then with 
f = K0fs/n as before, the concrete tensile stress at the head of the flexural crack is 

M - N(4h - d)/8 M - N(4h - d)/8 
f = Ko npjbdz = K2 bdz (e) 

Comparing Eq. (e) with Eqs. (c) and (b) makes it clear that the previous derivation for 
flexural tension/ holds for the present case including axial loads if a modified moment 
M - N(4h - d)/8 is substituted for M. It follows that Eq. (4.3a) can be used to cal
culate Ver with the same substitution of modified for actual moment. 
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FIGURE4.17 
Comparison of equations for 
Ve for members subject to 
axial loads. 

The ACI Code provisions are based on this development. The concrete contri
bution to shear strength Ve is taken equal to Ve, and is given by Eq. (4.12a) as before: 

¼ = ( 1.9,\ vJ: + 2500 p:d)b,,,d (4.12a) 

except that the modified moment 

4h - d 
Mm= Mu - Nu 8 ( 4.16) 

is to be substituted for Mu and Vudf Mu need not be limited to 1.0 as before. The thrust 
Nu is to be taken positive for compression. For beams with axial compression, the 
upper limit of 3.5,\ Vfl b,,,d is replaced by 

¼ = 3.5,\ vJ: b,,,d I 1 + Nou 
\j 50 l'lg 

(4.17) 

where Ag is the gross area of the concrete and Nu/ Ag is expressed in psi units. 
As an alternative to the rather complicated determination of Ve using Eqs. ( 4.12a ), 

( 4.16), and ( 4.17), ACI Code 11.2.1.2 permits the use of an alternative simplified 
expression: 

(4.18) 

Figure 4.17 shows a comparison of Ve calculated by the more complex and simplified 
expressions for beams with compression load. Equation (4.18) is seen to be generally 
quite conservative, particularly for higher values of Nu/Ag. However, because of its 
simplicity, it is widely used in practice. 

......................... Eq. (4.17) 

............. ) 
............. 

Approximate 
range of Eqs. 
(4.12a) and (4.16) 

1000 
Compression 

500 

............. , .. 

6 

5 

0 

Eq. (4.19) 

-500 
Tension 
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b. Axial Tension 

The approach developed above for beams with axial compression does not correlate 
well with experimental evidence for beams subject to axial tension, and often predicts 
strengths Ve higher than actually measured. For this reason, the ACI Code provides 
that, for members carrying significant axial tension as well as bending and shear, the 
contribution of the concrete be taken as 

(4.19) 

but not less than zero, where Nu is negative for tension. As a simplifying alternative, 
the Commentary to the Code suggests that, for beams carrying axial tension, Ve be 
taken equal to zero and the shear reinforcement be required to carry the total shear. 
The variation of Ve with Nuf A

8 
for beams with tension is shown in Fig. 4.17 also. 

EXAMPLE 4.4 Effect of axial forces on v.. A beam with dimensions b = 12 in., d = 24 in., and h = 27 in., 
withJ; = 4000 psi, carries a single concentrated factored load of 100 kips at midspan. Find the 
maximum shear strength of the concrete Ve at the first critical section for shear at a distance d 
from the support (a) if no axial forces are present, (b) if axial compression of 60 kips acts, and 
(c) if axial tension of 60 kips acts. In each case, compute Ve by both the more complex and sim
plified expressions of the ACI Code. Neglect the self-weight of the beam. At the section con
sidered, tensile reinforcement consists of three No. 10 (No. 32) bars with a total area of 3.81 in2• 

SOLUTION. At the critical section, Vu = 50 kips and Mu = 50 X 2 = 100 ft-kips, while 
p = 3.81/(12 X 24) = 0.013. 

(a) If Nu = 0, Eq. (4.12a) predicts 

( 
• r.;:;:;:. 0.013 X 50 X 2) 24 

V,, = 1.9 X 1.0 V 4000 + 2500 lOO 12 X lOOO = 44.0 kips 

not to exceed the value of 

• r.;:;:::. 24 
V,, = 3.5 X 1.0 V 4000 X 12 X lOOO = 63.8 kips 

If the simplified Eq. (4.12b) is used, 

• r.;:;:::. 24 
V,, = 2 X 1.0 V 4UUU X 12 X lO00 = 36.4 kips 

which is about 17 percent below the more exact value ofEq. (4.12a). 
(b) With a compression of 60 kips introduced, the modified moment is found from Eq. (4.16) 

to be 

4 X 27 - 24 
Mm = 100 - 60 

8 
X 

12 
= 47.5 ft-kips 

After introduction of that value into Eq. (4.12a) in place of Mu, the concrete shear strength 
is 

( 
• r.;:;:;:. 0.013 X 50 X 2) 24 

V,, = 1.9 X 1.0 V 4000 + 2500 
475 

12 X lO00 = 54.3 kips 

and, according to Eq. (4.17), should not exceed 

+ 60,000 _ . 
l 500 X 12 X 27 - 74·6 kips 
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If the simplified Eq. (4.18) is used, 

( 
60000 ) -~ 24 V,: = 2 1 + ' X 1.0 V 4000 X 12 X -- = 39.8 kips 

2000 X 12 X 27 1000 

Comparing the results of the more exact calculation for (a) and (b), one sees that the 
introduction of an axial compressive stress of 60,000/(12 X 27) = 185 psi increases the 
concrete shear Ve by about 25 percent. 

(c) With an axial tension of 60 kips acting, the reduced Ve is found from Eq. (4.19) to be 

( 
60000 ) -~ 24 V,: = 2 l - ' X 1.0 V 4000 X 12 X -- = 22.9 kips 

500 X 12 X 27 1000 

a reduction of almost 50 percent from the value for Nu = 0. The alternative of using 
Eq. (4.19) for this case, according to the ACI Commentary, would be to set Ve= 0. 

In all cases above, the strength reduction factor cp = 0.75 would be applied to Ve to 
obtain the design strength. 

4.7 BEAMS WITH VARYING DEPTH 

FIGURE4.18 
Effect of varying beam depth 
on shear. 

Reinforced concrete members having varying depth are frequently used in the form of 
haunched beams for bridges or portal frames, as shown in Fig. 4.18a, as precast roof 
girders such as shown in Fig. 4.18b, or as cantilever slabs. Generally the depth 
increases in the direction of increasing moments. For beams with varying depth, the 
inclination of the internal compressive and tensile stress resultants may significantly 
affect the shear for which the beam should be designed. In addition, the shear resist
ance of such members may differ from that of prismatic beams. 

Figure 4.18c shows a cantilever beam, with fixed support at the left end, carrying 
a single concentrated load P at the right. The depth increases linearly in the direction 

(a) 

(b) 

(c) (d) 
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of increasing moment. In such cases, the internal tension in the steel and the 
compressive stress resultant in the concrete are inclined, and introduce components 
transverse to the axis of the member. With reference to Fig. 4.18d, showing a short 
length dx of the bea_!!l, if the slope of the top surface is 01 and that of the bottom is 02, 

the net shear force Vu for which the beam should be designed is very nearly equal to 

Vu= Vu - Ttan0 1 - Ctan02 

where Vu is the external shear force equal to the load P here, and C = T = Mjz. The 
internal lever arm z = d - a/2 as usual. Thus, in a case for which the beam depth 
increases in the direction of increasing moment, the shear for which the member 
should be designed is approximately 

- Mu 
Vu = Vu - - (tan 01 + tan 02 ) 

z 
(4.20a) 

For the infrequent case in which the member depth decreases in the direction of 
increasing moment, it is easily confirmed that the corresponding equation is 

- Mu 
Vu = Vu + - (tan 0 1 + tan 02 ) (4.20b) 

z 

These equations are approximate because the direction of the internal forces is not 
exactly as assumed; however, the equations may be used without significant error 
provided the slope angles do not exceed about 30°. 

There has been very little research studying the shear strength of beams having 
varying depth. Tests reported in Ref. 4.19 on simple span beams with haunches at 
slopes up to about 15° and with depths both increasing and decreasing in the direction 
of increasing moments indicate no appreciable change in the cracking load Ve, com
pared with that for prismatic members. Furthermore, the strength of the haunched 
beams, which contained vertical stirrups as web reinforcement, was not significantly 
decreased or increased, regardless of the direction of decreasing depth. Based on this 
information, it appears safe to design beams with varying depth for shear using equa
tions for Ve and Vs developed for prismatic members, provided the actual depth d at 
the section under consideration is used in the calculations. 

4.8 ALTERNATIVE MODELS FOR SHEAR ANALYSIS 
AND DESIGN 

The ACI Code method of design for shear and diagonal tension in beams, presented in 
preceding sections of this chapter, is essentially empirical. While generally leading to 
safe designs, the ACI Code "Ve + V;' approach lacks a physical model for the behavior 
of beams subject to shear combined with bending, and its shortcomings are now gener
ally recognized. The "concrete contribution" Ve is generally considered to be some 
combination of force transfer by dowel action of the main steel, aggregate interlock 
along a diagonal crack, and shear in the uncracked concrete beyond the end of the crack. 
The values of each contribution are not identified. A rather vague rationalization is 
followed in adopting the diagonal cracking load of a member without web steel as the 
concrete contribution to the shear strength of an otherwise identical beam with web steel 
(see Section 4.4). Furthermore, as discussed in Section 4.3, Eqs. (4.3a) and (4.12a), used 
to predict the diagonal cracking load, overestimate concrete shear strength for beams 
with low reinforcement ratios (p < 1.0 percent), overestimate the gain in shear strength 



152 DESIGN OF CONCRETE STRUCTURES Chapter 4 

resulting from the use of high-strength concrete (Refs. 4.14 to 4.17), and underestimate 
the influence of Vud/Mu (Ref. 4.3). The expressions also ignore the fact that shear 
strength decreases as member size increases (Refs. 4.20 to 4.21). 

Ad hoc procedures are built into the ACI Code to adjust for some of these 
deficiencies, but it follows that it is necessary to include equations, also empirically 
developed for the most part, for specific classes of members (e.g., deep beams vs. 
normal beams, beams with axial loads, prestressed vs. nonprestressed beams, high
strength concrete beams )-with restrictions on the range of applicability of such 
equations. And it is necessary to incorporate seemingly arbitrary provisions for the 
maximum nominal shear stress and for the extension of flexural reinforcement past the 
theoretical point of need. The end result is that the number of ACI Code equations for 
shear design has grown from 4 prior to 1963 to 38 in 2008. 

With this as background, attention has been given to the development of design 
approaches based on rational behavioral models, generally applicable, rather than on 
empirical evidence alone (Ref. 4.6). 

The truss model was originally introduced by Ritter (Ref. 4.22) and Marsch 
(Ref. 4.23) at the tum of the last century. A simplified version has long provided the 
basis for the ACI Code design of shear steel. The essential features of the truss model 
are reviewed with reference to Fig. 4.19a, which shows one-half the span of a simply 
supported, uniformly loaded beam. The combined action of flexure and shear 
produces the pattern of cracking shown. Reinforcement consists of the main flexural 
steel near the tension face and vertical stirrups distributed over the span. 

The structural action can be represented by the truss of Fig. 4.19b, with the main 
steel providing the tension chord, the concrete top flange acting as the compression 
chord, the stirrups providing the vertical tension web members, and the concrete 
between inclined cracks acting as 45° compression diagonals. The truss is formed by 
lumping all the stirrups cut by section a-a into one vertical member and all the diag
onal concrete struts cut by section b-b into one compression diagonal. Experience 
shows that for typical cases, the results of the model described are quite conservative, 
particularly for beams with small amounts of web reinforcement. As noted above, in 
the ACI Code the observed excess shear capacity is taken equal to the shear at the 
commencement of diagonal cracking and is referred to as the concrete contribution Ve 

Over the past 25 years, the truss concept has been greatly extended by the work 
of Schlaich, Marti, Collins, MacGregor, and others (Refs. 4.6, 4.24 to 4.29). It was 
realized that the angle of inclination of the concrete struts is generally not 45° but may 
range between about 25° and 65°, depending to a large extent on the arrangement of 
reinforcement. This led to what has become known as the variable-angle truss model, 
shown in Fig. 4.19c, which illustrates the five basic components of the improved 
model: (a) struts, or concrete compression members uniaxially loaded; ( b) ties, or steel 
tension members; (c) joints at the intersection of truss members, assumed to be pin
connected; (d) compression fans, which form at "disturbed" regions, such as at 
the supports or under concentrated loads, transmitting the forces into the beam; and 
(e) diagonal compression fields, occurring where parallel compression struts transmit 
force from one stirrup to another. As in the ACI Code development, stirrups are typi
cally assumed to reach yield stress at failure. With the force in all the verticals known 
and equal to Avfyr the truss of Fig. 4.19c becomes statically determinate. Direct design 
equations can be based on the variable-angle truss model for ordinary cases. The model 
also permits direct numerical solution for the required reinforcement for special cases. 
The truss model does not include components of the shear failure mechanism such as 
aggregate interlock and friction, dowel action of the longitudinal steel, and shear carried 
across uncracked concrete. Furthermore, in the format originally proposed, the truss 



FIGURE4.19 
Truss model for beams with 
web reinforcement: 
(a) uniformly loaded beam; 
(b) simple truss model; 
(c) more realistic model. 
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model does not account for compatibility requirements; i.e., it is based on plasticity 
theory. One form of the truss model is incorporated in Appendix A of the ACI Code; 
strut-and-tie models are discussed in detail in Chapter 10. 

a. Compression Field Theory 

The Canadian National Standard for reinforced concrete (Ref. 4.30) includes a method 
of shear design that is essentially the same as the present ACI method but also includes 
an alternative "general method" based on the variable-angle truss and the compression 
field theory (Refs. 4.27 and 4.31). The latter is incorporated in AASHTO LRFD Bridge 
Design Specifications (Ref. 4.12), where its use is mandatory for shear design. In its 
complete form, known as the modified compression field theory, it accounts for 
requirements of compatibility as well as equilibrium and incorporates stress-strain 
characteristics of both materials. Thus, it is capable of predicting not only the failure 
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FIGURE4.20 
Basis of compression field 
theory for shear: (a) beam 
with shear and longitudinal 
steel; (b) tension in 
horizontal bars due to shear; 
(c) diagonal compression 
on beam web; (d) vertical 
tension in stirrups; 
(e) equilibrium diagram of 
forces due to shear. (Adapted 
from Ref 4.27.) 

(b) 

(e) 

ilN 
2 

(a) 

jjv 
V 

tan0 

(c) 

load but also the complete load-deformation response. The most basic elements of the 
compression field theory, applied to members carrying combined flexure and shear, 
will be clear from Fig. 4.20. Figure 4.2Oa shows a simple-span concrete beam, 
reinforced with longitudinal bars and transverse stirrups, and carrying a uniformly 
distributed loading along the top face. The light diagonal lines are an idealized repre
sentation of potential tensile cracking in the concrete. 

Figure 4.2Ob illustrates that the net shear V at a section a distance x from the 
support is resisted by the vertical component of the diagonal compression force in the 
concrete struts. The horizontal component of the compression in the struts must be 
equilibrated by the total tension force AN in the longitudinal steel. Thus, with refer
ence to Fig. 4.2Ob and c, the magnitude of the longitudinal tension resulting from 
shear is 

V 
AN= -- = Vcot0 

tan0 
(4.21) 
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where 0 is the angle of inclination of the diagonal struts. These forces superimpose on 
the longitudinal forces owing to flexure, not shown in Fig. 4.20b. 

The effective depth for shear calculations, according to this method, is taken at 
the distance between longitudinal force resultants dv. Thus, from Fig. 4.20d, the diag
onal compressive stress in a web having width bv is 

V 
fd=----

bvdv sin 0 cos 0 
(4.22) 

The tensile force in the vertical stirrups, each having area Av and assumed to act 
at the yield stress Jy1, can be found from the free body of Fig. 4.20e. With stirrups 
assumed to be at uniform spacings, 

Vs tan 0 
Av/21 = d 

V 

(4.23) 

Note, with reference to the free-body diagram, that the transverse reinforcement within 
the length dv/tan 0 can be designed to resist the lowest shear that occurs within this 
length, i.e., the shear at the right end. 

In the ACI Code method developed in Section 4.4, it was assumed that the 
angle 0 was 45°. With that assumption, and if dis substituted for dv, Eq. (4.23) is 
identical to that used earlier for the design of vertical stirrups. It is generally recog
nized, however, that the slope angle of the compression struts is not necessarily 45°, 
and following Refs. 4.12 and 4.30 that angle can range from 20 to 75°, provided the 
same value of 0 is used in satisfying all requirements at a section. It is evident from 
Eqs. (4.21) and (4.23) that if a lower slope angle is selected, less vertical reinforce
ment but more horizontal reinforcement will be required. In addition, the compres
sion in the concrete diagonals will be increased. Conversely, if a higher slope angle 
is used, more vertical steel but less horizontal steel will be needed, and the diagonal 
thrust will be less. It is generally economical to use a slope angle 0 somewhat less 
than 45°, with the limitation that the concrete diagonal struts not be overstressed 
in compression. 

In addition to providing an improved basis for the design of reinforcement for 
shear, the variable angle truss model gives important insights into detailing needs. For 
example, it becomes clear from the above that the increase in longitudinal steel tension 
resulting from the diagonal compression in the struts requires that flexural steel be 
extended beyond the point at which it is theoretically not needed for flexure, to 
account for the increased horizontal tensile force resulting from the thrust in the 
compression diagonals. This is not recognized explicitly in the ACI Code method for 
beam design. (However, the ACI Code does contain the arbitrary requirement that the 
flexural steel be extended a distance d or 12 bar diameters beyond the point indicated 
by flexural requirements.) Also, it is clear from the basic concept of the truss model 
that stirrups must be capable of developing their full tensile strength throughout the 
entire stirrup height. For wide beams, focus on truss action indicates that special 
attention should be given to lateral distribution of web reinforcement. It is often the 
practice to use conventional U stirrups for wide beams, with the vertical tension from 
the stirrups concentrated around the outermost bars. According to the discussion 
above, diagonal compression struts transmit forces only at the joints. Lack of stirrup 
joints at the interior of the wide-beam web would force joints to form only at the exte
rior longitudinal bars, which would concentrate the diagonal compression at the outer 
faces of the beam and possibly result in premature failure. It is best to form a truss 
joint at each of the longitudinal bars, and multiple leg stirrups should always be used 
in wide beams (see Fig. 4.8c). 
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References 4.12 and 4.30 incorporate a refined version of the approach just 
described, known as the modified compression field theory (MCFf), in which the 
cracked concrete is treated as a new material with its own stress-strain characteristics, 
including the ability to carry tension following crack formation. The compressive 
strength and the stress-strain curve of the concrete in the diagonal compression struts 
decrease as the diagonal tensile strain in the concrete increases. Equilibrium, compat
ibility, and constitutive relationships are formulated in terms of average stresses and 
average strains. Variability in the angle of inclination of the compression struts and 
stress-strain softening effects in the response of the concrete are taken into account. 
Consideration is also given to local stress conditions at crack locations. The method is 
capable of accurately predicting the response of complex elements such as shear walls, 
diaphragms, and membrane elements subjected to in-plane shear and axial loads 
through the full range of loading, from zero load to failure (Refs. 4.28 and 4.29). The 
version of the method adopted in Ref. 4.12 has been simplified to allow its use for 
routine design. 

b. Design Provisions 

The version of the MCFT adopted in the AASHTO LRFD Bridge Design 
Specifications (Ref. 4.12) is, like the shear provisions in the ACI Code, based on nom
inal shear capacity, with Vn equal to the lesser of 

Vn =Ve+ Vs 

V,, = 0.25Jc' bvdv 

(4.24) 

(4.25) 

where bv = web width (the same as bw in the ACI Code) and dv = effective depth in 
shear, taken as equal to the flexural lever arm (the distance between the centroids of 
the tensile and compressive forces), but not less than the greater of 0.9d or 0.72h. 

The values of Ve and Vs differ from those used by the ACI, with 

(4.26) 
and 

Avf;,1dv ( cot 0 + cot a) sin a 
V.:=----------

s s (4.27) 

where Av, f;,1, s, a, and 0 are as defined before. /3 is the concrete tensile stress factor 
and is based on the ability of diagonally cracked concrete to resist tension, which also 
controls the angle of the diagonal tension crack 0. In Ref. 4.12, the values of /3 and 0 
are determined based on the strain in the longitudinal tension reinforcement, which 
can be approximated byt 

IMulfdv - 0.5Nu + IV,,I 
Es = --------- $ 0.006 

ESAS 
(4.28) 

The sign convention for Nu is the same as used in Section 4.6 and the ACI Code: 
compression is positive and tension is negative (the opposite sign convention is used 
in Ref. 4.12). Mu should not be taken less than Vudv; when calculating As, the area of 
bars terminated less than their development length (see Chapter 5) from the section 

IMu/dvl - 0.5Nu + o.s 1v.1 cot0 
t Equation (4.28) is a simplification of e, = ----------, with O.S!Vul cot 0 approximated by !VJ The simplification 

E,A, 
eliminates the need for an iterative solution between e., and 0. 



FIGURE 4.21 
Equilibrium diagram for 
calculating tensile force in 
reinforcement. (Adapted from 

Ref 4.12.) 
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under consideration should be reduced in proportion to the decreased development; Es 

should be taken as zero if the value calculated in Eq. (4.28) is negative; and Es should 
be doubled if Nu is high enough to cause cracking to the flexural compression face of 
the member. For sections closer than dv to the face of the support, € s calculated at dv 
from the face of the support may be used to determine /3 and 0. 

For members with at least the minimum shear reinforcement, the concrete 
tensile stress factor is given by 

4.8 
/3=--

1 +750Es 

The angle 0, in degrees, is given by 

0 = 29 + 3500Es 

(4.29) 

(4.30) 

As shown in Eq. (4.21), the strength of the longitudinal reinforcement must be 
adequate to carry the additional forces induced by shear. Referring to Fig. 4.21, this 
leads to 

!Mui 0.5Nu ( l¼I ) A + ?= T = -- - -- + - - 0 5V: cot0 
sJy <pf 'Pc <f>v • s (4.31) 

where 'Pf' cpC' and <f>v are, respectively, the capacity reduction factors for flexure, axial 
load (tension or compression), and shear. Vs need not be taken greater than Vuf<f>. Since 
the inclination of the compression struts changes, tension in the longitudinal rein
forcement does not exceed that required to resist the maximum moment alone. 

For members with less than the minimum transverse reinforcement, the angle 0 
is given by Eq. ( 4.30), while the value of /3 becomes a function of Es and a crack spacing 
parameter sxe· 

4.8 /3=---
1 + 750€s 

The crack spacing parameter is 
1.38 

I I I I I 

51 

----- 1-- I --1 - 1-- I ---
1 I I I I 
I I I I I 
I I I I 
I I I I 
I I I 
I I 
I I 
I 
I 

O.5d,cot0 _l_ O.5d,cot0 

(4.32) 

(4.33) 

C 
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where 12.0 in. ::; sxe $ 80.0 in., sx = lesser of the shear depth dv or the spacing 
between layers of longitudinal crack control reinforcement, each layer with an area of 
steel of at least 0.003bvSx• and ag = maximum size of the coarse aggregate. Note that 

" 3 • sxe = sx 1or 4-m. coarse aggregate. 
Since 0 is not, in general, equal to 45°, the critical section might appropriately 

be taken as dv cot 0 from the face of the support if all the load were applied to the upper 
surface of the member. For simplicity, however, the critical section is taken a distance 
dv from the face of the support when the reaction introduces compression into the end 
region of the member, similar to the loading cases shown in Fig. 4.12a and b. For all 
other cases, the crucial section is taken at the face of the support, as shown in 
Fig. 4.12c tof 

AASHTO requires a mm1mum amount of transverse reinforcement Av 
vf:bvs/Jy1 (compared to 0.75vf:bws/Jy1 for ACI), when Vu > 0.5</>Vc, and specifies 
maximum spacings of transverse reinforcement of s ::; 0.8dv ::; 24 in. when vu < 
0.125J; ands::; 0.4dv::; 12 in. when vu 2:: 0.125/;. Because the predictions obtained 
with the MCFT are generally more accurate than those obtained with the ACI method, 
AASHTO allows the use of q, = 0.90 for shear, the same as for flexure. 

EXAMPLE 4.5 Design by modified compression field approach. Re-solve the problem given in Examples 
4.2 and 4.3 based on the MCFf. Use ACI load factors and <p = 0.9 for shear, as used in 
AASHTO LRFD Bridge Design Specifications (Ref. 4.12). Assume an aggregate size ag of¾ in. 

SOLUTION. For simplicity, the effective depth for shear dv will be set at the minimum allowable 
value = 0.9d = 0.9 X 22 = 19.8 in. Both Mu and Vu are as tabulated previously in Table 4.1. 

The critical section for shear is located a distance dv = l 9 .8 in. = 1.65 ft from the support 
where Vu = 94 - 9.4 X 1.65 = 78.5 kips. Calculating O.l25f:bvdv = 0.125 X 4000 X 16 X 
19.8 = 158,400 lb leads to maximum spacing criteria for No. 3 (No. 10) stirrups equal to the 
smaller of 0.8dv = 0.8 X 19.8 = 15.8 in., 24 in., or 

Avfyt 0.22 X 60,000 . 
Smax = vjf bv = V4000 X 

16 
= 13.0 m. 

Using Eq. (4.28), the strain in the longitudinal tension steel is approximated as 

IMuJ/19.8 + JY,;I 
€ = 
' 29,000 X 7.62 

with Mu and Vu in in-kips and kips, respectively. 
The values of E, are tabulated along with Mu and Vu in Table 4.2. These values are used 

to calculate 0 using Eq. (4.30) and {3 using Eqs. (4.29) and (4.32) for sections with and without 
minimum stirrups, respectively. Where the section meets the minimum stirrup criterion, the 
values of {3 are used to calculate the values of Ve, which are then used, along with the values of 
0, to calculate V, and the required stirrup spacings (see Table 4.2). 

For transverse reinforcement less than the minimum, the values of {3 are based on E, and 
sx. The latter may be taken as the lesser of dv or the spacing of longitudinal crack control 
reinforcement. In this case, dv = 19.8 in. controls since crack control reinforcement is not 
used. The equivalent crack spacing parameter sx, = sx because ag = 0.75 in. These values of 
{3 are used to determine the point where </JVc/2 2: Vu, the point at which stirrups may be 
terminated (Table 4.2). The values of Vu, </JVc with at least minimum stirrups, and </JVc/2 for 
less than minimum stirrups are plotted in Fig. 4.22a. The following stirrup spacings can be 
used for this case: 

l space at 6 in. = 6 in. 

6 spaces at 13 in. = 78 in. 

Total = 84 in. = 7 ft 
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TABLE 4.2 
Modified compression field design example using cf, = 0. 9 for shear 

Distance 
from Mu, 

Support, ft- vu, 
ft kips kips 

0 0 94.0 
1 89 84.6 
l.65t 144 78.5 
2 169 75.2 
3 240 65.8 
4 301 56.4 
5 353 47.0 
6 395 37.6 
7 428 28.2 
8 451 18.8 
9 465 9.4 

10 470 0.0 

t d, from face of support. 

FIGURE4.22 
Modified compression field 
design for Example 4.5. 

c/J V c for at Least c/J V c for Less Than 
Minimum Stirrups Minimum Stirrups 

<f>Vc, v •. s, <f>Vc, q,V/2, 
€ 5 X 1000 8 /3 kips kips in. /3 kips kips 

0.85 32.0 2.93 52.8 45.7 9.2 2.54 45.8 22.9 
0.77 31.7 3.05 55.0 32.9 12.9 2.64 47.7 23.8 
0.75 31.6 3.07 55.4 25.6 16.5 2.66 48.1 24.0 
0.80 31.8 2.99 54.0 23.6 17.9 2.60 46.8 23.4 
0.96 32.3 2.80 50.4 17.1 24.2 2.43 43.7 21.9 
1.08 32.8 2.65 47.8 9.5 42.6 2.30 41.5 20.7 
1.18 33.1 2.55 45.9 1.2 336 2.21 39.8 19.9 
1.25 33.4 2.47 44.6 2.15 38.7 19.4 
1.30 33.6 2.43 43.8 2.11 38.0 19.0 
1.32 33.6 2.41 43.5 2.09 37.7 18.8 
1.32 33.6 2.41 43.5 2.09 37.7 18.9 
1.29 33.5 2.44 44.0 2.12 38.2 19.1 

For this example, Vs is selected based on Vu at each point, not the minimum Vu on a crack with 
angle 0. This simplifies the design procedure and results in a somewhat more conservative 
design. Even so, only 7 No. 3 (No. l 0) stirrups are needed, or 9 stirrups if the stirrups are 
continued at the maximum spacing through the middle region of the beam. These values 
compare favorably with the minimum number of stirrups per half-span, 11 and 14, previously 

Vu = 94.0 kips 

Vu = 78.5 kips 

c/JVc (2: minimum stirrups) 

~c (< minimum stirrups) 

dv = 1.65' 

8.00' -------+< 

reinforcement 
1 

~---- 10.00· ______ I 

(a) 

---T-7-7--7--~--T--r--r----

6" 

1 I I I I I I I 
I I I I I I I I 
I I I I I I I I 

---~-~-~--~--~--~--L __ L ___ _ 

6@ 13" 

(b) 
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calculated (Example 4.3) using the two methods required by the ACI Code. The resulting 
stirrup pattern is shown in Fig. 4.22b. 

By way of comparison, had <!>shear= 0.75 been used in this example, the stirrup spacing 
would have been 

for a total of 8 stirrups. 

1 space at 5 in. = 5 in. 
3 spaces at 10 in. = 30 in. 
4 spaces at 13 in. = 52 in. 

Total = 87 in. = 7 ft 3 in. 

The MCFT recognizes that shear increases the force in the flexural steel, although, as 
explained earlier, the maximum tensile force in the steel is not affected. Equation ( 4.31) should 
be used to calculate the tensile force T along the span, which will then govern the locations 
where tensile steel may be terminated. This will be discussed further in Chapter 5. 

The MCFT is not included in the 2008 ACI Code. ACI Code 1.4, however, 
permits the use of "any system of design or construction ... , the adequacy of which 
has been shown by successful use or by analysis or test," if approved by the appropri
ate building official. The application of the MCFT in Canada and in U.S. bridge 
practice provides the evidence needed to demonstrate "successful use." 

4.9 SHEAR-FRICTION DESIGN METHOD 

Generally, in reinforced concrete design, shear is used merely as a convenient measure 
of diagonal tension, which is the real concern. In contrast, there are circumstances 
such that direct shear may cause failure of reinforced concrete members. Such situa
tions occur commonly in precast concrete structures, particularly in the vicinity of 
connections, as well as in composite construction combining cast-in-place concrete 
with either precast concrete or structural steel elements. Potential failure planes can be 
established for such cases along which direct shear stresses are high, and failure to 
provide adequate reinforcement across such planes may produce disastrous results. 

The necessary reinforcement may be determined on the basis of the shear
friction method of design (Refs. 4.32 to 4.38). The basic approach is to assume that 
the concrete may crack in an unfavorable manner, or that slip may occur along a 
predetermined plane of weakness. Reinforcement must be provided crossing the 
potential or actual crack or shear plane to prevent direct shear failure. 

The shear-friction theory is very simple, and the behavior is easily visualized. 
Figure 4.23a shows a cracked block of concrete, with the crack crossed by reinforce
ment. A shear force Vn acts parallel to the crack, and the resulting tendency for the 
upper block to slip relative to the lower is resisted largely by friction along the concrete 
interface at the crack. Since the crack surface is naturally rough and irregular, the effec
tive coefficient of friction may be quite high. In addition, the irregular surface will 
cause the two blocks of concrete to separate slightly, as shown in Fig. 4.23b. 

If reinforcement is present normal to the crack, then slippage and subsequent 
separation of the concrete will stress the steel in tension. Tests have confirmed that 
well-anchored steel will be stressed to its yield strength when shear failure is obtained 
(Ref. 4.34). The resulting tensile force sets up an equal and opposite pressure between 
the concrete faces on either side of the crack. It is clear from the free body of 
Fig. 4.23c that the maximum value of this interface pressure is AvJ-/2, where Avf is the 
total area of steel crossing the crack and.[y is its yield strength. 



Shear-transfer 
reinforcement 
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Crack Crack 
separation -------
due to slip 

l I I J __, '-
L r t!t t t t t t t!t - Avtfy 

(a) (b) (c) 

FIGURE 4.23 
Basis of shear-friction design method: (a) applied shear; (b) enlarged representation of crack 
surface; (c) free-body sketch of concrete above crack. 

The concrete resistance to sliding may be expressed in terms of the normal force 
times a coefficient of frictionµ. By setting the summation of horizontal forces equal 
to zero 

(4.34) 

Based on tests, µ may be taken as 1.4 for cracks in monolithic concrete, but Vn 
should not be assumed to be greater than 0.2J;Ac, (480 + 0.08f;)Ac, or l600Ac (Refs. 4.32, 
4.37, and 4.38). 

The relative movement of the concrete on opposite sides of the crack also sub
jects the individual reinforcing bars to shearing action, and the dowel resistance of the 
bars to this shearing action contributes to shear resistance. However, it is customary to 
neglect the dowel effect for simplicity in design and to compensate for this by using 
an artificially high value of the friction coefficient. 

The provisions of ACI Code 11.6 are based on Eq. (4.34). The design strength 
is equal to </JVn, where </J = 0.75 for shear-friction design, and Vn must not exceed the 
smallest of 0.2J;Ac, (480 + 0.08J;)Ac, and l600Ac for monolithic or intentionally 
roughened normalweight concrete or the smaller of 0.2J;Ac and 800Ac lb for other 
cases. When concretes of different strengths are cast against each another, Vn should be 
based on the lower value of J;. Recommendations for friction factor µ are as follows: 

Concrete placed monolithically 1 .4A 
Concrete placed against hardened concrete with surface 

intentionally roughened l .0A 
Concrete placed against hardened concrete not intentionally 

roughened 0.6A 
Concrete anchored to as-rolled structural steel by headed 

studs or reinforcing bars 0.7 A 

where A is 1.0 for normalweight concrete and 0.75 for both sand-lightweight and all
lightweight concrete. In other cases, A is determined based on volumetric proportions 
of lightweight and normalweight aggregates, as described in Section 4.5a and specified 
in ACI Code 8.6.1, but not greater than 0.85. The yield strength of the reinforcement 
fv may not exceed 60,000 psi. Direct tension across the shear plane, if present, must be 
carried by additional reinforcement, and permanent net compression across the shear 
plane may be taken as additive to the force in the shear-friction reinforcement Avfh 
when calculating the required Avf· 
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FIGURE4.24 
Shear-friction reinforcement 
inclined with respect to crack 
face. Shear transfer 

reinforcement 
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When shear is transferred between concrete newly placed against hardened 
concrete, the surface roughness is an important variable; an intentionally roughened 
surface is defined to have a full amplitude of approximately ¼ in. In any case, the old 
surface must be clean and free of laitance. When shear is to be transferred between 
as-rolled steel and concrete, the steel must be clean and without paint, according to 
ACI Code 11.6. 

If V,, is the shear force to be resisted at factored loads, then with V,, = <p V,,, the 
required steel area is found by transposition of Eq. (4.34): 

v,, 
A --

vf - <f>µJy (4.35) 

In some cases, the shear-friction reinforcement may not cross the shear plane at 
90° as described in the preceding paragraphs. If the shear-friction reinforcement is 
inclined to the shear plane so that the shear force is applied in the direction to increase 
tension in the steel, as in Fig. 4.24a, then the component of that tension parallel to the 
shear plane, shown in Fig. 4.24b, contributes to the resistance to slip. Then the shear 
strength may be computed from 

V,, = Av1Jy(µ sin a + cos a) (4.36) 

in lieu of Eq. (4.34). Here a is the angle between the shear-friction reinforcement 
and the shear plane. If a is larger than 90°, i.e., if the inclination of the steel is such 
that the tension in the bars tends to be reduced by the shear force, then the assump
tion that the steel stress equals Jy is not valid, and a better arrangement of bars should 
be made. 

Certain precautions should be observed in applying the shear-friction method of 
design. Reinforcement, of whatever type, should be well anchored to develop the yield 
strength of the steel, by the full development length or by hooks or bends, in the case 
of reinforcing bars, or by proper heads and welding, in the case of studs joining 
concrete to structural steel. The concrete should be well confined, and the liberal use 
of hoops has been recommended (Ref. 4.32). Care must be taken to consider all pos
sible failure planes and to provide sufficient well-anchored steel across these planes. 

EXAMPLE 4.6 Design of beam bearing detail. A precast beam must be designed to resist a support reac
tion, at factored loads, of Vu = 100 kips applied to a 3 X 3 steel angle, as shown in Fig. 4.25. 
In lieu of a calculated value, a horizontal force Nu, owing to restrained volume change, will be 
assumed to be 20 percent of the vertical reaction, or 20 kips. Determine the required auxiliary 
reinforcement, using steel of yield strength/,. = 60,000 psi. Concrete strengthJ; = 5000 psi. 



FIGURE 4.25 
Design of beam bearing 
shoe: (a) diagonal crack; 
(b) horizontal crack; 
( c) reinforcement; ( d) cross 
section. 
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SOLUTION. A potential crack will be assumed at 20°, initiating at a point 4 in. from the end 
of the beam, as shown in Fig. 4.25a. The total required steel Avf is the sum of that required to 
resist the resultant of Vu and Nu acting parallel to the cracks = Vu cos 20° + Nu sin 20°. 
Equation (4.35) is modified accordingly: 

Vu cos 20° + Nu sin 20° 
Avf = cpµ,Jy 

100 X 0.940 + 20 X 0.340 101 kips 

0.75 X 1.4 X 60 63 ksi 

= 1.60 in2 

The net compression normal to the potential crack would be no less than Vu sin 20° - Nu cos 
20° = 15.4 kips. This could be counted upon to reduce the required shear-friction steel, accord
ing to the ACI Code, but it will be discounted conservatively here. Four No. 6 (No. 19) bars 
will be used, providing an area of 1.76 in2• They will be welded to the 3 X 3 angle and will 
extend into the beam a sufficient distance to develop the yield strength of the bars. According 
to the ACI Code, the development length for a No. 6 (No. 19) bar is 26 in., 32 in. without the 
,fr., factor (see Chapter 5). Considering the uncertainty of the exact crack location, the bars will 
be extended 32 in. into the beam as shown in Fig. 4.25a. The bars will be placed at an angle of 
15° with the bottom face of the member. For the crack oriented at an angle of 20°, as assumed, 
the area of the crack is 

A = 16(-
4
-) = 187 in2 

c sin 20° 
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Thus, according to the ACI Code, the maximum nominal shear strength of the surface is not to 
exceed Vn = 0.2f:Ac = 187 kips, Vn = (480 + 0.08f:)Ac = 165 kips, or Vn = 1600Ac = 299 kips. 
The maximum design strength to be used is <f>Vn = 0.75 X 165 = 124 kips. As calculated 
earlier, the applied shear on the interface at factored loads is 

Vu = 100 cos 20° + 20 sin 20° = 101 kips 

and so the design is judged satisfactory to this point. 
A second possible crack must be considered, as shown in Fig. 4.25b, resulting from the 

tendency of the entire anchorage weldment to pull horizontally out of the beam. 
The required steel area Ash and the concrete shear stress will be calculated based on the 

development of the full yield tension in the bars Avf· (Note that the factor <f> need not be used 
here because it has already been introduced in computing Av1.) 

AvJfy cos 15° 
Ah=-----

s µ,fy 

1.76 X 0.966 

1.4 

1.21 in2 

Four No. 4 (No. 13) hoops will be used, providing an area of 1.60 in2. 

The maximum shear force that can be transferred, according to the ACI Code limits, will 
be based conservatively on a horizontal plane 32 in. long. No strength reduction factor need be 
included in the calculation of this maximum value because it was already introduced in deter
mining the steel area Avf by which the shear force is applied. Accordingly, 

V,,::::; (480 + 0.08f:) X 16 X 32 = 451 kips 

The maximum shear force that could be applied in the given instance is the value used to 
calculate Ash• 

Vu = l.76 X 60 cos 15° = 102 kips 

which is well below the specified maximum. 
The first hoop will be placed 2 in. from the end of the member, with the others spaced at 

8 in., as shown in Fig. 4.25c. Also shown in Fig. 4.25d are four No. 5 (No. 16) bars that will 
provide anchorage for the hoop steel. 
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FIGUREP4.4 

PROBLEMS 

1. 

4.1. A beam is to be designed for loads causing a maximum factored shear of 
60.0 kips, using concrete withJ; = 5000 psi. Proceeding on the basis that the 
concrete dimensions will be determined by diagonal tension, select the appro
priate width and effective depth (a) for a beam in which no web reinforcement 
is to be used, (b) for a beam in which only the minimum web reinforcement is 
provided, as given by Eq. (4.13), and (c) for a beam in which web reinforce
ment provides shear strength Vs = 2Ve. Follow the ACI Code requirements, 
and let d = 2b in each case. Calculations may be based on the more approxi
mate value of Ve given by Eq. (4.12b). 

4.2. A rectangular beam having b = 10 in. and d = 17 .5 in. spans 15 ft face to face 
of simple supports. It is reinforced for flexure with three No. 9 (No. 29) bars 
that continue uninterrupted to the ends of the span. It is to carry service dead 
load D = 1.27 kips/ft (including self-weight) and service live load L = 
3.70 kips/ft, both uniformly distributed along the span. Design the shear rein
forcement, using No. 3 (No. 10) vertical U stirrups. The more approximate 
Eq. (4.12b) for Ve may be used. Material strengths areJ; = 4000 psi and.t;, = 
60,000 psi. 

4.3. Redesign the shear reinforcement for the beam of Problem 4.2, basing Ve on 
the more accurate Eq. (4.12a). Comment on your results, with respect to 
design time and probable construction cost difference. 

4.4. Design the shear reinforcement, using No. 4 (No. 13) vertical U stirrups for the 
independent T beam shown in Fig. P4.4. The beam spans 24 ft face to face 
between simple supports, has an effective depth d = 31 in., and is reinforced 
for flexure with six No. 10 (No. 32) bars in two layers that continue uninter
rupted to the ends of the span. It is to carry service dead load D = 2.67 kips/ft 
(including self-weight) and service live load L = 5.36 kips/ft, both uniformly 
distributed along the span. The more approximate Eq. (4.12b) for Ve may be 
used. Material strengths areJ; = 5000 psi and.t;, = 60,000 psi. 

42 in. 

35 in. 

I 14 in .• 1 

4.5. A beam of 11 in. width and effective depth of 16 in. carries a factored uniformly 
distributed load of 5.3 kips/ft, including its own weight, in addition to a central, 
concentrated factored load of 12 kips. It spans 18 ft, and restraining end 
moments at full factored load are 137 ft-kips at each support. It is reinforced 
with three No. 9 (No. 29) bars for both positive and negative bending. If J: = 
4000 psi, through what part of the beam is web reinforcement theoretically 
required (a) ifEq. (4.12b) is used and (b) ifEq. (4.12a) is used? Comment. 
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4.6. What effect would an additional clockwise moment of 176 ft-kips at the right 
support have on the requirement for shear reinforcement determined in part (a) 
of Problem 4.5? 

4.7. Design the web reinforcement for the beam of Problem 4.5, with Ve deter
mined by the more approximate ACI equation, using No. 3 (No. 10) vertical 
stirrups withf;, = 60,000 psi. 

4.8. Design the web reinforcement for the beam of Problem 4.6, with Ve deter
mined by the more approximate ACI equation, using No. 3 (No. 10) vertical 
stirrups withJ;, = 60,000 psi. 

4.9. The beam of Problem 4.2 will be subjected to a factored axial compression 
load of 88 kips on the 10 X 20 in. gross cross section, in addition to the loads 
described earlier. What is the effect on concrete shear strength Ve (a) by the 
more accurate ACI equation and (b) by the more approximate ACI equation? 

4.10. The beam of Problem 4.2 will be subjected to a factored axial tension load of 
44 kips on the 10 X 20 in. gross cross section, in addition to the loads 
described earlier. What is the effect on concrete shear strength Ve (a) by the 
more accurate ACI equation and (b) by the more conservative ACI approach? 

4.11. Redesign the shear reinforcement for the beam of Problem 4.2, using the 
modified compression field theory with (a) cf>shear = 0.90 and (b) cf>shear = 0.75. 

4.12. Redesign the shear reinforcement for the beam of Problem 4.4, using the 
modified compression field theory with (a) cf>shear = 0.90 and (b) cf>shear = 0.75. 

4.13. A precast concrete beam having cross-sectional dimensions b = 10 in. and 
h = 24 in. is designed to act in a composite sense with a cast-in-place top slab 
having depth h1 = 5 in. and width 48 in. At factored loads, the maximum 
compressive stress in the flange at midspan is 2400 psi; at the supports of the 
28 ft simple span the flange force must be zero. Vertical U stirrups provided 
for flexural shear will be extended into the slab and suitably anchored to 
provide also for transfer of the flange force by shear friction. Find the minimum 
number of No. 4 (No. 13) stirrups that must be provided, based on shear
friction requirements. Concrete in both precast and cast-in-place parts will 
have J; = 4000 psi and Jy = 60,000 psi. The top surface of the precast web will 
be intentionally roughened according to the ACI Code definition. 

4.14. Redesign the beam-end reinforcement of Example 4.6, given that a roller 
support will be provided so that Nu= 0. 
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Bond, Anchorage, and 
Development Length 

5.1 FUNDAMENTALS OF FLEXURAL BOND 

If the reinforced concrete beam of Fig. 5.Ia were constructed using plain round 
reinforcing bars, and, furthermore, if those bars were to be greased or otherwise lubri
cated before the concrete were cast, the beam would be very little stronger than if it 
were built of plain concrete, without reinforcement. If a load were applied, as shown in 
Fig. 5.Ib, the bars would tend to maintain their original length as the beam deflected. 
The bars would slip longitudinally with respect to the adjacent concrete, which would 
experience tensile strain due to flexure. Proposition 2 of Section 1.8, the assumption 
that the strain in an embedded reinforcing bar is the same as that in the surrounding 
concrete, would not be valid. For reinforced concrete to behave as intended, it is essen
tial that bond forces be developed on the interface between concrete and steel, such as 
to prevent significant slip from occurring at that interface. 

Figure 5.lc shows the bond forces that act on the concrete at the interface as a 
result of bending, while Fig. 5. ld shows the equal and opposite bond forces acting on 
the reinforcement. It is through the action of these interface bond forces that the slip 
indicated in Fig. 5. Ibis prevented. 

Some years ago, when plain bars without surface deformations were used, initial 
bond strength was provided only by the relatively weak chemical adhesion and 
mechanical friction between steel and concrete. Once adhesion and static friction were 
overcome at larger loads, small amounts of slip led to interlocking of the natural 
roughness of the bar with the concrete. However, this natural bond strength is so low 
that in beams reinforced with plain bars, the bond between steel and concrete was 
frequently broken. Such a beam will collapse as the bar is pulled through the concrete. 
To prevent this, end anchorage was provided, chiefly in the form of hooks, as in 
Fig. 5.2. If the anchorage is adequate, such a beam will not collapse, even if the bond 
is broken over the entire length between anchorages. This is so because the member 
acts as a tied arch, as shown in Fig. 5.2, with the uncracked concrete shown shaded 
representing the arch and the anchored bars the tie-rod. In this case, over the length in 
which the bond is broken, bond forces are zero. This means that over the entire 
unbonded length the force in the steel is constant and equal to T = Mmax/Jd. As a 
consequence, the total steel elongation in such beams is larger than in beams in which 
bond is preserved, resulting in larger deflections and greater crack widths. 

To improve this situation, deformed bars are now universally used in the United 
States and many other countries (see Section 2.14). With such bars, the shoulders of the 
projecting deformations bear on the surrounding concrete and result in greatly increased 
bond strength. It is then possible in most cases to dispense with special anchorage 
devices such as hooks. In addition, crack widths as well as deflections are reduced. 



FIGURE 5.1 
Bond forces due to flexure: 
(a) beam before loading; 
(b) unrestrained slip between 
concrete and steel; (c) bond 
forces acting on concrete; 
(d) bond forces acting on 
steel. 

FIGURE 5.2 
Tied-arch action in a beam 
with little or no bond. 
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a. Bond Force Based on Simple Cracked Section Analysis 

In a short piece of a beam oflength dx, such as shown in Fig. 5.3a, the moment at one 
end wiIJ generally differ from that at the other end by a small amount dM. If this piece 
is isolated, and if one assumes that, after cracking, the concrete does not resist any ten
sion stresses, the internal forces are those shown in Fig. 5.3a. The change in bending 
moment dM produces a change in the bar force 

dM 
dT=

jd 
(a) 

where jd is the internal lever arm between tensile and compressive force resultants. 
Since the bar or bars must be in equilibrium, this change in bar force is resisted at the 
contact surface between steel and concrete by an equal and opposite force produced 
by bond, as indicated by Fig. 5.3b. 
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FIGURES.3 
Forces acting on elemental 
length of beam: (a) free-body 
sketch of reinforced concrete 
element; (b) free-body sketch 
of steel element. 

~ dx---1 
(a) 

u 

T+ dT 

T• ~T+dT 

Cdx~ 
(b) 

If U is the magnitude of the local bond force per unit length of bar, then, by 
summing horizontal forces 

Thus 

Udx = dT 

dT 
U=-

dx 

(b) 

(5.1) 

indicating that the local unit bond force is proportional to the rate of change of bar 
force along the span. Alternatively, substituting Eq. (a) in Eq. (5.1), the unit bond 
force can be written as 

from which 

1 dM 
U=--

jd dx 

V 
U= jd 

(c) 

(5.2) 

Equation (5.2) is the "elastic cracked section equation" for flexural bond force, and it 
indicates that the bond force per unit length is proportional to the shear at a particular 
section, i.e., to the rate of change of bending moment. 

Note that Eq. (5.2) applies to the tension bars in a concrete zone that is assumed 
to be fully cracked, with the concrete resisting no tension. It applies, therefore, to the 
tensile bars in simple spans, or, in continuous spans, either to the bottom bars in the 
positive bending region between inflection points or to the top bars in the negative 
bending region between the inflection points and the supports. It does not apply to 
compression reinforcement, for which it can be shown that the flexural bond forces are 
very low. 

b. Actual Distribution of Flexural Bond Force 

The actual distribution of bond force along deformed reinforcing bars is much more 
complex than that represented by Eq. (5.2), and Eq. (5.1) provides a better basis for 
understanding beam behavior. Figure 5.4 shows a beam segment subject to pure 



FIGURES.4 
Vl;lliation of steel and bond 
forces in a reinforced 
concrete member subject to 
pure bending: (a) cracked 
concrete segment; (b) bond 
forces acting on reinforcing 
bar; ( c) variation of tensile 
force in steel; (d) variation 
of bond force along steel. 

BOND, ANCHORAGE, AND DEVELOPMENT LENGTH 171 

Uforces on 
concrete ___ j _____ _ 

----I 
I 
I 
I 

(a) 

I£ U forces on bar I 
I I ~.............. ...... ...... .._ .......................... ~ 

.............. 1 ................................ .._1 ...... ...... 
I I 
I (b) I 
I I 
I I 
I I 

Steel tension T 

(c) 

(d) 

bending. The concrete fails to resist tensile stresses only where the actual crack is 
located; there the steel tension is maximum and has the value predicted by simple 
theory: T = M/jd. Between cracks, the concrete does resist moderate amounts of 
tension, introduced by bond forces acting along the interface in the direction shown 
in Fig. 5.4a. This reduces the tensile force in the steel, as illustrated by Fig. 5.4c. 
From Eq. (5.1), it is clear that U is proportional to the rate of change of bar force, 
and thus will vary as shown in Fig. 5.4d; unit bond forces are highest where the slope 
of the steel force curve is greatest and are zero where the slope is zero. Very high 
local bond forces adjacent to cracks have been measured in tests (Refs. 5.1 and 5.2). 
They are so high that inevitably some slip occurs between concrete and steel adjacent 
to each crack. 

Beams are seldom subject to pure bending moment; they generally carry 
transverse loads producing shear and moment that vary along the span. Figure 5.5a 
shows a beam carrying a distributed load. The cracking indicated is typical. The steel 
force T predicted by simple cracked section analysis is proportional to the moment 
diagram and is as shown by the dashed line in Fig. 5.5b. However, the actual value of 
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FIGURES.5 
Effect of flexural cracks 
on bond forces in beam: 
(a) beam with flexural 
cracks; (b) variation of 
tensile force Tin steel along 
span; (c) variation of bond 
force per unit length U along 
span. 
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T is less than that predicted by the simple analysis everywhere except at the actual 
crack locations. The actual variation of Tis shown by the solid line of Fig. 5.5b. In 
Fig. 5.5c, the bond forces predicted by the simplified theory are shown by the dashed 
line, and the actual variation is shown by the solid line. Note that the value of U is 
equal to that given by Eq. (5.2) only at those locations where the slope of the steel 
force diagram equals that of the simple theory. Elsewhere, if the slope is greater than 
assumed, the local bond force is greater; if the slope is less, local bond force is less. 
Just to the left of the cracks, for the present example, U is much higher than predicted 
by Eq. (5.2), and in all probability will result in local bond failure. Just to the right of 
the cracks, U is much lower than predicted and in fact is generally negative very close 
to the crack; i.e., the bond forces act in the reverse direction. 

It is evident that actual bond forces in beams bear very little relation to those 
predicted by Eq. (5.2), except in the general sense that they are highest in the regions 
of high shear. 

5.2 BOND STRENGTH AND DEVELOPMENT LENGTH 

For reinforcing bars in tension, two types of bond failure have been observed. The first 
is direct pullout of the bar, which occurs when ample confinement is provided by the 
surrounding concrete. This could be expected when relatively small-diameter bars are 
used with sufficiently large concrete cover distances and bar spacing. The second type 



FIGURE5.6 
Splitting of concrete along 
reinforcement. 
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of failure is splitting of the concrete along the bar when cover, confinement, or bar 
spacing is insufficient to resist the lateral concrete tension resulting from the wedging 
effect of the bar deformations. Present-day design methods require that both possible 
failure modes be accounted for. 

a. Bond Strength 

If the bar is sufficiently confined by a mass of surrounding concrete, then as the tensile 
force on the bar is increased, adhesive bond and friction are overcome, the concrete 
eventually crushes locally ahead of the bar deformations, and bar pullout results. The 
surrounding concrete remains intact, except for the crushing that takes place ahead of 
the ribs immediately adjacent to the bar interface. For modem deformed bars, adhesion 
and friction are much less important than the mechanical interlock of the deformations 
with the surrounding concrete. 

Bond failure resulting from splitting of the concrete is more common in beams 
than direct pullout. Such splitting comes mainly from wedging action when the ribs of 
the deformed bars bear against the concrete (Refs. 5.3 and 5.4). It may occur either in 
a vertical plane as in Fig. 5.6a or horizontally in the plane of the bars as in Fig. 5.6b. 
The horizontal type of splitting of Fig 5.6b frequently begins at a diagonal crack. In 
this case, as discussed in connection with Fig. 4. 7 b and shown in Fig. 4.1, dowel 
action increases the tendency toward splitting. This indicates that shear and bond 
failures are often intricately interrelated. 

When pullout resistance is overcome or when splitting has spread all the way to 
the end of an unanchored bar, complete bond failure occurs. Sliding of the steel relative 
to the concrete leads to immediate collapse of the beam. 

If one considers the large local variations of bond force caused by flexural and 
diagonal cracks (see Figs. 5.4 and 5.5), it becomes clear that local bond failures imme
diately adjacent to cracks will often occur at loads considerably below the failure load 
of the beam. These local failures result in small local slips and some widening of 
cracks and increase of deflections, but will be harmless as long as failure does not 
propagate all along the bar, with resultant total slip. In fact, as discussed in connection 
with Fig. 5.2, when end anchorage is reliable, bond can be severed along the entire 
length of the bar, excluding the anchorages, without endangering the carrying capacity 
of the beam. End anchorage can be provided by hooks as suggested by Fig. 5.2 or, 
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FIGURES.7 
Development length. 

much more commonly, by extending the straight bar a sufficient distance from the 
point of maximum stress. 

Extensive testing (Refs. 5.5 to 5.11), using beam specimens, has established 
limiting values of bond strength. This testing provides the basis for current design 
requirements. 

b. Development Length 

The preceding discussion suggests the concept of development length of a reinforc
ing bar. The development length is defined as that length of embedment necessary 
to develop the full tensile strength of the bar, controlled by either pullout or splitting. 
With reference to Fig. 5.7, the moment, and therefore the steel stress, is evidentally 
maximum at point a (neglecting the weight of the beam) and zero at the supports. If 
the bar stress is fs at a, then the total tension force Ads must be transferred from the 
bar to the concrete in the distance l by bond forces. To fully develop the strength of 
the bar Ab.[y, the distance l must be at least equal to the development length of the 
bar, established by tests. In the beam of Fig. 5.7, if the actual length l is equal to or 
greater than the development length ld, no premature bond failure will occur. That 
is, the beam will fail in bending or shear rather than by bond failure. This will be so 
even if in the vicinity of cracks local slip may have occurred over small regions 
along the beam. 

It is seen that the main requirement for safety against bond failure is this: the 
length of the bar, from any point of given steel stress (fs or at most .{y) to its nearby 
free end, must be at least equal to its development length. If this requirement is 
satisfied, the magnitude of the nominal flexural bond force along the beam, as given 
by Eq. (5.2), is of only secondary importance, since the integrity of the member is 
ensured even in the face of possible minor local bond failures. However, if the actual 
available length is inadequate for full development, special anchorage, such as by hooks, 
must be provided. 

c. Factors Influencing Development Length 

Experimental research has identified the factors that influence development length, 
and analysis of the test data has resulted in the empirical equations used in present 
design practice. The most basic factors will be clear from review of the preceding 
paragraphs and include concrete tensile strength, cover distance, spacing of the rein
forcing bars, and the presence of transverse steel reinforcement. 

Clearly, the tensile strength of the concrete is important because the most com
mon type of bond failure in beams is the type of splitting shown in Fig. 5.6. Although 
tensile strength does not appear explicitly in experimentally derived equations for 
development length (see Section 5.3), the term vJ: appears in the denominator of 
those equations and reflects the influence of concrete tensile strength. 
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As discussed in Section 2.9, the fracture energy of concrete plays an important 
role in bond failure because a splitting crack must propagate after it has formed. Since 
fracture energy is largely independent of compressive strength, bond strength inc
reases more slowly than vf:, and as data for higher-strength concretes have become 
available, J; 114 has been shown to provide a better representation of the effect of con
crete strength on bond than vJ: (Refs. 5.12 to 5.14). This point is recognized by ACI 
Committee 408, Bond and Development of Reinforcement (Ref. 5.15), in proposed 
design expressions based onJ; 114 and within the ACI Code, which sets an upper limit 
on the value of vJ: for use in design. 

For lightweight concretes, the tensile strength is usually less than for normal
density concrete having the same compressive strength; accordingly, if lightweight 
concrete is used, development lengths must be increased. Alternatively, if split-cylinder 
strength is known or specified for lightweight concrete, it can be incorporated in 
development length equations as follows. For normal concrete, the split-cylinder 
tensile strengthfct is generally taken as !ct = 6.7vf:. If the split-cylinder strengthfct 
is known for a particular lightweight concrete, then vJ: in the development length 
equations can be replaced by fctf6.7. 

Cover distance--conventionally measured from the center of the bar to the 
nearest concrete face and measured either in the plane of the bars or perpendicular to 
that plane-also influences splitting. Clearly, if the vertical or horizontal cover is 
increased, more concrete is available to resist the tension resulting from the wedging 
effect of the deformed bars, resistance to splitting is improved, and development 
length is less. 

Similarly, Fig. 5.6b illustrates that if the bar spacing is increased (e.g., if only 
two instead of three bars are used), more concrete per bar will be available to resist 
horizontal splitting (Ref. 5.16). In beams, bars are typically spaced about one or two 
bar diameters apart. On the other hand, for slabs, footings, and certain other types of 
member, bar spacings are typically much greater, and the required development length 
is reduced. 

Transverse reinforcement, such as that provided by stirrups of the types shown 
in Fig. 4.8, improves the resistance of tensile bars to both vertical or horizontal 
splitting failure because the tensile force in the transverse steel tends to prevent 
opening of the actual or potential crack. The effectiveness of such transverse rein
forcement depends on its cross-sectional area and spacing along the development 
length. Its effectiveness does not depend on its yield strength Jyl' because trans
verse reinforcement rarely yields during a bond failure (Refs. 5.12 to 5.15). The yield 
strength of the transverse steelJyl' however, is presently used in the bond provisions 
of the ACI Code. 

Based on the results of a statistical analysis of test data (Ref. 5.10), with appro
priate simplifications, the length ld needed to develop stress.fs in a reinforcing bar may 
be expressed as 

where db = bar diameter 
c = smaller of minimum cover or one-half of bar spacing measured to 

center of bar 
Kt, = 40At,! sn, which represents effect of confining reinforcement 

(5.3) 
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A1, = area of transverse reinforcement normal to plane of splitting through the 
bars being developed 

s = spacing of transverse reinforcement 
n = number of bars developed or spliced at same location 

Equation (5.3) captures the effects of concrete strength, concrete cover, and 
transverse reinforcement on ld and serves as the basis for design in the 2008 ACI Code. 
For full development of the bar, f,,. is set equal to J;,. 

In addition to the factors just discussed, other influences have been identified. 
The vertical location of horizondal bars relative to beam depth has been found to have 
an effect (Ref. 5.17). If bars are placed in the forms during construction such that a 
substantial depth of concrete is placed below those bars, there is a tendency for excess 
water, often used in the mix for workability, and for entrapped air to rise to the top of 
the concrete during consolidation. Air and water tend to accumulate on the underside 
of the bars. Tests have shown a significant loss in bond strength for bars with more 
than 12 in. of fresh concrete cast beneath them, and accordingly the development 
length must be increased. This effect increases as the slump of the concrete increases 
and is greatest for bars cast near the upper surface of a concrete placement (Ref. 5.18). 

Epoxy-coated reinforcing bars are used regularly in projects where the structure 
may be subjected to corrosive environmental conditions or deicing chemicals, such as 
for highway bridge decks and parking garages. Studies have shown that bond strength 
is reduced because the epoxy coating reduces the friction between the concrete and the 
bar, and the required development length must be increased substantially (Refs. 5.19 
to 5.23). Early evidence showed that if cover and bar spacing were large, the effect of 
the epoxy coating would not be so pronounced, and as a result, a smaller increase was 
felt justified under these conditions (Ref. 5.20). Although later research (Ref. 5.12) 
does not support this conclusion, provisions to allow for a smaller increase remain in 
the ACI Code. Since the bond strength of epoxy-coated bars is already reduced 
because of lack of adhesion, an upper limit has been established for the product of 
development length factors accounting for the depth of concrete cast below horizontal 
bars and epoxy coating. 

Not infrequently, tensile reinforcement somewhat in excess of the calculated 
requirement will be provided, e.g., as a result of upward rounding A., when bars are 
selected or when minimum steel requirements govern. Logically, in this case, the 
required development length may be reduced by the ratio of steel area required to 
steel area actually provided. The modification for excess reinforcement should be 
applied only where anchorage or development for the full yield strength of the bar is 
not required. 

Finally, based on bars with very short development lengths (most with values of 
ld/db < 15), it was observed that smaller-diameter bars required lower development 
lengths than predicted by Eq. (5.3). As a result, the required development lengths for 
No. 6 (No. 19) and smaller bars were reduced below the values required by Eq. (5.3).t 

Reference 5 .15 presents a detailed discussion of the factors that control the bond 
and development of reinforcing bars in tension. Except as noted, these influences are 
accounted for in the basic equation for development length in the 2008 ACI Code. 

t The use of Eq. (5.3) for low values of Id/db greatly underestimates the actual value of bond strength and makes it appear that a lower value of Id 
can be used safely. An evaluation of test results for small bars with more realistic development lengths (ld/d1, ;o, 16), however, has shown that the 
special provision in the ACI Code for smaller bars is not justified (Refs. 5.14, 5.15, and 5.24). Because of the unconservative nature of the small 
bar provision, ACI Committee 408 (Ref. 5.15) recommends that it not be applied in design. 
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All modification factors for development length are defined explicitly in the Code, 
with appropriate restrictions. Details are given next. 

5.3 ACI CODE PROVISIONS FOR DEVELOPMENT 
OF TENSION REINFORCEMENT 

The approach to bond strength incorporated in the ACI Code follows from the discus
sion presented in Section 5.2. The fundamental requirement is that the calculated force 
in the reinforcement at each section of a reinforced concrete member be developed on 
each side of that section by adequate embedment length, hooks, mechanical anchor
age, or a combination of these, to ensure against pullout. Local high bond forces, such 
as are known to exist adjacent to cracks in beams, are not considered to be significant. 
Generally, the force to be developed is calculated based on the yield stress in the 
reinforcement; i.e., the bar strength is to be fully developed. 

In the ACI Code, the required development length for deformed bars in tension 
is based on Eq. (5.3). A single basic equation is given that includes all the influences 
discussed in Section 5.2 and thus appears highly complex because of its inclusiveness. 
However, it does permit the designer to see the effects of all the controlling variables 
and allows more rigorous calculation of the required development length when it is crit
ical. The ACI Code also includes simplified equations that can be used for most cases 
in ordinary design, provided that some restrictions are accepted on bar spacing, cover 
values, and minimum transverse reinforcement. These alternative equations can be 
further simplified for normal-density concrete and uncoated bars. t 

In the following presentation of development length, the basic ACI equation is 
given first and its terms are defined and discussed. After this, the alternative equations, 
also part of the ACI Code, are presented. Note that, in any case, development length 
Id must not be less than 12 in. 

a. Basic Equation for Development of Tension Bars 

According to ACI Code 12.2.3, for deformed bars or deformed wires, 

l -(]__f_ 1/111/1,1/ls )d 
d - 40 AVf'c [ (ch :bKtr)] b 

(5.4) 

in which the term (c + K1r)/db shall not be taken greater than 2.5. In Eq. (5.4), terms 
are defined and values established as follows. 

l/11 = reinforcement location factor 
Horizontal reinforcement so placed that more than 12 in. of fresh 

concrete is cast in the member below the development length or 
splice: 1.3 

Other situations: 1.0 

t This two-tier approach to development length corresponds exactly to the ACI Code treatment for Ve, the contribution of concrete in shear 
calculations. The more detailed calculation by Eq. ( 4.12a) is useful for computerized design or research but is tedious for manual calculations 
because of the need to recalculate the governing variables at close intervals along the span. For ordinary design, recognizing that overall economy 
is but little affected, the simpler but more approximate and more conservative Eq. (4.12b) is used. 
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rf, e = coating factor 
Epoxy-coated bars or wires with cover less than 3db or clear 

spacing less than 6db: 1.5 
All other epoxy-coated bars or wires: 1.2 
Uncoated and zinc-coated (galvanized) reinforcement: 1.0 
However, the product of rf,1rf,e need not be taken greater than 1.7. 

r/Js = reinforcement size factor 
No. 6 (No. 19) and smaller bars and deformed wires: O.st 
No. 7 (No. 22) and larger bars: 1.0 

,\ = lightweight aggregate concrete factor 
When lightweight aggregate concrete is used: 0.75 
However, whenfc1 is specified, ,\ = fctf(6.7vf:) :5 1.0. 
When normalweight concrete is used: 1.0 

c = spacing or cover dimension, in. 
Use the smaller of either the distance from the center of the bar to the nearest con

crete surface or one-half the center-to-center spacing of the bars being developed. 

Kt, = transverse reinforcement index: 40A1rf sn 
where A1, = total cross-sectional area of all transverse reinforcement that is 

within the spacings and that crosses the potential plane of split
ting through the reinforcement being developed, in2 

s = maximum spacing of transverse reinforcement within ld center to 
center, in. 

n = number of bars or wires being developed along the plane of splitting 

As a simplification, the designer is permitted to use Kt, = 0 even if transverse rein
forcement is present. 

The limit of 2.5 on (c + Kt,)/db is imposed to avoid pullout failure. With that term 
taken equal to its limit of2.5, evaluation ofEq. (5.4) results in ld = 0.03dbfy/vf:, the 
experimentally derived limit found in earlier ACI Codes when pullout failure controls. 
Note that in Eq. (5.4) and in all other ACI Code equations relating to the development 
length and splices of reinforcement, values of vJ: are not to be taken greater than 
100 psi because of the lack of experimental evidence on bond strengths obtainable 
with concretes having compressive strength in excess of 10,000 psi at the time that 
Eqs. (5.3) and (5.4) were formulated. More recent tests with concrete with values of 
J; to 16,000 psi justify this limitation. 

b. Simplified Equations for Development Length 

Calculation of required development length (in terms of bar diameter) by Eq. (5.4) 
requires that the term (c + K1,)/db be calculated for each particular combination of 
cover, spacing, and transverse reinforcement. Alternatively, according to the Code, a 
simplified form of Eq. (5.4) may be used in which (c + K1r)/db is set equal to 1.5, 
provided that certain restrictions are placed on cover, spacing, and transverse 
reinforcement. Two cases of practical importance are: 

1. Minimum clear cover of 1.0db, minimum clear spacing of 1.0db, and at least the 
Code required minimum stirrups or ties (see Section 4.5b) throughout ld 

2. Minimum clear cover of 1.0db and minimum clear spacing of 2db 

t ACI Committee 408 recommends a value of 1.0 for all bar sizes based on experimental evidence. The ACI Code value of 0.8, however, will be 
used in what follows. 
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TABLE 5.1 
Simplified tension development length in bar diameters according to the ACI Code 

No. 6 (No. 19) and 
Smaller Bars and 
Deformed Wirest 

No. 7 (No. 22) 
and Larger Bars 

Clear spacing of bars being developed or spliced 

2:: db, clear cover 2: db, and stirrups or ties 
throughout ld not less than the Code minimum 

Clear spacing of bars being developed or spliced 

2:: 2db, and clear cover 2: db 

Same as above Same as above 

Other cases 

t For reasons discussed in Section 5.3a, ACI Committee 408 recommends that ld for No. 7 (No. 22) and larger bars be used for all bar sizes. 

For either of these common cases, it is easily confirmed from Eq. (5.4) that for No. 7 
(No. 22) and larger bars 

and for No. 6 (No. 19) bars and smaller (with y = 0.8) 

id= ( /'yi/Jii/Je ) db 
25AVJ; 

(5.5a) 

(5.5b) 

If these restncttons on spacing are not met, then, provided that Code-imposed 
minimum spacing requirements are met (see Section 3.6c), the term (c + K

1
,)/db will 

have a value not less than 1.0 (rather than 1.5 as before) whether or not transverse steel 
is used. The values given by Eqs. (5.5a) and (5.5b) are then multiplied by the factor 
1.5/1.0. 

Thus if the designer accepts certain restrictions on bar cover, spacing, and trans
verse reinforcement, simplified calculation of development requirements is possible. 
The simplified equations are summarized in Table 5.1. 

Further simplification is possible for the most common condition of normal
density concrete and uncoated reinforcement. Then A and I/le in Table 5.1 take the 
value 1.0, and the development lengths, in terms of bar diameters, are simply a 
function ofJ;,,J;, and the bar location factor 1/11• Thus development lengths are easily 
tabulated for the usual combinations of material strengths and bottom or top bars and 
for the restrictions on bar spacing, cover, and transverse steel defined. t Results are 
given in Table A.10 of Appendix A. 

Regardless of whether development length is calculated using the basic Eq. (5.4) 
or the more approximate Eqs. (5.5a) and (5.5b), development length may be reduced 
where reinforcement in a flexural member is in excess of that required by analysis, 

t Note that, for convenient reference, the term top bar is used for any horizontal reinforcing bar placed with more than 12 in. of fresh concrete cast 
below the development length or splice. This definition may require that bars relatively near the bottom of a deep member be treated as top bars. 
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except where anchorage or development for Jy is specifically required or the rein
forcement is designed for a region of high seismic risk. According to the ACI Code, 
the reduction is made according to the ratio (As required/As provided). 

EXAMPLE 5.1 Development length in tension. Figure 5.8 shows a beam-column joint in a continuous 
building frame. Based on frame analysis, the negative steel required at the end of the beam is 
2.90 in2; two No. 11 (No. 36) bars are used, providing As = 3.12 in2• Beam dimensions are 
b = 10 in., d = 18 in., and h = 21 in. The design will include No. 3 (No. 10) stirrups spaced 
four at 3 in., followed by a constant 5 in. spacing in the region of the support, with 1.5 in. clear 
cover. Normalweight concrete is to be used, with J; = 4000 psi, and reinforcing bars have 
Jy = 60,000 psi. Find the minimum distance Id at which the negative bars can be cut off, based 
on development of the required steel area at the face of the column, (a) using the simplified 
equations of Table 5.1, (b) using Table A.10, of Appendix A, and (c) using the basic Eq. (5.4). 

FIGURE5.8 
Bar details at beam-column 
joint for bar development 
examples. 

SOLUTION. Checking for lateral spacing in the No. 11 (No. 36) bars determines that the clear 
distance between the bars is 10 - 2(1.50 + 0.38 + 1.41) = 3.42 in., or 2.43 times the bar diam
eter db. The clear cover of the No. 11 (No. 36) bars to the side face of the beam is 1.50 + 0.38 = 
1.88 in., or 1.33 bar diameters, and that to the top of the beam is 3.00 - 1.41/2 = 2.30 in., or 1.63 
bar diameters. These dimensions meet the restrictions stated in the second row of Table 5. l. 
Then for top bars, uncoated, and with normal-density concrete, we have the values of ijf 1 = 1.3, 
i/J, = 1.0, and A= 1.0. From Table 5.1, 

60,000 X 1.3 X 1.0 . 
Id= -------1.41 = 62 X 1.41 = 87 m. 

20 X l.0V4000 

This can be reduced by the ratio of steel required to that provided, so that the final development 
length is 87 X 2.90/3.12 = 81 in. 

Alternatively, from the lower portion of Table A. l 0, Id/ db = 62. The required length to 
point of cutoff is 62 X 1.41 X 2.90/3.12 = 81 in., as before. 

The more accurate Eq. (5.4) will now be used. The center-to-center spacing of the No. 11 
(No. 36) bars is 10 - 2(1.50 + 0.38 + 1.41/2) = 4.83, one-half of which is 2.42 in. The side 
cover to bar centerline is 1.50 + 0.38 + 1.41/2 = 2.59 in., and the top cover is 3.00 in. The 
smallest of these three distances controls, and c = 2.42 in. Potential splitting would be in the 

r-21
111 

No. 1 O (No. 32) 

2 No. 11 (No. 36} 

t-
r- It 11 

Column n-TT 
splice ll _ ti...--- Id ---
j_ TT TT 

2" clear 
.a: + n77-T-, 
If- \1111 I I t=~ .l.J...L_L_l__ 
t:=::t 
I 
r 

No. 11 (No. 36) 

No. 4 (No. 13) ties 

(a) 

1.!." 
2 

(b) 

No. 3 (No. 10) 
stirrups 



BOND, ANCHORAGE, AND DEVELOPMENT LENGTH 181 

horizontal plane of the bars, and in calculating A,r two times the stirrup bar area is used. t Based 
on the No. 3 (No. 10) stirrups at 5 in. spacing: 

40 X 0.11 X 2 
K,r = = 0.88 

5 X 2 
and 

c + K,r 2.42 + 0.88 
-- = ---- = 2.34 

db 1.41 

This is less than the limit value of 2.5. Then from Eq. (5.4) 

3 X 60,000 X 1.3 . 
Id = • ~ 1.41 = 40 X 1.41 = 55.7 m. 

40 X 1.0 V 4000 X 2.34 

and the required development length is 55.7 X 2.90/3.12 = 52 in. rather than 81 in. as 
before. Clearly, the use of the more accurate Eq. (5.4) permits a considerable reduction in 
development length. Even though its use requires much more time and effort, it is justified 
if the design is to be repeated many times in a structure. 

5.4 ANCHORAGE OF TENSION BARS BY HOOKS 

a. Standard Dimensions 

In the event that the desired tensile stress in a bar cannot be developed by bond alone, 
it is necessary to provide special anchorage at the ends of the bar, usually by means of 
a 90° or a 180° hook or a headed bar (the latter is discussed in Section 5.5). The 
dimensions and bend radii for hooks have been standardized in ACI Code 7 .1 as 
follows (see Fig. 5.9): 

1. A 180° bend plus an extension of at least 4 bar diameters, but not less than 2½ in. 
at the free end of the bar, or 

2. A 90° bend plus an extension of at least 12 bar diameters at the free end of the 
bar, or 

3. For stirrup and tie anchorage only: 
(a) For No. 5 (No. 16) bars and smaller, a 90° bend plus an extension of at least 

6 bar diameters at the free end of the bar, or 
(b) For Nos. 6, 7, and 8 (Nos. 19, 22, and 25) bars, a 90° bend plus an extension of 

at least 12 bar diameters at the free end of the bar, or 
(c) For No. 8 (No. 25) bars and smaller, a 135° bend plus an extension of at least 

6 bar diameters at the free end of the bar. 

The minimum diameter of bend, measured on the inside of the bar, for standard 
hooks other than for stirrups or ties in sizes Nos. 3 through 5 (Nos. 10 through 16), 
should be not less than the values shown in Table 5.2. For stirrup and tie hooks, for 
bar sizes No. 5 (No. 16) and smaller, the inside diameter of bend should not be less 
than 4 bar diameters, according to the ACI Code. 

When welded wire reinforcement (smooth or deformed wires) is used for 
stirrups or ties, the inside diameter of bend should not be less than 4 wire diameters 
for deformed wire larger than D6 and 2 wire diameters for all other wires. Bends with 
an inside diameter of less than 8 wire diameters should not be less than 4 wire diam
eters from the nearest welded intersection. 

t If the top cover had controlled, the potential splitting plane would be vertical and one times the stirrup bar area would be used in calculating A,,. 
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FIGURES.9 
Standard bar hooks: (a) main 
reinforcement; (b) stirrups 
and ties. 

(a) 

r 

No. 5 (No. 16) Nos. 6, 7, or 8 No. 8 (No. 25) 
bar or smaller (Nos. 19, 22, or 25) bar or smaller 

bar 
_J I.-db _J I.-db _J I.-db 

(b) 

TABLE 5.2 
Minimum diameters of bend for standard hooks 

Bar Size 

Nos. 3 through 8 (Nos. IO through 25) 
Nos. 9, 10, and 11 (Nos. 29, 32, and 36) 
Nos. 14 and 18 (Nos. 43 and 57) 

Minimum Diameter 

6 bar diameters 
8 bar diameters 

IO bar diameters 

b. Development Length and Modification Factors 
for Hooked Bars 

Hooked bars resist pullout by the combined actions of bond along the straight length 
of bar leading to the hook and anchorage provided by the hook. Tests indicate that 
the main cause of failure of hooked bars in tension is splitting of the concrete in the 
plane of the hook. This splitting is due to the very high stresses in the concrete inside 
of the hook; these stresses are influenced mainly by the bar diameter db for a given 
tensile force, and the radius of bar bend. Resistance to splitting has been found to 
depend on the concrete cover for the hooked bar, measured laterally from the edge of 
the member to the bar perpendicular to the plane of the hook, and measured to the 
top ( or bottom) of the member from the point where the hook starts, parallel to the 
plane of the hook. If these distances must be small, the strength of the anchorage can 
be substantially increased by providing confinement steel in the form of closed 
stirrups or ties. 

ACI Code 12.5 provisions for hooked bars in tension are based on research 
summarized in Refs. 5.8 and 5.9. The Code requirements account for the combined 
contribution of bond along the straight bar leading to the hook, plus the hooked 
anchorage. A total development length ldh is defined as shown in Fig. 5.10 and is 



FIGURE 5.10 
Bar details for development 
of standard hooks. 

FIGURE 5.11 
Transverse reinforcement 
requirements at 
discontinuous ends of 
members with small 
cover distances. 
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-T rcr;tical 
section 

=====])+::: Jdb 
4db for Nos. 3 through 8 (Nos. 1 O through 25) bars 

5db for Nos. 9 through 11 (Nos. 29 through 36) bars 
6db for Nos. 14 and 18 (Nos. 43 and 57) bars 

4db;;,, 2{11 

measured from the critical section to the farthest point on the bar, parallel to the 
straight part of the bar. For standard hooks, as shown in Fig. 5.9, the development 
length is 

_ (0.02 ¢eh) 
ldh - .A\IJ: db (5.6) 

with o/e = 1.2 for epoxy-coated reinforcement and .A = 0.75 for lightweight aggregate 
concrete. For other cases, 1/Je and .A are taken as 1.0. 

The development length ldh should be multiplied by certain applicable modifying 
factors, summarized in Table 5.3. These factors are combined as appropriate; e.g., if 
side cover of at least 2 ½ in. is provided for a 180° hook and if, in addition, ties are 
provided, the development length is multiplied by the product of 0.7 and 0.8. In any 
case, the length ldh is not to be less than 8 bar diameters and not less than 6 in. 

Transverse confinement steel is essential if the full bar strength must be devel
oped with minimum concrete confinement, such as when hooks may be required at the 
ends of a simply supported beam or where a beam in a continuous structure frames 
into an end column and does not extend past the column or when bars must be 
anchored in a short cantilever, as shown in Fig. 5.11 (Ref. 5.11). According to ACI 
Code 12.5.4, for bars hooked at the discontinuous ends of members with both side 

db 
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TABLE 5.3 
Development lengths for hooked deformed bars in tension 

A. Development length ldh for hooked bars 

B. Modification factors applied to ldh 

For No. 11 (No. 36) and smaller bar hooks with side cover (normal to 
plane of hook) not less than 2½ in., and for 90° hooks with cover 
on bar extension beyond hook not less than 2 in. 

For 90° hooks of No. 11 (No. 36) and smaller bars that are either 
enclosed within ties or stirrups perpendicular to the bar being 
developed, spaced not greater than 3db along the development 
length ldh of the hook; or enclosed within ties or stirrups parallel 
to the bar being developed, spaced not greater than 3db along the 
length of the tail extension of the hook plus bend 

For 180° hooks of No. 11 (No. 36) and smaller bars that are 
enclosed within ties or stirrups perpendicular to the bar being 
developed, spaced not greater than 3db along the development 
length ldh of the hook 

Where anchorage or development for J;, is not specifically required, 
reinforcement in excess of that required by analysis 

tf, ,: 

A: 

For epoxy-coated bars 
For other bars 

For lightweight concrete 
For normalweight concrete 

0.7 

0.8 

0.8 

As required 

As provided 

1.2 
1.0 

0.75 
1.0 

cover and top or bottom cover less than 2½ in., hooks must be enclosed with closed 
stirrups or ties along the full development length, as shown in Fig. 5.11. The spacing 
of the confinement steel must not exceed 3 times the diameter of the hooked bar db, 
and the first stirrup or tie must enclose the bent portion of the hook within a distance 
equal to 2db of the outside of the bend. In such cases, the factor 0.8 of Table 5.3 does 
not apply. 

EXAMPLE 5.2 Development of hooked bars in tension. Referring to the beam-column joint shown in 
Fig. 5.8, the No. 11 (No. 36) negative bars are to be extended into the column and terminated 
in a standard 90° hook, keeping 2 in. clear to the outside face of the column. The column width 
in the direction of beam width is 16 in. Find the minimum length of embedment of the hook 
past the column face, and specify the hook details. 

SOLUTION. The development length for hooked bars, measured from the critical section along 
the bar to the far side of the vertical hook, is given by Eq. (5.6): 

0.02 X 1.0 X 60,000 . 
ldh = ~ r;;:;:;: 1.41 = 27 m. 

1.0 X v4000 
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Jn this case, side cover for the No. 11 (No. 36) bars exceeds 2.5 in. and cover beyond the bent 
bar is adequate, so a modifying factor of 0.7 can be applied. The only other factor applicable is 
for excess reinforcement, which is 0.93 as for Example 5.1. Accordingly, lhe minimum 
development length for the hooked bars is 

Id,,= 27 X 0.7 X 0.93 = 18 in. 

With 21 - 2 = J 9 in. available, the required length is contained within the column. The hook 
will be bent to a minimum diameter of 8 X 1.41 = 11.28 in. The bar will continue for 12 bar 
diameters, or 17 in. past the end of the bend in the vertical direction. 

5.5 ANCHORAGE IN TENSION USING HEADED BARS 

a. Requirements for Headed Bars 

Headed bars provide an alternative to hooks when the desired tensile stress in the bar 
cannot be developed by bond alone. ACI Code 3.5.9 requires that headed deformed 
bars conform to ASTM A970 and, in addition, that obstructions or interruptions of the 
bar deformations not extend more than 2 bar diameters from the bearing face of the 
head, as shown in Fig. 5. 12. While heads come in many configurations and sizes, ACI 
Code 12.6.l requires that the bearing area of the head Ab

18 
be equal to at least 4 times 

the area of the bar Ab. 
Obstructions, such as shown in Fig. 5.12, are not counted as part of the bearing 

area according to the Commentary to ACI Code 3.5.9, and thus, the net bearing area 
of the head may be less than the gross area of the bead minus the area of the bar. 

b. Development Length and Modification Factors for Headed Bars 

Differences between the mode of failure of headed bars loaded in tension and those 
exhibited by straight bars and hooks, coupled with the fact that only limited test data 
are available for beaded bars, have resulted in the ACI Code adding restrictions to the 
design criteria for headed bars. 

The bond strength of beaded bars results from a combination of bond along the 
length of the bar and bearing at the face of the head. Prior to failure, the bond force 
along the bar increases and then decreases as slip occurs, while the bearing force on 

Headed defonned reinforcing 
bar with an obstruction of the 
deformations that extends 
less than 2 bar diameters 
from the bearing face of 

Obstruction of 
deformations 

lhe head. 

Diameter of 
obstruction 
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FIGURE 5.13 
Headed deformed bars 
showing conical concrete 
wedges. (Photograph 
courtesy of Michael Keith 
Thompson.) 

the bead increases. In some cases, the contribution of bond along the length of the bar 
may become negligible prior to failure. Unlike straight reinforcing bars, which tend to 
fail in bond due to the fonnation of splitting cracks between bars or between the bar 
and the surface of the concrete, and hooks, which tend to fail in bond by cracking in 
the plane of the hook, headed bars fail in bond due to the formation of a conical 
wedge, as shown in Fig. 5.13, which causes radial splitting cracks in the concrete. In 
addition to radial splitting, failure can also occur due to the formation of a fiat con
crete cone near the surface (shallow pullout), if the development is relatively short, or 
a breakout cone, if the development length is long, and due to spalling or side-face 
blowout, if the side cover is low (Refs. 5.25 to 5.28). Transverse confining reinforce
ment, such as stirrups and ties, which increase the bond strength of both straight and 
hooked bars, provides little additional capacity to headed bars and is, thus, not consid
ered when calculating the development length of beaded bars. Because transverse 
reinforcement limits the width of splitting cracks. however, its use is still recommended 
when headed bars are used. 

Because test data are not available for a wide range of concrete properties, bar 
sizes, and member geometries, the design provisions are restricted to No. 11 (No. 36) 
and smaller bars with yield strengths not greater than 60,000 psi. The bars, as distinct 
from the heads, must have a clear cover of at least 2db and a clear spacing between 
bars of at least 4db. ln addition, headed bars are restricted by ACJ Code 12.6 to use 
with normalweight concrete, and the value of J; used to calculate the development 
length ld, is limited to 6000 psi. The development length for headed deformed bars in 
tension is 

_ (0.0l6r/Je/2 ) 
Id, - ~ r:: di, 

vJ; 
(5.7) 

where r/J e = l.2 for epoxy-coated reinforcement and 1.0 for other cases. 



FIGURE 5.14 
Development length of 
headed deformed bars. 

FIGURE 5.15 
Headed deformed bar 
extended to far side of 
column with anchorage 
length that exceeds ld,. 
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TABLE 5.4 
Development lengths for headed deformed bars in tension 

A. Development length ld, for headed bars 

B. Modification factors applied to ldr 

Where anchorage or development for Jy is not specifically required, 
reinforcement in excess of that required by analysis 

t/1, 
For epoxy-coated bars 
For other bars 

(
0.016tf,Jy) d 

vl:: b 

As required 

A .. provided 

1.2 
1.0 

Where the reinforcement provided exceeds that required by analysis, except when 
development of the yield strength.f;, is specifically required, the value of ld1 in Eq. (5.7) 
may be multiplied by the factor (As required)/(As provided). Under any circumstances, 
ld1 may not be less than 8 bar diameters or less than 6 in. Calculation of the development 
length ld

1 
and the applicable modifying factors are summarized in Table 5.4. 

The development length ld1 should be measured from the bearing face of the head 
to the critical section, as shown in Fig. 5.14. When headed bars from a flexural member, 
such as a beam or a slab, terminate in a supporting member, such as the column shown 
in Fig. 5.15, the commentary to ACI Code 12.6 recommends that the bar be extended 
"through the joint to the far face of the confined core of the supporting member, 
allowing for cover and avoidance of interference with column reinforcement," even if 
the resulting anchorage length is greater than ldt· Doing so helps to adequately anchor 

Critical 
section 

I I 
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the compressive forces that are developed at the face of the head and improves the 
performance of the beam-column connection. 

c. Mechanical Anchorage 

In cases where headed bars do not meet the requirements specified in Section 12.6 or 
in cases whe.re bars are terminated by mechanisms such as welded plates or other 
manufactured devices, ACI Code 12.6.4 allows such devices to be used to develop the 
reinforcement if the adequacy of the devices is established by tests. In such cases, the 
development of the reinforcement may consist of the combined contributions of bond 
along the length of the bar leading to the critical section, plus that of the mechanical 
anchorage, much in the way that the total resistance of headed bars is provided. 

EXAMPLE 5.3 Development of headed deformed bars in tension. Three No. 7 (No. 22) bars serve as top 
reinforcement for a bracketframing into a 16 X 16 in. column (Fig. 5.16). The bracket projects 
15 in. from the column and is the same width as the column. The top cover to the center of the 
bars is 3 in., and the side cover to the center of the bars is 3.5 in. The bars are spaced laterally 
at 4.5 in. These dimensions are inadequate for straight development length or for standard hooks. 
Based on other reinforcement, cover requirements, and head thickness, total development 
lengths for headed bars of 12 in. in the column and 12.5 in. in the bracket are available. The 
reinforcing bars have J;, = 60,000 psi, and the concrete is normalweight with J; = 5000 psi. 
Determine if a bar with heads at both ends can be used in this application. 

FIGURES.16 
Column and bracket for 
headed deformed bar 
development example. 

SOLUTION. The minimum head size is Ab,;g = 4Ab = 2.4 in2• The smaller available anchorage 
length in the column governs. Assuming that the bars will be used at the full yield strength, the 
development length ldr calculated using Eq. (5.7) is 

Column 

Available 
anchorage 
lengths 

= (0.0161/Jeh)d = (0.016 X 1.0 x 60,000)o 8 5 = 9 . 
ldr , r,:; b , ~ • 1 11. m. 

vf: V 5000 

Bracket 

L------"-i+---12" ~~ 12.5" --l 
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which must be checked against the minimum values for ld,, which are 

ld, ~ 8db = 7 in. 

ldt ~ 6 in. 

Thus, the value of ldr obtained using Eq. (5.7) governs and is less than the available anchorage 
length. Thus, a bar with heads at both ends can be used, with a distance between heads of 24.5 in., 
as shown in Fig. 5.16. 

5.6 ANCHORAGE REQUIREMENTS FOR WEB REINFORCEMENT 

Stirrups should be carried as close as possible to the compression and tension faces 
of a beam, and special attention must be given to proper anchorage. The truss model 
(see Section 4.8 and Fig. 4.19) for design of shear reinforcement indicates the devel
opment of diagonal compressive struts, the thrust from which is equilibrated, near the 
top and bottom of the beam, by the tension web members (i.e., the stirrups). Thus, at 
the factored load, the tensile strength of the stirrups must be developed for almost 
their full height. Clearly, it is impossible to do this by development length. For this 
reason, stirrups normally are provided with 90° or 135° hooks at their upper end (see 
Fig. 5.9b for standard hook details) and at their lower end are bent 90° to pass around 
the longitudinal reinforcement. In simple spans, or in the positive bending region of 
continuous spans, where no top bars are required for flexure, stirrup support bars 
must be used. These are usually about the same diameter as the stirrups themselves, 
and they not only provide improved anchorage of the hooks but also facilitate fabri
cation of the reinforcement cage, holding the stirrups in position during placement of 
the concrete. 

ACI Code 12.13 includes special provisions for anchorage of web reinforce
ment. The ends of single-leg, simple-CT, or multiple-CT stirrups are to be anchored by 
one of the following means: 

1. For No. 5 (No. 16) bars and smaller, and for Nos. 6, 7, and 8 (Nos. 19, 22, and 
25) bars withfyi of 40,000 psi or less, a standard hook around longitudinal rein
forcement, as shown in Fig. 5.17a. 

2. For Nos. 6, 7, and 8 (Nos. 19, 22, and 25) stirrups with.f;,1 greater than 40,000 psi, 
a standard hook around a longitudinal bar, plus an embedment between midheight 
of the member and the outside end of the hook equal to or greater than 
0.014dbf;,,I A Vf.'.in., as shown in Fig. 5.17b. 

ACI Code 12.13 specifies further that, between anchored ends, each bend in the 
continuous portion of a simple-CT or multiple-CT stirrup shall enclose a longitudinal 
bar, as in Fig. 5 .17 c. Longitudinal bars bent to act as shear reinforcement, if extended 
into a region of tension, shall be continuous with longitudinal reinforcement and, if 
extended into a region of compression, shall be anchored beyond middepth d/2 as 
specified for development length. Pairs of CT stirrups or ties so placed as to form a 
closed unit shall be considered properly spliced when length of laps are 1.3/d as in 
Fig. 5 .17 d. In members at least 18 in. deep, such splices are considered adequate if 
Ab J;,1 ::; 9000 lb and the stirrup legs extend the full depth of the member. As will be 
discussed in Section 5 .11, pairs of CT stirrups may not be used in perimeter beams. 

Other provisions are contained in the ACI Code relating to the use of welded 
wire reinforcement, which is sometimes used for web reinforcement in precast and 
prestressed concrete beams. 
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FIGURES.17 
ACI requirements for stirrup [J • ];;, 0.014dbfyt 
anchorage: (a) No. 5 (No. A~ 
16) stirrups and smaller, and 
Nos. 6, 7, and 8 (Nos. 19, 22, 
and 25) stirrups with yield • • • 
stress not exceeding 
40,000 psi; (b) Nos. 6, 7, (a) (b) 
and 8 (Nos. 19, 22, and 25) 
stirrups with yield stress 

[OJ n exceeding 40,000 psi; 

];;, 1.3ld 
(c) wide beam with multiple-
leg U stirrups; (d) pairs of lJ U stirrups forming a closed 
unit. See Fig. 5.9 for • 
alternative standard hook 
details. (c) (d) 

5.7 WELDED WIRE REINFORCEMENT 

Tensile steel consisting of welded wire reinforcement ( often referred to as welded 
wire fabric), with either deformed or smooth wires, is commonly used in one-way 
and two-way slabs and certain other types of members (see Section 2.15). For 
deformed wire reinforcement, some of the development is assigned to the welded 
cross wires and some to the embedded length of the deformed wire. According to 
ACI Code 12.7, the development length of welded deformed wire reinforcement 
measured from the point of the critical section to the end of the wire is computed as 
the product of the development length Id from Table 5.1 or from the more accurate 
Eq. (5.4) and the appropriate modification factor or factors related to those equations, 
except that the development length is not to be less than 8 in. For welded deformed 
wire reinforcement with at least one cross wire within the development length and 
not less than 2 in. from the point of the critical section, a deformed wire factor 1/fw 
equal to the greater of 

or 

fy - 35,000 

Jy 

s 

(5.8a) 

(5.8b) 

is applied, where s is the lateral spacing of the wires being developed; but this factor 
need not exceed 1.0. When fw from Eq. (5.8a) or (5.8b) is used, the epoxy coating 
factor 1/Je is taken as 1.0. For welded wire deformed reinforcement with no cross wires 
within the development length or with a single cross wire less than 2 in. from the point 
of the critical section, the wire fabric factor is taken to be equal to 1.0 and the devel
opment length determined as for the deformed wire. 

For welded plain wire reinforcement, development is considered to be provided 
by embedment of two cross wires, with the closer wire not less than 2 in. from the 
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critical section. However, the development length measured from the critical section 
to the outermost cross wire is not to be less than 

l = 0.27 Ab __l!__ 
d s AVfl (5.9) 

according to ACI Code 12.8, where Ab is the cross-sectional area of an individual wire 
to be developed or spliced. The modification factor for excess reinforcement may be 
applied, but ld is not to be less than 6 in. for the welded plain wire reinforcement. t 

5.8 DEVELOPMENT OF BARS IN COMPRESSION 

Reinforcement may be required to develop its compressive strength by embedment 
under various circumstances, e.g., where bars transfer their share of column loads to a 
supporting footing or where lap splices are made of compression bars in column (see 
Section 5.13). In the case of bars in compression, a part of the total force is transferred 
by bond along the embedded length, and a part is transferred by end bearing of the 
bars on the concrete. Because the surrounding concrete is relatively free of cracks and 
because of the beneficial effect of end bearing, shorter basic development lengths are 
permissible for compression bars than for tension bars. If transverse confinement steel 
is present, such as spiral column reinforcement or special spiral steel around an indi
vidual bar, the required development length is further reduced. Hooks and heads 
such as are shown in Figs. 5.9 and 5.12 are not effective in transferring compression 
from bars to concrete, and, if present for other reasons, should be disregarded in 
determining required embedment length. 

According to ACI Code 12.3, the development length in compression is the 
greater of 

(
0.02/y) 

l - -- d 
de- AVfl b (5.10a) 

and 
(5.10b) 

Modification factors summarized in part B of Table 5.5, as applicable, are applied to 
the development length in compression to obtain the value of development length ldc 
to be used in design. In no case is ld to be less than 8 in., according to the ACI Code. 
Basic and modified compressive development lengths are given in Table A.11 of 
Appendix A. 

5.9 BUNDLED BARS 

It was pointed out in Section 3.6c that it is sometimes advantageous to "bundle" tensile 
reinforcement in large beams, with two, three, or four bars in contact, to provide for 
improved placement of concrete around and between bundles of bars. Bar bundles are 
typically triangular or L-shaped for three bars, and square for four. When bars are cut 
off in a bundled group, the cutoff points must be staggered at least 40 diameters. 

1 The ACI Code offers no explanation as to why Id.min = 6 in. for welded plain wire reinforcement, but 8 in. for welded deformed wire 
reinforcement. 
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TABLE 5.5 
Development lengths for deformed bars in compression 

A. Basic development length Ide 

B. Modification factors to be applied to Ide 

Reinforcement in excess of that required by analysis 

Reinforcement enclosed within spiral 
reinforcement not less than ¼ in. diameter and 
not more than 4 in. pitch or within No. 4 (No. 13) 
ties spaced at not more than 4 in. on centers 

{ 
(

0.02fv) > __ · d 
- AvJ[ h 

~ 0.0003 f, db 

A., required 

A., provided 

0.75 

According to ACI Code 12.4, the development length of individual bars within a bundle, 
for both tension and compression, is that of the individual bar increased by 20 percent 
for a three-bar bundle and by 33 percent for a four-bar bundle, to account for the 
probable deficiency of bond at the inside of the bar group. 

For bundled bars, to determine the appropriate spacing and cover values ( 1) for 
use in Table 5.1, (2) when calculating the confinement term K1r in Eq. (5.4), or (3) 
when selecting the epoxy coating factor 1/J e' the unit of bundled bars is treated as a 
single bar with a diameter derived from the equivalent total area and having a centroid 
that coincides with that of the bar group. 

5.10 BAR CUTOFF AND BEND POINTS IN BEAMS 

Chapter 3 dealt with moments, flexural stresses, concrete dimensions, and longitudi
nal bar areas at the critical moment sections of beams. These critical moment sections 
are generally at the face of the supports (negative bending) and near the middle of the 
span (positive bending). Occasionally, haunched members having variable depth or 
width are used so that the concrete flexural capacity will agree more closely with the 
variation of bending moment along a span or series of spans. Usually, however, pris
matic beams with constant concrete cross-sectional dimensions are used to simplify 
formwork and thus to reduce cost. 

The steel requirement, on the other hand, is easily varied in accordance with 
requirements for flexure, and it is common practice either to cut off bars where they 
are no longer needed to resist stress or, sometimes in the case of continuous beams, to 
bend up the bottom steel (usually at 45°) so that it provides tensile reinforcement at 
the top of the beam over the supports. 

a. Theoretical Points of Cutoff or Bend 

The tensile force to be resisted by the reinforcement at any cross section is 

M 
T=Af=-

s s z 

where Mis the value of bending moment at that section and z is the internal lever arm 
of the resisting moment. The lever arm z varies only within narrow limits and is never 



FIGURE 5.18 
Bar cutoff points from 
moment diagrams. 
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less than the value at the maximum-moment section. Consequently, the tensile force 
can be taken with good accuracy directly proportional to the bending moment. Since 
it is desirable to design so that the steel everywhere in the beam is as nearly fully 
stressed as possible, it follows that the required steel area is very nearly proportional 
to the bending moment. 

To illustrate, the moment diagram for a uniformly loaded simple-span beam 
shown in Fig. 5.18a can be used as a steel requirement diagram. At the maximum
moment section, 100 percent of the tensile steel is required (0 percent can be discon
tinued or bent), while at the supports, 0 percent of the steel is theoretically required 
(100 percent can be discontinued or bent). The percentage of bars that could be 
discontinued elsewhere along the span is obtainable directly from the moment diagram, 
drawn to scale. To facilitate the determination of cutoff or bend points for simple spans, 
Graph A.2 of Appendix A has been prepared. It represents a half-moment diagram for 
a uniformly loaded simple span. 

To determine cutoff or bend points for continuous beams, the moment diagrams 
resulting from loading for maximum span moment and maximum support moment are 
drawn. A moment envelope results that defines the range of values of moment at any 
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section. Cutoff or bend points can be found from the appropriate moment curve as for 
simple spans. Figure 5.18b illustrates, for example, a continuous beam with moment 
envelope resulting from alternate loadings to produce maximum span and maximum 
support moments. The locations of the points at which 50 percent of the bottom and 
top steel may theoretically be discontinued are shown. 

According to ACI Code 8.3, uniformly loaded, continuous reinforced concrete 
beams of fairly regular span may be designed using moment coefficients ( see Table 12.1 ). 
These coefficients, analogous to the numerical constant in the expression ½wL2 for 
simple-beam bending moment, give a conservative approximation of span and support 
moments for continuous beams. When such coefficients are used in design, cutoff and 
bend points may conveniently be found from Graph A.3 of Appendix A. Moment 
curves corresponding to the various span and support-moment coefficients are given 
at the top and bottom of the chart, respectively. 

Alternatively, if moments are found by frame analysis rather than from ACI 
moment coefficients, the location along the span where bending moment reduces to 
any particular value (e.g., as determined by the bar group after some bars are cut off), 
or to zero, is easily computed by statics. 

b. Practical Considerations and ACI Code Requirements 

Actually, in no case should the tensile steel be discontinued exactly at the theoretically 
described points. As described in Section 4.3 and shown in Fig. 4.7, when diagonal 
tension cracks form, an internal redistribution of forces occurs in a beam. Prior to 
cracking, the steel tensile force at any point is proportional to the moment at a verti
cal section passing through the point. However, after the crack has formed, the tensile 
force in the steel at the crack is governed by the moment at a section nearer midspan, 
which may be much larger. Furthermore, the actual moment diagram may differ from 
that used as a design basis, due to approximation of the real loads, approximations in 
the analysis, or the superimposed effect of settlement or lateral loads. In recognition 
of these facts, ACI Code 12.10 requires that every bar be continued at least a distance 
equal to the effective depth of the beam or 12 bar diameters (whichever is larger) 
beyond the point at which it is theoretically no longer required to resist stress, except 
at supports of simple spans and at the free end of cantilevers. 

In addition, it is necessary that the calculated stress in the steel at each section 
be developed by adequate embedded length or end anchorage, or a combination of the 
two. For the usual case, with no special end anchorage, this means that the full devel
opment length ld must be provided beyond critical sections at which peak stress exists 
in the bars. These critical sections are located at points of maximum moment and at 
points where adjacent terminated reinforcement is no longer needed to resist bending. t 

Further reflecting the possible change in peak stress location, ACI Code 12.11 
requires that at least one-third of the positive-moment steel ( one-fourth in continuous 
spans) be continued uninterrupted along the same face of the beam a distance at least 6 in. 
into the support. When a flexural member is a part of a primary lateral load resisting 
system, positive-moment reinforcement required to be extended into the support must be 
anchored to develop the yield strength of the bars at the face of support to account for 

t The ACI Code is ambiguous as to whether or not the extension length d or l 2dh is to be added to the required development length Id. The Code 
Commentary presents the view that these requirements need not be superimposed, and Fig. 5.19 has been prepared on that basis. However, the 
argument just presented regarding possible shifts in moment curves or steel stress distribution curves leads to the conclusion that these 
requirements should be superimposed. In such cases, each bar should be continued a distance Id plus the greater of d or l 2dh beyond the peak 
stress location. 



FIGURE 5.19 
Bar cutoff requirements of 
the ACI Code. 
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the possibility of reversal of moment at the supports. According to ACI Code 12.12, at 
least one-third of the total reinforcement provided for negative moment at the support 
must be extended beyond the extreme position of the point of inflection a distance not 
less than one-sixteenth the clear span, or d, or 12db, whichever is greatest. 

Requirements for bar cutoff or bend point locations are summarized in Fig. 5.19. 
If negative bars Lare to be cut off, they must extend a full development length Id beyond 
the face of the support. In addition, they must extend a distance d or I2db beyond the 
theoretical point of cutoff defined by the moment diagram. The remaining negative bars 
M (at least one-third of the total negative area) must extend at least Id beyond the theo
retical point of cutoff of bars Land in addition must extend d, I2db, or ln/16 (whichever 
is greatest) past the point of inflection of the negative-moment diagram. 

If the positive bars N are to be cut off, they must project Id past the point of theo
retical maximum moment, as well as d or I 2db beyond the cutoff point from the positive
moment diagram. The remaining positive bars O must extend Id past the theoretical point 
of cutoff of bars N and must extend at least 6 in. into the face of the support. 

When bars are cut off in a tension zone, there is a tendency toward the formation 
of premature flexural and diagonal tension cracks in the vicinity of the cut end. This 
may result in a reduction of shear capacity and a loss in overall ductility of the beam. 
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ACI Code 12.10 requires special precautions, specifying that no flexural bar shall be 
terminated in a tension zone unless one of the following conditions is satisfied: 

1. The shear is not over two-thirds of the design strength <p Vn-
2. Stirrups in excess of those normally required are provided over a distance along 

each terminated bar from the point of cutoff equal to ¾ d. These "binder" stirrups 
shall provide an area Av 2". 60bws/Jy1• In addition, the stirrup spacing shall not 
exceed d/8f3b, where {3b is the ratio of the area of bars cut off to the total area of 
bars at the section. 

3. The continuing bars, if No. 11 (No. 36) or smaller, provide twice the area required 
for flexure at that point, and the shear does not exceed three-quarters of the design 
strength <p Vn. 

As an alternative to cutting off the steel, tension bars may be anchored by 
bending them across the web and making them continuous with the reinforcement on 
the opposite face. Although this leads to some complication in detailing and placing 
the steel, thus adding to construction cost, some engineers prefer the arrangement 
because added insurance is provided against the spread of diagonal tension cracks. In 
some cases, particularly for relatively deep beams in which a large percentage of the 
total bottom steel is to be bent, it may be impossible to locate the bend-up point for 
bottom bars far enough from the support for the same bars to meet the requirements 
for top steel. The theoretical points of bend should be checked carefully for both 
bottom and top steel. 

Because the determination of cutoff or bend points may be rather tedious, 
particularly for frames that have been analyzed by elastic methods rather than by 
moment coefficients, many designers specify that bars be cut off or bent at more or 
less arbitrarily defined points that experience has proved to be safe. For nearly equal 
spans, uniformly loaded, in which not more than about one-half the tensile steel is to 
be cut off or bent, the locations shown in Fig. 5.20 are satisfactory. Note, in Fig. 5.20, 
that the beam at the exterior support at the left is shown to be simply supported. If the 
beam is monolithic with exterior columns or with a concrete wall at that end, details 
for a typical interior span could be used for the end span as well. 

c. Special Requirements near the Point of Zero Moment 

While the basic requirement for flexural tensile reinforcement is that a full develop
ment length ld be provided beyond the point where the bar is assumed fully stressed 
to Jy, this requirement may not be sufficient to ensure safety against bond distress. 
Figure 5 .21 shows the moment and shear diagram representative of a uniformly 
loaded continuous beam. Positive bars provided to resist the maximum moment at c 
are required to have a full development length beyond the point c, measured in the 
direction of decreasing moment. Thus ld in the limiting case could be exactly equal 
to the distance from point c to the point of inflection. However, if that requirement were 
exactly met, then at point b, halfway from c to the point of inflection, those bars would 
have only one-half their development length remaining, whereas the moment would be 
three-quarters of that at point c, and three-quarters of the bar force must yet be devel
oped. This situation arises whenever the moments over the development length are 
greater than those corresponding to a linear reduction to zero. Therefore, the problem 
is a concern in the positive-moment region of continuous uniformly loaded spans, but 
not in the negative-moment region. 



FIGURES.20 
Cutoff or bend points for 
bars in approximately 
equal spans with 
uniformly distributed 
loads. 

FIGURES.21 
Development length 
requirement at point of 
inflection. 
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The bond force U per unit length along the tensile reinforcement in a beam is 
U = dT/dx, where dT is the change in bar tension in the length dx. Since dT = dM/z, 
this can be written 

dM 
U=

zdx 
(a) 
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that is, the bond force per unit length of bar, generated by bending, is proportional to 
the slope of the moment diagram. In reference to Fig. 5.2 la, the maximum bond force 
U in the positive-moment region would therefore be at the point of inflection, and U 
would gradually diminish along the beam toward point c. Clearly, a conservative 
approach in evaluating adequacy in bond for those bars that are continued as far as the 
point of inflection (not necessarily the full As provided for Mu at point c) would be to 
require that the bond resistance, which is assumed to increase linearly along the bar 
from its end, be governed by the maximum rate of moment increase, i.e., the maxi
mum slope dM/dx of the moment diagram, which for positive bending is seen to occur 
at the inflection point. 

From elementary mechanics, it is known that the slope of the moment diagram 
at any point is equal to the value of the shear force at that point. Therefore, with 
reference to Fig. 5 .21, the slope of the moment diagram at the point of inflection is Vu. 
A dashed line may therefore be drawn tangent to the moment curve at the point of 
inflection having the slope equal to the value of shear force Vu. Then if Mn is the 
nominal flexural strength provided by those bars that extend to the point of inflection, 
and if the moment diagram were conservatively assumed to vary linearly along the 
dashed line tangent to the actual moment curve, from the basic relation that Mn/a = 
Vu, a distance a is established: 

Mn 
a=-

V,, 
(b) 

If the bars in question were fully stressed at a distance a to the right of the point of 
inflection, and if the moments diminished linearly to the point of inflection, as 
suggested by the dashed line, then bond failure would not occur if the development 
length Id did not exceed the distance a. The actual moments are less than indicated by 
the dashed line, so the requirement is on the safe side. 

If the bars extend past the point of inflection toward the support, as is always 
required, then the extension can be counted as contributing toward satisfying the 
requirement for embedded length. Arbitrarily, according to ACI Code 12.11, a length 
past the point of inflection not greater than the larger of the beam depth d or 12 times 
the bar diameter db may be counted toward satisfying the requirement. Thus, the 
requirement for tensile bars at the point of inflection is that 

Mn 
[d $. - + la v,, (5.11) 

where Mn = nominal flexural strength assuming all reinforcement at section to be 
stressed to J;, 

Vu = factored shear force at section 
la = embedded length of bar past point of zero moment, but not to exceed 

the greater of d or l 2db 

A corresponding situation occurs near the supports of simple spans carrying 
uniform loads, and similar requirements must be imposed. However, because of the 
beneficial effect of vertical compression in the concrete at the end of a simply supported 
span, which tends to prevent splitting and bond failure along the bars, the value Mn/Vu 
may be increased 30 percent for such cases, according to ACI Code 12.11. Thus, at the 
ends of a simply supported span, the requirement for tension reinforcement is 

Mn 
Id $. 1.3 - + la (5.12) v,, 
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The consequence of these special requirements at the point of zero moment is 
that, in some cases, smaller bar sizes must be used to obtain smaller ld, even though 
requirements for development past the point of maximum stress are met. 

It may be evident from review of Sections 5.10b and 5.10c that the determina
tion of cutoff or bend points in flexural members is complicated and can be extremely 
time-consuming in design. It is important to keep the matter in perspective and to 
recognize that the overall cost of construction will be increased very little if some bars 
are slightly longer than absolutely necessary, according to calculation, or as dictated 
by ACI Code provisions. In addition, simplicity in construction is a desired goal, and 
can, in itself, produce compensating cost savings. Accordingly, many engineers in 
practice continue all positive reinforcement into the face of the supports the required 
6 in. and extend all negative reinforcement the required distance past the points of 
inflection, rather than using staggered cutoff points. 

5.11 STRUCTURAL INTEGRITY PROVISIONS 

Experience with structures that have been subjected to damage to a major supporting 
element, such as a column, owing to accident or abnormal loading has indicated that 
total collapse can be prevented through relatively minor changes in bar detailing. If 
some reinforcement, properly confined, is carried continuously through a support, 
then even if that support is damaged or destroyed, catenary action of the beams can 
prevent total collapse. In general, if beams have bottom and top steel meeting or 
exceeding the requirements summarized in Sections 5.10b and 5.10c, and if binding 
steel is provided in the form of properly detailed stirrups, then that catenary action can 
usually be ensured. 

According to ACI Code 7 .13.2, beams at the perimeter of the structure (span
drel beams) must have continuous reinforcement passing through the region bounded 
by the longitudinal reinforcement of the columns consisting of at least one-sixth 
of the tension reinforcement required for negative moment at the support, but not 
less than two bars, and at least one-quarter of the tension reinforcement required 
for positive moment at midspan, but not less than two bars. At noncontinuous 
supports, the reinforcement must be anchored using a standard hook or a headed 
deformed bar to develop Jy at the face of the support. The continuous reinforce
ment must be enclosed by closed stirrups or closed ties perpendicular to the axis 
of the member, a closed cage of welded wire reinforcement with transverse wires 
perpendicular to the axis of the member, or spiral reinforcement (see Fig. 1.15). 
This transverse reinforcement must be anchored by a 135° standard hook (Fig. 5.9b) 
or a seismic hook (see Section 20.4) around a longitudinal bar, or where the concrete 
surrounding the anchorage is restrained against spalling by a flange or slab, by 
either a 90° or 135° standard hook around a longitudinal bar, as shown in Fig. 5.17a 
and b. 

Figure 5.22 shows a two-piece stirrup that meets the requirements of ACI Code 
7.13.2. Although the spacing of these stirrups is not specified, the requirements for 
minimum shear steel given in Section 4.5b provide guidance in regions where shear 
does not require closer spacing. The stirrups need not be extended through the joints. 
Overlapping pairs of U stirrups of the type shown in Fig. 5.17d are not permitted in 
perimeter beams because damage to the side cover concrete may cause both the stir
rups and top longitudinal reinforcement to tear out of the concrete, thus preventing the 
longitudinal reinforcement from acting as a catenary. 
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FIGURES.22 
Two-piece stirrup meeting 
the requirements of ACI 
Code 7.13.2 for confinement 
of longitudinal integrity 
reinforcement in perimeter 
beams. The 90 degree hook 
must be placed adjacent to 
the slab. 

Confinement 
from slab 

The required continuity of longitudinal steel can be provided using top rein
forcement spliced at midspan and bottom reinforcement spliced at or near the supports 
using Class B tension splices, or mechanical or welded splices (see Section 5.13). 

In other than perimeter beams, when stirrups of the type shown in Fig. 5.22 are 
not provided, at least one-quarter of the positive-moment reinforcement required at 
midspan, but not less than two bars, must pass through the columns' longitudinal 
reinforcement and must be continuous. The requirements for anchoring this longitu
dinal reinforcement at noncontinuous supports and for splicing the bars to provide 
continuity are the same as for perimeter beams. 

Note that these provisions require very little additional steel in the structure. 
At least one-quarter of the bottom bars must be extended 6 in. into the support by 
other ACI Code provisions; the structural integrity provisions merely require that 
these bars be made continuous or spliced. Similarly, other ACI Code provisions 
require that at least one-third of the negative bars be extended a certain minimum 
distance past the point of inflection; the structural integrity provisions for perime
ter beams require only that one-half of those bars be further extended and spliced 
at midspan. 

5.12 INTEGRATED BEAM DESIGN EXAMPLE 

In this and in the preceding chapters, the several aspects of the design of rein
forced concrete beams have been studied more or less separately: first the flexural 
design, then design for shear, and finally for bond and anchorage. The following 
example is presented to show how the various requirements for beams, which are 
often in some respects conflicting, are satisfied in the overall design of a repre
sentative member. 

EXAMPLE 5.4 Integrated design of T beam. A floor system consists of single-span T beams 8 ft on cen
ters, supported by 12 in. masonry walls spaced at 25 ft between inside faces. The general 
arrangement is shown in Fig. 5.23a. A 5 in. monolithic slab carries a uniformly distributed serv
ice live load of 165 psf. The T beams, in addition to the slab load and their own weight, must 
carry two 16,000 lb equipment loads applied over the stem of the T beam 3 ft from the span 
centerline as shown. A complete design is to be provided for the T beams, using concrete of 
4000 psi strength and bars with 60,000 psi yield stress. (Note: Because normalweight concrete 
is used, ,\ = 1.0 and, as such, will be dropped from the calculations for shear and bond.) 

SOLUTION. According to the ACI Code, the span length is to be taken as the clear span plus 
the beam depth, but need not exceed the distance between the centers of supports. The latter 
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provision controls in Lhis case, and the effective span is 26 ft. Estimating the beam web dimen
sions to be 12 X 24 in., the calculated and factored dead loads are as follows: 

Slab: 

5 l2 X 150 X 7 = 440 lb/ ft 
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Beam: 

12

1
:

24 
150 = 3001b/ft 

wd = 740 lb/ft 

1.2wd = 890 lb/ft 

The uniformly distributed live load is 

W1 = 165 X 8 = 1320 lb/ft 

1.6w1 = 2110 lb/ft 

Live load overload factors are applied to the two concentrated loads to obtain Pu = 16,000 X 
1.6 = 25,600 lb. Factored loads are summarized in Fig. 5.23b. 

In lieu of other controlling criteria, the beam web dimensions will be selected on the 
basis of shear. The left and right reactions under factored load are 25.6 + 3.00 X 13 = 64.6 
kips. With the effective beam depth estimated to be 20 in., the maximum shear that need be con
sidered in design is 64.6 - 3.00(0.50 + 1.67) = 58.1 kips. Although the ACI Code permits Vs 
as high as 8V/[bwd, this would require very heavy web reinforcement. A lower limit of 
4V/[bwd will be adopted. With Ve= 2V/[bwd this results in a maximum Vn = 6vf:bwd. 
Then bwd = Vuf (6cpvf:) = 58,100/(6 X 0.75V4000) = 204 in2

• Cross-sectional dimen
sions bw = 12 in. and d = 18 in. are selected, providing a total beam depth of22 in. The assumed 
dead load of the beam need not be revised. 

According to the Code, the effective flange width b is the smallest of the three quantities 

L 26 X 12 - = --- = 78 in. 
4 4 

l6h1 + bw = 80 + 12 = 92 in. 

Centerline spacing = 96 in. 

The first controls in this case. The maximum moment is at midspan, where 

1 
Mu= S X 3.00 X 262 + 25.6 X 10 = 510 ft-kips 

Assuming for trial that the stress-block depth will equal the slab thickness leads to 

Then 

Mu 
A=-----

s cpJy(d - a/2) 
510 X 12 = 7.31 in2 

0.90 X 60 X 15.5 

a = Asfy = 7.31 X 60 = 1.65 in. 
0.85f; b 0.85 X 4 X 78 

The stress-block depth is seen to be less than the slab depth; rectangular beam equations are 
valid. An improved determination of As is 

510 X 12 
A = ------- = 6.60 in2 

s 0.90 X 60 X 17.11 

A check confirms that this is well below the maximum permitted reinforcement ratio. Four 
No. 9 (No. 29) plus four No. 8 (No. 25) bars will be used, providing a total area of 7.14 in2• 

They will be arranged in two rows, as shown in Fig. 5.23d, with No. 9 (No. 29) bars at the outer 
end of each row. Beam width bw is adequate for this bar arrangement. 

While the ACI Code permits discontinuation of two-thirds of the longitudinal reinforce
ment for simple spans, in the present case it is convenient to discontinue only the upper layer 
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of steel, consisting of one-half of the total area. The moment capacity of the member after the 
upper layer of bars has been discontinued is then found: 

3.57 X 60 
a = 0.85 X 4 X 78 = 0·81 in. 

</JMn = <pA,J;,( d - ~) = 0.90 X 3.57 X 60 X 18.66 X /
2 

= 300 ft-kips 

For the present case, with a moment diagram resulting from combined distributed and concentrated 
loads, the point at which the applied moment is equal to this amount must be calculated. (In the 
case of uniformly loaded beams, Graphs A.2 and A.3 in Appendix A are helpful.) If xis the 
distance from the support centerline to the point at which the moment is 300 ft-kips, then 

3.00.x2 
646x - -- = 300 . 2 

X = 5.30 

The upper bars must be continued at least d = l.50 ft or l2db = l.13 ft beyond this theoretical 
point of cutoff. In addition, the full development length Id must be provided past the maximum
moment section at which the stress in the bars to be cut is assumed to be J;,. Because of the heavy 
concentrated loads near the midspan, the point of peak stress will be assumed to be at the 
concentrated load rather than at midspan. For the four upper bars, assuming 1.50 in. clear cover 
to the outside of the No. 3 (No. 10) stirrups, the clear side cover is l.50 + 0.38 = l.88 in., or 
l.66db. Assuming equal clear spacing between all four bars, that clear spacing is [12.00 - 2 X 

(l.50 + 0.38 + 1.13 + l.00))/3 = 1.33 in., or l.l8db. Noting that the ACI Code requirements 
for minimum stirrups are met, it is clear that all restrictions for the use of the simplified equa
tion for development length are met. From Table 5.1 (Section 5.3), the required development 
length is 

60,000 . 
Id= • r:-:::= 1.13 = 47 X l.13 = 53 Ill. 

20v4000 

or 4.42 ft. Thus, the bars must be continued at least 3.00 + 4.42 = 7.42 ft past the midspan 
point, but in addition they must continue to a point 5.30 - 1.50 = 3.80 ft from the support 
centerline. The second requirement controls and the upper layer of the bars will be terminated, 
as shown in Fig. 5.23e, 3.30 ft from the support face. The bottom layer of bars will be extended 
to a point 3 in. from the end of the beam, providing 5.55 ft embedment past the critical section 
for cutoff of the upper bars. This exceeds the development length of the lower set of bars, 
confirming that cutoff and extension requirements are met. 

Note that a simpler design, using very little extra steel, would result from extending all 
eight positive bars into the support. Whether or not the more elaborate calculations and more 
complicated placement are justified would depend largely on the number of repetitions of the 
design in the total structure. 

Checking by Eq. (5.12) to ensure that the continued steel is of sufficiently small diame
ter determines that 

333 X 12 
Id :5 1.3 

64
.
6 

+ 3 = 83 in. 

The actual Id of 53 in. meets this restriction. 
Since the cut bars are located in the tension zone, special binding stirrups will be used to 

control cracking; these will be selected after the normal shear reinforcement has been determined. 
The shear diagram resulting from application of factored loads is shown in Fig. 5.23c. 

The shear contribution of the concrete is 

</JVc = 0.75 X 2\/4000 X 12 X 18 = 20,500 lb 
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Thus web reinforcement must be provided for that part of the shear diagram shown shaded. 
No. 3 (No. 10) stirrups will be selected. The maximum spacings must not exceed 

d/2 = 9 in., 24 in., or Av!y,/(0.75v'J: bw) = 0.22 X 60,000/(0.75v'4000 X 12) = 23 in. ::5 

AJyJ50bw = 0.22 X 60,000/50 X 12 = 22 in. The first criterion controls here. For reference, 
from Eq. (4.14a) the hypothetical stirrup spacing at the support is 

_ 0.75 X 0.22 X 60 X 18 _ 
04

. 
s0 -

6 
- 4. m. 

64. - 20.5 

and at 2 ft intervals along the span, 

s2 = 4.68 in. 

S4 = 5.55 in. 

s6 = 6.83 in. 

Sg = 8.87 in. 

s10 = 12.64 in. 

The spacing need not be closer than that required 2.00 ft from the support centerline. In 
addition, stirrups are not required past the point of application of concentrated load, since 
beyond that point the shear is less than one-half of cf, Ve The final spacing of vertical stirrups 
selected is 

1 space at 2 in. = 2 in. 

7 spaces at 4 in. = 28 in. 

8 spaces at 5 in. = 40 in. 

5 spaces at 9 in. = 45 in. 

Total = 115 in. = 9 ft 7 in. from the face of the 
support (121 in. = 10 ft 1 in. from 
the support centerline) 

Two No. 3 (No. 10) longitudinal bars will be added to meet anchorage requirements and fix the 
top of the stirrups. 

In addition to the shear reinforcement just specified, it is necessary to provide extra web 
reinforcement over a distance equal to ¾d, or 13.5 in., from the cut ends of the discontinued 
steel. The spacing of this extra web reinforcement must not exceed d/8f3b = 18/(8 X ½) = 4.5 in. 
In addition, the area of added steel within the distance s must not be less than 60bwS//y, = 60 X 
12 X 4.5/60,000 = 0.054 in2• For convenience, No. 3 (No. 10) stirrups will be used for this 
purpose also, providing an area of 0.22 in2 in the distances. The placement of the four extra 
stirrups is shown in Fig. 5.23e. 

5.13 BAR SPLICES 

In general, reinforcing bars are stocked by suppliers in lengths of 60 ft for bars from 
No. 5 to No. 18 (No. 16 to No. 57) and in 20 or 40 ft lengths for smaller sizes. For this 
reason, and because it is often more convenient to work with shorter bar lengths, it is 
frequently necessary to splice bars in the field. Splices in reinforcement at points of 
maximum stress should be avoided, and when splices are used, they should be 
staggered, although neither condition is practical, for example, in compression splices 
in columns. 

Splices for No. 11 (No. 36) bars and smaller are usually made simply by lapping 
the bars a sufficient distance to transfer stress by bond from one bar to the other. The 



BOND, ANCHORAGE, AND DEVELOPMENT LENGTH 205 

lapped bars are usually placed in contact and lightly wired so that they stay in position 
as the concrete is placed. Alternatively, splicing may be accomplished by welding or 
by sleeves or mechanical devices. ACI Code 12.14.2 prohibits use of lapped splices 
for bars larger than No. 11 (No. 36), except that No. 14 and No. 18 (No. 43 and 
No. 57) bars may be lapped in compression with No. 11 (No. 36) and smaller bars per 
ACI Code 12.16.2 and 15.8.2.3. For bars that will carry only compression, it is possi
ble to transfer load by end bearing of square cut ends, if the bars are accurately held 
in position by a sleeve or other device. 

Lap splices of bars in bundles are based on the lap splice length required for 
individual bars within the bundle but must be increased in length by 20 percent for 
three-bar bundles and by 33 percent for four-bar bundles because of the reduced effec
tive perimeter. Individual bar splices within a bundle should not overlap, and entire 
bundles must not be lap-spliced. 

According to ACI Code 12.14.3, welded splices must develop at least 125 percent 
of the specified yield strength of the bar. The same requirement applies to full mechan
ical connections. This ensures that an overloaded spliced bar would fail by ductile 
yielding in the region away from the splice, rather than at the splice where brittle 
failure is likely. Mechanical connections of No. 5 (No. 16) and smaller bars not meet
ing this requirement may be used at points of less than maximum stress, in accordance 
with ACI Code 12.15.5. 

a. Lap Splices in Tension 

The required length of lap for tension splices is stated in terms of the development 
length Id. In the process of calculating Id, the usual modification factors are applied 
except that the reduction factor for excess reinforcement should not be applied 
because that factor is already accounted for in the splice specification. 

Two different classifications of lap splices are established, corresponding to 
the minimum length of lap required: a Class A splice requires a lap of I.Old, and a 
Class B splice requires a lap of 1.3/d. In either case, a minimum length of 12 in. 
applies. For Class B splices, the 12 in. minimum applies to 1.3/d, not to the value 
of Id used to calculate the lap length. Lap splices, in general, must be Class B 
splices, according to ACI Code 12.15.2, except that Class A splices are allowed 
when the area of reinforcement provided is at least twice that required by analysis 
over the entire length of the splice and when one-half or less of the total reinforce
ment is spliced within the required lap length. The effect of these requirements is 
to encourage designers to locate splices away from regions of maximum stress, to 
a location where the actual steel area is at least twice that required by analysis, and 
to stagger splices. 

Spiral reinforcement is spliced with a lap of 48db for uncoated bars and 72db for 
epoxy-coated bars, in accordance with ACI Code 7.10.4.5. The lap for epoxy-coated 
bars is reduced to 48db if the bars are anchored with a standard stirrup or tie hook. 

b. Compression Splices 

Reinforcing bars in compression are spliced mainly in columns, where bars are most 
often terminated just above each floor or every other floor. This is done partly for 
construction convenience, to avoid handling and supporting very long column bars, 
but it is also done to permit column steel area to be reduced in steps, as loads become 
lighter at higher floors. 
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Compression bars may be spliced by lapping, by direct end bearing, or by welding 
or mechanical devices that provide positive connection. The minimum length of lap for 
compression splices is set according to ACI Code 12.16: 

For bars with/;, ::; 60,000 psi 

For bars with/;, > 60,000 psi 

0.0005.t_;,db 

(0.0009/y - 24 )db 

but not less than 12 in. For J; less than 3000 psi, the required lap is increased by one
third. When bars of different size are lap-spliced in compression, the splice length is 
to be the larger of the development length of the larger bar and the splice length of the 
smaller bar. In exception to the usual restriction on lap splices for large-diameter bars, 
No. 14 and No. 18 bars may be lap-spliced to No. 11 and smaller bars. 

Direct end bearing of the bars has been found by test and experience to be an 
effective means for transmitting compression. In such a case, the bars must be held 
in proper alignment by a suitable device. The bar ends must terminate in flat sur
faces within 1.5° of a right angle, and the bars must be fitted within 3° of full bearing 
after assembly, according to ACI Code 12.16.4. Ties, closed stirrups, or spirals must 
be used. 

c. Column Splices 

Lap splices, butt-welded splices, mechanical connections, or end-bearing splices may 
be used in columns, with certain restrictions. Reinforcing bars in columns may be 
subjected to compression or tension, or, for different load combinations, both tension 
and compression. Accordingly, column splices must conform in some cases to the 
requirements for compression splices only or tension splices only or to requirements 
for both. ACI Code 12.17 requires that a minimum tension capacity be provided in 
each face of all columns, even where analysis indicates compression only. Ordinary 
compressive lap splices provide sufficient tensile resistance, but end-bearing splices 
may require additional bars for tension, unless the splices are staggered. 

For lap splices, where the bar stress due to factored loads is compression, column 
lap splices must conform to the requirements presented in Section 5.13b for com
pression splices. Where the stress is tension and does not exceed 0.5Jy, lap splices 
must be Class B if more than one-half the bars are spliced at any section, or Class A 
if one-half or fewer are spliced and alternate lap splices are staggered by ld. If the 
stress is tension and exceeds 0.5.[y, then lap splices must be Class B, according to 
ACI Code. 

If lateral ties are used throughout the splice length having an area of at least 
0.0015hs in both directions, wheres is the spacing of ties and his the overall thick
ness of the member, the required splice length may be multiplied by 0.83 but must not 
be less than 12 in. If spiral reinforcement confines the splice, the length required may 
be multiplied by 0.75 but again must not be less than 12 in. 

End-bearing splices, as described above, may be used for column bars stressed 
in compression, if the splices are staggered or additional bars are provided at splice 
locations. The continuing bars in each face must have a tensile strength of not less than 
0.25.[y times the area of reinforcement in that face. 

As mentioned in Section 5.13b, column splices are commonly made just above 
a floor. However, for frames subjected to lateral loads, a better location is within the 
center half of the column height, where the moments due to lateral loads are much 
lower than at floor level. Such placement is mandatory for columns in "special moment 
frames" designed for seismic loads, as will be discussed in Chapter 20. 



BOND, ANCHORAGE, AND DEVELOPMENT LENGTH 207 

EXAMPLE 5.5 Compression splice of column reinforcement. In reference to Fig. 5.8, four No. 11 (No. 36) 
column bars from the floor below are to be lap-spliced with four No. 10 (No. 32) column bars 
from above, and the splice is to be made just above a construction joint at floor level. The 
column, measuring 12 in. X 21 in. in cross section, will be subject to compression only for all 
load combinations. Transverse reinforcement consists of No. 4 (No. 13) ties at 16 in. spacing. 
All vertical bars may be assumed to be fully stressed. Calculate the required splice length. 
Material strengths areJ;. = 60,000 psi andf,'. = 4000 psi. 

SOLUTION. The length of the splice must be the larger of the development length of the No. 11 
(No. 36) bars and the splice length of the No. 10 (No. 32) bars. For the No. 11 (No. 36) bars, 
the development length is equal to the larger of the values obtained with Eqs. (5.10a) and 
(5.10b): 

0.02 X 60,000 . 
V400Q 1.41 = 27 Ill. 

ldc = 0.0003 X 60,000 X 1.41 = 25 in. 

The first criterion controls. No modification factors apply. For the No. 10 (No. 32) bars, the 
compression splice length is 0.0005 X 60,000 X 1.27 = 38 in. In the check for use of the 
modification factor for tied columns, the critical column dimension is 21 in., and the required 
effective tie area is thus 0.0015 X 21 X 16 = 0.50 in2• The No. 4 (No. 13) ties provide an 
area of only 0.20 X 2 = 0.40 in2, so the reduction factor of 0.83 cannot be applied to the 
splice length. Thus the compression splice length of 38 in., which exceeds the development 
length of 27 in. for the No. 11 (No. 36) bars, controls here, and a lap splice of 38 in. is 
required. Note that if the spacing of the ties at the splice were reduced to 12.8 in. or less (say 
12 in.), the required lap would be reduced to 38 X 0.83 = 32 in. This would save steel, and, 
although placement cost would increase slightly, would probably represent the more 
economical design. 
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PROBLEMS 
5.1. The short beam shown in Fig. PS.I cantilevers from a supporting column at the 

left. It must carry a calculated dead load of 2.0 kips/ft including its own weight 
and a service live load of 2.6 kips/ft. Tensile flexural reinforcement consists of 
two No. 11 (No. 36) bars at a 21 in. effective depth. Transverse No. 3 (No. 10) 
U stirrups with 1.5 in. cover are provided at the following spacings from the 
face of the column: 4 in., 3 at 8 in., 5 at 10.5 in. 

2" clear 

(a) If the flexural and shear steel use_[y = 60,000 psi and if the beam uses light
weight concrete havingJ; = 4000 psi, check to see if proper development 
length can be provided for the No. 11 (No. 36) bars. Use the simplified 
development length equations. 

(b) Recalculate the required development length for the beam bars using the 
basic Eq. (5.4). Comment on your results. 

2 No. 11 (No. 36) 

/ ,-- ~--------- - -------i- t 
3" clear __j -----,. '4------ +- 21" 2 

t i 
4" □ 11" 

h-- 20" I 96"····~ 
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(c) If the column material strengths are .{y = 60,000 psi and J; = 5000 psi 
(normalweight concrete), check to see if adequate embedment can be pro
vided within the column for the No. 11 (No. 36) bars. If hooks are required, 
specify detailed dimensions. 

5.2. The beam shown in Fig. P5.2 is simply supported with a clear span of 24.75 ft 
and is to carry a distributed dead load of 1.05 kips/ft including its own weight 
and live load of 1.62 kips/ft, unfactored, in service. The reinforcement consists 
of five No. 10 (No. 32) bars at a 16 in. effective depth, two of which are to be 
discontinued where no longer needed. Material strengths specified are .{y = 
60,000 psi andJ; = 5000 psi. No. 3 (No. 10) stirrups are used with a cover of 
1.5 in. at spacing less than ACI Code maximum. 

5.3. 

(a) Calculate the point where two bars can be discontinued. 
(b) Check to be sure that adequate embedded length is provided for continued 

and discontinued bars. 
(c) Check special requirements at the support, where Mu = 0. 
(d) If No. 3 (No. 10) bars are used for transverse reinforcement, specify special 

reinforcing details in the vicinity where the No. 10 (No. 32) bar is cut off. 
(e) Comment on the practical aspects of the proposed design. Would you 

recommend cutting off the steel as suggested? Could three bars be dis
continued rather than two? 

2 No. 1 O (No. 32) 

3 No. 1 O (No. 32) r-22"1 

fT□ 19" 16" 

D ..... 

Figure P5.3 shows the column reinforcement for a 16 in. diameter concrete 
column, with.{y = 75,000 psi and/; = 8000 psi. Analysis of the building frame 
indicates a required As = 7.30 in2 in the lower column and 5.80 in2 in the upper 
column. Spiral reinforcement consists of a i in. diameter rod with a 2 in. pitch. 
Column bars are to be spliced just above the construction joint at the floor level, 
as shown in the sketch. Calculate the minimum permitted length of splice. 

No. 3 (No. 1 O) 
spiral at 2" pitch 

6 No. 9 (No. 29) bars 

6 No. 1 O (No. 32) bars 
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FIGUREP5.4 

5.4. The short cantilever shown in Fig. P5.4 carries a heavy concentrated load 6 in. 
from its outer end. Flexural analysis indicates that three No. 8 (No. 25) bars 
are required, suitably anchored in the supporting wall and extending to a point 
no closer than 2 in. from the free end. The bars will be fully stressed to Jy at 
the fixed support. Investigate the need for hooks and transverse confinement 
steel at the right end of the member. Material strengths are ly = 60,000 psi and 
1; = 4000 psi. If hooks and transverse steel are required, show details in a sketch. 

Pu 6" 

r 1 1 2" cover 

----------'-~ 

□rrl" J_J_ 2 

Minimum 2" cover ---.I f-
---- 40" .I 

~ 10"-l 

5.5. A continuous-strip wall footing is shown in cross section in Fig. P5.5. It is 
proposed that tensile reinforcement be provided using No. 8 (No. 25) bars at 
16 in. spacing along the length of the wall, to provide a bar area of 0.59 in2/ft. 
The bars have strength Jy = 60,000 psi, and the footing concrete has 1; = 
4000 psi. The critical section for bending is assumed to be at the face of the 
supported wall, and the effective depth to the tensile steel is 12 in. Check to 
ensure that sufficient development length is available for the No. 8 (No. 25) 
bars, and if hooks are required, sketch details of the hooks, giving dimensions. 

Note: If hooks are required for the No. 8 (No. 25) bars, prepare an 
alternate design using bars having the same area per foot but of smaller 
diameter such that hooks could be eliminated; use the largest bar size possible 
to minimize the cost of steel placement. 

FIGURE P5.5 ,..__ __ 66"--____., 

12" 
27"___,,,..1,-.-., 1 ·--- 27" 

Wall 

--------- ~16" 

No. 8 (No. 25) bars at 16" spacing 

5.6. A closure strip is to be used between two precast slabs (Fig. P5.6). The slabs 
contain No. 5 (No. 16) bars spaced at 10 in. Determine the minimum width of 
the closure strip for use with headed bars spliced within the strip. Abrg = 4Ab. 
Material strengths are/'y = 60,000 psi andl; = 5000 psi. The maximum size 
aggregate = ¾ in. Assume head thickness = 0.5 in. 
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FIGURE P5.7 

BOND, ANCHORAGE, AND DEVELOPMENT LENGTH 211 

( 

Closure strip 

Precast slab 

5.7. The continuous beam shown in Fig. P5.7 has been designed to carry a serv
ice dead load of 2.25 kips/ft including self-weight and service live load of 
3.25 kips/ft. Flexural design has been based on ACI moment coefficients of it 
and ft at the face of support and midspan, respectively, resulting in a concrete 
section with b = 14 in. and d = 22 in. Negative reinforcement at the support 
face is provided by four No. 10 (No. 32) bars, which will be cut off in pairs 
where no longer required by the ACI Code. Positive bars consist of four No. 8 
(No. 25) bars, which will also be cut off in pairs. Specify the exact point of cut
off for all negative and positive steel. Specify also any supplementary web 
reinforcement that may be required. Check for satisfaction of ACI Code 
requirements at the point of inflection, and suggest modifications of 
reinforcement if appropriate. Material strengths are f;, = 60,000 psi and J; = 
4000 psi. 

4 No. 1 O (No. 32) 4 No. 1 O (No. 32) 
O" 

--------------r------- _1 __________ -------- ---

0" 4 No. 8 (No. 25) 

I+------ 24'-0" ------

5.8. Figure P5.8 shows a deep transfer girder that carries two heavy column loads 
at its outer ends from a high-rise concrete building. Ground-floor columns 
must be offset 8 ft as shown. The loading produces an essentially constant 
moment (neglect self-weight of girder) calling for a concrete section with 
b = 22 in. and b = 50 in., with main tensile reinforcement at the top of the 
girder comprised of 12 No. 11 (No. 36) bars in three layers of four bars each. 
The maximum available bar length is 60 ft, so tensile splices must be provided. 
Design and detail all splices, following ACI Code provisions. Splices will be 
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FIGUREPS.8 Pu= 465 kips Pu= 465 kips 

l l 
12 No. 11 (No. 36) (3 rows) 

---- ------------------------------- ------------------------- ---------------d= 5011 

--------58'--------

staggered, with no more than four bars spliced at any section. Also, investigate 
the need for special anchorage at the outer ends of main reinforcement, and 
specify details of special anchorage if required. Material strengths are Jy = 
60,000 psi andJ; = 5000 psi. 



Serviceability 

6.1 INTRODUCTION 

Chapters 3, 4, and 5 have dealt mainly with the strength design of reinforced concrete 
beams. Methods have been developed to ensure that beams will have a proper safety 
margin against failure in flexure or shear, or due to inadequate bond and anchorage of 
the reinforcement. The member has been assumed to be at a hypothetical overload 
state for this purpose. 

It is also important that member performance in normal service be satisfactory, 
when loads are those actually expected to act, i.e., when load factors are 1.0. This is 
not guaranteed simply by providing adequate strength. Service load deflections under 
full load may be excessively large, or long-term deflections due to sustained loads may 
cause damage. Tension cracks in beams may be wide enough to be visually disturb
ing, and in some cases may reduce the durability of the structure. These and other 
questions, such as vibration or fatigue, require consideration. 

Serviceability studies are carried out based on elastic theory, with stresses in 
both concrete and steel assumed to be proportional to strain. The concrete on the 
tension side of the neutral axis may be assumed uncracked, partially cracked, or fully 
cracked, depending on the loads and material strengths (see Section 3.3). 

In early reinforced concrete designs, questions of serviceability were dealt with 
indirectly, by limiting the stresses in concrete and steel at service loads to the rather 
conservative values that had resulted in satisfactory performance. In contrast, with 
current design methods that permit more slender members through more accurate 
assessment of capacity, and with higher-strength materials further contributing to the 
trend toward smaller member sizes, such indirect methods no longer work. The current 
approach is to investigate service load cracking and deflections specifically, after 
proportioning members based on strength requirements. 

In this chapter, methods will be developed to ensure that the cracks associated 
with flexure of reinforced concrete beams are narrow and well distributed, and that 
short and long-term deflections at loads up to the full service load are not objection
ably large. 

6.2 CRACKING IN FLEXURAL MEMBERS 

All reinforced concrete beams crack, generally starting at loads well below service 
level, and possibly even prior to loading due to restrained shrinkage. Flexural cracking 
due to loads is not only inevitable, but actually necessary for the reinforcement to be 
used effectively. Prior to the formation of flexural cracks, the steel stress is no more 
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than n times the stress in the adjacent concrete, where n is the modular ratio Es/ Ee For 
materials common in current practice, n is approximately 8. Thus, when the concrete is 
close to its modulus of rupture of about 500 psi, the steel stress will be only 8 X 500 = 
4000 psi, far too low to be very effective as reinforcement. At normal service loads, 
steel stresses 8 or 9 times that value can be expected. 

In a well-designed beam, flexural cracks are fine, so-called hairline cracks, 
almost invisible to the casual observer, and they permit little if any corrosion of the 
reinforcement. As loads are gradually increased above the cracking load, both the 
number and the width of cracks increase, and at service load level a maximum width 
of crack of about 0.016 in. is typical. If loads are further increased, crack widths 
increase further, although the number of cracks is more or less stable. 

Cracking of concrete is a random process, highly variable and influenced by 
many factors. Because of the complexity of the problem, present methods for predict
ing crack widths are based primarily on test observations. Most equations that have 
been developed predict the probable maximum crack width, which usually means that 
about 90 percent of the crack widths in the member are below the calculated value. 
However, isolated cracks exceeding twice the computed width can sometimes occur 
(Ref. 6.1). 

a. Variables Affecting Width of Cracks 

In the discussion of the importance of a good bond between steel and concrete in Section 
5.1, it was pointed out that if proper end anchorage is provided, a beam will not fail 
prematurely, even though the bond is destroyed along the entire span. However, crack 
widths will be greater than for an otherwise identical beam in which good resistance 
to slip is provided along the length of the span. In general, beams with smooth round 
bars will display a relatively small number of rather wide cracks in service, while 
beams with good slip resistance ensured by proper surface deformations on the bars 
will show a larger number of very fine, almost invisible cracks. Because of this 
improvement, reinforcing bars in current practice are always provided with surface 
deformations, the maximum spacing and minimum height of which are established by 
ASTM Specifications A615, A706, and A996. 

A second variable of importance is the stress in the reinforcement. Studies by 
Gergely and Lutz and others (Refs. 6.2 to 6.4) have confirmed that crack width is 
proportional to f/, where f. is the steel stress and n is an exponent that varies in the 
range from about 1.0 to 1.4. For steel stresses in the range of practical interest, say 
from 20 to 36 ksi, n may be taken equal to 1.0. The steel stress is easily computed 
based on elastic cracked-section analysis (Section 3.3b). Alternatively,f. may be taken 
equal to ~J;, according to ACI Code 10.6.4. 

Experiments by Broms (Ref. 6.5) and others have shown that both crack 
spacing and crack width are related to the concrete cover distance de, measured 
from the center of the bar to the face of the concrete. In general, increasing the 
cover increases the spacing of cracks and also increases crack width. Furthermore, 
the distribution of the reinforcement in the tension zone of the beam is important. 
Generally, to control cracking, it is better to use a larger number of smaller-diameter 
bars to provide the required As than to use the minimum number of larger bars, and 
the bars should be well distributed over the tensile zone of the concrete. For deep 
flexural members, this includes additional reinforcement on the sides of the web 
to prevent excessive surface crack widths above or below the level of the main 
flexural reinforcement. 



FIGURE6.1 
Geometric basis of crack 
width calculations. 
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b. Equations for Crack Width 

A number of expressions for maximum crack width have been developed based on the 
statistical analysis of experimental data. Two expressions that have figured promi
nently in the development of the crack control provisions in the ACI Code are those 
developed by Gergely and Lutz (Ref. 6.2) and Frosch (Ref. 6.4) for the maximum 
crack width at the tension face of a beam. They are, respectively, 

w = 0.076f3fs--¥iJ.. (6.1) 

and 

w = 2000 ~s {3✓ d; + (~)
2 

(6.2) 

where w = maximum width of crack, thousandth inches 
f. = steel stress at load for which crack width is to be determined, ksi 

Es = modulus of elasticity of steel, ksi 

The geometric parameters are shown in Fig. 6.1 and are as follows: 

de = thickness of concrete cover measured from tension face to center of bar 
closest to that face, in. 

{3 = ratio of distances from tension face and from steel centroid to neutral 
axis, equal to h2/h 1 

A = concrete area surrounding one bar, equal to total effective tension area of 
concrete surrounding reinforcement and having same centroid, divided 
by number of bars, in2 

s = maximum bar spacing, in. 

Equations (6.1) and (6.2), which apply only to beams in which deformed bars are used, 
include all the factors just named as having an important influence on the width of 
cracks: steel stress, concrete cover, and the distribution of the reinforcement in the 
concrete tensile zone. In addition, the factor f3 is added to account for the increase in 
crack width with distance from the neutral axis (see Fig. 6.lb). 

c. Cyclic and Sustained Load Effects 

Both cyclic and sustained loading account for increasing crack width. While there is 
a large amount of scatter in test data, results of fatigue tests and sustained loading tests 
indicate that a doubling of crack width can be expected with time (Ref. 6.1 ). Under 
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most conditions, the spacing of cracks does not change with time at constant levels of 
sustained stress or cyclic stress range. 

6.3 ACI CODE PROVISIONS FOR CRACK CONTROL 

In view of the random nature of cracking and the wide scatter of crack width mea
surements, even under laboratory conditions, crack width is controlled in the ACI Code 
by establishing a maximum center-to-center spacing s for the reinforcement closest to 
the surface of a tension member as a function of the bar stress under service condi
tions fs (in psi) and the clear cover from the nearest surface in tension to the surface 
of the flexural tension reinforcement cc 

5(
40,000) (40,000) s = 1 --- - 2.5cc::::; 12 ---

fs fs 
(6.3) 

The choice of clear cover cc, rather than the cover to the center of the bar de, was made 
to simplify design, since this allows s to be independent of bar size. As a consequence, 
maximum crack widths will be somewhat greater for larger bars than for smaller bars. 

As shown in Eq. (6.3), the ACI Code sets an upper limit on s of 12(40,000/fs). The 
stress fs is calculated by dividing the service load moment by the product of the area of 
reinforcement and the internal moment arm, as shown in Eq. (3.8). Alternatively, the 
ACI Code permits fs to be taken as two-thirds of the specified yield strength J;,. For 
members with only a single bar, s is taken as the width of the extreme tension face. 

Figure 6.2a compares the values of spacings obtained using Eqs. (6.1) and (6.2) 
for a beam containing No. 8 (No. 25) reinforcing bars, for fs = 40,000 psi, /3 = 1.2, 
and a maximum crack width w = 0.016 in., to the values calculated using Eq. (6.3). 
Equations (6.1) and (6.2) give identical spacings for two values of clear cover, but sig
nificantly different spacings for other values of cc Equation (6.3) provides a practical 
compromise between the values of s that are calculated using the two experimentally 
based expressions. The equation is plotted in Fig. 6.2b for fs = 26,667, 40,000, and 
50,000 psi, corresponding to ~J;, for Grade 40, 60, and 75 bars, respectively. 

ACI Code 10.6.5 points out that the limitation on s in Eq. (6.3) is not sufficient 
for structures subject to very aggressive exposure or designed to be watertight. In such 
cases "special investigations or precautions" are required. These include the use of 
expressions such as Eqs. (6.1) and (6.2) to determine the probable maximum crack 
width. Further guidance is given in Ref. 6.1. 

When concrete T beam flanges are in tension, as in the negative-moment region 
of continuous T beams, concentration of the reinforcement over the web may result in 
excessive crack width in the overhanging slab, even though cracks directly over the 
web are fine and well distributed. To prevent this, the tensile reinforcement should be 
distributed over the width of the flange, rather than concentrated. However, because of 
shear lag, the outer bars in such a distribution would be considerably less highly 
stressed than those directly over the web, producing an uneconomical design. As a 
reasonable compromise, ACI Code 10.6.6 requires that the tension reinforcement in such 
cases be distributed over the effective flange width or a width equal to one-tenth the span, 
whichever is smaller. If the effective flange width exceeds one-tenth of the span, some 
longitudinal reinforcement must be provided in the outer portions of the flange. The 
amount of such additional reinforcement is left to the discretion of the designer; it should 
at least be the equivalent of temperature reinforcement for the slab (see Section 13.3), and 
is often taken as twice that amount. 



FIGURE6.2 
Maximum bar spacing versus 
clear cover: (a) Comparison 
ofEqs. (6.1), (6.2), and 
(6.3) for w, = 0.016 in.,.fs = 
40,000 psi, f3 = 1.2, bar 
size = No. 8 (No. 25); (b) 
Eq. (6.3) for f, = 26,667, 
40,000, and 50,000 psi, 
corresponding to i/;, for 
Grades 40, 60, and 75 rein-
forcement, respectively. 
[Part (a) after Ref. 6.6.] 
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For beams with relatively deep webs, some reinforcement should be placed near 
the vertical faces of the web to control the width of cracks in the concrete tension zone 
above the level of the main reinforcement. Without such steel, crack widths in the web 
wider than those at the level of the main bars have been observed. According to ACI 
Code 10.6.7, if the total depth of the beam h exceeds 36 in., longitudinal "skin" 
reinforcement must be uniformly distributed along both side faces of the member for 
a distance h/2 nearest the flexural tension steel, as shown in Fig. 6.3. The spacing s 
between longitudinal bars or wires is as specified in Eq. (6.3). The size of the bars or 
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FIGURE6.3 
Skin reinforcement for 
flexural members with total 
depth h greater than 36 in. 
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wires is not specified, but as indicated in ACI Commentary 10.6.7, No. 3 to No. 5 
(No. 10 to No. 16) bars or welded wire reinforcement with a minimum area of0.1 in2 

per foot of depth are typically used. The contribution of the skin steel to flexural 
strength is usually disregarded, although it may be included in the strength calcula
tions if a strain compatibility analysis is used to establish the stress in the skin steel at 
the flexural failure load. 

Figure 6.2b provides a convenient design aid for determining the maximum 
center-to-center bar spacing as a function of clear cover for the usual case used in 
design, fs = ~J;,. From a practical point of view, it is even more helpful to know the 
minimum number of bars across the width of a beam stem that is needed to satisfy the 
ACI Code requirements for crack control. That number depends on side cover, as well 
as clear cover to the tension face, and is dependent on bar size. Table A.8 in Appendix A 
gives the minimum number of bars across a beam stem for two common cases, 2 in. 
clear cover on the sides and bottom, which corresponds to using No. 3 or No. 4 
(No. 10 or No. 13) stirrups, and 1 ½in.clear cover on the sides and bottom, representing 
beams in which no stirrups are used. 

EXAMPLE 6.1 Check crack control criteria. Figure 6.4 shows the main flexural reinforcement at midspan 
for a T girder in a high-rise building that carries a service load moment of 8630 in-kips. The 
clear cover on the side and bottom of the beam stem is 2¼ in. Determine if the beam meets the 
crack control criteria in the ACI Code. 

SOLUTION, Since the depth of the beam equals but does not exceed 36 in., skin reinforcement 
is not needed. To check the bar spacing criteria, the steel stress can be estimated closely by tak
ing the internal lever arm equal to the distance d - h1/2: 

8630 
= 37.3 ksi 

7.9 X 29.25 

(Alternately, the ACI Code permits using.f. = ~Jy, giving 40.0 ksi.) 



FIGURE6.4 
T beam for crack width 
determination in 
Example 6.1. 
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Using!, in Eq. (6.3) gives 

(
40,000) (40,000) . s = 15 ~ - 2.5cc = 15 

37
,
300 

- 2.5 X 2.25 = 10.5 m. 

By inspection, it is clear that this requirement is satisfied for the beam. If the results had been 
unfavorable, a redesign using a larger number of smaller-diameter bars would have been indi
cated. 

6.4 CONTROL OF DEFLECTIONS 

In addition to limitations on cracking, described in the preceding sections, it is usually 
necessary to impose certain controls on deflections of beams to ensure serviceability. 
Excessive deflections can lead to cracking of supported walls and partitions, ill-fitting 
doors and windows, poor roof drainage, misalignment of sensitive machinery and 
equipment, or visually offensive sag. It is important, therefore, to maintain control of 
deflections, in one way or another, so that members designed mainly for strength at 
prescribed overloads will also perform well in normal service. 

There are presently two approaches to deflection control. The first is indirect and 
consists in setting suitable upper limits on the span-depth ratio. This is simple, and it 
is satisfactory in many cases where spans, loads and load distributions, and member 
sizes and proportions fall in the usual ranges. Otherwise, it is essential to calculate 
deflections and to compare those predicted values with specific limitations that may 
be imposed by codes or by special requirements. 

It will become clear, in the sections that follow, that calculations can, at best, 
provide a guide to probable actual deflections. This is so because of uncertainties 
regarding material properties, effects of cracking, and load history for the member 
under consideration. Extreme precision in the calculations, therefore, is never justi
fied, because highly accurate results are unlikely. However, it is generally sufficient 
to know, for example, that the deflection under load will be about ½ in. rather than 
2 in., while it is relatively unimportant to know whether it will actually be i in. rather 
h 

I. 
t an 2 m. 
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The deflections of concern are generally those that occur during the normal 
service life of the member. In service, a member sustains the full dead load, plus some 
fraction or all of the specified service live load. Safety provisions of the ACI Code and 
similar design specifications ensure that, under loads up to the full service load, 
stresses in both steel and concrete remain within the elastic ranges. Consequently, 
deflections that occur at once upon application of load, the immediate deflections, can 
be calculated based on the properties of the uncracked elastic member, the cracked 
elastic member, or some combination of these (see Section 3.3). 

It was pointed out in Sections 2.8 and 2.11, however, that in addition to concrete 
deformations that occur immediately when load is applied, there are other deformations 
that take place gradually over an extended time. These time-dependent deformations 
are chiefly due to concrete creep and shrinkage. As a result of these influences, 
reinforced concrete members continue to deflect with the passage of time. Long-term 
deflections continue over a period of several years, and may eventually be 2 or more 
times the initial elastic deflections. Clearly, methods for predicting both instantaneous 
and time-dependent deflections are essential. 

6.5 IMMEDIATE DEFLECTIONS 

Elastic deflections can be expressed in the general form 

!(loads, spans, supports) 
d=---------

EI 

where EI is the flexural rigidity andf(loads, spans, supports) is a function of the par
ticular load, span, and support arrangement. For instance, the deflection of a uniformly 
loaded simple beam is 5wl4/384El, so thatf = 5wl4/384. Similar deflection equations 
have been tabulated or can easily be computed for many other loadings and span 
arrangements, simple, fixed, or continuous, and the corresponding f functions can be 
determined. The particular problem in reinforced concrete structures is therefore the 
determination of the appropriate flexural rigidity EI for a member consisting of two 
materials with properties and behavior as widely different as steel and concrete. 

If the maximum moment in a flexural member is so small that the tensile stress 
in the concrete does not exceed the modulus of rupture f,., no flexural tension cracks 
will occur. The full, uncracked section is then available for resisting stress and 
providing rigidity. This stage of loading has been analyzed in Section 3.3a. In agree
ment with this analysis, the effective moment of inertia for this low range of loads is 
that of the uncracked transformed section Jut• and E is the modulus of concrete Ee as 
given by Eq. (2.3). Correspondingly, for this load range, 

(a) 

At higher loads, flexural tension cracks are formed. In addition, if shear stresses 
exceed vc, [see Eq. (4.3)] and web reinforcement is employed to resist them, diagonal 
cracks can exist at service loads. In the region of flexural cracks, the position of the 
neutral axis varies: directly at each crack it is located at the level calculated for the 
cracked transformed section (see Section 3.3b); midway between cracks it dips to a 
location closer to that calculated for the uncracked transformed section. Correspond
ingly, flexural-tension cracking causes the effective moment of inertia to be that of the 
cracked transformed section in the immediate neighborhood of flexural-tension 



FIGURE6.5 
Variation of I, with moment 
ratio. 
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cracks, and closer to that of the uncracked transformed section midway between 
cracks, with a gradual transition between these extremes. 

The value of the local moment of inertia varies in those portions of the beam in 
which the bending moment exceeds the cracking moment of the section 

M = f,lur 
er Yt (6.4) 

where y, is the distance from the neutral axis to the tension face andf,. is the modulus 
of rupture. The exact variation of/ depends on the shape of the moment diagram and 
on the crack pattern, and is difficult to determine. This makes an exact deflection 
calculation impossible. 

However, extensively documented studies (Ref. 6.7) have shown that deflec
tions f!..;e occurring in a beam after the maximum moment Ma has reached and 
exceeded the cracking moment Mer can be calculated by using an effective moment 
of inertia le; that is, 

(b) 

where 

(6.5) 

and le, is the moment of inertia of the cracked transformed section. 
In Fig. 6.5, the effective moment of inertia, given by Eq. (6.5), is plotted as a 

function of the ratio MJMe, (the reciprocal of the moment ratio used in the equation). 
It is seen that, for values of maximum moment Ma less than the cracking moment Mer• 
that is, Ma/Me, less than 1.0, le= Ju,· With increasing values of Ma, le approaches le,; and 
for values of Ma/Me, of 3 or more, le is almost the same as le,· Typical values of 
Ma/Mer at full service load range from about 1.5 to 3. 

Figure 6.6 shows the growth of deflections with increasing moment for a simple
span beam and illustrates the use of Eq. (6.5). For moments no larger than Mc,,, deflec
tions are practically proportional to moments, and the deflection at which cracking 
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FIGURE6.6 
Deflection of a reinforced 
concrete beam. 
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begins is obtained from Eq. (a) with M = Mc,· At larger moments, the effective moment 
of inertia le becomes progressively smaller, according to Eq. (6.5), and deflections are 
found by Eq. (b) for the load level of interest. The moment M2 might correspond to the 
full service load, for example, while the moment M1 would represent the dead load 
moment for a typical case. A moment-deflection curve corresponding to the line EJc, 
represents an upper bound for deflections, consistent with Fig. 6.5, except that at loads 
somewhat beyond the service load, the nonlinear response of steel or concrete or both 
causes a further nonlinear increase in deflections. 

Note that to calculate the increment of deflection due to live load, causing a 
moment increase M2 - M1, a two-step computation is required: the first for deflection 
A2 due to live and dead load, and the second for deflection A1 due to dead load alone, 
each with the appropriate value of le. Then the deflection increment due to live load is 
found, equal to A2 - A1. 

Most reinforced concrete spans are continuous, not simply supported. The 
concepts just introduced for simple spans can be applied, but the moment diagram for 
a given span will include both negative and positive regions, reflecting the rotational 
restraint provided at the ends of the spans by continuous frame action. The effective 
moment of inertia for a continuous span can be found by a simple averaging proce
dure, according to the ACI Code, that will be described in Section 6.7c. 

A fundamental problem for continuous spans is that although the deflections are 
based on the moment diagram, that moment diagram depends, in turn, on the flexural 
rigidity EI for each member of the frame. The flexural rigidity depends on the extent 
of cracking, as has been demonstrated. Cracking, in turn, depends on the moments; 
which are to be found. The circular nature of the problem is evident. 

One could use an iterative procedure, initially basing the frame analysis on 
uncracked concrete members, determining the moments, calculating effective EI terms 
for all members, then recalculating moments, adjusting the EI values, etc. The process 
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could be continued for as many iterations as needed, until changes are not significant. 
However, such an approach would be expensive and time-consuming, even with 
computer use. 

Usually, a very approximate approach is adopted. Member flexural stiffnesses for 
the frame analysis are based simply on properties of uncracked rectangular concrete 
cross sections. This can be defended by noting that the moments in a continuous frame 
depend only on the relative values of EI in its members, not the absolute values. Hence, 
if a consistent assumption, i.e., uncracked section, is used for all members, the results 
should be valid. Although cracking is certainly more prevalent in beams than in 
columns, thus reducing the relative EI for the beams, this is compensated to a large 
extent, in typical cases, by the stiffening effect of the flanges in the positive bending 
regions of continuous T beam construction. This subject is discussed at greater length 
in Section 12.5. 

6.6 DEFLECTIONS DUE TO LONG-TERM LOADS 

Initial deflections are increased significantly if loads are sustained over a long period 
of time, due to the effects of shrinkage and creep. These two effects are usually 
combined in deflection calculations. Creep generally dominates, but for some types of 
members, shrinkage deflections are large and should be considered separately (see 
Section 6.8). 

It was pointed out in Section 2.8 that creep deformations of concrete are directly 
proportional to the compressive stress up to and beyond the usual service load range. 
They increase asymptotically with time and, for the same stress, are larger for low
strength than for high-strength concretes. The ratio of additional time-dependent strain 
to initial elastic strain is given by the creep coefficient Ccu (see Table 2.2). 

For a reinforced concrete beam, the long-term deformation is much more com
plicated than for an axially loaded cylinder, because while the concrete creeps under 
sustained load, the steel does not. The situation in a reinforced concrete beam is illus
trated by Fig. 6.7. Under sustained load, the initial strain E; at the top face of the beam 
increases, due to creep, by the amount E1, while the strain Es in the steel is essentially 
unchanged. Because the rotation of the strain distribution diagram is therefore about a 
point at the level of the steel, rather than about the cracked elastic neutral axis, the 
neutral axis moves down as a result of creep, and 

'Pt Et -<-
'Pi E; 

(a) 

demonstrating that the usual creep coefficients cannot be applied to initial curvatures 
to obtain creep curvatures (hence deflections). 

The situation is further complicated. Due to the lowering of the neutral axis asso
ciated with creep (see Fig. 6.7b) and the resulting increase in compression area, the 
compressive stress required to produce a given resultant C to equilibrate T = Asfs is 
less than before, in contrast to the situation in a creep test of a compressed cylinder, 
because the beam creep occurs at a gradually diminishing stress. On the other hand, 
with the new lower neutral axis, the internal lever arm between compressive and tensile 
resultant forces is less, calling for an increase in both resultants for a constant moment. 
This, in turn, will require a small increase in stress, and hence strain, in the steel; thus, 
Es is not constant as assumed originally. 

Because of such complexities, it is necessary in practice to calculate additional, 
time-dependent deflections of beams due to creep (and shrinkage) using a simplified, 
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FIGURE 6.7 
Effect of concrete creep on 
curvature: (a) beam cross 
section; ( b) strains; 
( c) stresses and forces. 
(Adapted from Ref 6.8.) 
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empirical approach by which the initial elastic deflections are multiplied by a factor AL\ to 
obtain the additional long-time deflections. Values of AL\ for use in design are based on 
long-term deflection data for reinforced concrete beams (Refs. 6.8 to 6.11 ). Thus 

(6.6) 

where ii1 is the additional long-term deflection due to the combined effect of creep and 
shrinkage and ii; is the initial elastic deflection calculated by the methods described in 
Section 6.5. 

The coefficient AL\ depends on the duration of the sustained load. It also depends 
on whether the beam has only reinforcement As on the tension side, or whether 
additional longitudinal reinforcement A; is provided on the compression side. In the 
latter case, the long-term deflections are much reduced. This is so because when no 
compression reinforcement is provided, the compression concrete is subject to 
unrestrained creep and shrinkage. On the other hand, since steel is not subject to creep, 
if additional bars are located close to the compression face, they will resist and thereby 
reduce the amount of creep and shrinkage and the corresponding deflection (Ref. 6.11 ). 
Compression steel may be included for this reason alone. Specific values of AL\, used 
to account for the influence of creep and compression reinforcement, will be given in 
Section 6. 7. 

If a beam carries a certain sustained load W (e.g., the dead load plus the average 
traffic load on a bridge) and is subject to a short-term heavy live load P (e.g., the 
weight of an unusually heavy vehicle), the maximum total deflection under this com
bined loading is obtained as follows: 

1. Calculate the instantaneous deflection ii;w caused by the sustained load W by 
methods given in Section 6.5. 

2. Calculate the additional long-term deflection caused by W, that is, 

iitw = AL\ii;w 

3. Then the total deflection caused by the sustained part of the load is 

aw = ii;w + atw 

4. In calculating the additional instantaneous deflection caused by the short-term 
load P, account must be taken of the fact that the load-deflection relation after 
cracking is nonlinear, as illustrated by Fig. 6.6. Hence 

ii;p = ai(w+p) - ii;w 



FIGURE6.8 
Effect of load history on 
deflection of a building 
girder. 
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where A;(w+p) is the total instantaneous deflection that would be obtained if Wand 
P were applied simultaneously, calculated by using le determined for the moment 
caused by W + P. 

5. Then the total deflection under the sustained load plus heavy short-term load is 

A= Aw+ A;p 

In calculations of deflections, careful attention must be paid to the load history, 
i.e., the time sequence in which loads are applied, as well as to the magnitude of the 
loads. The short-term peak load on the bridge girder just described might be applied 
early in the life of the member, before time-dependent deflections had taken place. 
Similarly, for buildings, heavy loads such as stacked material are often placed during 
construction. These temporary loads may be equal to, or even greater than, the design 
live load. The state of cracking will correspond to the maximum load that was carried, 
and the sustained load deflection, on which the long-term effects are based, would 
correspond to that cracked condition. le for the maximum load reached should be used 
to recalculate the sustained load deflection before calculating long-term effects. 

This will be illustrated referring to Fig. 6.8, showing the load-deflection plot for 
a building girder that is designed to carry a specified dead and live load. Assume first 
that the dead and live loads increase monotonically. As the full dead load Wd is 
applied, the load deflection curve follows the path 0-1, and the dead load deflection 
Ad is found using le1 calculated from Eq. (6.5), with Ma = Md. The time-dependent 
effect of the dead load would be A~Ad. As live load is then applied, path 1-2 would 
be followed. Live load deflection A1 would be found in two steps, as described in 
Section 6.5, first finding Ad+l based on le2, with Ma in Eq. (6.5) equal to Md+z, and 
then subtracting dead load deflection Ad. 

If, on the other hand, short-term construction loads were applied, then 
removed, the deflection path 1-2-3 would be followed. Then, under dead load only, 

Eclut Ecle1 Ecle2 

I I I 
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TABLE 6.1 

the resulting deflection would be Lld. Note that this deflection can be found in one 
step using WJ, but with Ie2 corresponding to the maximum load reached. The long
term deflection now would be At,ilJ, significantly larger than before. Should the full 
design live load then be applied, the deflection would follow path 3-4, and the live 
load deflection would be less than for the first case. It, too, can be calculated by a 
simple one-step calculation using W1 alone, in this case, and with moment of inertia 
equal to Ie2• 

Clearly, in calculating deflections, the engineer must anticipate, as nearly as 
possible, both the magnitude and time sequence of the loadings. Although long-term 
deflections are often calculated assuming monotonic loading, with both immediate 
and long-term effects of dead load occurring before application of live load, in many 
cases this is not realistic. 

6. 7 ACI CODE PROVISIONS FOR CONTROL OF DEFLECTIONS 

a. Minimum Depth-Span Ratios 

As pointed out in Section 6.4, two approaches to deflection control are in current 
use, both acceptable under the provisions of the ACI Code, within prescribed 
limits. The simpler of these is to impose restrictions on the minimum member 
depth h, relative to the span l, to ensure that the beam will be sufficiently stiff that 
deflections are unlikely to cause problems in service. Deflections are greatly 
influenced by support conditions (e.g., a simply supported uniformly loaded beam 
will deflect 5 times as much as an otherwise identical beam with fixed supports), 
so minimum depths must vary depending on conditions of restraint at the ends of 
the spans. 

According to ACI Code 9.5.2, the minimum depths of Table 6.1 apply to one
way construction not supporting or attached to partitions or other construction likely 
to be damaged by large deflections, unless computation of deflections indicates a 
lesser depth can be used without adverse effects. Values given in Table 6.1 are to be 
used directly for normalweight concrete with we = 145 pcf and reinforcement with 
J;, = 60,000 psi. For members using lightweight concrete with density in the range 
from 90 to 115 pcf, the values of Table 6.1 should be multiplied by 1.65 - 0.005wc 2: 

1.09. For yield strengths other than 60,000 psi, the values should be multiplied by 
0.4 + Jy/100,000. 

Minimum thickness of nonprestressed beams or one-way slabs unless deflections are 
computed 

Minimum Thickness h 

Member Simply One End Both Ends 
Supported Continuous Continuous Cantilever 

Members Not Supporting or Attached to Partitions or Other 
Construction Likely to Be Damaged by Large Deflections 

Solid one-way slabs 1/20 1/24 1/28 1/10 

Beams or ribbed one-way slabs 1/16 1/18.5 l/21 1/8 
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b. Calculation of Immediate Deflections 

When there is need to use member depths shallower than are permitted by Table 6.1, 
or when members support construction that is likely to be damaged by large deflec
tions, or for prestressed members, deflections must be calculated and compared with 
limiting values (see Section 6.7e). The calculation of deflections, when required, 
proceeds along the lines described in Sections 6.5 and 6.6. For design purposes, the 
moment of the uncracked transformed section Jut can be replaced by that of the gross 
concrete section lg, neglecting reinforcement, without serious error. With this simplifi
cation, Eqs. (6.4) and (6.5) are replaced by the following: 

and 

J,.Ig 
Mc,=

Y1 

The modulus of rupture is to be taken equal to 

fr= 7.5AVJ; 

(6.7) 

(6.8) 

(6.9a) 

As explained in Section 4.5a, in accordance with ACI Code 8.6.1, A 1.0 for 
normalweight concrete, 0.85 for sand-lightweight concrete, and 0.75 for all-lightweight 
concrete. If the splitting tensile strength of the concretefc1 is known, A = fci/(6.7\ll:) :s: 
1.0, and Eq. (6.9a) becomes 

c. Continuous Spans 

-r 5 lei 
Jr= 7. - = l.12fct 

6.7 
(6.9b) 

For continuous spans, ACI Code 9.5.2 calls for a simple average of values obtained 
from Eq. (6.8) for the critical positive and negative-moment sections, i.e., 

(6.10a) 

where fem is the effective moment of inertia for the midspan section and lei and Ie2 are 
those for the negative-moment sections at the respective beam ends, each calculated from 
Eq. (6.8) using the applicable value of Ma. It is shown in Ref. 6.12 that a somewhat 
improved result can be had for continuous prismatic members using a weighted average 
for beams with both ends continuous of 

le= 0.70/em + 0.15(Ie1 + Ie2) 

and for beams with one end continuous and the other simply supported of 

fe = 0.85/em + 0.15/el 

(6.10b) 

(6.10c) 

where lei is the effective moment of inertia at the continuous end. The ACI Code, as 
an option, also permits use of le for continuous prismatic beams to be taken equal to 
the value obtained from Eq. (6.8) at midspan; for cantilevers, le calculated at the 
support section may be used. 

After le is found, deflections may be computed with due regard for rotations of 
the tangent to the elastic curve at the supports. In general, in computing the maximum 
deflection, the loading producing the maximum positive moment may be used, and the 
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FIGURE6.9 
Time variation of [ for long
term deflections. 
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midspan deflection may normally be used as an acceptable approximation of the 
maximum deflection. Coefficients for deflection calculation such as derived by 
Branson in Ref. 6.7 are helpful. For members where supports may be considered fully 
fixed or hinged, handbook equations for deflections may be used. 

d. Long-Term Deflection Multipliers 

On the basis of empirical studies (Refs. 6.7, 6.9, and 6.11), ACI Code 9.5.2 specifies 
that additional long-term deflections A1 due to the combined effects of creep and 
shrinkage be calculated by multiplying the immediate deflection A; by the factor 

,\ - g 
A - 1 + 50p' 

(6.11) 

where p' = A;/bd and g is a time-dependent coefficient that varies as shown in Fig. 6.9. 
In Eq. (6.11), the quantity 1/(1 + 50p') is a reduction factor that is essentially a section 
property, reflecting the beneficial effect of compression reinforcement A; in reducing 
long-term deflections, whereas g is a material property depending on creep and shrink
age characteristics. For simple and continuous spans, the value of p' used in Eq. (6.11) 
should be that at the midspan section, according to the ACI Code, or that at the support 
for cantilevers. Equation (6.11) and the values of g given by Fig. 6.9 apply to both 
normalweight and lightweight concrete beams. The additional, time-dependent deflec
tions are thus found using values of AA from Eq. (6.11) in Eq. (6.6). 

Values of g given in the ACI Code and Commentary are satisfactory for ordinary 
beams and one-way slabs, but may result in underestimation of time-dependent deflec
tions of two-way slabs, for which Branson has suggested a 5-year value of g = 3.0 
(Ref. 6.7). 

Research by Paulson, Nilson, and Hover indicates that Eq. (6.11) does not 
properly reflect the reduced creep that is characteristic of higher-strength con
cretes (Ref. 6.13 ). As indicated in Table 2.2, the creep coefficient for high-strength 
concrete may be as low as one-half the value for normal concrete. Clearly, the 
long-term deflection of high-strength concrete beams under sustained load, 
expressed as a ratio of immediate elastic deflection, correspondingly will be less. 
This suggests a lower value of the material modifier g in Eq. (6.11) and Fig. 6.9. 
On the other hand, in high-strength concrete beams, the influence of compression 
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TABLE 6.2 
Maximum allowable computed deflections 

Type of Member Deflection to Be Considered Deflection 
Limitation 

Flat roofs not supporting or attached Immediate deflection due to the l 
to nonstructural elements likely to live load L -

180 
be damaged by large deflections 

Floors not supporting or attached to Immediate deflection due to the live 
l nonstructural elements likely to be load L -

damaged by large deflections 360 

Roof or floor construction supporting That part of the total deflection 
or attached to nonstructural elements occurring after attachment of the l -
likely to be damaged by large nonstructural elements (sum of 480 
deflections the long-time deflection due to all 

sustained loads and the immediate 
Roof or floor construction supporting deflection due to any additional live l 
or attached to nonstructural elements load) -
not likely to be damaged by large 240 

deflections 

steel in reducing creep deflections is less pronounced, requiring an adjustment in 
the section modifier 1/(1 + 50p') in that equation. 

Based on long-term tests involving six experimental programs, the following 
modified form of Eq. (6.11) is recommended (Ref. 6.13): 

in which 

µ{ 
Aa =-----

1 + 50 µp' 

µ = 1.4 - f)/10,000 

0.4 :5 µ :5 1.0 

(6.12) 

(6.13) 

The proposed equation gives results identical to Eq. (6.11) for concrete strengths 
of 4000 psi and below, and much improved predictions for concrete strengths between 
4000 and 12,000 psi. 

e. Permissible Deflections 

To ensure satisfactory performance in service, ACI Code 9.5.2 imposes certain limits 
on deflections calculated according to the procedures just described. These limits are 
given in Table 6.2. Limits depend on whether or not the member supports or is 
attached to other nonstructural elements, and whether or not those nonstructural 
elements are likely to be damaged by large deflections. When long-term deflections 
are computed, that part of the deflection that occurs before attachment of the 
nonstructural elements may be deducted; information from Fig. 6.9 is useful for this 
purpose. The last two limits of Table 6.2 may be exceeded under certain conditions, 
according to the ACI Code. 
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EXAMPLE 6.2 Deflection calculation. The beam shown in Fig. 6.10 is a part of the floor system of an apart
ment house and is designed to carry calculated dead load w d of 1.65 kips/ft and a service live 
load w1 of 3.3 kips/ft. Of the total live load, 20 percent is sustained in nature, while 80 percent 
will be applied only intermittently over the life of the structure. Under full dead and live load, 
the moment diagram is as shown in Fig. 6.10c. The beam will support nonstructural partitions 
that would be damaged if large deflections were to occur. They will be installed shortly after 
construction shoring is removed and dead loads take effect, but before significant creep occurs. 
Calculate that part of the total deflection that would adversely affect the partitions, i.e., the sum 
of long-time deflection due to dead and partial live load plus the immediate deflection due to 
the nonsustained part of the live load. Material strengths areJ; = 4000 psi and.{y = 60 ksi. 

FIGURE6.10 
Continuous T beam for 
deflection calculations in 
Example 6.2. The uncracked 
section is shown in (b), the 
cracked transformed section 
in the positive moment region 
is shown in (d), and the 
cracked transformed section 
in the negative moment 
region is shown in (e). 

SOLUTION. For the specified materials, Ee= 57,000v'4ooo = 3.60 X 106 psi, and with Es= 
29 X 106 psi, the modular ration= 8. The modulus ofrupturef, = 7.5 X 1.0v'4ooo = 474 psi. 
The effective moment of inertia will be calculated for the moment diagram shown in Fig. 6.1 Oc 
corresponding to the full service load, on the basis that the extent of cracking will be governed 
by the full service load, even though that load is intermittent. In the positive-moment region, the 
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centroidal axis of the uncracked T section of Fig. 6.10b is found by taking moments about the 
top surface, to be at 7.66 in. depth, and Jg = 33,160 in4• By similar means, the centroidal axis 
of the cracked transformed T section shown in Fig. 6.10d is located 3.73 in. below the top of 
the slab and fer = 10,860 in4• The cracking moment is then found by means of Eq. (6. 7): 

33,160 1 . 
Mer = 474 X 

16
_
84 

X 
12

,000 = 78 ft-kips 

With Mer/Ma= 78/162 = 0.481, the effective moment of inertia in the positive bending region 
is found from Eq. (6.8) to be 

I,= 0.481 3 X 33,160 + (1 - 0.481 3
) X 10,860 = 13,340 in4 

In the negative bending region, the gross moment of inertia will be based on the rectangular 
section shown in Fig. 6. IOb. For this area, the centroid is 12.25 in. from the top surface and 
/

8 
= 17,200 in4• For the cracked transformed section shown in Fig. 6.IOe, the centroidal 

axis is found, taking moments about the bottom surface, to be 8.65 in. from that level, and 
fer= 11,366 in4

• Then 

17,200 1 
Mer = 474 X 

12
_
25 

X 
12

,000 = 55.5 ft-kips 

giving Mer/Ma = 55.5/225 = 0.247. Thus, for the negative-moment regions, 

I,= 0.2473 X 17,200 + (1 - 0.2473
) X 11,366 = 11,450 in4 

The average value of I, to be used in calculation of deflection is 

1 . 
!,,av = 2 (13,340 + 11,450) = 12,395 m4 

It is next necessary to find the sustained-load deflection multiplier given by Eq. (6.11) and 
Fig. 6.9. For the positive bending zone, with no compression reinforcement, Ac.pas = 2.00. 

For convenient reference, the deflection of the member under full dead plus live load of 
4.95 kips/ft, corresponding to the moment diagram of Fig. 6.10c, will be found. Making use 
of the moment-area principles, 

Ad+/ = _!__ [ (3. X 387 X 12.5 X ~ X 12.5) - (225 X 12.5 X 6.25)] = 
7620 

EI 3 8 EI 

= 7620 X 1728 = 0_295 in. 
3600 X 12,395 

Using this figure as a basis, the time-dependent portion of dead load deflection (the only part 
of the total that would affect the partitions) is 

A 1.65 . 
ud = 0.295 X - X 2.00 = 0.197 lil. 

4.95 

while the sum of the immediate and time-dependent deflection due to the sustained portion of 
the live load is 

3.3 
A0.201 = 0.295 X 

4
_
95 

X 0.20 X 3.00 = 0.118 in. 

and the instantaneous deflection due to application of the short-term portion of the live load is 

3.3 
A0.801 = 0.295 X 

4
_
95 

X 0.80 = 0.157 in. 

Thus the total deflection that would adversely affect the partitions, from the time they are 
installed until all long-time and subsequent instantaneous deflections have occurred, is 

A = 0.197 + 0.118 + 0.157 = 0.472 in. 
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For comparison, as shown in Table 6.2, the limitation imposed by the ACI Code in such 
circumstances is l/480 = 26 X 12/480 = 0.650 in., indicating that the stiffness of the proposed 
member is sufficient. 

Note that relatively little error would have been introduced in the above solution if the 
cracked-section moment of inertia had been used for both positive and negative sections rather 
than le. Significant savings in computational effort would have resulted. If Mer/ Ma is less than 
½, use of /er would almost always be acceptable. Note further that computation of the moment 
of inertia for both uncracked and cracked sections is greatly facilitated by design aids like those 
included in Ref. 6.14. 

6.8 DEFLECTIONS DUE TO SHRINKAGE AND TEMPERATURE 
CHANGES 

Concrete shrinkage will produce compressive stress in the longitudinal reinforcement 
in beams and slabs and equilibrating tensile stress in the concrete. If, as usual, the rein
forcement is not symmetrically placed with respect to the concrete centroid, then 
shrinkage will produce curvature and corresponding deflection. The deflections will 
be in the same direction as those produced by the loads, if the reinforcement is mainly 
on the side of the member subject to flexural tension. 

Shrinkage deflection is not usually calculated separately, but is combined with 
creep deflection, according to ACI Code procedures (see Section 6.7d). However, 
there are circumstances where a separate and more accurate estimation of shrinkage 
deflection may be necessary, particularly for thin, lightly loaded slabs. Compression 
steel, while it has only a small effect in reducing immediate elastic deflections, con
tributes significantly in reducing deflections due to shrinkage (as well as creep), and 
is sometimes added for this reason. 

Curvatures due to shrinkage of concrete in an unsymmetrically reinforced concrete 
member can be found by the fictitious tensile force method (Ref. 6.7). Figure 6.1 la 
shows the member cross section, with compression steel area A: and tensile steel area 
As, at depths d' and d, respectively, from the top surface. In Fig. 6.1 lb, the concrete 
and steel are imagined to be temporarily separated, so that the concrete can assume its 
free shrinkage strain Esh· Then a fictitious compressive force T,h = (As + A~)EshEs is 
applied to the steel, at the centroid of all the bars, a distance e below the concrete 
centroid, such that the steel shortening will exactly equal the free shrinkage strain 
of the concrete. The equilibrating tension force T,h is then applied to the recombined 
section, as in Fig. 6.1 lc. This produces a moment T,he, and the corresponding shrink
age curvature is 

The effects of concrete cracking and creep complicate the analysis, but comparisons 
with experimental data (Ref. 6.7) indicate that good results can be obtained using eg 
and Jg for the uncracked gross concrete section and by using a reduced modulus Ect 

equal to ½Ee to account for creep. Thus 

(6.14) 

where Ee is the usual value of concrete modulus given by Eq. (2.3). 



FIGURE 6.11 
Shrinkage curvature of a 
reinforced concrete beam 
or slab: (a) cross section; 
(b) free shrinkage strain; 
(c) shrinkage curvature. 

SERVICEABILITY 233 

(a) (b) (c) 

Empirical methods are also used, in place of the fictitious tensile force method, 
to calculate shrinkage curvatures. These methods are based on the simple but 
reasonable proposition that the shrinkage curvature is a direct function of the free 
shrinkage and steel percentage, and an inverse function of the section depth (Ref. 6.7). 
Branson suggests that for steel percentage p - p' :s; 3 percent (where p = lO0Ajbd 
and p' = lO0A ;/bd), 

,J.. = 0 7 '=sh ( _ ')I/3(p - p')'/2 

'¥sh • h P P p (6.15a) 

and for p - p' > 3 percent, 

'=sh 
'Psh = h (6.15b) 

With shrinkage curvature calculated by either method, the corresponding 
member deflection can be determined by any convenient means such as the moment
area or conjugate-beam method. If steel percentages and eccentricities are constant 
along the span, the deflection '=sh resulting from the shrinkage curvature can be deter
mined from 

(6.16) 

where Ksh is a coefficient equal to 0.500 for cantilevers, 0.125 for simple spans, 0.065 
for interior spans of continuous beams, and 0.090 for end spans of continuous beams 
(Ref. 6.7). 

EXAMPLE 6.3 Shrinkage deflection. Calculate the midspan deflection of a simply supported beam of 20 ft 
span due to shrinkage of the concrete for which Esh = 780 X 10-6• With reference to Fig. 6.1 la, 
b = 10 in., d = 17.5 in., h = 20 in., As = 3.00 in2, and A: = 0. The elastic moduli are Ee = 
3.6 X 106 psi and Es= 29 X 106 psi. 

SOLUTION. By the fictitious tensile force method, 

T,h = 3.00 X 780 X 10-6 X 29 X 106 = 67,900 lb 

and from Eq. (6.14) with /
8 

= 6670, 

,1.. = 2 X 67,900 X 7.5 = 
42

.4 X 
10

_6 

'l'sh 3.6 X 106 X 6670 

while from Eq. (6.16) with Ksh = 0.125 for the simple span, 

t:,.,h = 0.125 X 42.4 X 10-6 X 2402 = 0.305 in. 
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r 

Unit length 

FIGURE 6.12 

6.9 

Unit curvature resulting from 
bending of beam section. 

Alternatively, by Branson's approximate Eq. (6.15a) withp = 100 X 3/175 = 1.7 percent 
andp' = 0, 

</>sh = 0.7 X 780 X 10-
6 

(1.?)1/3 = 32_5 X l0-6 
20 

compared with 42.4 X 10-6 obtained by the equivalent tensile force method. Considering the 
uncertainties such as the effects of cracking and creep, the approximate approach can usually 
be considered satisfactory. 

Deflections will be produced as a result of differential temperatures varying 
from top to bottom of a member also. Such variation will result in a strain variation 
with member depth that may usually be assumed to be linear. For such cases, the 
deflection due to differential temperature can be calculated using Eq. (6.16) in which 
<!>sh is replaced by a!l.T/h, where the thermal coefficient a for concrete may be taken 
as 5.5 X 10-6 per °F and !l.T is the temperature differential in degrees Fahrenheit from 
one side to the other. The presence of the reinforcement has little influence on curva
tures and deflections resulting from differential temperatures, because the thermal 
coefficient for the steel (6.5 X 10-6) is very close to that for concrete. 

MOMENT VS. CURVATURE FOR REINFORCED CONCRETE 
SECTIONS 

Although it is not needed explicitly in ordinary design and is not a part of ACI Code 
procedures, the relation between moment applied to a given beam section and the 
resulting curvature, through the full range of loading to failure, is important in several 
contexts. It is basic to the study of member ductility, understanding the development 
of plastic hinges, and accounting for the redistribution of elastic moments that occurs 
in most reinforced concrete structures before collapse (see Section 12.9). 

It will be recalled, with reference to Fig. 6.12, that curvature is defined as the 
angle change per unit length at any given location along the axis of a member 
subjected to bending loads: 

1 "'= -r 
(6.17) 

where r/J = unit curvature and r = radius of curvature. With the stress-strain relationships 
for steel and concrete, represented in idealized form in Fig. 6.13a and b, respectively, 
and the usual assumptions regarding perfect bond and plane sections, it is possible to 
calculate the relation between moment and curvature for a typical underreinforced 
concrete beam section, subject to flexural cracking, as follows. 

Figure 6.14a shows the transformed cross section of a rectangular, tensile
reinforced beam in the uncracked elastic stage of loading, with steel represented by 
the equivalent concrete area nAs, i.e., with area (n - 1 )As added outside of the rectan
gular concrete section. t The neutral axis, a distance c I below the top surface of the 
beam, is easily found (see Section 3.3a). In the limiting case, the concrete stress at the 
tension face is just equal to the modulus of rupture fr and the strain is e, = !,/Ee 

t Note that compression reinforcement, or multiple layers of tension reinforcement, can easily be included in the analysis with no essential 
complication. 



FIGURE6.13 
Idealized stress-strain curves: 
(a) steel; (b) concrete. 

FIGURE6.14 
Uncracked beam in the 
elastic range of loading: 
(a) transformed cross section; 
(b) strains; (c) stresses and 
forces. 
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€1 < €el f1 = €1Ec 
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IP,;; IPcr 

T= As€sEs 
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(b) (c) 

The steel is well below yield at this stage, which can be confirmed by computing, from 
the strain diagram, the steel strain Es = €cs• where €cs is the concrete strain at the level 
of the steel. It is easily confirmed, also, that the maximum concrete compressive stress 
will be well below the proportional limit. The curvature is seen, in Fig. 6.14b, to be 

(6.18) 

and the corresponding moment is 

(6.19) 
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FIGURE6.15 
Cracked beam in the elastic 
range of material response: 
(a) transformed cross section; 
(b) strains; (c) stresses and 
forces. 
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where Jut is the moment of inertia of the uncracked transformed section. Equations ( 6.18) 
and (6.19) provide the information needed to plot point 1 of the moment-curvature 
graph of Fig. 6.17 a. 

When tensile cracking occurs at the section, the stiffness is immediately reduced, 
and curvature increases to point 2 in Fig. 6.17 with no increase in moment. The analy
sis now is based on the cracked transformed section of Fig. 6.15a, with steel repre
sented by the transformed area nAs and tension concrete deleted. The cracked, elastic 
neutral axis distance c1 = kd is easily found by the usual methods (see Section 3.3b). 
In the limiting case, the concrete strain just reaches the proportional limit, as shown 
in Fig. 6.15b, and typically the steel is still below the yield strain. The curvature is 
easily computed by 

(6.20) 

and the corresponding moment is 

1 . 2 
Mei= 2 Je1k1bd (6.21) 

as was derived in Section 3.3b. This provides point 3 in Fig. 6.17. The curvature at 
point 2 can now be found from the ratio Mer/Mei· 

Next, the cracked, inelastic stage of loading is shown in Fig. 6.16. Here the 
concrete is well into the inelastic range, although the steel has not yet yielded. The 
neutral axis depth c 1 is less than the elastic kd and is changing with increasing load as 
the shape of the concrete stress distribution changes and the steel stress changes. 

It is now convenient to adopt a numerical representation of the concrete com
pressive stress distribution, to find both the total concrete compressive force C and the 
location of its centroid, for any arbitrarily selected value of maximum concrete strain 
e 1 in this range. The compressive strain diagram is divided into an arbitrary number of 
steps (e.g., four, in Fig. 6.16b), and the corresponding compressive stresses for each 
strain are read from the stress-strain curve of Fig. 6.13b. The stepwise representation 
of the actual continuous stress block is integrated numerically to find C, and its point 
of application is located, taking moments of the concrete forces about the top of the 
section. The basic equilibrium requirement C = T then can be used to find the correct 
location of the neutral axis, for the particular compressive strain selected, following an 
iterative procedure. 

The entire process can be summarized as follows: 

1. Select any top face concrete strain e1 in the inelastic range, i.e., between eel and eu. 

2. Assume the neutral axis depth, a distance c 1 below the top face. 
3. From the strain diagram geometry, determine es= f.cs· 



FIGURE 6.16 
Cracked beam with concrete 
in the inelastic range of 
loading: (a) cross section; 
(b) strains; (c) stresses and 
forces. 

FIGURE 6.17 
Moment-curvature relation 
for tensile-reinforced beam. 
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(a) (b} (c) 

4. Computefs = EsEs $.Jy and T = Asfs• 
5. Determine C by integrating numerically under the concrete stress distribution 

curve. 
6. Check to see if C = T. If not, the neutral axis must be adjusted upward or 

downward, for the particular concrete strain that was selected in step 1, until equi
librium is satisfied. This determines the correct value of c 1• 

Curvature can then be found from 

(6.22) 

The internal lever arm z from the centroid of the concrete stress distribution to the ten
sile resultant, Fig. 6.16c, is calculated, after which 

M;nel = Cz = Tz (6.23) 

The sequence of steps 1 through 6 is then repeated for newly selected values of 
concrete strain E 1• The end result will be a series of points, such as 4, 5, 6, and 7 in 
Fig. 6.17. The limit of the moment-curvature plot is reached when the concrete top 
face strain equals Eu, corresponding to point 7. The steel would be well past the yield 
strain at this loading, and at the yield stress. 

Eclut Eclct 
I I 6 7 

Mn I 15 -- Failure 
I I 

-- Steel yielding I 41 
I 

~ I 
c Met 

I 
<I> I -- Proportional limit 
E I of concrete 
0 
~ 

Mc, -- Cracking 

Curvature 1/J 
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It is important to be aware of the difference between a moment-unit curvature 
plot, such as Fig. 6.17, and a moment-rotation diagram for the hinging region of a 
reinforced concrete beam. The hinging region normally includes a number of discrete 
cracks, but between those cracks, the uncracked concrete reduces the steel strain, leading 
to what is termed the tension stiffening effect. The result is that the total rotation at the 
hinge is much less than would be calculated by multiplying the curvature per unit 
length at the cracked section by the observed or assumed length of the hinging region. 
Furthermore, the sharp increase in unit curvature shown in Fig. 6.17 at cracking would 
not be seen on the moment-rotation plot, only a small, but progressive, reduction of 
the slope of the diagram. 
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PROBLEMS 
6.1. A rectangular beam of width b = 15 in., effective depth d = 20.5 in., and total 

depth h = 23 in. spans 18.5 ft between simple supports. It will carry a com
puted dead load of 1.08 kips/ft including self-weight, plus a service live load 
of 2.29 kips/ft. Reinforcement consists of four evenly spaced No. 7 (No. 22) bars 
in one row. The clear cover on the sides is 2 in. Material strengths are /y = 
60,000 psi and/; = 4000 psi. 
(a) Compute the stress in the steel at full service load, and using the Gergely

Lutz equation, estimate the maximum crack width. 
(b) Confirm the suitability of the proposed design based on Eq. (6.3). 

6.2. To save steel-handling costs, an alternative design is proposed for the beam in 
Problem 6.1, using two No. 9 (No. 29) Grade 75 bars to provide approxi
mately the same steel strength as the originally proposed four No. 7 (No. 22) 
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Grade 60 bars. Check to determine if the redesigned beam is satisfactory with 
respect to cracking according to the ACI Code. What modification could you 
suggest that would minimize the number of bars to reduce cost, yet satisfy 
requirements of crack control? 

6.3. For the beam in Problem 6.1: 
(a) Calculate the increment of deflection resulting from the first application of 

the short-term live load. 
(b) Find the creep portion of the sustained load deflection plus the immediate 

deflection due to live load. 
( c) Compare your results with the limitations imposed by the ACI Code, as 

summarized in Table 6.2. 
Assume that the beam is a part of a floor system and supports cinder block 

partitions susceptible to cracking if deflections are excessive. 
6.4. A beam having b = 12 in., d = 21.5 in., and h = 24 in. is reinforced with three 

No. 11 (No. 36) bars. Material strengths are/y = 60,000 psi and/; = 4000 psi. 
It is used on a 28 ft simple span to carry a total service load of 2430 lb/ft. For 
this member, the sustained loads include self-weight of the beam plus addi
tional superimposed dead load of 510 lb/ft, plus 400 lb/ft representing that part 
of the live load that acts more or less continuously, such as furniture, equip
ment, and time-average occupancy load. The remaining 1220 lb/ft live load 
consists of short-duration loads, such as the brief peak load in the corridors of 
an office building at the end of a workday. 
(a) Find the increment of deflection under sustained loads due to creep. 
(b) Find the additional deflection increment due to the intermittent part of the 

live load. 
In your calculations, you may assume that the peak load is applied almost 

immediately after the building is placed in service, then reapplied intermit
tently. Compare with ACI Code limits from Table 6.2. Assume that, for this 
long-span floor beam, construction details are provided that will avoid damage 
to supported elements due to deflections. If ACI Code limitations are not met, 
what changes would you recommend to improve the design? 

6.5. A reinforced concrete beam is continuous over two equal 22 ft spans, simply 
supported at the two exterior supports, and fully continuous at the interior 
support. Concrete cross-sectional dimensions are b = 10 in., h = 22 in., and 
d = 19.5 in. for both positive and negative bending regions. Positive rein
forcement in each span consists of two No. 9 (No. 29) bars, and negative 
reinforcement at the interior support is made up of three No. 10 (No. 32) 
bars. No compression steel is used. Material strengths are .[y = 60,000 psi 
and/; = 5000 psi. The beam will carry a service live load, applied early in 
the life of the member, of 1800 lb/ft distributed uniformly over both spans; 
20 percent of this load will be sustained more or less permanently, while the 
rest is intermittent. The total service dead load is 1000 lb/ft including self
weight. 
(a) Find the immediate deflection when shores are removed and the full dead 

load is applied. 
(b) Find the long-term deflection under sustained load. 
(c) Find the increment of deflection when the short-term part of the live load 

is applied. 
Compare with ACI Code deflection limits; piping and brittle conduits are 

carried that would be damaged by large deflections. Note that midspan deflec
tion may be used as a close approximation of maximum deflection. 
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FIGURE P6.7 

6.6. Recalculate the deflections of Problem 6.5 based on the assumption that 
20 percent of the live load represents the normal service condition of loading 
and is sustained more or less continuously, while the remaining 80 percent is 
a short-term peak loading that would probably not be applied until most creep 
deflections have occurred. Compare with your earlier results. 

6.7. The tensile-reinforced rectangular beam shown in Fig. P6.7 is made using steel 
with Jy = 60,000 psi and Es = 29,000,000 psi. A perfectly plastic response 
after yielding can be assumed. The concrete has a stress-strain curve in com
pression that may be approximated by the parabolafc = J;[2t:cf'=o - (Ec/t:0)2], 
where fc and '=c are the stress and strain in the concrete. The variable E0 is 
the strain at the peak stress = 0.002, andJ; = 4000 psi. The ultimate strain in 
the concrete is 0.003. The concrete responds elastically in tension up to the 
modulus of rupture fr = 475 psi. Based on this information, plot a curve 
relating applied moment to unit curvature at a section subjected to flexural 
cracking. Label points corresponding to first cracking, first yielding of steel, 
and peak moment. 



Analysis and Design 
for Torsion 

7.1 INTRODUCTION 

Reinforced concrete members are commonly subjected to bending moments, to 
transverse shears associated with those bending moments, and, in the case of columns, 
to axial forces often combined with bending and shear. In addition, torsional forces may 
act, tending to twist a member about its longitudinal axis. Such torsional forces seldom 
act alone and are almost always concurrent with bending moment and transverse shear, 
and sometimes with axial force as well. 

For many years, torsion was regarded as a secondary effect and was not consid
ered explicitly in design, its influence being absorbed in the overall factor of safety of 
rather conservatively designed structures. Current methods of analysis and design, 
however, have resulted in less conservatism, leading to somewhat smaller members 
that, in many cases, must be reinforced to increase torsional strength. In addition, there 
is increasing use of structural members for which torsion is a central feature of behav
ior; examples include curved bridge girders, eccentrically loaded box beams, and 
helical stairway slabs. The design procedures in the ACI Code were first proposed in 
Switzerland (Refs. 7.1 and 7.2) and are also included in the European and Canadian 
model codes (Refs. 7.3 and 7.4). 

It is useful in considering torsion to distinguish between primary and secondary 
torsion in reinforced concrete structures. Primary torsion, sometimes called equilib
rium torsion or statically determinate torsion, exists when the external load has no 
alternative load path but must be supported by torsion. For such cases, the torsion 
required to maintain static equilibrium can be uniquely determined. An example is the 
cantilevered slab of Fig. 7.la. Loads applied to the slab surface cause twisting 
moments m1 to act along the length of the supporting beam. These are equilibrated by 
the resisting torque T provided at the columns. Without the torsional moments, the 
structure will collapse. 

In contrast to this condition, secondary torsion, also called compatibility torsion 
or statically indeterminate torsion, arises from the requirements of continuity, i.e., com
patibility of deformation between adjacent parts of a structure. For this case, the tor
sional moments cannot be found based on static equilibrium alone. Disregard of 
continuity in the design will often lead to extensive cracking, but generally will not 
cause collapse. An internal readjustment of forces is usually possible and an alternative 
equilibrium of forces found. An example of secondary torsion is found in the spandrel 
or edge beam supporting a monolithic concrete slab, shown in Fig. 7. lb. If the spandrel 
beam is torsionally stiff and suitably reinforced, and if the columns can provide the 
necessary resisting torque T, then the slab moments will approximate those for a rigid 
exterior support as shown in Fig. 7 .1 c. However, if the beam has little torsional stiffness 

241 
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FIGURE7.1 
Torsional effects in 
reinforced concrete: 
(a) primary or equilibrium 
torsion at a cantilevered 
slab; (b) secondary or 
compatibility torsion at 
an edge beam; (c) slab 
moments if edge beam is 
stiff torsionally; (d) slab 
moments if edge beam is 
flexible torsionally. 
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and inadequate torsional reinforcement, cracking will occur to further reduce its tor
sional stiffness, and the slab moments will approximate those for a hinged edge, as 
shown in Fig. 7. Id. If the slab is designed to resist the altered moment diagram, col
lapse will not occur (see discussion in Section 12.10). 

Although current techniques for analysis permit the realistic evaluation of 
torsional moments for statically indeterminate conditions as well as determinate, 
designers often neglect secondary torsional effects when torsional stresses are low and 
alternative equilibrium states are possible. This is permitted according to the ACI 
Code and many other design specifications. On the other hand, when torsional strength 
is an essential feature of the design, such as for the bridge shown in Fig. 7.2, special 
analysis and special torsional reinforcement are required, as described in the remain
der of this chapter. 

7.2 TORSION IN PLAIN CONCRETE MEMBERS 

Figure 7.3 shows a portion of a prismatic member subjected to equal and opposite 
torques Tat the ends. If the material is elastic, St. Venant's torsion theory indicates that 



FIGURE 7.2 
Curved continuous beam 
bridge, Las Vegas, Nevada, 
designed for torsional effects. 
(Courtesy of Portland Ce111e111 
Associarion.) 

FIGURE 7.3 
Stresses caused by torsion. 

T 
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(a} (b) 

torsional shear stresses are clistributed over the cross section, as shown in Fig. 7.3b. 
The largest shear stresses occur at the middle of the wide faces. If the material deforms 
inelastically, as expected for concrete, the stress distribution is closer to that shown by 
the dashed line. 
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FIGURE7.4 
Thin-walled tube under 
torsion. 

Shear 
flow 
path 

T 

Shear stresses in pairs act on an element at or near the wide surface, as shown in 
Fig. 7.3a. As explained in strength of materials texts, this state of stress corresponds 
to equal tension and compression stresses on the faces of an element at 45° to the 
direction of shear. These inclined tension stresses are of the same kind as those caused 
by transverse shear, discussed in Section 4.2. However, in the case of torsion, since 
the torsional shear stresses are of opposite sign on opposing sides of the member 
(Fig. 7.3b), the corresponding diagonal tension stresses are at right angles to each 
other (Fig. 7.3a). 

When the diagonal tension stresses exceed the tensile resistance of the concrete, 
a crack forms at some accidentally weaker location and spreads immediately across 
the beam. The value of torque corresponding to the formation of this diagonal crack 
is known as the cracking torque Tc,· 

There are several ways of analyzing members subjected to torsion. The nonlinear 
stress distribution shown by the dotted lines in Fig. 7.3b lends itself to the use of the 
thin-walled tube, space truss analogy. Using this analogy, the shear stresses are treated 
as constant over a finite thickness t around the periphery of the member, allowing the 
beam to be represented by an equivalent tube, as shown in Fig. 7.4. Within the walls of 
the tube, torque is resisted by the shear flow q, which has units of force per unit length. 
In the analogy, q is treated as a constant around the perimeter of the tube. As shown in 
Fig. 7.4, the resultants of the individual components of shear flow are located within 
the walls of the tube and act along lengths y O in the vertical walls and along lengths x0 

in the horizontal walls, with y
0 

and x
0 

measured at the center of the walls. 
The relationship between the applied torque and the shear flow can be obtained 

by summing the moments about the axial centerline of the tube, giving 

T = 2qxoYof2 + 2qyaXof2 (a) 

where the two terms on the right-hand side represent the contributions of the horizon
tal and vertical walls to the resting torque, respectively. Thus, 

T = 2qXoY0 
(b) 

The product XoY 
O 

represents the area enclosed by the shear flow path A0 , giving 

(c) 

and 

(d) 
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Note that although A
0 

is an area, it derives from the moment calculation shown in Eq. (a) 
above. Thus, A

0 
is applicable for hollow box sections, as well as solid sections, and in 

such case includes the area of the central void. 
For a tube wall thickness t, the unit shear stress acting within the walls of the 

tube is 

q T 
r=-=--

t 2Aof 
(7.1) 

As shown in Fig. 7.3a, the principal tensile stress a- = r. Thus, the concrete will 
crack only when r = a- = f;, the tensile strength of concrete. Considering that con
crete is under biaxial tension and compression, f; can be conservatively represented by 
4 vJ: rather than the value typically used for the modulus of rupture of concrete, which 
is taken as fr = 7 .5 vJ: for normal-density concrete. Substituting T = Tcr = 4 vJ: in 
Eq. (7 .1) and solving for T give the value of the cracking torque: 

(7.2) 

Remembering that A
0 

represents the area enclosed by the shear flow path, A
0 

must be some fraction of the area enclosed by the outside perimeter of the full con
crete cross section Aw The value oft can, in general, be approximated as a fraction of 
the ratio Ac)Pcp• where Pep is the perimeter of the cross section. For solid members 
with rectangular cross sections, tis typically one-sixth to one-fourth of the minimum 
width. Using a value of one-fourth for a member with a width-to-depth ratio of 0.5 
yields a value of A0 approximately equal to ~Aw For the same member, t = ¾Acp/Pcp· 
Using these values for A

0 
and tin Eq. (7.2) gives 

A~P 
T',;r = 4vf:-

Pcp 
in-lb (7.3) 

It has been found that Eq. (7.3) gives a reasonable estimate of the cracking torque of 
solid reinforced concrete members regardless of the cross-sectional shape. For hollow 
sections, Tcr in Eq. (7.3) should be reduced by the ratio A

8
/Acp• where A

8 
is the gross 

cross section of the concrete, i.e., not including the area of the voids (Ref. 7 .5). 

7.3 TORSION IN REINFORCED CONCRETE MEMBERS 

To resist torsion for values of T above Tcr, reinforcement must consist of closely 
spaced stirrups and longitudinal bars. Tests have shown that longitudinal bars alone 
hardly increase the torsional strength, with test results showing an improvement of at 
most 15 percent (Ref. 7.5). This is understandable because the only way in which lon
gitudinal steel can directly contribute to torsional strength is by dowel action, which 
is particularly weak and unreliable if longitudinal splitting along bars is not restrained 
by transverse reinforcement. Thus, the torsional strength of members reinforced only 
with longitudinal steel is satisfactorily, and somewhat conservatively, predicted by 
Eqs. (7.2) and (7.3). 

When members are adequately reinforced, as in Fig. 7.5a, the concrete cracks at 
a torque that is equal to or only somewhat larger than in an unreinforced member, as 
given by Eq. (7.3). The cracks form a spiral pattern, as shown in Fig. 7.5b. Upon 
cracking, the torsional resistance of the concrete drops to about one-half of that of the 
uncracked member, the remainder being now resisted by reinforcement. This redistri
bution of internal resistance is reflected in the torque-twist curve (Fig. 7.6), which at 
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FIGURE 7.5 
Reinforced concrete beam 
in torsion: (a) torsional 
reinforcement; (b) torsional 
cracks. 

FIGURE7.6 
Torque-twist curve in 
reinforced concrete member. 

(b) 

T 

the cracking torque shows continued twist at constant torque until the internal forces 
have been redistributed from the concrete to the steel. As the section approaches the 
ultimate load, the concrete outside the reinforcing cage cracks and begins to spall off, 
contributing progressively less to the torsional capacity of the member. 

Tests show that, after cracking, the area enclosed by the shear path is defined by 
the dimensions x

0 
and y O measured to the centerline of the outermost closed transverse 

reinforcement, rather than to the center of the tube walls as before. These dimensions 
define the gross area A

0
h = X,,)'

0 
and the shear perimeter Ph = 2(x0 + y

0
) measured at 

the steel centerline. 
Analysis of the torsional resistance of the member is aided by treating the mem

ber as a space truss consisting of spiral concrete diagonals that are able to take load 
parallel but not perpendicular to the torsional cracks, transverse tension tie members 



FIGURE7.7 
Space truss analogy. 
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that are provided by closed stirrups or ties, and tension chords that are provided by 
longitudinal reinforcement. The hollow-tube, space truss analogy represents a simpli
fication of actual behavior, since, as will be demonstrated, the calculated torsional 
strength is controlled by the strength of the transverse reinforcement, independent of 
concrete strength. Such a simplification will be used here because it aids understand
ing, although it greatly underestimates torsional capacity and does not reflect the 
higher torsional capacities obtained with higher concrete strengths (Refs. 7.6 and 7.7). 

With reference to Fig. 7.7, the torsional resistance provided by a member with a 
rectangular cross section can be represented as the sum of the contributions of the 
shears in each of the four walls of the equivalent hollow tube. The contribution of the 
shear acting in the right-hand vertical wall of the tube to the torsional resistance, for 
example, is 

(a) 

Following a procedure similar to that used for analyzing the variable-angle truss 
shear model discussed in Section 4.8 and shown in Figs. 4.19 and 4.20, the equilib
rium of a section of the vertical wall-with one edge parallel to a torsional crack with 
angle 0--can be evaluated using Fig. 7.8a. Assuming that the stirrups crossing the 
crack are yielding, the shear in the wall under consideration is 

V4 = AJytn 

where At = area of one leg of a closed stirrup 
ht = yield strength of transverse reinforcement 
n = number of stirrups intercepted by torsional crack 

(b) 

Since the horizontal projection of the crack is Ya cot 0 and n = Ya cot 0 / s where 
0 is the slope angle of the strut and s is the spacing of the stirrups, 

_ AthtYa O ¼- --cot 
s 

(c) 

Combining Eqs. (c) and (a) gives 

(d) 
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FIGURE7.8 
Basis for torsional design: 
(a) vertical tension in 
stirrups; (b) diagonal 
compression in vertical wall 
of beam; (c) equilibrium 
diagram of forces due to 
shear in vertical wall. 

(b) (c) 

It is easily shown that an identical expression is obtained for each horizontal and 
vertical wall. Thus, summing over all four sides, the nominal capacity of the section is 

T., 
_ ~ T _ 2AJy1YoXo O 
- ~ · - ----cot 

n i=I I S 

Noting that YaXo = A
0

h and rearranging slightly give 

2AohAJyt 
T,, = ---- cot 0 

s 

(e) 

(7.4) 

The diagonal compression struts that form parallel to the torsional cracks are 
necessary for the equilibrium of the cross section. As shown in Fig. 7.8b and c, the 
horizontal component of compression in the struts in the vertical wall must be equili
brated by an axial tensile force !J.N4• Based on the assumed uniform distribution of 
shear flow around the perimeter of the member, the diagonal stresses in the struts must 
be uniformly distributed, resulting in a line of action of the resultant axial force that 
coincides with the midheight of the wall. Referring to Fig. 7 .8c, the total contribution 
of the right-hand vertical wall to the change in axial force of the member due to the 
presence of torsion is 

_ _ AJy1Yo 2 !J.N4 - ¼ cot 0 - --cot 0 
s 

Again, summing over all four sides, the total increase in axial force for the member is 

~ AJy1 z 
!J.N = ~ !J.N; = - 2(x 0 + yo) cot 0 (7.5a) 

i=l S 

!J.N = AJy1 Ph cot2 0 
s 

where Ph is the perimeter of the centerline of the closed stirrups. 

(7.5b) 
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Longitudinal reinforcement must be provided to carry the added axial force Mv. 
If that steel is designed to yield, then 

and 

-F AJytPh 2 Auy = --cot 0 
s 

_ At ht 2 
A1 - - Ph - cot 0 

s h 
where A1 = total area of longitudinal reinforcement to resist torsion, in2 

Jy = yield strength of longitudinal torsional reinforcement, psi 

(7.6) 

(7.7) 

It has been found experimentally that, after cracking, the effective area enclosed 
by the shear flow path is somewhat less than the value of A

0
h used in the previous 

development. It is recommended in Ref. 7. 7 that the reduced value be taken as A
0 

= 
O.85A

0
h, where, it will be recalled, A

0
h is the area enclosed by the centerline of the 

transverse reinforcement. This recommendation is incorporated in the ACI Code (see 
Section 7.5) and in a modified form ofEq. (7.4) withA

0 
substituted for A0 h. It has fur

ther been found experimentally that the thickness of the equivalent tube at loads near 
ultimate is closely approximated by t = A0 h/Ph, where Ph is the perimeter of A0 h. 

7.4 TORSION PLUS SHEAR 

FIGURE7.9 
Addition of torsional and 
shear stresses: (a) hollow 
section; ( b) solid section. 
(Adapted from Ref 7.7.) 

Members are rarely subjected to torsion alone. The prevalent situation is that of a 
beam subject to the usual flexural moments and shear forces, which, in addition, must 
resist torsional moments. In an uncracked member, shear forces as well as torque 
produce shear stresses. In a cracked member, both shear and torsion increase the 
forces in the diagonal struts (Figs. 4.20d and 7.8b), they increase the width of 
diagonal cracks, and they increase the forces required in the transverse reinforcement 
(Figs. 4.20e and 7.8a). 

Using the usual representation for reinforced concrete, the nominal shear stress 
caused by an applied shear force Vis r v = V /bwd. The shear stress caused by torsion, 
given in Eq. (7.1), is r

1 
= T/(2Ai), As shown in Fig 7.9a for hollow sections, these 

stresses are directly additive on one side of the member. Thus, for a cracked concrete 
cross section with A0 = O.85A0 h and t = A0 h/Ph• the maximum shear stress can be 
expressed as 

(7.8) 

11011 11011 
r-, 
I I u1 It t l l l l I 
I _ _J 

Torsional Shear Torsional Shear 
stresses stresses stresses stresses 

(a) (b) 
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For a member with a solid section, Fig. 7.9b, r 1 is predominately distributed 
around the perimeter, as represented by the hollow tube analogy, but the full cross 
section contributes to carrying r v· Comparisons with experimental results show that 
Eq. (7.8) is somewhat overconservative for solid sections and that a better representa
tion for maximum shear stress is provided by the square root of the sum of the squares 
of the nominal shear stresses: 

(7.9) 

Equations (7.8) and (7.9) serve as a measure of the shear stresses in the concrete 
under both service and ultimate loading. 

7 .5 ACI CODE PROVISIONS FOR TORSION DESIGN 

The basic principles upon which ACI Code design provisions are based have been 
presented in the preceding sections. ACI Code 11.5.3.5 safety provisions require that 

Tu$ </>Tn (7.10) 

where Tu = required torsional strength at factored loads 
Tn = nominal torsional strength of member 

The strength reduction factor </> = 0.75 applies for torsion. Strength Tn is based on 
Eq. (7.4) with A

0 
substituted for A

0
h, thus 

(7.11) 

In accordance with ACI Code 11.5 .2, sections located less than a distance d from 
the face of a support may be designed for the same torsional moment Tu as that 
computed at a distance d, recognizing the beneficial effects of support compression. 
However, if a concentrated torque is applied within this distance, the critical section 
must be taken at the face of the support. These provisions parallel those used in shear 
design. For beams supporting slabs such as are shown in Fig. 7 .1, the torsional loading 
from the slab may be treated as being uniformly distributed along the beam. 

a. T Beams and Box Sections 

For T beams, a portion of the overhanging flange contributes to the cracking torsional 
capacity and, if reinforced with closed stirrups, to the torsional strength. According to 
ACI Code 11.5 .1, the contributing width of the overhanging flange on either side of 
the web is equal to the smaller of (1) the projection of the beam above or below the 
slab, whichever is greater, and (2) 4 times the slab thickness. These criteria are the 
same as those used for two-way slabs with beams, illustrated in Fig. 13.10. As with 
solid sections, Acp for box sections, with or without flanges, represents the area 
enclosed by the outside perimeter of the concrete section. 

After torsional cracking, the applied torque is resisted by the portion of the section 
represented by A

0
h, the area enclosed by the centerline of the outermost closed trans

verse torsional reinforcement. For rectangular, box, and T sections A
0
h is illustrated in 

Fig. 7 .10. For sections with flanges, the Code does not require that the section used to 
establish Acp coincide with that used to establish A

0
h. 



FIGURE 7.10 
Definition of A

0
h. (Adapted 

from Ref 7.7.) 

f 

Closed 
stirrup 

Aoh = shaded area 
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b. Minimal Torsion 

c. 

If the factored torsional moment Tu does not exceed </>A vJ: (A~p/Pcp), torsional effects 
may be neglected, according to ACI Code 11.5 .1. This lower limit is 25 percent of the 
cracking torque, given by Eq. (7.3), reduced by the factor</>, as usual, for design pur
poses. The presence of torsional moment at or below this limit will have a negligible 
effect on the flexural and shear strength of the member. The value of A is as specified 
in ACI Code 8.6.1 and previously described in Section 4.5a, with A= 0.85, 0.75, and 
1.0 for sand-lightweight, all-lightweight, and normalweight concrete, respectively. 
Linear interpolation between values is permitted for concretes containing blends of 
lightweight and normalweight aggregates, and A may be taken as fc1/(6.7-vf:) if the 
average split-cylinder strength of lightweight concrete is specified. 

For members subjected to an axial load Nu (positive in compression), tor
sional effects may be neglected when Tu does not exceed </>A vJ: (A~p/Pcp) X 

v'l + Nu/(4AgAvJ:). For hollow sections (with or without axial load), Acp must be 
replaced by the gross area of the concrete Ag to determine if torsional effects may be 
neglected. This has the effect of multiplying 25 percent of the cracking torque by the 
ratio Ag/Acp twice--once to account for the reduction in cracking torque for hollow 
sections from the value shown in Eq. (7.3) and a second time to account for the tran
sition from the circular interaction of combined shear and torsion stresses in Eq. (7.9) 
to the linear interaction represented by Eq. (7.8). 

Equilibrium vs. Compatibility Torsion 

A distinction is made in the ACI Code between equilibrium (primary) torsion and 
compatibility (secondary) torsion. For the first condition, described earlier with ref
erence to Fig. 7 .1 a, the supporting member must be designed to provide the torsional 
resistance required by static equilibrium. For secondary torsion resulting from com
patibility requirements, shown in Fig. 7.lb, it is assumed that cracking will result 
in a redistribution of internal forces; and according to ACI Code 11.5.2, the maxi
mum torsional moment Tu may be reduced to 4</>A vJ: (A~p/Pcp) or 4</>A vJ: (A~p/Pcp) 
v'l + Nu/ ( 4AgA vJ:)for members subjected to axial load. In the case of hollow 
sections, Acp is not replaced by Ag. The design moments and shears in the supported 
member must be adjusted accordingly. The reduced value of Tu permitted by the ACI 
Code is intended to approximate the torsional cracking strength of the supporting 
beam, for combined torsional and flexural loading. The large rotations that occur at 
essentially constant torsional load would result in significant redistribution of internal 
forces, justifying use of the reduced value for design of the torsional member and the 
supported elements. 
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d. Limitations on Shear Stress 

Based largely on empirical observations, the width of diagonal cracks caused by com
bined shear and torsion under service loads can be limited by limiting the calculated 
shear stress under factored shear and torsion (Ref. 7.4) so that 

(7.12) 

where vmax in Eq. (7.12) corresponds to the upper limits on shear capacity described 
in Section 4.5d. Combining Eq. (7.12) with Eq. (7.8) provides limits on the cross
sectional dimensions of hollow sections, in accordance with ACI Code 11.5.3. 

v,, + T,,p~ :s <t>( v,. + 8\IJ:) 
bwd I.7A 0 h bwd 

(7.13) 

Likewise, for solid sections, combining Eq. (7.12) with Eq. (7.9) gives 

(7.14) 

Either member dimensions or concrete strength must be increased if the criteria 
in Eq. (7.13) or (7.14) are not satisfied. 

ACI Code 11.5.3 requires that if the wall thickness varies around the perimeter 
of a hollow section, Eq. (7.13) be evaluated at the location where the left-hand side of 
the expression is a maximum. If the wall thickness is less than the assumed value of 
t used in the development of Eq. (7 .8) A

0
Jph, the actual value oft must be used in the 

calculation of torsional shear stress. As a result, the second term on the left-hand side 
of Eq. (7. 13) must be taken as 

I.7A 0 ht 

where t is the thickness of the wall of the hollow section at the location where the 
stresses are being checked. 

e. Reinforcement for Torsion 

The nominal torsional strength is given by Eq. (7.11). 

2A0 At.f;,1 
T,, = --- cot 0 

s 
(7.11) 

According to ACI Code 11.5.3, the angle 0 may assume any value between 30 
and 60°, with a value of 0 = 45° suggested. The area enclosed by the shear flow A 0 

may be determined by analysis using procedures such as suggested in Ref. 7.8, or 
A

0 
may be taken as equal to 0.85A

0
h. Combining Eq. (7.11) with Eq. (7.10), the 

required cross-sectional area of one stirrup leg for torsion is 

A = T,,s 
1 2</>A0 J;,1 cot 0 

The Code limits fyt to a maximum of 60,000 psi for reasons of crack control. 



FIGURE 7.11 
Stirrup-ties and longitudinal 
reinforcement for torsion: 
(a) spandrel beam with 
flanges on one side; 
(b) interior beam; (c) isolated 
rectangular beam; (d) wide 
spandrel beam; (e) T beam 
with torsional reinforcement 
in flanges. 

Confinement 
from slab 

(a) 

O" 

(d} 
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The reinforcement provided for torsion must be combined with that required for 
shear. Based on the typical two-leg stirrup, this may be expressed as 

Av+t Av At - = - + 2- (7.16) 
s s s 

As described in Section 7.3, the transverse stirrups used for torsional reinforce
ment must be of a closed form to provide the required tensile capacity across the diag
onal cracks of all faces of the beam. U-shaped stirrups commonly used for transverse 
shear reinforcement are not suitable for torsional reinforcement. On the other hand, 
one-piece closed stirrups make field assembly of beam reinforcement difficult, and for 
practical reasons torsional stirrups are generally two-piece stirrup-ties, as shown in 
Fig. 7.11. AU-shaped stirrup is combined with a horizontal top bar, suitably anchored. 

Because concrete outside the reinforcing cage tends to spall off when the mem
ber is subjected to high torque, transverse torsional reinforcement must be anchored 
within the concrete core (Ref. 7 .9). ACI Code 11.5.4 requires that stirrups or ties used 
for transverse longitudinal reinforcement be anchored with a 135° standard hook or a 
seismic hook ( described in section 20.4) around a longitudinal bar, unless the concrete 
surrounding the anchorage is restrained against spalling by a flange or a slab, in which 
case 90° standard hooks may be used, as shown in Fig. 7.lla, b, and d. Overlapping 
U-shaped stirrups, such as shown in Fig. 5.12d, may not be used. If flanges are 
included in the computation of torsional strength for T or L-shaped beams, closed 
torsional stirrups must be provided in the flanges, as shown in Fig. 7.lle. 

The required spacing of closed stirrups, satisfying Eq. (7 .16), is selected for the 
trial design based on standard bar sizes. 

To control spiral cracking, the maximum spacing of torsional stirrups should not 
exceed pJ8 or 12 in., whichever is smaller. In addition, for members requiring both 
shear and torsion reinforcement, the minimum area of closed stirrups is equal to 

~ r,:; bws hw s 
Av+ 2A1 = 0.75 V f~ F ~ 50 F (7.17) 

Jyt Jyt 

according to ACI Code 11.5.5. 
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The area of longitudinal bar reinforcement A1 required to resist torsion is given 
by Eq. (7.7), where 0 must have the same value used to calculate At. The terrnAtfs in 
Eq. (7.7) should be taken as the value calculated using Eq. (7.15), not modified based 
on minimum transverse steel requirements. ACI Code 11.5.3 permits the portion of A1 
in the flexural compression zone to be reduced by an amount equal to Mj(0.9dfy), 
where Mu is the factored moment acting at the section in combination with Tu. 

Based on an evaluation of the performance of reinforced concrete beam torsional 
test specimens, ACI Code 11.5 .5 requires that A1 not be less than 

A _ 5vJ: Acp _ (At) ht (7.lS) 
/,min - /y S Ph /y 

where Atf s 2:: 25bwff;t, withf;t in psi. 
The spacing of the longitudinal bars should not exceed 12 in., and they should 

be distributed around the perimeter of the cross section to control cracking. The bars 
may not be less than No. 3 (No. 10) in size or have a diameter less than 0.042 times 
the spacing of the transverse stirrups. At least one longitudinal bar must be placed at 
each comer of the stirrups. Careful attention must be paid to the anchorage of longi
tudinal torsional reinforcement so that it is able to develop its yield strength at the face 
of the supporting columns, where torsional moments are often maximum. 

Reinforcement required for torsion may be combined with that required for other 
forces, provided that the area furnished is the sum of the individually required areas and 
that the most restrictive requirements of spacing and placement are met. According to 
ACI Code 11.5.6, torsional reinforcement must be provided at least a distance bt + d 
beyond the point theoretically required, where bt is the width of that part of the cross sec
tion containing the closed stirrups resisting torsion. According to the provisions of the 
ACI Code, the point at which the torsional reinforcement is no longer required is the 
point at which I,: < </>A vJ: (A~p/Pcp), or Tu< </>A vJ: (A~p/Pcp)\il + Nu/ (4AgA vJ:) 
for members subjected to axial load. The value is 25 percent of the cracking torque, 
reduced by the factor <f>, as given in Section 7.5b. 

The subject of torsional design of prestressed concrete is not treated here, but as 
presented in ACI Code 11.5, it differs only in certain details from the above presenta
tion for nonprestressed reinforced concrete beams. 

f. Design for Torsion 

Designing a reinforced concrete flexural member for torsion involves a series of steps. 
The following sequence ensures that each is covered: 

1. Determine if the factored torque is less than </>A vJ: (A~p/Pcp), or </>A vJ: (A~p/Pcp) 
Yl + Nuf (4AgA vJ:) for members subjected to axial load. If so, torsion may be 
neglected. If not, proceed with the design. Note that in this step, portions of over
hanging flanges, as defined in Section 7 .Sa, must be included in the calculation 
of Acp and p cp· 

2. If the torsion is compatibility torsion, rather than equilibrium torsion, as 
described in Sections 7 .1 and 7 .Sc, the maximum factored torque may be reduced 
to 4</>AvJ:(A~p/Pcµ), or 4</>AvJ:(A~p/Pcp)\il + Nu/(4AgAvJ:) for members 
subjected to axial load, with the moments and shears in the supported members 
adjusted accordingly. Equilibrium torsion cannot be adjusted. 

3. Check the shear stresses in the section under combined torsion and shear, using 
the criteria of Section 7.5d. 

4. Calculate the required transverse reinforcement for torsion using Eq. (7.15) and 
shear using Eq. (4.14a). Combine At and Av using Eq. (7.16). 
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5. Check that the minimum transverse reinforcement requirements are met for both 
torsion and shear. These include the maximum spacing, as described in Sections 
7.5e and 4.5d, and minimum area, as given in Eq. (7.17). 

6. Calculate the required longitudinal torsional reinforcement A1, using the larger of 
the values given in Eqs. (7.7) and (7.18), and satisfy the spacing and bar size 
requirements given in Section 7 .5e. The portion of A1 in the flexural compression 
zone may be reduced by Muf(0.9df), providing that Eq. (7.18) and the spacing 
and bar size requirements are satisfied. 

7. Continue torsional reinforcement b1 + d past the point where Tu is less than 
cpAvf:(A~/Pcp), or cpAvf:(A~p/Pcp)YI + Nu/(4Aivf:) for members sub
jected to axial load. 

EXAMPLE 7.1 Design for torsion with shear. The 28 ft span beam shown in Fig. 7.12a and b carries a 
monolithic slab cantilevering 6 ft past the beam centerline. The resulting L beam supports a live 
load of 900 lb/ft along the beam centerline plus 50 psf uniformly distributed over the upper slab 
surface. The effective depth to the flexural steel centroid is 21.5 in., and the distance from the 
beam surfaces to the centroid of stirrup steel is l¾ in. Material strengths are J; = 5000 psi and 
Jy = 60,000 psi. Design the torsional and shear reinforcement for the beam. 

SOLUTION. Applying ACI load factors gives the slab load as 

1.2wd = 1.2 X 75 X 5.5 = 495 lb/ft 

l.6w1 = 1.6 X 50 X 5.5 = 440 lb/ft 

Total = 935 lb/ft at 3.25 ft eccentricity 

while the beam carries directly 

1.2wd = 1.2 X 300 = 360 lb/ft 

1.6w1 = 1.6(900 + 50) = 1520 lb/ft 

Total = 1880 lb/ft 

Thus, the uniformly distributed load on the beam is 2815 lb/ft, acting together with a uniformly 
distributed torque of 935 X 3.25 = 3040 ft-lb/ft. At the face of the column, the design shear 
force is Vu = 2.815 X 28/2 = 39.4 kips. At the same location, the design torsional moment is 
Tu = 3.040 X 28/2 = 42.6 ft-kips. 

The variation of Vu and Tu with distance from the face of the supporting column is given 
by Fig. 7.12c and d, respectively. The values of Vu and Tu at the critical design section, a 
distance d from the column face, are 

12.21 
Vu = 39.4 X l4 = 34.4 kips 

12.21 
Tu= 42.6 X l4 = 37.2 ft-kips 

For the effective beam, Acp = 12 X 24 + 6 X 18 = 396 in2 and Pep = 2 X 24 + 2 X 
30 = 108 in. According to the ACI Code, torsion may be neglected for normalweight concrete 
(A= 1.0) if Tu:::; 0.75 X 1.0 v'5000(3962/108)/12,000 = 6.4 ft-kips. Torsion must clearly be 
considered in the present case. Since the torsional resistance of the beam is required for 
equilibrium, no reduction in Tu may be made. 

Before designing the torsional reinforcement, the section will be checked for adequacy 
in accordance with Eq. (7.14). Although Acp was calculated considering the flange to check if 
torsion could be neglected (as required by ACI Code 11.5.1), subsequent calculations for 
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FIGURE 7.12 
Shear and torsion design 
example. 

39.4 

----28'----

(a) 

L.1,?i:-,J _j 
L=-141 

(c) 

15 

.£ 10 
Ol 
C: 
-~ 
a. 

Cl) 5 ===----...I 
2" + 9 sp.@ 5" 

I
• 6'~ 
, I 5' -6" 7 _1 

t ~ I 6" 

2'-r_~ 1 
~ [._ 

12" 

(b) 

42.6 
37.2 

(d) 

Span 

ct 

I 
I 

I 

17 sp.@ 7" 

o~-~--~--~--~--~--~-~ 
0 2 4 6 8 10 

Distance from support face, ft 

(e) 

12 14 

serviceability and strength will neglect the flange and no torsional reinforcement will be pro
vided in the flange. For reference, bwd = 12 X 21.5 = 258 in2• With 1¾ in. cover to the center 
of the stirrup bars from all faces, x 0 = 12 - 3.5 = 8.5 in. and y0 = 24.0 - 3.5 = 20.5 in. Thus, 
A0 h = 8.5 X 20.5 = 174 in2, A

0 
= 0.85 X 174 = 148 in2, and Ph = 2(8.5 + 20.5) = 58 in. 

Using Eq. (7.14), 

(
34.4)

2 
(37.2 X 12 X 58)

2 
0.75 ( , = 8, =) - + ----- ::;-- 2v5000 + v5000 

258 1.7 X 1742 1000 

0.520 ksi ::; 0.530 ksi 
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Therefore, the cross section is of adequate size for the given concrete strength. 
The values of A, and Av will now be calculated at the column face (for reference only). 

Using Eq. (7.15) and choosing 0 = 45°, 

T,,s 
A=-----

' 2</>Ao J;,, cot 0 

42.6 X 12s 
---------- = 0.0384s 
2 X 0.75 X 148 X 60 X 1 

for one leg of a closed vertical stirrup, or 0.0768s for two legs. 
The shear capacity of the concrete alone, obtained using Eq. ( 4.12b ), is 

¢ ½ = 0.75 X 2A v[; bwd 

0.75 x 2 X l.OVSOOO X 258 . 
= ---------- = 27.4 kips 

1000 

From Eq. (4.14a), the web reinforcement for transverse shear, again computed at the column 
face, is 

CV,, - ¢½)s (39.4 - 27.4)s 
Av = ---- = ------ = 0.0124s 

</Jfy,d 0.75 X 60 X 21.5 

to be provided in two vertical legs. 
The calculated value of A, will decrease linearly to zero at the midspan, and the calcu

lated value of Av will decrease linearly to zero 4.26 ft from the face of the support, the point at 
which Vu = ¢ Ve. Thus, the total area to be provided by the two vertical legs is 

2A, + Av = 0.0768s( 1 - ;
4

) + 0.0124s( 1 -
4

_~
6

) 

for 0 :S x :S 4.26 ft., where x is the distance from the face of the support, and 

2A, +Av= 0.0768s( 1 - ;
4

) 

for 4.26 :S X :S 14 ft. 
Number 4 (No. 13) closed stirrups will provide a total area in the two legs of 0.40 in2. 

For 2A, + Av = 0.40 in2, the required spacing at d and at 2 ft intervals along the span can be 
found using the given relationships between stirrup area and spacing: 

Sd = 5.39 in. 

S2 = 5.52 in. 

S4 = 7.19 in. 

S5 = 9.llin. 

s8 = 12.2 in. 

S10 = 18.2 in. 

These values of s are plotted in Fig. 7.12e. ACI provisions for maximum spacing should now 
be checked. For torsion reinforcement, the maximum spacing is the smaller of 

Ph 58 
-=-=725in 8 8 . . 

or 12 in., whereas for shear reinforcement, the maximum spacing is d/2 = 10.75 in. :S 24 in. 
The most restrictive provision is the first, and the maximum spacing of 7 .25 in. is plotted in 
Fig. 7.12e. Stirrups between the face of the support and the distanced can be spaced at sd. The 
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resulting spacing requirements are shown by the solid line in the figure. These requirements are 
met in a practical way by No. 4 (No. 13) closed stirrups, the first placed 2 in. from the face of 
the column, followed by 9 at 5 in. spacing and I 7 at 7 in. spacing. According to the ACI Code, 
stirrups may be discontinued at the point where Vu < </JVc/2 (4.9 ft from the span centerline) 
orb, + d = 2.8 ft past the point at which Tu < <pA VJ: (A~iPcp)- The latter point is past the 
centerline of the member; therefore, minimum stirrups are required throughout the span. The 
minimum web steel provided, 0.40 in2, satisfies the ACI Code minimum = 0.75vf:: hws/Jy, = 
0.75VSOOO ('12) X 7 /60,000 = 0.074 in2 2: 50bws/Jy, = 50 X 12 X 7 /60,000 = 0.070 in2. 

The longitudinal steel required for torsion at a distance d from the column face is com
puted next. At that location 

A, = 0.0384 ( 1 - 1.7
9

) = 0.0335 
s 14 

and from Eq. (7.7) 

60 
A1 = 0.0335 X 58 X 

60 
X 12 = 1.94 in2 

with a total not less than given by Eq. (7.18), in which A,/s is not to be taken less than 
25 X 12/60,000 = 0.005. 

5VSOOO X 396 60 . 2 
A1,min = 

60 
X lOOO - 0.0335 X 58 X 

60 
= 0.39 m 

According to the ACI Code, the spacing must not exceed 12 in., and the bars may not be 
less than No. 3 (No. 10) in size or have a diameter less than 0.042s = 0.29 in. Reinforcement 
will be placed at the top, middepth, and bottom of the member-each level to provide not less 
than 1.94/3 = 0.65 in2• Two No. 6 (No. 19) bars will be used at middepth, and reinforcement to 
be placed for flexure will be increased by 0.65 in2 at the top and bottom of the member. 

Although A1 reduces in direct proportion to A, and, hence, decreases linearly starting 
at d from the face of the column to the midspan, for simplicity of construction the added 
bars and the increment in the flexural steel will be maintained throughout the length of the 
member. Although ACI Code 11.5.3 states that A1 may be decreased in flexural compression 
zones by an amount equal to Mu/(0.9df,), that reduction will not be made here. Adequate 
embedment must be provided past the face of the column to fully develop Jy in the bars at 
that location. 
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FIGUREP7.2 
Transfer girder: (a) top view; 
(b) front view; (c) side view. 
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PROBLEMS 
7.1. A beam of rectangular cross section having b = 22 in. and h = 15 in. is to 

carry a total factored load of 3500 lb/ft uniformly distributed over its 26 ft 
span, and in addition the beam will be subjected to a uniformly distributed 
torsion of 1750 ft-lb/ft at factored loads. Closed stirrup-ties will be used to 
provide for flexural shear and torsion, placed with the stirrup steel centroid 
1.75 in. from each concrete face. The corresponding flexural effective depth 
will be approximately 12.5 in. Design the transverse reinforcement for this 
beam and calculate the increment of longitudinal steel area needed to provide 
for torsion, usingJ; = 4000 psi andJy = 60,000 psi. 

7 .2. Architectural and clearance requirements call for the use of a transfer girder, 
shown in Fig. P7.2, spanning 20 ft between supporting column faces. The girder 
must carry from above a concentrated column load of 17 .5 kips at midspan, 
applied with eccentricity 2 ft from the girder centerline. (Load factors are already 
included, as is an allowance for girder self-weight.) The member is to have 
dimensions b = 10 in., h = 20 in., x

0 
= 6.5 in., y

0 
= 16.5 in., and d = 17 in. 

Supporting columns provide full torsional rigidity; flexural rigidity at the ends 
of the span can be assumed to develop 40 percent of the maximum moment 
that would be obtained if the girder were simply supported. Design both trans
verse and longitudinal steel for the beam. Material strengths are J; = 5000 psi 
and J;, = 60,000 psi. 

~ 
LJ 

~ 
(a) 

n 
20 kips 

[j 
20 kips 

l tj24' 
11 

2011
[ 

_J ~10" 

I--- 10' 10' --I 
(b) (c) 

7.3. The beam shown in cross section in Fig. P7.3 is a typical interior member 
of a continuous building frame, with span 30 ft between support faces. At 
factored loads, it will carry a uniformly distributed vertical load of 3100 
lb/ft, acting simultaneously with a uniformly distributed torsion of 2600 ft
lb/ft. Transverse reinforcement for shear and torsion will consist of No. 4 
(No. 13) stirrup-ties, as shown, with 1.5 in. clear to all concrete faces. The 
effective depth to flexural steel is taken equal to 22.5 in. for both negative 
and positive bending regions. Design the transverse reinforcement for shear 
and torsion, and calculate the longitudinal steel to be added to the flexural 
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FIGUREP7.3 

FIGUREP7.5 

1 J." 
j 

1-- 14" _J 

No. 4 (No. 13) stirrup-ties 

requirements to provide for torsion. Torsional reinforcement will be 
provided only in the web, not in the flanges. Material strengths are J; = 
4000 psi and/y = 60,000 psi. 

7 .4. The single-span T beam bridge described in Problem 3 .14 is reinforced for 
flexure with four No. 10 (No. 32) bars in two layers, which continue uninter
rupted into the supports, permitting a service live load of 1.50 kips/ft to be 
carried, in addition to the dead load of 0.93 kip/ft, including self-weight. 
Assume now that only one-half of that live load acts but that it is applied over 
only one-half the width of the member, entirely to the right of the section 
centerline. Design the transverse reinforcement for shear and torsion, and 
calculate the modified longitudinal steel needed for this eccentric load 
condition. Torsional reinforcement can be provided in the slab if needed, as 
well as in the web. Stirrup-ties will be No. 3 or No. 4 (No. 10 or No. 13) bars, 
with 1.5 in. clear to all concrete faces. Supports provide no restraint against 
flexural rotations but do provide full restraint against twist. Show a sketch of 
your final design, detailing all reinforcement. Material strengths are as given 
for Problem 3.14. 

7.5. Design a spandrel (edge) girder for shear and torsion that is loaded with a 
uniform factored load of 1.1 kips/ft. In addition, beams framing into the girder 
apply concentrated factored vertical loads Fut and Fu2 and torsional moments 
Tu 1 and Tu2, as shown in Fig. P7.5. Girder dimensions are h = 32 in. and bw = 
28 in., and slab thickness (one side of girder only) = 6 in. An analysis of 
various loading combinations indicates the following results: 

Case 1 

Case 2 

Case 3 

Ful = Fu2 = 80 kips 
Tul = Tu2 = 160 ft-kips 
Fut = 83 kips; Fu2 = 22 kips 
Tut = 160 ft-kips; Tu2 = 53 ft-kips 
Ful = 22 kips; Fu2 = 83 kips 
Tul = 53 ft-kips; Tu2 = 160 ft-kips 

Face of support 

1.1 kips/ft 
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To calculate reactions, treat the ends of the girder as fixed. Use .t;, = 60,000 psi 
andJ; = 4000 psi. Provide design drawings showing the transverse steel and 
the longitudinal steel required in addition to the flexural steel. 

7.6. A 20-ft long rectangular beam, free-standing except for being fixed at each end 
against rotation, must carry a midspan live load of 35 kips. The load can be as 
much as 12 in. off the axis of the beam. Beam dimensions are b = 12 in., d = 
20 in., and h = 23 in. Use.t;, = 60,000 psi andJ; = 4000 psi. Design the shear 
and torsion reinforcement. 
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Short Columns 

8.1 INTRODUCTION: AXIAL COMPRESSION 

Columns are defined as members that carry loads chiefly in compression. Usually 
columns carry bending moments as well, about one or both axes of the cross section, 
and the bending action may produce tensile forces over a part of the cross section. 
Even in such cases, columns are generally referred to as compression members, 
because the compression forces dominate their behavior. In addition to the most com
mon type of compression member, i.e., vertical elements in structures, compression 
members include arch ribs; rigid frame members inclined or otherwise; compression 
elements in trusses, shells, or portions thereof that carry axial compression; and other 
forms. In this chapter the term column will be used interchangeably with the term 
compression member, for brevity and in conformity with general usage. 

Three types of reinforced concrete compression members are in use: 

1. Members reinforced with longitudinal bars and lateral ties. 
2. Members reinforced with longitudinal bars and continuous spirals. 
3. Composite compression members reinforced longitudinally with structural steel 

shapes, pipe, or tubing, with or without additional longitudinal bars, and various 
types of lateral reinforcement. 

Types I and 2 are by far the most common, and most of the discussion in this 
chapter will refer to them. 

The main reinforcement in columns is longitudinal, parallel to the direction of 
the load, and consists of bars arranged in a square, rectangular, or circular pattern, as 
was shown in Fig. 1. 15. Figure 8.1 shows an ironworker tightening splices for the 
main reinforcing steel during construction of the 60-story Bank of America Corporate 
Center in Charlotte, North Carolina. The ratio of longitudinal steel area Ast to gross 
concrete cross section Ag is in the range from 0.01 to 0.08, according to ACI Code 
10.9.1. The lower limit is necessary to ensure resistance to bending moments not 
accounted for in the analysis and to reduce the effects of creep and shrinkage of the 
concrete under sustained compression. Ratios higher than 0.08 not only are uneco
nomical, but also would cause difficulty owing to congestion of the reinforcement, 
particularly where the steel must be spliced. Most columns are designed with ratios 
below 0.04. Larger-diameter bars are used to reduce placement costs and to avoid 
unnecessary congestion. The special large-diameter No. 14 and No. 18 (No. 43 and 
No. 57) bars are produced mainly for use in columns. According to ACI Code 10.9.2, 
a minimum of four longitudinal bars is required when the bars are enclosed by spaced 
rectangular or circular ties, and a minimum of six bars must be used when the longi
tudinal bars are enclosed by a continuous spiral. 



FIGURES.I 
Reinforcement for primary 
column of 60-story Bank of 
America Corporate Center in 
Charlotte, North Carolina. 
(Courresy of Walrer P. Moore 
and Associates.) 
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Columns may be divided into two broad categories: short columns, for which the 
strength is governed by the strength of the materials and the geometry of the cross 
section, and slender columns, for which the strength may be significantly reduced by 
lateral deflections. A number of years ago, an ACI-ASCE survey indicated that 
90 percent of columns braced against sidesway and 40 percent of unbraced columns 
could be designed as short columns. Effective lateral bracing, which prevents relative 
lateral movement of the two ends of a column, is commonly provided by shear walls, 
elevator and stairwell shafts, diagonal bracing, or a combination of these. Although 
slender columns are more common now because of the wider use of high-strength 
materials and improved methods of dimensioning members, it is still true that most 
columns in ordinary practice can be considered short columns. Only short columns 
will be discussed in this chapter; the effects of slenderness in reducing column 
strength will be covered in Chapter 9. 

The behavior of short, axially loaded compression members was discussed in 
Section 1.9 in introducing the basic aspects of reinforced concrete. It is suggested that 
the earlier material be reviewed at this point. In Section 1.9, it was demonstrated that, 
for lower loads at which both materials remain elastic, the steel carries a relatively 
small portion of the total load. The steel stress f. is equal ton. times the concrete stress: 

J. = rife (8. 1) 
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FIGURE 8.2 
Transformed section in axial 
compression. 

Actual section 

(a) 

Transformed section 
At= Ac+ nAst 

(b) 

Transformed section 
At= Ag+ (n-1)A5 t 

(c) 

where n = Es/Ee is the modular ratio. In this range the axial load Pis given by 

P = fc[Ag + (n - l)A.,] (8.2) 

where Ag is the gross area of the cross section, A.1 is the total area of the reinforcing 
steel, and the term in brackets is the area of the transformed section (see Fig. 8.2). 
Equations (8.2) and (8.1) can be used to find concrete and steel stresses, respectively, 
for given loads, provided both materials remain elastic. Example 1.1 demonstrated 
the use of these equations. 

In Section 1.9, it was further shown that the nominal strength of an axially 
loaded column can be found, recognizing the nonlinear response of both mate
rials, by 

Pn = 0.85J;Ac + AsJy 

where Ac = net area of concrete, or 

Pn = 0.85/; (Ag - A.,) + Asrfy 

(8.3a) 

(8.3b) 

i.e., by summing the strength contributions of the two components of the column. At 
this stage, the steel carries a significantly larger fraction of the load than was the case 
at lower total load. 

The calculation of the nominal strength of an axially loaded column was demon
strated in Section 1.9. 

According to ACI Code 10.3.6, the design strength of an axially loaded column 
is to be found based on Eq. (8.3b) with the introduction of certain strength reduction 
factors. The ACI factors are lower for columns than for beams, reflecting their greater 
importance in a structure. A beam failure would normally affect only a local region, 
whereas a column failure could result in the collapse of the entire structure. In 
addition, these factors reflect differences in the behavior of tied columns and spirally 
reinforced columns that will be discussed in Section 8.2. A basic</> factor of 0.75 is 
used for spirally reinforced columns and 0.65 for tied columns, vs. </> = 0.90 for 
most beams. 

A further limitation on column strength is imposed by ACI Code 10.3.6 to allow 
for accidental eccentricities of loading not considered in the analysis. This is done by 
imposing an upper limit on the axial load that is less than the calculated design 
strength. This upper limit is taken as 0.85 times the design strength for spirally 
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reinforced columns and 0.80 times the calculated strength for tied columns. Thus, 
according to ACI Code 10.3.6, for spirally reinforced columns 

with</> = 0.75. For tied columns 

</>P,,(max) = 0.80</>[0.85/) (Ag - Ast) + J;,Ast] 

with</> = 0.65. 

(8.4a) 

(8.4b) 

8.2 LATERAL TIES AND SPIRALS 

FIGURE 8.3 
Tie arrangements for square 
and rectangular columns. 

Figure 1. 15 shows cross sections of the simplest types of columns, spirally reinforced 
or provided with lateral ties. Other cross sections frequently found in buildings and 
bridges are shown in Fig. 8.3. In general, in members with large axial forces and small 
moments, longitudinal bars are spaced more or less uniformly around the perimeter 
(Fig. 8.3a to d). When bending moments are large, much of the longitudinal steel is 
concentrated at the faces of highest compression or tension, i.e., at maximum dis
tances from the axis of bending (Fig. 8.3e to h). Specific recommended patterns for 
many combinations and arrangements of bars are found in Refs. 8.1 and 8.2. In heavily 
loaded columns with large steel percentages, the result of a large number of bars, each 
of them positioned and held individually by ties, is steel congestion in the forms and 

□□ 
(a) 

Spacing< 6" 
(b) 

Spacing> 6" 
(c) 

□ m 
(d) 

(g) 

Spacing< 6" 
(e) 

(h) 

Spacing> 6" 
(f) 
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FIGURES.4 
Model for action of a spiral. 

difficulties in placing the concrete. In such cases, bundled bars are frequently employed. 
Bundles consist of three or four bars tied in direct contact, wired, or otherwise fastened 
together. These are usually placed in the comers. Tests have shown that adequately 
bundled bars act as one unit; i.e., they are detailed as if a bundle constituted a single 
round bar of area equal to the sum of the bundled bars. 

Lateral reinforcement, in the form of individual relatively widely spaced ties or 
a continuous closely spaced spiral, serves several functions. For one, such reinforce
ment is needed to hold the longitudinal bars in position in the forms while the concrete 
is being placed. For this purpose, longitudinal and transverse steel is wired together to 
form cages, which are then moved into the forms and properly positioned before 
placing the concrete. For another, transverse reinforcement is needed to prevent the 
highly stressed, slender longitudinal bars from buckling outward by bursting the thin 
concrete cover. 

Closely spaced spirals serve these two functions. Ties, which can be arranged 
and spaced in various ways, must be so designed that these two requirements are met. 
This means that the spacing must be sufficiently small to prevent buckling between 
ties and that, in any tie plane, a sufficient number of ties must be provided to position 
and hold all bars. On the other hand, in columns with many longitudinal bars, if the 
column section is crisscrossed by too many ties, they interfere with the placement 
of concrete in the forms. To achieve adequate tying yet hold the number of ties to a 
minimum, ACI Code 7 .10.5 gives the following rules for tie arrangement: 

All bars of tied columns shall be enclosed by lateral ties, at least No. 3 (No. 10) in size 
for longitudinal bars up to No. 10 (No. 32), and at least No. 4 (No. 13) in size for Nos. 11, 
14, and 18 (Nos. 36, 43, and 57) and bundled longitudinal bars. The spacing of the ties 
shall not exceed 16 diameters of longitudinal bars, 48 diameters of tie bars, nor the least 
dimension of the column. The ties shall be so arranged that every comer and alternate 
longitudinal bar shall have lateral support provided by the comer of a tie having an 
included angle of not more than 135°, and no bar shall be farther than 6 in. clear on either 
side from such a laterally supported bar. Deformed wire or welded wire fabric of equiv
alent area may be used instead of ties. Where the bars are located around the periphery 
of a circle, complete circular ties may be used. 

For spirally reinforced columns ACI Code 7.10.4 requirements for lateral reinforce
ment may be summarized as follows: 

Spirals shall consist of a continuous bar or wire not less than ¾ in. in diameter, and the 
clear spacing between turns of the spiral must not exceed 3 in. nor be less than 1 in. 

In addition, a minimum ratio of spiral steel is imposed such that the structural per
formance of the column is significantly improved, with respect to both ultimate load 
and the type of failure, compared with an otherwise identical tied column. 

The structural effect of a spiral is easily visualized by considering as a model 
a steel drum filled with sand (Fig. 8.4). When a load is placed on the sand, a lateral 
pressure is exerted by the sand on the drum, which causes hoop tension in the steel 
wall. The load on the sand can be increased until the hoop tension becomes large 
enough to burst the drum. The sand pile alone, if not confined in the drum, would 
have been able to support hardly any load. A cylindrical concrete column, to be 
sure, does have a definite strength without any lateral confinement. As it is being 
loaded, it shortens longitudinally and expands laterally, depending on Poisson's 
ratio. A closely spaced spiral confining the column counteracts the expansion, as 
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FIGURES.5 
Failure of a tied column. 

FIGURE 8.6 
Behavior of spirally 
reinforced and tied columns. 
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did the steel drum in the model. This causes hoop tension in the spiral, while the 
carrying capacity of the confined concrete in the core is greatly increased. Failure 
occurs only when the spiral steel yields, which greatly reduces its confining effect, 
or when it fractures. 

A tied column fails at the load given by Eq. (8.3a orb). At this load the con
crete fails by crushing and shearing outward along inclined planes, and the longitu
dinal steel by buckling outward between ties (Fig. 8.5). In a spirally reinforced 
column, when the same load is reached, the longitudinal steel and the concrete within 
the core are prevented from moving outward by the spiral. The concrete in the outer 
shell, however, not being so confined, does fail; i.e., the outer shell spalls off when 
the load Pn is reached. It is at this stage that the confining action of the spiral has a 
significant effect, and if sizable spiral steel is provided, the load that will ultimately 
fail the column by causing the spiral steel to yield or fracture can be much larger 
than that at which the shell spalled off. Furthermore, the axial strain limit when the 
column fails will be much greater than otherwise; the toughness of the column has 
been much increased. 

In contrast to the practice in some foreign countries, it is reasoned in the United 
States that any excess capacity beyond the spalling load of the shell is wasted because 
the member, although not actually failed, would no longer be considered serviceable. 
For this reason, the ACI Code provides a minimum spiral reinforcement of such an 
amount that its contribution to the carrying capacity is just slightly larger than that of 
the concrete in the shell. The situation is best understood from Fig. 8.6, which 
compares the performance of a tied column with that of a spiral column whose 
spalling load is equal to the ultimate load of the tied column. The failure of the tied 
column is abrupt and complete. This is true, to almost the same degree, of a spiral 
column with a spiral so light that its strength contribution is considerably less than the 
strength lost in the spalled shell. With a heavy spiral the reverse is true, and with 
considerable prior deformation the spalled column would fail at a higher load. The 
"ACI spiral," its strength contribution about compensating for that lost in the spalled 
shell, hardly increases the ultimate load. However, by preventing instantaneous 
crushing of concrete and buckling of steel, it produces a more gradual and ductile 
failure, i.e., a tougher column. 
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( 
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FIGURE 8.7 
Confinement of core concrete 
due to hoop tension. 

It has been found experimentally (Refs. 8.3 to 8.5) that the increase in compressive 
strength of the core concrete in a column provided through the confining effect of 
spiral steel is closely represented by the equation 

ft - 0.85f: = 4.0f i (a) 

where ft = compressive strength of spirally confined core concrete 
0.85f; = compressive strength of concrete if unconfined 

f; = lateral confinement stress in core concrete produced by spiral 

The confinement stress fl is calculated assuming that the spiral steel reaches its yield 
stress J;, when the column eventually fails. With reference to Fig. 8. 7, a hoop tension 
analysis of an idealized model of a short segment of column confined by one turn of 
lateral steel shows that 

2Aspht 
fl= ---

des 
(b) 

where Asp = cross-sectional area of spiral wire 
J;,1 = yield strength of spiral steel 
de = outside diameter of spiral 
s = spacing or pitch of spiral wire 

A volumetric ratio is defined as the ratio of the volume of spiral steel to the volume 
of core concrete: 

Ps = 

from which 

Substituting the value of Asp from Eq. (c) into Eq. (b) results in 

J' _ Psht 
2 - 2 

To find the right amount of spiral steel, one calculates 

Strength contribution of the shell = 0.85f; (Ag - Ach) 

(c) 

(d) 

(e) 

where Ag and Ac are, respectively, the gross and core concrete areas. Then substituting 
the confinement stress from Eq. (d) into Eq. (a) and multiplying by the core concrete 
area, one finds 

Strength provided by spiral = 2psJ;,tAch (f) 

The basis for the design of the spiral is that the strength gain provided by the spiral 
should be at least equal to that lost when the shell spalls, so combining Eqs. (e) and 
(f) yields 

from which 

(g) 
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According to the ACI Code, this result is rounded upward slightly, and ACI Code 
10.9.3 states that the ratio of spiral reinforcement shall not be less than 

(8.5) 

It is further stipulated in the ACI Code that .t;,1 not be taken greater than 100,000 psi 
and that spiral reinforcement not be spliced if .t;,1 is greater than 60,000 psi. 

It follows from this development that two concentrically loaded columns 
designed in accordance with the ACI Code, one tied and one with spiral but otherwise 
identical, will fail at about the same load, the former in a sudden and brittle manner, 
the latter gradually with prior spalling of the shell and with more ductile behavior. 
This advantage of the spiral column is much less pronounced if the load is applied 
with significant eccentricity or when bending from other sources is present simulta
neously with axial load. For this reason, while the ACI Code permits somewhat larger 
design loads on spiral than on tied columns when the moments are small or zero 
(</> = 0.75 for spirally reinforced columns vs. <f> = 0.65 for tied), the difference is not 
large, and it is even further reduced for large eccentricities, for which <f> approaches 
0.90 for both. 

The design of spiral reinforcement according to the ACI Code provisions is 
easily reduced to tabular form, as in Table A.14 of Appendix A. 

8.3 COMPRESSION PLUS BENDING OF RECTANGULAR 
COLUMNS 

Members that are axially, i.e., concentrically, compressed occur rarely, if ever, in 
buildings and other structures. Components such as columns and arches chiefly carry 
loads in compression, but simultaneous bending is almost always present. Bending 
moments are caused by continuity, i.e., by the fact that building columns are parts of 
monolithic frames in which the support moments of the girders are partly resisted by 
the abutting columns, by transverse loads such as wind forces, by loads carried eccen
trically on column brackets, or in arches when the arch axis does not coincide with the 
pressure line. Even when design calculations show a member to be loaded purely 
axially, inevitable imperfections of construction will introduce eccentricities and 
consequent bending in the member as built. For this reason members that must be 
designed for simultaneous compression and bending are very frequent in almost all 
types of concrete structures. 

When a member is subjected to combined axial compression P and moment M, 
such as in Fig. 8.8a, it is usually convenient to replace the axial load and moment with 
an equal load P applied at eccentricity e = M/P, as in Fig. 8.8b. The two loadings are 
statically equivalent. All columns may then be classified in terms of the equivalent 
eccentricity. Those having relatively small e are generally characterized by compres
sion over the entire concrete section, and if overloaded, will fail by crushing of the 
concrete accompanied by yielding of the steel in compression on the more heavily 
loaded side. Columns with large eccentricity are subject to tension over at least a part 
of the section, and if overloaded, may fail due to tensile yielding of the steel on the 
side farthest from the load. 

For columns, load stages below the ultimate are generally not important. Cracking 
of concrete, even for columns with large eccentricity, is usually not a serious problem, 
and lateral deflections at service load levels are seldom, if ever, a factor. Design of 
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FIGURE8.8 
Equivalent eccentricity of 
column load. 

p 
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(a) (b) 

columns is therefore based on the factored load, which must not exceed the design 
strength, as usual, i.e., 

(8.6a) 

(8.6b) 

8.4 STRAIN COMPATIBILITY ANALYSIS AND INTERACTION 
DIAGRAMS 

Figure 8.9a shows a member loaded parallel to its axis by a compressive force Pn at 
an eccentricity e measured from the centerline. The distribution of strains at a section 
a-a along its length, at incipient failure, is shown in Fig. 8.9b. With plane sections 
assumed to remain plane, concrete strains vary linearly with distance from the neutral 
axis, which is located a distance c from the more heavily loaded side of the member. 
With full compatibility of deformations, the steel strains at any location are the same 
as the strains in the adjacent concrete; thus, if the ultimate concrete strain is Eu, 

the strain in the bars nearest the load is E~, while that in the tension bars at the far side 
is Es. Compression steel with area A~ and tension steel with area As are located at 
distances d' and d, respectively, from the compression face. 

The corresponding stresses and forces are shown in Fig. 8.9c. Just as for simple 
bending, the actual concrete compressive stress distribution is replaced by an equiva
lent rectangular distribution having depth a = {3 1 c. A large number of tests on columns 
with a variety of shapes have shown that the strengths computed on this basis are in 
satisfactory agreement with test results (Ref. 8.6). 

Equilibrium between external and internal axial forces shown in Fig. 8.9c 
requires that 

(8.7) 

Also, the moment about the centerline of the section of the internal stresses and forces 
must be equal and opposite to the moment of the external force P n' so that 

(8.8) 

These are the two basic equilibrium relations for rectangular eccentrically compressed 
members. 



FIGURE8.9 
Column subject to eccentric 
compression: (a) loaded 
column; (b) strain 
distribution at section a-a; 
(c) stresses and forces at 
nominal strength. 
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The fact that the presence of the compression reinforcement A; has displaced a 
corresponding amount of concrete of area A; is neglected in writing these equations. 
If necessary, particularly for large reinforcement ratios, one can account for this very 
simply. Evidently, in the above equations a nonexistent concrete compression force of 
amount A;(0.851:) has been included as acting in the displaced concrete at the level 
of the compression steel. This excess force can be removed in both equations by 
multiplying A: by 1; - 0.851: rather than by 1;. 

For large eccentricities, failure is initiated by yielding of the tension steel A.,. 
Hence, for this case, fs = Jy. When the concrete reaches its ultimate strain Eu, the 
compression steel may or may not have yielded; this must be determined based on 
compatibility of strains. For small eccentricities the concrete will reach its limit strain 
Eu before the tension steel starts yielding; in fact, the bars on the side of the column 
farther from the load may be in compression, not tension. For small eccentricities, too, 
the analysis must be based on compatibility of strains between the steel and the 
adjacent concrete. 

For a given eccentricity determined from the frame analysis (i.e., e = MjPJ it 
is possible to solve Eqs. (8.7) and (8.8) for the load Pn and moment Mn that would 
result in failure as follows. In both equations, 1;, f,, and a can be expressed in terms 
of a single unknown c, the distance to the neutral axis. This is easily done based on 
the geometry of the strain diagram, with Eu taken equal to 0.003 as usual, and using 
the stress-strain curve of the reinforcement. The result is that the two equations con
tain only two unknowns, Pn and c, and can be solved for those values simultaneously. 
However, to do so in practice would be complicated algebraically, particularly because 
of the need to incorporate the limit f;, on both 1/ and/,. 

A better approach, providing the basis for practical design, is to construct a 
strength interaction diagram defining the failure load and failure moment for a given 
column for the full range of eccentricities from zero to infinity. For any eccentricity, 
there is a unique pair of values of Pn and Mn that will produce the state of incipient 
failure. That pair of values can be plotted as a point on a graph relating Pn and Mn, 
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FIGURE 8.10 
Interaction diagram for 
nominal column strength in 
combined bending and axial 
load. 
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such as shown in Fig. 8.10. A series of such calculations, each corresponding to a dif
ferent eccentricity, will result in a curve having a shape typically as shown in Fig. 8.10. 
On such a diagram, any radial line represents a particular eccentricity e = M/P. For 
that eccentricity, gradually increasing the load will define a load path as shown, and 
when that load path reaches the limit curve, failure will result. Note that the vertical 
axis corresponds to e = 0, and P0 is the capacity of the column if concentrically 
loaded, as given by Eq. (8.3b). The horizontal axis corresponds to an infinite value of 
e, i.e., pure bending at moment capacity M 0• Small eccentricities will produce failure 
governed by concrete compression, while large eccentricities give a failure triggered 
by yielding of the tension steel. 

For a given column, selected for trial, the interaction diagram is most easily 
constructed by selecting successive choices of neutral axis distance c, from infinity 
(axial load with eccentricity 0) to a very small value found by trial to give Pn = 0 (pure 
bending). For each selected value of c, the steel strains and stresses and the concrete 
force are easily calculated as follows. For the tension steel, 

d-c 

while for the compression steel, 

C - d' 
E 1 = E ---

s u C 

The concrete stress block has depth 

a = {3 1c :::; h 

and consequently the concrete compressive resultant is 

C = 0.85J;ab 

(8.9) 

(8.10) 

(8.11) 

(8.12) 

(8.13) 

(8.14) 
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The nominal axial force Pn and nominal moment Mn corresponding to the selected 
neutral axis location can then be calculated from Eqs. (8.7) and (8.8), respectively, and 
thus a single point on the strength interaction diagram is established. The calculations 
are then repeated for successive choices of neutral axis to establish the curve defining 
the strength limits, such as Fig. 8.10. The calculations, of a repetitive nature, are easily 
programmed for the computer or performed using a spreadsheet. 

8.5 BALANCED FAILURE 

As already noted, the interaction curve is divided into a compression failure range and 
a tension failure range. t It is useful to define what is termed a balanced failure mode 
and corresponding eccentricity eb with the load Pb and moment Mb acting in combi
nation to produce failure, with the concrete reaching its limit strain '=u at precisely the 
same instant that the tensile steel on the far side of the column reaches yield strain. 
This point on the interaction diagram is the dividing point between compression 
failure (small eccentricities) and tension failure (large eccentricities). 

The values of Pb and Mb are easily computed with reference to Fig. 8.9. For 
balanced failure, 

(8.15) 

and 

(8.16) 

Equations (8.9) through (8.14) are then used to obtain the steel stresses and the 
compressive resultant, after which Pb and Mb are found from Eqs. (8.7) and (8.8). 

Note that, in contrast to beam design, one cannot restrict column designs such 
that yielding failure rather than crushing failure would always be the result of over
loading. The type of failure for a column depends on the value of eccentricity e, which 
in tum is defined by the load analysis of the building or other structure. 

It is important to observe, in Fig. 8.10, that in the region of compression failure 
the larger the axial load Pn, the smaller the moment Mn that the section is able to 
sustain before failing. However, in the region of tension failure, the reverse is true; the 
larger the axial load, the larger the simultaneous moment capacity. This is easily 
understood. In the compression failure region, failure occurs through overstraining of 
the concrete. The larger the concrete compressive strain caused by the axial load 
alone, the smaller the margin of additional strain available for the added compression 
caused by bending. On the other hand, in the tension failure region, yielding of the 
steel initiates failure. If the member is loaded in simple bending to the point at which 
yielding begins in the tension steel, and if an axial compression load is then added, the 
steel compressive stresses caused by this load will superimpose on the previous tensile 
stresses. This reduces the total steel stress to a value below its yield strength. 
Consequently, an additional moment can now be sustained of such magnitude that the 
combination of the steel stress from the axial load and the increased moment again 
reaches the yield strength. 

' The terms compression failure range and tension failure range are used for the purpose of general description and are distinct from 
tension-controlled and compression-controlled failures, as described in Chapter 3 and Section 8.9. 
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The typical shape of a column interaction diagram shown in Fig. 8.10 has 
important design implications. In the range of tension failure, a reduction in axial load 
may produce failure for a given moment. In carrying out a frame analysis, the designer 
must consider all combinations of loading that may occur, including that which would 
produce minimum axial load paired with a given moment (the specific load combina
tions are specified in ACI Code 8.10 and described in Section 12.3). Only that amount 
of compression that is certain to be present should be used in calculating the capacity 
of a column subject to a given moment. 

EXAMPLE 8.1 Column strength interaction diagram. A 12 X 20 in. column is reinforced with four No. 9 
(No. 29) bars of area 1.0 in2 each, one in each corner as shown in Fig. 8.1 la. The concrete 
cylinder strength isJ; = 4000 psi and the steel yield strength is 60 ksi. Determine (a) the load 
Pb, moment Mb, and corresponding eccentricity eh for balanced failure; (b) the load and 
moment for a representative point in the tension failure region of the interaction curve; (c) the 
load and moment for a representative point in the compression failure region; (d) the axial load 
strength for zero eccentricity. Then (e) sketch the strength interaction diagram for this column. 
Finally, (f) design the transverse reinforcement, based on ACI Code provisions. 
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Column interaction diagram for Example 8.1: (a) cross section; (b) strain distribution; (c) stresses 
and forces; (d) strength interaction diagram. 

300 400 



SHORT COLUMNS 275 

SOLUTION. 

(a) The neutral axis for the balanced failure condition is easily found from Eq. (8.15) with 
Eu = 0.003 and EY = 60/29,000 = 0.0021 

0.003 
Cb= 17.5 X 0.005 l = 10.3 in. 

giving a stress-block depth a = 0.85 X 10.3 = 8.76 in. For the balanced failure condition, 
by definition,/, = Jy The compressive steel stress is found from Eq. (8.12): 

10.3 - 2.5 
J; = 0.003 X 29,000 O = 65.9 ksi 

1 .3 
but :S 60 ksi 

confirming that the compression steel, too, is at the yield. The concrete compressive resultant is 

C = 0.85 X 4 X 8.76 X 12 = 357 kips 

The balanced load Pb is then found from Eq. (8.7) to be 

Pb = 357 + 2.0 X 60 - 2.0 X 60 = 357 kips 

and the balanced moment from Eq. (8.8) is 

Mb= 357(10 - 4.38) + 2.0 X 60(10 - 2.5) + 2.0 X 60(17.5 - 10) 

= 3806 in-kips= 317 ft-kips 

The corresponding eccentricity of load is eb = 10.66 in. 
(b) Any choice of c smaller than cb = 10.3 in. will give a point in the tension failure region 

of the interaction curve, with eccentricity larger than eb. For example, choose c = 5.0 in. 
By definition,fs = Jy. The compressive steel stress is found to be 

5.0 - 2.5 J; = 0.003 X 29,000 --- = 43.5 ksi 
5.0 

With the stress-block depth a = 0.85 X 5.0 = 4.25, the compressive resultant is C = 0.85 X 
4 X 4.25 X 12 = 173 kips. Then from Eq. (8.7), the thrust is 

Pn = 173 + 2.0 X 43.5 - 2.0 X 60 = 140 kips 

and the moment capacity from Eq. (8.8) is 

Mn= 173(10 - 2.12) + 2.0 X 43.5(10 - 2.5) + 2.0 X 60(17.5 - 10) 

= 2916 in-kips = 243 ft-kips 

giving eccentricity e = 2916/140 = 20.83 in., well above the balanced value. 
(c) Now selecting a c value larger than cb to demonstrate a compression failure point on the 

interaction curve, choose c = 18.0 in., for which a = 0.85 X 18.0 = 15.3 in. The com
pressive concrete resultant is C = 0.85 X 4 X 15.3 X 12 = 624 kips. From Eq. (8.10) the 
stress in the steel at the left side of the column is 

17.5 - 18.0 
fs = 0.003 X 29,000 ---- = - 2 ksi 

18.0 

Note that the negative value offs indicates correctly that As is in compression if c is greater 
than d, as in the present case. The compressive steel stress is found from Eq. (8.12) to be 

18.0 - 2.5 
E.,' = 0.003 X 29,000 ---- = 75 ksi but :S 60 ksi 

J., 18.0 

Then the column capacity is 

Pn = 624 + 2.0 X 60 + 2.0 X 2 = 748 kips 

Mn= 624(10 - 7.65) + 2.0 X 60(10 - 2.5) - 2.0 X 2(17.5 - 10) 

= 2336 in-kips = 195 ft-kips 

giving eccentricity e = 2336/748 = 3.12 in. 
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(d) The axial strength of the column if concentrically loaded corresponds to c = oo and e = 0. 
For this case, 

Pn = 0.85 X 4 X 12 X 20 + 4.0 X 60 = 1056kips 

Note that, for this as well as the preceding calculations, subtraction of the concrete 
displaced by the steel has been neglected. For comparison, if the deduction were made in 
the last calculation, 

Pn = 0.85 X 4(12 X 20 - 4) + (4.0 X 60) = 1042 kips 

The error in neglecting this deduction is only 1 percent in this case; the difference gener
ally can be neglected, except perhaps for columns with reinforcement ratios close to the 
maximum of 8 percent. In the case of design aids, however, such as those presented in 
Refs. 8.2 and 8.7 and discussed in Section 8.10, the deduction is usually included for all 
reinforcement ratios. 

(e) From the calculations just completed, plus similar repetitive calculations that will not be 
given here, the strength interaction curve of Fig. 8.1 ld is constructed. Note the character
istic shape, described earlier, the location of the balanced failure point as well as the "small 
eccentricity" and "large eccentricity" points just found, and the axial load capacity. 
In the process of developing a strength interaction curve, it is possible to select the values 
of steel strain € ., as done in step a, for use in steps b and c. Selecting es uniquely establishes 
the neutral axis depth c, as shown by Eqs. (8.9) and (8.15), and is useful in determining 
Mn and Pn for values of steel strain that correspond to changes in the strength reduction 
factor</>, as will be discussed in Section 8.9. 

(j) The design of the column ties will be carried out following the ACI Code restrictions. For 
the minimum permitted tie diameter of i in., used with No. 9 (No. 29) longitudinal bars 
having a diameter of 1.128 in a column the least dimension of which is 12 in., the tie 
spacing is not to exceed 

3 . 
48 XS= 18 m. 

16 X 1.128 = 18.05 in. 

b = 12 in. 

The last restriction controls in this case, and No. 3 (No. 10) ties will be used at 12 in. spacing, 
detailed as shown in Fig. 8.1 la. Note that the permitted spacing as controlled by the first and 
second criteria, 18 in., must be reduced because of the 12 in. column dimension. 

8.6 DISTRIBUTED REINFORCEMENT 

When large bending moments are present, it is most economical to concentrate all 
or most of the steel along the outer faces parallel to the axis of bending. Such 
arrangements are shown in Fig. 8.3e to h. On the other hand, with small eccentrici
ties so that axial compression is predominant, and when a small cross section is 
desired, it is often advantageous to place the steel more uniformly around the 
perimeter, as in Fig. 8.3a to d. In this case, special attention must be paid to the 
intermediate bars, i.e., those that are not placed along the two faces that are most 
highly stressed. This is so because when the ultimate load is reached, the stresses in 
these intermediate bars are usually below the yield point, even though the bars along 
one or both extreme faces may be yielding. This situation can be analyzed by a sim
ple and obvious extension of the previous analysis based on compatibility of strains. 
A strength interaction diagram may be constructed just as before. A sequence of 
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choices of neutral axis location results in a set of paired values of Pn and Mn, each 
corresponding to a particular eccentricity of load. 

EXAMPLE 8.2 Analysis of eccentrically loaded column with distributed reinforcement. The column in 
Fig. 8.12a is reinforced with ten No. 11 (No. 36) bars distributed around the perimeter as 
shown. Load Pn will be applied with eccentricity e about the strong axis. Material strengths are 
J; = 6000 psi andfy = 75 ksi. Find the load and moment corresponding to a failure point with 
neutral axis c = 18 in. from the right face. 

FIGURE 8.12 
Column in Example 8.2: 
(a) cross section; (b) strain 
distribution; (c) stresses and 
forces. 

SOLUTION. When the concrete reaches its limit strain of 0.003, the strain distribution is that 
shown in Fig. 8.12b, the strains at the locations of the four bar groups are found from similar 
triangles, after which the stresses are found by multiplying strains by Es = 29,000 ksi applying 
the limit value Jy: 

i 

Es1 = 0.00258 

Esz = 0.00142 

Es3 = 0.00025 

Es4 = 0.00091 

(b) 

J,1 = 75.0 ksi compression 

fsz = 41.2 ksi compression 

fs3 = 7.3 ksi compression 

fs4 = 26.4 ksi tension 

ra= 13.5";1 

f II nf II lllf U!Jas,; 
(c) 
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For J; = 6000 psi, /31 = 0.75 and the depth of the equivalent rectangular stress block is 
a = 0.75 X 18 = 13.5 in. The concrete compressive resultant is C = 0.85 X 6 X 13.5 X 12 = 
826 kips, and the respective steel forces in Fig. 8.12c are 

Csl = 4.68 X 75.0 = 351 kips 

Cs2 = 3.12 X 41.2 = 129 kips 

Cs3 = 3.12 X 7.3 = 23 kips 

Ts4 = 4.68 X 26.4 = 124 kips 

The axial load and moment that would produce failure for a neutral axis 18 in. from the right 
face are found by the obvious extensions of Eqs. (8.7) and (8.8): 

Pn = 826 + 351 + 129 + 23 - 124 = 1205 kips 

Mn= 826(13 - 6.75) + 351 (13 - 2.5) + 129(13 - 9.5) - 23(13 - 9.5) 

+ 124(13 - 2.5) 

= 10,520 in-kips 

= 877 ft-kips 

The corresponding eccentricity is e = 10,520/1205 = 8.73 in. Other points on the interaction 
diagram can be computed in a similar way. 

Two general conclusions can be made from this example: 

1. Even with the relatively small eccentricity of about one-third of the depth of the 
section, only the bars of group 1 just barely reached their yield strain, and con
sequently their yield stress. All other bar groups of the relatively high-strength 
steel that was used are stressed far below their yield strength, which would also 
have been true for group 1 for a slightly larger eccentricity. It follows that the use 
of the more expensive high-strength steel is economical in symmetrically 
reinforced columns only for very small eccentricities, e.g., in the lower stories of 
tall buildings. 

2. The contribution of the intermediate bars of groups 2 and 3 to both Pn and Mn is 
quite small because of their low stresses. Again, intermediate bars, except as they 
are needed to hold ties in place, are economical only for columns with very small 
eccentricities. 

8.7 UNSYMMETRICAL REINFORCEMENT 

Most reinforced concrete columns are symmetrically reinforced about the axis of 
bending. However, for some cases, such as the columns of rigid portal frames in which 
the moments are uniaxial and the eccentricity is large, it is more economical to use an 
unsymmetrical pattern of bars, with most of the bars on the tension side such as shown 
in Fig. 8.13. Such columns can be analyzed by the same strain compatibility approach 
as described above. However, for an unsymmetrically reinforced column to be loaded 
concentrically, the load must pass through a point known as the plastic centroid. The 
plastic centroid is defined as the point of application of the resultant force for the 
column cross section (including concrete and steel forces) if the column is compressed 
uniformly to the failure strain Eu = 0.003 over its entire cross section. Eccentricity of 
the applied load must be measured with respect to the plastic centroid, because only 
then will e = 0 correspond to an axial load with no moment. The location of the plastic 



FIGURE 8.13 
Plastic centroid of an 
unsymmetrically reinforced 
column. 
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centroid for the column of Fig. 8.13 is the resultant of the three internal forces to be 
accounted for. Its distance from the left face is 

0.85J; bh2 /2 + Asfyd + A~Jyd' 
x= 

0.85J;bh + Asfy + A~Jy 
(8.17) 

Clearly, in a symmetrically reinforced cross section, the plastic centroid and the geo
metric center coincide. 

8.8 CIRCULAR COLUMNS 

It was mentioned in Section 8.2 that when load eccentricities are small, spirally rein
forced columns show greater toughness, i.e., greater ductility, than tied columns, 
although this difference fades out as the eccentricity is increased. For this reason, as 
discussed in Section 8.2, the ACI Code provides a more favorable reduction factor 
cp = 0.75 for spiral columns, compared with cp = 0.65 for tied columns. Also, the 
maximum stipulated design load for entirely or nearly axially loaded members is larger 
for spirally reinforced members than for comparable tied members (see Section 8.9). 
It follows that spirally reinforced columns permit a somewhat more economical 
utilization of the materials, particularly for small calculated eccentricities. A further 
advantage lies in the fact that the circular shape is frequently desired by the architect. 

Figure 8.14 shows the cross section of a spirally reinforced column. Six or more 
longitudinal bars of equal size are provided for longitudinal reinforcement, depending 
on column diameter. The strain distribution at the instant at which the ultimate load is 
reached is shown in Fig. 8.14b. Bar groups 2 and 3 are seen to be strained to much 
smaller values than groups 1 and 4. The stresses in the four bar groups are easily 
found. For any of the bars with strains in excess of yield strain Ey = J;,/Es, the stress 
at failure is evidently the yield stress of the bar. For bars with smaller strains, the stress 
is found from.fs = EsEs. 
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FIGURE 8.14 
Circular column with 
compression plus bending. 
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One then has the internal forces shown in Fig. 8.14c. They must be in force and 
moment equilibrium with the nominal strength Pn. Note that the situation is analogous 
to that discussed in Sections 8.4 to 8.6 for rectangular columns. Calculations can be 
carried out exactly as in Example 8.1, except that for circular columns the concrete 
compression zone subject to the equivalent rectangular stress distribution has the 
shape of a segment of a circle, shown shaded in Fig. 8.14a. 

Although the shape of the compression zone and the strain variation in the dif
ferent groups of bars make longhand calculations awkward, no new principles are 
involved and computer solutions are easily developed. 

Design or analysis of spirally reinforced columns is usually carried out by means 
of design aids, such as Graphs A.13 to A.16 of Appendix A. Additional tables and 
graphs are available, e.g., in Ref. 8.7. In developing such design aids, the entire steel 
area is often assumed to be arranged in a uniform, concentric ring, rather than being 
concentrated in the actual bar locations; this simplifies calculations without noticeably 
affecting results if the column contains at least eight longitudinal bars. When fewer 
bars are used, the interaction curve should be calculated based on the weakest orien
tation in bending. 

Note that to qualify for the more favorable safety provisions for spiral columns, 
the reinforcement ratio of the spiral must be at least equal to that given by Eq. (8.5) 
for reasons discussed in Section 8.2. 
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8.9 ACI CODE PROVISIONS FOR COLUMN DESIGN 

For columns, as for all members designed according to the ACI Code, adequate safety 
margins are established by applying load factors to the service loads and strength 
reduction factors to the nominal strengths. Thus, for columns, <f>Pn 2== Pu and 
<f>Mn 2== Mu are the basic safety criteria. For most members subject to axial compression 
or compression plus flexure (compression-controlled members, as described in 
Chapter 3), the ACI Code provides basic reduction factors: 

<p = 0.65 for tied columns 

<p = 0.75 for spirally reinforced columns 

The spread between these two values reflects the added safety furnished by the greater 
toughness of spirally reinforced columns. 

There are various reasons why the cp values for columns are lower than those for 
flexure or shear (0.90 and 0.75, respectively). One is that the strength of underrein
forced flexural members is not much affected by variations in concrete strength, since 
it depends primarily on the yield strength of the steel, while the strength of axially 
loaded members depends strongly on the concrete compressive strength. Because the 
cylinder strength of concrete under site conditions is less closely controlled than the 
yield strength of mill-produced steel, a larger occasional strength deficiency must be 
allowed for. This is particularly true for columns, in which concrete, being placed 
from the top down in a long, narrow form, is more subject to segregation than in 
horizontally cast beams. Moreover, electrical and other conduits are frequently located 
in building columns; this reduces their effective cross sections, often to an extent 
unknown to the designer, even though this is poor practice and restricted by the ACI 
Code. Finally, the consequences of a column failure, say in a lower story, would be 
more catastrophic than those of a single beam failure in the same building. 

For high eccentricities, as the eccentricity increases from eb to infinity (pure 
bending), the ACI Code recognizes that the member behaves progressively more like 
a flexural member and less like a column. As described in Chapter 3, this is acknowl
edged in ACI Code 9.3.2 by providing a linear transition in cp from values of 0.65 and 
0.75 to 0.90 as the net tensile strain in the extreme tensile steel E1 increases fromJy/Es 
(which may be taken as 0.002 for Grade 60 reinforcement) to 0.005. 

At the other extreme, for columns with very small or zero calculated eccentrici
ties, the ACI Code recognizes that accidental construction misalignments and other 
unforeseen factors may produce actual eccentricities in excess of these small design 
values. Also, the concrete strength under high, sustained axial loads may be somewhat 
smaller than the short-term cylinder strength. Therefore, regardless of the magnitude 
of the calculated eccentricity, ACI Code 10.3.6 limits the maximum design strength to 
0.80cpP0 for tied columns (with <p = 0.65) and to 0.85cpP0 for spirally reinforced 
columns (with <p = 0.75), where P0 is the nominal strength of the axially loaded 
column with zero eccentricity [see Eq. (8.4)]. 

The effects of the safety provisions of the ACI Code are shown in Fig. 8.15. The 
solid curve labeled "nominal strength" is the same as Fig. 8.10 and represents the 
actual carrying capacity, as nearly as can be predicted. The smooth curve shown 
partially dashed, then solid, then dashed, represents the basic design strength obtained 
by reducing the nominal strengths Pn and Mn, for each eccentricity, by <p = 0.65 for 
tied columns and cp = 0.75 for spiral columns. The horizontal cutoff at acpP0 repre
sents the maximum design load stipulated in the ACI Code for small eccentricities, 
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FIGURE8.15 
ACI safety provisions 
superimposed on column 
strength interaction diagram. 
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i.e., large axial loads, as just discussed. At the other end, for large eccentricities, i.e., 
small axial loads, the ACI Code permits a linear transition of <p from 0.65 or 0.75, 
applicable for e1 $. f/Es (or 0.002 for Grade 60 reinforcement) to 0.90 at e1 = 0.005. 
By definition, e1 = f/Es at the balanced condition. The effect of the transition in cjJ 
is shown at the lower right end of the design strength curve. t 

8.10 DESIGN AIDS 

The design of eccentrically loaded columns using the strain compatibility method of 
analysis described requires that a trial column be selected. The trial column is then 
investigated to determine if it is adequate to carry any combination of Pu and Mu that 
may act on it should the structure be overloaded, i.e., to see if Pu and Mu from the 
analysis of the structure, when plotted on a strength interaction diagram such as 
Fig. 8.15, fall within the region bounded by the curve labeled "ACI design strength." 
Furthermore, economical design requires that the controlling combination of Pu and 
Mu be close to the limit curve. If these conditions are not met, a new column must be 
selected for trial. 

While a simple computer program or spreadsheet can be developed, based on the 
strain compatibility analysis, to calculate points on the design strength curve, and even 
to plot the curve, for any trial column, in practice design aids are used such as are 
available in handbooks and special volumes published by the American Concrete 
Institute (Ref. 8.7) and the Concrete Reinforcing Steel Institute (Ref. 8.2). They cover 
the most frequent practical cases, such as symmetrically reinforced rectangular and 
square columns and circular spirally reinforced columns. There are also a number of 
commercially available computer programs (e.g., pcaCOLUMN, Portland Cement 
Association, Skokie, Illinois). 

t While the general intent of the ACI Code safety provisions relating to eccentric columns is clear and fundamentally sound, the end result is a set of 
strangely shaped column design curves following no discernible physical law, as is demonstrated in Fig. 8.15. Improved column safety provisions, 
resulting in a smooth design curve appropriately related to the strength curve, would be simpler to use and more rational as well. 
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Graphs A.5 through A.16 of Appendix A are representative of column design 
charts (such as found in Ref. 8.7), in this case for concrete withJ; = 4000 psi and steel 
with yield strengthfy = 60 ksi, for varying cover distances.t Reference 8.7 includes 
charts for a broad range of material strengths. Graphs A.5 through A.8 are drawn for 
rectangular columns with reinforcement distributed around the column perimeter; 
Graphs A.9 through A.12 are for rectangular columns with reinforcement along two 
opposite faces. Circular columns with bars in a circular pattern are shown in Graphs A.13 
through A.16. 

The graphs are seen to consist of nominal strength interaction curves of the type 
shown in Fig. 8.15. However, instead of plotting Pn versus Mn, corresponding param
eters have been used to make the charts more generally applicable, i.e., load is plotted 
as Kn = Pn/(f;Ag), while moment is expressed as Rn = Pne/(f;Agh). Families of curves 
are drawn for various values of Pg = AsJAg between 0.01 and 0.08. The graphs also 
include radial lines representing different eccentricity ratios e/h, as well as lines rep
resenting different ratios of stressfs/Jy or values of strain e, = 0.002 and 0.005 in the 
extreme tension steel. 

Charts such as these permit the direct design of eccentrically loaded columns 
throughout the common range of strength and geometric variables. They may be used 
in one of two ways as follows. For a given factored load Pu and equivalent eccentric
ity e = Mu/ Pu: 

1. (a) Select trial cross-sectional dimensions band h (refer to Fig. 8.9). 
(b) Calculate the ratio 'Y based on required cover distances to the bar centroids, 

and select the corresponding column design chart. 
(c) Calculate Kn = Pj(<JJJ;Ag) and Rn = Pue/(<JJJ;Agh), where Ag = bh. 
(d) From the graph, for the values found in (c), read the required reinforcement 

ratio Pg· 
(e) Calculate the total steel area As, = Pih. 

2. (a) Select the reinforcement ratio Pg· 
(b) Choose a trial value of hand calculate e/h and y. 
(c) From the corresponding graph, read Kn = Puf(<JJJ;Ag) and calculate the 

required Ag. 
(d) Calculate b = Ag/h. 
(e) Revise the trial value of h if necessary to obtain a well-proportioned section. 
(f) Calculate the total steel area Ast = Pih. 

Use of the column design charts will be illustrated in Examples 8.3 and 8.4. 
Other design aids pertaining to ties and spirals, as well as recommendations for 

standard practice, will be found in Refs. 8.2 and 8.7. 

EXAMPLE 8.3 Selection of reinforcement for column of given size. In a three-story structure, an exterior 
column is to be designed for a service dead load·of 222 kips, maximum live load of 297 kips, 
dead load moment of 136 ft-kips, and live load moment of 194 ft-kips. The minimum live load 
compatible with the full live load moment is 166 kips, obtained when no live load is placed on 
the roof but a full live load is placed on the second floor. Architectural considerations require 
that a rectangular column be used, with dimensions b = 20 in. and h = 25 in. 

t Graphs A.5 through A.16 were developed for the specific bar configurations shown on the graphs. The curves exhibit changes in curvature, 
especially apparent near the balanced load, that result when bars within the cross section yield. The values provided in the graphs, however, are 
largely insensitive to the exact number of bars in the cross section and may be used for columns with similar bar configurations, but with smaller 
or larger numbers of bars. 
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(a) Find the required column reinforcement for the condition that the full live load acts. 
(b) Check to ensure that the column is adequate for the condition of no live load on the roof. 
Material strengths areJ; = 4000 psi and/Y = 60,000 psi. 

SOLUTION. 

(a) The column will be designed initially for full load, then checked for adequacy when live 
load is partially removed. According to the ACI safety provisions, the column must be 
designed for a factored load Pu = 1.2 X 222 + 1.6 X 297 = 742 kips and a factored 
moment Mu= 1.2 X 136 + 1.6 X 194 = 474 ft-kips. A column 20 X 25 in. is specified, 
and reinforcement distributed around the column perimeter will be used. Bar cover is esti
mated to be 2.5 in. from the column face to the steel centerline for each bar. The column 
parameters (assuming bending about the strong axis) are 

Pu 742 -- = ----- = 0.570 
<f>J:Ag 0.65 X 4 X 500 

474 X 12 = 
0

_
175 

0.65 X 4 X 500 X 25 

With 2.5 in. cover, the parameter 'Y = (25 - 5)/25 = 0.80. For this column geometry and 
material strengths, Graph A.7 of Appendix A applies. From that figure, with the calculated 
values of Kn and Rn, Pg = 0.024. Thus, the required reinforcement is A,1 = 0.024 X 500 = 
12.00 in2. Twelve No. 9 (No. 29) bars will be used, one at each corner and two evenly 
spaced along each face of the column, providing A,1 = 12.00 in2• 

(b) With the roof live load absent, the column will carry a factored load Pu = 1.2 X 222 + 1.6 X 
166 = 532 kips and factored moment Mu = 566 ft-kips, as before. Thus, the column 
parameters for this condition are 

Pu 532 
Kn = -- = ----- = 0.409 

<f>J:Ag 0.65 X 4 X 500 

Mu 474 X 12 
R = -- = ------- = 0.175 

n </>J;Agh 0.65 X 4 X 500 X 25 

and 'Y = 0.80 as before. From Graph A.7 it is found that a reinforcement ratio of Pg = 
0.017 is sufficient for this condition, less than that required in part (a), so no modification 
is required. 

Selecting No. 3 (No. 10) ties for trial, the maximum tie spacing must not exceed 48 X 
0.375 = 18 in., 16 X 1.128 = 18.05 in., or 20 in. Spacing is controlled by the diameter of 
the ties, and No. 3 (No. 10) ties will be used at 18 in. spacing, in the pattern shown in 
Fig. 8.3d. 

EXAMPLE 8.4 Selection of column size for a given reinforcement ratio. A column is to be designed to 
carry a factored load Pu= 481 kips and factored moment Mu= 492 ft-kips. Material strengths 
.[y = 60,000 psi andJ; = 4000 psi are specified. Cost studies for the particular location indicate 
that a reinforcement ratio Pg of about 0.03 is optimum. Find the required dimensions b and h 
of the column. Bending will be about the strong axis, and an arrangement of steel with bars 
concentrated in two layers, adjacent to the outer faces of the column and parallel to the axis of 
bending, will be used. 

SOLUTION. It is convenient to select a trial column dimension h, perpendicular to the axis of 
bending; a value of h = 25 in. will be selected, and assuming a concrete cover of 2.5 in. to the 
bar centers, the parameter 'Y = 0.80. Graph A.11 of Appendix A applies. For the stated loads 
the eccentricity is e = 492 X 12/481 = 12.3 in., and e/h = 12.3/25 = 0.49. From Graph A.I I 
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with e/h = 0.49 and Pg= 0.03, Kn= P w/cpf;Ag = 0.51. For the trial dimension h = 25 in., the 
required column width is 

Pu 481 
b = -- = -------- = 14.5 in. 

<f,f ! Knh 0.65 X 4 X 0.51 X 25 

A column 15 X 25 in. will be used, for which the required steel area is A,1 = 0.03 X 15 X 
25 = 11.25 in2• Eight No. 11 (No. 36) bars will be used, providing A,1 = 12.48 in2, arranged 
in two layers of four bars each, similar to the sketch shown in Graph A.11. 

8.11 BIAXIAL BENDING 

FIGURE 8.16 
Interaction diagram for 
compression plus biaxial 
bending: (a) uniaxial bending 
about Y axis; (b) uniaxial 
bending about X axis; 
(c) biaxial bending about 
diagonal axis; (d) interaction 
surface. 

The methods discussed in the preceding sections permit rectangular or square columns 
to be designed if bending is present about only one of the principal axes. There are 
situations, by no means exceptional, in which axial compression is accompanied by 
simultaneous bending about both principal axes of the section. Such is the case, for 
instance, in corner columns of buildings where beams and girders frame into the col
umns in the directions of both walls and transfer their end moments into the columns 
in two perpendicular planes. Similar loading may occur at interior columns, particu
larly if the column layout is irregular. 

The situation with respect to strength of biaxially loaded columns is shown in 
Fig. 8.16. Let X and Y denote the directions of the principal axes of the cross section. 
In Fig. 8.16a, the section is shown subject to bending about the Yaxis only, with load 
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Load contour 
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eccentricity ex measured in the X direction. The corresponding strength interaction curve 
is shown as case (a) in the three-dimensional sketch in Fig. 8.16d and is drawn in the 
plane defined by the axes Pn and Mny· Such a curve can be established by the usual 
methods for uniaxial bending. Similarly, Fig. 8.16b shows bending about the X axis only, 
with eccentricity ey measured in the Y direction. The corresponding interaction curve is 
shown as case (b) in the plane of Pn and Mnx in Fig. 8.16d. For case (c), which com
bines X and. Y axis bending, the orientation of the resultant eccentricity is defined by 
the angle A: 

Bending for this case is about an axis defined by the angle 0 with respect to the X axis. 
The angle A in Fig. 8.16c establishes a plane in Fig. 8.16d, passing through the verti
cal Pn axis and making an angle A with the Mnx axis, as shown. In that plane, column 
strength is defined by the interaction curve labeled case (c). For other values of A, 
similar curves are obtained to define a failure su,face for axial load plus biaxial bend
ing, such as shown in Fig. 8.16d. The surface is exactly analogous to the interaction 
curve for axial load plus uniaxial bending. Any combination of Pu, Mux, and Muy 
falling inside the surface can be applied safely, but any point falling outside the sur
face would represent failure. Note that the failure surface can be described either by a 
set of curves defined by radial planes passing through the Pn axis, such as shown by 
case (c), or by a set of curves defined by horizontal plane intersections, each for a 
constant Pn, defining load contours. 

Constructing such an interaction surface for a given column would appear to be 
an obvious extension of uniaxial bending analysis. In Fig. 8.16c, for a selected value 
of 0, successive choices of neutral axis distance c could be taken. For each, using strain 
compatibility and stress-strain relations to establish bar forces and the concrete 
compressive resultant, then using the equilibrium equations to find Pn, Mnx, and Mny• 
one can determine a single point on the interaction surface. Repetitive calculations, 
easily done by computer, then establish sufficient points to define the surface. The 
triangular or trapezoidal compression zone, such as shown in Fig. 8.16c, is a compli
cation, and in general the strain in each reinforcing bar will be different, but these 
features can be incorporated. 

The main difficulty, however, is that the neutral axis will not, in general, be 
perpendicular to the resultant eccentricity, drawn from the column center to the load 
Pn. For each successive choice of neutral axis, there are unique values of Pn, Mnx, 
and Mny• and only for special cases will the ratio of Mn/Mnx be such that the eccen
tricity is perpendicular to the neutral axis chosen for the calculation. The result is 
that, for successive choices of c for any given 0, the value of A in Fig. 8. 16c and d 
will vary. Points on the failure surface established in this way will wander up the 
failure surface for increasing Pn, not representing a plane intersection, as shown for 
case (c) in Fig. 8.16d. 

In practice, the factored load Pu and the factored moments Mux and Muy to be 
resisted are known from the frame analysis of the structure. Therefore, the actual value 
of A = arctan(Muy/Mux) is established, and one needs only the curve of case (c), 
Fig. 8.16d, to test the adequacy of the trial column. An iterative computer method to 
establish the interaction line for the particular value of A that applies will be described 
in Section 8.14. 

Alternatively, simple approximate methods are widely used. These will be 
described in Sections 8.12 and 8.13. 
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8.12 LOAD CONTOUR METHOD 

FIGURE 8.17 
Interaction contours at 
constant Pn for varying a. 
(Adapted from Ref 8.8.) 

The load contour method is based on representing the failure surface of Fig. 8.16d by 
a family of curves corresponding to constant values of Pn (Ref. 8.8). The general form 
of these curves can be approximated by a nondimensional interaction equation 

_.!!::... + ~ =1.0 ( 
M )"' ( M )"2 
Mn.x0 MnyO 

(8.18) 

where 

whenMny = 0 

whenMnx = 0 

and a I and a 2 are exponents depending on column dimensions, amount and distribu
tion of steel reinforcement, stress-strain characteristics of steel and concrete, amount 
of concrete cover, and size of lateral ties or spiral. When a 1 = a2 = a, the shapes of 
such interaction contours are as shown in Fig. 8.17 for specific a values. 

Calculations reported by Bresler in Ref. 8.9 indicate that a falls in the range from 
1.15 to 1.55 for square and rectangular columns. Values near the lower end of that range 
are the more conservative. Methods and design aids permitting a more defined estima
tion of a are found in Ref. 8.7. 

In practice, the values of Pu• M ux• and Muy are known from the analysis of the struc
ture. For a trial column section, the values of Mn.x0 and Mny0 corresponding to the load 
Puf <f> can easily be found by the usual methods for uniaxial bending. Then replacing Mnx 
with Mux/<I> and Mny with Muy/<I> and using a 1 = a2 = a in Eq. (8.18), or alternatively 
by plotting (Mnxf<f>)/Mn.x0 and (Mny/<f>)/Mny0 in Fig. 8.17, it can be confirmed that a 
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particular combination of factored moments falls within the load contour (safe design) 
or outside the contour (failure), and the design modified if necessary. 

An approximate approach to the load contour method, in which the curved load 
contour is represented by a bilinear approximation, will be found in Ref. 8.10. It leads 
to a method of trial design in which the biaxial bending moments are represented by 
an equivalent uniaxial bending moment. Design charts based on this approximate 
approach win be found in the AC/ Design Handbook (Ref. 8.7). Trial designs arrived 
at in this way should be checked for adequacy by the load contour method, described 
above, or by the method of reciprocal loads that follows. 

8.13 RECIPROCAL LOAD METHOD 

FIGURE 8.18 
Interaction surfaces for the 
reciprocal load method. 

A simple, approximate design method developed by Bresler (Ref. 8.9) has been 
satisfactorily verified by comparison with results of extensive tests and accurate 
calculations (Ref. 8.11). It is noted that the column interaction surface in Fig. 8.16d 
can, alternatively, be plotted as a function of the axial load Pn and eccentricities ex = 
Mny/Pn and ey = Mnx/Pn, as is shown in Fig. 8.18a. The surface S1 of Fig. 8.18a can 
be transformed into an equivalent failure surface S2, as shown in Fig. 8.18b, where ex 
and ey are plotted against 1/Pn rather than Pn. Thus, ex = ey = 0 corresponds to the 
inverse of the capacity of the column if it were concentrically loaded P0, and this is 
plotted as point C. For ey = 0 and any given value of ex, there is a load Pnyo (corre
sponding to moment Mny0) that would result in failure. The reciprocal of this load is 
plotted as point A. Similarly, for ex = 0 and any given value of ev, there is a certain 
load P nx0 (corresponding to moment Mnx0) that would cause failure, the reciprocal of 
which is point B. The values of P nx0 and PnyO are easily established, for known eccen
tricities of loading applied to a given column, using the methods already established 
for uniaxial bending, or using design charts for uniaxial bending. 
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An oblique plane S2 is defined by the three points: A, B, and C. This plane is used 
as an approximation of the actual failure surface S2• Note that, for any point on the 
surface S2 (i.e., for any given combination of ex and e), there is a corresponding plane 
S2. Thus, the approximation of the true failure surface S2 involves an infinite number 
of planes S2 determined by particular pairs of values of ex and ey, i.e., by particular 
points A, B, and C. 

The vertical ordinate 1/Pnexact to the true failure surface will always be conser
vatively estimated by the dist~ce 1/Pn.approx to the oblique plane ABC (extended), 
because of the concave upward eggshell shape of the true failure surface. In other 
words, 1/Pn.approx is always greater than 1/Pn.exacl' which means that Pn.approx is always 
less than P n exact· 

Bresl~r's reciprocal load equation derives from the geometry of the approximat
ing plane. It can be shown that 

1 1 1 l 
-=-+---
pn pnxO PnyO Po 

(8.19) 

where Pn = approximate value of nominal load in biaxial bending with eccentricities 
ex and ey 

Pnyo = nominal load when only eccentricity ex is present (ey = 0) 
Pnxo = nominal load when only eccentricity ey is present (ex = 0) 

P0 = nominal load for concentrically loaded column 

Equation (8.19) has been found to be acceptably accurate for design purposes 
provided Pn 2: 0.10P0• It is not reliable where biaxial bending is prevalent and accom
panied by an axial force smaller than P0/10. In the case of such strongly prevalent 
bending, failure is initiated by yielding of the steel in tension, and the situation corre
sponds to the lowest tenth of the interaction diagram of Fig. 8.16d. In this range, it is 
conservative and accurate enough to neglect the axial force entirely and to calculate 
the section for biaxial bending only. 

Over most of the range for which the Bresler method is applicable, above 
0.10P 0, <p is constant, although for very small eccentricities the ACI Code imposes an 
upper limit on the maximum design strength that has the effect of flattening the upper 
part of the column strength interaction curve (see Section 8.9 and Graphs A.5 through 
A.16 of Appendix A). When using the Bresler method for biaxial bending, it is 
necessary to use the uniaxial strength curve without the horizontal cutoff (as shown by 
the lighter lines in the graphs of Appendix A) in obtaining values for use in Eq. (8.19). 
The value of </JPn obtained in this way should then be subject to the restriction, as for 
uniaxial bending, that it must not exceed 0.80cpP0 for tied columns and 0.85</JP0 for 
spirally reinforced columns. 

In a typical design situation, given the size and reinforcement of the trial column 
and the load eccentricities ey and ex, one finds by computation or from design charts 
the nominal loads Pnxo and Pnyo for uniaxial bending around the X and Y axes, 
respectively, and the nominal load P0 for concentric loading. Then l /Pn is computed 
from Eq. (8.19), and from that Pn is calculated. The design requirement is that the 
factored load Pu not exceed </JPn, as modified by the horizontal cutoff mentioned 
above, if applicable. 

EXAMPLE 8.5 Design of column for biaxial bending. The 12 X 20 in. column shown in Fig. 8.19 is rein
forced with eight No. 9 (No. 29) bars arranged around the column perimeter, providing an area 
A.,1 = 8.00 in2

. A factored load Pu of 255 kips is to be applied with eccentricities ey = 3 in. and 
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FIGURE 8.19 
Column cross section for 
Example 8.5. 
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ex= 6 in., as shown. Material strengths aref/ = 4 ksi andfY = 60 ksi. Check the adequacy of 
the trial design (a) using the reciprocal load method and (h) using the load contour method. 

SOLUTION. 

(a) By the reciprocal load method, first considering bending about the Y axis, y = 15/20 = 
0.75, and e/h = 6/20 = 0.30. With the reinforcement ratio of A.,1/bh = 8.00/240 = 0.033, 
using the average of Graphs A.6 (y = 0.70) and A.7 (y = 0.80), 

pnyO ( ) 0.62 + 0.66 
-- avg = ---- = 064 
f/A

8 
2 . 

pnyO = 0.64 X 4 X 240 = 614 kips 

Po 
-,- = 1.31 
J;Ag 

P0 = 1.31 X 4 X 240 = 1258 kips 

Then for bending about the X axis, y = -fz = 0.58 (say 0.60), and e/h = fi = 0.25. Graph 
A.5 of Appendix A gives 

P nxo = 0.65 X 4 X 240 = 624 kips 

P0 = 1.31 X 4 X 240 = 1258 kips 

Substituting these values in Eq. (8.19) results in 

I I 1 I 
- = - + - - -- = 0.00244 
Pn 624 614 1258 

from which Pn = 410 kips. Thus, according to the Bresler method, the design load of 
Pu = 0.65 X 410 = 267 kips can be applied safely. 

(h) By the load contour method, for Y axis bending with P,,/(<kf/A
8

) = 255/(0.65 X 4 X 240) = 
0.41. The average from Graphs A.6 and A.7 of Appendix A is 

MnvO ( ) 0.212 + 0.235 --· - avg = ----- = 0 224 
~~h 2 . 

Hence, MnyO = 0.224 X 4 X 240 X 20 = 4300 in-kips. Then for X axis bending, with 
Pu/(<f>f/A

8
) = 0.41, as before, from Graph A.5, 

M 
~=0.186 
f.A

8
h 
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So Mnx0 = 0.186 X 4 X 240 X 12 = 2140 in-kips. The factored load moments about the 
Y and X axes, respectively, are 

Muy = 255 X 6 = 1530 in-kips 

Mux = 255 X 3 = 765 in-kips 

Adequacy of the trial design will now be checked using Eq. (8.18) with an exponent a 
conservatively taken equal to 1.15. Then with Mnx = M,,xl</> and Mny = Muy/<f>, that equa
tion indicates 

( 
765/0.65) I.IS ( 1530/0.65) I.IS 

2140 + 4300 = 0.502 + 0.500 = 1.002 

This is close enough to 1.0 that the design would be considered safe by the load contour 
method also. 

In actual practice, the values of a used in Eq. (8.18) should be checked, for the 
specific column, because predictions of that equation are quite sensitive to changes in 
a. In Ref. 8.10, it is shown that a= log 0.5/log {3, where values of f3 can be tabulated 
for specific column geometries, material strengths, and load ranges (see Ref. 8.7). For 
the present example, it can be confirmed from Ref. 8.7 that f3 = 0.56 and hence 
a= 1.19, approximately as chosen. 

One observes that, in Example 8.5a, an eccentricity in the Y direction equal 
to 50 percent of that in the X direction causes a reduction in nominal capacity of 
33 percent, i.e., from 614 to 410 kips. For cases in which the ratio of eccentricities is 
smaller, there is some justification for the frequent practice in framed structures of 
neglecting the bending moments in the direction of the smaller eccentricity. In general, 
biaxial bending should be taken into account when the estimated eccentricity ratio 
approaches or exceeds 0.2. 

8.14 COMPUTER ANALYSIS FOR BIAXIAL BENDING 
OF COLUMNS 

Although the load contour method and the reciprocal load method are widely used in 
practice, each has serious shortcomings. With the load contour method, selection of 
the appropriate value of the exponent a is made difficult by a number of factors relat
ing to column shape and bar distribution. For many cases, the usual assumption that 
a 1 = a 2 is a poor approximation. Design aids are available, but they introduce further 
approximations, e.g., the use of a bilinear representation of the load contour. The 
reciprocal load method is very simple to use, but the representation of the curved 
failure surface by an approximating plane is not reliable in the range of large eccen
tricities, where failure is initiated by steel yielding. 

With the general availability and wide use of computers, it is better to use simpler 
methods to obtain faster, and more exact, solutions to the biaxial column problem. 
Such a method is that developed by Ehsani (Ref. 8.12). A column strength interaction 
curve is established for a trial column, exactly analogous to the curve for axial load 
plus uniaxial bending, as described in Sections 8.3 to 8.7. However, the curve is gen
erated for the particular value of the eccentricity angle that applies, as determined by 
the ratio of Muy/Mux from the structural frame analysis [see case (c) of Fig. 8.16d]. 
This is done by taking successive choices of neutral axis distance, measured in this 
case along one face of the column from the most heavily compressed corner, from 
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very small (large eccentricity) to very large (small eccentricity), then calculating the 
axial force Pn and moments Mnx and Mny• For each neutral axis distance, iteration is 
performed with successive values of the orientation angle 0, Fig. 8.16c, until A = arctan 
(Mny/Mnx) is in agreement with the value of A = arctan (Muy/Mu_,) from the structural 
frame analysis. Thus, one point on curve (c) of Fig. 8.16d is established. The sequence 
of calculations is repeated: another choice of neutral axis distance is made, a value of 
0 is selected, the axial force and moments are calculated, A is found, and the value of 
0 is iterated until A is correct. Thus, the next point is established, and so on, until the 
complete strength interaction curve for that particular value of A is complete. ACI 
Code safety provisions may then be imposed in the usual way, and the adequacy of the 
proposed design tested, for the known load and moments, against the design strength 
curve for the trial column. 

The method is obviously impractical for manual calculation, but the iterative 
steps are easily and quickly performed by computer, which can also provide a graph
ical presentation of results. Full details will be found in Ref. 8.12. 

A number of computer programs for biaxial bending are available commercially, 
such as pcaCOLUMN (Portland Cement Association, Skokie, Illinois). 

8.15 BAR SPLICING IN COLUMNS 

The main vertical reinforcement in columns is usually spliced just above each floor, 
or sometimes at alternate floors. This permits the column steel area to be reduced pro
gressively at the higher levels in a building, where loads are smaller, and in addition 
avoids handling and supporting very long column bars. Column steel may be spliced 
by lapping, by butt welding, by various types of mechanical connections, or by direct 
end bearing, using special devices to ensure proper alignment of bars. 

Special attention must be given to the problem of bar congestion at splices. 
Lapping the bars, for example, effectively doubles the steel area in the column cross sec
tion at the level of the splice and can result in problems placing concrete and meeting 
the ACI Code requirement for minimum lateral spacing of bars (l.5db or 1.5 in.). To 
avoid difficulty, column steel percentages are often limited in practice to not more than 
about 4 percent, or the bars are extended two stories and staggered splices are used. 

The most common method of splicing column steel is the simple lapped bar 
splice, with the bars in contact throughout the lapped length. It is standard practice to 
offset the lower bars, as shown in Fig. 8.20, to permit the proper positioning of the 
upper bars. To prevent outward buckling of the bars at the bottom bend point of such 
an offset, with spalling of the concrete cover, it is necessary to provide special lateral 
reinforcement in the form of extra ties. According to ACI Code 7 .8.1, the slope of the 
inclined part of an offset bar must not exceed 1 in 6, and lateral steel must be provided 
to resist 1½ times the horizontal component of the computed force in the inclined part 
of the offset bar. This special reinforcement must be placed not more than 6 in. from 
the point of bend, as shown in Fig. 8.20. Elsewhere in the column, above and below 
the floor, the usual spacing requirements described in Section 8.2 apply, except that 
ties must be located not more than one-half the normal spacing s above the floor. 
Where beams frame from four directions into a joint, as shown in Fig. 8.20, ties may 
be terminated not more than 3 in. below the lowest reinforcement in the shallowest of 
such beams, according to ACI Code 7.10.5. If beams are not present on four sides, 
such as for exterior columns, ties must be placed vertically at the usual spacing 
through the depth of the joint to a level not more than one-half the usual spacing s 
below the lowest reinforcement in the slab. 



FIGURES.20 
Splice details at typical 
interior column. 
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Analogous requirements are found in ACI Code 7.10.4 and are illustrated in 
Ref. 8.1 for spirally reinforced columns. 

As discussed in Section 5.11, in frames subjected to lateral loading, a viable 
alternative to splicing bars just above the floor is to splice them in the center half of 
the column height, where the moment due to lateral loading is much lower than at 
floor level. Splicing near midheight is mandatory in "special moment frames" designed 
for seismic loading (Chapter 20). The use of midheight splices removes the require
ment for the special ties shown in Fig. 8.20 because bent bars are not used. 

Column splices are mainly compression splices, although load combinations 
producing moderate to large eccentricity require that splices transmit tension as well. 
ACI Code 12.17 permits splicing by lapping, butt welding, mechanical connectors, or 
end bearing. As discussed in Section 5.13, the length of compression lap splices may 
be reduced in cases where ties or spiral reinforcement throughout the lap length meets 
specific requirements. If the column bars are in tension, Class A tension lap splices are 
permitted if the tensile stress does not exceed 0.5Jy and less than one-half of the bars 
are spliced at any section. Class B tension splices are required if the tensile stresses 
are higher than 0.5/y under factored loads or where more than one-half of the rein
forcement is spliced at one location. When end bearing splices are used, they must be 
staggered or additional reinforcement must be added so that the continuing bars on 
each column face possess a tensile strength not less than 0.25/y times the area of the 
vertical reinforcement on that face. 

Full requirements for both compression and tension lap splices are discussed in 
Section 5.13, and the design of a compression splice in a typical column is illustrated 
in Example 5.5. 

8.16 TRANSMISSION OF COLUMN LOADS THROUGH 
FLOOR SYSTEMS 

Quite often, the specified compressive strength of the concrete in columns will exceed 
that of the floor system. This is especially true for the lower stories in high-rise build
ings, where high-strength concrete is used to minimize the cross-sectional area of the 
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columns and thus maximize the usable floor space. High-strength concrete, however, 
is not needed for the beams and slabs that make up the floor system. 

Floor systems and columns must be cast in separate placements. This not only is 
good construction practice to allow the concrete in the columns to settle prior to place
ment of the floor system, but also is required by ACI Code 6.4.6 to prevent cracking 
at the interface between the floor and the column that would occur if the floor and 
supporting .members were cast at the same time. This standard practice, however, 
opens the possibility for placement of lower-strength concrete within the portion of a 
floor system that directly supports the columns above, which would, in tum, signifi
cantly reduce their capacity. The high lateral confinement provided by the floor system 
to the concrete in the vicinity of the column does have a mitigating effect because it 
places that region in triaxial compression and thus increases its usable compressive 
strength, as explained in Section 2.10. 

To address the effects on performance of using concretes with significantly 
different compressive strengths in the columns and floor system, ACI Code 10.12 
specifies that if J; of the column exceeds 1.4 times that of the floor system, one of 
three requirements must be met: 

1. At the time of concrete placement in the floor system, concrete with the strength 
specified for the column must be placed in the floor at the column location. The 
concrete must extend 2 ft into the surrounding slab from the face of the column 
and be well integrated with the floor concrete. 

2. The strength of the column through the floor system must be based on the lower 
compressive strength of the floor concrete. Additional reinforcement may be 
required. 

3. For columns that are laterally supported on four sides by beams of approxi
mately the same depth or by slabs, the strength of the column may be based on 
a compressive strength equal to 75 percent of the column concrete strength plus 
35 percent of the floor concrete strength. The ratio of the column concrete 
strength to the slab concrete strength may not be taken greater than 2.5 for use 
in design. 

REFERENCES 
8.1. AC/ Detailing Manual, SP-66, American Concrete Institute, Farmington Hills, MI, 2004. 
8.2. CRSI Design Handbook, 10th ed., Concrete Reinforcing Steel Institute, Schaumburg, IL, 2008. 
8.3. F. E. Richart, A. Brandtzaeg, and R. L. Brown, "A Study of the Failure of Concrete under Combined 

Compressive Stresses," Univ. Ill. Eng. Exp. Stn. Bull. 185, 1928. 
8.4. F. E. Richart, A. Brandtzaeg, and R. L. Brown, "The Failure of Plain and Spirally Reinforced Concrete in 

Compression," Univ. Ill. Eng. Exp. Stn. Bull. 190, 1929. 
8.5. S. Martinez, A. H. Nilson, and F. 0. Slate, "Spirally Reinforced High Strength Concrete Columns," J. 

AC/, vol. 81, no. 5, 1984, pp. 431-442. 
8.6. A. H. Mattock, L. B. Kriz, and E. Hognestad, "Rectangular Concrete Stress Distribution in Ultimate 

Strength Design," J. AC/, vol. 32, no. 8, 1961, pp. 875-928. 
8. 7. AC/ Design Handbook, SP-17, American Concrete Institute, Farmington Hills, Ml, 1997. 
8.8. F. N. Pannell, "Failure Surfaces for Members in Compression and Biaxial Bending," J. AC/, vol. 60, 

no. 1, 1963,pp. 129-140. 
8.9. B. Bresler, "Design Criteria for Reinforced Columns under Axial Load and Biaxial Bending," J. AC/, 

vol. 32,no.5, 1960,pp.481-490. 
8.10. A. L. Parme, J. M. Nieves, and A. Gouwens, "Capacity of Reinforced Concrete Rectangular Members 

Subject to Biaxial Bending," J. AC/, vol. 63, no. 9, 1966, pp. 911-923. 
8.11. L. N. Ramamurthy, "Investigation of the Ultimate Strength of Square and Rectangular Columns under 

Biaxially Eccentric Loads," in Symp. Reinforced Concrete Columns, SP-13, American Concrete Institute, 
Detroit, MI, 1966, pp. 263-298. 

8.12. M. R. Ehsani, "CAD for Columns," Coner. Intl., vol. 8, no. 9, 1986, pp. 43-47. 



FIGUREP8.4 

SHORT COLUMNS 295 

PROBLEMS 
8.1. A 16 in. square column is reinforced with four No. 14 (No. 43) bars, one in each 

comer, with cover distances 3 in. to the steel center in each direction. Material 
strengths are 1; = 5000 psi and ,[y = 60,000 psi. Construct the interaction 
diagram relating axial strength Pn and flexural strength Mn. Bending will be 
about an axis parallel to one face. Calculate the coordinates for P 0 , Pb• and at 
least three other representative points on the curve. 

8.2. Starting with the column in Problem 8.1, perform enough additional calcu
lations to determine the effects of increasing 1; from 5000 to 8000 psi on 
column capacity at both high and low axial loads. Assuming that a com
pressive strength of 8000 psi is appropriate for the lower stories of a high-rise 
structure, would you recommend using concrete with 1; = 8000 psi for the 
columns supporting all stories within the building? Use your analysis to sup
port your answer. 

8.3. Plot the design strength curve relating </>Pn and </>Mn for the column of 
Problem 8.1. Design and detail the tie steel required by the ACI Code. Is the 
column a good choice to resist a load Pu = 540 kips applied with an eccen
tricity e = 4.44 in.? 

8.4. The short column shown in Fig. P8.4 will be subjected to an eccentric load 
causing uniaxial bending about the Y axis. Material strengths are ,[y = 60 ksi 
and 1; = 4 ksi. 
(a) Construct the nominal strength interaction curve for this column, calcu

lating no fewer than five points, including those corresponding to pure 
bending, pure axial thrust, and balanced failure. 

(b) Compare the calculated values with those obtained using Graph A.10 in 
Appendix A. 

(c) Show on the same drawing the design strength curve obtained through 
introduction of the ACI </> factors. 

(d) Design the lateral reinforcement for the column, giving key dimensions 
for ties. 

y 

i 
20" 

l'Ast = 6 No. 10 (No. 32;1 

+ I + 7 -+- 15" -x 

J + + 
--ls"l- _j 3"l-

8.5. The column shown in Fig. P8.5 is subjected to axial load and bending moment, 
causing bending about an axis parallel to that of the rows of bars. What 
moment Mn would cause the column to fail if the axial load Pn applied simul
taneously was 1250 kips? Material strengths are I; = 4000 psi and,[y = 60 ksi. 
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8.6. 

8.7. 

What is the strength Mn of the column of Problem 8.5 if it was loaded in pure 
bending (axial force = 0) about one principal axis? 
Construct the interaction diagram relating Pn to Mn for the building column 
shown in Fig. P8.7. Bending will be about the axis a-a. Calculate specific 
coordinates for concentric loading (e = 0), for Pb, and at least three other 
points, well chosen, on the curve. Material strengths are J: = 8000 psi and 
Jy = 60,000 psi. 

a 

A51 = 10 No. 14 (No. 43) 

8.8. A short rectangular reinforced concrete column shown in Fig. P8.8 is to be a 
part of a long-span rigid frame and will be subjected to high bending moments 
combined with relatively low axial loads, causing bending about the strong 
axis. Because of the high eccentricity, steel is placed unsymmetrically as 
shown, with three No. 14 (No. 43) bars near the tension face and two No. 11 
(No. 36) bars near the compression face. Material strengths are J; = 6 ksi and 
Jy = 75 ksi. Construct the complete strength interaction diagram, plotting Pn 
vs. Mn, relating eccentricities to the plastic centroid of the column (not the 
geometric center). 
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8.9. The square column shown in Fig. P8.9 must be designed for a factored axial 
load of 130 kips. Material strengths are J; = 4000 psi and Jy = 60,000 psi. 
(a) Select the longitudinal and transverse reinforcement for an eccentricity 

ey = 2.7 in. 
(b) Select the longitudinal and transverse reinforcement for the same axial 

load with ex= ey = 2.7 in. 
(c) Construct the strength interaction diagram and design strength curves 

for the column designed in part (b), given that the column will be 
subjected to biaxial bending with equal eccentricities about both prin
cipal axes. 

8.10. The square column shown in Fig. P8.10 is a comer column subject to axial load 
and biaxial bending. Material strengths are/y = 60,000 psi andJ; = 4000 psi. 
(a) Find the unique combination of Pn, Mnx, and Mny that will produce incipi

ent failure with the neutral axis located as in the figure. The compressive 
zone is shown shaded. Note that the actual neutral axis is shown, not the 
equivalent rectangular stress block limit; however, the rectangular stress 
block may be used as the basis of calculations. 

(b) Find the angle between the neutral axis and the eccentricity axis, the latter 
defined as the line from the column center to the point of load. 

Neutral axis 

A51 = 4 No. 14 (No. 43) 

3" 3" 

15" 

=h 
15" 

3" 
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8.11. For the axial load Pn found in Problem 8.10, and for the same column, with the 
same eccentricity ratio ey/ex, find the values of Mnx and Mny that would produce 
incipient failure, using the load contour method. Compare with the results of 
Problem 8.10. Take a= 1.30, and use the graphs in Appendix A, as appropriate. 

8.12. For the eccentricities ex and eY found in Problem 8.10, find the value of axial 
load Pn that would produce incipient failure, using the reciprocal load (Bresler) 
method. Use the graphs in Appendix A, as appropriate. Compare with the 
results of Problems 8.10 and 8.11. 

8.13. A 20 in. square lower-story interior building column must be designed for 
maximum and minimum factored axial loads Pu of 880 and 551 kips, respec
tively. For both values of Pu• the column will be subjected to simultaneous 
factored bending moments Mu of 295 and 24 ft-kips about the Y and X axes, 
respectively (Fig. P8.13). Material strengths are Jy = 60,000 psi and J; = 
4000 psi. Using equal reinforcement on all sides, design the longitudinal and 
transverse reinforcement for this column. 

FIGURE PS.13 y 
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8.14. A 16 in. square lower-story comer column in the building described in 

Problem 8.13 will be subjected to maximum and minimum factored axial loads 
Pu of 209 and 130 kips, respectively. For both values of Pu, the columns must 
be designed for simultaneous factored bending moments Mu of 110 and 104 ft
kips about the Y and X axes, respectively. Using equal reinforcement on all 
sides, design the longitudinal and transverse reinforcement for this column. 



Slender Columns 

9.1 INTRODUCTION 

The material presented in Chapter 8 pertained to concentrically or eccentrically loaded 
short columns, for which the strength is governed entirely by the strength of the mate
rials and the geometry of the cross section. Most columns in present-day practice fall 
in that category. However, with the increasing use of high-strength materials and 
improved methods of dimensioning members, it is now possible, for a given value of 
axial load, with or without simultaneous bending, to design a much smaller cross 
section than in the past. This clearly makes for more slender members. It is because 
of this, together with the use of more innovative structural concepts, that rational and 
reliable design procedures for slender columns have become increasingly important. 

A column is said to be slender if its cross-sectional dimensions are small 
compared with its length. The degree of slenderness is generally expressed in terms of 
the slenderness ratio l/r, where l is the unsupported length of the member and r is the 
radius of gyration of its cross section, equal to vT(A. For square or circular members, 
the value of r is the same about either axis; for other shapes r is smallest about the 
minor principal axis, and it is generally this value that must be used in determining the 
slenderness ratio of a freestanding column. 

It has long been known that a member of great slenderness will collapse under a 
smaller compression load than a stocky member with the same cross-sectional dimen
sions. When a stocky member, say with l/r = 10 (e.g., a square column of length equal 
to about 3 times its cross-sectional dimension h), is loaded in axial compression, it will 
fail at the load given by Eq. (8.3), because at that load both concrete and steel are 
stressed to their maximum carrying capacity and give way, respectively, by crushing 
and by yielding. If a member with the same cross section has a slenderness ratio 
l/r = 100 (e.g., a square column hinged at both ends and of length equal to about 
30 times its section dimension), it may fail under an axial load equal to one-half or 
less of that given by Eq. (8.3). In this case, collapse is caused by buckling, i.e., by 
sudden lateral displacement of the member between its ends, with consequent over
stressing of steel and concrete by the bending stresses that are superimposed on the 
axial compressive stresses. 

Most columns in practice are subjected to bending moments as well as axial 
loads, as was made clear in Chapter 8. These moments produce lateral deflection 
of a member between its ends and may also result in relative lateral displacement 
of joints. Associated with these lateral displacements are secondary moments that 
add to the primary moments and that may become very large for slender columns, 
leading to failure. A practical definition of a slender column is one for which there 

299 
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is a significant reduction in axial load capacity because of these secondary moments. 
In the development of ACI Code column provisions, for example, any reduction 
greater than about 5 percent is considered significant, requiring consideration of 
slenderness effects. 

The ACI Code and Commentary contain detailed provisions governing the design 
of slender columns. ACI Code 10.10.5, 10.10.6, and 10.10.7 present approximate 
methods for accounting for slenderness through the use of moment magnification 
factors. The provisions are quite similar to those used for many years for steel columns 
designed under the American Institute of Steel Construction (AISC) Specification. 
Alternatively, in ACI Code 10.10.3 and 10.10.4, a more fundamental approach is 
endorsed, in which the effect of lateral displacements is accounted for directly in the 
frame analysis. The latter approach, known as second-order analysis, is often incor
porated as a feature in commercially available structural analysis software. 

As noted, most columns in practice continue to be short columns. Simple expres
sions are included in the ACI Code to determine whether slenderness effects must be 
considered. These will be presented in Section 9.4 following the development of 
background information in Sections 9.2 and 9.3 relating to column buckling and 
slenderness effects. 

9.2 CONCENTRICALLY LOADED COLUMNS 

The basic information on the behavior of straight, concentrically loaded slender 
columns was developed by Euler more than 200 years ago. In generalized form, it 
states that such a member will fail by buckling at the critical load 

'1T
2E I 

p =--t 

C (kl)2 
(9.1) 

It is seen that the buckling load decreases rapidly with increasing slenderness ratio 
kl/r (Ref. 9.1). 

For the simplest case of a column hinged at both ends and made of elastic mate
rial, Et simply becomes Young's modulus and kl is equal to the actual length l of the 
column. At the load given by Eq. (9.1), the originally straight member buckles into a 
half sine wave, as shown in Fig. 9. la. In this bent configuration, bending moments 
Py act at any section such as a; y is the deflection at that section. These deflections 
continue to increase until the bending stress caused by the increasing moment, together 
with the original compression stress, overstresses and fails the member. 

If the stress-strain curve of a short piece of the given member has the shape 
shown in Fig. 9.2a, as it would be for reinforced concrete columns, Et is equal to 
Young's modulus, provided that the buckling stress Pc/A is below the proportional 
limit J;,. If the strain is larger than J;,, buckling occurs in the inelastic range. In this 
case, in Eq. (9.1), Et is the tangent modulus, i.e., the slope of the tangent to the stress
strain curve. As the stress increases, Et decreases. A plot of the buckling load vs. the 
slenderness ratio, the so-called column curve, therefore has the shape given in 
Fig. 9.2b, which shows the reduction in buckling strength with increasing slenderness. 
For very stocky columns, the value of the buckling load, calculated from Eq. (9.1), 
exceeds the direct crushing strength of the stocky column Pn, given by Eq. (8.3). This 
is also shown in Fig. 9.2b. Correspondingly, there is a limiting slenderness ratio 
(kl/r)1im• For values smaller than this, failure occurs by simple crushing, regardless of 



FIGURE 9.1 
Buckling and effective length 
of axially loaded columns. 
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kl/r; for values larger than (kl/r)lim• failure occurs by buckling, the buckling load or 
stress decreasing for greater slenderness. 

If a member is fixed against rotation at both ends, it buckles in the shape of 
Fig. 9.1b, with inflection points (IPs) as shown. The portion between the inflection 
points is in precisely the same situation as the hinge-ended column of Fig. 9.la, and 
thus, the effective length kl of the fixed-fixed column, i.e., the distance between inflec
tion points, is seen to be kl= l/2. Equation (9.1) shows that an elastic column fixed at 
both ends will carry 4 times as much load as when hinged. 
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FIGURE 9.2 
Effect of slenderness on 
strength of axially loaded 
columns. 
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Columns in real structures are rarely either hinged or fixed but have ends 
partially restrained against rotation by abutting members. This is shown schematically 
in Fig. 9.lc, from which it is seen that for such members the effective length kl, i.e., 
the distance between inflection points, has a value between land l/2. The precise value 
depends on the degree of end restraint, i.e., on the ratio of the stiffness EI/l of the 
column to the sum of stiffnesses EI/l of the restraining members at both ends. 

In the columns of Fig. 9. la to c, it was assumed that one end was prevented from 
moving laterally relative to the other end, by horizontal bracing or otherwise. In this 
case, it is seen that the effective length kl is always smaller than (or at most it is equal 
to) the real length l. 

If a column is fixed at one end and entirely free at the other ( cantilever column 
or flagpole), it buckles as shown in Fig. 9. ld. That is, the upper end moves laterally 
with respect to the lower, a kind of deformation known as sidesway. It buckles into a 
quarter of a sine wave and is therefore analogous to the upper half of the hinged 
column in Fig. 9. la. The inflection points, one at the end of the actual column and the 
other at the imaginary extension of the sine wave, are a distance 2l apart, so that the 
effective length is kl = 2l. 

If the column is rotationally fixed at both ends but one end can move laterally 
with respect to the other, it buckles as shown in Fig. 9.le, with an effective length 
kl = l. If one compares this column, fixed at both ends but free to sidesway, with a 
fixed-fixed column that is braced against sidesway (Fig. 9. lb), one sees that the 
effective length of the former is twice that of the latter. By Eq. (9.1), this means that 
the buckling strength of an elastic fixed-fixed column that is free to sidesway is only 
one-quarter that of the same column when braced against sidesway. This is an illus
tration of the general fact that compression members free to buckle in a side sway mode 
are always considerably weaker than when braced against sidesway. 

Again, the ends of columns in actual structures are rarely hinged, fixed, or 
entirely free but are usually restrained by abutting members. If sidesway is not 
prevented, buckling occurs as shown in Fig. 9.lf, and the effective length, as before, 
depends on the degree of restraint. If the cross beams are very rigid compared with the 
column, the case of Fig. 9. le is approached and kl is only slightly larger than l. On the 
other hand, if the restraining members are extremely flexible, a hinged condition is 
approached at both ends. Evidently, a column hinged at both ends and free to sidesway 
is unstable. It will simply topple, being unable to carry any load whatever. 



FIGURE 9.3 
Rigid-frame buckling: 
(a) laterally braced; 
(b) unbraced. 
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In reinforced concrete structures, one is rarely concerned with single members 
but rather with rigid frames of various configurations. The manner in which the rela
tionships just described affect the buckling behavior of frames is illustrated by the 
simple portal frame shown in Fig. 9.3, with loads applied concentrically to the 
columns. If sidesway is prevented, as indicated schematically by the brace in Fig. 9.3a, 
the buckling configuration will be as shown. The buckled shape of the column corre
sponds to that in Fig. 9. lc, except that the lower end is hinged. It is seen that the effec
tive length kl is smaller than l. On the other hand, if no sidesway bracing is provided 
to an otherwise identical frame, buckling occurs as shown in Fig. 9.3b. The column is 
in a situation similar to that shown in Fig. 9 .1 d, upside down, except that the upper end 
is not fixed but only partially restrained by the girder. It is seen that the effective length 
kl exceeds 21 by an amount depending on the degree of restraint. The buckling strength 
depends on kl/r in the manner shown in Fig. 9.2b. As a consequence, even though they 
are dimensionally identical, the unbraced frame will buckle at a radically smaller load 
than the braced frame. 

In summary, the following can be noted: 

1. The strength of concentrically loaded columns decreases with increasing slen
derness ratio kl/r. 

2. In columns that are braced against sidesway or that are parts of frames braced 
against sidesway, the effective length kl, i.e., the distance between inflection 
points, falls between l/2 and l, depending on the degree of end restraint. 

3. The effective lengths of columns that are not braced against sidesway or that are 
parts of frames not so braced are always larger than l, the more so the smaller the 
end restraint. In consequence, the buckling load of a frame not braced against 
sides way is always substantially smaller than that of the same frame when braced. 

9.3 COMPRESSION PLUS BENDING 

Most reinforced concrete compression members are also subject to simultaneous flex
ure, caused by transverse loads or by end moments owing to continuity. The behavior of 
members subject to such combined loading also depends greatly on their slenderness. 

Figure 9.4a shows such a member, axially loaded by P and bent by equal end 
moments Me. If no axial load were present, the moment M0 in the member would be 
constant throughout and equal to the end moments Me. This is shown in Fig. 9.4b. In 
this situation, i.e., in simple bending without axial compression, the member deflects 
as shown by the dashed curve of Fig. 9.4a, where y0 represents the deflection at any 
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FIGURE9.4 
Moments in slender members 
with compression plus 
bending, bent in single 
curvature. 
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point caused by bending only. When P is applied, the moment at any point increases 
by an amount equal to P times its lever arm. The increased moments cause additional 
deflections, so that the deflection curve under the simultaneous action of P and M0 is 
the solid curve of Fig. 9.4a. At any point, then, the total moment is now 

M = M0 + Py (9.2) 

i.e., the total moment consists of the moment M0 that acts in the presence of P and the 
additional moment caused by P, equal to P times the deflection. This is one illustra
tion of the so-called P-Li effect. 

A similar situation is shown in Fig. 9.4c, where bending is caused by the 
transverse load H. When P is absent, the moment at any point x is M0 = Hx/2, with a 
maximum value at midspan equal to Hl/4. The corresponding M0 diagram is shown in 
Fig. 9.4d. When Pis applied, additional moments Py are caused again, distributed as 
shown, and the total moment at any point in the member consists of the same two parts 
as in Eq. (9.2). 

The deflections y of elastic columns of the type shown in Fig. 9.4 can be calcu
lated from the deflections y0, that is, from the deflections of the corresponding beam 
without axial load, using the following expression (see, for example, Ref. 9.1). 

y = Yo 1 - P/Pc 
(9.3) 

If Li is the deflection at the point of maximum moment Mmax• as shown in 
Fig. 9.4, Mmax can be calculated using Eqs. (9.2) and (9.3). 

(9.4) 



FIGURE9.5 
Effect of slenderness on 
column moments. 
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It can be shown (Ref. 9.2) that Eq. (9.4) can be written 

1 + r/JP/Pc 
M =M 

max O 1 - Pf Pc (9.5) 

where r/J is a coefficient that depends on the type of loading and varies between about 
±0.20 for most practical cases. Because Pf Pc is always significantly smaller than 1, 
the second term in the numerator of Eq. (9.5) is small enough to be neglected. Doing 
so, one obtains the simplified design equation 

1 
M =M 

max 01-P/Pc (9.6) 

where 1/(1 - P/PJ is known as the moment magnification factor, which reflects the 
amount by which the moment M 0 is magnified by the presence of a simultaneous axial 
force P. 

Since Pc decreases with increasing slenderness ratio, it is seen from Eq. (9.6) 
that the moment Min the member increases with the slenderness ratio kl/r. The situ
ation is shown schematically in Fig. 9.5. It indicates that, for a given transverse 
loading (i.e., a given value of M0), an axial force P causes a larger additional moment 
in a slender member than in a stocky member. 

In the two members in Fig. 9.4, the largest moment caused by P, namely Pfl., 
adds directly to the maximum value of M0; for example, 

Hl 
Mo=-

4 

in Fig. 9.4d. As P increases, the maximum moment at midspan increases at a rate 
faster than that of P in the manner given by Eqs. (9.2) and (9.6) and shown in 
Fig. 9.6. The member will fail when the simultaneous values of P and M become 
equal to Pn and Mn, the nominal strength of the cross section at the location of 
maximum moment. 

This direct addition of the maximum moment caused by P to the maximum 
moment caused by the transverse load, clearly the most unfavorable situation, does 
not result for all types of deformations. For instance, the member in Fig. 9.7a, with 
equal and opposite end moments, has the M 0 diagram shown in Fig. 9.7b. The 
deflections caused by M 0 alone are again magnified when an axial load P is applied. 
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FIGURE 9.6 
Effect of axial load on 
column moments. 

FIGURE9.7 
Moments in slender members 
with compression plus 
bending, bent in double 
curvature. 
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In this case, these deflections under simultaneous bending and compression can be 
approximated by (Ref. 9.1) 

1 
y = Yo 1 - P/4Pc 

(9.7) 

By comparison with Eq. (9.3) it is seen that the deflection magnification here is much 
smaller. 

The additional moments Py caused by the axial load are distributed as shown in 
Fig. 9.7c. Although the M0 moments are largest at the ends, the Py moments are seen 
to be largest at some distance from the ends. Depending on their relative magnitudes, 
the total moments M = M0 + Py are distributed as shown in either Fig. 9.7d ore. In 
the former case, the maximum moment continues to act at the end and to be equal to 
Me; the presence of the axial force, then, does not result in any increase in the 
maximum moment. Alternatively, in the case of Fig. 9.7e, the maximum moment is 
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located at some distance from the end; at that location M 0 is significantly smaller than 
its maximum value Me, and for this reason the added moment Py increases the 
maximum moment to a value only moderately greater than Me. 

Comparing Figs. 9.4 and 9.7, one can generalize as follows. The momentM0 will 
be magnified most strongly when the location where M0 is largest coincides with that 
where the deflection y0 is largest. This occurs in members bent into single curvature 
by symmetrical loads or equal end moments. If the two end moments of Fig. 9.4a are 
unequal but of the same sign, i.e., producing single curvature, M0 will still be strongly 
magnified, though not quite so much as for equal end moments. On the other hand, as 
evident from Fig. 9.7, there will be little or possibly no magnification if the end 
moments are of opposite sign and produce an inflection point along the member. 

It can be shown (Ref. 9.2) that the way in which moment magnification depends 
on the relative magnitude of the two end moments (as in Figs. 9.4a and 9.7a) can be 
expressed by a modification of Eq. (9.6): 

(9.8) 

where 

(9.9) 

Here M1 is the numerically smaller and M2 the numerically larger of the two end 
moments; hence, by definition, M0 = M2• The fraction Mi/M2 is defined as positive 
if the end moments produce single curvature and negative if they produce double 
curvature. It is seen that when M 1 = M2, as in Fig. 9.4a, Cm = I, so that Eq. (9.8) 
becomes Eq. (9.6), as it should. Note that Eq. (9.9) applies only to members braced 
against sidesway. As will become apparent from the discussion that follows, for 
members not braced against sidesway, maximum moment magnification usually 
occurs, that is, Cm = I. 

Members that are braced against sidesway include columns that are parts of 
structures in which sidesway is prevented in one of various ways: by walls sufficiently 
strong and rigid in their own planes to effectively prevent horizontal displacement; by 
special bracing in vertical planes; in buildings by designing the utility core to resist 
horizontal loads and furnish bracing to the frames; or by bracing the frame against 
some other essentially immovable support. 

If no such bracing is provided, sidesway can occur only for the entire frame 
simultaneously, not for individual columns in the frame. If this is the case, the 
combined effect of bending and axial load is somewhat different from that in braced 
columns. As an illustration, consider the simple portal frame of Fig. 9.8a subject to a 
horizontal load H, such as a wind load, and compression forces P, such as from gravity 
loads. The moments M0 caused by H alone, in the absence of P, are shown in Fig. 9.8b; 
the corresponding deformation of the frame is given in dashed curves. When P is 
added, horizontal moments are caused that result in the magnified deformations shown 
in solid curves and in the moment diagram of Fig. 9.8d. It is seen that the maximum 
values of M0, both positive and negative, and the maximum values of the additional 
moments MP of the same sign occur at the same locations, namely, at the ends of the 
columns. They are therefore fully additive, leading to a large moment magnification. In 
contrast, if the frame in Fig. 9.8 is laterally braced and vertically loaded, Fig. 9.9 shows 
that the maximum values of the two different moments occur in different locations; the 
moment magnification, if any, is therefore much smaller, as correctly expressed by Cm. 
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FIGURE9.8 
Fixed portal frame, laterally 
unbraced. 

FIGURE9.9 
Fixed portal frame, laterally 
braced. 
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The moments that cause a frame to sidesway need not be caused by horizontal 
loads as in Fig. 9.8. Asymmetries, of either frame configuration or vertical loading or 
both, also result in sidesway displacements. In this case, the presence of axial column 
loads again results in the increased deflection and moment magnification. 

In summary, it can be stated as follows: 

1. In flexural members, the presence of axial compression causes additional deflec
tions and additional moments Py. Other things being equal, the additional 
moments increase with increasing slenderness ratio kl/r. 

2. In members braced against sidesway and bent in single curvature, the maxima of 
both types of moments, M0 and Py, occur at the same or at nearby locations and 
are fully additive; this leads to large moment magnifications. If the M 0 moments 
result in double curvature (i.e., in the occurrence of an inflection point), the oppo
site is true and less or no moment magnification occurs. 

3. In members in frames not braced against sidesway, the maximum moments of 
both kinds, M0 and Py, almost always occur at the same locations, the ends of the 
columns; they are fully additive, regardless of the presence or absence of an 
inflection point. Here, too, other things being equal, the additional deflections 
and the corresponding moments increase with increasing kl/r. 

This discussion is a simplified presentation of a fairly complex subject. The 
provisions of the ACI Code regarding slender columns are based on the behavior and 
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the corresponding equations that have just been presented. They take account, in an 
approximate manner, of the additional complexities that arise from the fact that concrete 
is not an elastic material, that tension cracking changes the moment of inertia of a 
member, and that under sustained load, creep increases the short-term deflections and, 
thereby, the moments caused by these deflections. 

9.4 ACI CRITERIA FOR SLENDERNESS EFFECTS IN COLUMNS 

The procedure of designing slender columns is inevitably lengthy, particularly because 
it involves a trial-and-error process. At the same time, studies have shown that most 
columns in existing buildings are sufficiently stocky that slenderness effects reduce 
their capacity only a few percent. As stated in Chapter 8, an ACI-ASCE survey 
indicated that 90 percent of columns braced against sway, and 40 percent of unbraced 
columns, could be designed as short columns; i.e., they could develop essentially the 
full cross-sectional strength with little or no reduction from slenderness (Ref. 9.3). 
Furthermore, lateral bracing is usually provided by shear walls, elevator shafts, 
stairwells, or other elements for which resistance to lateral deflection is much greater 
than for the columns of the building frame. It can be concluded that in most cases in 
reinforced concrete buildings, slenderness effects may be neglected. 

To permit the designer to dispense with the complicated analysis required for slen
der column design for these ordinary cases, ACI Code 10.10.1 provides limits below 
which the effects of slenderness are insignificant and may be neglected. These limits 
are adjusted to result in a maximum unaccounted reduction in column capacity of no 
more than 5 percent. Separate limits are applied to braced and unbraced structures, 
alternately described in the ACI Code as nonsway and sway frames, respectively. For 
the purpose of determining if slenderness effects may be neglected, ACI Code 10.10.1 
permits compression members to be considered as braced against sidesway if the total 
stiffness of the bracing elements resisting lateral movement of a story is at least 12 times 
the stiffness of all columns in that story. The Code provisions are as follows: 

1. For compression members braced against sidesway (i.e., in nonsway structures), 
the effects of slenderness may be neglected when klu/r ::5 34 - 12M1/M2, where 
34 - 12M1/M2 is not taken greater than 40. 

2. For compression members not braced against sidesway (i.e., in sway structures), 
the effects of slenderness may be neglected when klufr is less than 22. 

In these provisions, k is the effective length factor (see Section 9.2); lu is the unsup
ported length, taken as the clear distance between floor slabs, beams, or other members 
providing lateral support; M I is the smaller factored end moment on the compression 
member, positive if the member is bent in single curvature and negative if bent in 
double curvature; and M2 is the larger factored end moment on the compression member, 
always positive. 

The radius of gyration r for rectangular columns may be taken as 0.30h, where 
h is the overall cross-sectional dimension in the direction in which stability is being 
considered. For circular members, it may be taken as 0.25 times the diameter. For 
other shapes, r may be computed for the gross concrete section. 

The effective length factor k may be conservatively taken as 1.0 for compression 
members that are braced against sidesway if a more accurate value is not determined 
by analysis. By necessity, k must be determined by analysis for compression members 
that are not braced against sidesway. The ACI criteria for determining k for both 
braced and unbraced columns 1are discussed in Section 9.6. 
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If slenderness effects must be considered, ACI Code 10.10.2 requires that the 
design of columns, beams restraining those columns, and other supporting members 
in the structure be based on a second-order analysis. The analysis may be nonlinear 
(ACI Code 10.10.3) or linear (ACI Code 10.10.4), or may be in accordance with the 
ACI moment magnifier procedure (ACI Code 10.10.5). To limit the potential for 
excessive moment magnification, the total moment including second-order effects in 
compression members may not exceed 1.4 times the moment due to first-order effects. 
In addition, second-order effects must be considered along the length of a member to 
cover cases in which the maximum moment may occur away from the ends. If a 
second-order analysis program is used, checking along the length of a member will 
require subdividing the member when it is modeled. In lieu of doing so, the ACI 
moment magnification method may be used. ACI Code 10.10.2 requires that the 
dimensions of all members used in the analysis be within 10 percent of the final 
dimensions. If not, the structure must be reanalyzed. 

Nonlinear and linear second-order analyses, which are covered in ACI Code 
10.10.3 and 10.10.4, are discussed in Section 10.8. The ACI moment magnification 
method of second-order analysis is discussed next. 

9.5 ACI CRITERIA FOR NONSWAY VS. SWAY STRUCTURES 

The discussion of Section 9.3 clearly shows important differences in the behavior of 
slender columns in nonsway (braced) structures and corresponding columns in sway 
(unbraced) structures. ACI Code provisions and Commentary guidelines for the 
approximate design of slender columns reflect this, and there are separate provisions 
in each relating to the important parameters in nonsway vs. sway structures, including 
moment magnification factors and effective length factors. 

In practice, a structure is seldom either completely braced or completely unbraced. 
It is necessary, therefore, to determine in advance if bracing provided by shear walls, 
elevator and utility shafts, stairwells, or other elements is adequate to restrain the 
structure against significant sway effects. Both the ACI Code and Commentary pro
vide guidance. 

As suggested in ACI Commentary 10.10.5, a compression member can be 
assumed braced if it is located in a story in which the bracing elements (shear walls, 
etc.) have a stiffness substantial enough to limit lateral deflection to the extent that the 
column strength is not substantially affected. Such a determination can often be made 
by inspection. If not, ACI Code 10.10.5 provides two alternate criteria for determin
ing if columns and stories are treated as nonsway or sway. 

To be considered as a nonsway or braced column, the first criterion requires that 
the increase in column end moment due to second-order effects not exceed 5 percent 
of the first-order end moments. The designer is free to select the method for such a 
determination. 

As an alternative, the Code allows a story to be considered nonsway when the 
stability index 

(9.10) 

for a story is not greater than 0.05, where 2-Pu and Vus are the total factored vertical 
load and story shear, respectively, for the story; .i

0 
is the first-order relative deflection 

between the top and the bottom of the story due to Vus; and le is the length of the 
compressive member measured center to center of the joints in the frame. ACI 
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Commentary 10.10.5 provides the guidance that 2-Pu should be based on the lateral 
loading that maximizes the value of 2-P u; the case of Vus = 0 is not included. In most 
cases, this calculation involves the combinations of load factors in Table 1.2 for wind, 
earthquake, or soil pressure (e.g., 1.2D + 1.6W + l.0L + 0.5L,). 

As shown in Refs. 9.3 and 9.4, for Q not greater than 0.6, the stability index 
closely approximates the ratio P /Pc used in the calculation of the moment magnifica
tion factor, so that 1/(1 - P/PJ can be replaced by 1/(1 - Q). Thus, for Q = 0.05, 
Mmax = l.05Mo.t 

The section properties of the frame members used to calculate Q need to account 
for the effects of axial loads, cracked regions along the length of the member, and the 
duration of the loads. ACI Code 10.10.4 provides useful guidance that is appropriate 
for first-order as well as second-order analysis. According to ACI Code 10.10.4, sec
tion properties may be represented using the modulus of elasticity Ec given in Eq. (2.3) 
and the following section properties: 

Moments of inertia 

Beams 
Columns 
Walls-uncracked 

--cracked 
Flat plates and flat slabs 

Area 

0.351g 
0.?0lg 
0.?0lg 
0.351g 
0.251g 

l.0Ag 

where lg and Ag are based on the gross concrete cross section, neglecting reinforce
ment. As discussed in Section 12.5, lg for T beams can be closely approximated as 
2 times lg for the web. The reduced values of l given above take into account the effect 
of nonlinear material behavior on the effective stiffness of the members. Reference 9 .3 
shows that these values for moments of inertia underestimate the true moments of 
inertia and conservatively overestimate second-order effects by 20 to 25 percent for 
reinforced concrete frames. 

Based on work described in Refs. 9.5 and 9.6, ACI Code 10.10.4 indicates that 
the moments of inertia l of compression members and flexural members may also be 
computed using alternative expressions. For compression members, 

I= (o.80 + 25 Ast ) ( 1 - Mu - 0.5 Pu)l
8 

::s 0.8751
8 Ag Puh po 

(9.11) 

where Pu and Mu are based on the load combination under consideration, or the com
bination of Pu and Mu resulting in the smallest value of l. The value of l calculated 
using Eq. (9.11) need not be taken less than 0.351

8
• 

For flexural members, 

l = (0.10 + 25 p)( 1.2 - 0.2 ~ )18 ::s 0.5/8 (9.12) 

The value of l calculated using Eq. (9.12) need not be taken less than 0.251
8

• For 
continuous flexural members, I may be taken as the average value of / calculated at 

t The near equivalence of Q to P/Pc, for reinforced concrete columns can be demonstrated using a single-sway column with ends fixed against 
roqition, as shown in Fig. 9.le. For this column, Q = PJ!t.o/Vus1c Since VuJ!J,. 0 = the lateral stiffness of the column = 12£///~, the stability index 
can be expressed as Q = Pu/(12EI/l~). For an unsupported length of the column (the length used to calculate Pc) lu = 0.9/c and P = Pu, Q = 
Pu/(9.72EI/l~) compared to Pf Pc= Pj(TT2EI/l~) = Pu/(9.87El/l~). 
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FIGURE9.10 
Effect of slenderness on 
carrying capacity. 

critical positive and negative moment locations along the length of the beam. The Code 
requires that the member dimensions and reinforcement ratios used in Eqs. (9.11) and 
(9.12) be within 10 percent of the final values. 

To account for the effects of creep on .i
0 

in Eq. (9.10) when sustained lateral loads 
act, the moments of inertia for compression members must be divided by 1 + f3ds• 
where f3ds is the ratio of the maximum factored sustained shear within a story to the 
maximum f~ctored shear in that story associated with the same load combination, but 
not greater than 1.0. 

9.6 ACI MOMENT MAGNIFIER METHOD FOR NONSWAY 
FRAMES 

A slender reinforced concrete column reaches the limit of its strength when the 
combination of P and Mat the most highly stressed section causes that section to fail. 
In general, P is essentially constant along the length of the member. This means that 
the column approaches failure when, at the most highly stressed section, the axial 
force P combines with a moment M = Mmax• as given by Eq. (9.8), so that this 
combination becomes equal to Pn and Mn, which will cause the section to fail. This is 
easily visualized by means of Fig. 9.10. 

For a column of given cross section, Fig. 9.10 presents a typical interaction dia
gram. For simplicity, suppose that the column is bent in single curvature with equal 
eccentricities at both ends. For this eccentricity, the strength of the cross section is 
given by point A on the interaction curve. If the column is stocky enough for the 
moment magnification to be negligibly small, then Pn,stocky at point A represents the 
member strength of the column under the simultaneous moment Mn,stocky = erf' n,stocky· 

On the other hand, if the same column is sufficiently slender, significant moment 
magnification will occur with increasing P. Then the moment at the most highly 
stressed section is Mmax• as given by Eq. (9.8), with Cm = 1 because of equal end 
eccentricities. The solid curve in Fig. 9.10 shows the nonlinear increase of Mmax as 

p 

M 



FIGURE9.11 
Values of Cm for slender 
columns in sway and 
nonsway frames. 
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P increases. The point where this curve intersects the interaction curve, i.e., point B, 
defines the member strength P n slender of the slender column, combined with the simul
taneously applied end moments M0 = eoPn,slender- If end moments are unequal, the 
factor Cm will be less than 1, as discussed in Section 9.3. 

For slender column design, the axial load and end moments in a column are first 
determined using conventional frame analysis (see Chapter 12), typically using the 
section properties given in Section 9.5. The member is then designed for that axial 
load and a simultaneous magnified column moment. 

For a nonsway frame, the ACI Code equation for magnified moment, acting with 
the factored axial load Pu• is written as 

(9.13) 

where the moment magnification factor is 

8ns = j 2'.'. 1 
1 - Pu 0.75Pc 

(9.14) 

In Eqs. (9.13) and (9.14), the subscript ns denotes a nonsway frame. The 0.75 term in 
Eq. (9.14) is a stiffness reduction factor, designed to provide a conservative estimate 
of Pc. The critical load Pc, in accordance with Eq. (9.1), is given as 

7r2£J 
Pc = (klu) 2 (9.15) 

where lu is defined as the unsupported length of the compression member. The value 
of kin Eq. (9.15) should be set equal to 1.0, unless calculated using the values of Ec 
and I given in Section 9.5 and procedures described later in this section. 

In Eq. (9.14), the value of Cm is as previously given in Eq. (9.9): 

M1 
Cm= 0.6 + 0.4 - 2'.: 0.4 (9.9) 

M2 

for members braced against sidesway and without transverse loads between supports. 
Here M2 is the larger of the two end moments, and M1/M2 is positive when the end 
moments produce single curvature and negative when they produce double curvature. 
The variation of Cm with M1/M2 is shown in Fig. 9.11. In Eq. (9.14), when the 
calculated value of 8ns is smaller than 1, it indicates that the larger of the two end 
moments, M2, is the largest moment in the column, a situation depicted in Fig. 9.7d. 

i-1.0 -0.5 
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In this way, the ACI Code provides for the capacity-reducing effects of slenderness 
in nonsway frames by means of the moment magnification factor 5ns· However, it is 
well known that for columns with no or very small applied moments, i.e., axially or 
nearly axially loaded columns, increasing slenderness also reduces the column 
strength. For this situation, ACI Code 10.10.6.5 provides that the factored moment M2 
in Eq. (9.13) not be taken less than 

M2,min = PJ0.6 + 0.03h) (9.16) 

about each axis separately, where 0.6 and h are in inches. For members in which M2 min 

exceeds M2, the value of Cm in Eq. (9.9) is taken equal to 1.0 or is based on the r~tio 
of the computed end moments M1 and M2• 

The value of EI used in Eq. (9.15) to calculate Pc for an individual member 
must be both accurate and reasonably conservative to account for the greater 
variability inherent in the properties of individual columns, as compared to the 
properties of the reinforced concrete frame, as a whole. The values of EI provided 
in Section 9.5 are adequate for general frame analysis but not for establishing Pc for 
individual columns. 

In homogeneous elastic members, such as steel columns, EI is easily obtained 
from Young's modulus and the usual moment of inertia. Reinforced concrete columns, 
however, are nonhomogeneous, since they consist of both steel and concrete. Whereas 
steel is substantially elastic, concrete is not and is, in addition, subject to creep and 
to cracking if tension occurs on the convex side of the column. All these factors 
affect the effective value of EI for a reinforced concrete member. It is possible by 
computer methods to calculate fairly realistic effective section properties, taking 
account of these factors. Even these calculations are no more accurate than the 
assumptions on which they are based. On the basis of elaborate studies, both 
analytical and experimental (Ref. 9. 7), the ACI Code requires that El be determined 
by either 

or by the simpler expression 

0.2EJ8 + Es[se 
EI=------

1 + f3dns 

0.4Ej8 EI=---
1 + f3dns 

where Ec = modulus of elasticity of concrete, psi 
1
8 

= moment of inertia of gross section of column, in4 

Es = modulus of elasticity of steel = 29,000,000 psi 

(9.17) 

(9.18) 

Ise = moment of inertia of reinforcement about centroidal axis of member 
cross section, in4 

/3dns = ratio of maximum factored axial sustained load to maximum factored axial 
load associated with same load combination, but not greater than 1.0 (this 
definition differs from that used in Section 9.5 to calculate Ll

0
) 

The factor /3dns accounts approximately for the effects of creep. That is, the 
larger the sustained loads, the larger are the creep deformations and corresponding 
curvatures. Consequently, the larger the sustained loads relative to the temporary 
loads, the smaller the effective rigidity, as correctly reflected in Eqs. (9.17) and (9.18). 
Because, of the two materials, only concrete is subject to creep, and reinforcing 
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steel as ordinarily used is not, the argument can be made that the creep parameter 
1 + /3dns should be applied only to the term 0.2E,lg in Eq. (9.17). However, as 
explained in ACI Commentary 10.10.6.2, the creep parameter is applied to both 
terms because of the potential for premature yielding of steel in columns under 
sustained loading. 

Both Eqs. (9.17) and (9.18) are conservative lower limits for large numbers of 
actual members (Ref. 9.3). The simpler but more conservative Eq. (9.18) is not 
unreasonable for lightly reinforced members, but it greatly underestimates the effect 
of reinforcement for more heavily reinforced members, i.e., for the range of higher 
p values. Equation (9.17) is more reliable for the entire range of p and definitely 
preferable for medium and high p values (Ref. 9.8). 

An accurate determination of the effective length factor k is essential in con
nection with Eqs. (9.13) and (9.15). In Section 9.2, it was shown that, for frames 
braced against sidesway (nonsway frames), k varies from½ to 1, whereas for laterally 
unbraced frames (sway frames), it varies from 1 to oo, depending on the degree of 
rotational restraint at both ends. This was illustrated in Fig. 9.1. For frames, it is seen 
that this degree of rotational restraint depends on whether the stiffnesses of the beams 
framing into the column at top and bottom are large or small compared with the 
stiffness of the column itself. An approximate but generally satisfactory way of 
determining k is by means of alignment charts based on isolating the given column 
plus all members framing into it at top and bottom, as shown in Fig. 9.12. The degree 
of end restraint at each end is 1/J = "'J:,(EI/lc of columns) + "'J:,(EI/l of floor members). 
Only floor members that are in a plane at either end of the column are to be included. 
The value of k can be read directly from the chart of Fig. 9.13, as illustrated by the 
dashed lines. t 

It is seen that k must be known before a column in a frame can be dimensioned. 
Yet k depends on the stiffness EI/I of the members to be dimensioned, as well as on 
that of the abutting members. Thus, the dimensioning process necessarily involves 
iteration; i.e., one assumes member sizes, calculates member stiffnesses and corre
sponding k values, and then calculates the critical buckling load and more accurate 
member sizes on the basis of these k values until assumed and final member sizes 
coincide or are satisfactorily close. The stiffness EI/I should be calculated based on 
the values of Ee and I given in Section 9.5, and the span lengths of the members le and 
l should be measured center to center of the joints. 

An outline of the separate steps in the analysis/design procedure for nonsway 
stories or frames follows along these lines: 

1. Select a trial column section to carry the factored axial load Pu and moment 
Mu = M2 from the elastic first-order frame analysis, assuming short column 
behavior and following the procedures of Chapter 8. 

2. Determine if the frame should be considered as nonsway or sway, using the 
criteria of Section 9.5. 

3. Find the unsupported length lu-
4. For the trial column, check for consideration of slenderness effects, using the 

criteria of Section 9.4 with k = 1.0. 
5. If slenderness is tentatively found to be important, refine the calculation of k based 

on the alignment chart in Fig. 9.13a, with member stiffnesses EI/I (Section 9.5) 

t Equations for the determination of effective length factors k, more convenient than charts for developing computer solutions, are presented in 
Refs. 9.9 through 9.12. The expressions in Ref. 9.12 are the most accurate. 
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FIGURE9.12 
Section of rigid frame 
including column to be 
designed. 

FIGURE9.13 
Alignment charts for 
effective length factors k. 
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and rotational restraint factors if; based on trial member sizes. Recheck against the 
slenderness criteria. 

6. If moments from the frame analysis are small, check to determine if the minimum 
moment from Eq. (9.16) controls. 
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7. Calculate the equivalent uniform moment factor Cm from Eq. (9.9). 
8. Calculate /3dns• El from Eq. (9.17) or (9.18), and Pc from Eq. (9.15) for the trial 

column. 
9. Calculate the moment magnification factor 8ns from Eq. (9.14) and magnified 

moment Mc from Eq. (9.13). 
10. Check the adequacy of the column to resist axial load and magnified moment, 

using the column design charts of Appendix A in the usual way. Revise the 
column section and reinforcement if necessary. 

11. If column dimensions are altered, repeat the calculations fork, 1/J, and Pc based 
on the new cross section. Determine the revised moment magnification factor and 
check the adequacy of the new design. 

EXAMPLE 9.1 Design of a slender column in a nonsway frame. Figure 9.14 shows an elevation view of a 
multistory concrete frame building, with 48 in. wide X 12 in. deep beams on all column lines, 
carrying two-way slab floors and roof. The clear height of the columns is 13 ft. Interior columns 
are tentatively dimensioned at 18 X 18 in., and exterior columns at 16 X 16 in. The frame is 
effectively braced against sway by stair and elevator shafts having concrete walls that are 
monolithic with the floors, located in the building comers (not shown in the figure). The struc
ture will be subjected to vertical dead and live loads. Trial calculations by first-order analysis 
indicate that the pattern of live loading shown in Fig. 9.14, with full load distribution on roof 
and upper floors and a checkerboard pattern adjacent to column C3, produces maximum 
moments with single curvature in that column, at nearly maximum axial load. Dead loads act 
on all spans. Service load values of dead and live load axial force and moments for the typical 
interior column C3 are as follows: 

FIGURE 9.14 
Concrete building frame for 
Example 9.1. 

Dead load 
P = 230 kips 
M2 = 2 ft-kips 
M1 = -2 ft-kips 

Live load 
P = 173 kips 
M2 = 108 ft-kips 
M1 = 100 ft-kips 

The column is subjected to double curvature under dead load alone and single curvature under 
live load. 
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Design column C3, using the ACI moment magnifier method. Use J: = 4000 psi and 
,[y = 60,000 psi. 

SOLUTION. The column will first be designed as a short column, assuming no slenderness 
effect. With the application of the usual load factors, 

Pu= l.2 X 230 + 1.6 X 173 = 553 kips 

Mu = l.2 X 2 + 1.6 X 108 = 175 ft-kips 

For an 18 X 18 in. column, with the 1.5 in. clear to the outside steel, No. 3 (No. 10) stirrups, 
and (assumed) No. 10 (No. 32) longitudinal steel: 

y = (18.00 - 2 X 1.50 - 2 X 0.38 - 1.27)/18 = 0.72 

Graph A.6 for y = 0.70, with bars arranged around the column perimeter, will be used. Then 

553 
= 0.656 

0.65 X 4 X 324 

Mu 175 X 12 -- - ------- = 0.138 
</Jf;Agh 0.65 X 4 X 324 X 18 

and from the graph Pg = 0.02. This is low enough that an increase in steel area could be made, 
if necessary, to allow for slenderness, and the 18 X 18 in. concrete dimensions will be retained. 

For an initial check on slenderness, an effective length factor k = 1.0 will be used. Then 

klu = l.0 X 13 X 12 = 
28

_
9 

r 0.3 X 18 

For a braced frame, the upper limit for short column behavior is 

M 1 1.2 X (-2) + 1.6 X 100 
34 - 12 - = 34 - 12 -------- = 23.2 

M2 1.2 X 2 + 1.6 X 108 

The calculated value of 28.9 exceeds this, so slenderness must be considered in the design. A 
more refined calculation of the effective length factor k is thus called for. 

Because Ee is the same for column and beams, it will be canceled in the stiffness 
calculations. For this step, the column moment of inertia will be taken as 0.7/g = 0.7 X 18 X 

183/12 = 6124 in4, giving I/le= 6124/(14 X 12) = 36.5 in3. For the beams, the moment of 
inertia will be taken as 0.35/g, where lg is taken as 2 times the gross moment of inertia of the 
web. Thus, 0.35/g = 0.35 X 2 X 48 X 123/12 = 4838 in4, and I/l = 4838/ 
(24 X 12) = 16.8 in3. Rotational restraint factors at the top and bottom of column C3 are the 
same and are 

36.5 + 36.5 ,/, - ,/, - ---- 217 
'l'a - 'l'b - 16.8 + 16.8 - . 

From Fig. 9.13a for the braced frame, the value of k is 0.87, rather than 1.0 as used previously. 
Consequently, 

klu 0.87 X 13 X 12 
- = ----- = 25.1 
r 0.3 X 18 

This is still above the limit value of 23.3, confirming that slenderness must be considered. 
A check will now be made of minimum moment. According to Eq. (9.16), M2 min = 

553 X (0.6 + 0.03 X 18)/12 = 53 ft-kips. It is seen that this does not control. · 
The coefficient Cm can now be found from Eq. (9.9) with M1 = 1.2 X ( - 2) + 1.6 X 100 = 

158 ft-kips and M2 = 1.2 X 2 + 1.6 X 108 = 175 ft-kips: 

158 
cm= 0.6 + 0.4 175 = 0.96 



FIGURE 9.15 
Cross section of column C3, 
Example 9 .1. 
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Clear cover 12 

Next the factor f3dns will be found based on the ratio of the maximum factored sustained axial 
load (the factored dead load in this case) to the maximum factored axial load: 

1.2 X 230 
f3dns = 1.2 X 230 + 1.6 X 173 = 0.50 

For a relatively low reinforcement ratio, one estimated to be in the range of 0.02 to 0.03, the 
more approximate Eq. (9.18) for EI will be used, and 

0.4 X 3.60 X 106 X 18 X 183/12 
9 2 EI= ----------- = 8.40 X 10 in -lb 

1 + 0.50 

The critical buckling load is found from Eq. (9.15) to be 

7T
2EI 7T

2 X 8.40 X 109 

P = -- = ------ = 4.50 X 106 lb 
c (klu)2 (0.87 X 13 X 12)2 

The moment magnification factor can now be found from Eq. (9.14). 

8 = cm = 0.96 = l 
ns 1 - Pu/0.15Pc 1 - 553/(0.75 X 4500) ·

15 

Thus, the required axial strength of the column is Pu = 553 kips (as before), while the magnified 
design moment is Mc= 8,.,M2 = 1.15 X 175 = 201 ft-kips. As described in Section 9.5, ACI 
Code 10.10.2 limits the magnified moment to 1.4 times the moment due to first-order effects. This 
limitation is clearly satisfied. With reference again to the column design chart A.6 with 

553 _ O 
0.65 X 4 X 324 - ·

656 

Mu 201 X 12 -- = ------- = 0.159 
<f,J;Agh 0.65 X 4 X 324 X 18 

it is seen that the required reinforcement ratio is increased from 0.020 to 0.026 because of slen
derness. The steel area now required is 

As, = 0.026 X 324 = 8.42 in2 

which can be provided using four No. 10 (No. 32) and four No. 9 (No. 29) bars (As, = 9.08 in2), 

arranged as shown in Fig. 9.15. No. 3 (No. 10) ties will be used at a spacing not to exceed the 
least dimension of the column (18 in.), 48 tie diameters (18 in.), or 16 bar diameters (18 in.). 
Single ties at 18 in. spacing, as shown in the figure, will meet requirements of the ACI Code. 

Further refinements in the design could, of course, be made by recalculating the critical 
buckling load using Eq. (9.17). This extra step is not justified here because the column 
slenderness is barely above the upper limit for short column behavior and the moment magni
fication is not great. 
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9.7 ACI MOMENT MAGNIFIER METHOD FOR SWAY FRAMES 

The important differences in behavior between columns braced against sidesway and 
columns for which sidesway is possible were discussed in Sections 9.2 and 9.3. The 
critical load for a column Pc depends on the effective length klu, and although the 
effective length factor k falls between 0.5 and 1.0 for braced columns, it is between 
1.0 and oo for columns that are unbraced (see Figs. 9.1 and 9.13). Consequently, an 
unbraced column will buckle at a much smaller load than will a braced column that is 
otherwise identical. 

Columns subject to sidesway do not normally stand alone but are part of a struc
tural system including floors and roof. A floor or roof is normally very stiff in its own 
plane. Consequently, all columns at a given story level in a structure are subject to 
essentially identical sway displacements; i.e., sidesway of a particular story can occur 
only by simultaneous lateral motion of all columns of that story. Clearly, all columns 
at a given level must be considered together in evaluating slenderness effects relating 
to sidesway. 

On the other hand, it is also possible for a single column in a sway frame to 
buckle individually under gravity loads, the ends of the column being held against 
relative lateral movement by other, stiffer columns at the same floor level. This possi
bility, resulting in magnification of nonsway moments due to gravity loads, must also 
be considered in the analysis and design of slender columns in unbraced frames. 

The ACI moment magnifier approach can still be used for frames subject to 
sidesway, but it is necessary, according to ACI Code 10.10. 7, to separate the loads 
acting on a structure into two categories: loads that result in no appreciable sidesway 
and loads that result in appreciable sidesway. Clearly two separate frame analyses are 
required, one for loads of each type. In general, gravity loads acting on reasonably 
symmetrical frames produce little sway, and the effects of gravity load may therefore 
be placed in the first category. This is confirmed by tests and analyses in Ref. 9 .13 
that show that the sway magnification of gravity moments by the sway multiplier 
is unwarranted. 

The maximum magnified moments caused by sway loading occur at the ends of 
the column, but those due to gravity loads may occur somewhere in the midheight of 
the column, the exact location of the latter varying depending on the end moments. 
Because magnified gravity moments and magnified sway moments do not occur at the 
same location, the argument can be made that, in most cases, no magnification should 
be applied to the nonsway moments when sway moments are considered; that is, it is 
unlikely that the actual maximum moment will exceed the sum of the nonmagnified 
gravity moment and the magnified sway moment. Consequently, for cases involving 
sidesway, Eq. (9.13) is replaced by 

M1 =Mins+ 8sMls 

Mz = Mzns + 8sM2s 

where M 1 = smaller factored end moment on compression member 
M2 = larger factored end moment on compression member 

(9.19) 

(9.20) 

Mins= factored end moment on compression member at end at which M 1 acts, 
due to loads that cause no appreciable sidesway, calculated using a first
order elastic frame analysis 

Mzns = factored end moment on compression member at end at which M2 acts, 
due to loads that cause no appreciable sidesway, calculated using a first
order elastic frame analysis 
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M 1, = factored end moment on compression member at end at which M1 acts, 
due to loads that cause appreciable sidesway, calculated using a first
order elastic frame analysis 

M 2s = factored end moment on compression member at end at which M 2 acts, 
due to loads that cause appreciable sidesway, calculated using a first
order elastic frame analysis 

os = moment magnification factor for frames not braced against sidesway, to 
reflect lateral drift resulting from lateral (and sometimes gravity) loads 

ACI Code 10.10.7 provides two alternate methods for calculating the moment 
magnification factor for frames not braced against sidesway os. 

With the first alternative, the moment magnification factor is calculated as 

1 
o.=~~2:1 
' 1 - Q 

(9.21) 

where Q is the stability index calculated using Eq. (9.10). The ACI Code limits 
application of Eq. (9.21) to values of os = 1/(1 - Q) ~ 1.5. An elastic second-order 
analysis, as described in ACI Code 10.10.4, or the second alternative described in ACI 
Code 10.10.7 must be used for higher values of os. 

For the second alternative, the moment magnification factor is calculated as 

1 os = ------- :::c: 1 
1 - "i,Pu/0.75"1,~. 

(9.22) 

in which 2,Pu is the total axial load on all columns and "i,Pc is the total critical buck
ling load for all columns in the story under consideration. As with Eq. (9.14), the 0.75 
factor in Eq. (9.22) is a stiffness reduction factor to provide a conservative estimate of 
the critical buckling loads Pc. The individual values of Pc are calculated using 
Eq. (9.15) with effective length factors k for unbraced frames (Fig. 9.13b) and values 
of EI from Eq. (9.17) or (9.18). 

When calculating o,, the factor f3ds is defined differently than f3dns is for non
sway frames. As described earlier, in Section 9.5, f3ds is the ratio of the maximum 
factored sustained shear within a story to the maximum factored shear in that story. 
Thus, for most applications, {3d, = 0 for the purpose of calculating os. In unusual 
situations, f3ds i= 0 will occur, such as a building located on a sloping site that is 
subjected to soil pressure on a single side (Refs. 9.14 and 9.15). 

The sequence of design steps for slender columns in sway frames is similar to 
that outlined in Section 9.6 for nonsway frames, except for the requirement that loads 
be separated into gravity loads, which are assumed to produce no sway, and horizon
tal loads producing sway. Separate frame analyses are required, and different equiva
lent length factors k and creep coefficients /3dns and f3ds must be applied. Note that 
according to ACI Code 9.2 (see also Table 1.2 of Chapter 1), if wind effects Ware 
included in the design, four possible factored load combinations are to be applied: 

U = 1.2D + l.6L 

U = 1.2D + 1.6(Lr or Sor R) + 0.8W 

U = 1.2D + 1.6W + l.0L + 0.5 (Lr or Sor R) 

U = 0.9D + 1.6W 

Similar provisions are included for cases where earthquake loads are to be considered. 
This represents a significant complication in the sway frame analysis; however, the 
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factored loads can be separated into gravity effects and sway effects, as required, and 
a separate analysis can be performed for each. 

It is important to realize that, for sway frames, the beams must be designed for 
the total magnified end moments of the compression members at the joint. Even 
though the columns may be very rigid, if plastic hinges were to form in the restrain
ing beams adjacent to the joints, the effective column length would be greatly 
increased aJJd the critical column load much reduced. 

The choice of which of the methods to use for calculating B., depends upon the 
desired level of accuracy and the available analytical tools. 

Second-order analysis (discussed in greater detail in Section 9.8) provides the 
most accurate estimate of the magnified sway moments but requires more sophisti
cated techniques. The extra effort required for second-order analysis, however, usually 
produces a superior design. The first alternative, Eq. (9.21 ), will in most cases be the 
easiest to apply, since matrix analysis is used for virtually all frames to determine 
member forces under gravity and lateral loading. Such an analysis automatically 
generates the value of~"' the first-order relative deflection within a story, allowing Q 
to be calculated for each story within a structure. The second alternative, Eq. (9.22), 
is retained with minor modifications from previous versions of the ACI Code. As will 
be demonstrated in the following example, calculations using Eq. (9.22) are more 
tedious than those needed for Eq. (9.21) but do not require knowledge of ~

0
• 

Application of Eq. (9.21) is limited by the Code to values of 8s ~ 1.5. For 8s > 1.5, 
application of Eq. (9.22) is mandatory if a second-order analysis is not used. 

EXAMPLE 9 .2 Design of a slender column in a sway frame. Consider now that the concrete building frame 
of Example 9.1 acts as a sway frame, without the stairwells or elevator shafts described earlier. 
An initial evaluation is carried out using the member dimensions and reinforcement given in 
Example 9.1. The reinforcement for the interior 18 X 18 in. columns, shown in Fig. 9.15, 
consists of four No. 10 (No. 32) bars at the corners and four No. 9 (No. 29) bars at the center 
of each side. Reinforcement for the exterior 16 X 16 in. columns consists of eight No. 8 
(No. 25) bars distributed in a manner similar to that shown for the longitudinal reinforcement 
in Fig. 9.15. The building will be subjected to gravity dead and live loads and horizontal wind 
loads. Elastic first-order analysis of the frame at service loads (all load factors = 1.0) using the 
values of E and I defined in Section 9.5 gives the following results at the third story: 

pdead 

plive 

pwind 

Vwind 

M2,dead 

M2,live 

M2,wind 

Ml,dead 

Ml,live 

Ml,wind 

Cols. A3 and F3 
115 kips 
90 kips 

±30 kips 
5.5 kips 

Cols. B3 and E3 
230 kips 
173 kips 

±18 kips 
11 kips 

Cols. CJ and D3 
230 kips 
173 kips 
±6 kips 

11 kips 
2 ft-kips 

108 ft-kips 
±79 ft-kips 
-2 ft-kips 
JOO ft-kips 

±70 ft-kips 

To simplify the analysis in this example, roof loads will not be considered. The relative lateral 
deflection for the third story under total wind shear Vwin<l = 55 kips is 0.76 in. 

Column C3 is to be designed for the critical loading condition, using};' = 4000 psi and 
Jy = 60,000 psi as before. 

SOLUTION. The column size and reinforcement must satisfy requirements for each of the four 
load conditions noted above. 
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Initially, a check is made to see if a sway frame analysis is required. The factored shear 
Vus = 1.6 X Vwind = 1.6 X 55 = 88 kips. The corresponding deflection Ll0 = 1.6 X 0.76 = 
1.22 in. The total factored axial force on the story is obtained using the load table. 

Columns A3 and F3: 

Columns B3, C3, D3, and £3: 

Pu = 1.2 X 115 + 1.0 X 90 = 228 kips 

Pu= 1.2 X 230 + 1.0 X 173 = 449 kips 

Note that in this case the values of P wind in the columns are not considered since they cancel out 
for the floor as a whole, i.e., "2:.P wind = 0. Thus, "2:.Pu = 2 X 228 + 4 X 449 = 2252 kips, and 
the stability index is 

"2:.PuLlo 2252 X 1.22 
Q = -- = ---- = 0.19 

V,,,{c 88 X 14 X 12 

Since Q > 0.05, sway frame analysis is required for this story. 
(a) Gravity loads only. All columns in sway frames must first be considered as braced 

columns under gravity loads acting alone, i.e., for U = 1.2D + l.6L. This check has already 
been made for column C3 in Example 9.1. 

(b) Gravity plus wind loads. Three additional load combinations must be considered 
when wind effects are included: U = 1.2D + l.6(Lr or Sor R) + 0.8W, U = 1.2D + 1.6W + 
l.0L + 0.5(Lr or S or R), and U = 0.9D + 1.6W. By inspection, the second combination will 
control for this case, and the others will not be considered further. From Example 9.1, 1/10 = 
1/Jb = 2.17. With reference to the alignment chart in Fig. 9.13b, the effective length factor for 
an unbraced frame k = 1.64 and 

klu 1.64 X 13 X 12 - = ----- = 47.4 
r 0.3 X 18 

This is much above the limit value of 22 for short column behavior in an unbraced frame. (This 
should be no surprise since klu/r = 25. l for column C3 in the braced condition.) For sway 
frame analysis, the loads must be separated into gravity loads and sway loads, and the appro
priate magnification factor must be computed and applied to the sway moments. The factored 
end moments resulting from the nonsway loads on column C3 are 

Mins= 1.2 X (-2) + 1.0 X 100 = 98 ft-kips 

M2ns = 1.2 X 2 + 1.0 X 108 = 110 ft-kips 

The sway effects will amplify the moments: 

Mi., = 1.6(-70) = -112 ft-kips 

M2s = 1.6 X 79 = 126 ft-kips 

For the purposes of comparison, the magnified sway moments will be calculated based on both 
Q [Eq. (9.21)] and "2:.Pj"2:.Pc [Eq. (9.22)]. 

Using Eq. (9.21), 

giving 

1 1 
8 --------123 

s - 1 - Q - 1 - 0.19 - . 

osMis = 1.23 X (-112) = -138 ft-kips 

8sM2s = 1.23 X 126 = 155 ft-kips 

To use Eq. (9.22), the critical loads must be calculated for each of the columns as follows. 
For columns A3 and F3, 

Columns: / = 0.1/g = 0.7 X 16 X 163/12 = 3823 in4 

and I/l, = 3823/(14 X 12) = 22.8 in3 

Beams: I= 4838 in4 and I/l, = 16.8 in3 
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Rotational restraint factors for this case, with two columns and one beam framing into the joint, are 

22.8 + 22.8 
i/Ja = i/Jb = 

16
_
8 

= 2.71 

which, with reference to the alignment chart for unbraced frames, gives k = 1.77. For wind 
load, f3ds = 0. Since reinforcement has been initially selected for one column, EI will be 
calculated using Eq. (9.17). 

EI= 0.2EJg + Esis, = 0.2 X 3.6 X 106 X 16 X 163/12 + 29 X 106 X 6 X 0.79 X 6.62 

= 9.92 X 109 in2-lb 

Then the critical load is 

p = 7r2 X 9.92 X 109 = 1.51 X 1061b 
c (1.77 X 13 X 12)2 

For columns B3, C3, D3, and E3, from earlier calculations for column C3, k = 1.64 for the 
sway loading case. For these columns, 

EI= 0.2 X 3.6 X 106 X 18 X 183/12 + 29 X 106 (4 X 1.27 X 6.42 + 2 X 1.0 X 6.5 2
) 

= 14.8 X 109 in2-lb 

p = 7r2 X 14.8 X 109 = 2.62 X 1061b 
c (1.64 X 13 X 12)2 

Thus, for all the columns at this level of the structure, 

2-Pc = 2 X 1510 + 4 X 2620 = 13,500 kips 

The sway moment magnification factor is 

0 = 1 
s l - 2,Pu/0.752,Pc 

1 --------- = 1 29 
1 - 2252/ (0.75 X 13,500) . 

and the magnified sway moments for the top and bottom of column C3 are 

OsM1s = 1.29 X (-112) = -144 ft-kips 

osM2s = 1.29 X 126 = 163 ft-kips 

The values of osMs are higher based on 2-Pu/2-Pc than they are based on Q (163 ft-kips vs. 
155 ft-kips for osMzs), emphasizing the conservative nature of the moment magnifier approach 
based on Eq. (9.22). The design will proceed using the less conservative value of osMs. 

The total magnified moments are 

M 1 = 98 - 138 = -40 ft-kips 

M2 = 110 + 155 = 265 ft-kips 

The values do not exceed the upper limit of 1.4 times the moments due to first-order effects and 
will now be combined with factored axial load Pu = 459 kips (now including 1.6P wind). In 
reference to Graph A.6 with column parameters 

Pu 

rpf;Ag 

459 
----- = 0.545 
0.65 X 4 X 324 

265 X 12 ------- = 0.211 
0.65 X 4 X 324 X 18 

it is seen that Pg = 0.038. This is considerably higher than the value of 0.026 required for 
column C3 in a braced frame. The required steel area of 

Ast= 0.038 X 324 = 12.31 in2 



FIGURE 9.16 
Cross section of column C3, 
Example 9.2. 

r-- 18" ----J r 8 No. 11 (No. 36) bars 

18" l No. 4 (No. 13) ties@ 18" 

111 
Clear cover 12 

SLENDER COLUMNS 325 

will be provided using eight No. 11 (No. 36) bars, arranged as shown in Fig. 9.16. Spacing of 
No. 4 (No. 13) ties must not exceed the least dimension of the column, 48 tie diameters, or 16 
main bar diameters. The first criterion controls, and No. 4 (No. 13) ties at 18 in. spacing will 
be used in the pattern shown in Fig. 9.16. 

9.8 SECOND-ORDER ANALYSIS FOR SLENDERNESS EFFECTS 

It may be evident from the preceding examples that although the ACI moment mag
nifier method works well enough for nonsway frames, its application to sway frames 
is complicated, with many opportunities for error, especially when Eq. (9.22) is used 
to calculate 8 s. 

With the universal availability of computers in design offices, and because of the 
complexity of the moment magnifier method, it is advantageous to apply rational 
second-order frame analysis, or P-a analysis, in which the effects of lateral deflection 
on moments, axial forces, and, in tum, lateral deflections are computed directly. The 
resulting moments and deflections include the effects of slenderness, and so the prob
lem is strictly nonlinear, whether the model used for the analysis is nonlinear (ACI 
Code 10.10.3) or elastic (ACI Code 10.10.4). 

Nonlinear second-order analysis in accordance with ACI Code 10.10.3 must 
account for the effects of material nonlinearity, member curvature and lateral drift, 
load duration, shrinkage and creep, and the interaction between the frame and the sup
porting foundation. ACI Code 10.10.3 requires that the second-order analysis proce
dure be one that provides a strength prediction that is in "substantial agreement" with 
test results for reinforced concrete columns in statically indeterminate frames. ACI 
Commentary 10.10.3 suggests that a prediction within 15 percent of the test results is 
satisfactory. It also suggests that a stiffness reduction factor <PK of 0.80 be used to 
account for variations in actual member properties and for consistency with elastic 
second-order analysis under ACI Code 10. HM. 

Elastic second-order analysis in accordance with ACI Code 10.10.4 must con
sider the effects of axial loads, cracked regions within the members, and load duration, 
and although elastic models are simpler to implement than nonlinear models, as pointed 
out in Ref. 9.16, the key requirement for EI values for second-order frame analysis, 
whether elastic of nonlinear, is that they be representative of member stiffness just prior 
to failure. The values of E and/ in Section 9 .5, which are taken from ACI Code 10.10.4, 
meet that requirement and include a stiffness reduction factor of0.875 (Ref. 9.16). The 
value of the stiffness reduction factor and the moments of inertia in Section 9.5 are 
higher than the factor 0.75 in Eqs. (9.14) and (9.21) and the effective values of/ in 
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Eqs. (9.17) and (9.18), respectively, because of the inherently lower variability in the 
total stiffness of a frame compared to that of an individual member. 

As pointed out in Section 9.5, the member dimensions used in any second-order 
analysis must be within 10 percent of the final dimensions. Otherwise, the frame must 
be reanalyzed. 

A rational second-order analysis gives a better approximation of actual moments 
and forces than the moment magnifier method. Differences are particularly significant 
for irregular frames, for frames subject to significant sway forces, and for lightly 
braced frames. There may be important economies in the resulting design. 

Practical methods for performing a full second-order analysis are described in 
the literature (Refs. 9.3, 9.17, 9.18, 9.19, and 9.20 to name a few), and general-purpose 
programs that perform a full nonlinear analysis including sway effects are commer
cially available. Linear first-order analysis programs are also available, but must 
include an iterative approach to produce acceptable results. This iterative approach can 
be summarized as follows. 

Figure 9 .17 a shows a simple frame subject to lateral loads H and vertical loads 
P. The lateral deflection a is calculated by ordinary first-order analysis. As the frame 
is displaced laterally, the column end moments must equilibrate the lateral loads and 
a moment equal to (LP)a: 

(9.23) 

where a is the lateral deflection of the top of the frame with respect to the bottom, and 
LP is the sum of the vertical forces acting. The moment LP a in a given story can be 
represented by equivalent shear forces (LP)a/tc, where le is the story height, as shown 
in Fig. 9.17b. These shears give an overturning moment equal to that of the loads P 
acting at a displacement a. 

Figure 9 .17 c shows the story shears acting in a three-story frame. The algebraic 
sum of the story shears from the columns above and below a given floor corresponds 
in effect to a sway force dH acting on that floor. For example, at the second floor the 
sway force is 

(9.24) 

The sway forces must be added to the applied lateral force H at any story level, and 
the structure is then reanalyzed, giving new deflections and increased moments. If the 
lateral deflections increase significantly (say more than 5 percent), new dH sway 
forces are computed, and the structure is reanalyzed for the sum of the applied lateral 
forces and the new sway forces. Iteration is continued until changes are insignificant. 
Generally one or two cycles of iteration are adequate for structures of reasonable 
lateral stiffness (Ref. 9.3). 

It is noted in Ref. 9.17 that a correction must be made in the analysis to account 
for the differences in shape between the Pa moment diagram that has the same shape 
as the deflected column, and the moment diagram associated with the P aft forces, 
which is linear between the joints at the column ends. The area of the actual Pa 
moment diagram is larger than the linear equivalent representation, and consequently 
lateral deflections will be larger. The difference will vary depending on the relative 
stiffnesses of the column and the beams framing into the joints. In Ref. 9 .17, it is 
suggested that the increased deflection can be accounted for by taking the sway forces 
dH as 15 percent greater than the calculated value for each iteration. Iteration and the 
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4th floor 

3rd story 
columns 

3rd floor 

2nd story 
columns 

2nd floor 
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columns 

Basis for iterative P-1:,,. analysis: (a) vertical and lateral loads on rectangular frame; (b) real lateral forces Hand fictitious sway 
forces dH; (c) three-story frame subject to sway forces. (Adapted from Ref 9.17.) 

15 percent increase in deflection are not required if the program performs a full non
linear geometric analysis, since the Pa moments are calculated in full. 

The accuracy of the results of a P-Ll analysis will be strongly influenced by the 
values of member stiffness used, by foundation rotations, if any, and by the effects of 
concrete creep. In connection with creep effects, lateral loads causing significant sway 
are usually wind or earthquake loads of short duration, so creep effects are minimal. 
In general, the use of sway frames to resist sustained lateral loads, e.g., from earth or 
liquid pressures, is not recommended, and it would be preferable to include shear 
walls or other elements to resist these loads ... , 
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PROBLEMS 
9.1. 

r 
15" 

l 

The 15 X 15 in. column shown in Fig. P9.l must extend from footing level to the 
second floor of a braced frame structure with an unsupported length of 20.5 ft. 
Exterior exposure requires 2 in. clear cover for the outermost steel. Analysis 
indicates the critical loading corresponds with the following service loads: 

p 

l 
r- 15" ------+j 

6 No. 1 o (No. 32) bars r 
lu = 20.5' 

No. 3 (No. 10) ties 

2" clear cover 

(a) 
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~Mbot 

t 
p 

(b) 
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(a) from dead loads, P = 170 kips, M10P = 29 ft-kips, Mbot = 14.5 ft-kips; 
(b) from live loads, P = 100 kips, M10P = 50 ft-kips, Mbot = 25 ft-kips, with 
the column bent in double curvature as shown. The effective length factor k 
determined using Fig. 9.13a is 0.90. Material strengths areJ; = 4000 psi and 
Jy = 60,000 psi. Using the ACI moment magnifier method, determine whether 
the column is adequate to resist these loads. 

9.2. The structure shown in Fig. P9.2a requires tall slender columns at the left side. 
It is fully braced by shear walls on the right. All columns are 16 X 16 in., as 
shown in Fig. P9.2b, and all beams are 24 X 18 in. with 6 in. monolithic floor 
slab, as in Fig. P9.2c. Trial calculations call for column reinforcement as 
shown. Alternate load analysis indicates the critical condition with column AB 
bent in single curvature, and service loads and moments as follows: from dead 
loads, P = 139 kips, M10P = 61 ft-kips, Mbot = 41 ft-kips; from live load, P = 
93 kips, M10P = 41 ft-kips, Mbot = 27 ft-kips. Material strengths areJ; = 4000 psi 
andfy = 60,000 psi. Is the proposed column, reinforced as shown, satisfactory 
for this load condition? Use Eq. (9.18) to calculate EI for the column. 

12' 

L 

r-- 22' 

Shear wall 

(a) 

r-- 16" ~ 

r ~II 6 No. 11 (No. 36) bars .I__ 

18" 

No. 3 (No. 10) ties 1 
~----

111 
12 Clear cover ,__ ___ 24" -----+< 

(b) (c) 

9.3. Refine the calculations of Problem 9.2, using Eq. (9.17) to calculate EI for the 
column. The reinforcement will be as given in Problem 9.2. Comment on 
your results. 

9.4. An interior column in a braced frame has an unsupported length of 20 ft and 
carries the following service load forces and moments: (a) from dead loads, 
P = 180 kips, M10P = 28 ft-kips, Mbot = -28 ft-kips; (b) from live loads, 
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FIGUREP9.5 

P = 220 kips, Mtop = 112 ft-kips, Mbot = 112 ft-kips, with the signs of the 
moments representing double curvature under dead load and single curvature 
under live load. Rotational restraint factors at the top and bottom may be taken 
equal to 1.0. Design a square tied column to resist these loads, with a rein
forcement ratio of about 0.02. UseJ; = 4000 psi and.t;, = 60,000 psi. 

9.5. The first three floors of a multistory building are shown in Fig. P9.5. The lateral 
load·resisting frame consists of 20 X 20 in. exterior columns, 24 X 24 in. inte
rior columns, and 36 in. wide X 24 in. deep girders. The center-to-center 
column height is 16 ft. For the second-story columns, the service gravity dead 
and live loads and the horizontal wind loads based on an elastic first-order 
analysis of the frame are: 

pdead 

plive 

pwind 

Vwind 

M2,dead 

M2,live 

Mz,wind 

Ml,dead 

Ml,live 

Ml,wind 

Cols. A2 and E2 

348 kips 
137 kips 

±19 kips 
6.5 kips 

Cols. B2 and D2 

757 kips 
307 kips 
±9 kips 
13.5 kips 
31 ft-kips 

161 ft-kips 
105 ft-kips 

-34 ft-kips 
108 ft-kips 

-98 ft-kips 

Col. C2 

688 kips 
295 kips 

0 kips 
13.5 kips 

A matrix analysis for the total unfactored wind shear of 53.5 kips, using values 
of E and/ specified in Section 9.5, indicates that the relative lateral deflection 
of the second story is 0.24 in. Design columns B2 and D2 using Eq. (9.21) to 
calculate os. Material strengths areJ; = 4000 psi and.t;, = 60,000 psi. 

r-
16' 3 Column 82 +-~-._____,L------IIBllilit----l 
16' 2 

+-L---------------l!lilllllj 
16' 1 
l__ 

A B C D E 

------ 4 bays at 40' = 160' -----

9.6. Repeat Problem 9.5, using Eq. (9.22) to calculate os. Comment on your results. 
9.7. Redesign column C3 from Example 9.2 for a story height of 16 ft, a column 

unsupported length of 15 ft, and a relative lateral displacement of the third 
story of 1.10 in. Loads and other dimensions remain unchanged. 

9.8. The first four floors of a multistory building are shown in Fig. P9.8. The lat
eral load-resisting frame consists of 22 X 22 in. exterior columns, 26 X 26 in. 
interior columns, and 33 in. wide X 18 in. deep girders. The foundation is at 
ground level, supported on drilled piers, and may be considered as fully fixed 
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against rotation. The first-story columns have a clear height to the girder soffit 
of 21 ft 6 in., giving a floor-to-floor height of 23 ft. The upper floors have a 
center-to-center spacing of 13 ft. For the first-story columns, the service gravity 
dead and live loads plus the horizontal and vertical wind loads based on an 
elastic first-order analysis of the frame are: 

pdead 

plive 

pwind 

Vwind 

M2,dead 

M2,live 

M2,wind 

Ml,dead 

Ml,live 

Ml,wind 

Cols. Al and F 1 

495 kips 
99 kips 

±32 kips 
11 kips 

Cols. Bl and El 

1090 kips 
206 kips 
±19 kips 

22 kips 
4 ft-kips 

70 ft-kips 
240 ft-kips 
-2 ft-kips 

-35 ft-kips 
-240 ft-kips 

Cols. Cl and DJ 

989 kips 
188 kips 
±6 kips 
22 kips 

A matrix analysis for the total unfactored wind shear of 110 kips, using values 
of E and J specified in Section 9.5, indicates that the relative lateral deflection 
of the second story is 0.40 in. Design columns Bl and El, using Eq. (9.21) to 
calculate Ss. Material strengths areJ; = 4000 psi andJ;, = 60,000 psi. 

Column 81 

A B C D E F 

,........ ______ 5 bays at 28' = 140' --------.i 

9.9. Repeat Problem 9.8, using Eq. (9.22) to calculate Ss. Comment on your results. 
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Strut-and-Tie Models 

10.1 INTRODUCTION 

Reinforced concrete beam theory is based on equilibrium, compatibility, and the 
constitutive behavior of the materials, steel and concrete. Of particular importance is 
the assumption that strain varies linearly through the depth of a member and that, as a 
result, plane sections remain plane. This assumption is validated by St. Venant's 
principle, which stipulates that strains induced by discontinuities in load or in member 
cross section vary in an approximately linear fashion at distances greater than or equal 
to the greatest cross-sectional dimension h from the point of load application. 
St. Venant's principle underlies the development of beam theory as presented in 
Chapters 1 and 3. 

St. Venant's principle, however, does not apply at points closer than the distance 
h to discontinuities in applied load or geometry. This leads to the identification of 
discontinuity regions within reinforced concrete members near concentrated loads, 
openings, or changes in cross section. Because of their geometry, the full volume of 
deep beams and column brackets qualify as discontinuity regions. Thus, reinforced 
concrete structures may be divided into regions where beam theory is valid, often 
referred to as B-regions, and regions where discontinuities affect member behavior, 
known as D-regions. A number of D-regions are illustrated in Fig. IO. I. 

At low stresses, when the concrete is elastic and uncracked, the stresses within 
D-regions may be computed using finite element analysis or elasticity theory. When 
concrete cracks, the strain field is disrupted, causing a redistribution of the internal 
forces. Once this happens, it is possible to represent the internal forces within discon
tinuity regions using a statically determinate truss, referred to as a strut-and-tie model. 
This allows a complex design problem to be greatly simplified, producing a safe 
solution that satisfies statics. As shown in Fig. 10.2, strut-and-tie models consist of 
concrete compression struts, steel tension ties, and joints that are referred to as nodal 
zones (for consistency of presentation, struts are represented by dashed lines and ties 
are represented by solid lines). 

10.2 DEVELOPMENT OF STRUT-AND-TIE MODELS 

Strut-and-tie models evolved in the early 1980s in Europe (Refs. 10.1 to 10.4). Their 
use is permitted by ACI Code 8.3.4 and defined in Appendix A of the Code (Ref. 10.5). 
As defined, strut-and-tie models divide members into D-regions and B-regions. A 
D-region is that portion of a member that is within a distance equal to the member 
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FIGURE 10.3 
Bottle-shaped strut. 

height ht from a force or geometric discontinuity, as shown in Fig. 10.1. B-regions are, 
in general, any portions of a member outside of D-regions. The assumption is that 
within B-regions strain varies linearly through the member cross section and plane 
sections remain plane. 

Strut-and-tie models are applied within D-regions. Models consist of struts and 
ties connected at nodal zones that are capable of transferring loads to the supports or 
adjacent B~regions. The cross-sectional dimensions of the struts and ties are desig
nated as thickness and width. Thickness b is perpendicular to the plane of the truss 
model, and width w is measured in the plane of the model, as shown in Fig. 10.2. 

a. Struts 

A strut is an internal compression member. It may consist of a single element, parallel 
elements, or a fan-shaped compression field. Along its length, a strut may be rec
tangular or bottle-shaped, in which case the compression field spreads laterally 
between nodal zones, as shown in Fig. 10.3. For design purposes, a strut is typically 
idealized as a prismatic member between two nodes. While not preferred, a strut can 
also be idealized as a uniformly tapered compression member if the design criteria 
require different widths at the two ends of the strut. The dimensions of the cross 
section of the strut are established by the contact area between the strut and the 
nodal zone. Bottle-shaped struts are wider at the center than at the ends and form 
when the surrounding concrete permits the compression field to spread laterally. As 
the compression zone spreads along the length of bottle-shaped struts, tensile 
stresses perpendicular to the axis of the strut may result in longitudinal cracking. For 
simplicity in design, bottle-shaped struts are idealized as having linearly tapered 
ends and uniform center sections. The linear taper is taken at a slope of 1 :2 to the 
axis of the compression force, as shown in Fig. 10.3b. The capacity of a strut is a 
function of the effective concrete compressive strength, which is affected by lateral 
stresses within the struts. Because of longitudinal splitting, bottle-shaped struts are 
weaker than rectangular struts, even though they possess a larger cross section at 
midlength. Transverse reinforcement is designed to control longitudinal splitting 
and proportioned using a strut-and-tie model that forms within the strut element, as 
shown in Fig. 10.3b. 

(a) (b) 

t The ACI Code defines a D-region based on the member height h or effective depth d. No guidance is provided when to use h or d. The member 
height h is used in this text because it is conservative, always defining a larger D-region than that defined by the effective depth d. 
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b. Ties 

A tie is a tension member within a strut-and-tie model. Ties consist of reinforcement 
(prestressed or nonprestressed) plus a portion of the concrete that is concentric with 
and surrounds the axis of the tie. The surrounding concrete defines the tie area and the 
region available to anchor the tie. For design purposes, it is assumed that the concrete 
within the tie does not carry any tensile force. Even though the tensile capacity of the 
concrete is not used in design, it assists in reducing tie deformation at service load. 

c. Nodal Zones 

FIGURE 10.4 
Subdivision of nodal zones. 

Nodes are points within strut-and-tie models where the axes of struts, ties, and con
centrated loads intersect. A nodal zone is the volume of concrete around a node where 
force transfer occurs. A nodal zone may be treated as a single region or may be 
subdivided into two smaller zones to equilibrate forces. For example, the nodal zone 
shown in Fig. 10.4a is subdivided, as shown in Fig. 10.4b, where two reactions RI and 
R2 equilibrate the vertical components of strut forces C1 and C2• 

For equilibrium, at least three forces must act on a node. Nodes are classified by 
the sign of these forces (Fig. 10.5). Thus, a C-C-C node resists three compressive 
forces, and a C-C-T node resists two compressive forces and one tensile force. Both 
tensile and compressive forces place nodes in compression because tensile forces are 
treated as if they pass through the node and apply a compressive force on the far side, 
or anchorage face. Thus, within the plane of a strut-and-tie model truss, nodal zones 

R 

(a) Nodal zone 

(b) Subdivided nodal zone 
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FIGURE 10.5 
Classification of nodes. 
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are considered to be in compression, as shown in Fig. I 0.6a. If the nodal zone dimen
sions wn 1, wn2, and wn3 are proportional to the applied compressive forces, the state of 
stress becomes one of hydrostatic compression. The dimension of one side of a nodal 
zone is often determined based on the contact area of the load, e.g., by a bearing plate, 
column base, or beam support. If a hydrostatic state of stress is desired, the dimensions 
of the remaining sides are selected to maintain a constant level of stress p within the 
node. By selecting nodal zone dimensions that are proportional to the applied loads, 
the stresses on the faces of the nodal zone are equal. t If, instead, the dimensions are 
determined based on preselected strut dimensions, e.g., minimum width, the state of 
stress will no longer be hydrostatic. The decision to use a hydrostatic or a nonhydro
static state of stress is made by the designer, with the former being more typical because 
the latter results in a more complex design. 

The length of a hydrostatic zone is often not adequate to allow for anchorage of 
tie reinforcement. For this reason, an extended nodal zane, defined by the intersection 
of the nodal zone and the associated strut (shown in light shading in Fig. 10.6b and c), 
is used. An extended nodal zone may be regarded as that portion of the overlap region 
between struts and ties that is not already counted as part of a primary node. It 
increases the length within which the tensile force from the tie can be transferred to 
the concrete and, thus, defines the available anchorage length for ties. Ties may be 
developed outside of the nodal and extended nodal zones if needed, as shown to the 
left of the node in Fig. 10.6c. 

10.3 STRUT-AND-TIE DESIGN METHODOLOGY 

Strut-and-tie models are used in several ways during the design process. At the con
ceptual design level, sketching a strut-and-tie model provides insight into structural 
behavior and detailing requirements. Examples of conceptual design can be seen in the 

1" The state of stress within a nodal zone is not truly hydrostatic since out-of-plane stresses are not considered. 
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Nodal zones and extended nodal zones. 

development of connection details in Chapter 11. Strut-and-tie models may be used to 
validate design details, such as for special reinforcement configurations. Finally, strut
and-tie models may form the basis for detailed design of a member. 

Application of a detailed strut-and-tie model involves completion of the following 
steps. 

a. Define and isolate the D-regions. 
b. Compute the force resultants on each D-region boundary. 
c. Select a truss model to transfer the forces across a D-region. 
d. Select dimensions for strut-and-tie nodal zones. 
e. Verify the capacity of the node and the strut, the latter both at midlength and at 

the nodal interface. 
f. Design the ties and the tie anchorage. 
g. Prepare design detaiJs and check minimum reinforcement requirements. 

As wilJ be described shortly, the design process requires interaction between these steps. 
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According to ACI Code A.2.6, design using a strut-and-tie model requires that 

where Fu = factored force acting in strut, tie, bearing area, or nodal zone 
Fn = nominal capacity of strut, tie, or nodal zone 
<p = strength reduction factor 

(10.1) 

In addition to strength criteria, service level performance must be considered in 
design because strut-and-tie models, which are based on strength, do not necessarily 
satisfy serviceability requirements. To this end, the spacing of reinforcement within 
ties should be checked using Eq. (6.3). ACI Code 11.7.3 limits the nominal shear 
strength of deep beams to 10Vf:bw<J,. This limit applies to strut-and-tie models and 
should be checked prior to beginning a detailed design, as described in Section 10.4d. 

a. D-region 

A D-region extends on both sides of a discontinuity by a distance equal to the member 
height h. At geometric discontinuities, a D-region may have different dimensions on 
either side of the discontinuity, as shown in Fig. 10.1. 

b. Force Resultants on D-region Boundaries 

Once the D-region is defined, the next step involves determining the magnitude, location, 
and direction of the resultant forces acting on the D-region boundaries. These forces 
serve as input for the strut-and-tie model and assist in establishing the geometry of the 
truss model. When one face of a D-region is loaded with a uniform or linearly varying 
stress field, or when a face is loaded by bending of a concrete section, it may be 
necessary to subdivide the boundary into segments corresponding to struts or ties and 
then to compute the resultant force on each segment, as shown in Fig. 10.7. For example, 
in Fig. 10.7a, the distributed load along the top of the deep beam is represented by four 
concentrated loads, and the stresses at the beam-column interface are represented by 
concentrated reactions. In Fig. 10.7b, the moments at the faces of the beam-column 
joint are represented by couples consisting of tensile and compressive forces acting at 
the interfaces between the members and the joint. 

c. The Truss Model 

The truss representing the strut-and-tie model must fit within the envelope defined by 
the D-region. The selection of struts and ties is made at the discretion of the designer, 
and, therefore, multiple solutions are possible. The axes of the truss members are 
chosen to coincide with the centroids of the tension and compression fields, and the 
geometry so established is used to compute the forces in the members. The layout of a 
truss model is constrained by the geometric requirement that struts must intersect only 
at nodal zones. Ties may cross struts. An effective model will represent a minimum 
energy distribution through the D-region (Refs. 10.1 and 10.4); i.e., within the model, 
forces should follow the stiffest load path. Because struts are typically much stiffer 
than ties, a model with a minimum number of tension ties is generally preferred. 
Alternative truss models for a deep beam are compared in Fig. I 0.8. Figure 10.8a 
shows a deep beam subjected to a concentrated load at midspan. Figure 10.8b shows 
the preferred strut-and-tie model for this beam and loading condition. In this case, struts 
carry the load directly to nodal regions at the supports, which are, in tum, connected by 
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Applied load Force resultants 

(a) Distributed load applied to a deep beam 

Applied load Force resultants 

(b) Moment resisting corner 

(a) Loading (b) Preferred model 

(c) Inefficient load path (d) Incompatible load path 

a single tension tie. The model in Fig. 10.8c shows an ineffective load path, with a single 
strut carrying the load to a node at the bottom of the beam that is supported by two 
diagonal tension ties, which are, in tam, supported by vertical struts over the supports. 
In tbjs instance, the number of transfer points and tension ties is greater, as is the 
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flexibility of the truss, indicating a solution that is much less effective than that shown 
in Fig. IO.Sb. Lastly, Fig. 10.8d illustrates a model with multiple struts and ties. This 
particular layout not only is unduly complex, but also includes an upper tension tie 
that will be effective only after extensive yielding and possible failure of the lower 
tension tie. 

Theoretically, there may be a unique minimum energy solution for a strut-and-tie 
model. Practically, any model that satisfies equilibrium and pays attention to structural 
stiffness will prove satisfactory. Using the rationale just discussed allows the designer to 
select a logical model that effectively mobilizes ties and minimizes the potential for 
excessive cracking. Finite element analyses and solutions based on the theory of elasticity 
for the full structure can provide an indication of where maximum stresses occur. A truss 
model that provides struts in regions of high compression and ties in regions of high ten
sion based on these analyses will, in general, provide an efficient load path. 

d. Selecting Dimensions for Struts and Nodal Zones 

The struts, ties, and nodal zones within the truss that represents a strut-and-tie model 
have finite widths that must be considered when selecting the dimensions of the truss. 
The width of each truss member depends on the magnitude of the forces and the 
dimensions of the adjoining elements. An external element, such as a bearing plate or 
column, can serve to define a nodal zone. If the bearing area is too small, a high hydro
static pressure results, and the corresponding width of the node or struts will not be 
sufficient to carry the applied load. The solution in this case is to increase the size of 
the bearing surface and, thus, reduce the contact pressures. Some designers intention
ally select struts and nodes that are large enough to keep the compressive stresses low; 
in this case, only the tension ties require detailed design. To minimize cracking and to 
reduce complications that may result from incompatibility in the deformations due to 
struts shortening and ties elongating in nearly the same plane, the angle between struts 
and ties at a node should be greater than 25°. 

The design of nodal zones is based on the assumption that the principal stresses 
within the intersecting struts and ties are parallel to the axes of these truss members. 
The widths of the struts and ties are, in general, proportional to the magnitude of the 
force in the elements. If two or more struts converge on the same face, such as shown 
in Fig. 10.9a and b, it is generally necessary to resolve the forces into a single force 
and to orient the face of the nodal zone so that it is perpendicular to the combined 
force, as shown in Fig. 10.9c and d. Some geometric arrangements preclude establish
ing a purely hydrostatic node. In these cases, the width of the strut is determined by 
the geometry of the bearing plate or tension tie, as shown in Fig. 10.1 Oa. 

The thickness of the strut, tie, and nodal zone is typically equal to the thickness 
of the member. If the thickness of the bearing area is less than the thickness of the 
member, it may be necessary to add reinforcement perpendicular to the principal plane 
of the member to add confinement and prevent splitting parallel to the plane of the 
truss. In this instance, a strut-and-tie model may be used to determine the requirements 
for transverse reinforcement in a manner that is similar to that used to reinforce bottle
shaped struts. 

e. Capacity of Struts 

Strut capacity is based on both the strength of the strut itself and the strength of the 
nodal zone. If a strut does not have sufficient capacity, the design must be revised by 
providing compression reinforcement or by increasing the size of the nodal zone. This 
may, in tum, affect the size of the bearing plate or column. 
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f. Design of Ties and Anchorage 

To control cracking in a D-region, ties are designed so that the stress in the reinforce
ment is below yield at service loads. The geometry of the tie must be selected so that 
the reinforcement fits within the tie dimensions and is fully anchored. 

Anchorage for ties is provided within the nodal and extended nodal zones plus 
regions on the far side of the node that may be available based on the geometry of the 
member. Ffgure 10. lOa illustrates an extended nodal zone and the length available for 
anchorage of ties la. In this case, the tie is extended to the left of the nodal zone to 
allow for full development of the reinforcement. The shape of the extended nodal zone 
is a function of the strut angle 0 and the width of the tie wr Figure 10. lOa illustrates 
the geometry and dimensions of a C-C-T node with a tension tie that contains multiple 
layers of reinforcement. Figure 10.lOb shows a C-T-T nodal zone. If insufficient 
length is available to anchor the reinforcement within the nodal and extended nodal 
zones, the reinforcement must extend beyond the node or a hook or headed bar must 
be used to fully develop the reinforcement. 

g. Design Details and Minimum Reinforcement Requirements 

A complete design includes verification that (1) tie reinforcement can be placed in the 
section, (2) nodal zones are confined by compressive forces or tension ties, and (3) 
minimum reinforcement requirements are satisfied. Reinforcement within ties must 
meet the ACI Code requirements for bar spacing (see Section 3.6c) and fit within the 
overall width and thickness of the tie. Tie details should be reviewed to ensure that ties 
are adequately developed on the far side of nodes by tension development length, 
hooks, headed bars, or other mechanical anchorage. Shear reinforcement requirements 
are satisfied by ensuring that the factored shear is less than the ACI Code maximum, 
as described in Chapter 4, longitudinal cracking of bottle-shaped struts is controlled, 
or the minimum reinforcement requirements described in Section 10.4d are met. 

10.4 ACI PROVISIONS FOR STRUT-AND-TIE MODELS 

ACI Code Appendix A provides guidance for sizing struts, nodes, and ties. It addresses 
the performance of highly stressed compression zones that may be adjacent to or crossed 
by cracks in a member, the effect of stresses in nodal zones, and the requirements for 
bond and anchorage of ties. The effective compressive strength of concrete 0.85J; is 
modified by a factor /3 to account for the effects of cracks ( caused by spreading 
compressive resultants) and confining reinforcement in struts and the anchorage of ties 
in nodal zones. 

The balance of this section describes the steps needed to calculate the capacity 
of struts, verify nodal zones, and design ties and tie anchorage. A strength reduction 
factor cp = 0.75 is used for struts, ties, nodal zones, and bearing areas. 

a. Strength of Struts 

The strength of a strut is limited based on the strength of the concrete in the strut and 
the strength of the nodal zones at the ends of the strut. The nominal compressive 
strength of a strut Fns is given as 

(10.2) 
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TABLE 10.1 
/35 values for strut strength 

Condition 

Strut with uniform cross section over its entire length 
Strut with the width at midsection larger than the width at the nodes 

(bottle-shaped strut) and with reinforcement satisfying transverse requirements 
Strut with the width at midsection larger than the width at the nodes 

(bottle-shaped strut) and reinforcement not satisfying transverse requirements 
Struts in tension members or in the tension flange of members 
All other cases, Fig. 10.11 

1.0 
0.75 

0.60At 

0.40 
0.60A 

t ,\ equals 1.0 for normalweight concrete, 0.85 for sand-lightweight concrete, and 0.75 for all-lightweight 
concrete. 

where fee is the effective compressive strength of the concrete in a strut or nodal zone 
and Acs is the cross-sectional area at one end of the strut, which is equal to the product 
of the strut thickness and the strut width. The effective strength of concrete in a strut is 

fee= 0.85/3.J: (10.3) 

where /3. is a factor that accounts for the effects of cracking and confining reinforcement 
within the strut, with values ranging from 1.0 for a strut with a uniform cross-sectional 
area over its length to 0.4 for struts in tension members or the tension flanges of 
members (Table 10.1). Intermediate values include 0.75 for struts with a width at 
midsection that is larger than the width at the nodes (bottle-shaped struts) and crossed 
by transverse reinforcement to resist the transverse tensile force resulting from the 
compressive force spreading in the strut and 0.60A for bottle-shaped struts without the 
required transverse reinforcement, where A is the correction factor related to the unit 
weight of concrete: 1.0 for normalweight concrete, 0.85 for sand-lightweight concrete, 
and 0.75 for all-lightweight concrete. {3. = 0.60A for all other cases, as when parallel 
diagonal cracks divide the web struts or when diagonal cracks are likely to tum and 
cross a strut, as shown in Fig. 10.11. 

Compression steel may be added to increase the strength of a strut, so that 

(10.4) 

where J; is based on the strain in the concrete at peak stress. For Grades 40 and 60 
reinforcement, J; = Jy· In accordance with ACI Code A.3.5, compression 
reinforcement must be properly anchored, oriented parallel to the axis of the strut, 
located within the strut, and enclosed by ties or spirals, as required for columns 
(see Section 8.2). 

To design transverse reinforcement for bottle-shaped struts, ACI Code A.3.3 
permits the assumption that the compressive· force in the struts spreads at a slope of 
two longitudinal to one transverse along the axis of the strut, as shown in Fig. 10.3b. 
For J; ::5 6000 psi, the ACI Code considers the transverse reinforcement requirement 
to be satisfied if the strut is crossed by layers of reinforcement that satisfy 

~ A.; £.J -b sin a; 2:: 0.003 
.s; 

(10.5) 

where A.; is the total area of reinforcement at spacing s; in a layer of reinforcement 
with bars at an angle a; to the axis of the strut and b. is the thickness of the strut. The 
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FIGUREl0.11 
Beam cracking condilions for 
/3, = 0.6A. 

FIGURE 10.12 
Details of reinforcement 
crossing a strut. 
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TABLE 10.2 
Pn values for node strength 

Nodal Zone Condition 

Bounded by struts or bearing area 
Anchoring one tie 
Anchoring two or more ties 

Classification 

C-C-C 
C-C-T 
C-T-Tor T-T-T 

1.0 
0.80 
0.60 

struts be represented as rectangular and inclined struts represented as bottle-shaped 
(Ref. 10.6). Others simply assume a bottle-shaped strut will develop and use the lower 
values of f3s for design (Ref. 10.7). Examples in this text use rectangular horizontal 
struts and bottle-shaped inclined struts. 

b. Strength of Nodal Zones 

The nominal compressive strength of a nodal zone is 

F nn = fc/lnz (10.6) 

where fee is the effective strength of the concrete in the nodal zone and Anz is ( 1) the 
area of the face of the nodal zone taken perpendicular to the line of action of the force 
from the strut or tie or (2) the area of a section through the nodal zone taken perpen
dicular to the line of action of the resultant force on the section. The latter condition 
occurs when multiple struts intersect a node, as shown in Fig. 10.9. 

The effective concrete strength in a nodal zone is 

(10.7) 

whereJ; is the compressive strength of the concrete in the nodal zone and f3n is a factor 
that reflects the degree of disruption in nodal zones due to the incompatibility of 
tensile strains in ties with compressive strains in struts. f3n = 1.0 for C-C-C nodes, 
0.80 for C-C-Tnodes, and 0.60 for C-T-Tor T-T-Tnodes. Values of f3n are summarized 
in Table 10.2. ACI Code A.5.2 permits the strength of a node to be increased above 
the value given in Eq. (10.7) if the node contains confining reinforcement and the 
effect of that reinforcement is demonstrated by tests and analysis. 

Unless compression reinforcement is used in the struts, the lower value of fee 
from Eqs. (10.3) and (10.7) governs and should be used to design both the node and 
the adjoining struts. 

c. Strength of Ties 

The nominal strength of ties Fnt is the sum of the strengths of the reinforcing steel and 
prestressing steel within the tie. 

Fnt = Atsh + At/fpe + D..fp) 

where A15 = area of reinforcing steel 
Jy = yield strength of reinforcing steel 

A1P = area of prestressing steel, if any 
fpe = effective stress in prestressing steel 

D..f;, = increase in prestressing steel stress due to factored load 

(10.8) 
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The sumfpe + MP must be less than or equal to the yield stress of the prestressing 
reinforcement J;,y, and Atp is zero for nonprestressed members. The value of llJP 
may be found by analysis; or, in lieu of formal analysis, ACI Code A.4.1 allows a 
value 60,000 psi to be used for bonded tendons and 10,000 psi to be used for 
unbonded tendons. 

The effective width of a tie wt depends on the distribution of the tie reinforce
ment. If the.reinforcement in a tie is placed in a single layer, the effective width of a 
tie may be taken as the diameter of the largest bars in the tie plus twice the cover to 
the surface of the bars. Alternatively, the width of a tie may be taken as the width of 
the anchor plates. The practical upper limit for tie width wt.max is equal to the width 
corresponding to the width of a hydrostatic nodal zone, given as 

Fm 
w =--

t,max b /.' 
sJce 

(10.9) 

where.fce is the effective nodal zone compressive stress given in Eq. (10.7) and bs is 
the thickness of the strut. 

Ties must be anchored before they leave the extended nodal zone at a point defined 
by the centroid of the bars in the tie and the extension of the outlines of either the strut 
or the bearing area, as shown in Fig. 10.10. If the combined lengths of the nodal zone 
and extended nodal zone are inadequate to provide for development of the reinforce
ment, additional anchorage may be obtained by extending the reinforcement beyond the 
nodal zone, using 90° hooks, or by using a mechanical anchor. If the tie is anchored with 
a 90° hook, the hooks should be confined by reinforcement extending into the beam 
from supporting members to avoid splitting of the concrete within the anchorage region. 

d. ACI Shear Requirements for Deep Beams 

Beams with clear spans less than or equal to 4 times the total member depth or with 
concentrated loads placed within twice the member depth of a support are classified 
as deep beams, according to ACI Code 11. 7. t Examples of deep beams are shown in 
Fig. 10.13. ACI Code 11. 7 .2 allows such members to be designed either by using a 
nonlinear analysis or by applying the strut-and-tie method of ACI Code Appendix A. 
While solutions based on nonlinear strain distributions are available (Ref. 10.8), the 
strut-and-tie approach allows a rational design solution. 

ACI Code 11. 7 .3 specifies that the nominal shear in a deep beam may not exceed 
10Vf:bwd, where bw is the width of the web and dis the effective depth. ACI Code 
11. 7.4 and 11. 7 .5 provide minimum steel requirements for horizontal and vertical rein
forcement within a deep beam. The minimum reinforcement perpendicular to a span is 

Av 2: 0.0025bws (10. 10) 

where s is the spacing of the reinforcement. The minimum reinforcement parallel to a 
span is 

Avh 2: 0.0015bw52 (10.11) 

where s2 is the spacing of the reinforcement perpendicular to the longitudinal 
reinforcement. Spacings sand s2 may not exceed d/5 or 12 in. ACI Code 11.7.6 allows 
Eq. (10.5) to be used in lieu ofEqs. (10.10) and (10.11). For strut-and-tie models, bw 
equals the thickness of the element b. 

t The ACI Code does not specify the magnitude of the concentrated load at a beam end needed to invoke the deep beam provisions of Section 11. 7. 
A level of professional judgment is required if a low-magnitude concentrated load is placed at the end of a beam. Deep beam design may not be 
required in this situation. 
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While there are a number of possible applications for a strut-and-tie model, ACI Code 
I l.7 and 11.8 specifically allow deep beam and column bracket design to be com
pleted with this method. The following examples examine the details of deep beams 
and dapped beam end design by the strut-and-tie method. Additional examples of 
strut-and-tie modeling may be found in Chapter 11 and in Refs. 10.9 through 10.12. 

a. Deep Beams 

Deep beams represent one of the principal applications of strut-and-tie models, since 
the alternative under ACI Code 11.7 is a nonlinear analysis. T\.vo examples of deep 
beam design are presented next, one that includes the application of concentrated 
loads at the upper surface of a transfer girder and a second that addresses design for 
distributed as well as concentrated loads. 

EXAMPLE 10.1 Deep beam. A transfer girder is to carry two 24 in. square columns, each with factored loads 
of 1200 kips located at the third points of its 36 ft span, as shown in Fig. 10.14a. The beam has 
a thickness of 2 ft and a total height of 12 ft. Design the beam for the given loads, ignoring the 
self-weight, using/; = 5000 psi and/ y = 60,000 psi. 

SOLITTION. The span-to-depth ratio for the beam is 3, thereby qualifying it as a deep beam. A 
strut-and-tie solution wiU be used. 

Definition of D-region 
All of the supports and loads are wi.thin h of each other or the supports, so the entire structure 
may be characterized as a D-region. The thickness of the struts and ties is equal to the thickness 
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FIGURE 10.14 
Deep beam design for Example I 0.1 . 

of the beam b = 24 in. Assuming an effective depth d = 0.911 = 0.9 X 12 = I 0.8 ft in the middle 
third of the beam, the maximum design shear capacity of the beam is </>Vn = <f>IOvf:bwd = 
0.75 X IOv'SOOO X 24 X 10.8 X 12/ 1000 = 1650 kips. This is greater than Vu= 1200 kips. 
Thus. the design may continue. 

Force resultants on D-region boundaries 
The 1200 kip column loads on the upper face of the beam are equilibrated by 1200 kip reac
tions at the supports, as shown in Fig. 10.14b. Based on an assumed center-to-center distance 
between the horizontal strut and the tie of 0.8h, the trial diagonal struts fonn at an angle 
8 = 38.66° and carry a load of 1921 kips. A horizontal 1500 kip compression strut runs between 
the two column loads, and a 1500 kip tension tie runs between the bottom nodes. 

The truss model 
Based on the beam geometry and loading, a single truss is sufficient to carry the column loads, 
as shown in Fig. 10.14c. The truss has a trapezoidal shape. This is an acceptable solution s ince 
the nodes are not true pins and instability within the plane of the truss is not a concern in a strut
and-tie model. The truss geometry is established by the assumed intersection of the struts and 
ties and used to detennine 8. 
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Selecting dimensions for strut and nodal zones 
As mentioned in Section 10.2c, two approaches are used to select strut and nodal zone sizes: 
selection based on the geometry of the load-bearing transfer elements to maintain a constant 
level of stress p and selection based on the minimum strut width w. For this example, the first 
approach will be used. The nodal stress p is determined by the average stress under the 
columns. Thus, p = 1200 kips/(24 in. X 24 in.) = 2.08 ksi. Because this is a C-C-C node, /3n 
is 1.0, and the design strength of the node is <f>fce = <p0.85{3J; = 0.75 X 0.85 X 1.0 X 
5000/1000 = 3.19 ksi, which is greater than the demand from the column. This result implies 
that smaller truss member sizes may be possible, a point that is discussed at the end of this 
example. The width of strut ac, found using p, is 

Wac = Fac/(bs X p) = 1500/(24 X 2.08) = 30.0 in. 

Similarly, wab = 38.5 in. and wtie = 30.0 in. The center-to-center distance between the hori
zontal strut ac and the tie is 12 - 30/12 = 9.5 ft, or 0.79h. The angle 0 between the diagonal 
strut ab and the tie is thus 38.3°. Using an angle of 38.0° gives a revised force in strut ab of 
1949 kips. Similarly, the revised force in strut ac and the tie is 1536 kips, while the widths are 
revised to wab = 39.0 in., and Wac and wtie = 30.7 in. (Note: After iteration, the actual angle 
becomes 38.2°. The value of 38.0° is conservative and is, thus, retained.) 

Capacity of struts 
The horizontal strut ac will be assumed to have a uniform cross section, while the diagonal 
struts will be considered as bottle-shaped because of the greater width available. Strut capacity 
is given in Eqs. (10.2) and (10.3), which, when combined, give <pFns = <p0.85{3J;w;h,, where 
W; is the width of the strut and f3s is 1.0 for a rectangular strut. For strut ac, 

<pFns = 0.75 X 0.85 X 1.0 X 5000 X 30.7 X 24/1000 = 2349 kips > 1536 kips 

Therefore, strut ac is adequate. Similarly, for strut ab, 

</JFns = 0.75 X 0.85 X 0.75 X 5000 X 39.0 X 24/1000 = 2238 kips> 1949 kips 

From Eqs. (10.6) and (10.7), the capacity of the nodal zone is </JFnn = <p0.85/3nJ;w;b8 • At 
a, a C-C-C node, /3n = 1.0, and at b, a C-C-T node, /3n = 0.80. Thus, the capacity of strut ab is 
established at node b with f3n = 0.80 and 

</JFnn = 0.75 X 0.85 X 0.80 X 5000 X 39.0 X 24/1000 = 2387 kips 2:: 1949 kips 

Similarly, the nodal end capacity of strut ac is 2349 kips with /3n = 1.0. The capacity at the end 
of the struts and at the nodes exceeds the factored loads, and thus, the struts are adequate. 

Design ties and anchorage 
The tie design consists of three steps: selection of the area of steel, design of the anchorage, 
and validation that the tie fits within the available tie width. The steel area is computed as 
A1, = F1uf</)Jy = 1536/(0.75 X 60) = 34.1 in2. This is satisfied by using 22 No. 11 (No. 36) bars, 
having a total area of A,s = 34.3 in2• Placing the bars in two layers of five bars and three layers 
of four bars, while allowing for 2.5 in. clear cover to the bottom of the beam and 4½ in. clear 
spacing between layers, results in a total tie width of 5 X 1.41 + 4 X 4.5 + 2 X 2.5 = 30.0 in., 
matching the tie dimension. 

The anchorage length Id for No. 11 (No. 36) bars (from Table A.10 in Appendix A) is 
42db = 59.2 in. The length of the nodal zone and extended nodal zone is 24 + 0.5 X 30.7 
cot 38.0° = 43.6 in., which is less than Id. The beam geometry does not allow the tie rein
forcement to extend linearly beyond the node; therefore, 90° hooks or mechanical anchors are 
required on the No. 11 (No. 36) bars. Placement details are covered in the next section. 
Allowing 1.5 in. cover on the sides, No. 5 (No. 16) transverse and horizontal reinforcement, and 
2db spacing between No. 11 (No. 36) bars, five No. 11 (No. 36) bars require a total thickness 
of breqd = 2 X 1.5 + 4 X 0.625 + 4 spaces@ 2 X 1.41 + 5 bars X 1.41 = 23.8 in., which fits 
within the 24 in. beam thickness. 
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Design details and minimum reinforcement requirements 
ACI Code 11.8.6 requires that shear reinforcement in deep beams satisfy ( 1) both Eqs. ( 10.10) 
and (10.11) or (2) Eq. (10.5). Using Eq. (10.10), the minimum required vertical steel is Av'.::': 
0.0025bws = 0.0025 X 24 X 12 = 0.72 in2/ft. This is satisfied by No. 5 (No. 16) bars at 
10 in. placed on each face, giving a total area ofreinforcement equal to 0.74 in2/ft. Similarly, 
using Eq. (10.11), the horizontal reinforcement is Avh '.::': 0.0015b~2 = 0.0015 X 24 X 12 = 
0.43 in2/ft, which is satisfied using No. 4 (No. 13) bars at 10 in. placed on each face, giving 
0.48 in2/ft. ,. 

Equation (10.5) produces similar steel requirements. Using the reinforcement selected 
using Eqs. (10.10) and (10.11), two No. 5 (No. 16) bars (y = 38.0°) give Av= 0.62 in2 and two 
No. 4 (No. 13) bars (a = 52.0°) give Avh = 0.40 in2• Equation (10.5) becomes 

~ As; 0.62 sin 52.0° + 0.40 sin 38.0° 'd £.J - sin a; = ----------- = 0.00306 > 0.003 req . 
bss; 24 X 10 

This ensures that sufficient reinforcement is present to control longitudinal splitting in the 
bottle-shaped struts as well as to satisfy minimum reinforcement requirements. 

The large number of No. 11 (No. 36) bars will require either the use of mechanical 
anchorage or staggering the location of the hooks. Heads require less space than hooks and 
would be preferable for concrete placement, but because they require a clear spacing of 4db (see 
Section 5.5), headed bars will not work in this case. Figure 10.14d shows staggered hooks for 
the final design. In addition, horizontal U-shaped No. 4 (No. 13) bars are placed at 4 in. (3db = 
3 X 1.41 in. = 4.23 in.) across the end of the beam to confine the No. 11 (No. 36) hooks. The 
final beam details are given in Fig. 10.14d. 

Because the ACI Code does not require that hydrostatic pressure be maintained within 
the nodes, alternate solutions are possible. For example, a bottle-shaped strut (f3s = 0.75) can 
carry a maximum stress that is higher than p. Using the design compressive strength </Jfce, the 
width of the strut can be reduced to 

Wah= Fab/(bs X <p0.85f3J:) = 1991/(24 X 0.75 X 0.85 X 0.70 X 5000/1000) = 31.6 in. 

compared with the width of 38.5 in. used in this example. Using this reduction would lead to 
smaller nodes, but also increased complexity in nodal geometry. Such complexity, however, 
may be warranted if it is necessary to fit a truss into a more confined area. 

EXAMPLE 10.2 Deep beam with distributed loads. In addition to the concentrated loads, the transfer girder 
from Example 10.1 carries a distributed factored load of 3.96 kips/ft applied along its top edge, 
as shown in Fig. 10.15a. Design for the given loads, plus the self-weight, usingJ; = 5000 psi 
andJ;, = 60,000 psi. 

SOLUTION. The factored self-weight of the beam is 1.2(12 ft X 2 ft X 0.15 kips/ft3
) = 

4.32 kips/ft. Thus, the total factored distributed load is 4.32 + 3.96 = 8.28 kips/ft, resulting 
in a total factored load of 8.28 kips/ft X 37.7 ft = 312 kips, approximately 13 percent of the 
column loads. The solution follows Example 10.1 and accounts for the distributed loads. For 
this example, the self-weight of the beam is combined with the superimposed dead load. A 
more conservative solution could place the self-weight at the bottom of the beam and corre
spondingly increase the vertical tension tie requirements to transfer the load to the top flange. 
The top placement is used in this case because the self-weight is a small percentage of the 
total load and the concentrated forces are moved slightly toward the center of the beam for a 
conservative placement. 

Definition of D-region 
The entire beam is a D-region, as shown in Fig. 10.15a. The maximum factored shear in the 
beam is Vu = 1200 + 312/2 = 1360 kips < ¢10\/l!bwd = 1650 kips, the maximum design 
shear using d = 10.8 ft. Thus, the design can continue. 
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( d) Reinforcement details 

Force resultants on D-regioo boundaries 
The 1200 kip column loads are the same as in Example 10.1; however, the lower column 
reactions are equal to 1360 kips. Maintaining the same lower column size gives a stress at the 
beam-column interface of p = 1360/(24 x 24) = 2.36 ksi. 

The stress on the column node cannot exceed the effective concrete strength. For a C-C-T 
node, 

p S </>fc, = <J,0.85{3,,f; = 0.75 X 0.85 X 0.80 X 5000/1000 = 2.55 ksi 
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TABLE 10.3 

Therefore, the bottom column of 24 X 24 in., giving p = 1360/(24 X 24) = 2.36 ksi < 2.55 ksi, 
is adequate. As in Example IO.I, the center-to-center distance between the horizontal strut and 
the horizontal tie at midspan is taken as 9 .5 ft to compute the slope of the strut dg as 0 = 38 .0°. 
The vertical dimension for struts ag, bg, and cg is assumed to be 10.5 ft because they are 
anchored closer to the top edge of the beam. 

The total distributed load of 312 kips is represented by nine 34.7 kip concentrated loads 
placed at 3 ft centers, as shown in Fig. 10.15b. Distributed loads can be grouped at the discretion 
of the designer. It would be equally satisfactory to group them into 12 loads, placed one per foot, 
or combine some load with the column loads. The loads are not combined with the column loads 
in this example to illustrate design for distributed loads. Using the geometric layout of the loads, 
strut-and-tie forces are computed and summarized in Fig. 10.15b and Table 10.3. 

The truss model 
In addition to the struts and ties needed to carry the column loads, struts and ties to carry the 
distributed loads are now included in the truss. The distributed loads between the columns 
are carried by struts to the bottom chord; tension ties then transfer the vertical component of 
the load to the top chord, while the horizontal component is transferred to the bottom tie. The 
geometry of the struts is selected to allow tension ties to be placed vertically. The loads at nodes 
a, b, and c between the column and the support create a fan of compression struts to node g, as 
shown in Fig. 10.15b and c. 

Selecting dimensions for strut and nodal zones 
The forces in the "fan" struts are based on the geometry of the struts. The widths of struts ag, b g, 
and cg are computed based on the contact area at node g, because the capacity of a C-C-T node 
(at the lower end) is lower than that of a C-C-C node (at the upper end). The stress on the column 
at node g is p = 2.36 ksi. To maintain constant stress in the node, strut ag has a width wag = 
Fjpb, = 36.1/(2.36 X 24) = 0.64 in. The dimensions of struts eh and Ji, with no concentrated 
loads acting directly on either end, are governed by the nodal capacity, since the nodes h and i are 
C-T-T nodes, with f3n = 0.60 (Table 10.2). For example, for strut eh, p = cpfc, = 0.75 X 0.85 X 

0.60 X 5000/1000 = 1.91 ksi and width w,h = Fjpb, = 47.8/(1.91 X 24) = 1.04 in. In this case, 
the design capacity will exactly equal the factored load. The remaining strut widths, geometries, 
and loads are summarized in Table 10.3. 

Capacity of struts 
By inspection, the stresses in the fan struts ag, bg, and cg will be critical as bottle-shaped struts. 
Using f3n = 0.75 for a C-C-T node and cp = 0.75, strut ag has a design capacity cpFn,.ag = 
cp0.85f3J;w

0
bb, = 0.75 X 0.85 X 0.75 X 5000 X 0.64 X 24/1000 = 36.7 kips, which is greater 

than the applied load of 36.1 kips. The strut capacities are summarized in Table 10.3. In all 
cases, the design strength cpFns exceeds the applied forces and the struts are adequate. 

Diagonal strut properties and forces for Example 10.2 

Vertical Slope, Axial Strut End Horizontal 
Strut Load, kips deg Load, kips W;, in. 13. Pn Capacity, kips Force, kips 

dg 1200 38.0 1949 34.4 0.75 0.8 1974 1536 
ag 34.7 74.1 36.1 0.64 0.75 0.8 36.7 9.9 
bg 69.4 60.3 79.9 1.41 0.75 0.8 81.0 39.7 
cg 52.1 49.4 68.6 1.21 0.75 0.8 64.9 44.6 
eh 34.7 46.5 47.8 1.04 0.75 0.6 47.8 32.9 
fl 17.4 46.5 24.0 0.52 0.75 0.6 24.0 16.5 

Total tie force 1680 
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Design ties and anchorage 
Tie design is similar to that in Example 10.1, except that the additional horizontal thrust from 
the distributed loads increases the force to 1680 kips. The required area of steel for the tie is 
At,= Ftuf'-Pfy = 1680/(0.75 X 60) = 37.3 in2 or 24 No. 11 (No. 36) bars. As in Example 10.1, 
90° hooks will be required to anchor the tie. The steel will be placed in four layers of five bars 
and one layer of four bars. Example 10.1 validated that the reinforcement will fit in the 
available space. 

The vertical tie bh carries 34.7 kips. The required area of steel for this tie is At, = Ftuf cf>Jy = 

34.7 /(0.75 X 60) = 0.77 in2• Distributed steel is selected for vertical ties because the placement 
of the struts was arbitrary due to the assumptions made in modeling the distributed load. Thus, 
the 0.77 in2 is distributed over 3 ft, the center-to-center spacing used for the distributed load. 
The minimum reinforcement in Example 10.1, No. 5 (No. 16) bars at 10 in. on each face, pro
vides the required steel. 

Design details and minimum reinforcement requirements 
The minimum reinforcement requirements from Example 10.1 remain unchanged. The final 
details are shown in Fig. 10.15d. 

A comparison of Examples 10.1 and 10.2 demonstrates the sensitivity of the 
design to the applied loading. The addition of the distributed load resulted in an 
increase in the horizontal tie reinforcement, although the vertical reinforcement, 
which in the case of Example 10.2 serves as the vertical tie steel, remains unchanged. 

Examples 10.1 and 10.2 illustrate that the limiting size of the struts and nodes is 
determined by the element with the lowest strength, i.e., the lowest value of fee· 
Examination of the f3s and /3n values in Tables 10.3 and 10.4 shows the variation in 
strength. Recognizing that using the lowest value of /3 (and fee) will establish the 
minimum usable strut and node dimensions allows the designer to minimize the num
ber of iterations needed to construct the truss model. 

b. Dapped beam ends 

Precast and prestressed concrete beams often have dapped or notched ends, such as 
shown in Fig. 10.16, to reduce the floor-to-floor height of buildings. The recess allows 
structural overlap between the main beams and the floor beams. While the <lapped end 
is advantageous in controlling building floor-to-floor height, it creates two structural 
problems. First, the shear at the end of the beam must be carried by a much smaller 
section, and second, the mechanism of load transfer through the notched zone is 
difficult to represent using conventional design techniques. As a result, <lapped-end 
beams lend themselves to strut-and-tie design methods. 

EXAMPLE 10.3 Design of a dapped beam end. A 24 in. deep precast concrete T beam has a 10 in. thick web 
that carries factored end reactions of 67 kips in the vertical direction and 13 kips in the hori
zontal direction, as shown in Fig. 10.16a. The beam end is notched 10 in. vertically and 8 in. 
along the beam axis. The load is transferred to the support through a 4 X 10 in. bearing plate. 
Design the end reinforcement, usingJ; = 5000 psi andJy. = 60,000 psi. 

SOLUTION. The combination of the concentrated load and the geometric discontinuity suggest 
the use of a strut-and-tie solution. 
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FIGURE 10.16 
Dapped beam end design for Example 10.3. 

Definition of D-region 
The D-region for this beam is approximately one structural depth in from the end of the notch. The 
bearing plate will have longitudinal reinforcement welded to it to allow for load transfer. 
Therefore, the effective depth at the notch is taken as 13.0 in. The maximum allowable shear 
capacity is Vu= <f>Vn = <f>!Ovlbwd = 0.75 X 10-v'SOOO X 10 X 13.0/1000 = 68.9 kips. This 
exceeds the 67 kip applied load, so the section is adequate to proceed with the design. 

Force resultants on D-region boundaries and the truss model 
Three possible truss layouts are considered, as shown in Fig. I 0.16h. Option I includes a 
vertical strut and a diagonal tension tie to the lower chord of the beam. The presence of several 
tension ties in this model suggests that this is not a minimum energy solution. Option 2 includes 
a diagonal compressive strut and a vertical hanger to transfer the load to the bottom chord of 
the beam. The compression strut below the <lapped end transfers the tensile reaction to the main 
longitudinal steel. Option 3 includes an internal triangular truss to balance the reaction within 
the interior of the beam. Balancing nodal forces at an indeterminate interior four-member joint 
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TABLE 10.4 
Strut and tie properties and forces for Example 10.3 

Member Force, Capacity, A. Required, A. Provided, 
Type Member fJ. /Jn kips W;, in. kips in2 in2 Reinforcement 

Strut ab 0.75 0.8 80.5 4.79 114.6 
bf 1.0 0.8 44.7 2.66 67.8 
de 0.75 0.8 120.8 7.19 171.9 
ef 0.75 0.8 80.5 4.79 114.6 

Tie ae 57.7 3.43 1.28 1.58 2 No. 8 (No. 25) 
bJt 67.0 3.99 1.49 1.86 3 No. 5 (No. 16) 
dg* 100.5 5.98 2.28 2.37 3 No. 8 (No. 25) 
Jgt 67.0 3.99 1.49 1.86 3 No. 5 (No. 16) 

t For ties bd andfg, use three No. 5 (No. 16) stirrups with two legs each, A, = 3 stirrups X 2 legs X 0.31 in2 = 1.86 in2. 

t Tie dg is an extension of the main longitudinal reinforcement and must have an area 2: 2.28 in2 and a 90° hook or mechanical anchor at node d. If 

the main reinforcement is insufficient, auxiliary reinforcement may be added. 

poses difficulties in joint detailing, but may be desirable if concentrated loads are applied to the 
top flange. Option 2 is selected as the design choice based on its simplicity and limited number 
of tension ties. The dimensions of the truss are shown in Fig. 10.16c, and the truss forces are 
summarized in Table 10.4. 

Selecting dimensions for strut and nodal zones 
The nodal zone stress is established at the bearing plate. The stress is p = Vuf Ab = 67 /(4 X 10) = 
1.68 ksi. The calculations for strut ab follow, and the remaining strut-and-tie widths and capac
ities are given in Table 10.4. Fu ab = Vjsin 0 = 67 /sin 56.3° = 80.5 kips. The strut width is 
Wab = Fu,ab/(p X 10) = 4.79 in'. 

Capacity of struts 
The strut design capacity is based on the strength of a bottle-shaped strut (f3s = 0.75). For strut 
ab, rpFns,ab = rp0.85f3sft'. wabbs = 0.75 X 0.85 X 0.75 X 5.0 X 4.79 X 10 = 114.5 kips. This 
exceeds the applied load of 80.5 kips, so the strut is adequate. The remaining strut design 
capacities are summarized in Table 10.4. All exceed the applied forces, as would be expected 
with the low nodal stress used in this design. 

Design ties and anchorage 
For tie bd, A1s = Fu,bd/rp!y = 67 /(0.75 X 60) = 1.49 in2. Three No. 5 (No. 16) stirrups provide 
1.86 in2 of steel. The maximum width for tie bd is wbd = Fu bd/pb = 67.0/(1.68 X 10) = 
3.99 in. Three No. 5 (No. 16) stirrups may be placed within a total width of 2.7 in. and, thus, 
fit within the maximum tie width for bd. Tie ae carries both the horizontal component of strut 
ab and the 13 kip horizontal reaction. Therefore, Fu,af = 67 X 8/12 + 13.0 = 57.7 kips, requiring 
an area of steel equal to 1.28 in2, which is provided by two No. 8 (No. 25) bars. The anchorage 
length of the ties exceeds the available nodal dimensions. Therefore, tie ae is welded to the 
plate at node a and has a full development length to the right of node f Ties bd and Jg are 
detailed as closed stirrups. The area of steel and the selected bar sizes for the ties are tabulated 
in Table 10.4. Stirrups for tie bd are grouped together and should be added to any normal shear 
reinforcement from the B-region of the beam. 

Design details and minimum reinforcement requirements 
Strut ab transfers a horizontal thrust to node a. Welding the reinforcement for tie ae to the 
plate anchors the tie, but it is not sufficient to ensure that the horizontal component of the strut 
force is transferred to the tie. Two solutions are possible. First, the plate at node a may be 
replaced with a steel angle. A 3.5 in. tall leg is needed to confine the nodal zone width. 
Second, a more common practice in the precast industry, headed studs are welded to the plate 
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and the connection is designed by the shear-friction principles described in Section 4.9. Headed 
studs have a yield stress of 50,000 psi and a coefficient of friction µ, between concrete and steel 
of 0.7. Thus, the area of studs required to resist the horizontal components of strut ab is 
Av/ = Vu1/<PJyJ.L = 67(8/12)/(0.75 X 50 X 0.7) = 1.70 in2

• Four¾ in. diameter X 5 in. long 
headed studs will be used to provide 1.76 in2• The 5 in. length places the head of the stud out
side of the nodal zone width. 

Tie dg is an extension of the main longitudinal reinforcement. An area of Grade 60 
steel 2: 2.2s"in2 is needed to provide the force in the tie, which should also be checked against 
the reinforcement requirements for moment in the B-region. A 90° hook or mechanical anchor 
is required at node d to provide full development of the force in tie dg. If the beam is 
prestressed, the prestressing steel and the accompanying compression in the concrete provide 
an equivalent anchorage. 

Minimum reinforcement in the dapped end is As min = 0.0025bw5 = 0.0025 X 10 X 12 = 
0.30 in2/ft. This is satisfied by No. 4 (No. 13) bars at 12 in. Since the steel in tie bd exceeds 
this, no further reinforcement is needed. The final connection is detailed in Fig. 10.16d. 

The examples in this section illustrate both the methodology of strut-and-tie 
design and the importance of understanding the detailing requirements needed to 
transfer forces at nodes. Failure to appreciate the need to provide anchorage for the tie 
in Example 10.1 or to supply thrust resistance for the struts in Example 10.3 can lead 
to failure. In the examples, the contact area was used to establish the hydrostatic nodal 
pressure. As discussed, an equally acceptable solution would have been to select the 
maximum stress for one of the struts. The remaining strut and tie widths would then 
be adjusted accordingly. 
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PROBLEMS 
10.1. A deep beam with the dimensions and material properties given in Example 10.1 

carries a single 24 X 24 in. column with a factored load of 1600 kips located 
12 ft from the left end. Design the beam using a strut-and-tie solution that 
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includes the self-weight of the beam. In your solution, include (a) a sketch of 
the load path and truss layout, (b) the sizes and geometry of the struts, ties, and 
nodal zones, and (c) a complete sketch of the final design. 

10.2. Redesign the column bracket shown in Example 11.5 using the strut-and-tie 
method. Your strut-and-tie model may be based on Fig. 11.23. Material prop
erties remain the same as in Example 11.5. 

10.3. A 36 in. deep single T beam with a <lapped end has a web thickness of 6 in. 
The factored end reactions are 82 kips in the vertical direction and 18 kips in 
the horizontal direction. The horizontal force places the beam in tension. The 
beam end is notched 12 in. high by 10 in. along the beam axis. Design the end 
connection using a bearing plate that is 3 in. wide with a thickness equal to that 
of the web. Adjust the bearing plate size if necessary. Specified material 
strengths are J; = 6000 psi and J;, = 60,000 psi. 

10.4. A transfer girder has an overall depth of 11 ft and spans 22 ft between column 
supports. In addition to its own weight, it will pick up a uniformly distributed 
factored load of 3.8 kips/ft from the floor above and will carry a 14 X 14 in. 
column delivering a concentrated factored load of 1000 kips from floors above 
at midspan. The girder width must be equal to or less than 16 in. Design the 
beam for the given loads. Find the girder width and the area and geometry of 
tie steel, and specify the placement details. Material strengths are J; = 5000 psi 
and Jy = 60,000 psi. 

10.5. A column transfers a factored load of 700 kips to the 9-ft square spread footing 
shown in Fig. Pl0.5, resulting in a factored uniform soil pressure of 8640 psf. 
Design the footing reinforcement using strut-and-tie methods. Material 
strengths are J; = 4000 psi and J;, = 60,000 psi. Because footings typically 
contain no shear reinforcement, your design should be based on unreinforced 
bottle-shaped struts. 

FIGURE Pl0.5 700 kips 
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10.6. Redesign the footing in Problem 10.5 using traditional flexure and shear meth
ods, as described in Chapter 16. Compare your solution to the solution for 
Problem 10.5, and comment on your results. 
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Design of Reinforcement 
at Joints 

11.1 INTRODUCTION 

Most reinforced concrete failures occur not because of any inadequacies in analysis of 
the structure or in design of the members but because of inadequate attention to the 
detailing of reinforcement. Most often, the problem is at the connections of main 
structural elements (Ref. 11.1). 

There is an increasing tendency in modem structural practice for the engineer to 
rely upon a detailer, employed by the reinforcing bar fabricator, to provide the joint 
design. Certainly, in many cases, standard details such as those found in the ACI 
Detailing Manual (Ref. 11.2) can be followed, but only the design engineer, with the 
complete results of analysis of the structure at hand, can make this judgment. In many 
other cases, special requirements for force transfer require that joint details be fully 
specified on the engineering drawings, including bend configurations and cutoff points 
for main bars and provision of supplementary reinforcement. 

The basic requirement at joints is that all of the forces existing at the ends of the 
members must be transmitted through the joint to the supporting members. Complex 
stress states exist at the junction of beams and columns, for example, that must be rec
ognized in designing the reinforcement. Sharp discontinuities occur in the direction of 
internal forces, and it is essential to place reinforcing bars, properly anchored, to resist 
the resulting tension. Some frequently used connection details, when tested, have been 
found to provide as little as 30 percent of the strength required (Refs. 11.1 and 11.3). 

Over the years, important research has been directed toward establishing an 
improved basis for joint design (Refs. 11.4 and 11.5). Full-scale tests of beam-column 
joints have led to improved design methods such as those described in Recommendations 
for Design of Beam-Column Joints in Monolithic Reinforced Concrete Structures, 
reported by ACI-ASCE Committee 352 (Ref. 11.6). Although they are not a part of the 
ACI Code, such recommendations provide a basis for the safe design of beam-column 
joints both for ordinary construction and for buildings subject to seismic forces. Other 
tests have given valuable insight into the behavior of beam-girder joints, wall junctions, 
and other joint configurations, thus providing a sound basis for design. 

The practicality of the joint design should not be overlooked. Beam reinforce
ment entering a beam-column joint must clear the vertical column bars, and timely 
consideration of this fact in selecting member widths and bar size and spacing can 
avoid costly delays in the field. Similarly, beam steel and girder steel, intersecting at 
right angles at a typical beam-girder-column joint, cannot be in the same horizontal 
plane as they enter the joint. Figure 11.1 illustrates the congestion of reinforcing bars 
at such an intersection. Concrete placement in such a region is difficult at best, but is 
assisted with the use of plasticizer admixtures. 



FIGURE 11.1 
Steel congestion at beam
girder-column joint. 
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Most of this chapter treats the design of joint regions for lypical continuous
frame monoljthic structures that are designed according to the strength requirements 
of the ACI Code for gravity loads or normal wind loads. Joints connecting members 
that must sustain strength under reversals of deformation into the inelastic range, as in 
earthquakes, represent a separate category and are covered in Chapter 20. Brackets 
and corbels, although they are most often a part of precast buildings rather than 
monolithic construction, have features in common with monolithic joints, and these 
will be covered here. 

11.2 BEAM-COLUMN JOINTS 

A beam-column joint is defined as the portion of a column within the depth of the 
beams that frame into it. Formerly, the design of mono(jthic joints was limited to 
providing adequate anchorage for the reinforcement. However, the increasing use of 
high-strength concrete, resulting in smaller member cross sections, and the use of 
larger-diameter and higher-strength reinforcing bars now require that greater attention 
be given to joint design and detailing. Although very Little guidance is provided by the 
ACI Code, the ACI-ASCE Committee 352 report Recommendations for Design of 
Beam-Column Joints in Monolithic Reinforced Concrete Structures (Ref. 11.6) pro
vides a basis for the design of joints in both ordinary structures and structures required 
to resist heavy cyclic loading into the inelastic range. 

a. Classification of Joints 

Reference 11.6 classifies structural joints into two categories. A Type J joint connects 
members in an orrunary structure designed on the basis of strength, according to the 
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Column 

Beam4 Beam2 Beam4 Beam2 

Beam 1 Beam3 Beam 1 Beam3 

(a) Continuous column 

FIGURE 11.2 

(b) Discontinuous column 

Typical monolithic interior beam-column joint. 

main body of the ACI Code, to resist gravity and normal wind load. A Type 2 joint 
connects members designed to have sustained strength under deformation reversals 
into the inelastic range, such as members in a structure designed for earthquake 
motions, very high winds, or blast effects. Only Type 1 joints will be considered in 
this chapter. 

Figure 11.2a shows typical interior joints in a monolithic reinforced concrete 
frame, with beams 1 and 2 framing into opposite faces of the column and beams 3 and 
4 framing into the column faces in the perpendicular direction. An exterior joint would 
include beams 1, 2, and 3, or in some cases only beams 1 and 2. A corner joint would 
include only beams 1 and 3, or occasionally only a single beam 1. A joint may have 
beams framing into it from two perpendicular directions as shown, but for purposes of 
analysis and design each direction can be considered separately. Joint confinement is 
further affected if the column is discontinuous, as illustrated in Fig. 11.2b. 

b. Joint Loads and Resulting Forces 

The joint region must be designed to resist forces that the beams and column transfer 
to the joint, including axial loads, bending, torsion, and shear. Figure 11.3a shows 
joint loads acting on the free body of a typical joint of a frame subject to gravity loads, 
with moments M1 and M2 acting on opposite faces, in the opposing sense. In general, 
these moments will be unequal, with their difference equilibrated by the sum of the 
column moments M3 and M4 . Figure 11.3b shows the resulting forces to be transmitted 
through the joint. Similarly, Fig. 11.4a shows the loads on a joint in a structure sub
jected to sidesway loading. The corresponding joint forces are shown in Fig. 11.4b. 
Only for very heavy lateral loading, such as from seismic forces, would the moments 
acting on opposite faces of the joint act in the same sense, as shown here, producing 
very high horizontal shears within the joint. 

According to the recommendations by Committee 352, the forces to be consid
ered in designing joint regions are not those determined from the conventional frame 
analysis; rather, they are calculated based on the nominal strengths of the members. 
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(b) 

FIGURE 11.3 
Joint loads and forces resulting from gravity 
loads: (a) forces and moments on the free 
body of a joint region; (b) resulting internal 
forces. 

C3 \/, 

V4 

(b) 

FIGURE 11.4 

T3 

C1 

C4 

Joint loads and forces resulting from 
lateral loads: (a) forces and moments 
on the free body of a joint; (b) resulting 
internal forces. 

Where a typical underreinforced beam meets the column face, the tension force from 
the negative moment reinforcement at the top of the beam is to be taken as T = Ash• 
and the compression force at the face is from equilibrium C = T, not the nominal 
compressive capacity of the concrete. The design moment applied at the joint face is 
that corresponding to these maximum force~ .• Mu = Mn = AsJ;,(d - a/2), rather than 
that from the overall analysis of the frame. Note that the inclusion of the usual strength 
reduction factor </> would be unconservative in the present case because it would 
reduce the forces for which the joint is to be designed; it is therefore not included in 
this calculation. 

With the moment applied to each joint face found in this way, the corresponding 
column forces for joint design are those forces required to keep the connection in 
equilibrium. To illustrate, the column shears V3 and V4 of Figs. 11.3a and 11.4a are 
calculated based on the free body of the column between inflection points, as 
shown in Fig. 11.5. The inflection points generally can be assumed at column 
midheight, as shown. 
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FIGURE 11.5 
Free-body diagram of an 
interior column and joint 
region. 

!N3 
~-------V3 

c. Shear Strength of a Joint 

A joint subject to the forces shown in Fig. 11.3b or 11 .4b will develop a pattern of 
diagonal cracking owing to the diagonal tensile stresses that result from the normal 
forces and shears, as indicated by those figures. The approach used by Committee 352 
is to limit the shear force on a horizontal plane through the joint to a value established 
by tests. The design basis is 

(11.1) 

where Vu is the applied shear force, Vn is the nominal shear strength of the joint, and 
<pis taken equal to 0.75. 

The shear force Vu is to be calculated on a horizontal plane at midheight of the 
joint, such as plane a-a of Fig. 11.3b or plane b-b of Fig. 11 .4b, by summing hori
zontal forces acting on the joint above that plane. For example, in Fig. 11.3b the joint 
shear on plane a-a is 

vu = Tl - T2 - V3 

and in Fig. 11 .4b, the joint shear on plane b-b is 

Vu = Ti + C2 - V3 

= T1 + T2 - V3 

The nominal shear strength Vn is given by the equation 

V,, = yvf: b1hc (11.2) 

where bi is the effective joint width in inches, he is the thickness in inches of the column 
in the direction of the load being considered, and vJ: is expressed in psi units. 
According to Committee 352, Eq. (11.2) is conservative for concretes with strengths up 
to 15,000 psi. As discussed in Chapter 20, ACI Code 21.7 follows similar procedures 
for the design of joints in moment resistant frames, the only difference being that lower 
values for the coefficient y are recommended. 

The coefficient yin Eq. (11.2) depends on the confinement of the joint provided 
by the beams framing into it and whether the column is continuous or terminates at the 
level under consideration, as shown in Table 11.1. 
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TABLE 11.1 
Values of y for beam-to-column connections 

Joint 

Continuous 
Columns 

Gravity Moment 
Frames Resisting 
(Type 1) Frames 

(Type 2) 

Discontinuous 
Columns 

Gravity Moment 
Frames Resisting 
(Type 1) Frames 

(Type 2) 

Interior 
Exterior 
Column 

24 
20 
15 

20 
15 
12 

20 15 
15 12 
12 8 

The definitions of interior, exterior, and corner JOmts were discussed in 
Section 11.2a. However, there are restrictions to be applied for purposes of deter
mining 'Y as follows: 

1. An interior joint has beams framing into all four sides of the joint. However, to 
be classified as an interior joint, the beams should cover at least ¾ the width of the 
column, and the total depth of the shallowest beam should not be less than ¾ the 
total depth of the deepest beam. Interior joints that do not satisfy this requirement 
should be classified as exterior joints. 

2. An exterior joint has at least two beams framing into opposite sides of the joint. 
However, to be classified as an exterior joint, the widths of the beams on the two 
opposite faces of the joint should cover at least ¾ the width of the column, and the 
depths of these two beams should be not less than ¾ the total depth of the deepest 
beam framing into the joint. Joints that do not satisfy this requirement should be 
classified as corner joints. 

For joints with beams framing in from two perpendicular directions, as for a 
typical interior joint, the horizontal shear should be checked independently in each 
direction. Although such a joint is designed to resist shear in two directions, only one 
classification is made for the joint in this case (i.e., only one value of 'Y is selected 
based on the joint classification, and that value is used to compute Vn when checking 
the design shear capacity in each direction). 

According to Committee 352 recommendations, the effective joint width bj to be 
used in Eq. (11.2) depends on the transverse width of the beams that frame into the 
column as well as the transverse width of the column. With regard to the beam width 
bb, if there is a single beam framing into the column in the load direction, then bb is 
the width of that beam. If there are two beams in the direction of shear, one framing 
into each column face, then bb is the average of the two beam widths. In reference to 
Fig. 11.6a, when the beam width is less than the column width, the effective joint 
width is equal to the smaller of the average of the beam width and column width, 

bb + be 
b- = -- (11.3) 

J 2 

and 

(11.4) 
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FIGURE 11.6 
Determination of effective 
joint width b/ (a) beams 
narrower than column; (b) 
eccentricity between beam 
centerline and column 
centroid; (c) beam wider than 
column. (Parts a and b 
adapted from Ref. 11.6.) 

Direction 
of loading, 

Direction 
of loading 

(a) 

Beam Column 
...----~----,~--. centroid 

(b) 

where m is a slope that depends on the eccentricity e of the beam centerline with 
respect to the column centroid (Fig. 11.6b). If e is greater than bj8, m = 0.3; other
wise, m = 0.5. As shown in Fig, 11.6a, the slope m defines a width at the centroid of 
the column. According to Committee 352, mhj2 should not be taken as greater than 
the extension of the column edge beyond the edge of the beam. 

If the beam width bb exceeds the column width, the effective joint width bj is 
equal to the column width be, as shown in Fig. 11.6c. 

d. Confinement and Transverse Joint Reinforcement 

The successful performance of a beam-column joint depends strongly on the lateral 
confinement of the joint. Confinement has two benefits: ( 1) the core concrete is 
strengthened and its strain capacity improved, and (2) the vertical column bars are 
prevented from buckling outward. Confinement can be provided either by the beams 
that frame into the joint or by special column ties provided within the joint region. 

Confinement by beams is illustrated in Fig. 11. 7. According to Committee 352 
recommendations, if beams frame into four sides of the joint, as in Fig. 11. 7 a, adequate 
confinement is provided if each beam width is at least ¾ the width of the intersected 
column face and if no more than 4 in. of column face is exposed on either side of the 
beam. Where beams frame into only two sides of the joint, as in Fig. 11.7b, adequate 
confinement can be assumed in the direction of the beams if the beam widths are at 
least ¾ the column width and no more than 4 in. of concrete is exposed on either side 



FIGURE 11.7 
Confinement of joint 
concrete by beams: (a) 
confinement in X and Y 
directions; (b) confinement 
in X direction only. 
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of the beams. In the other direction, transverse reinforcement must be provided for 
confinement. The presence of a third beam, but not a fourth, in the perpendicular 
direction does not modify the requirement for transverse reinforcement. 

If adequate confinement is not provided by beams according to these criteria, 
then transverse reinforcement must be provided. If confinement steel is needed, it 
must meet all the usual requirements for column ties (see Section 8.2). In addition, 
there must be at least two layers of ties between the top and bottom flexural steel in 
the beams at the joint, and the vertical center-to-center spacing of these ties must not 
exceed 12 in. If the beam-column joint is part of the primary system for resisting 
nonseismic lateral loads, this maximum spacing is reduced to 6 in. For joints that 
are not confined by beams on four sides, ACI Code 11.10 requires that the ties 
satisfy Eq. (4.13). 

e. Anchorage and Development of Beam Reinforcement 

For interior joints, normally the flexural reinforcement in a beam entering one face 
of the joint is continued through the joint to become the flexural steel for the beam 
entering the opposite face. Therefore, for loadings associated with Type 1 joints, 
pullout is unlikely, and no special recommendations are made. However, for exterior 
or corner joints, where one or more of the beams do not continue beyond the joint, a 
problem of bar anchorage exists. The critical section for development of the yield 
strength of the beam steel is at the face of the column. Column dimensions seldom 
permit development of the steel entering the joint by straight embedment alone, and 
hooks are usually needed for the negative beam reinforcement. Headed bars or ninety 
degree hooks are used, with the hook extending toward and beyond the middepth of 
the joint. If the bottom bars entering the joint need to develop their strength As/2, at the 
face of the joint, as they do if the beam is a part of a primary lateral load-resisting 
system, they should also be anchored with 90° hooks, in this case turned upward to 
extend toward the rniddepth of the joint, or headed bars. Requirements for development 
of hooked bars given in Chapter 5 are applicable in both cases, including modification 
factors for concrete cover and for enclosure with ties or stirrups. 
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EXAMPLE 11.1 Design of exterior Type 1 joint. The exterior joint shown in Fig.11.8 is a part of a continuous, 
monolithic, reinforced concrete frame designed to resist gravity loads only. Member section 
dimensions b X h and reinforcements are as shown. The frame story height is 12 ft. Material 
strengths are fc'. = 4000 psi and J;, = 60,000 psi. Design the joint, following the recommenda
tions of the Committee 352 report. 

FIGURE 11.8 
Exterior beam-column joint 
for Example 11.1: (a) plan 
view; (b) cross section 
through spandrel beam; 
(c) cross section through 
normal beam. Note that 
beam stirrups and column 
ties outside of the joint are 
not shown. 

SOLUTION. · First the joint geometry must be carefully laid out, to be sure that beam bars and 
column bars do not interfere with one another and that placement and vibration of the concrete 
are practical. In this case, bar layout is simplified by making the column 4 in. wider than the 
beams. Column steel is placed with the usual 1.5 in. of concrete outside of the No. 4 (No. 13) 
ties. Beam top and bottom bars are placed just inside the outer column bars. The slight offset 
of the center top beam bars to avoid the center column bars is of no concern. Top bars of the 
spandrel beams are placed just under the top normal beam bars, except for the outer spandrel 
bar, which is above the hook shown in Fig. 11.8b. Bottom bars enter the joint at different levels 
without interference. 

No anchorage problems exist for the spandrel beam top reinforcement, which is contin
uous through the joint. However, the normal beam top steel must be provided with hooks to 
develop its yield strength at the face of the column. Referring to Table 5.3, the basic develop
ment length for No. 10 (No. 32) hooked bars is 

_ (0.02!/JeJ;,) _ (0.02 X 1 X 60,000) 2 _ 241 . 
ldh - A vJ: db - I X v'4000 1. 7 - . Ill. 

No. 4 (No. 13) 
ties 

2 sets 
No. 4 (No. 13)1 ties r 

12" 
L 

(a) 

(b) 

Spandrel beams 
16" X 28" 
3 No. 11 (No. 36) top 
2 No. 8 (No. 25) bottom 

Normal beam 
16" X 24" 
3 No. 1 0 (No. 32) top 
2 No. 7 (No. 22) bottom 

Column 
20" X 20" 
8 No. 11 (No. 36) 
story height= 12' 

(c) 



FIGURE 11.9 
Basis of column shear for 
Example 11.1: (a) horizontal 
forces on joint free-body 
sketch; (b) free-body sketch 
of column between inflection 
points. 
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30.7 kips 

8 

( ~ JA1y: 229 k;ps 

-Vu 

r 
12' 

L 368 ft-kips 

(a) 

(b) 

Being inside the column bars, the beam top bars have side cover of 1.5 + 0.5 + 1.4 = 3.4 in. 
This exceeds 2.5 in., so a modification factor of 0.7 is applicable, and the required hook devel
opment length is 

ldh = 24.l X 0.7 = 16.9 in. 

If the hooked bars are carried down just inside the column ties, the actual embedded length is 
20.0 - 1.5 - 0.5 = 18.0 in., exceeding 16.9 in., so development is ensured. None of the beams 
are a part of the primary, lateral load-resisting system of the frame, so the bottom bars simply 
can be carried 6 in. into the face of the joint and stopped. 

Next the shear strength of the joint must be checked. In the direction of the spandrel 
beams, moments applied to the joint will be about the same and acting in the opposite sense, 
so very little joint shear is expected in that direction. However, the normal beam will subject 
the joint to horizontal shears. In reference to Fig. 11.9a, which shows a free-body sketch of the 
top half of the joint, the maximum force from the beam top steel is 

AJy = 3.81 X 60 = 229 kips 

The joint moment is calculated based on this tensile force. The normal beam effective depth is 
d = 24.0 - 1.5 - 0.5 - 1.27 /2 = 21.4 in. and with stress block depth a = A,_[y/0.85J;'. bw = 
229/(0.85 X 4 X 16) = 4.21 in., the design moment is 

( a) 229( 4.21) Mu= M,, = AJ,.. d - 2 = l2 21.4 - -
2
- = 368 ft-kips 

Column shears corresponding to this joint moment are found based on the free body of the column 
between assumed midheight inflection points, as shown in Fig. 11.9b: Vcol = 368/12 = 30.7 kips. 
Then summing horizontal forces on the joint above the middepth plane a-a, the joint shear in the 
direction of the normal beam is 

V,, = 229 - 30.7 = 198 kips 

For purposes of calculating the joint shear strength, the joint can be classified as exterior, 
because the 16 in. width of the spandrel beams ex.i;eeds ¾ the column width of 15 in., and the 
spandrels are the deepest beams framing into the joint. Thus, 'Y = 20. The effective joint width 
is the smaller of 

16 + 20 

2 
= 18 in. 

and 

~ mh, (0.5 X 20) 
bj = bb + ~ 2 = 16 + 2 

2 
= 26 in. 
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In the latter case, limiting mhj2 to be no greater than the extension of the column edge beyond 
the edge of the beam results in bj = be = 20 in. 

Using bj = 18 in., the nominal and design shear strengths of the joint are, respectively, 

V,1 = yVJ: bjh = 20V4000 X 18 X l~~O = 455 kips 

</JV,, = 0.75 X 455 = 341 kips 

The applied shear Vu = 198 kips does not exceed the design strength, so shear is satisfactory. 
Confinement is provided in the direction of the spandrel beams by the beams themselves 

because the spandrel width of 16 in. exceeds¾ the column width and no more than 4 in. of column 
face is exposed on either side. However, in the direction of the normal beam, confinement must 
be provided by column ties within the joint. Two sets of No. 4 (No. 13) ties will be provided, as 
shown in Fig. 11.8a and b. The clear distance between column bars is 5.89 in. here, less than 
6 in., so strictly speaking the single-leg crosstie is not required. However, it will improve the joint 
confinement, guard against outward buckling of the central No. 11 (No. 36) column bar, and add 
little to the cost of construction, so crossties will be specified, as shown in Fig. 11.8a. The ties 
satisfy Eq. ( 4.13) several times over. Note that a 90° hook at one end, rather than the 135° bend 
shown, will meet ACI Code tie anchorage requirements and facilitate steel fabrication as well. 

EXAMPLE 11.2 Design of interior Type 1 joint. Figure 11.10 shows a proposed interior joint of a rein
forced concrete building, with beam and column dimensions and reinforcement as indicated. 
The building frame is to carry gravity loads and normal wind loads. Design and detail the 
joint reinforcement. 

FIGURE 11.10 
Interior beam-column joint 
for Example 11.2: (a) plan 
view; (b) section through 
beam. 

(a) 

(b) 

Column 24" x 24" 
8 No. 14 (No. 43) 
No. 4 (No. 13) ties 

Beams 14" x 28" 
4 No. 1 O (No. 32) top 
2 No. 9 (No. 29) bottom 

14 sets 
No. 4 (No. 13) 
ties@ 6" 
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SOLUTION. Because the joint is to be a part of the primary, lateral load-resisting system, 
beam bottom bars as well as top bars are carried straight through the joint for anchorage. In 
such cases, it is usually convenient to lap splice the bottom steel near the point of inflection 
of the beams. 

In Fig. 11.1 Oa and b, top and bottom beam bars entering the joint in one direction must 
pass, respectively, under and over the corresponding bars in the perpendicular direction. It will 
be assumed that this has been recognized by adjusting the effective depths in designing the 
beams. Because the column is 10 in. wider than the beams, the outer beam bars can be passed 
inside the comer column bars without interference. Four bars are used for the beam top steel in 
order to avoid interference with the center column bar. 

Even the combination of normal wind loading with gravity loads should not produce 
large unbalanced moment on opposite faces of this interior column, and it can be safely 
assumed that joint shear will not be critical. However, confinement of the joint region by the 
beams is considered inadequate because (1) the beam width of 14 in. is less than¾ the column 
width of24 in. and (2) the exposed column face outside the beam is (24 - 14)/2 = 5 in., which 
exceeds the 4 in. limit. Consequently, transverse column ties must be added within the joint for 
confinement. For the 24 in. square column, the spacing between the vertical bars exceeds 6 in., 
so it is necessary, according to the ACI Code, to provide ties to support the intermediate 
bars as well as the comer bars. Three ties are used per set, as shown in Fig. 11. lOa. Since the 
joint is a part of the lateral load-resisting system, the maximum vertical spacing of these 
tie sets is 6 in. Four sets within the joint, as indicated in Fig. 11.1 Ob, are adequate to satisfy 
this requirement. 

f. Wide-Beam Joints 

In multistory buildings, to reduce the construction depth of each floor and to reduce 
the overall building height, wide shallow beams are sometimes used. Joint design in 
cases where the beams are wider than the column introduces some important concepts 
not addressed in the Committee 352 report. It is important to equilibrate all of the 
forces applied to the joint. The tension from the top bars in the usual case, with beam 
width no greater than the column, will be equilibrated by the horizontal component of 
a diagonal compression strut within the joint. The diagonal compression at the ends of 
the strut, in tum, is equilibrated by the beam compression and the thrust from the 
column. (See Section 11.3 for a more complete description of the strut-and-tie model.) 
If the outer bars of the normal beam pass outside of the column, as they often do in 
wide-beam designs, the diagonal strut will also be outside of the column, with no 
equilibrating vertical compression at its upper and lower ends. The outer parts of the 
beam would tend to shear off, resulting in premature failure. The problem is of special 
concern for Type 2 connections. 

To minimize the problem, Committee 352 suggests that satisfactory perform
ance of Type 2 connections with wide beams will result if, to provide satisfactory 
bond, the reinforcement passing outside the'joint core is selected so that the ratio of 
the column depth he to the bar diameter db is greater than or equal to 24 and that at 
least one-third of the steel passes through or is anchored in the column between the 
vertical bars. In the event that these restrictions cannot be met, two possibilities exist 
to improve performance. The first solution requires that all of the beam top steel be 
placed within the width of the column, and preferably inside the outer column bars. 
If the normal beam bars are carried outside the joint, the second solution is to 
provide vertical stirrups through the joint region to carry the vertical component of 
thrust from the compression strut. In addition, Type 2 exterior beams must be 
designed for equilibrium torsion per ACI Code 11.5, which may require additional 
transverse reinforcement. 
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In extreme but not unusual cases, very wide beams are used, several times wider 
than the column, with beam depth only about 2 times the slab depth. In such cases, a 
safe basis for joint design is to treat the wide beam as a slab and follow the recom
mendations for slab-column connections contained in Chapter 13. 

EXAMPLE 11.3 Design of exterior Type 1 joint with wide beams. Figure 11.1 1 shows a typical exterior 
joint in the floor of a wide-beam structure, designed to resist gravity loads. Here the beams in 
each direction are 8 in. wider than the corresponding column dimension. Check the proposed 
joint geometry and shear strength, and design the transverse joint reinforcement. Material 
strengths are J; = 4000 psi andfy = 60,000 psi. Story height is 12 ft. 

FIGURE 11.11 
Exterior beam-column joint 
for Example 11.3: (a) plan 
view; (b) section through 
spandrel beam; (c) section 
through normal beam. 

SOLUTION. For the present case, all normal beam top steel is passed inside the core of the 
joint, terminating in 90° hooks at the outside of the column. Top steel in the spandrel beams is 
continuous through the joint but is also carried inside the joint core. Bottom beam bars, in each 
case, can be spread across the width of the beam, and they are carried only 6 in. into the joint 
for the normal beam because the joint is not a part of the primary, lateral load-resisting system. 
The bottom spandrel beam bars are continued to provide structural integrity (ACI Code 7.13). 
Beam stirrups outside of the joint, not shown in Fig. 11.11, would be carried outside of the 
outer bottom bars and bent up. They would require small-diameter horizontal bars inside 
the hooks for proper anchorage at the upper ends of their vertical legs. 

(a) 

2 sets [ 
No. 4 (No. 13) 
ties@ 12" 

(b) 

Column 20" x 24" 
8 No. 11 (No. 36) 
story height 12' 

Normal beam 
32" X 20" 
4 No. 1 0 (No. 32) top 
3 No. 7 (No. 22) bottom 

Spandrel beams 
28" X 20" 
4 No. 1 O (No. 32) top 
3 No. 7 (No. 22) bottom 

(c) 
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Checking the required development length of the No. 10 (No. 32) top bars of the normal 
beam gives 

_ (0.02i/Jeh) _ (0.02 X 1 X 60,000) _ . 
ldh - A\/f:: db -

1 
X V4000 1.27 - 24.1 m. 

With lateral cover well in excess of 2.5 in., a modification factor of 0.7 is applicable, and the 
necessary hook development length is 

ldh = 24.1 X 0.7 = 16.9 in. 

If the hooks are carried down in the plane of the outer column bars, the available embedment 
is 20.0 - 1.5 - 0.5 = 18.0 in., exceeding the minimum required embedment. 

Moments from the spandrels on either side of the joint will be about equal, so no joint 
shear problem exists in that direction. In the direction of the normal beam, shear must be 
checked. The tensile force applied by the top bars is Ash = 5.08 X 60 = 305 kips. The depth 
of the beam compressive stress block is a = AJy/0.85J;bw = 305/(0.85 X 4 X 32) = 2.80 in., 
and the corresponding moment is 

( a) 305( 2.80) Mu= Mn = Ash d - 2 = l2 17.6 - -
2
- = 412 ft-kips 

Column shears are based on a free body corresponding to that of Fig. 11.9b, and are equal to 
Vcol = 412/12 = 34.3 kips. Thus, the joint shear at middepth is Vu = 305 - 34.3 = 270 kips. 

The spandrel beams provide full-width joint confinement in their direction, and the joint 
can be classed as exterior, so y = 20. In the perpendicular direction, when the beam width 
exceeds the column width, the joint width bj is to be taken equal to the column width (24 in. 
in the present case). The nominal and design shear strengths are, respectively, 

Vn = yvf: bjh = 20V4000 X 24 X 20/1000 = 607 kips 

<f>Vn = 0.75 X 607 = 455 kips 

Because the design strength is well above the applied shear of 270 kips, the shear requirement 
is met. 

Transverse confinement steel must be provided in the direction of the normal beam, 
between the top and bottom bars of the normal beam, with spacing not to exceed 12 in. Two 
sets of No. 4 (No. 13) column ties will be used, as shown in Fig. 11.11. In addition to the hoop 
around the outside bars, a single-leg crosstie is required for the middle column bars because the 
clear distance between column bars exceeds 6 in. The ties satisfy Eq. (4.13). 

11.3 STRUT-AND-TIE MODEL FOR JOINT BEHAVIOR 

Although the Committee 352 report (Ref. 11.63 is an important contribution to the safe 
design of joints of certain standard configurations, the recommendations are based 
mainly on test results. Consequently, they must be restricted to joints whose geometry 
closely matches that of the tested joints. This leads to many seemingly arbitrary geo
metric limitations, and little guidance is provided for the design of joints that may 
not meet these limitations. An illustration of this is the wide-beam joint discussed 
in Section 1 l .2f. 

Good physical models are available for many aspects of reinforced concrete 
behavior-for example, for predicting the flexural strength of a beam or the strength 
of an eccentrically loaded column-but no clear physical model is evident in the 
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FIGURE 11.12 
Strut-and-tie model for 
behavior of a beam-column 
joint. 

Tension lies 

;----;.,_--+---'---t - T2 

t i 

Committee 352 recommendations for the behavior of a joint. For this reason, among 
others, increasing attention is being given to the strut-and-tie models, described in 
Chapter 10, as a basis for the design of D-regions in joints. 

The essential features of a strut-and-tie model of joint behavior may be understood 
with reference to Fig. J 1.12, which shows a joint of a frame subject to lateral loading, 
with clockwise moments from the beams equilibrated by counterclockwise moments 
from the columns. The line of action of the horizontal forces C1 and T2 intersects that 
of the vertical forces C3 and T4 at a nodal zone, where the resultant force is equili
brated by a diagonal compression strut within the joint. At the lower end of the strut, 
the diagonal compression equilibrates the resultant of the horizontal forces T1 and C2 
and the vertical forces T3 and C4• The tension bars must be well anchored by extension 
into and through the joint, or in the case of discontinuous bars (such as the top beam 
steel in an exterior joint) by hooks. The concrete within the nodal zone is subjected to 
a biaxial or, in many cases, a triaxial state of stress. 

With this simple model, the flow of forces in a joint is easily visualized, satis
faction of the requirements of equilibrium is confinned, and the need for proper 
anchorage of bars is emphasized. In a complete strut-and-tie model analysis, through 
proper attention to deformations within the joint, serviceability is ensured through 
control of cracking. 

According to the strut-and-tie model, the main function of the column ties 
required within the joint region by conventional design procedures, in addition to 
preventing outward buckling of the vertical column bars, is to confine the concrete 
in the compression strut, thereby improving both its strength and ductility, and to 
control the cracking that may occur owing to diagonal tension perpendicular to the 
axis of the compression strut. The main load is carried by the uniaxfally loaded 
struts and ties. 

The strut-and-tie model not only provides valuable insights into the behavior of 
ordinary beam-column joints but also represents an important tool for the design of 
joints that fall outside of the limited range of those considered in Ref. 11.6. In the 
sections of this chapter that follow, a number of types of joints will be considered that 
occur commonly in reinforced concrete structures, for which the strut-and-tie models 
provide essential aid in developing proper bar details. 
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11.4 BEAM-TO-GIRDER JOINTS 

FIGURE 11.13 
Main girder supporting 
secondary beam: (a) cross 
section through girder 
showing hanger stirrups; 
(b) cross section through 
beam; (c) truss model 
showing transfer of beam 
load to girder at load near 
ultimate; (d) truss model 
showing transfer of load 
into the girder. 

Commonly in concrete construction, secondary floor beams are supported by primary 
girders, as shown in Fig. 11.13a and b. It is often assumed that the reaction from the 
floor beam is more or less uniformly distributed through the depth of the interface 
between beam and girder. This incorrect assumption is perhaps encouraged by the ACI 
Code "Ve + V/ approach to shear design, which makes use of a nominal average shear 
stress in the concrete, vc = Vcfbwd, suggesting a uniform distribution of shear stress 
through the beam web. 

The actual behavior of a diagonally cracked beam, as indicated by tests, is quite 
clifferent, and the flow of forces can be represented in somewhat simplified form by 
the truss model of the beam shown in Fig. 11.13c (Ref. 11.7). The main reaction is 
delivered from beam to girder by a cliagonal compression strut mn, which applies its 
thrust near the bottom of the carrying girder. Failure to provide for this thrust may 
result in splitting off the concrete at the bottom of the girder followed by collapse of 
the beam. A graphic example of lack of support for diagonal compression at the 
junction of a beam and its supporting girder is shown in Fig. 11.14. 

Proper detailing of steel in the region of such a joint requires the use of well
anchored "hanger" stirrups in the girder, as shown in Fig. 11.13a and b, to provide for 
the downward thrust of the compression strut at the end of the beam (Refs. 11.8 and 
11.9). These stirrups serve as tension ties to transmit the reaction of the beam to the 
compression zone of the girder, where it can be equilibrated by diagonal compression 
struts in the girder. The hanger stirrups, which are required in addition to the normal 
girder stirrups required for shear, can be designed based on equilibrating part or all of 
the reaction from the beam, with the hanger stirrups assumed to be stressed to their 
yield stress /y at the factored load stage. 
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FIGURE 11.14 
Failure due to lack of support 
for diagonal compression in 
beam-g.irder joint. (Courtesy of 
M. P. Colli11.r, University of 
Toro1110.) 

The strut-and-tie model allows visualization of the transfer of the beam load 
along the girder as seen in Fig. 11.13d. The compression struts op and qr complete the 
shear transfer into the girder. The orientation of these compression struts depends on 
the location of the beam relative to the girder end. 

If the beam and girder are the same depth, the bangers should take the foll reac
tion. However, if the beam depth is much less than that of the girder, hangers may 
prove unnecessary. It is suggested in Ref. 11. l O that banger stirrups be placed to resist 
a downward force of v:, where 

V* = hb V 
s h 

8 

() 1.5) 

Here hb is the depth of the beam, h
8 

is the depth of the carrying girder, as indicated by 
Fig. 11.13, and Vis the end reaction received from the beam. 

Hangers will also be unnecessary if the factored beam shear is less than</> Ve (as is 
usuaUy the case for one-way joists, for example), because in such a case diagonal cracks 
would not form in the supported member. The predictions of the truss model would 
thus not be valid, and the reaction would be more nearly unifonn through the depth. 

The hanger stirrups should pass around the main flexural reinforcement of the 
girder, as shown in Fig. l 1.13. If the beam and girder have the same depth, the main 
flexural bars in the girder should pass below those entering the connection from the 
beam to provide the best possible reaction platform for the diagonal compression strut. 

11 .5 LEDGE GIRDERS 

Frequently in precast concrete construction, an Lor inverted T girder is used to provide 
a seat, or ledge, to support precast beams framing into the carrying girder from the 
perpendicular direction. Typical ledge girder cross sections are shown in Fig. 11.15. 



FIGURE 11.15 
Ledge girders carrying 
precast T beams: (a ) L girder 
proviwng exterior support for 
T beam; (b) inverted T girder 
carrying two T beam 
reactions. 

FIGURE 11.16 
Strut-and-tie model for 
behavior of inverted T ledge 
girder: (a) girder cross 
section: (b) side elevation. 
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The end reaction of the beams introduces a heavy concentrated load near the bottom 
of such girders, requiring special reinforcement in the projecting ledge and in the 
girder web. 

The design of such reinforcement is facilitated through use of a strut-and-tie 
model, as illustrated in Fig. 11.16. The downward reaction of the supported beam 
creates a compression fan in the ledge that distributes the reaction along a length greater 
than that of the bearing plate, as shown in Fig. 11.16b. The horizontal components of 
the fan are equilibrated by a compression strut along the lower flange of the girder. 

In the cross section view of Fig. 11.16a, the downward thrust under the bearing 
plate is equilibrated by a diagonal compression strut, with the outward thrust at the 
top of the strut causing tension in the upper horizontal leg of closed hoop stirrups in 
the lower part of the girder. In many cases, a short structural steel angle is used just 
under the bearing plate, and the main tie at the top of the ledge is welded to the angle 
to ensure positive anchorage. At the bottom of the diagonal strut, the horizontal 
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component of thrust is equilibrated by the opposing thrust from the other side, and 
the vertical component causes tension in stirrups that extend to the top of the girder. 
These stirrups are used in addition to those required for girder shear. Proper 
anchorage at the nodes is ensured by passing longitudinal bars inside the bends of 
both sets of stirrups. 

EXAMPLE 11.4 Inverted T beam connection design. The inverted T beam shown in Fig. 11.17a supports 
40 ft long, 12 ft wide double T beams. The width of the double T stem is 4.75 in. and the 
bearing plate is 6 in. Long. The dead load of the double T is 71 psf, including self-weight, and 
the beam carries a live load of 40 psf. A horizontal force is taken equal to 20 percent of the 
vertical reaction. Design the reinforcement in the inverted T at the double T bearing point. 
Material properties are J: = 6000 psi and .t;, = 60,000 psi. 

SOL UTION. The factored loads on the beam stem for a 6-ft tributary width are 

q11 = l.2 X 71 + 1.6 X 40 = J 49 psf 

R., = 0.149 psf x 6 ft x 40 ft/2 = 17.9 kips 

and 

T
11 

= 0.2 X 17.9 = 3.6 kips 

The bearing area under the double T leg is 6 in. by 4.75 in. = 28.5 in2, giving a nodal bearing 
stress of 

J, = 
17

·
9 

= 0.63 ksi 
n 28.5 

which is well below the nominal capacity of the nodes and bottle-shaped or rectangular struts. 
The low stress is used to demonstrate an alternative solution methodology. By using the low 
stress, the node and strut capacities are adequate by inspection; however, the size of strut cd 
must be confirmed. Solving for the geometry and forces in Fig. 11.17b, Tab = 15.9 kips, Tdf = 
17.9 kips, and strut cd carries Fed= 12.3 kips. The thickness of the strut is assumed as 4.75 in .. 
the same as the bearing plate. Therefore, the width of strut cd is 

12.3 . 
w,d = ---- = 4.11 m. 

0.63 X 4.75 

2 No. 4 (No. 13} at 4 in. 
at each connection i:- 18"-;i r 1" 

-~ r-------+--------17 
Bearing 

plate 
a 

Assume 

1'-2" 

b 

4" 

(a} Strut-and-tie model 

FIGURE 11.17 
Strut-and-tie model for Example 11.4. 
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This is slightly more than the 4 in. assumed. A minor modification to the bearing stress would 
make this acceptable; therefore, the design continues with the selected geometry. The required 
area of steel for tie ab is 

¼,b 15.9 2 
A,, = <pf, = 0.75 X 60 = 0.35 in 

which is satisfied by using two No. 4 (No. 13) bars welded to each bearing plate. For tie df, 

¼/ 17 .9 = 0.40 in2 
A,. = <pf,, = 0.75 X 60 

which is also met using two No. 4 (No. 13) closed stirrups at 4 in. on center at each load point. 

11 .6 CORNERS AND T JOINTS 

FIGURE 11.18 
Structures with comers 
subject to opening or closing 
moments: (a) gable frame; 
(b) earth-retaining wall; 
(c) liquid storage tank; 
(d) plan view of multicell 
liquid storage tank; (e) large 
box culvert. 

In many common types of reinforced concrete structures, moments and other forces 
must be transmitted around comers. Some examples, shown in Fig. 11.18, include gable 
frames, retaining walls, liquid storage tanks, and large box culverts. Reinforcement 
detailing at the corners is rarely obvious. A comprehensive experimental study of such 
joints by Nilsson and Losberg (Ref. l l.3) showed that many commonly used joint 
details will transmit only a small fraction of their assumed strength. Ideally, the joint 
should resist a moment at least as large as lhe calculated failure moment of the members 
framing into it (i.e., the joint efficiency should be at least 100 percent). Tests have shown 
that, for common reinforcing details, joint efficiency may be as low as 30 percent. 

Corner joints may be subjected to opening moments, causing flexural tension on 
the inside of the joint, or closing moments, causing tension on the outside. Generally, 
the first case is the more difficult to detail properly. 

Consider, for example, a corner joint subjected to opening moments, such as an 
exterior comer of the liquid storage tank shown in the plan view in Fig. 11 .18d. 

Gravity loads 
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Earth 
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FIGURE 11.19 
Corner joint subject to 
opening moments: 
(a) cracking in an improperly 
designed joint; (b) strut-and
tie model of joint behavior. Element A 
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Efficiencies of comer joints subject to opening moments for various reinforcing details: (a) 32 percent; (b) 68 percent; (c) 77 
percent; (d) 87 percent; (e) 115 percent. (After Ref I 1.3.) 

Figure 11.19a shows the system of forces acting on such a comer. The reinforcing bar 
pattern shown is not recommended. Fonnation of crack 1, radiating inward from the 
comer, is perhaps obvious. Crack 2, which may lead to spjjtting off the outside comer, 
may not be so obvious. However, the resultant of the two compressive forces C, having 
a magnitude Cv'2, is equilibrated by the resultant tension Tv'2. These two forces, one 
applied near the outer comer and one near the inner comer, require high tensile stress 
between the two, leading to formation of crack 2 as shown. The same conclusion is 
reached considering a small concrete element A in the corner. It is subjected to the 
shearing forces shown as a result of the forces C and T from the entering members. 
The resultant of these shearing stresses is 45° principal tension across the comer, 
confirming formation of crack 2. 

One may, at first, be tempted to add an L-shaped bar around the outside of the 
corner in an attempt to confine the outer concrete. Such a bar would serve no purpose, 
however, because the bar would be in compression and may actually assist in pushing 
the corner off. The strut-and-tie model of Fig. 11.19b provides valuable insight into 
the needed reinforcement, indicating that, in addition to well-anchored tensile bars 
to transmit the forces Tinto the joint, some form of radial reinforcement is required to 
permit the compressive forces C to "turn the corner." 

Test results for a large number of joints with alternative bar details are reported 
in Ref. 11.3. Comparative efficiencies for some specific details, relating the maximum 
moment transmitted by the comer joint to the flexural capacity of the entering members, 
are summarized in Fig. 11.20. In all cases, the reinforcement ratio of the entering 



FIGURE 11.21 
ComparaLive efficiencies of 
T joints subject to bending 
moment: (a) 24 to 40 percent 
depending on reinforcement 
ratio; (b) 82 to J 10 percent 
depending on reinforcement 
raLio. (After Ref /1.3.) 

FIGURE 11.22 
T joint behavior subjected 
to moment: (a) bending 
moment and resulting shear 
forces; (b) Slrut-and-lie 
model. 
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members is 0.75 percent. Figure 11.20a is a simple detail, probably often used, but it 
provides joint efficiency of only 32 percent. The details in Fig. l J .20b, reinforced with 
bent bars in the form of hairpins with the plane of the hooks parallel to the inside face 
of the joint, provide efficiency of 68 percent. In Fig. l l.20c, the main reinforcement 
is simply looped and continued out the other leg of the joint, resulting in an efficiency 
of 77 percent. The somewhat simi lar detail shown in Fig. J 1.20d, in which the bars 
entering the joint are terminated with separate loops, gives an efficiency of 87 percent. 
The best performance results from the detail shown in Fig. l I .20e-the same as in 
Fig. 11.20d except for lhe addition of a diagonal bar. This improves joint efficiency to 
1 I 5 percent, so that the joint is actually stronger than the design strength of the 
members framing into it. It was determined experimentally that the area of the diagonal 
bar should be about one-half that of the main reinforcement. 

The joints between the vertical wall and horizontal base slab of retaining walls 
(see Fig. 11.18b) are also subjected to opening moments. Tests of such joints confirm 
the benefit of placing a diagonal bar similar to Fig. l l .20e. Retaining wall bar details 
will be discussed further in Chapter 17. 

T joints also may be subjected to bending moments, such as if only one cell of 
the multiple-cell liquid storage tank of Fig. 11.18d were filled. Tests of such joints, 
reported in Ref. l l.3, again indicate the importance of proper detailing. The reinforc
ing bar arrangement shown in Fig. J l.2la, which is sometimes seen, permits a joint 
efficiency of only 24 to 40 percent, but the siinple rearrangement shown in Fig. 11.21 b 
improves the efficiency to between 82 and 110 percent. In both cases, efficiency 
depends upon the main reinforcement ratio in the entering members, with highest 
efficiency correspondjng to the lowest tensile reinforcement ratio. 

A strut-and-tie model for the T joint confirms the research results presented 
above. Figure 11.22a shows tbat a clockwise moment applied to the stem of the T is 
resisted by shear forces at the inflection points of the T top. The strut-and-lie model 
in Fig. 11.22b clearly shows that the stem reinforcement must hook to the left for the 
joint to be effective, just as shown in Fig. 11.2 lb. 
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Joints subjected to closing moments, with main reinforcement passing around 
the comer close to the outside face, cause few detailing problems because the main 
tension steel from the entering members can be carried around the outside of the 
comer. There is, however, a risk of splitting the concrete in the plane of the bend, or 
concrete crushing inside the bend. The effic.iency of such joints can be improved by 
increasing the bend radius of the bar. 

11.7 BRACKETS AND CORBELS 

FIGURE 11.23 
Typical reinforced concrete 
bracket: (a) loads and 
reinforcement; (b) strut-aod
tie model for internal forces. 

Brackets such as shown in Fig. 11.23a are widely used in precast construction for 
supporting precast beams at the columns. When they project from a wall, rather 
than from a column, they are properly called corbels, although the two terms are 
often used interchangeably. Brackets are designed mainly to provide for the vertical 
reaction Vu at the end of the supported beam, but unless speciaJ precautions are 
taken to avoid horizontal forces caused by restrained shrinkage, creep (in the case 
of prestressed beams), or temperature change, they must aJso resist a horizontal 
force N,,c-

Steel bearing plates or angles are generally used on the top surface of the 
brackets, as shown, to provide a uniform contact surface and to distribute the reaction. 
A corresponding steel bearing plate or angle is usually provided at the lower corner of 
the supported member. If the two plates are welded together, horizontaJ forces clearly 
must be aJJowed for in the design. Even with Teflon or elastomeric bearing pads, 
frictionaJ forces will develop due to volumetric change. 

The structural performance of a bracket can be visuaJized easily by means of 
the strut-and-tie model shown in Fig. 11.23b. The downward thrust of the load Vu is 
equilibrated by the verticaJ component of the reaction from the diagonal compres
sion strut that carries the load down into the column. The outward thrust at the top 
of the strut is balanced by the tension in the horizontal tie bars across the top of the 
bracket; these also take the tension, if any, imparted by the horizontal force N,,c- At 
the left end of the horizontal tie, the tension is equilibrated by the horizontaJ 
component of thrust from the second compression strut shown. The verticaJ 
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component of this thrust requires the tensile force shown acting downward at the 
left side of the supporting column. 

The steel required, according to the strut-and-tie model, is shown in Fig. 11.23a. 
The main bars Ase must be carefully anchored because they need to develop their full 
yield strength.{y directly under the load Vu, and for this reason they are usually welded 
to the underside of the bearing angle and a 90° hook is provided for anchorage at the 
left side. Closed hoop bars with area Ah confine the concrete in the two compression 
struts and resist a tendency for splitting in a direction parallel to the thrust. The framing 
bars shown are usually of about the same diameter as the stirrups and serve mainly to 
improve the stirrup anchorage at the outer face of the bracket. 

The bracket may also be considered as a very short cantilevered beam, with 
flexural tension at the column face resisted by the top bars Ase· Either concept will 
result in about the same area of main reinforcement. 

A second possible mode of failure is by direct shear along a plane more or less 
flush with the vertical face of the main part of the column. Shear-friction reinforcement 
crossing such a crack (see Section 4.9) would include the area Ase previously placed 
in the top tie and the area Ah from the hoops below it. Other failure modes include 
flexural tension failure, with yielding of the top bars followed by crushing of the 
concrete at the bottom of the bracket; crushing of the concrete under the bearing angle 
(particularly if end rotation of the supported beam causes the force Vu to be applied 
too close to the outer comer of the bracket); and direct tension failure, if the horizon
tal force Nue is larger than anticipated. 

The provisions of ACI Code 11.8 for the design of brackets and corbels have 
been developed mainly based on tests (Refs. 11.9, 11.11, and 11.12) and relate to the 
flexural model of bracket behavior. They apply to brackets and corbels with a shear 
span ratio ajd of 1.0 or less (see Fig. 11.23a). Brackets and corbels with ajd less than 
2 may be designed using strut-and-tie models, as described in Chapter 10. The distance 
d is measured at the column face, and the depth at the outside edge of the bearing area 
must not be less than 0.5d. The usual design basis is employed, i.e., Mu ::5 cf>Mn and 
Vu =5 cf> Vn, and for brackets and corbels (for which shear dominates the design), cf> is 
to be taken equal to 0.75 for all strength calculations, including flexure and direct 
tension as well as shear. 

The section at the face of the supporting column must simultaneously resist the 
shear Vu, the moment Mu = Vuav + Nuc<h - d), and the horizontal tension Nue· Unless 
special precautions are taken, a horizontal tension not less than 20 percent of the 
vertical reaction must be assumed to act. This tensile force is to be regarded as live 
load, and a load factor of 1.6 should be applied. 

An amount of steel A1 to resist the moment Mu can be found by the usual methods 
for flexural design. Thus, 

A ___ M_u __ 
i - c/>.{y(d - a/2) 

(11.6) 

where a = A1Jy/0.85J:b. An additional area of steel An must be provided to resist the 
tensile component of force: 

Nue 
An = c/>.{y (11.7) 

The total area required for flexure and direct tension at the top of the bracket is thus 

(11.8) 
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Design for shear is based on the shear-friction method of Section 4.9, and the 
total shear-friction reinforcement Avfis found by 

v,, 
Avf = cpµJy (11.9) 

where the friction factor JL for monolithic construction is 1 .4,\, where ,\ = 1.0 for 
normalweight concrete and 0.75 for both sand-lightweight and all-lightweight concrete, 
in accordance with ACI Code 11.6. The value of Vn = VJ <p must not exceed the smallest 
of 0.2J;bwd, (480 + 0.08f;)bwd, and 1600bwd at the support face for normalweight 
concrete or the smaller of (0.2 - 0.07ajd)J;bwd and (800 - 280ajd)bwd for light
weight concrete. Then, according to ACI Code 11.8, the total area required for shear 
plus direct tension at the top of the bracket is 

(11.10) 

with the remaining part of Avf placed in form of closed hoops having area Ah in the lower 
part of the bracket, as shown in Fig. 11.23a. 

Thus, the total steel area Ase required at the top of the bracket is equal to the 
larger of the values given by Eq. (11.8) or (11.10). An additional restriction, that Ase 
not be less than 0.04(!;/Jy)bd, is intended to avoid the possibility of sudden failure 
upon formation of a flexural tensile crack at the top of the bracket. 

According to the ACI Code, closed hoop stirrups having area Ah (see Fig. 11.23a) 
not less than 0.5(Asc - An) must be provided and be uniformly distributed within two
thirds of the effective depth adjacent to and parallel to Ase· This requirement is more 
clearly stated as follows: 

and 
1 

>-A - 3 vf (11.11) 

EXAMPLE 11.5 Design of column bracket. A column bracket having the general features shown in 
Fig. 11.24 is to be designed to carry the end reaction from a long-span precast girder. 
Vertical reactions from service dead and live loads are 25 and 51 kips, respectively, applied 
at av = 5.5 in. from the column face. A steel bearing plate will be provided for the girder, 
which will rest directly on a 5 X 3 X ! in. steel angle anchored at the outer corner of the 
bracket. Bracket reinforcement will include main steel A.,c welded to the underside of 
the steel angle, closed hoop stirrups having total area Ah distributed appropriately through 
the bracket depth, and framing bars in a vertical plane near the outer face. Select appropri
ate concrete dimensions, and design and detail all reinforcement. Material strengths are 
J; = 5000 psi andfY = 60,000 psi. 

SOLUTION. The vertical factored load to be carried is 

V,, = 1.2 X 25 + 1.6 X 51 = 112 kips 

In the absence of a roller or low-friction support pad, a horizontal tensile force of 

Nuc = 0.20 X 112 = 22.4 kips 

will be included. According to the shear friction provisions of the ACI Code, the nominal shear 
strength Vn must not exceed 0.2J;bd, (480 + 0.08f;)bd, or 1600bd. WithJ; = 5000 psi, the 
second limit controls. Then, with Vu = </> Vn and with the column width b = 12 in., 

112 = 0.75 X 0.880 X 12d 



FIGURE 11.24 
Column bracket design 
example. 
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from which d = 14.14 in. Estimating 1 in. from the center of the main steel to the top surface 
of the bracket, a total depth h = 16 in. will be selected, with d approximately equal to 15 in., 
the exact value depending on the bar diameter chosen for Ase- If a 45° slope is used, as indi
cated in Fig. 11.24, the bracket depth at the outside of the bearing area will be 8 in. This is not 
less than 0.5d = 7.5 in., as required. For the bracket geometry selected, ajd = 5.5/15 = 0.36. 
This does not exceed the 1.0 limit imposed by the ACI Code. 

The total shear friction steel is found from Eq. (11.9): 

A = ~ = 
112 

= l.78in2 

vf cpµ,J;, 0.75 X 1.4 X 60 

The bending moment to be resisted is 

Mu = V.,av + Nuc(h - d) 

= 112 X 5.5 + 22.4 X l = 638 kips 

The depth of the flexural compression stress block will be estimated to be 2 in., so, from Eq. ( 11.6), 

----
6
-

3
-
8
---- = 101 in2 

0.75 X 60(15 - 2.0/2) . 

Checking the stress block depth gives 

A1J;, 1.01 X 60 . 
a = --- = ----- = 1.12 m. 

0.85J;b 0.85 X 5 X 12 

so the revised steel area is 

638 .• 
A = --------- = 0.98 in2 

f 0.75 X 60(15 - 1.12/2) 

The tensile force of 22.4 kips requires an additional steel area, from Eq. (11.7), of 

Nuc 22.4 2 
A = - = --- = 0.50 in 

n cpfy 0.75 X 60 

Thus, from Eqs. (11.8) and (11.10), respectively, the total steel area at the top of the bracket 
must not be less than 

Ase :2: Ai + An = 0.98 + 0.50 = 1.48 in2 
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or less than 

Ase 2: ~ Avf + An = ~ X 1.78 + 0.50 = 1.69 in2 

The second requirement controls here. The minimum steel requirement of 

- J; - 5 - . 2 Ase min - 0.04 - bd - 0.04 X - X 12 X 16 - 0.64 m 
· J;, 60 

is seen not to control. A total of three No. 7 (No. 22) bars, providing Ase = 1.80 in2, will 
be used. 

Closed hoop steel having a total area Ah not less than 0.5(Asc - An) must be provided. 
Thus, 

Ah 2: 0.5A1 = 0.5 X 0.92 = 0.46 in2 

and 

Ah 2: 0.5 X ~ Avf = ½ X 1.78 = 0.60 in2 

The second requirement controls. Three No. 3 (No. 10) closed hoops will be provided, giving 
total area Ah = 0.66 in2. These must be placed within ~ of the effective depth of the main 
steel. A spacing of 2.5 in. will be satisfactory, as indicated in Fig. 11.24. A pair of No. 3 
(No. 10) framing bars will be added at the inside corner of the hoops to improve anchorage, 
as shown. 

Anchorage of the No. 7 (No. 22) bars will be provided at the right end by welding to the 
underside of the steel angle and at the left end by a standard 90° bend (see Fig. 5.10). The basic 
development length for hooked bars (Table 5.3) is 

l = (0.02r/J,fy) d = (0.02 X 1 X 60,000) 0_875 = 14_8 in. 
dh Av]'; b l X v'56oo 

Two modification factors apply here. The first is 0.7, provided at least 2 in. cover is maintained 
at the end of the hook, and the second is (requiredAs)/(providedAs) = 1.69/1.80 = 0.94. Thus, 
the required development length past the face of the column is 

ldh = 14.8 X 0.7 X 0.94 = 9.74 in. 

This requirement is easily met. The hook extension will be l2db = 12 X 0.875 = 10.5 in. For 
the hoop bars, a standard l '35° hook, as shown in Fig. 5.9b, will be used. 
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PROBLEMS 
11.1. An interior Type 1 joint, which is to be considered a part of the primary lateral 

load-resisting system, is to be designed. The 16 in. square column, with main 
steel consisting of four No. 11 (No. 36) bars, is intersected by two 12 X 18 in. 
beams in the X direction, reinforced with three No. 10 (No. 32) top bars and 
three No. 8 (No. 25) bottom bars. In the Y direction, there are two 12 X 22 in. 
girders, reinforced with three No. 11 (No. 36) top bars and three No. 9 
(No. 29) bottom bars. Concrete cover is 2.5 in. to the center of the bars, except 
for the top steel in the girders, which is carried just under the top steel of the 
beams. Design and detail the joint, using 1; = 4000 psi and J;, = 60,000 psi. 
Specify placement of all bars and cutoff points. 

11.2. A typical exterior joint of the building of Problem 11.1 is identical to the 
interior joint except that the 12 X 18 in. beam occurs on one side of the column 
only; the girders frame into two opposite faces, as before. All reinforcement is 
the same as for the joint of Problem 11.1. Design and detail the joint, specify
ing bar placement, cutoff points, and details such as bar hook dimensions. 

11.3. The precast columns of a proposed parking garage will incorporate symmetri
cal brackets to carry the end reactions of short girders that, in turn, carry long
span precast, prestressed double T floor units. The girder reactions will be 
applied 6 in. from the column face, as shown in Fig. Pl 1.3, and a total width 
of bracket of 9 in. must be provided for proper bearing. Column width in the 
perpendicular direction is 20 in. Service load reactions applied at the top face 
of the brackets are 45 kips dead load and 36 kips live load. Select all unspeci
fied concrete dimensions and design and detail the reinforcement. A corner 
angle is suggested at the outer top edge of the bracket. Column material 
strengths are 1: = 6000 psi and .f,. = 60,000 psi. 

45° 

9",20"19" 

V V 

45° 
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FIGURE Pll.4 

11.4. The stem of a 60 ft long, 8 ft wide simply supported single T beam rests on the 
ledge of the inverted T beam shown in Fig. Pl 1.4. The T beam has a bearing 
area 6 in. thick and 4 in. parallel to the axis of the T. The applied service load 
is 85 psf dead load, including self-weight, and 50 psf live load. Design the 
connection detail under the stem using/; = 5000 psi and.[y = 60,000 psi. 

8"1 1':b"1 8" 
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Analysis of Indeterminate 
Beams and Frames 

12.1 CONTINUITY 

The individual members that compose a steel or timber structure are fabricated or cut 
separately and joined together by rivets, bolts, welds, or nails. Unless the joints are 
specially designed for rigidity, they are too flexible to transfer moments of significant 
magnitude from one member to another. In contrast, in reinforced concrete structures, 
as much of the concrete as is practical is placed in one single operation. Reinforcing 
steel is not terminated at the ends of a member but is extended through the joints into 
adjacent members. At construction joints, special care is taken to bond the new concrete 
to the old by carefully cleaning the latter, by extending the reinforcement through the 
joint, and by other means. As a result, reinforced concrete structures usually represent 
monolithic, or continuous, units. A load applied at one location causes deformation 
and stress at all other locations. Even in precast concrete construction, which resem
bles steel construction in that individual members are brought to the job site and joined 
in the field, connections are often designed to provide for the transfer of moment as 
well as shear and axial load, producing at least partial continuity. 

The effect of continuity is most simply illustrated by a continuous beam, such as 
shown in Fig. 12. la. With simple spans, such as provided in many types of steel 
construction, only the loaded member CD would deform, and all other members of the 
structure would remain straight. But with continuity from one member to the next 
through the support regions, as in a reinforced concrete structure, the distortion caused 
by a load on one single span is seen to spread to all other spans, although the magni
tude of deformation decreases with increasing distance from the loaded member. All 
members of the six-span structure are subject to curvature, and thus also to bending 
moment, as a result of loading span CD. 

Similarly, for the rigid-jointed frame of Fig. 12. lb, the distortion caused by a 
load on the single member GH spreads to all beams and all columns, although, as 
before, the effect decreases with increasing distance from the load. All members are 
subject to bending moment, even though they may carry no transverse load. 

If horizontal forces, such as forces cau~ed by wind or seismic action, act on a 
frame, it deforms as illustrated by Fig. 12.lc. Here, too, all members of the frame 
distort, even though the forces act only on the left side; the amount of distortion is seen 
to be the same for all corresponding members, regardless of their distance from the 
points of loading, in contrast to the case of vertical loading. A member such as EH, 
even without a directly applied transverse load, will experience deformations and 
associated bending moment. 

In statically determinate structures, such as simple-span beams, the deflected 
shape and the moments and shears depend only on the type and magnitude of the loads 

387 
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FIGURE 12.1 
Deflected shape of 
continuous beams and 
frames. 
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and the dimensions of the member. In contrast, inspection of the statically indeterminate 
structures in Fig. 12.1 shows that the deflection curve of any member depends not 
only on the loads but also on the joint rotations, whose magnitudes in turn depend on 
the distortion of adjacent, rigidly connected members. For a rigid joint such as joint H 
in the frame shown in Fig. 12.lb or c, all the rotations at the near ends of all members 
framing into that joint must be the same. For a correct design of continuous beams and 
frames, it is evidently necessary to determine moments, shears, and thrusts consider
ing the effect of continuity at the joints. 

The determination of these internal forces in continuously reinforced concrete 
structures is usually based on elastic analysis of the structure at factored loads with 
methods that will be described in Sections 12.2 through 12.5. Such analysis requires 
knowledge of the cross-sectional dimensions of the members. Member dimensions are 
initially estimated during preliminary design, which is described in Section 12.6 along 
with guidelines for establishing member proportions. For checking the results of more 
exact analysis, the approximate methods of Section 12.7 are useful. For many struc
tures, a full elastic analysis is not justified, and the ACI coefficient method of analysis 
described in Section 12.8 provides an adequate basis for design moments and shears. 

Before failure, reinforced concrete sections are usually capable of considerable 
inelastic rotation at nearly constant moment, as was described in Section 6.9. This 
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permits a redistribution of elastic moments and provides the basis for plastic analysis 
of beams, frames, and slabs. Plastic analysis will be developed in Section 12.9 for 
beams and frames and in Chapters 14 and 15 for slabs. 

12.2 LOADING 

FIGURE 12.2 
Alternate live loadings for 
maximum effects. 

The individual members of a structural frame must be designed for the worst combi
nation of loads that can reasonably be expected to occur during its useful life. Internal 
moments, shears, and thrusts are brought about by the combined effect of dead and 
live loads, plus other loads, such as wind and earthquake, as discussed in Section 1.7. 
While dead loads are constant, live loads such as floor loads from human occupancy 
can be placed in various ways, some of which will result in larger effects than others. 
In addition, the various combinations of factored loads specified in Table 1.2 must be 
used to determine the load cases that govern member design. The subject of load 
placement will be addressed first. 

a. Placement of Loads 

In Fig. 12.2a only span CD is loaded by live load. The distortions of the various frame 
members are seen to be largest in, and immediately adjacent to, the loaded span and 
to decrease rapidly with increasing distance from the load. Since bending moments are 
proportional to curvatures, the moments in more remote members are correspond
ingly smaller than those in, or close to, the loaded span. However, the loading shown 
in Fig. 12.2a does not produce the maximum possible positive moment in CD. In fact, 
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if additional live load were placed on span AB, this span would bend down, BC would 
bend up, and CD itself would bend down in the same manner, although to a lesser 
degree, as it is bent by its own load. Hence, the positive moment in CD is increased if 
AB and, by the same reasoning, EF are loaded simultaneously. By expanding the same 
reasoning to the other members of the frame, one can easily see that the checkerboard 
pattern of live load shown in Fig. 12.2b produces the largest possible positive moments, 
not only in,,CD, but in all loaded spans. Hence, two such checkerboard patterns are 
required to obtain the maximum positive moments in all spans. 

In addition to maximum span moments, it is often necessary to investigate min
imum span moments. Dead load, acting as it does on all spans, usually produces only 
positive span moments. However, live load, placed as in Fig. 12.2a, and even more so 
in Fig. 12.2b, is seen to bend the unloaded spans upward, i.e., to produce negative 
moments in the span. If these negative live load moments are larger than the generally 
positive dead load moments, a given girder, depending on load position, may be subject 
at one time to positive span moments and at another to negative span moments. It must 
be designed to withstand both types of moments; i.e., it must be furnished with tensile 
steel at both top and bottom. Thus, the loading of Fig. 12.2b, in addition to giving 
maximum span moments in the loaded spans, gives minimum span moments in the 
unloaded spans. 

Maximum negative moments at the supports of the girders are obtained, on the 
other hand, if loads are placed on the two spans adjacent to the particular support and 
in a corresponding pattern on the more remote girders. A separate loading scheme of 
this type is then required for each support for which maximum negative moments are 
to be computed. 

In each column, the largest moments occur at the top or bottom. While the load
ing shown in Fig. 12.2c results in large moments at the ends of columns CC' and DD', 
the reader can easily be convinced that these moments are further augmented if 
additional loads are placed as shown in Fig. 12.2d. 

It is seen from this brief discussion that to calculate the maximum possible 
moments at all critical points of a frame, live load must be placed in a great variety 
of different schemes. In most practical cases, however, consideration of the rela
tive magnitude of effects will permit limitation of analysis to a small number of 
significant cases. 

b. Load Combinations 

The ACI Code requires that structures be designed for a number of load combinations, 
as discussed in Section 1. 7. Thus, for example, factored load combinations might 
include (1) dead plus live load; (2) dead plus fluid plus temperature plus live plus soil 
plus snow load; (3) three possible combinations that include dead, live, and wind load; 
and ( 4) two combinations that include dead load, live load, and earthquake load, with 
some of the combinations including snow, rain, soil, and roof live load. While each of 
the combinations may be considered as an individual loading condition, experience 
has shown that the most efficient technique involves separate analyses for each of the 
basic loads without load factors, that is, a full analysis for unfactored dead load only, 
separate analyses for the various live load distributions described in Section 12.2a, and 
separate analyses for each of the other loads (wind, snow, etc.). Once the separate 
analyses are completed, it is a simple matter to combine the results using the appro
priate load factor for each type of load. This procedure is most advantageous because, 
for example, live load may require a load factor of 1.6 for one combination, a value of 
1.0 for another, and a value of 0.5 for yet another. Once the forces have been calculated 
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for each combination, the combination of loads that governs for each member can usu
ally be identified by inspection. 

12.3 SIMPLIFICATIONS IN FRAME ANALYSIS 

Considering the complexity of many practical building frames and the need to 
account for the possibility of alternative loadings, there is evidently a need to 
simplify. This can be done by means of certain approximations that allow the deter
mination of moments with reasonable accuracy while substantially reducing the 
amount of computation. 

Numerous trial computations have shown that, for building frames with a rea
sonably regular outline, not involving unusual asymmetry of loading or shape, the 
influence of sidesway caused by vertical loads can be neglected. In that case, moments 
due to vertical loads are determined with sufficient accuracy by dividing the entire 
frame into simpler subframes. Each of these consists of one continuous beam, plus the 
top and bottom columns framing into that particular beam. Placing the live loads on 
the beam in the most unfavorable manner permits sufficiently accurate determination 
of all beam moments, as well as the moments at the top ends of the bottom columns 
and the bottom ends of the top columns. For this partial structure, the far ends of the 
columns are considered fixed, except for such first-floor or basement columns where 
soil and foundation conditions dictate the assumption of hinged ends. Such an approach 
is explicitly permitted by ACI Code 8.11, which specifies the following for floor and 
roof members: 

1. The live load may be considered to be applied only to the floor or roof under con
sideration, and the far ends of columns built integrally with the structure may be 
considered fixed. 

2. The arrangement of live load may be limited to combinations of (a) factored dead load 
on all spans with full factored live load on two adjacent spans, and (b) factored dead 
load on all spans with full factored live load on alternate spans. 

When investigating the maximum negative moment at any joint, negligible error 
will result if the joints second removed in each direction are considered to be completely 
fixed. Similarly, in determining maximum or minimum span moments, the joints at the 
far ends of the adjacent spans may be considered fixed. Thus, individual portions of a 
frame of many members may be investigated separately. 

Figure 12.3 demonstrates the application of the ACI Code requirements for 
live load on a three-span subframe. The loading in Fig. 12.3a results in maximum 
positive moments in the exterior spans, the minimum positive moment in the center 
span, and the maximum negative moments at the interior faces of the exterior 
columns. The loading shown in Fig. 12.3b results in the maximum positive moment 
in the center span and minimum positive moments in the exterior spans. The loading 
in Fig. 12.3c results in maximum negative moment at both faces of the interior 
columns. Since the structure is symmetrical, values of moment and shear obtained 
for the loading shown in Fig. 12.3c apply to the right side of the structure as well as 
the left. Due to the simplicity of this structure, joints away from the spans of interest 
are not treated as fixed. 

Moments and shears used for design are determined by combining the moment 
and shear diagrams for the individual load cases to obtain the maximum values along 
each span length. The resulting envelope moment and shear diagrams are shown in 
Fig. 12.3d and e, respectively. The moment and shear envelopes (note the range of 



392 DESIGN OF CONCRETE STRUCTURES Chapter 12 

FIGURE 12.3 
Subframe loading as required 
by ACI Code 8.9: Loading 
for (a) maximum positive 
moments in the exterior 
spans, the minimum positive 
moment in the center span, 
and the maximum negative 
moments at the interior faces 
of the exterior columns; 
(b) maximum positive 
moment in the center span 
and minimum positive 
moments in the exterior 
spans; and (c) maximum 
negative moment at both 
faces of the interior 
columns; (d) envelope 
moment diagram; 
(e) envelope shear diagram. 
(DL and LL represent 
factored dead and live loads, 
respectively.) 
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positions for points of inflection and points of zero shear) are used not only to design 
the critical sections but to determine cutoff points for flexural reinforcement and 
requirements for shear reinforcement. 

In regard to columns, ACI Code 8. IO indicates 

1. Columns shall be designed to resist the axial forces from factored loads on all floors 

or roof and the maximum moment from factored loads on a single adj acent span of 
the floor or roof under consideration. The loading condition giving the maximum ratio 
of moment to axial load shall also be considered. 
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2. In frames or continuous construction, consideration shall be given to the effect of 
unbalanced floor or roof loads on both exterior and interior columns and of eccentric 
loading due to other causes. 

3. In computing moments in columns due to gravity loading, the far ends of columns 
built integrally with the structure may be considered fixed. 

4. The resistance to moments at any floor or roof level shall be provided by distributing 
the moment between columns immediately above and below the given floor in pro
portion to the relative column stiffness and conditions of restraint. 

Although it is not addressed in the ACI Code, axial loads on columns are 
usually determined based on the column tributary areas, which are defined based on 
the midspan of flexural members framing into each column. The axial load from the 
tributary area is used in design, with the exception of first interior columns, which are 
typically designed for an extra 10 percent axial load to account for the higher shear 
expected in the flexural members framing into the exterior face of first interior 
columns. The use of this procedure to determine axial loads due to gravity is conser
vative (note that the total vertical load exceeds the factored loads on the structure) 
and is adequately close to the values that would be obtained from a more detailed 
frame analysis. 

12.4 METHODS FOR ELASTIC ANALYSIS 

Many methods have been developed over the years for the elastic analysis of continu
ous beams and frames. The so-called classical methods (Ref. 12.1), such as application 
of the theorem of three moments, the method of least work (Castigliano's second 
theorem), and the general method of consistent deformation, will prove useful only in 
the analysis of continuous beams having few spans or of very simple frames, and 
are, in fact, rarely used. For the cases generally encountered in practice, such methods 
prove exceedingly tedious, and alternative approaches are preferred. 

For many years moment distribution (Ref. 12.1) provided the basic analytical 
tool for the analysis of indeterminate concrete beams and frames, originally with 
the aid of the slide rule and later with handheld programmable calculators. For 
relatively small problems, moment distribution may still provide the most rapid 
results, and it is often used in current practice, for example, in the Equivalent Frame 
Method of design for slabs described in Section 13.9. However, with the wide
spread availability of computers, manual methods have been replaced largely by 
matrix analysis, which provides rapid solutions with a high degree of accuracy 
(Refs. 12.2 and 12.3). 

Approximate methods of analysis, based either on careful sketches of the shape 
of the deformed structure under load or on moment coefficients, still provide a means 
for rapid estimation of internal forces and moments (Ref. 12.4). Such estimates are 
useful in preliminary design and in checking more exact solutions for gross errors that 
might result from input errors. In structures of minor importance, approximations may 
even provide the basis for final design. 

In view of the number of excellent texts now available that treat methods of 
analysis (Refs. 12.1 to 12.4 to name just a few), the present discussion will be confined 
to an evaluation of the usefulness of several of the more important of these, with 
particular reference to the analysis of reinforced concrete structures. Certain idealiza
tions and approximations that facilitate the solution in practical cases will be described 
in more detail. 
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a. Moment Distribution 

In 1932, Hardy Cross developed the method of moment distribution to solve problems 
in frame analysis that involve many unknown joint displacements and rotations. For the 
next three decades, moment distribution provided the standard means in engineering 
offices for the analysis of indeterminate frames. Even now, it serves as the basic 
analytical tool if computer facilities are not available. 

In the moment distribution method (Ref. 12.1), the fixed-end moments for 
each member are modified in a series of cycles, each converging on the precise final 
result, to account for rotation and translation of the joints. The resulting series can 
be terminated whenever one reaches the degree of accuracy required. After member 
end moments are obtained, all member stress resultants can be obtained from the 
laws of statics. 

It has been found by comparative analyses that, except in unusual cases, building
frame moments found by modifying fixed-end moments by only two cycles of moment 
distribution will be sufficiently accurate for design purposes (Ref. 12.5). 

b. Matrix Analysis 

Use of matrix theory makes it possible to reduce the detailed numerical operations 
required in the analysis of an indeterminate structure to systematic processes of matrix 
manipulation that can be performed automatically and rapidly by computer. Such 
methods permit the rapid solution of problems involving large numbers of unknowns. 
As a consequence, less reliance is placed on special techniques limited to certain types 
of problems, and powerful methods of general applicability have emerged, such as the 
direct stiffness method (Refs. 12.2 and 12.3). By such means, an "exact" determina
tion of internal forces throughout an entire building frame can be obtained quickly and 
at small expense. Three-dimensional frame analysis is possible where required. A 
large number of alternative loadings can be considered, including dynamic loads. 

Some engineering firms prefer to write and maintain their own programs for 
structural analysis particularly suited to their needs. However, most make use of 
readily available programs that can be used for a broad range of problems. Input
including loads, material properties, structural geometry, and member dimensions-is 
provided by the user, often in an interactive mode. Output includes joint displace
ments and rotations, plus moment, shear, and thrust at critical sections throughout 
the structure. Most of these programs perform analysis of two- or three-dimensional 
framed structures subject to static or dynamic loads, shear walls, and other elements 
in a small fraction of the time formerly required, providing results to a high degree 
of accuracy. 

12.5 IDEALIZATION OF THE STRUCTURE 

It is seldom possible for the engineer to analyze an actual complex redundant struc
ture. Almost without exception, certain idealizations must be made in devising an ana
lytical model, so that the analysis will be practically possible. Thus, three-dimensional 
members are represented by straight lines, generally coincident with the actual cen
troidal axis. Supports are idealized as rollers, hinges, or rigid joints. Loads actually 
distributed over a finite area are assumed to be point loads. In three-dimensional 
framed structures, analysis is often limited to plane frames, each of which is assumed 
to act independently. 
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In the idealization of reinforced concrete frames, certain questions require special 
comment. The most important of these pertain to effective span lengths, effective 
moments of inertia, and conditions of support. 

a. Effective Span Length 

In elastic frame analysis, a structure is usually represented by a simple line diagram, 
based dimensionally on the centerline distances between columns and between floor 
beams. Actually, the depths of beams and the widths of columns (in the plane of the 
frame) amount to sizable fractions of the respective lengths of these members; their 
clear lengths are therefore considerably smaller than their centerline distances 
between joints. 

It is evident that the usual assumption in frame analysis that the members are 
prismatic, with constant moment of inertia between centerlines, is not strictly correct. 
A beam intersecting a column may be prismatic up to the column face, but from that 
point to the column centerline it has a greatly increased depth, with a moment of 
inertia that could be considered infinite compared with that of the remainder of the 
span. A similar variation in width and moment of inertia is obtained for the columns. 
Thus, to be strictly correct, the actual variation in member depth should be considered 
in the analysis. Qualitatively, this would increase beam support moments somewhat 
and decrease span moments. In addition, it is apparent that the critical section for 
design for negative bending would be at the face of the support, and not at the center
line, since for all practical purposes an unlimited effective depth is obtained in the 
beam across the width of the support. 

It will be observed that, in the case of the columns, the moment gradient is 
not very steep, so that the difference between centerline moment and the moment 
at the top or bottom face of the beam is small and in most cases can be disregarded. 
However, the slope of the moment diagram for the beam is usually quite steep in 
the region of the support, and there will be a substantial difference between the 
support centerline moment and face moment. If the former were used in propor
tioning the member, an unnecessarily large section would result. It is desirable, 
then, to reduce support moments found by elastic analysis to account for the finite 
width of the supports. 

In Fig. 12.4, the change in moment between the support centerline and the 
support face will be equal to the area under the shear diagram between those two 
points. For knife edge supports, this shear area is seen to be very nearly equal to VaL/2. 
Actually, however, the reaction is distributed in some unknown way across the width 
of the support. This will have the effect of modifying the shear diagram as shown by 
the dashed line; it has been proposed that the reduced area be taken as equal to VaL/3. 
The fact that the reaction is distributed will modify the moment diagram as well as 
the shear diagram, causing a slight rounding of the negative moment peak, as shown 
in the figure, and the reduction of VaL/3 is properly applied to the moment diagram 
after the peak has been rounded. This will give nearly the same face moment as would 
be obtained by deducting the amount VaL/2 from the peak moment. 

Another effect is present, however: the modification of the moment diagram due 
to the increased moment of inertia of the beam at the column. This effect is similar to 
that of a haunch, and it will mean slightly increased negative moment and slightly 
decreased positive moment. For ordinary values of the ratio a, this shift in the moment 
curve will be on the order of VaL/6. Thus, it is convenient simply to deduct the amount 
VaL/3 from the unrounded peak moment obtained from elastic analysis. This allows 
for ( 1) the actual rounding of the shear diagram and the negative moment peak due to 



396 DESIGN OF CONCRETE STRUCTURES Chapter 12 

FIGURE 12.4 
Reduction of negative and 
positive moments in a frame. 
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the distributed reaction and (2) the downward shift of the moment curve due to the 
haunch effect at the supports. The consistent reduction in positive moment of VaL/6 is 
illustrated in Fig. 12.4. 

With this said, there are two other approaches that are often used by structural 
designers. The first is to analyze the structure based on the simple line diagram and to 
reduce the moment from the column centerline to the face of the support by VaL/2 
without adjusting for the higher effective stiffness within the thickness width of the 
column. The moment diagram, although somewhat less realistic than represented by the 
lower curve in Fig. 12.4, still satisfies statics and requires less flexural reinforcement at 
the face of the support. As a consequence, there is less congestion in the beam-column 
joint, a location where it is often difficult to place concrete because of the high quantity 
of reinforcing steel from the flexural members framing into the column (usually from 
two different directions) and from the column itself. The somewhat higher percentage 
of reinforcement required at midspan usually causes little difficulty in concrete place
ment. The second approach involves representing the portion of the "beam" within the 
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width of the column as a rigid link that connects the column centerline with the clear 
span of the flexural member. The portion of the column within the depth of the beam 
can also be represented using a rigid link. Such a model will produce moment diagrams 
similar to the lower curve in Fig. 12.4, without additional analysis. The second 
approach is both realistic and easy to implement in matrix analysis programs. 

It should be noted that there are certain conditions of support for which no 
reduction in negative moment is justified. For example, when a continuous beam is 
carried by a girder of approximately the same depth, the negative moment in the beam 
at the centerline of the girder should be used to design the negative reinforcing steel. 

b. Moments of Inertia 

Selection of reasonable values for moments of inertia of beams and columns for use 
in the frame analysis is far from a simple matter. The design of beams and columns is 
based on cracked section theory, i.e., on the supposition that tension concrete is 
ineffective. It might seem, therefore, that moments of inertia to be used should be 
determined in the same manner, i.e., based on the cracked transformed section, in this 
way accounting for the effects of cracking and presence of reinforcement. Things are 
not this simple, unfortunately. 

Consider first the influence of cracking. For typical members, the moment of 
inertia of a cracked beam section is about one-half that of the uncracked gross concrete 
section. However, the extent of cracking depends on the magnitude of the moments 
relative to the cracking moment. In beams, no flexural cracks would be found near the 
inflection points. Columns, typically, are mostly uncracked, except for those having 
relatively large eccentricity of loading. A fundamental question, too, is the load level to 
consider for the analysis. Elements that are subject to cracking will have more exten
sive cracks near ultimate load than at service load. Compression members will be 
unaffected in this respect. Thus, the relative stiffness depends on load level. 

A further complication results from the fact that the effective cross section of 
beams varies along a span. In the positive bending region, a beam usually has a 
T section. For typical T beams, with flange width about 4 to 6 times web width and 
flange thickness from 0.2 to 0.4 times the total depth, the gross moment of inertia 
will be about 2 times that of the rectangular web with width bw and depth h. 
However, in the negative bending region near the supports, the bottom of the section 
is in compression. The T flange is cracked, and the effective cross section is there
fore rectangular. 

The amount and arrangement of reinforcement are also influential. In beams, if 
bottom bars are continued through the supports, as is often done, this steel acts as 
compression reinforcement and stiffens the section. In columns, reinforcement ratios 
are generally much higher than in beams, adding to the stiffness. 

Given these complications, it is clear that some simplifications are necessary. It 
is helpful to note that, in most cases, it is only the ratio of member stiffnesses that 
influences the final result, not the absolute value of the stiffnesses. The stiffness ratios 
may be but little affected by different assumptions in computing moment of inertia if 
there is consistency for all members. 

In practice, it is generally sufficiently accurate to base stiffness calculations for 
frame analysis on the gross concrete cross section of the columns. In continuous 
T beams, cracking will reduce the moment of inertia to about one-half that of the 
uncracked section. Thus, the effect of the flanges and the effect of cracking may nearly 
cancel in the positive bending region. In the negative moment regions there are no 
flanges; however, if bottom bars continue through the supports to serve as compression 
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steel, the added stiffness tends to compensate for lack of compression flange. Thus, for 
beams, generally a constant moment of inertia can be used, based on the rectangular 
cross-sectional area bwh. 

ACI Code 8.7.1 states that any set of reasonable assumptions may be used for 
computing relative stiffnesses, provided that the assumptions adopted are consistent 
throughout the analysis. ACI Commentary 8. 7 .1 notes that relative values of stiffness 
are important and that two common assumptions are to use gross EI values for all 
members or to use one-half of the gross EI of the beam stem for beams and the gross 
EI for the columns. Additional guidance is given in ACI Code 10.10.4, which speci
fies the '.Ction properties to be used for frames subject to sidesway. Thirty-five 
percent , the gross moment of inertia is used for beams and 70 percent for columns. 
This difl ;s from the guidance provided in ACI Commentary 8.7.1 but, except for a 
factor of 0. 70, matches the guidance provided in the earlier discussion. 

c. Conditions of Support 

For purposes of analysis, many structures can be divided into a number of two
dimensional frames. Even for such cases, however, there are situations in which it is 
impossible to predict with accuracy what the conditions of restraint might be at the 
ends of a span; yet moments are frequently affected to a considerable degree by the 
choice made. In many other cases, it is necessary to recognize that structures may 
be three-dimensional. The rotational restraint at a joint may be influenced or even 
governed by the characteristics of members framing into that joint at right angles. 
Adjacent members or frames parallel to the one under primary consideration may 
likewise influence its performance. 

If floor beams are cast monolithically with reinforced concrete walls (frequently 
the case when first-floor beams are carried on foundation walls), the moment of inertia 
of the wall about an axis parallel to its face may be so large that the beam end could 
be considered completely fixed for all practical purposes. If the wall is relatively thin 
or the beam particularly massive, the moment of inertia of each should be calculated, 
that of the wall being equal to bt3 /12, where t is the wall thickness and b the wall 
width tributary to one beam. 

If the outer ends of concrete beams rest on masonry walls, as is sometimes the 
case, an assumption of zero rotational restraint (i.e., hinged support) is probably clos
est to the actual case. 

For columns supported on relatively small footings, which in turn rest on 
compressible soil, a hinged end is generally assumed, since such soils offer but little 
resistance to rotation of the footing. If, on the other hand, the footings rest on solid 
rock, or if a cluster of piles is used with their upper portion encased by a concrete cap, 
the effect is to provide almost complete fixity for the supported column, and this 
should be assumed in the analysis. Columns supported by a continuous foundation 
mat should likewise be assumed fixed at their lower ends. 

If members framing into a joint in a direction perpendicular to the plane of 
the frame under analysis have sufficient torsional stiffness, and if their far ends are 
fixed or nearly so, their effect on joint rigidity should be included in the computa
tions. The torsional stiffness of a member of length L is given by the expression 
GJ /L, where G is the shear modulus of elasticity of concrete (approximately to 
Ej2.2) and J is the torsional stiffness factor of the member. For beams with 
rectangular cross sections or with sections made up of rectangular elements, J can be 
taken equal to "22(hb3 /3 - b4/5), in which h and b are the cross-sectional dimensions 
of each rectangular element, b being the lesser dimension in each case. In moment 



FIGURE 12.5 
Slab, beam, and girder floor 
system. 
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distribution, when the effect of torsional rigidity is included, it is important that the 
absolute flexural stiffness 4EI/L be used rather than relative I/L values. 

A common situation in beam-and-girder floors and concrete joist floors is 
illustrated in Fig. 12.5. The sketch shows a beam-and-girder floor system in which 
longitudinal beams are placed at the third points of each bay, supported by transverse 
girders, in addition to the longitudinal beams supported directly by the columns. If the 
transverse girders are quite stiff, it is apparent that the flexural stiffness of all beams 
in the width w should be balanced against the stiffness of one set of columns in the 
longitudinal bent. If, on the other hand, the girders have little torsional stiffness, there 
would be ample justification for making two separate longitudinal analyses, one for 
the beams supported directly by the columns, in which the rotational resistance of the 
columns would be considered, and a second for the beams framing into the girders, in 
which case hinged supports would be assumed. In most cases, it would be sufficiently 
accurate to consider the girders stiff torsionally and to add directly the stiffness of all 
beams tributary to a single column. This has the added advantage that all longitudinal 
beams will have the same cross-sectional dimensions and the same reinforcing steel, 
which will greatly facilitate construction. Plastic redistribution of loads upon 
overloading would generally ensure nearly equal restraint moments on all beams 
before collapse as assumed in design. Torsional moments should not be neglected in 
designing the girders. 

12.6 PRELIMINARY DESIGN AND GUIDELINES FOR 
PROPORTIONING MEMBERS 

In making an elastic analysis of a structural framework, it is necessary to know at the 
outset the cross-sectional dimensions of the members, so that moments of inertia and 
stiffnesses can be calculated. Yet the determination of these same cross-sectional 
dimensions is the precise purpose of the elastic analysis. In terms of load, the dead load 
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on a structure is often dominated by the weight of the slab. Obviously, a preliminary 
estimate of member sizes must be one of the first steps in the analysis. Subsequently, 
with the results of the analysis at hand, members are proportioned, and the resulting 
dimensions compared with those previously assumed. If necessary, the assumed 
section properties are modified, and the analysis is repeated. Since the procedure may 
become quite laborious, it is obviously advantageous to make the best possible original 
estimate 0£,member sizes, in the hope of avoiding repetition of the analysis. 

In this connection, it is worth repeating that in the ordinary frame analysis, 
one is concerned with relative stiffnesses only, not the absolute stiffnesses. If, in the 
original estimate of member sizes, the stiffnesses of all beams and columns are 
overestimated or underestimated by about the same amount, correction of these 
estimated sizes after the first analysis will have little or no effect. Consequently, no 
revision of the analysis would be required. If, on the other hand, a nonuniform error 
in estimation is made, and relative stiffnesses differ from assumed values by more 
than about 30 percent, a new analysis should be made. 

The experienced designer can estimate member sizes with surprising accuracy. 
Those with little or no experience must rely on trial calculations or arbitrary rules, 
modified to suit particular situations. In building frames, the depth of one-way slabs 
(discussed at greater length in Chapter 13) is often controlled by either deflection 
requirements or the negative moments at the faces of the supporting beams. Minimum 
depth criteria are reflected in Table 13.1, and negative moments at the face of the 
support can be estimated using coefficients described in Section 12.8. A practical 
minimum thickness of 4 in. is often used, except for joist construction meeting the 
requirements of ACI Code 8.13 (see Section 18.2d). 

Beam sizes are usually governed by the negative moments and the shears at the 
supports, where their effective section is rectangular. Moments can be approximated 
by the fixed-end moments for the particular span, or by using the ACI moment coef
ficients (see Section 12.8). In most cases, shears will not differ greatly from simple 
beam shears. Alternatively, many designers prefer to estimate the depth of beams at 
about ¾ in. per foot of span, with the width equal to about one-half the depth. 

For most construction, wide, relatively shallow beams and girders are preferred 
to obtain minimum floor depths, and using the same depth for all flexural members 
allows the use of simple, low-cost forming systems. Such designs can significantly 
reduce forming costs, while incurring only small additional costs for concrete and 
reinforcing steel. It is often wise to check the reinforcement ratio p based on the 
assumed moments to help maintain overall economy. A value of p = 0.012 in prelim
inary design will give p = 0.01 in a final design, if a more exact analysis is used. 
Obviously, member dimensions are subject to modification, depending on the type and 
magnitude of the loads, methods of design, and material strength. 

Column sizes are governed primarily by axial loads, which can be estimated 
quickly, although the presence of moments in the columns is cause for some increase 
of the area as determined by axial loads. For interior columns, in which unbalanced 
moments will not be large, a 10 percent increase may be sufficient, while for exterior 
columns, particularly for upper stories, an increase of 50 percent in area may be appro
priate. In deciding on these estimated increases, the following factors should be 
considered. Moments are larger in exterior than in interior columns, since in the latter 
dead load moments from adjacent spans will largely balance, in contrast to the case in 
exterior columns. In addition, the influence of moments, compared with that of axial 
loads, is larger in upper-floor than in lower-floor columns, because the moments are 
usually of about the same magnitude, while the axial loads are larger in the latter than 
in the former. 



FIGURE 12.6 
Subframe for estimating 
moments in lower-story 
columns of lateral 
load-resisting frames. 
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For minimum forming costs, it is highly desirable to use the same column 
dimensions throughout the height of a building. This can be accomplished by using 
higher-strength concrete on the lower stories (for high-rise buildings, this should be 
the highest-strength concrete available) and reducing concrete strength in upper stories, 
as appropriate. For columns in laterally braced frames, the preliminary design of the 
lower-story columns may be based on zero eccentricity using 0.80q,P

0 
= Pu. A total 

reinforcement ratio Pg = 0.02 should be used for the column with the highest axial load. 
With a value of Pg = 0.01 for the column with the lowest axial load on higher stories, 
the column size is maintained, reducing J; when Pg drops below 1 percent. Although 
ACI Code 10.9.1 limits p

8 
to a range of 1 to 8 percent, the effective minimum value of 

Pg is 0.005 based on ACI Code 10.8.4, which allows the minimum reinforcement to be 
calculated based on a reduced effective area Ag not less than one-half the total area (this 
provision cannot be used in regions of high seismic risk). For columns in lateral load
resisting frames, a subframe may be used to estimate the factored bending moments 
due to lateral load on the lower-story columns. The subframe illustrated in Fig. 12.6 
consists of the lower two stories in the structure, with the appropriate level of fixity at 
the base. The upper flexural members in the subframe are treated as rigid. Factored 
lateral loads are applied to the structure. The subframe can be analyzed using matrix 
analysis or the portal frame method described in Section 12.7. Judicious consideration 
of factors such as those just discussed, along with simple models, as appropriate, will 
enable a designer to produce a reasonably accurate preliminary design, which in most 
cases will permit a satisfactory analysis to be made on the first trial. 

12.7 APPROXIMATE ANALYSIS 

In spite of the development of refined methods for the analysis of beams and 
frames, increasing attention is being paid to various approximate methods of analysis 
(Ref. 12.4). There are several reasons for this. Prior to performing a complete analy
sis of an indeterminate structure, it is necessary to estimate the proportions of its 
members to determine their relative stiffness, upon which the analysis depends. These 
dimensions can be obtained on the basis of approximate analysis. Also, even with the 
availability of computers, most engineers find it desirable to make a rough check of 
results, using approximate means, to detect gross errors. Further, for structures of minor 
importance, it is often satisfactory to design on the basis of results obtained by rough 
calculation. For these reasons, many engineers at some stage in the design process 
estimate the values of moments, shears, and thrusts at critical locations, using approx
imate sketches of the structure deflected by its loads. 



402 DESIGN OF CONCRETE STRUCTURES Chapter 12 

FIGURE 12.7 
Analysis of fixed-end beam 
by locating inflection points. 

Provided that points of inflection (locations in members at which the bending 
moment is zero and there is a reversal of curvature of the elastic curve) can be located 
accurately, the stress resultants for a framed structure can usually be found on the basis 
of static equilibrium alone. Each portion of the structure must be in equilibrium under 
the application of its external loads and the internal stress resultants. 

For the fixed-end beam in Fig. 12.7a, for example, the points of inflection under 
uniformly pjstributed load are known to be located 0.211/ from the ends of the span. 
Since the moment at these points is zero, imaginary hinges can be placed there without 
modifying the member behavior. The individual segments between hinges can be 
analyzed by statics, as shown in Fig. 12.7b. Starting with the center segment, shears 
equal to 0.289wl must act at the hinges. These, together with the transverse load, produce 
a midspan moment of 0.0417w/2• Proceeding next to the outer segments, a downward 
load is applied at the hinge representing the shear from the center segment. This, 
together with the applied load, produces support moments of 0.0833w/ 2. Note that, for 
this example, since the correct position of the inflection points was known at the start, 
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FIGURE 12.8 
Approximate analysis of 
rigid frame. 
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the resulting moment diagram of Fig. 12.7c agrees exactly with the true moment 
diagram for a fixed-end beam shown in Fig. 12.7d. In more practical cases, inflection 
points must be estimated, and the results obtained will only approximate the true values. 

The use of approximate analysis in determining stress resultants in frames is 
illustrated by Fig. 12.8. Figure 12.8a shows the geometry and loading of a two-member 
rigid frame. In Fig. 12.8b an exaggerated sketch of the probable deflected shape is 
given, together with the estimated location Q,f points of inflection. On this basis, the 
central portion of the girder is analyzed by statics, as shown in Fig. 12.8d, to obtain 
girder shears at the inflection points of 7 kips, acting with an axial load P (still not 
determined). Similarly, the requirements of statics applied to the outer segments of the 
girder in Fig. 12.8c and e give vertical shears of 11 and 13 kips at B and C, res
pectively, and end moments of 18 and 30 ft-kips at the same locations. Proceeding 
then to the upper segment of the column, shown in Fig. 12.8!, with known axial load 
of 11 kips and top moment of 18 ft-kips acting, a horizontal shear of 4.5 kips at the 
inflection point is required for equilibrium. Finally, static analysis of the lower part of 
the column indicates a requirement of 9 ft-kips moment at A, as shown in Fig. 12.8g. 
The value of P equal to 4.5 kips is obtained by summing horizontal forces at joint B. 
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The moment diagram resulting from approximate analysis is shown in Fig. 12.8h. 
For comparison, an exact analysis of the frame indicates member end moments of 
8 ft-kips at A, 16 ft-kips at B, and 28 ft-kips at C. The results of the approximate 
analysis would be satisfactory for design in many cases; if a more exact analysis is to 
be made, a valuable check is available on the magnitude of results. 

A specialization of the approximate method described, known as the portal 
method, is ,i:;ommonly used to estimate the effects of sidesway due to lateral forces 
acting on multistory building frames. For such frames, it is usual to assume that 
horizontal loads are applied at the joints only. If this is true, moments in all members 
vary linearly and, except in hinged members, have opposite signs close to the midpoint 
of each member. 

For a simple rectangular portal frame having three members, the shear forces are 
the same in both legs and are each equal to one-half the external horizontal load. If one 
of the legs is more rigid than the other, it will require a larger horizontal force to 
displace it horizontally the same amount as the more flexible leg. Consequently, the 
portion of the total shear resisted by the stiffer column is larger than that of the more 
flexible column. 

In multistory building frames, moments and forces in the girders and columns of 
each individual story are distributed in substantially the same manner as just discussed 
for single-story frames. The portal method of computing approximate moments, 
shears, and axial forces from horizontal loads is, therefore, based on the following 
three simple propositions: 

1. The total horizontal shear in all columns of a given story is equal and opposite to 
the sum of all horizontal loads acting above that story. 

2. The horizontal shear is the same in both exterior columns; the horizontal shear in 
each interior column is twice that in an exterior column. 

3. The inflection points of all members, columns and girders, are located midway 
between joints. 

Although the last of these propositions is commonly applied to all columns, 
including those of the bottom floor, the authors prefer to deal with the latter separately, 
depending on conditions of foundation. If the actual conditions are such as practically 
to prevent rotation (foundation on rock, massive pile foundations, etc.), the inflection 
points of the bottom columns are above midpoint and may be assumed to be at a 
distance 2h/3 from the bottom. If little resistance is offered to rotation, e.g., for rela
tively small footings on compressible soil, the inflection point is located closer to the 
bottom and may be assumed to be at a distance h/3 from the bottom, or even lower. 
(With ideal hinges, the inflection point is at the hinge, i.e., at the very bottom.) Since 
shears and corresponding moments are largest in the bottom story, a judicious evalu
ation of foundation conditions as they affect the location of inflection points is of 
considerable importance. 

The first of the three cited propositions follows from the requirement that hori
zontal forces be in equilibrium at any level. The second takes account of the fact that 
in building frames interior columns are generally more rigid than exterior ones 
because (1) the larger axial loads require a larger cross section and (2) exterior columns 
are restrained from joint rotation only by one abutting girder, while interior columns 
are so restrained by two such members. The third proposition is very nearly true 
because, except for the top and bottom columns and, to a minor degree, for the exterior 
girders, each member in a building frame is restrained about equally at both ends. For 
this reason, members deflect under horizontal loads in an antisymmetrical manner, 
with the inflection point at midlength. 
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The actual computations in this method are extremely simple. Once column 
shears are determined from propositions 1 and 2 and inflection points located from 
proposition 3, all moments, shears, and forces are simply computed by statics. The 
process is illustrated in Fig. 12.9a. 
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FIGURE 12.9 
Portal method for determining moments from wind load in a building frame: (a) moments, shears, and thrusts; (b) variations of moments. 
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Consider joints C and D. The total shear in the second story is 3 + 6 = 9 kips. 
According to proposition 2, the shear in each exterior column is 9 /6 = 1.5 kips, and 
in each interior column 2 X 1.5 = 3.0 kips. The shears in the other floors, obtained in 
the same manner, act at the hinges as shown. Consider the equilibrium of the rigid 
structure between hinges a, b, and c; the column moments, 3.0 and 9.0 ft-kips, respec
tively, are obtained directly by multiplying the shears by their lever arms, 6 ft. The 
girder moment at C, to produce equilibrium, is equal and opposite to the sum of the 
column moments. The shear in the girder is obtained by recognizing that its moment 
(i.e., shear times one-half the girder span) must be equal to the girder moment at C. 
Hence, this shear is 12.0/10 = 1.2 kips. The moment at end Dis equal to that at C, 
since the inflection point is at midspan. At D, column moments are computed in the 
same manner from the known column shears and lever arms. The sum of the two girder 
moments, to produce equilibrium, must be equal and opposite to the sum of the two 
column moments, from which the girder moment to the right of C is 18.0 + 6.0 -
12.0 = 12.0 ft-kips. Axial forces in the columns also follow from statics. Thus, for the 
rigid body aEd, a vertical shear of 0.3 kip is seen to act upward at d. To equilibrate it, 
a tensile force of -0.3 kip is required in the column CE. In the rigid body abc, an 
upward shear of 1.2 kips at b is added to the previous upward tension of 0.3 kip at a. 
To equilibrate these two forces, a tension force of -1.5 kips is required in column AC. 
If the equilibrium of all other partial structures between hinges is considered in a 
similar manner, all moments, forces, and shears are rapidly determined. 

In the present case, relatively flexible foundations were assumed, and the loca
tion of the lowermost inflection points was estimated to be at h/3 from the bottom. The 
general character of the resulting moment distribution is shown in Fig. 12.9b. 

12.8 ACI MOMENT COEFFICIENTS 

ACI Code 8.3 includes expressions that may be used for the approximate calculation 
of maximum moments and shears in continuous beams and one-way slabs. The 
expressions for moment take the form of a coefficient multiplied by wJ~, where wu 
is the total factored load per unit length on the span and ln is the clear span from face 
to face of supports for positive moment, or the average of the two adjacent clear 
spans for negative moment. Shear is taken equal to a coefficient multiplied by 
w)n/2. The coefficients, found in ACI Code 8.3.3, are shown in Table 12.1 and 
summarized in Fig. 12.10. 

The ACI moment coefficients were derived by elastic analysis, considering 
alternative placement of live load to yield maximum negative or positive moments at 
the critical sections, as was described in Section 12.2. They are applicable within the 
following limitations: 

1. There are two or more spans. 
2. Spans are approximately equal, with the longer of two adjacent spans not greater 

than the shorter by more than 20 percent. 
3. Loads are uniformly distributed. 
4. The unfactored live load does not exceed 3 times the unfactored dead load. 
5. Members are prismatic. 

As discussed in Section 12.3 for more general loading conditions, the alternative 
loading patterns considered in applying the Code moment coefficients result in an enve
lope of maximum moments, as illustrated in Fig. 12.11 for one span of a continuous 
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TABLE 12.1 
Moment and shear values using ACI coefficientst 

Positive moment 
End spans 

If discontinuous end is unrestrained 

If discontinuous end is integral with the support 

Interior spans 
Negative moment at exterior face of first interior support 

Two spans 

More than two spans 

Negative moment at other faces of interior supports 
Negative moment at face of all supports for (1) slabs with spans not exceeding 

10 ft and (2) beams and girders where ratio of sum of column stiffness to beam 
stiffness exceeds 8 at each end of the span 

Negative moment at interior faces of exterior supports for members built integrally 
with their supports 

Where the support is a spandrel beam or girder 

Where the support is a column 

Shear in end members at first interior support 

Shear at all other supports 

1 w" = total factored load per unit length of beam or per unit area of slab. 

ifwJ~ 
14wJ~ 
rt;wJ; 

bwJ~ 
rawJ~ 
ifwJ~ 

iwJ; 
rt;wJ~ 

115 wJn 
. 2 

wJn 
2 

In = clear span for positive moment and shear and the average of the two adjacent clear spans for negative 
moment. 

frame. For maximum positive moment, that span would carry dead and live loads, while 
adjacent spans would carry dead load only, producing the diagram of Fig. 12. lla. For 
maximum negative moment at the left support, dead and live loads would be placed on 
the given span and that to the left, while the adjacent span on the right would carry only 
dead load, with the result shown in Fig. 12.11 b. Figure 12.11 c shows the corresponding 
results for maximum moment at the right support. 

The composite moment diagram formed from the controlling portions of those 
just developed (Fig. 12.1 ld) provides the basis for design of the span. As observed in 
Section 12.3, there are a range of positions for the points of inflection resulting from 
alternate loadings. The extreme locations, required to determine bar cutoff points, can 
be found with the aid of Graph A.3 of Appendix A. In the region of the inflection 
point, it is evident from Fig. 12.1 ld that there may be a reversal of moments for alter
native load patterns. However, within the stated limits for use of the coefficients, there 
should be no reversal of moments at the critical design sections near midspan or at the 
support faces. 

Comparison of the moments found using the ACI coefficients with those calcu
lated by more exact analysis will usually indicate that the coefficient moments are 
quite conservative. Actual elastic moments may be considerably smaller. Conse
quently, in many reinforced concrete structures, significant economy can be achieved 
by making a more precise analysis. This is mandatory for beams and slabs with spans 
differing by more than 20 percent, sustaining loads that are not uniformly distributed, 
or carrying live loads greater than 3 times the dead load. 
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FIGURE 12.10 
Summary of ACI moment 
coefficients: (a) beams with 
more than two spans; 
(b) beams with two spans 
only; (c) slabs with spans not 
exceeding IO ft; (d) beams 
in which the sum of column 
stiffnesses exceeds 8 times 
the sum of beam stiffnesses 
at each end of the span. 
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Because the load patterns in a continuous frame that produce critical moments 
in the columns are different from those for maximum negative moments in the beams, 
column moments must be found separately. According to ACI Code 8.10, columns 
must be designed to resist the axial load from factored dead and live loads on all floors 
above and on the roof plus the maximum moment from factored loads on a single 
adjacent span of the floor or roof under consideration. In addition, because of the 
characteristic shape of the column strength interaction diagram (see Chapter 8), it is 
necessary to consider the case that gives the maximum ratio of moment to axial load. In 
multistory structures, this results from a checkerboard loading pattern (see Fig. 12.2d), 
which gives maximum column moments but at a less-than-maximum axial force. As 
a simplification, in computing moments resulting from gravity loads, the far ends of 
the columns may be considered fixed. The moment found at a column-beam joint for 
a given loading is to be assigned to the column above and the column below in 
proportion to the relative column stiffness and conditions of restraint. 

The shears at the ends of the spans in a continuous frame are modified from the 
value of w Jn/2 for a simply supported beam because of the usually unbalanced end 
moments. For interior spans, within the limits of the ACI coefficient method, this 
effect will seldom exceed about 8 percent, and it may be neglected, as suggested in 
Table 12.1. However, for end spans, at the face of the first interior support, the 
additional shear is significant, and a 15 percent increase above the simple beam shear 
is indicated in Table 12.1. The corresponding reduction in shear at the face of the 
exterior support is conservatively neglected. 

12.9 LIMIT ANALYSIS 

a. Introduction 

Most reinforced concrete structures are designed for moments, shears, and axial forces 
found by elastic theory with methods such as those described in Sections 12.1 through 
12.8. On the other hand, the actual proportioning of members is done by strength 
methods, with the recognition that inelastic section and member response would result 
upon overloading. Factored loads are used in the elastic analysis to find moments in a 
continuous beam, for example, after which the critical beam sections are designed 
with the knowledge that the steel would be well into the yield range and the concrete 
stress distribution very nonlinear before final collapse. Clearly this is an inconsistent 
approach to the total analysis-design process, although it can be shown to be both safe 
and conservative. A beam or frame so analyzed and designed will not fail at a load 
lower than the value calculated in this way. t 

On the other hand, it is known that a continuous beam or frame normally will 
not fail when the nominal moment capacity of just one critical section is reached. A 
plastic hinge will form at that section, permitting large rotation to occur at essentially 
constant resisting moment and thus transferl'ing load to other locations along the span 
where the limiting resistance has not yet been reached. Normally in a continuous beam 
or frame, excess capacity will exist at those other locations because they would have 
been reinforced for moments resulting from different load distributions selected to 
produce maximum moments at those other locations. 

As loading is further increased, additional plastic hinges may form at other 
locations along the span and eventually result in collapse of the structure, but only 

t See the discussion of upper and lower bound theorems of the theory of plasticity, Section 14.2, for an elaboration on this point. 
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FIGURE 12.12 
Three-span continuous beam 
after the fonnation of plastic 
hinges at the interior 
supports. 

after a significant redistribution of moments has occurred. The ratio of negative to 
positive moments found from elastic analysis is no longer correct, for example, and 
the true ratio after redistribution depends upon the flexural strengths actually provided 
at the binging sections. 

Recognition of redistribution of moments can be important because it permits a 
more realistic appraisal of the actual load-carrying capacity of a structure, tbus leading 
to improved economy. In addition. it permits the designer to modify, within limits, the 
moment diagrams for which members are to be designed. Certain sections can be 
deliberately underreiJlforced if moment resistance at adjacent critical sections is 
increased corresponding ly. Adjustment of design moments in this way enables the 
designer to reduce the congestion of reinforcement that often occurs in high-moment 
areas, such as at the beam-column joints. 

The formation of plastic hinges is well established by tests such as that pictured 
in Fig. 12.12. The three-span continuous beam illustrates the inelastic response typical 
of heavily overloaded members. It was reinforced in such a way that plastic binges 
would form at the interior support sections before the limit capacity of sections 
elsewhere was reached. The beam continued to carry increasing load well beyond the 
load that produced first yielding at the supports. The extreme deflections and sharp 
changes in slope of the member axis that are seen here were obtained only slightly 
before final collapse. 

The inconsistency of the present approach to the total analysis-design process, 
the possibility of using the reserve strength of concrete structUJes resulting from moment 
redistribution, and the opportunity to reduce steel congestion in critical regions have 
motivated considerable interest in limit analysis for reinforced concrete based on the 
concepts just described. For beams and frames, ACI Code 8.4 permits limited redis
tribution of moments, depending upon the strain in the tensile steel e,. For slabs, which 
generally use very low reinforcement ratios and consequently have great ductility, 
plastic design methods are especially suitable. 

b. Plastic Hinges and Collapse Mechanisms 

If a short segment of a reinforced concrete beam is subjected to a bending moment, 
curvature of the beam axis will result, and there will be a corresponding rotation of 
one face of the segment with respect to the other. It is convenient to express this in 



FIGURE 12.13 
Plastic hinge characteristics 
in a reinforced concrete 
member: (a) typical moment-
curvature diagram; (b) strains 
and stresses at start of 
yielding; (c) strains and 
stresses at incipient failure. 
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terms of an angular change per unit length of the member. The relation between 
moment and angle change per unit length of beam, or curvature, at a reinforced 
concrete beam section subject to tensile cracking was developed in Section 6.9. 
Methods were presented there by which the theoretical moment-curvature graph might 
be drawn for a given beam cross section, as in Fig. 6.17. 

The actual moment-curvature relationship measured in beam tests differs 
somewhat from that shown in Fig. 6.17, mainly because, from tests, curvatures are 
calculated from average strains measured over a finite gage length, usually about equal 
to the effective depth of the beam. In particular, the sharp increase in curvature upon 
concrete cracking shown in Fig. 6.17 is not often seen because the crack occurs at only 
one discrete location along the gage length. Elsewhere, the uncracked concrete shares 
in resisting flexural tension, resulting in what is known as tension stiffening. This 
tends to reduce curvature. Furthermore, the exact shape of the moment-curvature 
relation depends strongly upon the reinforcement ratio as well as upon the exact 
stress-strain curves for the concrete and steel. 

Figure 12.13 shows a somewhat simplified moment-curvature diagram for an 
actual concrete beam section having a tensile reinforcement ratio equal to about one
half the balanced value. The diagram is linear up to the cracking moment Mer• after 
which a nearly straight line of somewhat flatter slope is obtained. At the moment 
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FIGURE 12.14 
Statically indeterminate 
member after the formation 
of plastic hinge. 

that initiates yielding My, the curvature starts to increase disproportionately. Further 
increase in applied moment causes extensive inelastic rotation until, eventually, 
the compressive strain limit of the concrete is reached at the ultimate rotation r/Ju· The 
maximum moment is often somewhat above the calculated flexural strength Mn, due 
largely to strain hardening of the reinforcement. 

The effect of inelastic concrete response prior to steel yielding is small for 
typically ug.perreinforced sections, as is indicated in Fig. 6.17, and the yield moment 
can be calculated based on the elastic concrete stress distribution shown in Fig. 12.13b: 

My = Asf/ d - ~) (12.1) 

where kd is the distance from the compression face to the cracked elastic neutral axis 
(see Section 3.3b). The nominal moment capacity Mn, based on Fig. 12.13c, is calcu
lated by the usual expression 

Mn = Asfy( d - ~) = Asfy( d -
13t) (12.2) 

For purposes of limit analysis, the M--rf, curve is usually idealized, as shown by 
the dashed line in Fig. 12.13a. The slope of the elastic portion of the curve is obtained 
with satisfactory accuracy using the moment of inertia of the cracked transformed 
section. After the nominal moment Mn is reached, continued plastic rotation is 
assumed to occur with no change in applied moment. The elastic curve of the beam 
will show an abrupt change in slope at such a section. The beam behaves as if there 
were a hinge at that point. However, the hinge will not be "friction-free," but will have 
a constant resistance to rotation. 

If such a plastic hinge forms in a determinate structure, as shown in Fig. 12.14, 
uncontrolled deflection takes place, and the structure will collapse. The resulting 
system is referred to as a mechanism, an analogy to linkage systems in mechanics. 
Generalizing, one can say that a statically determinate system requires the formation 
of only one plastic hinge to become a mechanism. 

This is not so for indeterminate structures. In this case, stability may be main
tained even though hinges have formed at several cross sections. The formation of 
such hinges in indeterminate structures permits a redistribution of moments within the 
beam or frame. It will be assumed for simplicity that the indeterminate beam of 
Fig. 12.15a is symmetrically reinforced, so that the negative bending capacity is the 
same as the positive. Let the load P be increased gradually until the elastic moment at 
the fixed support, ¼,PL, is just equal to the plastic moment capacity of the section Mn. 
This load is 
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FIGURE 12.15 
Indeterminate beam with 
plastic hinges at support and 
midspan. 
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At this load, the positive moment under the load is fj_PL, as shown in Fig. 12.15b. The 
beam still responds elastically everywhere but at the left support. At that point the 
actual fixed support can be replaced for purposes of analysis with a plastic hinge 
offering a known resisting moment Mn. Because a redundant reaction has been 
replaced by a known moment, the beam is now determinate. 

The load can be increased further until the moment under the load also becomes 
equal to Mn, at which load the second hinge forms. The structure is converted into a 
mechanism, as shown in Fig. 12.15c, and (;.ollapse occurs. The moment diagram at 
collapse load is shown in Fig. 12.15d. 

The magnitude of load causing collapse is easily calculated from the geometry 
of Fig. 12.15d: 

from which 

Mn PL 
M+-=-

n 2 4 

6Mn 
P=P =

n L (b) 
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By comparison of Eqs. (b) and (a), it is evident that an increase in P of 12.5 percent 
is possible, beyond the load that caused the formation of the first plastic hinge, 
before the beam will actually collapse. Due to the formation of plastic hinges, a 
redistribution of moments has occurred such that, at failure, the ratio between 
the positive moment and negative moment is equal to that assumed in reinforcing 
the structure. 

c. Rotation Requirement 

It may be evident that there is a direct relation between the amount of redistribution 
desired and the amount of inelastic rotation at the critical sections of a beam required 
to produce the desired redistribution. In general, the greater the modification of the 
elastic moment ratio, the greater the required rotation capacity to accomplish that 
change. To illustrate, if the beam of Fig. 12.15a had been reinforced according to the 
elastic moment diagram of Fig. 12.15b, no inelastic-rotation capacity at all would be 
required. The beam would, at least in theory, yield simultaneously at the left support 
and at midspan. On the other hand, if the reinforcement at the left support had been 
deliberately reduced (and the midspan reinforcement correspondingly increased), 
inelastic rotation at the support would be required before the strength at midspan could 
be realized. 

The amount of rotation required at plastic hinges for any assumed moment 
diagram can be found by considering the requirements of compatibility. The member 
must be bent, under the combined effects of elastic moment and plastic hinges, so that 
the correct boundary conditions are satisfied at the supports. Usually, zero support 
deflection is to be maintained. Moment-area and conjugate-beam principles are useful 
in quantitative determination of rotation requirements (Ref. 12.6). In deflection calcu
lations, it is convenient to assume that plastic hinging occurs at a point, rather than 
being distributed over a finite hinging length, as is actually the case. Consequently, in 
loading the conjugate beam with unit rotations, plastic hinges are represented as 
concentrated loads. 

Calculation of rotation requirements will be illustrated by the two-span continuous 
beam shown in Fig. 12.16a. The elastic moment diagram resulting from a single con
centrated load is shown in Fig. 12.16b. The moment at support Bis 0.096Pl, while that 
under the load is 0.182Pl. If the deflection of the beam at support C were calculated 
using the unit rotations equal to M/EI, based on this elastic moment diagram, a zero 
result would be obtained. 

Figure 12.16c shows an alternative, statically admissible moment diagram 
that was obtained by arbitrarily increasing the support moment from 0.096Pl to 
0.150Pl. If the beam deflection at C were calculated using this moment diagram 
as a basis, a nonzero value would be obtained. This indicates the necessity for 
inelastic rotation at one or more points to maintain geometric compatibility at the 
right support. 

If the beam were reinforced according to Fig. 12.16c, increasing loads would 
produce the first plastic hinge at D, where the beam has been deliberately made under
strength. Continued loading would eventually result in formation of the second plastic 
hinge at B, creating a mechanism and leading to collapse of the structure. 

Limit analysis requires calculation of rotation at all plastic hinges up to, but 
not including, the last hinge that triggers actual collapse. Figure 12.16d shows the 
M/EI load to be imposed on the conjugate beam of Fig. 12.16e. Also shown is the 
concentrated angle change 0 d• which is to be evaluated. Starting with the left span, 



FIGURE 12.16 
Moment redistribution in a 
two-span beam: (a) loaded 
beam; (b) elastic moments; 
(c) modified moments; 
(d) M/EI loads; (e) conjugate 
beam; (f) deflection curve. 
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taking moments of the M/EI loads about the internal hinge of the conjugate beam 
at B, one obtains the left reaction of the c~9jugate beam (equal to the slope of the 
real beam): 

With that reaction known, moments are taken about the support C of the conjugate 
beam and set equal to zero to obtain 

p[1 
0d = 0.060 EI 
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This represents the necessary discontinuity in the slope of the elastic curve shown in 
Fig. 12.16/to restore the beam to zero deflection at the right support. The beam must 
be capable of developing at least that amount of plastic rotation if the modified 
moment diagram assumed in Fig. 12.16c is to be valid. 

d. Rotation Capacity 

The capacity of concrete structures to absorb inelastic rotations at plastic-hinge loca
tions is not unlimited. The designer adopting full limit analysis in concrete must 
calculate not only the amount of rotation required at critical sections to achieve the 
assumed degree of moment redistribution but also the rotation capacity of the members 
at those sections to ensure that it is adequate. 

Curvature at initiation of yielding is easily calculated from the elastic strain 
distribution shown in Fig. 12.13b. 

Er 

l/Jy = d(I ~ k) 02·3) 

in which the ratio k establishing the depth of the elastic neutral axis is found from 
Eq. (3.12). The curvature corresponding to the nominal moment can be obtained 
from the geometry of Fig. 12.13c: 

Ecu 
l/Ju =-;;- (12.4) 

Although it is customary in flexural strength analysis to adopt Ecu = 0.003, for pur
poses of limit analysis a more refined value is needed. Extensive experimental studies 
(Refs. 12.7 and 12.8) indicate that the ultimate strain capacity of concrete is strongly 
influenced by the beam width b, by the moment gradient, and by the presence of 
additional reinforcement in the form of compression steel and confining steel (i.e., 
web reinforcement). The last parameter is conveniently introduced by means of a 
reinforcement ratio p", defined as the ratio of the volume of one stirrup plus its tribu
tary compressive steel volume to the concrete volume tributary to one stirrup. On the 
basis of empirical studies, the ultimate flexural strain at a plastic hinge is 

b ( p"/y )
2 

Ecu = 0.003 + 0.02- + ~-
Z ]4.5 

(12.5) 

where z is the distance between points of maximum and zero moment. Based on 
Eqs. (12.3) to (12.5), the inelastic curvature for the idealized relation shown 
in Fig. 12.13a is 

(12.6) 

This plastic rotation is not confined to one cross section but is distributed over a finite 
length referred to as the hinging length. The experimental studies upon which 
Eq. (12.5) is based measured strains and rotations in a length equal to the effective depth 
d of the test members. Consequently, Ecu is an average value of ultimate strain over a finite 
length, and l/Jp, given by Eq. (12.6), is an average value of curvature. The total inelastic 
rotation 0P can be found by multiplying the average curvature by the hinging length: 

0P = ( l/Ju - l/Jy::)zp (12.7) 
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On the basis of current evidence, it appears that the hinging length IP in support 
regions, on either side of the support, can be approximated by the expression 

IP = 0.5d + 0.05z (12.8) 

in which z is the distance from the point of maximum moment to the nearest point of 
zero moment. 

e. Moment Redistribution under the ACI Code 

Full use of the plastic capacity of reinforced concrete beams and frames requires an 
extensive analysis of all possible mechanisms and an investigation of rotation require
ments and capacities at all proposed hinge locations. The increase in design time may 
not be justified by the gains obtained. On the other hand, a restricted amount of redis
tribution of elastic moments can safely be made without complete analysis, yet may 
be sufficient to obtain most of the advantages of limit analysis. 

A limited amount of redistribution is permitted by ACI Code 8.4, depending 
upon a rough measure of available ductility, without explicit calculation of rotation 
requirements and capacities. The net tensile strain in the extreme tension steel at 
nominal strength El' given in Eq. (3.29), is used as an indicator of rotation capacity. 
Accordingly, ACI Code 8.4 provides as follows: 

Except where approximate values for moments are used, it shall be permitted to 
decrease factored moments calculated by elastic theory at sections of maximum 
negative or maximum positive moment in any span of continuous flexural members 
for any assumed loading arrangement by not more than 1000Er percent, with a maxi
mum of 20 percent. Redistribution of moments shall be made only when Er is equal 
to or greater than 0.0075 at the section at which moment is reduced. The reduced 
moment shall be used for calculating redistributed moments at all other sections within 
the spans. Static equilibrium shall be maintained after redistribution of moments for 
each loading arrangement. 

Redistribution for values of E1 < 0.0075 is conservatively prohibited. The ACI Code 
provisions are shown graphically in Fig. 12.17. The value of p corresponding to a given 
value of Er, and thus a given percentage change in moment, can be calculated using 
Eq. (3.30a) from Section 3.4d. 

To demonstrate the advantage of moment redistribution when alternative 
loadings are involved, consider the concrete beam of Fig. 12.18. A three-span 
continuous beam is shown, with dead load of I kip/ft and live load of 2 kips/ft. To 
obtain maximum moments at all critical design sections, it is necessary to consider 
three alternative loadings. Case a, with live and dead load over exterior spans and 
dead load only over the interior span, will produce the maximum positive moment 
in the exterior spans. Case b, with dead load 'on exterior spans and dead and live load 
on the interior span, will produce the maximum positive moment in the interior 
span. The maximum negative moment over the interior support is obtained by 
placing dead and live load on the two adjacent spans and dead load only on the far 
exterior span, as shown in case c. 

It will be assumed for simplicity that a 10 percent adjustment of maximum 
negative and positive moments is permitted throughout, provided that other span 
moments are modified accordingly. An overall reduction in design moments through 
the entire three-span beam may be possible. Case a, for example, produces an elastic 
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FIGURE 12.17 
Allowable moment 
redistribution under the 
ACI Code. 

25 

c 20 
£~ 
C o3 
Q) c.. 
E ui inc 15 
-~ Q) 
"C E 
Ill 0 
a> E 
{j E 10 

~E 
~-~ 

E 5 

0 

/ 
•" 

/ 
/ 

0.000 0.005 0.010 0.015 0.020 0.025 

Net tensile strain Er 

maximum span moment in the exterior spans of 109 ft-kips. Corresponding to this 
is an elastic negative moment of 82 ft-kips at the interior support. Adjusting the 
maximum positive moment downward by IO percent, one obtains a positive 
moment of 98 ft-kips, which results in an upward adjustment of the support 
moment to 104 ft-kips. 

Now consider case b. By a similar redistribution of moments, a reduced middle
span moment of 64 ft-kips is accompanied by an increase in the support moment from 
78 to 86 ft-kips. 

The moment obtained at the first interior support for loading case c can be 
decreased by 10 percent to 121 ft-kips. To limit the increase in the controlling span 
moment of the interior span, the right interior support moment is not decreased. The 
positive moments in the left exterior span and in the interior span corresponding to 
the modified moment at the left interior support are 90 and 57 ft-kips, respectively. 

It will be observed that the reduction obtained for the span moments in cases 
a and b was achieved at the expense of increasing the moment at the first interior 
support. However, the increased support moment in each case was less than the 
moment for which that support would have to be designed based on the loading c, 
which produced the maximum support moment. Similarly, the reduction in support 
moment in case c was taken at the expense of an increase in span moments in the 
two adjacent spans. However, in each case the increased span moments were less 
than the maximum span moments obtained for other loading conditions. The final 
design moments at all critical sections are underlined in Fig. 12.18. It can be seen, 
then, that the net result is a reduction in design moments over the entire beam. This 
modification of moments does not mean a reduction in safety factor below that 
implied in code safety provisions; rather, it means a reduction of the excess strength 
that would otherwise be present in the structure because of the actual redistribution 
of moments that would occur before failure. It reflects the fact that the maximum 
design moments are obtained from alternative load patterns, which could not exist 
concurrently. The end result is a more realistic appraisal of the actual collapse load 
of the indeterminate structure. 



FIGURE 12.18 
Redistribution of moments 
in a three-span continuous 
beam. The final design 
moments are underlined. 
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12.10 CONCLUSION 

The problems associated with analysis of reinforced concrete structures are many. The 
engineer not only must accept the uncertainties of load placement, magnitude, and 
duration typical of any structural analysis, but also must cope with other complications 
that are unjque to reinforced concrete. These are mainly associated with estimation 
of moment of inertia of the reinforced concrete sections and with the influence of 
concrete creep. They may be summarized briefly as follows: (1) effective moments 
of inertia change depending on the sign of the bending moment; (2) moments of iner
tia depend not only on the effective concrete section, but also on the steel, a part of 
which may be discontinuous; (3) moments of inertia depend on cracking, which is 
both location-dependent and load-dependent; and (4) the concrete is subject to creep 
under sustained loads, reducing its effective modulus. In addition, joint restraints and 
conditions of support for complex structures are seldom completely in accordance 
with the idealization. The student may well despair of accurate calculation of the inter
nal forces for which the members of a reinforced concrete frame must be designed. 

It may be reassuring to know that reinforced concrete has a remarkable capacity 
to adapt to the assumptions of the designer. This has been pointed out by a number of 
outstanding engineers. Luigi Nervi, the renowned Italian architect-engineer, has stated 
it eloquently as follows: 

Mainly because of plastic flow, a concrete structure tries with admirable docility to adapt 
itself to our calculations-which do not always represent the most logical and sponta
neous answer to the request of the forces at play-and even tries to correct our deficien
cies and errors. Sections and regions too highly stressed yield and channel some of their 
loads to other sections or regions, which accept this additional task with commendable 
spirit of collaboration, within the limits of their own strength. t 

Hardy Cross, best known for his development of the moment distribution method of 
analysis (see Section 12.4), noted the beneficial effects of concrete creep, by which a 
structure can adapt to support settlements, which, on the basis of elastic analysis, 
cause forces and movements sufficient to fail the structure. Halvard Birkeland, one of 
the pioneers in the development of prestressed concrete in the United States, referred 
to the "wisdom of the structure," noting that" ... the structure, in many instances, will 
accept our rash assumptions and our imperfect mathematical models ... the structure 
will exhaust all means of standing before it decides to fall."+ 

Thus it may be of some comfort to know that a reinforced concrete structure will 
tend to act as the engineer has assumed it will act. Reasonable assumptions in the 
analysis may safely be made. But corollary to this important principle is the accep
tance of its limits: the general pattern of forces and moments must be recognized, and 
at least one reasonable load path provided. Too great a deviation from the actual 
distribution of internal forces can result in serviceability problems associated with 
cracking and deflection, and can even result in premature failure. It is for this reason 
that methods of limit analysis for reinforced concrete include restrictions on the 
amount of redistribution of elastic moments (see Section 12.9). But it is reassuring to 
know that if good judgment is used in assigning internal forces to critical sections, the 
wisdom of the structure will prevail. 

t P. L. Nervi, Structures, F. W. Dodge Corp., New York, 1956. 

+ H. L. Birkeland, "The Wisdom of the Structure," J. AC!, April 1978, pp. 105-111. 
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PROBLEMS 
12.1. Complete the preliminary design of the four-story heavy storage facility shown 

in Fig. Pl2.l. The floor live load is 250 psf, the roof live load is 12 psf, and 
the dead load on all floors and the roof consists of the structure self-weight 
plus 10 psf for utilities. The building is enclosed in a self-supporting curtain 
wall that also carries the lateral load on the structure. Beams are spaced at 12 ft; 
girders are spaced at 27 ft. The minimum clear space between floors is 11 ft, 
and the floor depth should not exceed 30 in. The column cross sections should 
be maintained from floor to floor. Use.t;, = 60,000 psi andJ; = 4000 psi for 
the floors. Concrete with J; up to 8000 psi is available for the columns. The 
preliminary design should include the initial dimensions of the structural slab, 
beams, girders, and columns for a typical floor. 

TT ! T ! ! T ! ! T !TT7 
H+t+t++t++H ~ 
t-+tt++++++++-t ~ 
Ll I ~ I I ~ I I ~ I UJ 
1~@ 12· = 36

1
. 

4@ 36' = 144' -----

12.2. A concrete beam with b = 12 in., h = 26.5 in., and d = 24 in., having a span 
of 24 ft, can be considered fully fixed at the left support and supported verti
cally but with no rotational restraint (e.g., roller) at the right end. It is rein
forced for positive bending with a combination of bars giving As= 2.45 in2, and 
for negative bending at the left support with As = 2.88 in2• Positive bars are 
carried 6 in. into the face of the left support, according to the ACI Code require
ments, but lack the embedded length to be considered effective as compression 
steel. No. 3 (No. 10) closed hoop stirrups are provided at 9 in. spacing over the 
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full span. The factored load consists of a single concentrated force of 63.3 kips 
at midspan. Self-weight of the beam may be neglected in the calculations. 
Calculate the rotation requirement at the first plastic hinge to form (a) if the 
beam is reinforced according to the description above; (b) if, to reduce bar 
congestion at the left support, that steel area is reduced by 12.5 percent, with 
an appropriate increase in the positive steel area; and (c) if the steel area at the 
left-support is reduced by 25 percent, compared with the original description, 
with an appropriate increase in the positive steel area. Also calculate the 
rotation capacity of the critical section, for comparison with the requirements 
of (a), (b), and (c). Comment on your results and compare with the approach 
to moment redistribution presented in the ACI Code. Material strengths are 
Jy = 60 ksi and/; = 4 ksi. 

12.3. A 12-span continuous reinforced concrete T beam is to carry a calculated dead 
load of 900 lb/ft including self-weight, plus a service live load of 1400 lb/ft on 
uniform spans measuring 26.5 ft between centers of supporting columns (25 ft 
clear spans). The slab thickness is 6 in., and the effective flange width is 75 in. 
Web proportions are bw = 0.6d, and the maximum reinforcement ratio will be 
set at 0.011. All columns will be 18 in. square. Material strengths are J; = 
4000 psi and J;, = 60,000 psi. 
(a) Find the factored moments for the exterior and first interior span based on 

the ACI Code moment coefficients of Table 12.1. 
(b) Find the factored moments in the exterior and first interior span by elastic 

frame analysis, assuming the floor-to-floor height to be 10 ft. Note that 
alternative live loadings should be considered (see Section 12.2a) and 
that moments can be reduced to account for the support width (see 
Section 12.5a). Compare your results with those obtained using the ACI 
moment coefficients. 

(c) Adjust the factored negative and positive moments, taking advantage of 
the redistribution provisions of the ACI Code. Assume that a 10 percent 
minimum redistribution is possible. 

(d) Design the exterior and first interior spans for flexure and shear, finding 
concrete dimensions and bar requirements, basing your design on the 
assumptions and modified moments in part (c). 

12.4. A continuous reinforced concrete frame consists of a two-span rectangular beam 
ABC, with center-to-center spans AB and BC of 24 ft. Columns measuring 14 in. 
square are provided at A, B, and C. The columns may be considered fully fixed 
at the floors above and below for purposes of analysis. The beam will carry a 
service live load of 1200 lb/ft and a calculated dead load of 1000 lb/ft, including 
self-weight. Floor-to-floor height is 12 ft. Material strengths are J;, = 60,000 psi 
and/; = 4000 psi. 
(a) Carry out an elastic analysis of the two-span frame, considering alternate 

live loadings to maximize the bending moment at all critical sections. 
Design the beams, using a maximum reinforcement ratio of 0.012 and 
d = 2b. Find the required concrete section and required steel areas at 
positive and negative bending sections. Select the reinforcement. Cutoff 
points can be determined according to Fig. 5.20a. Note that negative 
design moments are at the face of supports, not support centerlines. 

(b) Take maximum advantage of the redistribution provisions of ACI Code 
8.4 (see Section 12.9e) to reduce design moments at all critical sections, 
and redesign the steel for the beams. Keep the concrete section unchanged. 
Select reinforcement and determine cutoff points. 
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(c) Comment on your two designs with regard to the amount of steel required 
and the possible congestion of steel at the critical bending sections. You may 
assume that the shear reinforcement is unchanged in the redesigned beam. 

12.5. Complete the preliminary design of the four-story library building shown in 
Fig. Pl2.5, using a beam-girder (or joist-girder) floor system. The first floor 
(slab-on-grade) is supported on drilled piers and serves as the reading and 
library services area. The upper three floors serve as stack areas (see Table 1.1 ). 
The out-to-out building dimensions are 90 X 150 ft, exclusive of the exterior 
facade. Columns should be spaced at approximately 30 ft in each direction. 
The minimum clear space between floors is 12 ft, and the floor depth should 
not exceed 24 in. Assume a load of 70 psf on the roof for the mechanical pent
house and a snow load of 20 psf. The building is enclosed in a self-supporting 
curtain wall that also carries the lateral load on the structure. The column cross 
sections should be maintained from floor to floor. Use ly = 60,000 psi and 
1; = 4000 psi for the floors. Concrete with 1: up to 8000 psi is available for 
the columns. The preliminary design should include the initial. dimensions of 
the structural slab, beams, girders, and columns for a typical floor. 

-



Analysis and Design 
of Slabs 

13.1 TYPES OF SLABS 

In reinforced concrete construction, slabs are used to provide flat, useful surfaces. A 
reinforced concrete slab is a broad, flat plate, usually horizontal, with top and bottom 
surfaces parallel or nearly so. It may be supported by reinforced concrete beams (and 
is usually cast monolithically with such beams), by masonry or reinforced concrete 
walls, by structural steel members, directly by columns, or continuously by the ground. 

Slabs may be supported on two opposite sides only, as shown in Fig. 13.la, in 
which case the structural action of the slab is essentially one-way, the loads being 
carried by the slab in the direction perpendicular to the supporting beams. There 
may be beams on all four sides, as shown in Fig. 13. lb, so that two-way slab action 
is obtained. Intermediate beams, as shown in Fig. 13. lc, may be provided. If the ratio 
of length to width of one slab panel is larger than about 2, most of the load is carried 
in the short direction to the supporting beams and one-way action is obtained in effect, 
even though supports are provided on all sides. 

Concrete slabs in some cases may be carried directly by columns, as shown in 
Fig. 13. ld, without the use of beams or girders. Such slabs are described as flat plates 
and are commonly used where spans are not large and loads not particularly heavy. 
Flat slab construction, shown in Fig. 13.le, is also beamless but incorporates a 
thickened slab region in the vicinity of the column and often employs flared column 
tops. Both are devices to reduce stresses due to shear and negative bending around the 
columns. They are referred to as drop panels and column capitals, respectively. 
Closely related to the flat plate slab is the two-way joist, also known as a grid or waffle 
slab, shown in Fig. 13. lf To reduce the dead load of solid-slab construction, voids are 
formed in a rectilinear pattern through use of metal or fiberglass form inserts. A two
way ribbed construction results. Usually inserts are omitted near the columns, so a 
solid slab is formed to resist moments and shears better in these areas. 

In addition to the column-supported types of construction shown in Fig. 13.1, 
many slabs are supported continuously on the ground, as for highways, airport 
runways, and warehouse floors. In such cases, a well-compacted layer of crushed 
stone or gravel is usually provided to ensure uniform support and to allow for proper 
sub grade drainage. t 

Reinforcing steel for slabs is primarily parallel to the slab surfaces. Straight bar 
reinforcement is generally used, although in continuous slabs bottom bars are sometimes 
bent up to serve as negative reinforcement over the supports. Welded wire reinforcement 

t Design guidance for slabs-on-ground, including the effects of deformation of both the slab and the subgrade, can be found in Design of Slabs-on
Ground reported by ACI Committee 360 (Ref. 13.1 ). 
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FIGURE 13.1 
Types of structural slabs. 
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(b) Two-way slab 
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is commonly employed for slabs on the ground. Bar mats are available for the heavier 
reinforcement sometimes needed in highway slabs and airport runways. Slabs may 
also be prestressed using high tensile strength strands. 

Reinforced concrete slabs of the types shown in Fig. 13.1 are usually designed 
for loads assumed to be uniformly distributed over one entire slab panel, bounded by 
supporting beams or column centerlines. Minor concentrated loads can be accommo
dated throvgh two-way action of the reinforcement (two-way flexural steel for two
way slab systems or one-way flexural steel plus lateral distribution steel for one-way 
systems). Heavy concentrated loads generally require supporting beams. 

One-way and two-way edge-supported slabs, such as shown in Fig. 13. la, b, and 
c, will be discussed in Sections 13.2 to 13.4. Two-way beamless systems, such as 
shown in Fig. 13.ld, e, andf, as well as two-way edge-supported slabs (Fig. 13.lb), will 
be treated in Sections 13.5 to 13.13. Special methods based on limit analysis at the 
overload state, applicable to all types of slabs, will be presented in Chapters 14 and 15. 

13.2 DESIGN OF ONE-WAY SLABS 

FIGURE 13.2 
Deflected shape of uniformly 
loaded one-way slab. 

The structural action of a one-way slab may be visualized in terms of the deformed 
shape of the loaded surface. Figure 13.2 shows a rectangular slab, simply supported 
along its two opposite long edges and free of any support along the two opposite short 
edges. If a uniformly distributed load is applied to the surface, the deflected shape will 
be as shown by the solid lines. Curvatures, and consequently bending moments, are 
the same in all strips s spanning in the short direction between supported edges, 
whereas there is no curvature, hence no bending moment, in the long strips l parallel 
to the supported edges. The surface is approximately cylindrical. 

For purposes of analysis and design, a unit strip of such a slab cut out at right 
angles to the supporting beams, as shown in Fig. 13.3, may be considered as a rectan
gular beam of unit width, with a depth h equal to the thickness of the slab and a span 
la equal to the distance between supported edges. This strip can then be analyzed by 
the methods that were used for rectangular beams, the bending moment being computed 
for the strip of unit width. The load per unit area on the slab becomes the load per unit 
length on the slab strip. Since all of the load on the slab must be transmitted to the two 
supporting beams, it follows that all of the reinforcement should be placed at right 

Simple supports 
on two long 
edges only 



FIGURE 13.3 
Unit strip basis for flexural 
design. 

Main 
reinforcement 
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angles to these beams, with the exception of any bars that may be placed in the other 
direction to control shrinkage and temperature cracking. A one-way slab, thus, consists 
of a set of rectangular beams side by side. 

This simplified analysis, which assumes Poisson's ratio to be zero, is slightly 
conservative. Actually, flexural compression in the concrete in the direction of la will 
result in lateral expansion in the direction of lb unless the compressed concrete is 
restrained. In a one-way slab, this lateral expansion is resisted by adjacent slab strips, 
which tend to expand also. The result is a slight strengthening and stiffening in the 
span direction, but this effect is small and can be disregarded. 

The reinforcement ratio for a slab can be determined by dividing the area of one 
bar by the area of concrete between two successive bars, the latter area being the 
product of the depth to the center of the bars and the distance between them, center to 
center. The reinforcement ratio can also be determined by dividing the average area of 
steel per foot of width by the effective area of concrete in a 1 ft strip. The average area 
of steel per foot of width is equal to the area of one bar times the average number of 
bars in a 1 ft strip (12 divided by the spacing in inches), and the effective area of 
concrete in a 1 ft (or 12 in.) strip is equal to 12 times the effective depth d. 

To illustrate the latter method of obtaining the reinforcement ratio p, assume a 
5 in. slab with an effective depth of 4 in., with No. 4 (No. 13) bars spaced 4½ in. center 
to center. The average number of bars in a 12 in. strip of slab is 12/4.5 = 2~ bars, 
and the average steel area in a 12 in. strip is 2~ X 0.20 = 0.533 in2• Hence p = 
0.533/(12 X 4) = 0.0111. By the other method, 

_ 0.20 _ l 
p - 4.5 X 4 - 0.011 

The spacing of bars that is necessary to furnish a given area of steel per foot of 
width is obtained by dividing the number of bars required to furnish this area into 12. 
For example, to furnish an average area of,--0.46 in2/ft, with No. 4 (No. 13) bars, 
requires 0.46 + 0.20 = 2.3 bars per foot; the bars must be spaced not more than 
12/2.3 = 5.2 in. center to center. The determination of slab steel areas for various 
combinations of bars and spacings is facilitated by Table A.3 of Appendix A. 

Factored moments and shears in one-way slabs can be found either by elastic 
analysis or through the use of the same coefficients as used for beams (see Chapter 12). 
If the slab rests freely on its supports, the span length may be taken equal to the clear 
span plus the depth of the slab but need not exceed the distance between centers of 
supports, according to ACI Code 8.9.1. In general, center-to-center distances should 
be used in continuous slab analysis, but a reduction is allowed in negative moments to 
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TABLE 13.1 
Minimum thickness h of 
nonprestressed one-way slabs 

Simply supported l/20 
One end continuous l/24 
Both ends continuous //28 
Cantilever //IO 

account for support width as discussed in Chapter 12. For slabs with clear spans not 
more than 10 ft that are built integrally with their supports, ACI Code 8.9.4 permits 
analysis as a continuous slab on knife edge supports with spans equal to the clear 
spans and the width of the beams otherwise neglected. If moment and shear coeffi
cients are used, computations should be based on clear spans. 

One-way slabs are normally designed with tensile reinforcement ratios well 
below the maximum practical value of p0_005 • Typical reinforcement ratios range from 
about 0.004 to 0.008. This is partially for reasons of economy, because the saving in 
steel associated with increasing the effective depth more than compensates for the 
cost of the additional concrete, and partially because very thin slabs with high 
reinforcement ratios would be likely to permit large deflections. Thus, flexural design 
may start with selecting a relatively low reinforcement ratio, say about 0.3p0_005, 

setting Mu = </>Mn in Eq. (3.38), and solving for the required effective depth d, given 
that b = 12 in. for the unit strip. Alternatively, Table A.5 or Graph A.1 of Appendix A 
may be used. Table A.9 is also useful. The required steel area per 12 in. strip A. = pbd 
is then easily found. 

ACI Code 9.5.2 specifies the minimum thickness in Table 13.1 for nonprestressed 
slabs of normal weight concrete ( w c = 145 pct) using Grade 60 reinforcement, provided 
that the slab is not supporting or attached to construction that is likely to be damaged 
by large deflections. Lesser thicknesses may be used if calculation of deflections 
indicates no adverse effects. For concretes having unit weight w c in the range from 
90 to 115 pcf, the tabulated values should be multiplied by 1.65 - 0.005wc, but not 
less than 1.09. For reinforcement having a yield stress Jy other than 60,000 psi, the 
tabulated values should be multiplied by 0.4 + ..f/100,000. Slab deflections may be 
calculated, if required, by the same methods as for beams (see Section 6.7). 

Shear will seldom control the design of one-way slabs, particularly if low tensile 
reinforcement ratios are used. It will be found that the shear capacity of the concrete 
<p Ve will, almost without exception, be well above the required shear strength Vu at 
factored loads. 

The total slab thickness h is usually rounded to the next higher ¼ in. for slabs up 
to 6 in. thickness, and to the next higher ½ in. for thicker slabs. Best economy is often 
achieved when the slab thickness is selected to match nominal lumber dimensions. 
The concrete protection below the reinforcement should follow the requirements of 
ACI Code 7.7.1, calling for¾ in. below the bottom of the steel (see Fig. 3.13b). In a 
typical slab, 1 in. below the center of the steel may be assumed. The lateral spacing of 
the bars, except those used only to control shrinkage and temperature cracks (see 
Section 13.3), should not exceed 3 times the thickness h or 18 in., whichever is less, 
according to ACI Code 7.6.5. Generally, bar size should be selected so that the actual 
spacing is not less than about 1.5 times the slab thickness, to avoid excessive cost for 
bar fabrication and handling. Also, to reduce cost, straight bars are usually used for 
slab reinforcement, cut off where permitted as described for beams in Section 5.10. 
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13.3 TEMPERATURE AND SHRINKAGE REINFORCEMENT 

Concrete shrinks as it dries out, as was pointed out in Section 2.11. It is advisable to 
minimize such shrinkage by using concretes with the smallest possible amounts of 
water and cement compatible with other requirements, such as strength and workability, 
and by thorough moist-curing of sufficient duration. However, no matter what pre
cautions are taken, a certain amount of shrinkage is usually unavoidable. If a slab of 
moderate dimensions rests freely on its supports, it can contract to accommodate the 
shortening of its length produced by shrinkage. Usually, however, slabs and other 
members are joined rigidly to other parts of the structure and cannot contract freely. 
This results in tension stresses known as shrinkage stresses. A decrease in tempera
ture relative to that at which the slab was cast, particularly in outdoor structures such 
as bridges, may have an effect similar to shrinkage. That is, the slab tends to contract 
and if restrained from doing so becomes subject to tensile stresses. 

Since concrete is weak in tension, these temperature and shrinkage stresses are 
likely to result in cracking. Cracks of this nature are not detrimental, provided their 
size is limited to what are known as hairline cracks. This can be achieved by placing 
reinforcement in the slab to counteract contraction and distribute the cracks uniformly. 
As the concrete tends to shrink, such reinforcement resists the contraction and conse
quently becomes subject to compression. The total shrinkage in a slab so reinforced is 
less than that in one without reinforcement; in addition, whatever cracks do occur will 
be of smaller width and more evenly distributed by virtue of the reinforcement. 

In one-way slabs, the reinforcement provided for resisting the bending moments 
has the desired effect of reducing shrinkage and distributing cracks. However, as 
contraction takes place equally in all directions, it is necessary to provide special 
reinforcement for shrinkage and temperature contraction in the direction perpendicular 
to the main reinforcement. This added steel is known as temperature or shrinkage 
reinforcement, or distribution steel. 

Reinforcement for shrinkage and temperature stresses normal to the principal 
reinforcement should be provided in a structural slab in which the principal reinforce
ment extends in one direction only. ACI Code 7.12.2 specifies the minimum ratios of 
reinforcement area to gross concrete area (i.e., based on the total depth of the slab) 
shown in Table 13.2, but in no case may such reinforcing bars be placed farther apart 
than 5 times the slab thickness or more than 18 in. In no case is the reinforcement ratio 
to be less than 0.0014. 

The steel required by the ACI Code for shrinkage and temperature crack control 
also represents the minimum permissible reinforcement in the span direction of one
way slabs; the usual minimums for flexural steel do not apply. 

TABLE 13.2 .. 
Minimum ratios of temperature and shrinkage reinforcement 
in slabs based on gross concrete area 

Slabs where Grade 40 or 50 deformed bars are used 

Slabs where Grade 60 deformed bars or welded wire fabric 
(smooth or deformed) is used 

Slabs where reinforcement with yield strength exceeding 
60,000 psi measured at yield strain of 0.35 percent 
is used 

0.0020 

0.0018 

0.0018 X 60,000 

/y 
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EXAMPLE 13.1 One-way slab design. A reinforced concrete slab is built integrally with its supports and 
consists of two equal spans, each with a clear span of 15 ft. The service live load is 100 psf, 
and 4000 psi concrete is specified for use with steel with a yield stress equal to 60,000 psi. 
Design the slab, following the provisions of the ACI Code. 

SOLUTION. The thickness of the slab is first estimated, based on the minimum thickness from 
Table 13.1;.]/28 = 15 X 12/28 = 6.43 in. A trial thickness of 6.50 in. will be used, for which 
the weight is 150 X 6.50/12 = 81 psf. The specified live load and computed dead load are 
multiplied by the ACI load factors: 

Dead load = 81 X 1.2 = 97 psf 

Live load = 100 X 1.6 = 160 psf 

Total = 257 psf 

For this case, factored moments at critical sections may be found using the ACI moment coef
ficients (see Table 12.1): 

At interior support: - M = ! X 0.257 X 152 = 6.43 ft-kips 

+M = ti X 0.257 X 15 2 = 4.13 ft-kips 

-M = ~ X 0.257 X 15 2 = 2.41 ft-kips 

At midspan: 

At exterior support: 

The maximum practical reinforcement ratio is, according to Eq. (3.30d), 

_ 2 4 0.003 _ 
Po.oo5 - (0.85 ) 

60 0
_
003 

+ 
0

_
005 

- 0.0181 

If this value of p were actually used, the minimum required effective depth, controlled by 
negative moment at the interior support, would be found from Eq. (3.38) to be 

2 Mu d =---------
<PPfy b(l - 0.59pfy/f;) 

6.43 X 12 2 --------------------- = 7.83 in 
0.90 X 0.0181 X 60 X 12[1 - 0.59 X 0.0181 X (60/4)] 

d = 2.80 in.t 

This is less than the effective depth of 6.50 - 1.00 = 5.50 in. resulting from application of 
Code restrictions, and the latter figure will be adopted. At the interior support, if the stress
block depth a = l .00 in., the area of steel required per foot of width in the top of the slab 
is [Eq. (3.37)] 

Mu A=-----
s </Jfy(d - a/2) 

6.43 X 12 2 ----------- = 0.29 in 
0.90 X 60 X (5.50 - 1.00/2) 

Checking the assumed depth a by Eq. (3.32), one gets 

a = AJ: = 0.29 X 60 = 0.43 in. 
0.85.fc. b 0.85 X 4 X 12 

A second trial will be made with a = 0.43 in. Then 

6.43 X 12 
A = ----------- = 0.21 in2 

s 0.90 X 60 X (5.50 - 0.43/2) 

for which a = 0.43 X 0.27 /0.29 = 0.40 in. No further revision is necessary. At other critical
moment sections, it will be satisfactory to use the same lever arm to determine steel areas, and 

t The depth is more easily found using Graph A. I of Appendix A. For p = p0_005 , Mj<f,bd 2 = 913, from which d = 2.80 in. Table A.Sa may also 
be used. 



FIGURE 13.4 
One-way slab design 
example. 
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At midspan: 
4.13 X 12 

A = ----------- = 0.17 in2 

s 0.90 X 60 X (5.50 - 0.40/2) 

At exterior support: 
2.41 X 12 

A = ----------- = 0.10 in2 

s 0.90 X 60 X (5.50 - 0.40/2) 

The minimum reinforcement is that required for control of shrinkage and temperature cracking. 
This is 

As= 0.0018 X 12 X 6.50 = 0.14 in2 

per 12 in. strip. This requires a small increase in the amount of steel used at the exterior 
support. 

The factored shear force at a distance d from the face of the interior support is 

257 X 15 5.50 
V,, = 1.15 X --- - 257 X - = 2100 lb 

2 12 

By Eq. (4.12b), the nominal shear strength of the concrete slab is 

V,, = v,'. = 2A vjf bd = 2 X I V4000 X 12 X 5.50 = 8350 lb 

Thus, the design strength of the concrete slab ¢Ve = 0.75 X 8350 = 6260 lb is well above the 
required strength in shear of Vu = 2100. 

The required tensile steel areas may be provided in a variety of ways, but whatever the 
selection, due consideration must be given to the actual placing of the steel during construction. 
The arrangement should be such that the steel can be placed rapidly with the minimum of labor 
costs even though some excess steel is necessary to achieve this end. 

Two possible arrangements are shown in Fig. 13.4. In Fig. 13.4a, bent bars are used, 
while in Fig. 13.4b all bars are straight. 
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In the arrangement of Fig. 13.4a, No. 4 (No. 13) bars at 10 in. furnish 0.24 in2 of steel at 
midspan, slightly more than required. If two-thirds of these bars are bent upward for negative 
reinforcement over the interior support, the average spacing of such bent bars at the interior 
support will be (l O + 20)/2 = 15 in. Since an identical pattern of bars is bent upward from the 
other side of the support, the effective spacing of the No. 4 (No. 13) bars over the interior 
support is 7 ½ in. This pattern satisfies the required steel area of 0.27 in2 per foot width of slab 
over the support. The bars bent at the interior support will also be bent upward for negative 
reinforcem~ht at the exterior support, providing reinforcement equivalent to No. 4 (No. 13) bars 
at 15 in., or 0.16 in2 of steel. 

Note that it is not necessary to achieve uniform spacing of reinforcement in slabs, and 
that the steel provided can be calculated safely on the basis of average spacing, as in the 
example. Care should be taken to satisfy requirements for both minimum and maximum spacing 
of principal reinforcement, however. 

The locations of bend and cutoff points shown in Fig. 13.4a were obtained using 
Graph A.3 of Appendix A, as explained in Section 5.10 and Table A. IO (see also Fig. 5.19). 

The arrangement shown in Fig. 13.4b uses only straight bars. Although it is satisfac
tory according to the ACI Code (since the shear stress does not exceed two-thirds of that 
permitted), cutting off the shorter positive and negative bars as shown leads to an undesirable 
condition at the ends of those bars, where there will be concentrations of stress in the con
crete. The design would be improved if the negative bars were cut off 3 ft from the face of 
the interior support rather than 2 ft 6 in. as shown, and if the positive steel were cut off at 2 ft 
2 in. rather than at 2 ft 11 in. This would result in an overlap of approximately 2d of the cut 
positive and negative bars. Figure 5.20a suggests a somewhat simpler arrangement that 
would also prove satisfactory. 

The required area of steel to be placed normal to the main reinforcement for purposes of 
temperature and shrinkage crack control is 0.14 in2. This will be provided by No. 4 (No. 13) 
bars at 16 in. spacing, placed directly on top of the main reinforcement in the positive-moment 
region and below the main steel in the negative-moment zone. ___ , _____ _ 

---------""---·--····---·"· .. -·------··--·-·-··· ... ,--··-

13.4 BEHAVIOR OF TWO-WAY EDGE-SUPPORTED SLABS 

The slabs discussed in Sections 13.2 and 13.3 deform under load into an approxi
mately cylindrical surface. The main structural action is one-way in such cases, in the 
direction normal to supports on two opposite edges of a rectangular panel. In many 
cases, however, rectangular slabs are of such proportions and are supported in such a 
way that two-way action results. When loaded, such slabs bend into a dished surface 
rather than a cylindrical one. This means that at any point the slab is curved in both 
principal directions, and since bending moments are proportional to curvatures, 
moments also exist in both directions. To resist these moments, the slab must be rein
forced in both directions, by at least two layers of bars perpendicular, respectively, to 
two pairs of edges. The slab must be designed to take a proportionate share of the load 
in each direction. 

Types of reinforced concrete construction that are characterized by two-way 
action include slabs supported by walls or beams on all sides (Fig. 13.lb), flat plates 
(Fig. 13.ld), flat slabs (Fig. 13.le), and waffle slabs (Fig. 13.lf). 

The simplest type of two-way slab action is that represented by Fig. 13.1 b, 
where the slab, or slab panel, is supported along its four edges by relatively deep, stiff, 
monolithic concrete beams or by walls or steel girders. If the concrete edge beams are 
shallow or are omitted altogether, as they are for flat plates and flat slabs, deformation 
of the floor system along the column lines significantly alters the distribution of 
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(a) 

FIGURE 13.5 

Simple supports 
on all four edges 

Two-way slab on simple edge supports: (a) bending of center strips of slab; (b) grid model of slab. 

(b) 

moments in the slab panel itself (Ref. 13.2). Two-way systems of this type are 
considered separately, beginning in Section 13.5. The present discussion pertains to 
the former type, in which edge supports are stiff enough to be considered unyielding. 

Such a slab is shown in Fig. 13.Sa. To visualize its flexural performance, it is 
convenient to think of it as consisting of two sets of parallel strips, in each of the two 
directions, intersecting each other. Evidently, part of the load is carried by one set and 
transmitted to one pair of edge supports, and the remainder by the other. 

Figure 13.Sa shows the two center strips of a rectangular plate with short span la 
and long span lb. If the uniform load is q per square foot of slab, each of the two strips 
acts approximately as a simple beam, uniformly loaded by its share of q. Because 
these imaginary strips actually are part of the same monolithic slab, their deflections 
at the intersection point must be the same. Equating the center deflections of the short 
and long strips gives 

Sq)! = 5qblt 
384£/ 384£/ 

(a) 

where qa is the share of the load q carried in the short direction and qb is the share of 
the load q carried in the long direction. Consequently, 

(b) 

One sees that the larger share of the load is carried in the short direction, the ratio of 
the two portions of the total load being inversely proportional to the fourth power of 
the ratio of the spans. 

This result is approximate because the actual behavior of a slab is more complex 
than that of the two intersecting strips. An understanding of the behavior of the slab 
itself can be gained from Fig. 13.Sb, which shows a slab model consisting of two sets 
of three strips each. It is seen that the two central strips s1 and 11 bend in a manner 
similar to that shown in Fig. 13.Sa. The outer strips s2 and 12, however, are not only 
bent but also twisted. Consider, for instance, one of the intersections of s2 with 12• It is 
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seen that at the intersection the exterior edge of strip 12 is at a higher elevation than the 
interior edge, while at the nearby end of strip 12 both edges are at the same elevation; 
the strip is twisted. This twisting results in torsional stresses and torsional moments 
that are seen to be most pronounced near the corners. Consequently, the total load on 
the slab is carried not only by the bending moments in two directions but also by the 
twisting moments. For this reason, bending moments in elastic slabs are smaller than 
would be c.Qmputed for sets of unconnected strips loaded by qa and qb. For instance, 
for a simply supported square slab, qa = qb = q/2. If only bending were present, the 
maximum moment in each strip would be 

(q/
2

)
12 

= 0.0625ql 2 

8 
(c) 

The exact theory of bending of elastic plates shows that actually the maximum 
moment in such a square slab is only 0.048ql2, so that in this case the twisting 
moments relieve the bending moments by about 25 percent. 

The largest moment occurs where the curvature is sharpest. Figure 13.5b shows 
this to be the case at midspan of the short strip s 1• Suppose the load is increased until 
this location is overstressed, so that the steel at the middle of strip s I is yielding. If the 
strip were an isolated beam, it would now fail. Considering the slab as a whole, 
however, one sees that no immediate failure will occur. The neighboring strips (those 
parallel as well as those perpendicular to s1), being actually monolithic with it, will 
take over any additional load that strip s1 can no longer carry until they, in tum, start 
yielding. This inelastic redistribution will continue until in a rather large area in the 
central portion of the slab all the steel in both directions is yielding. Only then will 
the entire slab fail. From this reasoning, which is confirmed by tests, it follows that 
slabs need not be designed for the absolute maximum moment in each of the two 
directions (such as 0.048ql2 in the example given in the previous paragraph), but only 
for a smaller average moment in each of the two directions in the central portion of 
the slab. For instance, one of the several analytical methods in general use permits a 
square slab to be designed for a moment of 0.036ql2. By comparison with the actual 
elastic maximum moment 0.048ql2, it is seen that, owing to inelastic redistribution, a 
moment reduction of 25 percent is provided. 

The largest moment in the slab occurs at midspan of the short strip s1 of Fig. 13.5b. 
It is evident that the curvature, and hence the moment, in the short strip s2 is less than 
at the corresponding location of strip s1. Consequently, a variation of short-span 
moment occurs in the long direction of the span. This variation is shown qualitatively 
in Fig. 13.6. The short-span moment diagram in Fig. 13.6a is valid only along the 
center strip at 1-1. Elsewhere, the maximum-moment value is less, as shown. Other 
moment ordinates are reduced proportionately. Similarly, the long-span moment 
diagram in Fig. 13.6 applies only at the longitudinal centerline of the slab; elsewhere, 
ordinates are reduced according to the variation shown. These variations in maximum 
moment across the width and length of a rectangular slab are accounted for in an 
approximate way in most practical design methods by designing for a reduced 
moment in the outer quarters of the slab span in each direction. 

It should be noted that only slabs with side ratios less than about 2 need be 
treated as two-way slabs. From Eq. (b) above, it is seen that for a slab of this propor
tion, the share of the load carried in the long direction is only on the order of one
sixteenth of that in the short direction. Such a slab acts almost as if it were spanning 
in the short direction only. Consequently, rectangular slab panels with an aspect ratio 
of 2 or more may be reinforced for one-way action, with the main steel perpendicular 
to the long edges. 



(a) 

Variation of Ma.max 
across 2-2 

FIGURE 13.6 
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(b) 

Variation of Mb.max 
across 1-1 

Moments and moment variations in a uniformly loaded slab with simple supports on four sides. 

Consistent with the assumptions of the analysis of two-way edge-supported 
slabs, the main flexural reinforcement is placed in an orthogonal pattern, with rein
forcing bars parallel and perpendicular to the supported edges. As the positive steel 
is placed in two layers, the effective depth d for the upper layer is smaller than that 
for the lower layer by one bar diameter. Because the moments in the long direction 
are the smaller ones, it is economical to place the steel in that direction on top of the 
bars in the short direction. The stacking problem does not exist for negative rein
forcement perpendicular to the supporting edge beams except at the corners, where 
moments are small. 

Either straight bars, cut off where they are no longer required, or bent bars may 
be used for two-way slabs, but economy of bar fabrication and placement will 
generally favor all straight bars. The precise locations of inflection points (or lines 
of inflection) are not easily determined, because they depend upon the side ratio, the 
ratio of live to dead load, and continuity conditions at the edges. The standard cutoff 
and bend points for beams, summarized in Fig. 5.21, may be used for edge-supported 
slabs as well. 

According to ACI Code 13.3.1, the minimum reinforcement in each direction for 
two-way slabs is that required for shrinkage and temperature crack control, as given 
in Table 13.2. For two-way systems, the spacing of flexural reinforcement at critical 
sections must not exceed 2 times the slab thickness h. 

The twisting moments discussed earlier are usually of consequence only at 
exterior corners of a two-way slab system, where they tend to crack the slab at the 
bottom along the panel diagonal, and at the top perpendicular to the panel diagonal. 
Special reinforcement should be provided at exterior corners in both the bottom and 
top of the slab, for a distance in each direction from the corner equal to one-fifth the 
longer span of the corner panel, as shown in Fig. 13.7. The reinforcement at the top 
of the slab should be parallel to the diagonal from the corner, while that at the 
bottom should be perpendicular to the diagonal. Alternatively, either layer of steel 
may be placed in two bands parallel to the sides of the slab. The positive and 
negative reinforcement, in any case, should be of a size and spacing equivalent to 
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FIGURE 13.7 
Special reinforcement at 
exterior comers of a beam
supported two-way slab. 
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that required for the maximum positive moment (per foot of width) in the panel, 
according to ACI Code 13.3.6. 

13.5 TWO-WAY COLUMN-SUPPORTED SLABS 

When two-way slabs are supported by relatively shallow, flexible beams (Fig. 13.lb), 
or if column-line beams are omitted altogether, as for flat plates (Fig. 13.ld), flat 
slabs (Fig. 13. le), or two-way joist systems (Fig. 13. lf), then a number of new con
siderations are introduced. Figure 13.8a shows a portion of a floor system in which 
a rectangular slab panel is supported by relatively shallow beams on four sides. The 
beams, in turn, are carried by columns at the intersection of their centerlines. If a 
surface load q is applied, that load is shared between imaginary slab strips 1

0 
in the 

short direction and lb in the long direction, as described in Section 13.4. The portion 
of the load that is carried by the long strips lb is delivered to the beams B 1 spanning 
in the short direction of the panel. The portion carried by the beams B 1 plus that 
carried directly in the short direction by the slab strips la sums up to 100 percent of 
the load applied to the panel. Similarly, the short-direction slab strips la deliver a part 
of the load to long-direction beams B2. That load, plus the load carried directly in the 
long direction by the slab, includes 100 percent of the applied load. It is clearly a 
requirement of statics that, for column-supported construction, 100 percent of the 
applied load must be carried in each direction, jointly by the slab and its supporting 
beams (Ref. 13.3). 

A similar situation is obtained in the flat plate floor shown in Fig. 13.8b. In this 
case beams are omitted. However, broad strips of the slab centered on the column lines 
in each direction serve the same function as the beams of Fig. 13.8a; for this case, also, 
the full load must be carried in each direction. The presence of drop panels or column 
capitals (Fig. 13.le) in the double-hatched zone near the columns does not modify this 
requirement of statics. 

Figure 13.9a shows a flat plate floor supported by columns at A, B, C, and D. 
Figure 13.9b shows the moment diagram for the direction of span 11• In this direction, 
the slab may be considered as a broad, flat beam of width /2• Accordingly, the load per 
foot of span is ql2. In any span of a continuous beam, the sum of the midspan positive 



FIGURE 13.8 
Column-supported two-way 
slabs: (a) two-way slab with 
beams; (b) two-way slab 
without beams. 
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(a) 

Effective beam Effective beam 

(b) 

moment and the average of the negative moments at adjacent supports is equal to the 
midspan positive moment of a corresponding simply supported beam. In terms of 
the slab, this requirement of statics may be written 

(a) 

A similar requirement exists in the perpendicular direction, leading to the relation 

(b) 

These results disclose nothing about the relative magnitudes of the support 
moments and span moments. The proportion of the total static moment that exists at 
each critical section can be found from an elastic analysis that considers the relative 
span lengths in adjacent panels, the loading pattern, and the relative stiffness of the 
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FIGURE 13.9 
Moment variation in column
supported two-way slabs: 
(a) critical-moment sections; 
(b) moment variation along a 
span; (c) moment variation 
across the width of critical 
sections. 
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supporting beams, if any, and that of the columns. Alternatively, empirical methods 
that have been found to be reliable under restricted conditions may be adopted. 

The moments across the width of critical sections such as AB or EF are not 
constant but vary as shown qualitatively in Fig. 13.9c. The exact variation depends on 
the presence or absence of beams on the column lines, the existence of drop panels 



FIGURE 13.10 
Portion of slab to be included 
with beam. 
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(a) Symmetric slab (b) Single side slab 

and column capitals, as well as on the intensity of the load. For design purposes, it is 
convenient to divide each panel as shown in Fig. 13.9c into column strips, having a 
width of one-fourth the panel width, on each side of the column centerlines, and 
middle strips in the one-half panel width between two column strips. Moments may 
be considered constant within the bounds of a middle strip or column strip, as shown, 
unless beams are present on the column lines. In the latter case, while the beam must 
have the same curvature as the adjacent slab strip, the beam moment will be larger in 
proportion to its greater stiffness, producing a discontinuity in the moment-variation 
curve at the lateral face of the beam. Since the total moment must be the same as 
before, according to statics, the slab moments must be correspondingly less. 

Chapter 13 of the ACI Code deals in a unified way with all such two-way 
systems. Its provisions apply to slabs supported by beams and to flat slabs and flat 
plates, as well as to two-way joist slabs. While permitting design "by any procedure 
satisfying the conditions of equilibrium and geometrical compatibility," specific refer
ence is made to two alternative approaches: a semiempirical direct design method and 
an approximate elastic analysis known as the equivalent frame method. 

In either case, a typical panel is divided, for purposes of design, into column 
strips and middle strips. A column strip is defined as a strip of slab having a width on 
each side of the column centerline equal to one-fourth the smaller of the panel dimen
sions 11 and 12• Such a strip includes column-line beams, if present. A middle strip is 
a design strip bounded by two column strips. In all cases, 11 is defined as the span in 
the direction of the moment analysis and 12 as the span in the lateral direction 
measured center to center of the support. In the case of monolithic construction, 
beams are defined to include that part of the slab on each side of the beam extending 
a distance equal to the projection of the beam above or below the slab hw (whichever 
is greater) but not greater than 4 times the slab thickness (see Fig. 13.10). 

13.6 DIRECT DESIGN METHOD FOR. 
COLUMN-SUPPORTED SLABS 

Moments in two-way slabs can be found using the semiempirical direct design 
method, subject to the following restrictions: 

1. There must be a minimum of three continuous spans in each direction. 
2. The panels must be rectangular, with the ratio of the longer to the shorter spans 

within a panel not greater than 2. 
3. The successive span lengths in each direction must not differ by more than one

third of the longer span. 
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FIGURE 13.11 
Distribution of total static 
moment MO to critical 
sections for positive and 
negative bending. 

4. Columns may be offset a maximum of 10 percent of the span in the direction of 
the offset from either axis between centerlines of successive columns. 

5. Loads must be due to gravity only, and the unfactored live load must not exceed 
2 times the unfactored dead load. 

6. If beams are used on the column lines, the relative stiffness of the beams in the 
two perpendicular directions, given by the ratio aJ1lVat2li, must be between 0.2 
and 5.0. (see definitions below). 

a. Total Static Moment at Factored Loads 

For purposes of calculating the total static moment M
0 

in a panel, the clear span ln in 
the direction of moments is used. The clear span is defined to extend from face to face 
of the columns, capitals, brackets, or walls but is not to be less than 0.65[1• The total 
factored moment in a span, for a strip bounded laterally by the centerline of the panel 
on each side of the centerline of supports, is 

q)zl~ 
Mo =-8- (13.1) 

b. Assignment of Moments to Critical Sections 

For interior spans, the total static moment is apportioned between the critical positive 
and negative bending sections according to the following ratios: 

Negative factored moment: Neg Mu = 0.65M0 

Positive factored moment: Pas Mu = 0.35M0 

(13.2) 

(13.3) 

as illustrated by Fig. 13.11. The critical section for negative bending is taken at the 
face of rectangular supports, or at the face of an equivalent square support having 
the same cross-sectional area as a round support. 

In the case of end spans, the apportionment of the total static moment among the 
three critical moment sections (interior negative, positive, and exterior negative, as 
illustrated by Fig. 13.11) depends upon the flexural restraint provided for the slab 
by the exterior column or the exterior wall, as the case may be, and depends also upon 

Pos Mu 
Pos Mu 

----0 
Ext Neg Mu 

L lntNegMu 

End span l n -------1 
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the presence or absence of beams on the column lines. ACI Code 13.6.3 specifies 
five alternative sets of moment distribution coefficients for end spans, as shown in 
Table 13.3 and illustrated in Fig. 13.12. 

TABLE 13.3 
Distribution factors applied to static moment M 0 for positive and negative moments 
in end span 

(a) 

Exterior 
Edge 

Unrestrained 

Interior negative 
moment 

Positive moment 

Exterior negative 
moment 

FIGURE 13.12 
Conditions of edge restraint 
considered in distributing 
total static moment M

0 
to 

critical sections in an end 
span: (a) exterior edge 
unrestrained, e.g., supported 
by a masonry wall; (b) slab 
with beams between all 
supports; (c) slab without 
beams, i.e., flat plate; (d) slab 
without beams between 

0.75 

0.63 

0 

(b) 

Slab with 
Beams 

between 
All Supports 

0.70 

0.57 

0.16 

(a) 

(b) 

(c) (d) 

Slab without Beams 
between Interior 

Supports 

Without With 
Edge Beam Edge Beam 

0.70 0.70 

0.52 0.50 

0.26 0.30 

interior supports but with :~I.:~:~~;zs~·· fr ... ~, .. ,.w .... •·•tr~ 
(c) 

(d) 

(e) 

(e) 

Exterior 
Edge 
Fully 

Restrained 

0.65 

0.35 

0.65 
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In case a, the exterior edge has no moment restraint, such as would be the 
condition with a masonry wall, which provides vertical support but no rotational 
restraint. Case b represents a two-way slab with beams on all sides of the panels. Case c 
is a flat plate, with no beams at all, while case d is a flat plate in which a beam is pro
vided along the exterior edge. Finally, case e represents a fully restrained edge, such 
as that obtained if the slab is monolithic with a very stiff reinforced concrete wall. The 
appropriatesoefficients for each case are given in Table 13.3 and are based on three
dimensional elastic analysis modified to some extent in the light of tests and practical 
experience (Refs. 13.4 to 13.11). 

At interior supports, negative moments may differ for spans framing into 
the common support. In such a case, the slab should be designed to resist the 
larger of the two moments, unless a special analysis based on relative stiffnesses 
is made to distribute the unbalanced moment (see Chapter 12). Edge beams if 
they are used, or the edge of the slab if they are not, must be designed to resist in 
torsion their share of the exterior negative moment indicated by Table 13.3 
(see Chapter 7). 

c. Lateral Distribution of Moments 

Having distributed the moment M
0 

to the positive and negative-moment sections as 
just described, the designer still must distribute these design moments across the width 
of the critical sections. For design purposes, as discussed in Section 13.5, it is 
convenient to consider the moments constant within the bounds of a middle strip or 
column strip unless there is a beam present on the column line. In the latter case, 
because of its greater stiffness, the beam will tend to take a larger share of the column
strip moment than the adjacent slab. The distribution of total negative or positive 
moment between slab middle strips, slab column strips, and beams depends upon the 
ratio li/11, the relative stiffness of the beam and the slab, and the degree of torsional 
restraint provided by the edge beam. 

A convenient parameter defining the relative stiffness of the beam and slab 
spanning in either direction is 

(13.4) 

in which Ecb and Ecs are the moduli of elasticity of the beam and slab concrete (usually 
the same) and lb and Is are the moments of inertia of the effective beam and the slab. 
Subscripted parameters a11 and a12 are used to identify a computed for the directions 
of 11 and 12, respectively. 

The flexural stiffnesses of the beam and slab may be based on the gross 
concrete section, neglecting reinforcement and possible cracking, and variations due 
to column capitals and drop panels may be neglected. For the beam, if present, lb is 
based on the effective cross section defined as in Fig. 13.10. For the slab, Is is taken 
equal to bh3 /12, where b in this case is the width between panel centerlines on each 
side of the beam. 

The relative restraint provided by the torsional resistance of the effective trans
verse edge beam is reflected by the parameter /3r, defined as 

Ecbc /3 = -- (13.5) 
t 2EcJs 
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where I., as before, is calculated for the slab spanning in direction /1 and having width 
bounded by panel centerlines in the /2 direction. The constant C pertains to the 
torsional rigidity of the effective transverse beam, which is defined according to ACI 
Code 13.7.5 as the largest of the following: 

1. A portion of the slab having a width equal to that of the column, bracket, or 
capital in the direction in which moments are taken 

2. The portion of the slab specified in 1 plus that part of any transverse beam above 
and below the slab 

3. The transverse beam defined as in Fig. 13.10 

The constant C is calculated by dividing the section into its component rectangles, 
each having smaller dimension x and larger dimension y, and summing the contribu
tions of all the parts by means of the equation 

(13.6) 

The subdivision can be done in such a way as to maximize C. 
With these parameters defined, ACI Code 13.6.4 distributes the negative and 

positive moments between column strips and middle strips, assigning to the column 
strips the percentages of positive and negative moments shown in Table 13.4. Linear 
interpolations are to be made between the values shown. 

Implementation of these provisions is facilitated by the interpolation charts of 
Graph A.4 of Appendix A. Interior negative and positive-moment percentages can 
be read directly from the charts for known values of 12/1 1 and a11l2 /l 1• For exterior 
negative moment, the parameter {31 requires an additional interpolation, facilitated 
by the auxiliary diagram on the right side of the charts. To illustrate its use for 

TABLE 13.4 
Column-strip moment, percent of total moment at 
critical section 

li/11 

0.5 1.0 2.0 

Interior negative moment 

a11l2/l1 = 0 75 75 75 

afllJl1 2:: 1.0 90 75 45 

Exterior negative moment 

a11 1Jl1 = 0 
/3, = 0 100 100 100 

/3, 2:: 2.5 75 75 75 

a11 ZJl1 2:: 1.0 
/3, = 0 100 100 100 

/3, 2:: 2.5 90 75 45 

Positive moment 

a11l2/l1 = 0 60 60 60 

a11 ZJl1 2:: 1.0 90 75 45 
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FIGURE 13.13 
Tributary areas for shear 
calculation. 

12/11 = 1.55 and a11l2/l1 = 0.6, the dotted line indicates moment percentages of 100 
for /31 = 0 and 65 for {31 = 2.5. Projecting to the right as indicated by the arrow to 
find the appropriate vertical scale of 2.5 divisions for an intermediate value of {31, 

say 1.0, then upward and finally to the left, one reads the corresponding percentage 
of 86 on the main chart. 

The column-line beam spanning in the direction /1 is to be proportioned to resist 
85 percenU.:>f the column-strip moment if a11 l2/l1 is equal to or greater than 1.0. For 
values between 1 and 0, the proportion to be resisted by the beam may be obtained by 
linear interpolation. Concentrated or linear loads applied directly to such a beam 
should be accounted for separately. 

The portion of the moment not resisted by the column strip is proportionately 
assigned to the adjacent half-middle strips. Each middle strip is designed to resist the 
sum of the moments assigned to its two half-middle strips. A middle strip adjacent and 
parallel to a wall is designed for twice the moment assigned to the half-middle strip 
corresponding to the first row of interior supports. 

d. Shear in Slab Systems with Beams 

Special attention must be given to providing the proper resistance to shear, as well as 
to moment, when designing by the direct method. According to ACI Code 13.6.8, 
beams with a11l2/l1 2:: 1.0 must be proportioned to resist the shear caused by loads on 
a tributary area defined as shown in Fig. 13.13. For values of a11l2/l 1 between 1 and 0, 
the proportion of load carried by beam shear is found by linear interpolation. The 
remaining fraction of the load on the shaded area is assumed to be transmitted directly 
by the slab to the columns at the four corners of the panel, and the shear stress in the 
slab computed accordingly (see Section 13.10). 

Tributary area 
for CD 

Tributary area 
for BO 
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e. Design of Columns 

Columns in two-way construction must be designed to resist the moments found 
from analysis of the slab-beam system. The column supporting an edge beam must 
provide a resisting moment equal to the moment applied from the edge of the slab 
(see Table 13.4). At interior locations, slab negative moments are found, assuming 
that dead and full live loads act. For the column design, a more severe loading 
results from partial removal of the live load. Accordingly, ACI Code 13.6.9 requires 
that interior columns resist a moment 

(13.7) 

In Eq. (13.7), q 0 u and qLu are, respectively, the factored dead and live loads per 
unit area. The primed quantities refer to the shorter of the two adjacent spans 
(assumed to carry dead load only), and the unprimed quantities refer to the longer 
span (assumed to carry dead load and half live load). In all cases, the moment 
is distributed to the upper and lower columns in proportion to their relative 
flexural stiffness. 

13.7 FLEXURAL REINFORCEMENT FOR 
COLUMN-SUPPORTED SLABS 

Consistent with the assumptions made in analysis, flexural reinforcement in two-way 
slab systems is placed in an orthogonal grid, with bars parallel to the sides of the 
panels. Bar diameters and spacings may be found as described in Section 13.2. 
Straight bars are generally used throughout, although in some cases positive-moment 
steel is bent up where no longer needed, to provide for part or all of the negative 
requirement. To provide for local concentrated loads, as well as to ensure that tensile 
cracks are narrow and well distributed, a maximum bar spacing at critical sections of 
2 times the total slab thickness is specified by ACI Code 13.3.2 for two-way slabs. At 
least the minimum steel required for temperature and shrinkage crack control (see 
Section 13.3) must be provided. For protection of the steel against damage from fire 
or corrosion, at least ¾ in. concrete cover must be maintained. 

Because of the stacking that results when bars are placed in perpendicular layers, 
the inner steel will have an effective depth 1 bar diameter less than the outer steel. For 
flat plates and flat slabs, the stacking problem relates to middle-strip positive steel and 
column-strip negative bars. In two-way slabs with beams on the column lines, stacking 
occurs for the middle-strip positive steel, and in the column strips is important mainly 
for the column-line beams, because slab moments are usually very small in the region 
where column strips intersect. 

In the discussion of the stacking problem for two-way slabs supported by walls 
or stiff edge beams, in Section 13.4 it was 'pointed out that, because curvatures and 
moments in the short direction are greater than in the long direction of a rectangular 
panel, short-direction bars are normally placed closer to the top or bottom surface of 
the slab, with the larger effective depth d, and long-direction bars are placed inside 
these, with the smaller d. For two-way beamless flat plates, or slabs with relatively 
flexible edge beams, things are not so simple. 

Consider a rectangular interior panel of a flat plate floor. If the slab column 
strips provided unyielding supports for the middle strips spanning in the perpendi
cular direction, the short-direction middle-strip curvatures and moments would 
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be the larger. In fact, the column strips deflect downward under load, and this 
softening of the effective support greatly reduces curvatures and moments in the 
supported middle strip. 

For the entire panel, including both middle strips and column strips in each 
direction, the moments in the long direction will be larger than those in the short direc
tion, as is easily confirmed by calculating the static moment M

0 
in each direction for 

a rectangul~ panel. Noting that the apportioning of M
0 

first to negative and positive
moment sections, and then laterally to column and middle strips, is done by applying 
exactly the same ratios in each direction to the corresponding section, it is clear that 
the middle-strip positive moments (for example) are larger in the long direction than 
the short direction, exactly the opposite of the situation for the slab with stiff edge 
beams. In the column strips, positive and negative moments are larger in the long than 
in the short direction. On this basis, the designer is led to place the long-direction 
negative and positive bars, in both middle and column strips, closer to the top or 
bottom surface of the slab, respectively, with the larger effective depth. 

If column-line beams are added, and if their stiffness is progressively inc
reased for comparative purposes, it will be found that the short-direction slab 
moments gradually become dominant, although the long-direction beams carry 
larger moments than the short-direction beams. This will be clear from a careful 
study of Table 13.4. 

The situation is further complicated by the influence of the ratio of short to long 
side dimensions of a panel, and by the influence of varying conditions of edge restraint 
(e.g., comer vs. typical exterior vs. interior panel). The best guide in specifying steel 
placement order in areas where stacking occurs is the relative magnitudes of design 
moments obtained from analysis for a particular case, with maximum d provided for 
the bars resisting the largest moment. No firm rules can be given. For square slab 
panels, many designers calculate the required steel area based on the average effective 
depth, thus obtaining the same bar size and spacing in each direction. This is slightly 
conservative for the outer layer and slightly unconservative for the inner steel. 
Redistribution of loads and moments before failure would provide for the resulting 
differences in capacities in the two directions. 

Reinforcement cutoff points could be calculated from moment envelopes if 
available; however, when the direct design method is used, moment envelopes and 
lines of inflection are not found explicitly. In such a case (and often when the equiva
lent frame method of Section 13.9 is used as well), standard bar cutoff points from 
Fig. 13.14 are used, as recommended in the ACI Code. 

ACI Code 13.3.8.5 requires that all bottom bars within the column strip in each 
direction be continuous or spliced with Class B splices (see Section 5.13a) or mechan
ical or welded splices located as shown in Fig. 13.14. At least two of the column strip 
bars in each direction must pass within the column core and must be anchored at exte
rior supports. The continuous column strip bottom steel is intended to provide some 
residual ability to carry load to adjacent supports by catenary action if a single support 
should be damaged or destroyed. The two continuous bars through the column can be 
considered to be "integrity steel" and are provided to give the slab some residual 
capacity following a single punching shear failure. 

The need for special reinforcement at the exterior comers of two-way beam
supported slabs was described in Section 13.4, and typical corner reinforcement is 
shown in Fig. 13.7. According to ACI Code 13.3.6, such reinforcement is required for 
slabs with beams between supporting columns if the value of a1 given by Eq. (13.3) is 
greater than 1.0. 
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FIGURE 13.14 
Minimum length of slab reinforcement in a slab without beams. 

13.8 DEPTH LIMITATIONS OF THE ACI CODE 

To ensure that slab deflections in service will not be troublesome, the best approach is 
to compute deflections for the total load or load component of interest and to compare 
the computed deflections with limiting value,s. Methods have been developed that are 
both simple and acceptably accurate for predicting deflections of two-way slabs. A 
method for calculating the deflection of two-way column-supported slabs will be 
found in Section 13.13. 

Alternatively, deflection control can be achieved indirectly by adhering to more 
or less arbitrary limitations on minimum slab thickness, limitations developed from 
review of test data and study of the observed deflections of actual structures. As a 
result of efforts to improve the accuracy and generality of the limiting equations, they 
have become increasingly complex. 
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TABLE 13.5 
Minimum thickness of slabs without interior beams 

Without Drop Panels With Drop Panels 

Yield 
Exterior Panels Interior Panels Exterior Panels Interior Panels 

Stress Without With Without With 
c0-"ii' 

fy, Edge Edge Edge Edge 
psi Beams Beamsa Beams Beamsa 

40,000 ln/33 ln/36 ln/36 ln/36 ln/40 ln/40 
60,000 ln/30 ln/33 ln/33 ln/33 ln/36 ln/36 
75,000 ln/28 ln/31 ln/31 ln/31 ln/34 ln/34 

a Slabs with beams along exterior edges. The value of a1 for the edge beam shall not be less than 0.8. 

ACI Code 9.5.3 establishes minimum thicknesses for two-way construction 
designed according to the methods of ACI Code Chapter 13, i.e., for slabs designed 
by either the equivalent frame method or the direct design method. Simplified criteria 
are included pertaining to slabs without interior beams (flat plates and flat slabs with 
or without edge beams), while more complicated limit equations are to be applied to 
slabs with beams spanning between the supports on all sides. In both cases, minimum 
thicknesses less than the specified value may be used if calculated deflections are 
within Code-specified limits, as quoted in Table 6.2. 

a. Slabs without Interior Beams 

The minimum thickness of two-way slabs without interior beams, according to ACI 
Code 9.5.3.2, must not be less than provided by Table 13.5. Edge beams, often pro
vided even for two-way slabs otherwise without beams to improve moment and shear 
transfer at the exterior supports, permit a reduction in minimum thickness of about 
10 percent in exterior panels. In all cases, the minimum thickness of slabs without 
interior beams must not be less than the following: 

For slabs without drop panels 5 in. 
For slabs with drop panels 4 in. 

b. Slabs with Beams on All Sides 

The parameter used to define the relative stiffness of the beam and slab spanning in 
either direction is a1, calculated from Eq. (13.4) of Section 13.6c. Then a1m is defined 
as the average value of a1 for all beams on the edges of a given panel. According 
to ACI Code 9.5.3.3, for a1m equal to or less than 0.2, the minimum thicknesses of 
Table 13.5 shall apply. 

For a1m greater than 0.2 but not greater than 2.0, the slab thickness must not be 
less than 

ln(0.8 + _[y/200,000) 
h=--------

36 + 5{3(a1m - 0.2) 
(13.8a) 

and not less than 5.0 in. 



FIGURE 13.15 
Parameter F governing 
minimum thickness of 
two-way slabs; 
minimum thickness 
h = 111 (0.8 +fv/200,000)/F. 
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For a1.,,, greater than 2.0, the thickness must not be less than 

ln(0.8 + /y/200,000) 
h=-------~ 

36 + 9(3 
(13.8b) 

and not less than 3.5 in., 

where Zn = clear span in long direction, in. 
a1;11 

= average value of a1 for all beams on edges of a panel [see Eq. (13.4)] 
{3 = ratio of clear span in long direction to clear span in short direction 

At discontinuous edges, an edge beam must be provided with a stiffness ratio ar not 
less than 0.8; otherwise the minimum thickness provided by Eq. (13.8a) or (13.8b) 
must be increased by at least 10 percent in the panel with the discontinuous edge. 

In all cases, slab thickness less than the stated minimum may be used if it can be 
shown by computation that deflections will not exceed the limit values of Table 6.2. 

Equations (13.8a) and (13.8b) can be restated in the general form 

ln(0.8 + fv/200,000) 
h = . (13.8c) 

F 

where Fis the value of the denominator in each case. Figure 13.15 shows the value of 
F as a function of afm• for comparative purposes, for three panel aspect ratios {3: 

1. Square panel, with {3 = 1.0 
2. Rectangular panel, with {3 = 1.5 
3. Rectangular panel, with /3 = 2.0, the upper limit of applicability of Eqs. (13.8a) 

and (13.8b) 

Note that, for afm less than 0.2, column-line beams have little effect, and minimum 
thickness is given by Table 13.5. For stiff, relatively deep edge beams, with afm of 2 
or greater, Eq. (13.8b) governs. Equation (13.8a) provides a transition for slabs with 
shallow column-line beams having afm in the range from 0.2 to 2.0. 
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EXAMPLE 13.2 Design of two-way slab with edge beams.t A two-way reinforced concrete building floor 
system is composed of slab panels measuring 20 X 25 ft in plan, supported by shallow 
column-line beams cast monolithically with the slab, as shown in Fig. 13.16. Using concrete 
with fc' = 4000 psi and steel with Jy = 60,000 psi, design a typical exterior panel to carry a 
service live load of 144 psf in addition to the self-weight of the floor. 

FIGURE 13.16 
Two-way slab floor with 
beams on column lines: 
(a) partial floor plan; 
(b) section X-X (section Y-Y 
similar). 

SOLUTION.,., The floor system satisfies all limitations stated in Section 13.6, and the ACI direct 
design method will be used. For illustrative purposes, only a typical exterior panel, as shown in 
Fig. 13.16, will be designed. The depth limitations of Section 13.8 will be used as a guide to 
the desirable slab thickness. To use Eqs. (13.8a) and (13.8b), a trial value of h = 7 will be 
introduced, and beam dimensions 14 X 20 in. will be assumed, as shown in Fig. 13.16. The 
effective flange projection beyond the face of the beam webs is the lesser of 4h1 or hw, and in 
the present case is 13 in. The moment of inertia of the T beams will be estimated as multiples 
of that of the rectangular portion as follows: 

For the edge beams: / = 12 X 14 X 203 X 1.5 = 14,000 in4 

For the interior beams: / = 12 X 14 X 203 X 2 = 18,700 in4 
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t The design of a two-way slab without beams, i.e., a flat plate floor system, which may also be done by the direct design method if the restrictions 
of Section 13.6 are met, will be illustrated by an example in Section 13.7. 
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For the slab strips: 

For the 13.1 ft edge width: / = rz X 13.1 X 12 X 73 = 4500 in4 

For the 20 ft width: / = rz X 20 X 12 X 73 = 6900 in4 

For the 25 ft width: / = rz X 25 X 12 X 73 = 8600 in4 

Thus, for the edge beam af 14,000/4500 = 3.1, for the two 25 ft long beams af = 
18,700/6900 = 2.7, and for the 20 ft long beam at = 18,700/8600 = 2.2, producing an 
average value afm = 2.7. The ratio of long to short clear spans is /3 = 23.8/18.8 = 1.27. Then 
the minimum thickness is not to be less than that given by Eq. (13.8b): 

286(0.8 + 60/200) 
h = ------- = 6.63 in. 

36 + 9 X 1.27 

The 3.5 in. limitation of Section 13.8 clearly does not control in this case, and the 7 in. depth 
tentatively adopted will provide the basis of further calculation. 

For a 7 in. slab, the dead load is fI_ X 150 = 88 psf. Applying the usual load factors to 
obtain design load gives 

q = 1.2 X 88 + 1.6 X 144 = 336 psf 

For the short-span direction, for the slab-beam strip centered on the interior column line, 
the total static design moment is 

M 0 = ½ X 0.336 X 25 X 18.82 = 371 ft-kips 

This is distributed as follows: 

Negative design moment = 371 X 0.65 = 241 ft-kips 

Positive design moment = 371 X 0.35 = 130 ft-kips 

The column strip has a width of 2 X 20/4 = 10 ft. With l2/l 1 = 25/20 = 1.25 and af1l2/l 1 = 
2.2 X 25/20 = 2.75, Graph A.4 of Appendix A indicates that 68 percent of the negative 
moment, or 163 ft-kips, is taken by the column strip, of which 85 percent, or 139 ft-kips, is 
taken by the beam and 24 ft-kips by the slab. The remaining 78 ft-kips is allotted to the slab 
middle strip. Graph A.4 also indicates that 68 percent of the positive moment, or 88 ft-kips, is 
taken by the column strip, of which 85 percent, or 75 ft-kips, is assigned to the beam and 13 ft-kips 
to the slab. The remaining 42 ft-kips is taken by the slab middle strip. 

A similar analysis is performed for the slab-beam strip at the edge of the building, based 
on a total static design moment of 

M 0 = k X 0.336 X 13.1 X 18.82 = 194 ft-kips 

of which 65 percent is assigned to the negative and 35 percent to the positive bending sections 
as before. In this case, cxr1l2/l 1 = 3.1 X 25/20 = 3.9. The distribution factor for column-strip 
moment, from Graph A.4, is 68 percent for positive and negative moments as before, and again 
85 percent of the column-strip moments is assigned to the beams. 

In summary, the short-direction moments, in ft-kips, are as follows: 

Beam Column-Strip Middle-Strip 
Moment Slab Moment Slab Moment 

Interior slab-beam strip-20 ft span 
Negative 139 24 78 
Positive 75 13 42 

Exterior slab-beam strip-20 ft span 
Negative 73 13 40 
Positive 39 7 22 

The total static design moment in the long direction of the exterior panel is 

M 0 = k X 0.336 X 20 X 23.8 2 = 476 ft-kips 
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This will be apportioned to the negative and positive moment sections according to Table 13.3, 
and distributed laterally across the width of critical moment sections with the aid of Graph A.4. 
The moment ratios to be applied to obtain exterior negative, positive, and interior negative 
moments are, respectively, 0.16, 0.57, and 0.70. The torsional constant for the edge beam is 
found from Eq. (13.6) for a 14 X 20 in. rectangular shape with a 7 X 13 in. projecting flange: 

( 
14) 14

3 
X 20 ( 7 ) 7

3 
X 13 ,.,C = 1 - 0.63 X 

20 3 
+ 1 - 0.63 X G 

3 
= 11,210 

With l2/l1 = 0.80, cxfll2/l1 = 2.7 X 20/25 = 2.2, and from Eq. (13.5), /31 = 11,210/(2 X 6900) = 
0.81, Graph A.4 indicates that the column strip will take 93 percent of the exterior negative 
moment, 81 percent of the positive moment, and 81 percent of the interior negative moment. 
As before, the column-line beam will account for 85 percent of the column-strip moment. The 
results of applying these moment ratios are as follows: 

Beam Column-Strip Middle-Strip 
Moment Slab Moment Slab Moment 

Exterior negative-25 ft span 60 11 5 
Positive-25 ft span 187 33 51 
Interior negative-25 ft span 229 40 63 

It is convenient to tabulate the design of the slab reinforcement, as shown in Table 13.6. 
In the 25 ft direction, the two half-column strips may be combined for purposes of calculation 
into one strip of 106 in. width. In the 20 ft direction, the exterior half-column strip and the 
interior half-column strip will normally differ and are treated separately. Factored moments 
from the previous distributions are summarized in column 3 of the table. 

The short-direction positive steel will be placed first, followed by the long-direction 
positive bars. If ¾ in. clear distance below the steel is allowed and use of No. 4 (No. 13) bars is 
anticipated, the effective depth in the short direction will be 6 in., while that in the long direc
tion will be 5.5 in. A similar situation occurs for the top steel. 

After calculating the design moment per foot strip of slab ( column 6), find the minimum 
effective slab depth required for flexure. For the material strengths to be used, the maximum 
practical reinforcement ratio is p0_005 = 0.0181. For this ratio, 

Mu Mu 

0.90 X 0.0181 X 60,000 X 12(1 - 0.59 X 0.0181 X 60/4) 9850 

Hence d = V M u/9850. Thus, the following minimum effective depths are needed: 

In 25 ft direction: d= 
12,000 . 

6.30 X 
9850 

= 2.77 Ill. 

In 20 ft direction: d= 
12,000 . 

5.20 X 
9850 

= 2.52 Ill. 

both well below the depth dictated by deflection requirements. An underreinforced slab results. 
The required reinforcement ratios ( column 7) are conveniently found from Table A.5 with 
R = Mul<f>bd 2 or from Table A.9. Note that a minimum steel area equal to 0.0018 times the 
gross concrete area must be provided for control of temperature and shrinkage cracking. For a 
12 in. slab strip, the corresponding area is 0.0018 X 7 X 12 = 0.151 in2

• Expressed in terms 
of minimum reinforcement ratio for actual effective depths, this gives 
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TABLE 13.6 
Design of slab reinforcement 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
Number 
of No. 4 

Mu, b, d, Mu X 12/b, As, (No. 13) 

Location ft-kips in. in. ft-kips/ft p in2 Bars 

25 ft span 
Two half- Exterior 

column negative 11 106 5.5 1.25 0.0023° 1.34 7 
strips Positive 33 106 5.5 3.74 0.0023 1.34 7 

Interior 
negative 40 106 5.5 4.53 0.0029 1.69 9 

Middle Exterior 
strip negative 5 120 5.5 0.50 0.0023° 1.52 9b 

Positive 51 120 5.5 5.10 0.0033 2.18 11 
Interior 

negative 63 120 5.5 6.30 0.0041 2.71 14 

20 ft span 
Exterior Negative 13 53 6 2.94 0.0021° 0.67 4 

half-column Positive 7 53 6 1.58 0.0021° 0.67 4 
strip 

Middle Negative 78 180 6 5.20 0.0028 3.03 16 
strip Positive 42 180 6 2.80 0.0021° 2.27 13b 

Interior Negative 12 53 6 2.71 0.0021° 0.67 4 
half-column Positive 6.5 53 6 1.47 0.0021° 0.67 4 
strip 

• Reinforcement ratio controlled by shrinkage and temperature requirements. 
b Number of bars controlled by maximum spacing requirements. 

In 25 ft direction: 
0.151 

Pmin = 
5

_
5 

X 
12 

= 0.0023 

In 20 ft direction: 
0.151 

Pmin = 
6 

X 
12 

= 0.0021 

This requirement controls at the locations indicated in Table 13.6. 
The total steel area in each band is easily foiind from the reinforcement ratio and is given 

in column 8. Finally, with the aid of Table A.2, the required number of bars is obtained. Note 
that in two locations, the number of bars used is dictated by the maximum spacing requirement 
of 2 X 7 = 14 in. 

The shear capacity of the slab is checked on the basis of the tributary areas shown in 
Fig. 13.13. At a distanced from the face of the long beam, 

V = 0 336( 10 - -
14
- - ~) = 3 00 kips 

u • 2 X 12 12 . 
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The design shear strength of the slab is 

</>Ve = 0.75 X 2V4000 X 12 X lO~O 

= 6.83 kips 

well above ilie shear applied at factored loads. 
Each beam must be designed for its share of the total static moment, as found in the 

above calculations, as well as the moment due to its own weight; this moment may be distrib
uted to positive and negative bending sections, using the same ratios used for the static 
moments due to slab loads. Beam shear design should be based on the loads from the tributary 
areas shown in Fig. 13.13. Since no new concepts would be introduced, the design of the beams 
will not be presented here. 

Since 0.85 X 93 = 79 percent of the exterior negative moment in the long direction is 
carried directly to the column by the column-line beam in this example, torsional stresses in the 
spandrel beam are very low and may be disregarded. In other circumstances, the spandrel 
beams would be designed for torsion following the methods of Chapter 7. 

13.9 EQUIVALENT FRAME METHOD 

a. Basis of Analysis 

The direct design method for two-way slabs described in Section 13.6 is useful if each 
of the six restrictions on geometry and load is satisfied by the proposed structure. 
Otherwise, a more general method is needed. One such method, proposed by Peabody 
in 1948 (Ref. 13.12), was incorporated in subsequent editions of the ACI Code as 
design by elastic analysis. The method was greatly expanded and refined based on 
research in the 1960s (Refs. 13.13 and 13.14), and it appears in Chapter 13 of the 
current ACI Code as the equivalent frame method. 

It will be evident that the equivalent frame method was derived with the 
assumption that the analysis would be done using the moment distribution method 
(see Chapter 12). If analysis is done by computer using a standard frame analysis 
program, special modeling devices are necessary. This point will be discussed 
further in Section 13.9e. 

By the equivalent frame method, the structure is divided, for analysis, into contin
uous frames centered on the column lines and extending both longitudinally and trans
versely, as shown by the shaded strips in Fig. 13.17. Each frame is composed of a row 
of columns and a broad continuous beam. The beam, or slab beam, includes the portion 
of the slab bounded by panel centerlines on either side of the columns, together with 
column-line beams or drop panels, if used. For vertical loading, each floor with its 
columns may be analyzed separately, with the columns assumed to be fixed at the floors 
above and below. In calculating bending moment at a support, it is convenient and suffi
ciently accurate to assume that the continuous frame is completely fixed at the support 
two panels removed from the given support, provided the frame continues past that point. 

b. Moment of Inertia of Slab Beam 

Moments of inertia used for analysis may be based on the concrete cross section, 
neglecting reinforcement, but variations in cross section along the member axis should 
be accounted for. 



FIGURE 13.17 
Building idealization for 
equivalent frame analysis. 
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~ Column ~ Column 

I 

For the beam strips, the first change from the midspan moment of inertia nor
mally occurs at the edge of drop panels, if they are used. The next occurs at the edge 
of the column or column capital. While the stiffness of the slab strip could be consid
ered infinite within the bounds of the column or capital, at locations close to the panel 
centerlines (at each edge of the slab strip), the stiffness is much less. According to ACI 
Code 13.7.3, from the center of the column to the face of the column or capital, the 
moment of inertia of the slab is taken equal to the value at the face of the column or 
capital, divided by the quantity (1 - c2//2) 2, where c2 and /2 are the size of the column 
or capital and the panel width, respectively, both measured transverse to the direction 
in which moments are being determined. 

Accounting for these changes in moments of inertia results in a member, for 
analysis, in which the moment of inertia varies in a stepwise manner. The stiffness 
factors, carryover factors, and uniform-load fixed-end moment factors needed for 
moment distribution analysis (see Chapter 12) are given in Table A.13a of Appendix A 
for a slab without drop panels and in Table A.13b for a slab with drop panels with 
a depth equal to 1.25 times the slab depth and a total length equal to one-third the 
span length. 

c. The Equivalent Column 

In the equivalent frame method of analysis, the columns are considered to be attached to 
the continuous slab beam by torsional members that are transverse to the direction of the 
span for which moments are being found; the torsional member extends to the panel 
centerlines bounding each side of the slab beam under study. Torsional deformation of 
these transverse supporting members reduces the effective flexural stiffness provided by 
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FIGURE 13.18 
Torsion at a transverse 
supporting member 
illustrating the basis of the 
equivalent column. 

the actual column at the support. This effect is accounted for in the analysis by use of 
what is termed an equivalent column having stiffness less than that of the actual column. 

The action of a column and the transverse torsional member is easily explained 
with reference to Fig. 13.18, which shows, for illustration, the column and transverse 
beam at the exterior support of a continuous slab-beam strip. From Fig. 13.18, it is 
clear that the rotational restraint provided at the end of the slab spanning in the 
direction l 1 is influenced not only by the flexural stiffness of the column but also by 
the torsional stiffness of the edge beam AC. With distributed torque mt applied by the 
slab and resisting torque Mt provided by the column, the edge-beam sections at A and 
C will rotate to a greater degree than the section at B, owing to torsional deformation 
of the edge beam. To allow for this effect, the actual column and beam are replaced by 
an equivalent column, so defined that the total flexibility (inverse of stiffness) of the 
equivalent column is the sum of the flexibilities of the actual column and beam. Thus, 

1 1 1 
-=--+-
Kee LKc Kr 

where Kee = flexural stiffness of equivalent column 
Kc = flexural stiffness of actual column 
Kt = torsional stiffness of edge beam 

(13.9) 

all expressed in terms of moment per unit rotation. In computing Kc, the moment of 
inertia of the actual column is assumed to be infinite from the top of the slab to the 
bottom of the slab beam, and Jg is based on the gross concrete section elsewhere along 
the length. Stiffness factors for such a case are given in Table A. 13c. 

The effective cross section of the transverse torsional member, which may or 
may not include a beam web projecting below the slab, as shown in Fig. 13.18, is the 
same as defined earlier in Section 13.6c. The torsional constant C is calculated by 
Eq. (13.6) based on the effective cross section so determined. The torsional stiffness 
K1 can then be calculated by the expression 

(13.10) 
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where Ecs = modulus of elasticity of slab concrete 
c2 = size of rectangular column, capital, or bracket in direction /2 
C = cross-sectional constant [see Eq. (13.6)] 

The summation applies to the typical case in which there are slab beams (with or 
without edge beams) on both sides of the column. The length /2 is measured center to 
center of the supports and thus may have different values in each of the summation 
terms in Eq. (13.10), if the transverse spans are unequal. 

If a panel contains a beam parallel to the direction in which moments are being 
determined, the value of Kt obtained from Eq. (13.10) leads to values of Kee that are 
too low. Accordingly, in such cases, the value of Kt found by Eq. (13.10) should be 
multiplied by the ratio of the moment of inertia of the slab with such a beam to the 
moment of inertia of the slab without it. 

The concept of the equivalent column, illustrated with respect to an exterior 
column, is employed at all supporting columns for each continuous slab beam, 
according to the equivalent frame method. 

d. Moment Analysis 

With the effective stiffness of the slab-beam strip and the supports found as 
described, the analysis of the equivalent frame can proceed by moment distribution 
(see Chapter 12). 

In keeping with the requirements of statics (see Section 13.5), equivalent beam 
strips in each direction must each carry 100 percent of the load. If the unfactored live 
load does not exceed three-quarters of the unfactored dead load, maximum moment 
may be assumed to occur at all critical sections when the full factored live load (plus 
factored dead load) is on the entire slab, according to ACI Code 13.7.6. Otherwise 
pattern loadings must be used to maximize positive and negative moments. Maximum 
positive moment is calculated with three-quarters factored live load on the panel and 
on alternate panels, while maximum negative moment at a support is calculated with 
three-quarters factored live load on the adjacent panels only. Use of three-quarters live 
load rather than the full value recognizes that maximum positive and negative 
moments cannot occur simultaneously (since they are found from different loadings) 
and that redistribution of moments to less highly stressed sections will take place 
before failure of the structure occurs. Factored moments must not be taken less than 
those corresponding to full factored live load on all panels, however. 

Negative moments obtained from that analysis apply at the centerlines of sup
ports. Since the support is not a knife edge but a rather broad band of slab spanning 
in the transverse direction, some reduction in the negative design moment is proper 
(see also Section 12.5a). At interior supports, the critical section for negative bending, 
in both column and middle strips, may be taken at the face of the supporting column 
or capital, but in no case at a distance great.er than 0.175/1 from the center of the 
column, according to ACI Code 13.7.7. To avoid excessive reduction of negative 
moment at the exterior supports (where the distance to the point of inflection is small) 
for the case where columns are provided with capitals, the critical section for negative 
bending in the direction perpendicular to an edge should be taken at a distance from 
the face of support not greater than one-half the projection of the capital beyond the 
face of the support. 

With positive and negative design moments obtained as just described, it still 
remains to distribute these moments across the widths of the critical sections. For 
design purposes, the total strip width is divided into column strip and adjacent 
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half-middle strips, defined previously in Section 13.5, and moments are assumed 
constant within the bounds of each. The distribution of moments to column and 
middle strips is done using the same percentages given in connection with the 
direct design method. These are summarized in Table 13.4 and by the interpolation 
charts of Graph A.4 of Appendix A. 

The distribution of moments and shears to column-line beams, if present, is in 
accordance, with the procedures of the direct design method also. Restriction 6 of 
Section 13.6, pertaining to the relative stiffness of column-line beams in the two direc
tions, applies here also if these distribution ratios are used. 

EXAMPLE 13.3 Design of flat plate floor by equivalent frame method. An office building is planned using 
a flat plate floor system with the column layout as shown in Fig. 13.19. No beams, drop panels, 
or column capitals are permitted. Specified live load is 100 psf, and dead load will include the 
weight of the slab plus an allowance of 20 psf for finish floor plus suspended loads. The 
columns will be 18 in. square, and the floor-to-floor height of the structure will be 12 ft. Design 
the interior panel C, using material strengths J;, = 60,000 psi and J; = 4000 psi. Straight-bar 
reinforcement will be used. 

FIGURE 13.19 
Two-way flat plate floor. 

SOLUTION. Minimum thickness h for a flat plate, according to the ACI Code, may be found 
from Table 13.5.t For the present example, the minimum h for the exterior panel is 
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t In many flat plate floors, the minimum slab thickness is controlled by requirements for shear transfer at the supporting columns, and h is 
determined either to avoid supplementary shear reinforcement or to limit the excess shear to a reasonable margin above that which can be carried 
by the concrete. Design for shear in flat plates and flat slabs will be treated in Section 13.10. 
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This will be rounded upward for practical reasons, with calculations based on a trial thickness 
of 8.5 in. for all panels. Thus the dead load of the slab is 150 X 8.5/12 = 106 psf, to which the 
superimposed dead load of 20 psf must be added. The factored design loads are 

l.2qd = 1.2(106 + 20) = 151 psf 

l.6q1 = 1.6 X 100 = 160 psf 

The structure is identical in each direction, permitting the design for one direction to be 
used for both (an average effective depth to the tensile steel will be used in the calculations). 
While the restrictions of Section 13.6 are met and the direct design method of analysis is 
permissible, the equivalent frame method will be adopted to demonstrate its features. Moments 
will be found by the method of moment distribution. 

For flat plate structures, it is usually acceptable to calculate stiffnesses as if all members 
were prismatic, neglecting the increase in stiffness within the joint region, as it generally has 
negligible effect on design moments and shears. Then, for the slab spans, 

4EJc 
K =--

s l 

4Ec(264 X 8.53
) 

= 12 X 264 = 205E, 

and the column stiffnesses are 

Calculation of the equivalent column stiffness requires consideration of the torsional deforma
tion of the transverse strip of slab that functions as the supporting beam. Applying the criteria 
of the ACI Code establishes that the effective torsional member has width 18 in. and depth 
8.5 in. For this section, the torsional constant C from Eq. (13.5) is 

( 
8.5) 18 C = 1 - 0.63 X l8 8.53 X 3 = 2590 in4 

and the torsional stiffness, from Eq. (13.10), is 

9Ec X 2590 
K = ------ = 109E 

I 264(1 - 1.5/22)3 
C 

From Eq. (13.9), accounting for two columns and two torsional members at each joint, 

----+----
K,c 2 x 243Ec 2 x 109Ec 

from which K,c = 15 lEc. Distribution factors at each joint are then calculated in the usual way. 
For the present example, the ratio of service live load to dead load is 100/126 = 0.79, 

and because this exceeds 0.75, according to ACI Code 13.7.6 maximum positive and negative 
moments must be found based on pattern loadings, with full factored dead load in place and 
three-quarters factored live load positioned to caust;.Jhe maximum effect. In addition, the design 
moments must not be less than those produced by full factored live and dead loads on all panels. 
Thus three load cases must be considered: (a) full factored dead and live load, 311 psf, on all 
panels; (b) factored dead load of 151 psf on all spans plus three-quarters factored live load, 
120 psf, on panel C; and (c) full factored dead load on all spans and three-quarters live load on 
first and second spans. Fixed-end moments and final moments obtained from moment distri
bution are summarized in Table 13.7. The results indicate that load case a controls the slab 
design in the support region, while load case b controls at the midspan of panel C. Moment 
diagrams for the two controlling cases are shown in Fig. 13.20a. According to the ACI Code 
the critical section at interior supports may be taken at the face of supports, but not greater than 
0.17511 from the column centerline. The former criterion controls here, and the negative design 
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TABLE 13.7 
Moments in flat plate floor, ft-kips 

Panel B 

Joint 1 2 

(a) 311 psf all panels 
Fixed-end moments +276 -276 
Final moments +125 -323 
Span moment in C 

(b) 151 psfpanels Band 271 psfpanel C 
Fixed-end moments +134 -134 
Final moments +50 -200 
Span moment in C 

(c) 271 psfpanels B (left) and C and 151 psfpanel B (right) 
Fixed-end moments 
Final moments 
Span moment in C 

FIGURE 13.20 
Design moments and shears 
for flat plate floor interior 
panel C: (a) moments; 
(b) shears. 
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TABLE 13.8 
Design of flat plate reinforcement 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
Number 

Mu, b, d, Mu X 12/b, A., and Size 
Location ft-kips in. in. ft-kips/ft p in2 of Bars 

Column Negative 196 132 7 17.82 0.0075 6.65 16 No. 6 (No. 19) 
strip Positive 82 132 7 7.45 0.0029 2.68 9 No. 5 (No. 16) 

Two half- Negative 66 132 7 6.00 0.0023 2.13 8 No. 5 (No. 16)a 
middle strips Positive 55 132 7 5.00 0.0020 1.85 8 No. 5 (No. 16)a 

a Number of bars controlled by maximum spacing requirement. 

moment is calculated by subtracting the area under the shear diagram between the centerline 
and face of support, for load case a, from the negative moment at the support centerline. The 
shear diagram for load case a is given in Fig. 13.20b, with the adjusted design moments shown 
in Fig. 13.20a. 

Because the effective depth for all panels will be the same, and because the negative steel 
for panel C will continue through the support region to become the negative steel for panels B, 
the larger negative moment found for the panels B will control. Accordingly, the design 
negative moment is 262 ft-kips and the design positive moment is 137 ft-kips.t 

Moments will be distributed laterally across the slab width according to Table 13.4, 
which indicates that 75 percent of the negative moment will be assigned to the column strip and 
60 percent of the positive moment assigned to the column strip. The design of the slab 
reinforcement is summarized in Table 13.8. 

Other important aspects of the design of flat plates include design for punching shear at 
the columns, which may require supplementary shear reinforcement, and transfer of unbal
anced moments to the columns, which may require additional flexural bars in the negative 
bending region of the column strips or adjustment of spacing of negative steel. These consid
erations are of special importance at exterior columns and comer columns, such as shown in 
Fig. 13.19. Shear and moment transfer at the columns will be discussed in Sections 13.10 and 
13.11, respectively. 

e. Equivalent Frame Analysis by Computer 

It is clear that the equivalent frame method, as described in the ACI Code and the 
ACI Code Commentary, is oriented toward analysis using the method of moment 
distribution. Presently, most offices make use of computers, and frame analysis is 
done using general-purpose programs based on the direct stiffness method. Plane 
frame analysis programs can be used for slab,analysis based on the concepts of the 
equivalent frame method, but the frame must be specially modeled. Variable 
moments of inertia along the axis of slab-beams and columns require nodal points 
(continuous joints) between sections where I is to be considered constant (i.e., in 
the slab at the junction of slab and drop panel, drop panel and capital, and in the 

t When slab systems that meet the restrictions of the direct design method are designed by the equivalent frame method, according to ACI Code 
13.7.7 the resulting design moments may be reduced proportionately so that the sum of the positive and average negative moments in a span is no 
greater than M

0 
calculated for the direct design method according to Eq. (13.1). There is no theoretical basis for this. The reduction is less than 

5 percent in the present example, and it will not be included in the design calculations. 
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columns at the bottom of the capitals). In addition, it is necessary to compute Kee 
for each column and then to compute the equivalent value of the moment of inertia 
for the column. 

Alternately, a three-dimensional frame analysis may be used, in which the torsional 
properties of the transverse supporting beams may be included directly. A third option 
is to make use of specially written computer programs, the most widely used being 
pcaSlab, ooveloped by the Portland Cement Association (Skokie, Illinois). 

13.10 SHEAR DESIGN IN FLAT PLATES AND FLAT SLABS 

FIGURE 13.21 
Failure surface defined by 
punching shear. 

When two-way slabs are supported directly by columns, as in flat slabs and flat plates, 
or when slabs carry concentrated loads, as in footings, shear near the columns is of 
critical importance. Tests of flat plate structures indicate that, in most practical cases, 
the capacity is governed by shear (Ref. 13.15). 

a. Slabs without Special Shear Reinforcement 

Two kinds of shear may be critical in the design of flat slabs, flat plates, or footings. 
The first is the familiar beam-type shear leading to diagonal tension failure. Appli
cable particularly to long narrow slabs or footings, this analysis considers the slab 
to act as a wide beam, spanning between supports provided by the perpendicular 
column strips. A potential diagonal crack extends in a plane across the entire width 
/ 2 of the slab. The critical section is taken a distance d from the face of the column 
or capital. As for beams, the design shear strength </> Ve must be at least equal to the 
required strength Vu at factored loads. The nominal shear strength Ve should be 
calculated by either Eq. (4.12a) or Eq. (4.12b), with bw equal to the panel width /2 

in this case. 
Alternatively, failure may occur by punching shear, with the potential diagonal 

crack following the surface of a truncated cone or pyramid around the column, 
capital, or drop panel, as shown in Fig. 13.21a. The failure surface extends from the 
bottom of the slab, at the support, diagonally upward to the top surface. The angle of 
inclination with the horizontal 0 (see Fig. 13.21b) depends upon the nature and 
amount of reinforcement in the slab. It may range between about 20 and 45°. The 
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FIGURE 13.22 
Shear strength coefficient for 
flat plates as a function of 
ratio {3 of long side to short 
side of support. 
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critical section for shear is taken perpendicular to the plane of the slab and a distance 
d/2 from the periphery of the support, as shown. The shear force Vu to be resisted can 
be calculated as the total factored load on the area bounded by panel centerlines 
around the column less the load applied within the area defined by the critical shear 
perimeter, unless significant moments must be transferred from the slab to the 
column (see Section 13.11). 

At such a section, in addition to the shearing stresses and horizontal compressive 
stresses due to negative bending moment, vertical or somewhat inclined compressive 
stress is present, owing to the reaction of the column. The simultaneous presence of 
vertical and horizontal compression increases the shear strength of the concrete. For 
slabs supported by columns having a ratio of long to short sides not greater than 2, 
tests indicate that the nominal shear strength may be taken equal to 

(13.lla) 

according to ACI Code 11.11.2, where b 
O 

= the perimeter along the critical section, 
and A is the lightweight concrete factor (see Section 4.5a). 

However, for slabs supported by very rectangular columns, the shear strength 
predicted by Eq. (13.1 la) has been found to be unconservative. According to tests 
reported in Ref. 13.16, the value of Ve approaches 2Av'J:b0 d as {3, the ratio of long to 
short sides of the column, becomes very large. Reflecting these test data, ACI Code 
11.11.2 states further that Ve in punching shear shall not be taken greater than 

¼ = ( 2 + i)Av'if b0 d (13.llb) 

The variation of the shear strength coefficient, as governed by Eqs. (13.1 la) and 
(13.llb), is shown in Fig. 13.22 as a function of {3. 

Further tests, reported in Ref. 13 .17, have shown that the shear strength Ve 
decreases as the ratio of critical perimeter to slab depth bjd increases. Accordingly, 
ACI Code 11.11.2 states that Ve in punching shear must not be taken greater than 

_ (asd ) ~ r,:; ¼ - bu + 2 A v t bod (13.llc) 

where as is 40 for interior columns, 30 for edge columns, and 20 for comer columns, 
i.e., columns having critical sections with 4, 3, or 2 sides, respectively. 

0 '------'------'-----'-----'------' 
0 2 4 6 8 10 

/3 
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FIGURE 13.23 
Punching shear for columns 
of irregular shape. 
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Thus, according to the ACI Code, the punching shear strength of slabs and 
footings is to be taken as the smallest of the values of Ve given by Eqs. (13.1 la), 
(13.1 lb), and (13.llc). The design strength is taken as <f>Vc as usual, where</>= 0.75 
for shear. The basic requirement is then V,,:::; <f>Vc. 

For columns with nonrectangular cross sections the ACI Code indicates that the 
perimeter b

0 
must be of minimum length, but need not approach closer than d/2 to 

the perimeter of the reaction area. The manner of defining the critical perimeter b
0 

and 
the ratio {3 for such irregular support configurations is illustrated in Fig. 13.23. 

b. Types of Shear Reinforcement 

Special shear reinforcement is often used at the supports for flat plates, and sometimes 
for flat slabs as well. It may take several forms. A few common types are shown 
in Fig. 13.24. 

The shearheads shown in Fig. 13.24a and c consist of standard structural steel 
shapes embedded in the slab and projecting beyond the column. They serve to increase 
the effective perimeter b

0 
of the critical section for shear. In addition, they may 

contribute to the negative bending resistance of the slab. The reinforcement shown in 
Fig. 13.24a is particularly suited for use with concrete columns. It consists of short 
lengths of I or wide-flange beams, cut and welded at the crossing point so that the 
arms are continuous through the column. Normal negative slab reinforcement passes 
over the top of the structural steel, while bottom bars are stopped short of the 
shearhead. Column bars pass vertically at the corners of the column. The effectiveness 
of this type of shearhead has been documented by tests by Corley and Hawkins 
(Ref. 13.18). The channel frame in Fig. 13.24c is very similar in its action, but is 
adapted for use with steel columns. The bent-bar arrangement in Fig. 13.24b is suited 
for use with concrete columns. The bars are usually bent at 45° across the potential 
diagonal tension crack, and extend along the bottom of the slab a distance sufficient 
to develop their strength by bond. The flanged collar in Fig. 13.24d is designed mainly 
for use with lift-slab construction (see Chapter 18). It consists of a flat bottom plate 
with vertical stiffening ribs. It may incorporate sockets for lifting rods, and usually is 



FIGURE 13.24 
Shear reinforcement for flat 
plates ( continued on next 
page). 
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used in conjunction with shear pads welded directly to the column surfaces below the 
collar to transfer the vertical reaction. 

Another type of shear reinforcement is illustrated in Fig. 13.24e, where vertical 
stirrups have been used in conjunction with supplementary horizontal bars radiating 
outward in two perpendicular directions from the support, to form what are termed 
integral beams contained entirely within the slab thickness. These beams act in the 
same general way as the shearheads shown in Fig. 13.24a and c. Adequate anchorage 
of the stirrups is difficult in slabs thinner than about 10 in. ACI Code 11.11.3 requires 
the slab effective depth d to be at least 6 in., but not less than 16 times the diameter of 
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FIGURE 13.24 
( continued) 
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the shear reinforcement. In all cases, closed hoop stirrups should be used, with a large
diameter horizontal bar at each bend point, and the stirrups must be terminated with a 
standard hook (Ref. 13.19). 

Headed shear stud reinforcement, shown in Fig. 13.24.f. is governed by ACI 
Code 11.11.5. This consists of large-head studs welded to steel strips. The strips are 
supported on wire chairs during construction to maintain the required concrete cover 
to the bottom of the slab below the strip, and the usual cover is maintained over the 
top of the head. Because of the positive anchorage provided by the stud head and 
the steel strip, these devices are more effective, according to tests, than either the bent
bar or integral beam reinforcement (Refs. 13.20 and 13.21). In addition, they can be 
placed more easily, with less interference with other reinforcement, than other types 
of shear steel. 

c. Design of Bent-Bar Reinforcement 

If shear reinforcement in the form of bars is used (Fig. 13.24b), the limit value of 
nominal shear strength Vn, calculated at the critical section d/2 from the support 
face, may be increased to 6Vfl b0 d according to ACI Code 11.11.3. The shear resistance 
of the concrete Ve is reduced to 2A Vfl b0 d, and reinforcement must provide for 
the excess shear above <p Ve. The total bar area Av crossing the critical section at slope 
angle a is easily obtained by equating the vertical component of the steel force to the 
excess shear force to be accommodated: 

<f>Av/2 sin a = V,, - <p Ye 

Where inclined shear reinforcement is all bent at the same distance from a support, 
V, = Av/2 sin a is not to exceed 3Vfl b0 d, according to ACI Code 11.4.7. The required 
area of reinforcement for shear is found by transposing the preceding equation: 

v,, - <p Ye 
A=----

v </>Jy sin a 
(13.12) 
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Successive sections at increasing distances from the support must be investigated and 
reinforcement provided where Vu exceeds cf>Vc as given by Eq. (13.11).t Only the 
center three-quarters of the inclined portion of the bent bars can be considered 
effective in resisting shear, and full development length must be provided past the 
location of peak stress in the steel, which is assumed to be at slab middepth d/2. 

EXAMPLE 13.4 Design of bar reinforcement for punching shear. A flat plate floor has thickness h = 1 ½ in. 
and is supported by 18 in. square columns spaced 20 ft on centers each way. The floor will 
carry a total factored load of 300 psf. Check the adequacy of the slab in resisting punching shear 
at a typical interior column, and provide shear reinforcement, if needed, using bent bars similar 
to Fig. l3.24b. An average effective depth d = 6 in. may be used. Material strengths are J;, = 
60,000 psi and J; = 4000 psi. 

SOLUTION. The first critical section for punching shear is a distance d/2 = 3 in. from the 
column face, providing a shear perimeter b

0 
= 24 X 4 = 96 in. Based on the tributary area of 

loaded floor, the factored shear is 

Vu = 300(202 - 22) = 118,800 lb 

and if no shear reinforcement is used, the design strength of the slab, controlled by 
Eq. (13.lla), is 

<f>Vc = 0.75 X 4V4000 X 96 X 6 = 109,3001b 

confirming that shear reinforcement is required. Bars bent at 45° will be used in two directions, 
as shown in Fig. 13.25. When shear strength is provided by a combination of reinforcement and 
concrete, the concrete contribution is reduced to 

<f>Vc = 0.75 X 2V4000 X 96 X 6 = 54,600 lb 

and so the shear Vs to be resisted by the reinforcement is 

V = Vu - <f>Vc = 118,800 - 54,600 = 85 600 lb 
s <p 0.15 ' 

This is below the maximum permissible value of 3V4000 X 96 X 6 = 109,300 lb. The 
required bar area is then found from Eq. (13 .12) to be 

A = 85,600 = 2.02 in2 
v 60,000 X 0.707 

A total of four bars will be used (two in each direction), and with eight legs crossing the critical 
section, the necessary area per bar is 2.02/8 = 0.25 in2. No. 5 (No. 16) bars will be used as 
shown in Fig. 13.25. The upper limit of Vn = 6'V7::b0 d is automatically satisfied in this case, 
given the more stringent limit on Vs. 

t ACI Code 11.11.3 and ACI Commentary 11.11.3 are ambiguous regarding the value of Ve to be used for flat plate slabs beyond the region where 
shear reinforcement is required. In general, for slabs where shear reinforcement is not required, Ve is calculated from Eqs. (13.1 la) to (13.1 lc), 
with Ve in most cases equal to 4A v'J: b0 d. When shear reinforcement is provided, the limiting shear may be increased to a maximum of 6vf:b

0
d; 

however, the shear reinforcement must be designed to carry all shear in excess of </J Ve with V,: = 2A vf: b
0
d. This seems to imply that the reduction 

in Ve to one-half its normal value applies only where there is a sharing of the force between concrete and steel reinforcement and that, in the 
region where shear reinforcement is not required, the full concrete contribution of 4A v'J: b0 d can be used. The examples that follow have been 
prepared on that basis. The alternative interpretation is that if shear reinforcement is required at the column, then the concrete contribution is 
reduced to 2A v'J: b0 d throughout the slab. This more conservative interpretation could be adopted in many cases without significant cost increase, 
because of the rapid increase in Ve with increasing distance from the column resulting from the increase in concrete shear perimeter b

0
, as well as 

the reduction in net shear force Vu. 
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FIGURE 13.25 
Bar reinforcement for 
punching shear in flat plate 
slab. 
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With bars bent at 45° and effective through the center three-fourths of the inclined length, 
the next critical section is approximately¾ times the effective depth, or 4.5 in., past the first, as 
shown, giving a shear perimeter of 33 X 4 = 132 in. The factored shear at that critical section is 

Vu= 300(202 
- 2.75 2

) = 117,700 lb 

and the design capacity of the concrete is 

cf>¼ = 0.75 X 4 X 1 \/4000 X 132 X 6 = 150,300 lb 

confirming that no additional bent bars are needed. The No. 5 (No. 16) bars will be extended 
along the bottom of the slab the full development length of 15 in., as shown in Fig. 13.25. 

d. Design of Integral Beams with Vertical Stirrups 

The bent-bar shear reinforcement cages of Section 13.lOc may lead to troublesome 
congestion of reinforcement in the column-slab joint region. Shear reinforcement 
using vertical stirrups in integral beams, as shown in Fig. 13.24e, avoids much of 
this difficulty. 

The first critical section for shear design in the slab is taken at d/2 from 
the column face, as usual, and the stirrups, if needed, are extended outward from the 
column in four directions for the typical interior case (three or two directions for 
exterior or corner columns, respectively), until the concrete alone can carry the shear, 
with ¼ = 4,\ vf'cb0 d at the second critical section.t Within the region adjacent to the 
column, where shear resistance is provided by a combination of concrete and steel, the 
nominal shear strength Vn must not exceed 6 vfcb A according to ACI Code 11.11.3. 
In this region, the concrete contribution is reduced to ¼ = 2A vF;b0d. The second 
critical section crosses each integral beam at a distance d/2 measured outward from 
the last stirrup and is located so that its perimeter b 

O 
is a minimum (i.e., for the typical 

case, defined by 45° lines between the integral beams). The required spacing of the 
vertical stirrups sis found using Eq. (4.14a), but must not exceed d/2, with the first 

t Neither the ACI Code nor the ACI Commentary makes clear whether Eqs. (13. l lb) and (13.l lc) are to be applied at successive critical sections 
past the first, immediately adjacent to the column. The research on which these equations were based considered only the first critical section at 
the column. Except in extreme cases, the aspect ratio of the column, in Eq. (13. l lb), seems less relevant with increasing distance from the column; 
however, the b0 /d ratio, in Eq. (13. l lc), may be influential, and that equation might conservatively be applied. 
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line of stirrups not more than d/2 from the column face. The spacing of the stirrup legs 
(measured parallel to the face of the column) in the first line of shear reinforcement 
must not exceed 2d. 

The problem of anchorage of the shear reinforcement in shallow flat plates is 
critical, and closed hoop stirrups, terminating in standard hooks, always should be pro
vided with interior corner bars to improve pullout resistance. 

EXAMPLE 13.5 Design of an integral beam with vertical stirrups. The flat plate slab with 7.5 in. total 
thickness and 6 in. effective depth shown in Fig. 13.26 is carried by 12 in. square columns 1S ft 
on centers in each direction. A factored load of 120 kips must be transmitted from the slab to 
a typical interior column. Concrete and steel strengths used are, respectively,!; = 4000 psi and 
f,, = 60,000 psi. Determine if shear reinforcement is required for the slab; and if so, design 
integral beams with stirrups to carry the excess shear. 

FIGURE 13.26 
Vertical stirrup shear 
reinforcement for slab in 
Example 13.S. 

SOLUTION. The design shear strength of the concrete alone at the critical section d/2 from the 
face of the column, by the controlling Eq. ( 13.1 1 a), is 

q>V,, = 0.75 X 4 X 1 '\/4000 X 72 X 6 = 82.0 kips 

This is less than v. = 120 kips, indicating that shear reinforcement is required. The effective 
depth d = 6 in. just satisfies the minimum allowed to use stirrup reinforcement, as described in 
Section 13.1 Ob. In this case, the maximum design strength allowed by the ACJ Code is 

q>V. = 0.7S X 6V4000 X 72 X 6 = 122.9 kips 

(a) 

15" ~ · I 4 No. 3 (1\lo. 1 O) 
stirrups @ 3" 

nn-F~nn 7_5,, 
UU-lc,~~~ _l 

(b) 

4 No. 5 (No. 16) 
anchor bars 
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satisfactorily above the actual Vu. When shear is resisted by combined action of concrete and 
bar reinforcement, the concrete contribution is reduced to 

</JVc = 0.75 X 2V4000 X 72 X 6 = 41.0 kips 

The No. 3 (No. 10) vertical closed hoop stirrups will be used since d must be 2::: 16 times the 
stirrup diameter (d/16 = ! in.) and arranged along four integral beams as shown in Fig. 13.26. 
Thus, the Av provided is 4 X 2 X 0.11 = 0.88 in2 at the first critical section, a distance d/2 
from the coriimn face, and the required spacing can be found from Eq. (4.14a): 

</JAvfvd 0.75 X 0.88 X 60 X 6 
s = --- = -------- = 3.01 in. 

Vu - </JVc 120 - 41.0 

However, the maximum spacing of d/2 = 3 in. controls here, and No. 3 (No. 10) stirrups at a 
constant spacing of 3 in. will be used. In other cases, stirrup spacing might be increased with 
distance from the column, as excess shear is less, although this would complicate placement of 
the reinforcement and generally save little steel. 

The required perimeter of the second critical section, at which the concrete alone can 
carry the shear, is found from the controlling Eq. (13.lla) as follows: 

</JVc = 0.75 X 4V4000 X ho X 6 = 120,000 lb 

from which the minimum perimeter h0 = 105.4 in. Using this value of h0 in Eq. (l3.1 le) gives 
</JVc = 121,500 lb; thus, Eq. (l3.1 la) governs. It is easily confirmed that h

0 
= 105.4 in. requires 

a minimum projection of the critical section past the face of the column of 11.39 in. Four stir
rups at a constant 3 in. spacing will be sufficient, the first placed at s/2 = 1.5 in. ::=; d/2 = 3 in. 
from the column face, as indicated in Fig. 13.26. This provides a perimeter h

0 
at the second 

critical section of ( 16.5 V'2 + 6) X 4 = 117 in., exceeding the requirement. 
Four longitudinal No. 5 (No. 16) bars will be provided inside the comers of each closed 

hoop stirrup, as shown, to provide for proper anchorage of the shear reinforcement. 
Note that the approach taken here is somewhat conservative because the portion of the 

slab load applied inside the perimeter of the critical section does not act on that section and can 
thus be subtracted from the factored load of 120 kips. 

e. Design of Headed Shear Stud Reinforcement 

Slab shear reinforcement consisting of integral beams with stirrups, as described in 
Section 13. lOd, is probably the most widely used type at present. However, the cage 
that is formed by the stirrups and longitudinal anchor bars may be difficult to install. 
Also, the slab-column joint region is somewhat congested, with top and bottom slab 
steel running in two perpendicular directions, with vertical bars in the column, and 
with the stirrups. Congestion can become critical when the slab has openings, which 
are frequently required, at or near the column faces. 

Shear stud reinforcing strips, as shown in Fig. 13.24/ and in Fig. 13.27a and b, 
are widely used in Germany, Switzerland, and Canada (Refs. 13.20 and 13.21). Their 
use in the United States has increased and design guidelines, based on extensive 
testing (Refs. 13.22 and 13.23), are incorporated in ACI Code 11.11.5. The studs have 
a minimum yield strength hr of 51,000 psi and are available in diameters of 0.375, 
0.500, 0.625, and 0.750 in., in accordance with ASTM specification A1044. 

These devices are composed of vertical bars with anchor heads at their top, welded 
to a steel strip at the bottom. Multiple strips are arranged in two perpendicular direc
tions for square and rectangular columns or usually in radial directions for circular 
columns. They are secured in position in the forms before the top and bottom flexural 
steel is in place. The steel strip rests on bar chairs to maintain the needed concrete 
cover below the steel and is held in position by nails through holes in the strip. 



FIGURE 13.27a 
Shear stud reinforcement for 
concrete slabs: shear stud 
assembly. (Courresy of Amin 
Ghali and Walrer H. Dilger.) 

FIGURE 13.27b 
Shear stud reinforcements for 
concrete slabs: shear 
reinforcement installed in 
forms for prestressed 
concrete slab. (Cotmesy of 
Amin Ghali and Walter H. 
Dilger.) 
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Headed shear studs are placed perpendicular to the plane of the slab. The overall 
height of the shear stud assembly may not be less than the thickness of the member less 
the sum of ( 1) the concrete cover over the top reinforcement, (2) the concrete cover on the 
base rail, and (3) one-half the diameter of the tension flexural reinforcement. Two critical 
shear sections exist. The first is located a distance d/2 from the face of the column, and 
the second is located a distance d/2 from the oute1most peripheral line of studs, as shown 
in Fig. 13.28 for a typical interior column. As with the integral beams with vertical 
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FIGURE 13.28 
Arrangement of headed shear 
studs and critical sections for 
a typical interior column. 
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stirrups described in Section 13.lOd, the studs are extended outward from the column 
until the concrete alone can carry the shear; but in the case of slabs reinforced with headed 
shear studs, the shear stress due to the factored shear force and any unbalanced moment 
(see Section 13.11) may not exceed 2cpA vfc on the second critical section. 

The nominal shear capacity of the headed shear stud assembly Vn is the sum of the 
concrete contribution Ve and the shear stud contribution Vs. In the region adjacent 
to the column, the concrete contribution Ve is reduced to 3A vfcb0 d, and the total 
nominal capacity Vn may not exceed Bv[',bad. The shear stud contribution is Avfy1d/s, 
where Av is the area of the studs on a peripheral line and s is the spacing between the 
peripheral lines, as shown in Fig. 13.28. The value of the shear stud contribution, 
expressed as a stress on the critical section as Avfyi/b

0
s, must be at least 2-vfc in accor

dance with ACI Code 11.11.5. 
The spacing of the studs between the column face and the first peripheral line of 

studs should not exceed d/2, and the spacing of the concentric peripheral lines of studs 
s should be based on the combined effects of shear and any unbalanced moment on the 
critical section adjacent to the column face and should not exceed 0.75d when the shear 
stress due to factored loads is less than or equal to 6cp vfc or 0.5d when the shear stress 
exceeds 6cp vfc. Lastly, the spacing between the shear stud rails should not exceed 2d. 

EXAMPLE 13.6 Design of headed stud reinforcement. Repeat Example 13.5, using headed stud reinforcement. 
The No. 5 (No. 16) bars will be used as negative flexural reinforcement. The yield strength is 
Jy, = 51,000 psi for studs. 

SOLUTION. The minimum height of the shear stud assembly equals the thickness of the slab 
less the cover over the rail, the cover over the reinforcement, and one-half the reinforcement 
bar diameter. Thus, from Fig 13.29b the minimum height is 

7.5 - 0.75 - 0.75 - 0.5 X 0.625 = 5.68 in. 
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Headed shear stud arrangement and detail of structural depth requirements for Example 13.6. 

A stud height of 6 in. will be used, which is consistent with the effective depth and exceeds the 
minimum requirement. As in Example 13.5, the design shear strength of the concrete alone at 
the critical section from the face of the column based on an effective depth of 6 in., by the 
controlling Eq. (13.lla), is 

</>¼ = 0.75 X 4 X 1 V400Q X 72 X 6 = 82.0 kips 

which is less than Vu = 120 kips, indicating that shear reinforcement is required. The maximum 
design strength allowed by the ACI Code when headed stud reinforcement is used is 

<f,V,, = 0.75 X 8V400Q X 72 X 6 = 163.9 kips 

which is satisfactorily above the actual Vu. The maximum concrete strength allowed by ACI in 
conjunction with headed shear studs is 

</>¼ = 0.75 X 3 X 1 V400Q X 72 X 6 = 61.5 kips 

The maximum spacing between the stud rails must be less than 2d, so two lines of studs are 
needed for a 12 in. square column; a center-to-center spacing of 11 in. will be used. The shear 
stress in the slab at the first critical section is approximately 4.4 Vfc, which is below 
cp6vf'c = 4.5vf'c, giving a maximum stud spacing of 0.75d. A spacing of 4.5 in., equal to 
the maximum, is selected. The area of the studs is found from Eq. (4.14a): 

(V,, - <f>¼)s (120 - 61.5) X 4.5 . 
2 Av = ----- = -------- = 1.15 Ill 

</>Jy1d 0.75 X 51 X 6 

A peripheral line of studs contains 8 studs, requiring a cross-sectional area of 0.14 in2 per stud, 
so 0.500 in. diameter studs with a cross-sectionat'area of 0.20 in2 per stud are selected. 

The required perimeter of the second critical section, at which the concrete alone can 
carry the shear, is based on a maximum shear stress of 2<f,A Vfc. Thus, 

</>¼ = 0.75 X 2 X 1 V4000 X b0 X 6 = 120,000 lb 

from which the minimum perimeter b0 = 211 in. The first stud is placed at d/2 or 3 in. from 
the column face. Six studs at a spacing of 4.5 in. provide a minimum perimeter of 209 in., as 
shown in Fig. 13.29a, which is considered satisfactory since the load applied inside the perime
ter of the outer critical section has not been discounted. 
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FIGURE 13.30 
Critical sections for shear for flat plates: (a) no shearhead; (b) small shearhead; (c) large 
shearhead. 

f. Design of Shearhead Reinforcement 

If embedded structural steel shapes are used, as shown in Fig. 13.24a and c, the 
limiting value of Vn may be increased to 7\IJ:b0 d. As with the techniques described in 
Sections 13. lOc, d, and e, such a shearhead, provided it is sufficiently stiff and strong, 
has the effect of moving the critical section out away from the column, as shown in 
Fig. 13.30. According to ACI Code 11.11.4, this critical section crosses each arm of 
the shearhead at a distance equal to three-quarters of the projection beyond the face 
of the support, and is defined so that the perimeter is a minimum. It need not approach 
closer than d/2 to the face of the support. 

Moving the critical section out in this way provides the double benefit of 
increasing the effective perimeter b

0 
and decreasing the total shear force for which the 

slab must be designed. The nominal shear Vn at the new critical section must not be 
taken greater than 4 \IJ:b0 d, according to ACI Code 11.11.4. 

Tests reported in Ref. 13.18 indicate that throughout most of the length of a 
shearhead arm the shear is constant, and, further, that the part of the total shear carried 
by the shearhead arm is proportional to av, its relative flexural stiffness, compared 
with that of the surrounding concrete section: 

EJ, 
a=--

v EJc 
(13.13) 

The concrete section is taken with an effective width of c2 + d, where c2 is the width 
of the support measured perpendicular to the arm direction. Properties are calculated 
for the cracked, transformed section, including the shearhead. The observation that 
shear is essentially constant, at least up to the diagonal cracking load, implies that the 
reaction is concentrated largely at the end of the arm. Thus, if the total shear at the sup
port is V and if the shearhead has n identical arms (generally n = 4 for shearheads at 
interior columns), the constant shear force in each arm is equal to av V /n. 



FIGURE 13.31 
Stress resultants in shearhead 
arm: (a) shearhead arm; 
(b) shear; (c) moment. 
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If the load is increased past that which causes diagonal cracking immediately 
around the column, tests indicate that the increased shear above the cracking shear Ve 
is carried mostly by the steel shearhead, and that the shear force in the projecting arm 
within a distance from the column face equal to hv, the depth of the arm, assumes a 
nearly constant value greater than av V /n. This increased value is very nearly equal to 
the total shear per arm Vufcpn minus the shear carried by the partially cracked concrete. 
The latter term is equal to (Vjn)(l - av); hence, the idealized shear diagram shown 
in Fig. 13.31b is obtained. 

The moment diagram of Fig. 13.31c is obtained by integration of the shear 
diagram. If Ve is equal to Vn/2 = Vu/2cp, as tests indicate for shearheads of common 
proportions, it is easily confirmed that the plastic moment MP at the face of the 
support, for which the shearhead arm must be proportioned, is 

MP= l;n [hv + av(lv - ~)] (13.14) 

in which cp = 0.90, the capacity reduction fattor for tension-controlled members. 
According to ACI Code 11.11.4, the value of av must be at least equal to 0.15; 

more flexible shearheads have proved ineffective. The compression flange must not be 
more than 0.3d from the bottom surface of the slab, and the steel shapes used must not 
be deeper than 70 times the web thickness. 

For flexural design of the slab, moments found at the support centerline by the 
equivalent frame method are reduced to moments at the support face, assumed to be 
the critical section for moment. By the direct design method, support-face moments 
are calculated directly through the use of the clear-span distance. If shearheads are 
used, they have the effect of reducing the design moment in the column strips still 
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further by increasing the effective support width. This reduction is proportional to the 
share of the load carried by the shearhead and to its size, and can be estimated con
servatively (see Fig. 13.31b and c) by the expression 

M = <f>avV,,(z _ C1) 
V 2n V 2 

(13.15) 

where <f, = ,0.90. According to ACI Code 11.11.4, the reduction may not be greater 
than 30 percent of the total design moment for the slab column strip, or greater than 
the change in column-strip moment over the distance lv, or greater than MP given by 
Eq. (13.14). 

Limited test information pertaining to shearheads at a slab edge indicates that 
behavior may be substantially different due to torsional and other effects. If shearheads 
are to be used at an edge or corner column, special attention must be given to anchor
age of the embedded steel within the column. The use of edge beams or a cantilevered 
slab edge may be preferred. 

EXAMPLE 13. 7 Design of shearhead reinforcement. A flat plate slab 7½ in. thick is supported by 10 in. 
square columns and is reinforced for negative bending with No. 5 (No. 16) bars 5 in. on centers 
in each direction, with an average effective depth d of 6 in. The concrete strengthJ; is 3000 psi. 
The slab must transfer a factored shear Vu of 107,000 lb to the column. What special slab 
reinforcement is required, if any, at the column to transfer the factored shear? 

SOLUTION. The nominal shear strength at the critical section d/2 from the face of the column 
is found from Eq. (13.lla) to be 

Ve = 4 \/3000 X 64 X 6 = 84.1 kips 

and <f>Ve = 0.75 X 84.1 = 63.1 kips. This is less than v. = 107 kips, indicating that shear 
reinforcement is necessary. A shearhead similar to Fig. 13.24a will be used, fabricated from 
I-beam sections with.{y = 50 ksi. Maintaining¾ in. clearance below such steel, bar clearance 
at the top of the slab permits use of an I beam with a 4i in. depth; a nominal 4 in. section 
will be used. With such reinforcement, the upper limit of shear Vn on the critical section is 
7V3000 (64 X 6) = 147 kips, and <f>Vn = 0.75 X 147 = 110 kips, above the value of Vu to 
be resisted. The required perimeter b0 can be found by setting Vu = <f>Ve, where Ve is given 
by Eq. (13.lla): 

vu 
b =---

0 4</>v'ifd 
l07,000 = 109 in. 

4 X 0.75\/3000 X 6 

(Note that the actual shear force to be transferred at the critical section is slightly less than 
107 kips because a part of the floor load is within the effective perimeter b

0
; however, the dif

ference is small except for very large shearheads.) The required projecting length Iv of the 
shearhead arm is found from geometry, with b

0 
expressed in terms of Iv. 

b = 4V2[c
1 + i (1 - .:!.)] = 109in 

O 2 4 V 2 ° 

from which Iv = 24.0 in. To determine the required plastic section modulus for the shear arm, 
it is necessary to assume a trial value of the relative stiffness av. After selecting 0.25 for trial, 
the required moment capacity is found from Eq. (13.14): 

107,000 
MP = 

8 
X 

0
_
90 

[ 4 + 0.25 (24.0 - 5)] = 130,000 in-lb 

A standard I beam S4 X 7.7, with yield stress of 50 ksi, provides 176,000 in-lb resistance and 
will tentatively be adopted. The Els value provided by the beam is 174 X 1()6 in2-lb. The effective 



FIGURE 13.32 
Effective section of slab. 
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cross section of the slab strip is shown in Fig. 13.32. Taking moments of the composite cracked 
section about the bottom surface to locate the neutral axis gives 

8.90 X 6 + 19.9 X 2.75 + 8y 2 

y= 
8.90 + 19.9 + 16y 

from which y = 2.29 in. The moment of inertia of the composite section is 

le = ½ X 16 X 2.293 + 8.90 X 3.712 + 6 X 9 + 19.9 X 0.462 = 244 in4 

the flexural stiffness of the effective composite slab strip is 

EJc = 3.1 X 106 X 244 = 756 X 106 in2-lb 

and, from Eq. (13.13), 

174 
a = - = 0.23 

V 756 

This is greater than the specified minimum of 0.15 and close to the 0.25 value assumed earlier. 
The revised value of MP is 

107,000 [ ( )] . MP = --- 4 + 0.23 24.0 - 5 = 124,400 m-lb 
8 X 0.90 

The 4 in. beam is adequate. The calculated length lv of 24.0 in. will be retained. The reduction 
in column-strip moment in the slab may be based on this actual length. From Eq. (13.15), 

M = 0.90 X 0.23 X 107,000 (24 - 5) = 52 600 in-lb 
V 8 • 

This value is less than MP, as required by specification, and must also be less than 30 percent 
of the design negative moment in the column strip and less than the change in the column-strip 
moment in the distance lv. 

13.11 TRANSFER OF MOMENTS AT COLUMNS 

The analysis for punching shear in flat plates and flat slabs presented in Section 13.10 
assumed that the shear force Vu was resisted by shearing stresses uniformly distributed 
around the perimeter b 

O 
of the critical section, a distance d/2 from the face of the sup

porting column. The nominal shear strength Ve was given by Eqs. (13.lla), (13.llb), 
and (13.llc). 

If significant moments are to be transferred from the slab to the columns, as 
would result from unbalanced gravity loads on either side of a column or from hori
zontal loading due to wind or seismic effects, the shear stress on the critical section is 
no longer uniformly distributed. 
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FIGURE 13.33 
Transfer of moment from 
slab to column: (a) forces 
resulting from vertical load 
and unbalanced moment; 
(b) critical section for an 
interior column; (c) shear 
stress distribution for an 
interior column; (d) critical 
section for an edge column; 
(e) shear stress distribution 
for an edge column. 
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The situation can be modeled as shown in Fig. 13.33a. Here Vu represents the 
total vertical reaction to be transferred to the column, and Mu represents the unbal
anced moment to be transferred, both at factored loads. The vertical force Vu causes 
shear stress distributed more or less uniformly around the perimeter of the critical 
section as assumed earlier, represented by the inner pair of vertical arrows, acting 
downward. The unbalanced moment Mu causes additional loading on the joint, repre
sented by the outer pair of vertical arrows, which add to the shear stresses otherwise 
present on the right side, in the sketch, and subtract on the left side. 
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Tests indicate that for square columns about 60 percent of the unbalanced 
moment is transferred by flexure (forces T and C in Fig. 13.33a) and about 40 percent 
by shear stresses on the faces of the critical section (Ref. 13.24). For rectangular 
columns, it is reasonable to suppose that the portion transferred by flexure increases 
as the width of the critical section that resists the moment increases, i.e., as c2 + d 
becomes larger relative to c1 + din Fig. 13.33b. According to ACI Code 13.5.3, the 
moment considered to be transferred by flexure is 

(13.16a) 

where 
1 

(13.16b) 

and b1 = width of critical section for shear measured in direction of span for which 
moments are determined 

b2 = width of critical section for shear measured in direction perpendicular to b1 

The value of 'Yt may be modified if certain conditions are met: For unbalanced 
moments about an axis parallel to the edge of exterior supports, y1 may be increased 
to 1.0, provided that the factored shear Vu at the edge support does not exceed 0.75<f>Vc 
or at a comer support does not exceed 0.5</> Ve. For unbalanced moments at interior 
supports and about an axis perpendicular to the edge at exterior supports, 'YJ may be 
increased up to 1.25 times the value in Eq. (13.16b), provided that Vu::::::: 0.4</>Vc- In all 
of these cases, the net tensile strain E1 calculated for the section within 1.Sh on either 
side of the column or column capital must be at least 0.010. 

The moment assumed to be transferred by shear, by ACI Code 11.11. 7, is 

(13.16c) 

It is seen that for a square column Eqs. (13.16a), (13.16b), and (13.16c) indicate that 
60 percent of the unbalanced moment is transferred by flexure and 40 percent by 
shear, in accordance with the available data. If b2 is very large relative to b1, nearly all 
of the moment is transferred by flexure. 

The moment Mub can be accommodated by concentrating a suitable fraction of 
the slab column-strip reinforcement near the column. According to ACI Code 13.5.3, 
this steel must be placed within a width between lines I .Sh on each side of the column 
or capital, where h is the total thickness of the slab or drop panel. 

The moment Muv• together with the vertical reaction delivered to the column, 
causes shear stresses assumed to vary linearly with distance from the centroid of the 
critical section, as indicated for an interior column by Fig. 13.33c. The stresses can be 
calculated from 

Vu MuvC/ 
V1=----

Ac Jc 
(13.17a) 

Vu MuvCr 
vr =-+--

Ac Jc 
(13.17b) 

where Ac = area of critical section = 2d[(c1 + d) + (c2 + d)] 
c1, er = distances from centroid of critical section to left and right faces of sec

tion, respectively 
Jc = property of critical section analogous to polar moment of inertia 
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For an interior column, the quantity Jc is 

2d(c1 + d)
3 

2(c1 + d)d
3 

(c1 + d) 2 
le= 

12 
+ 

12 
+ 2d(c2 + d) -

2
- (13.18) 

Note the implication, in the use of the parameter Jc in the form of a polar moment of 
inertia, that shear stresses indicated on the near and far faces of the critical section in 
Fig. 13.33/have horizontal as well as vertical components. 

According to ACI Code 11.11. 7, the maximum shear stress calculated by 
Eq. (13 .17) must not exceed <f,v n- For slabs without shear reinforcement, <f,v n = 
<f,Vjb

0
d, where Ve is the smallest value given by Eqs. (13.lla), (13.llb), or (13.llc). 

For slabs with shear reinforcement other than shearheads, <f,vn = <f,(Vc + Vs)/b
0
d, 

where Ve and Vs are as established in Section 13.lOc, d, or e. Where shearhead 
reinforcement (see Section 13. lOf) is used, the sum of the shear stresses due to verti
cal load on the second critical section, near the end of the shearhead arms, and the 
shear stresses resulting from moment transfer about the centroid of the first critical 
section d/2 from the support faces must not exceed 4<f,A v']";. In support of the last 
calculation, ACI Commentary 11.11.7.3 notes that tests indicate the first critical 
section is appropriate for calculation of stresses caused by transfer of moments even 
when shearheads are used. Even though the critical sections for direct shear transfer 
and shear due to moment transfer differ, they coincide or are in close proximity at the 
column corners where failures initiate, and it is conservative to take the maximum 
shear as the sum of the two components. 

Equations similar to those above can be derived for the edge columns shown in 
Fig. 13.33d and e or for a corner column. Although the centroidal distances c1 and cr 
are equal for the interior column, this is not true for the edge column of Fig. 13.33d 
or for a corner column. 

According to ACI Code 13.6.3.6, when the direct design method is used, the 
moment to be transferred between the slab and an edge column by shear is to be taken 
equal to 0.30M

0
, where M

0 
is found from Eq. (13.1). This is intended to compensate 

for assigning a high proportion of the static moment to the positive and interior 
negative moment regions according to Table 13.3, and to ensure that adequate shear 
strength is provided between the slab and the edge column, where unbalanced moment 
is high and the critical section width is reduced. 

The application of moment to a column from a slab or beam introduces shear to 
the column also, as is clear from Fig. 13.33a. This shear must be considered in the 
design of lateral column reinforcement. 

As pointed out in Section 13 .10, most flat plate structures, if they are overloaded, 
fail in the region close to the column, where large shear and bending forces must be 
transferred. There has been much research aimed at developing improved design 
details for this region. The design engineer should consult Refs. 13.24 through 13.26 
for additional specific information. 

13.12 OPENINGS IN SLABS 

Almost invariably, slab systems must include openings. These may be of substantial 
size, as required by stairways and elevator shafts, or they may be of smaller dimen
sions, such as those needed to accommodate heating, plumbing, and ventilating risers; 
floor and roof drains; and access hatches. 



FIGURE 13.34 
Effect of openings and free 
edges on the determination of 
the perimeter of the critical 
section for shear b
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Relatively small openings usually are not detrimental in beam-supported slabs. 
As a general rule, the equivalent of the interrupted reinforcement should be added at the 
sides of the opening. Additional diagonal bars should be included at the comers to 
control the cracking that will almost inevitably occur there. The importance of small 
openings in slabs supported directly by columns (flat slabs and flat plates) depends upon 
the location of the opening with respect to the columns. From a structural point of view, 
they are best located away from the columns, preferably in the area common to the slab 
middle strips. Unfortunately, architectural and functional considerations usually cause 
them to be located close to the columns. In this case, the reduction in effective shear 
perimeter is the major concern, because such floors are usually shear-critical. 

According to ACI Code 11.11.6, if the opening is close to the column (within 
10 slab thicknesses or within the column strips), then that part of b 

O 
included within 

the radial lines projecting from the opening to the centroid of the column should be 
considered ineffective. This is shown in Fig. 13.34, along with the effect of free edges 
on the perimeter of the critical section. If shearheads (see Section 13.lOf) are used 
under such circumstances, the reduction in width of the critical section is found in the 
same way, except that only one-half the perimeter included within the radial lines need 
be deducted. 

With regard to flexural requirements, the total amount of steel required by 
calculation must be provided regardless of openings. Any steel interrupted by holes 
should be matched with an equivalent amount of supplementary reinforcement on 
either side, properly lapped to transfer stress by bond. Concrete compression area to 
provide the required strength must be maintained; usually this would be restrictive only 
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lne~ 
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near the columns. According to ACI Code 13.4.2, openings of any size may be located 
in the area common to intersecting middle strips. In the area common to intersecting 
column strips, not more than one-eighth of the width of the column strip in either span 
can be interrupted by openings. In the area common to one middle strip and one column 
strip, not more than one-quarter of the reinforcement in either strip may be interrupted 
by the opening. 

ACI Code 13.4.1 permits openings of any size if it can be shown by analysis that 
the strength of the slab is at least equal to that required and that all serviceability 
conditions, i.e., cracking and deflection limits, are met. The strip method of analysis 
and design for openings in slabs, by which specially reinforced integral beams, or 
strong bands, of depth equal to the slab depth are used to frame the openings, will be 
described in detail in Chapter 15. Very large openings should preferably be framed by 
beams or slab bands of increased depth to restore, as nearly as possible, the continuity 
of the slab. The beams must be designed to carry a portion of the floor load, in addi
tion to loads applied directly by partition walls, elevator support beams, or stair slabs. 

13.13 DEFLECTION CALCULATIONS 

The deflection of a uniformly loaded flat plate, flat slab, or two-way slab supported by 
beams on column lines can be calculated by an equivalent frame method that corre
sponds with the method for moment analysis described in Section 13.9 (Ref. 13.27). 
The definition of column and middle strips, the longitudinal and transverse moment 
distribution coefficients, and many other details are the same as for the moment analy
sis. Following the calculation of deflections by this means, they can be compared 
directly with limiting values like those of Table 6.2, which are applicable to slabs as 
well as to beams, according to the ACI Code. 

A slab region bounded by column centerlines is shown in Fig. 13.35. While no 
column-line beams, drop panels, or column capitals are shown, the presence of any of 
these introduces no fundamental complication. 

The deflection calculation considers the deformation of such a typical region in 
one direction at a time, after which the contributions from each direction are added to 
obtain the total deflection at any point of interest. 

In reference to Fig. 13.35a, the slab is considered to act as a broad, shallow beam 
of width equal to the panel dimension ly and having the span lx. Initially the slab is con
sidered to rest on unyielding support lines at x = 0 and x = lx. Because of variation of 
moment as well as flexural stiffness across the width of the slab, not all unit strips in 
the X direction will deform identically. Typically the slab curvature in the middle-strip 
region will be less than that in the region of the column strips because the middle-strip 
moments are less. The result is as indicated in Fig. 13.35a. 

Next the slab is analyzed for bending in the Y direction (Fig. 13.35b). Once again 
the effect of transverse variation of bending moment and flexural rigidity is seen. 

The actual deformed shape of the panel is represented in Fig. 13.35c. The 
midpanel deflection is the sum of the midspan deflection of the column strip in one 
direction and that of the middle strip in the other direction; i.e., 

(13.19a) 

or 

(13.19b) 



FIGURE 13.35 
Basis of equivalent frame 
method for deflection 
analysis: (a) X direction 
bending; (b) Y direction 
bending; (c) combined 
bending. 
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In calculations of the deformation of the slab panel in either direction, it is con
venient first to assume that it deforms into a cylindrical surface, as it would if the 
bending moment at all sections were uniformly distributed across the panel width and 
if lateral bending of the panel were suppressed. The supports are considered to be fully 
fixed against both rotation and vertical displacement at this stage. Thus, a reference 
deflection is computed: 

w/ 4 

Lif,ref = 384£ r 
c 1 frame 

(13.20) 
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FIGURE 13.36 
Effective cross sections for 
deflection calculations: 
(a) full-width frame; 
(b) column strip; (c) middle 
strips. 
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where w is the load per foot along the span of length l and /frame is the moment of inertia 
of the full-width panel (Fig. 13.36a) including the contribution of the column-line 
beam or drop panels and column capitals if present. 

The effect of the actual moment variation across the width of the panel and the 
variation of stiffness due to beams, variable slab depth, etc., are accounted for by 
multiplying the reference deflection by the ratio of M/EI for the respective strips to 
that of the full-width frame: 

A _ A Mcol EJframe 
f,col - f,ref M E J 

frame c col 

(13.21a) 

A _ A Mmid EJframe 
f,mid - f,ref M E J . 

frame c mid 

(13.21b) 

The subscripts relate the deflection A, the bending moment M, or the moment of iner
tia I to the full-width frame, column strip, or middle strip, as shown in Fig. 13.36a, b, 
and c, respectively. 

The moment ratios Mc0 JMframe and MllllJMframe are identical to the lateral moment 
distribution factors already found for the flexural analysis (see Table 13.4). A minor com
plication results from the fact that the lateral distribution of bending moments, according 
to the ACI Code, is not the same at the negative and positive-moment sections. However, 
it appears consistent with the degree of accuracy usually required, as well as consistent 
with deflection methods endorsed elsewhere in the ACI Code, to use a simple average of 
lateral distribution coefficients for the negative and positive portions of each strip. 



FIGURE 13.37 
Flat slab span with variable 
moment of inertia. 
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I I 

The presence of drop panels or column capitals in the column strip of a flat slab 
floor requires consideration of the variation of the moment of inertia in the span 
direction (see Fig. 13.37). It is suggested in Ref. 13.28 that a weighted average 
moment of inertia be used in such cases: 

le [d [ s 
/av = 2 / le + 2 / Id + / ls 

where le = moment of inertia of slab including both drop panel and capital 
Id = moment of inertia of slab with drop panel only 
Is = moment of inertia of slab alone 

Span distances are defined in Fig. 13.37. 

(13.22) 

Next it is necessary to correct for the rotations of the equivalent frame at the 
supports, which until now were considered fully fixed. If the ends of the columns are 
considered fixed at the floor above and floor below, as usual for frame analysis, the 
rotation of the column at the floor divided by the stiffness of the equivalent column is 

where 0 = angle change, radians 

Mnet 0=-
Kec 

Mnet = difference in floor moments to left and right of column 
Kee = stiffness of equivalent column (see Section 13.9c) 

(13.23) 

In some cases, the connection between the floor slab and column transmits 
negligible moment, as for lift slabs; thus Kee = 0. The flexural analysis will indicate 
that the net moment is zero. The support rotation can be found in such cases by apply
ing the moment-area theorems, taking moments of the M/EI area about the far end of 
the span and dividing by the span length. 

Once the rotation at each end is known, the associated midspan deflection of the 
equivalent frame can be calculated. It is easily confirmed that the midspan deflection 
of a member experiencing an end rotation of 0 rad, the far end being fixed, is 

A - 0/ 
I.J./} -

8 
(13.24) 

Thus the total deflection at midspan of the column strip or middle strip is the sum of 
the three parts 

dcol = df,col + d/J/ + di!, 

dmid = df,mid + d/J/ + d/J, 

(13.25a) 

(13.25b) 

where the subscripts I and r refer to the left and right ends of the span, respectively. 
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The calculations described are repeated for the equivalent frame in the second 
direction of the structure, and the total deflection at midpanel is obtained by summing 
the column-strip deflection in one direction and the middle-strip deflection in the 
other, as indicated by Eqs. (13.19). 

The midpanel deflection should be the same whether calculated by Eq. (13.19a) 
or Eq. (13.19b). Actually, a difference will usually be obtained because of the approx
imate nature of the calculations. For very rectangular panels, the main contribution to 
midpanel deflection is that of the long-direction column strip. Consequently, the 
midpanel deflection is best found by summing the deflections of the long-direction 
column strip and the short-direction middle strip. However, for exterior panels, the 
important contribution is from the column strips perpendicular to the discontinuous 
edge, even though the long side of the panel may be parallel to that edge. 

In slabs, as in beams, the effect of concrete cracking is to reduce the flexural 
stiffness. According to ACI Code 9.5.3, the effective moment of inertia given by 
Eq. (6.8) is applicable to slabs as well as beams, although other values may be used if 
results are in reasonable agreement with tests. In most cases, two-way slabs will be 
essentially uncracked at service loads, and it is satisfactory to base deflection cal
culations on the uncracked moment of inertia lg (see Ref. 13.27 for comparison with 
tests). In Ref. 13.29, Branson suggests the following refinements: (1) for slabs without 
beams, use lg for all dead load deflections; for dead plus live load deflections, use 
lg for middle strips and le for column strips; (2) for slabs with beams, use lg for all dead 
load deflections; for dead plus live load deflections, use lg for column strips and le 
for middle strips. For continuous spans, le can be based on the midspan positive 
moment without serious error. 

The deflections calculated using the procedure described are short-term deflec
tions. Long-term slab deflections can be calculated by multiplying the short-term 
deflections by the factor ,\A of Eq. (6.11), as for beams. Because compression steel is 
seldom used in slabs, a multiplier of 2.0 results. Test evidence and experience with 
actual structures indicate that this may seriously underestimate long-term slab deflec
tions, and multipliers for long-term deflection from 2.5 to 4.0 have been recommended 
(Refs. 13.29 to 13.31). A multiplier of 3.0 gives acceptable results in most cases. 

It should be recognized that the prediction of slab deflections, both initial elastic 
and long-term, is complicated by the many uncertainties associated with actual build
ing construction. Loading history, particularly during construction, has a profound 
effect on final deflections (Ref. 13.32). Construction loads can equal or exceed the 
service live load. Such loads may include the weight of stacked building material and 
usually include the weight of slabs above the one cast earlier, applied through shoring 
and reshoring to the lower slab. Because construction loads are applied to immature 
concrete in the slabs, the immediate elastic deflections are large, and, upon removal of 
the construction loads, elastic recovery is less than the initial elastic deflection because 
Ee increases with age. Cracking resulting from construction loading does not disap
pear with removal of the temporary load and may result in live load deflections greater 
than expected. Creep during construction loading may be greater than expected 
because of the early age of the concrete when loaded. Shrinkage deflections of thin 
slabs are often of the same order of magnitude as the elastic deflections, and some 
cases must be calculated separately. 

It is important to recognize that both initial and time-dependent slab deflec
tions are subject to a high degree of variability. Calculated deflections are an 
estimate, at best, and considerable deviation from calculated values is to be expected 
in actual structures. 
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EXAMPLE 13.8 Calculation of deflections. Find the deflections at the center of the typical exterior panel of 
the two-way floor designed in Example 13.2 due to dead and live loads. The live load may be 
considered a short-term load and will be distributed uniformly over all panels. The floor will 
support nonstructural elements that are likely to be damaged by large deflections. Take Ee = 
3.6 X 106 psi. 

FIGURE 13.38 
Cross-sectional dimensions 
for deflection example: 
(a) short-span direction 
frame, column strip, and 
middle strip; (b) long-span 
direction frame, column strip, 
and middle strip. 

SOLUTION. The elastic deflection due to the self-weight of 88 psf will be found, after which 
the additional long-term dead load deflection can be found by applying the factor,\ = 3.0, and 
the short-term live load deflection due to 144 psf by direct proportion. 

The effective concrete cross sections, upon which moment of inertia calculations will be 
based, are shown in Fig. 13.38 for the full-width frame, the column strip, and the middle strips, 
for the short-span and long-span directions. Note that the width of the column strip in both 
directions is based on the shorter panel span, according to the ACI Code. The values of moment 
of inertia are as follows: 

Short Direction Long Direction 

27,900 in4 

21,000 in4 

5,150 in4 

25,800 in4 

21,000 in4 

3,430 in4 

First calculating the deflections of the floor in the short-span direction of the panel, from 
Eq. (13.20) the reference deflection is 

88 X 25(20 X 12)4 

d = ---------- = 0.016 in. 
f.ref 12 X 384 X 3.6 X 106 X 27,900 

(Note that the centerline span distance is used here, although clear span was used in the moment 
analysis to approximate the moment reduction due to support width, according to ACI Code 
procedures.) From the moment analysis in the short-span direction, it was concluded that 
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68 percent of the moment at both negative and positive sections was taken by the column strip 
and 32 percent by the middle strips. Accordingly, from Eqs. (13.21a) and (13.21b), 

27,900 . 
At,col = 0.016 X 0.68 X 

2
l,000 = 0.014 Ill. 

27,900 . 
At.mid = 0.016 X 0.32 X 

5150 
= 0.028 Ill. 

For the panel under investigation, which is fully continuous over both supports in the short 
direction, it may be assumed that support rotations are negligible; consequently, A91 and 
A0, = 0, and from Eqs. (13.25a) and (13.25b), 

Acal= 0.014 in. 

Amid = 0.028 in. 

Now calculating the deformations in the long direction of the panel gives the reference 
deflection 

88 X 20(25 X 12)4 
• 

At, f = 6 = 0.033 Ill. 
,re 12 X 384 X 3.6 X 10 X 25,800 

From the moment analysis it was found that the column strip would take 93 percent of the 
exterior negative moment, 81 percent of the positive moment, and 81 percent of the interior 
negative moment. Thus the average lateral distribution factor for the column strip is 

(
0.93 + 0.81 ) 1 _ 

2 + 0.81 2 - 0.84 

or 84 percent, while the middle strips are assigned 16 percent. Then from Eqs. (13.21a) and 
(13.21b), 

25,800 . 
At,col = 0.033 X 0.84 X 

2
l,000 = 0.034 Ill. 

25,800 . 
At,mid = 0.033 X 0.16 X 

3430 
= 0.040 m. 

While rotation at the interior column may be considered negligible, rotation at the exterior 
column cannot. For the dead load of the slab, the full static moment is 

M 0 = ½ X 0.088 X 20 X 25 2 = 137.5 ft-kips 

It was found that 16 percent of the static moment, or 22.0 ft-kips, should be assigned to 
the exterior support section. The resulting rotation is found from Eq. (13.23). It is easily 
confirmed that the stiffness of the equivalent column (see Section 13.9c) is 169 X 3.6 X 
106 in-lb/rad; hence 

O = 22,000 X 12 
169 X 3.6 X 106 = 0.00043 rad 

From Eq. (13.24), the corresponding midpanel deflection component is 

A 0.00043 x 25 X 12 
6

. 
l..l.9/ = ------- = 0.Ql Ill. 

8 

Thus, from Eqs. (13.25a) and (13.25b), the deflections of the column and middle strips in the 
long direction are 

Acal = 0.034 + 0.016 = 0.050 in. 

Amid = 0.040 + 0.016 = 0.056 in. 
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and from Eq. (13.19a) the short-term midpanel deflection due to self-weight is 

11max = 0.050 + 0.028 = 0.078 in. 

The long-term deflection due to dead load is 3.0 X 0.078 = 0.234 in., and the short-term live 
load deflection is 0.078 X 144/88 = 0.128. 

The ACI limiting value for the present case is found to be 1/480 times the span, or 20 X 

12/480 = 0.500 in., based on the sum of the long-time deflection due to sustained load and the 
immediate deflection due to live load. The sum of these deflection components in the present 
case is 

11max = 0.234 + 0.128 = 0.362 in. 

well below the permissible value. 

13.14 ANALYSIS FOR HORIZONTAL LOADS 

Either the direct design method or the equivalent frame method, described in the 
preceding sections of this chapter, may be used for the analysis of two-way slab 
systems for gravity loads, according to ACI Code 13.5.1. However, the ACI Code 
provisions are not meant to apply to the analysis of buildings subject to lateral loads, 
such as loads caused by wind or earthquake. For lateral load analysis, the designer 
may select any method that is shown to satisfy equilibrium and geometric compatibil
ity, and to give results that are in reasonable agreement with available test data. The 
results of the lateral load analysis may then be combined with those from the vertical 
load analysis, according to ACI Code 13.5.1. 

Plane frame analysis, with the building assumed to consist of parallel frames 
each bounded laterally by the panel centerlines on either side of the column lines, has 
often been used in analyzing unbraced buildings for horizontal loads, as well as verti
cal. For vertical load analysis by the equivalent frame method, a single floor is usually 
studied as a substructure with attached columns assumed fully fixed at the floors 
above and below, but for horizontal frame analysis the equivalent frame includes all 
floors and columns, extending from the bottom to the top of the structure. 

The main difficulty in equivalent frame analysis for horizontal loads lies in 
modeling the stiffness of the region at the beam-column (or slab-beam-column) con
nections. Transfer of forces in this region involves bending, torsion, shear, and axial 
load, and is further complicated by the effects of concrete cracking in reducing stiff
ness, and reinforcement in increasing it. Frame moments are greatly influenced by 
horizontal displacements at the floors, and a conservatively low value of stiffness 
should be used to ensure that a reasonable estimate of drift is included in the analysis. 

While a completely satisfactory basis for modeling the beam-column joint stiffness 
has not been developed, at least two methods,have been used in practice (Ref. 13.33). 
The first is based on an equivalent beam width a/2, less than the actual width, to reduce 
the stiffness of the slab for purposes of analysis. Figure 13.39a shows a plate fixed 
at the far edge and supported by a column of width c2 at the near side. If a rotation 
0 is imposed at the column, the plate rotation along the axis A will vary as shown by 
Fig. 13.39a, from 0 at the column to smaller values away from the column. An equiv
alent width factor a is obtained from the requirement that the stiffness of a prismatic 
beam of width a/2 must equal the stiffness of the plate of width /2• This equality is 
obtained if the areas under the two rotation diagrams of Fig. 13.39b are equal. Thus 
the frame analysis is based on a reduced slab ( or slab-beam) stiffness found using a/2 
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FIGURE 13.39 
Equivalent beam width for 
horizontal load analysis. 

(a) 

a 
I+----- 2 -----+! 

(b) 

rather than 12• Comparative studies indicate that, for flat plate floors, a value for a 
between 0.25 and 0.50 may be used (Ref. 13.33). 

Alternatively, the beam-column stiffness can be modeled based on a transverse 
torsional member corresponding to that used in deriving the stiffness of the equivalent 
column for the vertical load analysis of two-way slabs by the equivalent frame method 
(see Section 13.9c ). Rotational stiffness of the joint is a function of the flexural stiffness 
of the columns framing into the joint from above and below and the torsional stiffness 
of the transverse strip of slab or slab beam at the column. The equivalent column stiff
ness is found from Eq. (13.9) and the torsional stiffness from Eq. (13.10), as before. 

Finally, for frames in which two-way systems act as primary members resisting 
lateral loads, ACI Code 13.3.8 requires that the lengths of reinforcement be deter
mined by analysis because the lengths shown in Fig. 13.14 may not be adequate. The 
values in Fig. 13.14, however, are retained as minimum values. 
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FIGURE P13.1 

FIGURE P13.2 

PROBLEMS 
13.1. A footbridge is to be built, consisting of a one-way solid slab spanning 16 ft 

between masonry abutments, as shown in Fig. P13. l. A service live load of 
100 psf must be carried. In addition, a 2000 lb concentrated load, assumed to 
be uniformly distributed across the bridge width, may act at any location on 
the span. A 2 in. asphalt wearing surface will be used, weighing 20 psf. Precast 
concrete curbs are attached so as to be nonstructural. Prepare a design for 
the slab, using material strengths Jy = 60,000 psi and J; = 4000 psi, and 
summarize your results in the form of a sketch showing all concrete dimen
sions and reinforcement. 

I I 
-----16'------

(a) 

4111r 2" asphalt 

1-=P ==:;:=f ==:::::!....lg~ 
---- 6' --------.i 611 curb 

(b) 

13.2. A reinforced concrete building floor system consists of a continuous one-way 
slab built monolithically with its supporting beams, as shown in cross section 
in Fig. P13.2. Service live load will be 125 psf. Dead loads include a 10 psf 
allowance for nonstructural lightweight concrete floor fill and surface, and a 
10 psf allowance for suspended loads, plus the self-weight of the floor. Using 
ACI coefficients from Chapter 12, calculate the design moments and shears 
and design the slab, using a maximum tensile reinforcement ratio of 0.006. 
Use all straight bar reinforcement. One-half of the positive-moment bars will 
be discontinued where no longer required; the other half will be continued into 
the supporting beams as specified by the ACI Code. All negative steel will be 
discontinued at the same distance from the support face in each case. 
Summarize your design with a sketch showing concrete dimensions, and size, 
spacing, and cutoff points for all reinforcement. Material strengths are Jy = 
60,000 psi andJ; = 3000 psi. 

1· 16'-0"------161-0"----+t 
, End span , Typical interior span , 
I I I 
I I I 

2s•s•~ J~ :r 
18" 18" 18" 
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13.3. For the one-way slab floor in Problem 13.2, calculate the immediate and long
term deflection due to dead loads. Assume that all dead loads are applied when 
the construction shoring is removed. Also determine the deflection due to 
application of the full-service live load. Assuming that sensitive equipment 
will be installed 6 months after the shoring is removed, calculate the relevant 
deflection components and compare the total with maximum values recom
mended in the ACI Code. 

13.4. A monolithic reinforced concrete floor consists of rectangular bays measuring 
21 X 26 ft, as shown in Fig. Pl3.4. The floor is designed to carry a service 
live load of 125 psf uniformly distributed over its surface in addition to its 
own weight, using a concrete strength of 5000 psi and reinforcement having 
Jy = 60,000 psi. Design a typical interior panel using the ACI direct design 
method of Sections 13.6 through 13.8. 

0 
I 

<D 
C\J 

13.5. 

13.6. 

+-- 21'-0" -----. 
T 

.. -
"' 

I I 

"' -
•ei •ei 

. 
T 

Redesign the typical exterior panel of the floor of Example 13.2 as a part of a 
flat plate structure, with no beams between interior columns but with beams 
provided along the outside edge to stiffen the slab. No drop panels or column 
capitals are permitted, but shear reinforcement similar to Fig. 13.24b may be 
incorporated if necessary. Column size is 20 X 20 in., and the floor-to-floor 
height is 12 ft. Use either the direct design method or the equivalent frame 
method. Summarize your design by means of a sketch showing plan and 
typical cross sections. 
For the four-story structure shown in Figure P13.6, (a) select the slab thickness, 
(b) design the highlighted floor slab panel using the equivalent frame method, 
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FIGURE P13.6 r 24, ---+I+-- 22, 24'7 
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(c) prepare sketches of the steel layout, and (d) comment on your selection of 
the original thickness and what effect using shear studs might have on the 
design. Material strengths areJ;, = 60,000 psi andJ; = 4000 psi. Building loads 
are the superimposed dead load of 30 psf and live load of 50 psf. 

13.7. A multistory commercial building is to be designed as a flat plate system with 
floors of uniform thickness having no beams or drop panels. Columns are laid 
out on a uniform 20 ft spacing in each direction and have a 16 in. square 
section and a vertical dimension 10 ft from floor to floor. Specified service live 
load is 100 psf including partition allowance. Using the direct design method, 
design a typical interior panel, determining the required floor thickness, size 
and spacing of reinforcing bars, and bar details including cutoff points. To 
simplify construction, the reinforcement in each direction will be the same; 
use an average effective depth in the calculations. Use all straight bars. For 
moderate spans such as this, it has been determined that supplementary shear 
reinforcement would not be economical, although column capitals may be 
used if needed. Thus, slab thickness may be based on Eqs. (13.1 la), (13.1 lb), 
and (13.llc); or column capital dimensions can be selected using those equa
tions if slab thickness is based on the equations in Section 13.8. Material 
strengths are J;, = 60,000 psi and J; = 4000 psi. 

13.8. Prepare alternative designs for shear reinforcement at the supports of the slab 
described in Example 13.7, (a) using bent-bar reinforcement similar to Fig. 13.24b, 
(b) using integral beams with vertical stirrups similar to Fig. 13.24e, and (c) using 
headed shear stud reinforcement similar to Fig. 13.24f 

13.9. Prepare an alternative design for shear reinforcement at the supports of the 
slab described in Example 13.4, using a shearhead similar to Fig. 13.24a. 
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As an alternative to shear reinforcement of any kind, calculate the smallest 
acceptable dimensions for a 45° column capital (see Fig. 13.le) that would 
permit the concrete slab to resist the entire shear force. Drop panels are 
not permitted. 

13.10. Figure Pl3.10 shows a flat plate floor designed to carry a factored load of 
325 psf. The total slab thickness h = 7 ½ in. and the average effective depth 
d = 6 in. Material strengths are/y = 60,000 psi and/; = 4000 psi. The design 
for punching shear at a typical interior column B2 provided the basis for 
Example 13.4. To provide a full perimeter b

0 
at the exterior column Bl, the 

slab is cantilevered past the columns as shown. A total shear force Vu = I 05 kips 
must be transmitted to the column, along with a bending moment Mu = 
120 ft-kips about an axis parallel to the edge of the slab. Check for punching 
shear at column B 1 and, if ACI Code restrictions are not met, suggest appro
priate modifications in the proposed design. Edge beams are not permitted. 

r5'--1+--- 20' typical -------

r-
5' 

A 
r, - ., 
Lu L .J 

20 'typical I 
All columns 

I 
18" X 18" 

◄> 

B 
,,.., - .. ,,, 
"'"' "" 

y 

13.11. For the flat plate floor in Example 13.3, find the following deflection compo
nents at the center of panel C: (a) immediate deflection due to total dead load; 
( b) additional dead load deflection after a long period of time, due to total dead 
load; (c) immediate deflection due to three-quarters full live load. The moment 
of inertia of the cross concrete sections lg may be used for all calculations. It 
may be assumed that maximum deflection will be obtained for the same load
ing pattern that would produce maximum positive moment in the panel. Check 
predicted deflection against ACI limitations, assuming that nonstructural 
attached elements would be damaged by excessive deflections. 

13.12. A parking garage is to be designed using a two-way flat slab on the column 
lines, as shown in Fig. P13.12. A live load of 100 psf is specified. Find the 
required slab thickness, using a reinforcement ratio of approximately 0.005, 
and design the reinforcement for a typical corner panel A, edge panel B, and 
interior panel C. Check shear capacity. Detail the reinforcement, showing size, 
spacing, and length. All straight bars will be used. Material strengths will be 
Jy = 60,000 psi and fc'. = 5000 psi. Specify the design method selected and 
comment on your results. 
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13.13. For the typical interior panel C of the parking garage in Problem 13.12, 
(a) compute the immediate and long-term deflections due to dead load and 
(b) compute the deflection due to the full-service live load. Compare with ACI 
Code maximum permissible values, given that there are no elements attached 
that would be damaged by large deflections. 



Yield Line Analysis for Slabs 

14.1 INTRODUCTION 

Most concrete slabs are designed for moments found by the methods described in 
Chapter 13. These methods are based essentially upon elastic theory. On the other 
hand, reinforcement for slabs is calculated by strength methods that account for the 
actual inelastic behavior of members at the factored load stage. A corresponding 
contradiction exists in the process by which beams and frames are analyzed and 
designed, as was discussed in Section 12.9, and the concept of limit, or plastic, analysis 
of reinforced concrete was introduced. Limit analysis not only eliminates the incon
sistency of combining elastic analysis with inelastic design, but also accounts for the 
reserve strength characteristic of most reinforced concrete structures and permits, 
within limits, an arbitrary readjustment of moments found by elastic analysis to arrive 
at design moments that permit more practical reinforcing arrangements. 

For slabs, there is still another good reason for interest in limit analysis. The 
elasticity-based methods of Chapter 13 are restricted in important ways. Slab panels 
must be square or rectangular. They must be supported along two opposite sides ( one
way slabs), two pairs of opposite sides (two-way edge-supported slabs), or by a fairly 
regular array of columns (flat plates and related forms). Loads must be uniformly dis
tributed, at least within the bounds of any single panel. There can be no large openings. 
But in practice, many slabs do not meet these restrictions. Answers are needed, for 
example, for round or triangular slabs, slabs with large openings, slabs supported on 
two or three edges only, and slabs carrying concentrated loads. Limit analysis provides 
a powerful and versatile tool for treating such problems. 

It was evident from the discussion of Section 12.9 that full plastic analysis of a 
continuous reinforced concrete beam or frame would be tedious and time-consuming 
because of the need to calculate the rotation requirement at all plastic hinges and to 
check rotation capacity at each hinge to ensure that it is adequate. Consequently, for 
beams and frames, the very simplified approach to plastic moment redistribution of 
ACI Code 8.4 is used. However, for slabs, which typically have tensile reinforcement 
ratios much below the balanced value and consequently have large rotation capacity, 
it can be safely assumed that the necessary ductility is present. Practical methods for 
the plastic analysis of slabs are thus possible and have been developed. Yield line 
theory, presented in this chapter, is one of these. Although the ACI Code contains no 
specific provisions for limit or plastic analysis of slabs, ACI Code 1.4 permits use of 
"any system of design or construction," the adequacy of which has been shown by 
successful use, analysis, or tests, and ACI Commentary 13 .5 .1 refers specifically to 
yield line analysis as an acceptable approach. 
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FIGURE 14.1 
Simply supported, uniformly 
loaded one-way slab. 

Yield line analysis for slabs was first proposed by Ingerslev (Ref. 14.1) and was 
greatly extended by Johansen (Refs. 14.2 and 14.3). Early publications were mainly in 
Danish, and it was not until Hognestad's English language summary (Ref. 14.4) of 
Johansen's work that the method received wide attention. Since that time, a number of 
important publications on the method have appeared (Refs. 14.5 through 14.15). A 
particularly useful and comprehensive treatment will be found in Ref. 14.15. 

The pJastic hinge was introduced in Section 12.9 as a location along a member 
in a continuous beam or frame at which, upon overloading, there would be large 
inelastic rotation at essentially a constant resisting moment. For slabs, the correspon
ding mechanism is the yield line. For the overloaded slab, the resisting moment per 
unit length measured along a yield line is constant as inelastic rotation occurs; the 
yield line serves as an axis of rotation for the slab segment. 

Figure 14. la shows a simply supported, uniformly loaded reinforced concrete 
slab. It will be assumed to be underreinforced (as are almost all slabs), with p < p0_005 . 

The elastic moment diagram is shown in Fig. 14.lb. As the load is increased, when the 
applied moment becomes equal to the flexural capacity of the slab cross section, the 
tensile steel starts to yield along the transverse line of maximum moment. 

Upon yielding, the curvature of the slab at the yielding section increases sharply, 
and deflection increases disproportionately. The elastic curvatures along the slab span 
are small compared with the curvature resulting from plastic deformation at the yield 
line, and it is acceptable to consider that the slab segments between the yield line and 
supports remain rigid, with all the curvature occurring at the yield line, as shown in 
Fig. 14. lc. The "hinge" that forms at the yield line rotates with essentially constant 
resistance, according to the relation shown earlier in Fig. 12.13a. The resistance per 
unit width of slab is the nominal flexural strength of the slab; that is, mp = mn, where 
mn is calculated by the usual equations. For design purposes, mp would be taken 
equal to <pmn, with <p typically equal to 0.90, since p is well below p0_005 for most slabs. 

UllllllllllllllllllllJ 
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FIGURE 14.2 
Fixed-end, uniformly loaded 
one-way slab. 
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For a statically determinate slab like that in Fig. 14.1, the formation of one yield 
line results in collapse. A "mechanism" forms; i.e., the segments of the slab between 
the hinge and the supports are able to move without an increase in load. Indeterminate 
structures, however, can usually sustain their loads without collapse even after the 
formation of one or more yield lines. When it is loaded uniformly, the fixed-fixed 
slab in Fig. 14.2a, assumed here to be equally reinforced for positive and negative 
moments, will have an elastic distribution of moments, as shown in Fig. 14.2b. As the 
load is gradually increased, the more highly stressed sections at the support start yield
ing. Rotations occur at the support line hinges, but restraining moments of constant 
value mp continue to act. The load can be 'increased further, until the moment at 
midspan becomes equal to the moment capacity there, and a third yield line forms, as 
shown in Fig. 14.2c. The slab is now a mechanism, large deflections occur, and col
lapse takes place. 

The moment diagram just before failure is shown in Fig. 14.2d. Note that the 
ratio of elastic positive to negative moments of 1 :2 no longer holds. Due to inelastic 
deformation, the ratio of these moments just before collapse is 1: 1 for this particular 
structure. Redistribution of moments was discussed earlier in Section 12.9, and it was 
pointed out that the moment ratios at the collapse stage depend upon the reinforcement 
provided, not upon the results of elastic analysis. 
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14.2 UPPER AND LOWER BOUND THEOREMS 

Plastic analysis methods such as the yield line theory derive from the general theory of 
structural plasticity, which states that the collapse load of a structure lies between two 
limits, an upper bound and a lower bound of the true collapse load. These limits can be 
found by ~~ll-established methods. A full solution by the theory of plasticity would 
attempt to make the lower and upper bounds converge to a single correct solution. 

The lower bound theorem and the upper bound theorem, when applied to slabs, 
can be stated as follows: 

Lower bound theorem: If, for a given external load, it is possible to find a distribution 
of moments that satisfies equilibrium requirements, with the moment not exceeding the 
yield moment at any location, and if the boundary conditions are satisfied, then the given 
load is a lower bound of the true carrying capacity. 

Upper bound theorem: If, for a small increment of displacement, the internal work 
done by the slab, assuming that the moment at every plastic hinge is equal to the yield 
moment and that boundary conditions are satisfied, is equal to the external work done by 
the given load for that same small increment of displacement, then that load is an upper 
bound of the true carrying capacity. 

If the lower bound conditions are satisfied, the slab can certainly carry the given 
load, although a higher load may be carried if internal redistributions of moment 
occur. If the upper bound conditions are satisfied, a load greater than the given load 
will certainly cause failure, although a lower load may produce collapse if the selected 
failure mechanism is incorrect in any sense. 

In practice, in the plastic analysis of structures, one works with either the lower 
bound theorem or the upper bound theorem, not both, and precautions are taken to 
ensure that the predicted failure load at least closely approaches the correct value. 

The yield line method of analysis for slabs is an upper bound method, and 
consequently, the failure load calculated for a slab with known flexural resistances 
may be higher than the true value. This is certainly a concern, as the designer would 
naturally prefer to be correct, or at least on the safe side. However, procedures 
can be incorporated in yield line analysis to help ensure that the calculated capac
ity is correct. Such procedures will be illustrated by the examples in Sections 14.4 
and 14.5. 

14.3 RULES FOR YIELD LINES 

The location and orientation of the yield line were evident for the simple slab in 
Fig. 14.1. Similarly, the yield lines were easily established for the one-way indetermi
nate slab in Fig. 14.2. For other cases, it is helpful to have a set of guidelines for drawing 
yield lines and locating axes of rotation. When a slab is on the verge of collapse 
because of the existence of a sufficient number of real or plastic hinges to form a 
mechanism, axes of rotation will be located along the lines of support or over point 
supports such as columns. The slab segments can be considered to rotate as rigid 
bodies in space about these axes of rotation. The yield line between any two adjacent 
slab segments is a straight line, being the intersection of two essentially plane surfaces. 
Because the yield line (as a line of intersection of two planes) contains all points 
common to these two planes, it must contain the point of intersection (if any) of the 



FIGURE 14.3 
Two-way slab with simply 
supported edges. 
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two axes of rotation, which is also common to the two planes. That is, the yield line 
( or yield line extended) must pass through the point of intersection of the axes of 
rotation of the two adjacent slab segments. 

The terms positive yield line and negative yield line are used to distinguish 
between those associated with tension at the bottom and tension at the top of the slab, 
respective! y. 

Guidelines for establishing axes of rotation and yield lines are summarized as 
follows: 

1. Yield lines are straight lines because they represent the intersection of two planes. 
2. Yield lines represent axes of rotation. 
3. The supported edges of the slab will also establish axes of rotation. If the edge is 

fixed, a negative yield line may form, providing constant resistance to rotation. If 
the edge is simply supported, the axis of rotation provides zero restraint. 

4. An axis of rotation will pass over any column support. Its orientation depends on 
other considerations. 

5. Yield lines form under concentrated loads, radiating outward from the point of 
application. 

6. A yield line between two slab segments must pass through the point of intersec
tion of the axes of rotation of the adjacent slab segments. 

In Fig. 14.3, which shows a slab simply supported along its four sides, rotation 
of slab segments A and Bis about ab and cd, respectively. The yield line efbetween 
these two segments is a straight line passing through f, the point of intersection of the 
axes of rotation. 

Illustrations are given in Fig. 14.4 of the application of the guidelines to the 
establishment of yield line locations and failure mechanisms for a number of slabs 
with various support conditions. Figure 14.4a shows a slab continuous over parallel 
supports. Axes of rotation are situated along the supports (negative yield lines) and 
near midspan, parallel to the supports (positive yield line). The particular location of 
the positive yield line in this case and the other cases in Fig. 14.4 depends upon the 
distribution of loading and the reinforcement of the slab. Methods for determining its 
location will be discussed later. 

For the continuous slab on nonparallel supports, shown in Fig. 14.4b, the midspan 
yield line (extended) must pass through the intersection of the axes of rotation over the 
supports. In Fig. 14.4c there are axes of rotation over all four simple supports. 
Positive yield lines form along the lines of intersection of the rotating segments of the 
slab. A rectangular two-way slab on simple supports is shown in Fig. 14.4d. The 
diagonal yield lines must pass through the corners, while the central yield line is 
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FIGURE 14.4 
Typical yield line patterns. 
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FIGURE 14.5 
Alternative mechanisms for a 
slab supported on three sides. 
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Yield lines 

(b) 

parallel to the two long sides (axes of rotation along opposite supports intersect at 
infinity in this case). 

With this background, the reader should have no difficulty in applying the guide
lines to the slabs in Fig. 14.4e tog to confirm the general pattern of yield lines shown. 
Many other examples will be found in Refs. 14.1 to 14.15. 

Once the general pattern of yielding and rotation has been established by applying 
the guidelines just stated, the specific location and orientation of the axes of rotation 
and the failure load for the slab can be established by either of two methods. The first 
will be referred to as the method of segment equilibrium and will be presented in 
Section 14.4. It requires consideration of the equilibrium of the individual slab 
segments forming the collapse mechanism and leads to a set of simultaneous equa
tions permitting solution for the unknown geometric parameters and for the relation 
between load capacity and resisting moments. The second, the method of virtual work, 
will be described in Section 14.5. This method is based on equating the internal work 
done at the plastic hinges with the external work done by the loads as the predefined 
failure mechanism is given a small virtual displacement. 

It should be emphasized that either method of yield line analysis is an upper 
bound approach in the sense that the true collapse load will never be higher, but may 
be lower, than the load predicted. For either method, the solution has two essential 
parts: (1) establishing the correct failure pattern and (2) finding the geometric 
parameters that define the exact location and orientation of the yield lines and solving 
for the relation between applied load and resisting moments. Either method can be 
developed in such a way as to lead to the correct solution for the mechanism chosen 
for study, but the true failure load will be found only if the correct mechanism has 
been selected. 

For example, the rectangular slab in Fig. 14.5, supported along only three 
sides and free along the fourth, may fail by either of the two mechanisms shown. 
An analysis based on yield pattern a may indicate a slab capacity higher than one 
based on pattern b, or vice versa. It is necessary to investigate all possible mecha
nisms for any slab to confirm that the correct solution, giving the lowest failure 
load, has been found. t 

t The importance of this point was underscored by Professor Arne Hillerborg, of Lund Institute of Technology, Sweden, in a Jetter to the editor of 
the ACI publication Coner. Intl, vol. 13, no. 5, 1991. Professor Hillerborg noted that, in reality, there are two additional yield line patterns for a 
slab such as shown in Fig. 14.5. For a particular set of dimensions and reinforcement, both of these gave a lower failure load than did the 
mechanism shown in Fig. 14.5a. 
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The method of segment equilibrium should not be confused with a true equili
brium method such as the strip method described in Chapter 15. A true equilibrium 
method is a lower bound method of analysis; i.e., it will always give a lower bound of 
the true capacity of the slab. 

14.4 ANALYSIS BY SEGMENT EQUILIBRIUM 

Once the general pattern of yielding and rotation has been established by applying the 
guidelines of Section 14.3, the location and orientation of axes of rotation and the 
failure load for the slab can be established based on the equilibrium of the various 
segments of the slab. Each segment, studied as a free body, must be in equilibrium 
under the action of the applied loads, the moments along the yield lines, and the 
reactions or shear along the support lines. Because the yield moments are principal 
moments, twisting moments are zero along the yield lines, and in most cases the shear
ing forces are also zero. Only the unit moment m generally is considered in writing 
equilibrium equations. 

EXAMPLE 14.1 Segment equilibrium analysis of one-way slab. The method will be demonstrated first with 
respect to the one-way, uniformly loaded, continuous slab of Fig. 14.6a. The slab has a IO ft span 
and is reinforced to provide a resistance to positive bending <f>mn = 5.0 ft-kips/ft through the 
span. In addition, negative steel over the supports provides moment capacities of 5.0 ft-kips/ft 
at A and 7.5 ft-kips/ft at C. Determine the load capacity of the slab. 

SOLUTION. The number of equilibrium equations required will depend upon the number of 
unknowns. One unknown is always the relation between the resisting moments of the slab and 
the load. Other unknowns are needed to define the locations of yield lines. In the present 
instance, one additional equation will suffice to define the distance of the yield line from the 

FIGURE 14.6 q 
Analysis of a one-way slab 
by segment equilibrium 
equations. 
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supports. Taking the left segment of the slab as a free body and writing the equation for moment 
equilibrium about the left support line (see Fig. 14.6b) lead to 

qxz 

2 - 10.0 = 0 (a) 

Similarly, for the right slab segment, 

1(10 - x)2 
- 12 5 = 0 2 . (b) 

Solving Eqs. (a) and (b) simultaneously for wand x results in 

q = 0.89 kip/ft2 x = 4.75 ft 

If a slab is reinforced in orthogonal directions so that the resisting moment is the 
same in these two directions, the moment capacity of the slab will be the same along 
any other line, regardless of direction. Such a slab is said to be isotropically rein
forced. If, however, the strengths are different in two perpendicular directions, the slab 
is called orthogonally anisotropic, or simply orthotropic. Only isotropic slabs will be 
discussed in this section. Orthotropic reinforcement, which is very common in prac
tice, will be discussed in Section 14.6. 

It is convenient in yield line analysis to represent moments with vectors. The 
standard convention, in which the moment acts in a clockwise direction when viewed 
along the vector arrow, will be followed. Treatment of moments as vector quantities 
will be illustrated by the following example: 

EXAMPLE 14.2 Segment equilibrium analysis of square slab. A square slab is simply supported along all 
sides and is to be isotropically reinforced. Determine the resisting moment m = <f>mn per linear 
foot required just to sustain a uniformly distributed factored load of q psf. 

FIGURE 14.7 
Analysis of a square two-way 
slab by segment equilibrium 
equations. 

SOLUTION. Conditions of symmetry indicate the yield line pattern shown in Fig. 14.7a. 
Considering the moment equilibrium of any one of the identical slab segments about its support 
(see Fig. 14.7b), one obtains 
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In both examples just given, the resisting moment was constant along any 
particular yield line; i.e., the reinforcing bars were of constant diameter and equally 
spaced along a given yield line. On the other hand, it will be recalled that, by the 
elastic methods of slab analysis presented in Chapter 13, reinforcing bars generally 
have a different spacing and may be of different diameter in middle strips compared 
with column or edge strips. A slab designed by elastic methods, leading to such varia
tions, can easily be analyzed for strength by the yield line method. It is merely neces
sary to subdivide a yield line into its component parts, within any one of which the 
resisting moment per unit length of hinge is constant. Either the equilibrium equations 
of this section or the work equations of Section 14.5 can be modified in this way. 

14.5 ANALYSIS BY VIRTUAL WORK 

Alternative to the method of Section 14.4 is a method of analysis using the princi
ple of virtual work. Since the moments and loads are in equilibrium when the yield 
line pattern has formed, an infinitesimal increase in load will cause the structure to 
deflect further. The external work done by the loads to cause a small arbitrary 
virtual deflection must equal the internal work done as the slab rotates at the yield 
lines to accommodate this deflection. The slab is therefore given a virtual displace
ment, and the corresponding rotations at the various yield lines can be calculated. 
By equating internal and external work, the relation between the applied loads and 
the resisting moments of the slab is obtained. Elastic rotations and deflections are 
not considered when writing the work equations, as they are very small compared 
with the plastic deformations. 

a. External Work Done by Loads 

An external load acting on a slab segment, as a small virtual displacement is imposed, 
does work equal to the product of its constant magnitude and the distance through 
which the point of application of the load moves. If the load is distributed over a length 
or an area, rather than concentrated, the work can be calculated as the product of the 
total load and the displacement of the point of application of its resultant. 

Figure 14.8 illustrates the basis for external work calculation for several types of 
loads. If a square slab carrying a single concentrated load at its center (Fig. 14.8a) is 
given a virtual displacement defined by a unit value under the load, the external 
work is 

(a) 

If the slab shown in Fig. 14.8b, supported along three sides and free along the fourth, 
is loaded with a line load w per unit length along the free edge, and if that edge is given 
a virtual displacement having unit value along the central part, the external work is 

1 
W,,= (2wa) x 2 +wb=w(a+b) (b) 

When a distributed load q per unit area acts on a triangular segment defined by a hinge 
and yield lines, such as Fig. 14.8c, 

qab I qab 
W,, = 2 X 3 = 6 (c) 



FIGURE 14.8 
External work basis for 
various types of loads. 
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while for the rectangular slab segment shown in Fig. 14.8d, carrying a distributed load 
q per unit area, the external work is 

qab 
w,, = 2 (d) 

More complicated trapezoidal shapes may always be subdivided into component 
triangles and rectangles. The total external work is then calculated by summing the 
work done by loads on the individual parts of the failure mechanism, with all displace
ments keyed to a unit value assigned somewliere in the system. There is no difficulty in 
combining the work done by concentrated loads, line loads, and distributed loads, if 
these act in combination. 

b. Internal Work Done by Resisting Moments 

The internal work done during the assigned virtual displacement is found by summing 
the products of yield moment m per unit length of hinge times the plastic rotation 0 
at the respective yield lines, consistent with the virtual displacement. If the resisting 
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moment m is constant along a yield line of length l, and if a rotation 0 is experienced, 
the internal work is 

W; = ml0 (e) 

If the resisting moment varies, as would be the case if bar size or spacing were not 
constant along the yield line, the yield line is divided into n segments, within each one 
of which tht moment is constant. The internal work is then 

(/) 

For the entire system, the total internal work done is the sum of the contributions from 
all yield lines. In all cases, the internal work contributed is positive, regardless of the 
sign of m, because the rotation is in the same direction as the moment. External work, 
on the other hand, may be either positive or negative, depending on the direction of 
the displacement of the point of application of the force resultant. 

EXAMPLE 14.3 Virtual work analysis of one-way slab. Determine the load capacity of the one-way uni
formly loaded continuous slab shown in Fig. 14.9, using the method of virtual work. The resisting 
moments of the slab are 5.0, 5.0, and 7.5 ft-kips/ft at A, B, and C, respectively. 

FIGURE 14.9 
Virtual work analysis of one
way slab. 

SOLUTION. A unit deflection is given to the slab at B. Then the external work done by the load 
is the sum of the loads times their displacements and is equal to 

qx q 
- + -(10 - x) 
2 2 

The rotations at the hinges are calculated in terms of the unit deflection (Fig. 14.9) and are 

1 
0B2 = 0c=--

lQ - X 

The internal work is the sum of the moments times their corresponding rotation angles: 

1 1 1 
5 X - X 2 + 5 X -- + 7.5 X --

x 10-x 10-x 
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Equating the external and internal work gives 

qx qx lO 5 7.5 
-+5q--=-+--+--
2 2 x 10-x 10-x 

lO 25 
5q=-+---

x 2(10 - x) 

2 5 
q=-+---

x 2(10 - x) 

To determine the minimum value of w, this expression is differentiated with respect to x and set 
equal to zero: 

dq 2 5 - = --+----= 0 
dx x 2 2(10-x)2 

from which 

X = 4.15 ft 

Substituting this value in the preceding expression for w, one obtains 

q = 0.89 kips/ft2 

as before. 

In many cases, particularly those with yield lines established by several 
unknown dimensions (such as Fig. 14.4/), direct solution by virtual work would 
become quite tedious. The ordinary derivatives in Example 14.3 would be replaced by 
several partial derivatives, producing a set of equations to be solved simultaneously. In 
such cases it is often more convenient to select an arbitrary succession of possible 
yield line locations, solve the resulting mechanisms for the unknown load (or 
unknown moment), and determine the correct minimum load (or maximum moment) 
by trial. 

EXAMPLE 14.4 Virtual work analysis of rectangular slab. The two-way slab shown in Fig. 14.10 is simply 
supported on all four sides and carries a uniformly distributed load of q psf. Determine the 
required moment resistance for the slab, which is to be isotropically reinforced. 

SOLUTION. Positive yield lines will form in the pattern shown in Fig. 14.lOa, with the dimen
sion a unknown. The correct dimension a will be such as to maximize the moment resistance 
required to support the load q. The values of a and m will be found by trial. 

In Fig. 14.lOa the length of the diagonal yield line is Y25 + a2• From similar triangles, 

\/25 + a2 

b=5----
a 

Then the rotation of the plastic hinge at the diagonal yield line corresponding to a unit deflec
tion at the center of the slab (see Fig. 14.lOb) is 

1 1 a 5 1 (a 5) 01 = b + --;;- = 5V25 + a2 + aV25 + a2 = V25 + a2 5 + ~ 
The rotation of the yield line parallel to the long edges of the slab (see Fig. 14. lOc) is 

1 1 
02 = 5 + 5 = 0.40 
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FIGURE 14.10 
Virtual work analysis for 
rectangular two-way slab. ~ 
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For a first trial, let a = 6 ft. Then the length of the diagonal yield line is 

\/25 + 36 = 7.81 ft 

The rotation at the diagonal yield line is 

At the central yield line, it is 02 = 0.40. The internal work done as the incremental deflection 
is applied is 

W; = (m X 7.81 X 0.261 X 4) + (m X 8 X 0.40) = 11.36m 

The external work done during the same deflection is 

W, = (10 X 6 X ½q X ½ X 2) + (8 X 5q X ½ X 2) + (12 X 5 X ½q X ½ X 2) = 80q 

Equating W; and W,, one obtains 

80q 
m = I l.3

6 
= 7.05q 

Successive trials for different values of a result in the following data: 

a W; w. m 

6.0 11.36m 80.0q 1.05q 
6.5 11.08m 78.4q 7.08q 
7.0 10.87m 76.6q 7.04q 
7.5 10.69m 15.0q 7.02q 

It is evident that the yield line pattern defined by a = 6.5 ft is critical. The required resisting 
moment for the given slab is 7.08q. 
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14.6 ORTHOTROPIC REINFORCEMENT AND SKEWED 
YIELD LINES 

FIGURE 14.11 
Yield line skewed with 
orthotropic reinforcement: 
(a) orthogonal grid and yield 
line; (b) Y direction bars; 
(c) X direction bars. 

Generally slab reinforcement is placed orthogonally, i.e., in two perpendicular direc
tions. The same reinforcement is often provided in each direction, but the effective 
depths will be different. In many practical cases, economical designs are obtained using 
reinforcement having different bar areas or different spacings in each direction. In 
such cases, the slab will have different moment capacities in the two orthogonal direc
tions and is said to be orthogonally anisotropic, or simply orthotropic. 

Often yield lines will form at an angle with the directions established by the 
reinforcement; this was so in many of the examples considered earlier. For yield line 
analysis, it is necessary to calculate the resisting moment, per unit length, along such 
skewed yield lines. This requires calculation of the contribution to resistance from 
each of the two sets of bars. 

Figure 14.1 la shows an orthogonal grid of reinforcement, with angle a between 
the yield line and the X direction bars. Bars in the X direction are at spacing v and 
have moment resistance my per unit length about the Y axis, while bars in the Y direc
tion are at spacing u and have moment resistance mx per unit length about the X axis. 
The resisting moment per unit length for the bars in the Y and X directions will be 
determined separately, with reference to Fig. 14. llb and c, respectively. 

For the Y direction bars, the resisting moment per bar about the X axis is mxu, 
and the component of that resistance about the a axis is mxu cos a. The resisting 
moment per unit length along the a axis provided by the Y direction bars is therefore 

_ mxu cos a _ 2 may - / - mx cos a 
u cos a 
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For the bars in the X direction, the resisting moment per bar about the Y axis is myv, 
and the component of that resistance about the a axis is my v sin a. Thus the resisting 
moment per unit length along the a axis provided by the X direction bars is 

myv sin a 
m = ---- = m sin2 a 

ax v/sin a Y 
(b) 

Thus, for tqf combined sets of bars, the resisting moment per unit length measured 
along the a axis is given by the sum of the resistances from Eqs. (a) and (b): 

( 14.1) 

For the special case where mx = my = m, with the same reinforcement provided in 
each direction, 

ma = m(cos2 a + sin2 a) = m (14.2) 

The slab is said to be isotropically reinforced, with the same resistance per unit length 
regardless of the orientation of the yield line. 

The analysis just presented neglects any consideration of strain compatibility 
along the yield line, and assumes that the displacements at the level of the steel during 
yielding, which are essentially perpendicular to the yield line, are sufficient to produce 
yielding in both sets of bars. This is reasonably in accordance with test data, except 
for values of a close to O to 90°. For such cases, it would be conservative to neglect 
the contribution of the bars nearly parallel to the yield line. 

It has been shown that the analysis of an orthotropic slab can be simplified to 
that of a related isotropic slab, referred to as the affine slab, provided that the ratio of 
negative to positive reinforcement areas is the same in both directions. The horizontal 
dimensions and slab loads must be modified to permit this transformation. Details will 
be found in Refs. 14.1 to 14.5. 

EXAMPLE 14.S Resisting moment along a skewed yield line. The balcony slab in Fig. 14.12 has fixed 
supports along two adjacent sides and is unsupported along the third side. It is reinforced for 
positive bending with No. 5 (No. 16) bars at 10 in. spacing and 5.5 in. effective depth, parallel 

FIGURE 14.12 
Skewed yield line example. 
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No. 5 (No. 16) @ 10" 
d= 5.5" 



YIELD LINE ANALYSIS FOR SLABS 513 

to the free edge, and No. 4 (No. 13) bars at 10 in. spacing and 5.0 in. effective depth perpen
dicular to that edge. Concrete strength and steel yield stress are 4000 psi and 60,000 psi, 
respectively. One possible failure mechanism includes a positive yield line at 30° with the long 
edge, as shown. Find the total resisting moment along the positive yield line provided by the 
two sets of bars. 

SOLUTION. It is easily confirmed that the resisting moment about the X axis provided by the 
Y direction bars is mx = 5.21 ft-kips/ft, and the resisting moment about the Y axis provided by 
the X direction bars is my = 8.70 ft-kips/ft (both with <p = 0.90 included). The yield line makes 
an angle of 60° with the X axis bars. With cos a= 0.500 and sin a= 0.866, from Eq. (14.1) 
the resisting moment along the a axis is 

ma = 5.21 X 0.5002 + 8.70 X 0.8662 = 7.83 ft-kips/ft 

14.7 SPECIAL CONDITIONS AT EDGES AND CORNERS 

FIGURE 14.13 
Conditions at edge of slab: 
(a) actual yield line; 
(b) simplified yield line. 

Certain simplifications were made in defining yield line patterns in some of the 
preceding examples, in the vicinity of edges and corners. In some cases, such as 
Fig. 14.4b and f, positive yield lines were shown intersecting an edge at an angle. 
Actually, at a free or simply supported edge, both bending and twisting moments 
should theoretically be zero. The principal stress directions are parallel and perpendic
ular to the edge, and consequently the yield lines should enter an edge perpendicular 
to it. Tests confirm that this is the case, but the yield lines generally turn only quite 
close to the edge, the distance tin Fig. 14.13 being small compared to the dimensions 
of the slab (Ref. 14.4). 

Referring to Fig. 14.13, the actual yield line of a can be simplified by extending 
the yield line in a straight line to the edge, as in b, if a pair of concentrated shearing 
forces mt is introduced at the corners of the slab segments. The force mt acting down
ward at the acute corner ( circled cross) and the force mt acting upward at the obtuse 
corner (circled dot) together are the static equivalent of twisting moments and shear
ing forces near the edge. It is shown in Ref. 14.4 that the magnitude of the fictitious 
shearing forces mt is given by the expression 

m1 = m cot a (14.3) 

where m is the resisting moment per unit length along the yield line and a is the acute 
angle between the simplified yield line and the edge of the slab. 

Yield line 

Edge 

(a) 

a 

Edge 

(b} 
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FIGURE 14.14 
Corner condilions. 

FIGURE 14.15 
Development of corner levers 
in a simply supported, 
uniformly loaded slab. 
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lt should be noted that while the fictitious forces enter the solution by the 
equiLibrium method, Lhe virtual work solution is not affected because the net work 
done by the pair of equal and opposite forces moving through the identical virtual 
displacement is zero. 

Also, in the preceding examples, it was assumed that yield lines enter the 
comers between the two intersecting sides. An alternative possibility is that the yield 
line forks before il reaches the corner, forming what is known as a corner lever, 
shown in Fig. 14.14a. 

lf the corner is not held down, the triangular element abc will pivot about the 
axis ab and lift off the supports. The development of such a corner lever is clearly 
shown io Fig. 14.15. The photograph shows a model reinforced concrete slab that was 
tested under uniformly distributed load. The edges were simply supported and were 
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not restrained against upward movement. If the comer is held down, a similar situation 
occurs, except that the line ab becomes a yield line. If cracking at the comers of such 
a slab is to be controlled, top steel more or less perpendicular to the line ab must be 
provided. The direction taken by the positive yield lines near the comer indicates 
the desirability of supplementary bottom-slab reinforcement at the comers, placed 
approximately parallel to the line ab (see Section 13.4). 

Although yield line patterns with comer levers are generally more critical than 
those without, they are often neglected in yield line analysis. The analysis becomes 
considerably more complicated if the possibility of comer levers is introduced, and the 
error made by neglecting them is usually small. 

To illustrate, the uniformly loaded square slab of Example 14.2, when analyzed 
for the assumed yield pattern shown in Fig. 14.7, required a moment capacity of 
qL2/24. The actual yield line pattern at failure is probably as shown in Fig. 14.14b. 
Since two additional parameters m and n have necessarily been introduced to define 
the yield line pattern, a total of three equations of equilibrium is now necessary. These 
equations are obtained by summing moments and vertical forces on the segments of 
the slab. Such an analysis results in a required resisting moment of qL2 /22, an increase 
of about 9 percent compared with the results of an analysis neglecting comer levers. 
The influence of such comer effects may be considerably larger when the comer angle 
is less than 90°. 

14.8 FAN PATTERNS AT CONCENTRATED LOADS 

FIGURE 14.16 
Yield fan geometry at 
concentrated load: (a) yield 
fan; (b) moment vectors 
acting on fan segment; 
( c) resultant of positive
moment vectors; (d) edge 
view of fan segment. 

If a concentrated load acts on a reinforced concrete slab at an interior location, away 
from any edge or comer, a negative yield line will form in a more or less circular pattern, 
as in Fig. 14.16a, with positive yield lines radiating outward from the load point. 
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If the positive resisting moment per unit length is m and the negative resisting moment 
m', the moments per unit length acting along the edges of a single element of the fan, 
having a central angle /3 and radius r, are as shown in Fig. 14.16b. For small values of 
the angle /3, the arc along the negative yield line can be represented as a straight line 
of length r/3. 

Figure 14.16c shows the moment resultant obtained by vector addition of the 
positive mqJ;llents mr acting along the radial edges of the fan segment. The vector sum 
is equal to mr/3, acting along the length r/3, and the resultant positive moment, per unit 
length, is therefore m. This acts in the same direction as the negative moment m', as 
shown in Fig. 14.16d. Figure 14.16d also shows the fractional part of the total load P 
that acts on the fan segment. 

Taking moments about the axis a - a gives 

from which 

f3Pr 
(m + m')r/3 - - = 0 

21T 

P = 21r(m + m') (14.4) 

The collapse load P is seen to be independent of the fan radius r. Thus, with only a 
concentrated load acting, a complete fan of any radius could form with no change in 
collapse load. 

It follows that Eq. (14.4) also gives the collapse load for a fixed-edge slab of any 
shape, carrying only a concentrated load P. The only necessary condition is that the 
boundary must be capable of a restraining moment equal to m' at all points. Finally, 
Eq. (14.4) is useful in establishing whether flexural failure will occur before a punching 
shear failure under a concentrated load. 

Other load cases of practical interest, including a concentrated load near or at a 
free edge, and a concentrated comer load, are treated in Ref. 14.5. Loads distributed 
over small areas and load combinations are discussed in Ref. 14.12. 

14.9 LIMITATIONS OF YIELD LINE THEORY 

The usefulness of yield line theory should be apparent from the preceding sections. In 
general, elastic solutions are available only for restricted conditions, usually uniformly 
loaded rectangular slabs and slab systems. They do not account for the effects of 
inelastic action, except empirically. By yield line analysis, a rational determination of 
flexural strength may be had for slabs of any shape, supported in a variety of ways, 
with concentrated loads as well as distributed and partially distributed loads. The 
effects of holes of any size can be included. It is thus seen to be a powerful analytical 
tool for the structural engineer. 

On the other hand, as an upper bound method, it will predict a collapse load that 
may be greater than the true collapse load. The actual capacity will be less than 
predicted if the selected mechanism is not the controlling one or if the specific loca
tions of yield lines are not exactly correct. Most engineers would prefer an approach 
that would be in error, if at all, on the safe side. In this respect, the strip method of 
Chapter 15 is distinctly superior. 

Beyond this, it should be evident that yield line theory provides, in essence, a 
method for determining the capacity of trial designs, arrived at by some other means, 
rather than for determining the amount and spacing of reinforcement. It is not, strictly 
speaking, a design method. To illustrate, yield line theory provides no inducement for 
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the designer to place steel at anything other than a uniform lateral spacing along a 
yield line. It is necessary to consider the results of elastic analysis of a flat plate, for 
example, to recognize that reinforcement in that case should be placed in strong bands 
across the columns. 

In applying yield line analysis to slabs, it must be remembered that the analysis 
is predicated upon available rotation capacity at the yield lines. If the slab reinforce
ment happens to correspond closely to the elastic distribution of moments in the slab, 
little rotation is required. If, on the other hand, there is a marked difference, it is 
possible that the required rotation will exceed the available rotation capacity, in which 
case the slab will fail prematurely. However, in general, because slabs are typically 
rather lightly reinforced, they will have adequate rotation capacity to attain the col
lapse loads predicted by yield line analysis. 

It should also be borne in mind that the yield line analysis focuses entirely on 
the flexural capacity of the slab. It is presumed that earlier failure will not occur due 
to shear or torsion and that cracking and deflections at service load will not be exces
sive. ACI Code 13.5.1 calls attention specifically to the need to meet "all serviceability 
conditions, including limits on deflections," and ACI Commentary 13.5.1 calls atten
tion to the need for "evaluation of the stress conditions around the supports in relation 
to shear and torsion as well as flexure." 
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PROBLEMS 
14.1. A square slab measuring 10 ft on each side is simply supported on three sides 

and unsupported along the fourth. It is reinforced for positive bending with an 
isotropic mat of steel providing resistance <f>mn of 7000 ft-lb/ft in each of the 
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FIGURE P14.2 

two principal directions. Determine the uniformly distributed load that would 
cause flexural failure, using the method of virtual work. 

14.2. The triangular slab shown in Fig. Pl4.2 has fixed supports along the two per
pendicular edges and is free of any support along the diagonal edge. Negative 
reinforcement perpendicular to the supported edges provides design strength 
<f>mn = 4 ft-kips/ft. The slab is reinforced for positive bending by an orthogo
nal,grid providing resistance <f>mn = 2.67 ft-kips/ft in all directions. Find the 
total factored load w u that will produce flexural failure. A virtual work solution 
is suggested. 

I 
10' Fixed 

L .____ _ _____.,.__ 
I 

Fixed I 
-· -20'------.i, 

14.3. The one-way reinforced concrete slab shown in Fig. P14.3 spans 20 ft. It is 
simply supported at its left edge, fully fixed at its right edge, and free of sup
port along the two long sides. Reinforcement provides design strength <f>mn = 
5 ft-kips/ft in positive bending and <f>mn = 7.5 ft-kips/ft in negative bending at 
the right edge. Using the equilibrium method, find the factored load qu uni
formly distributed over the surface that would cause flexural failure. 

FIGURE P14.3 Free 

:7 
Simply Fixed 1 O' 
supported 

~-___.,✓ _J 
Free I 

----20'-----i, 

14.4. Solve Problem 14.3 using the method of virtual work. 
14.5. The triangular slab shown in Fig. P14.5 is to serve as weather protection over 

a loading dock. Support conditions are essentially fixed along AB and BC, and 
AC is a free edge. In addition to self-weight, a superimposed dead load of 
15 psf and service live load of 40 psf must be provided for. Material strengths 
are J; = 4000 psi and Jy = 60,000 psi. Using yield line analysis, find the 
required slab thickness h and find the reinforcement required at critical sec
tions. Neglect comer pivots. Use a maximum reinforcement ratio of 0.005. 
Select bar sizes and spacings, and provide a sketch summarizing important 
aspects of the design. Make an approximate, conservative check of safety 
against shear failure for the design. Also include a conservative estimate of the 
deflection near the center of edge AC due to a full live load. 
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14.6. The square concrete slab shown in Fig. P14.6 is supported by monolithic con
crete walls providing full vertical and rotational restraint along two adjacent 
edges, and by a 6 in. diameter steel pipe column, near the outer comer, that 
offers negligible rotational restraint. It is reinforced for positive bending by an 
orthogonal grid of bars parallel to the walls, providing design moment 
capacity <f>mn = 6.5 ft-kips/ft in all directions. Negative reinforcement per
pendicular to the walls and negative bars at the outer comer parallel to the 
slab diagonal provide <f>mn = 8.9 ft-kips/ft. Neglecting comer pivots, find the 
total factored uniformly distributed load qu that will initiate flexural failure. 
Solution by the method of virtual work is recommended, with collapse geom
etry established by successive trials. Yield line lengths and perpendicular dis
tances are most easily found graphically. Include a check of the shear capacity 
of the slab, using approximate methods. The steel column is capped with a 
12 X 12 in. plate providing bearing. 

Fixed F~ 
17' 

'~'T77777777777 J 
Fixed 



520 DESIGN OF CONCRETE STRUCTURES Chapter 14 

FIGURE P14.7 

14.7. The square slab shown in Fig. P14.7 is supported by, and is monolithic with, a 
reinforced concrete wall along the edge CD that provides full fixity, and also 
is supported by a masonry wall along AB that provides a simply supported line. 
It is to carry a factored load qu = 300 psf including its self-weight. Assuming 
a uniform 6 in. slab thickness, find the required reinforcement. Include a 
sketch summarizing details of your design, indicating placement and length of 
all _reinforcing bars. Also check the shear capacity of the structure, making 
whatever assumptions appear reasonable and necessary. Use J; = 4000 psi 
and Jy = 60,000 psi. 
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14.8. The slab of Fig. P14.8 is supported by three fixed edges but has no support 
along one long side. It has a uniform thickness of 7 in., resulting in effective 
depths in the long direction of 6.0 in. and in the short direction of 5.5 in. 
Bottom reinforcement consists of No. 4 (No. 13) bars at 14 in. centers in each 
direction, continued to the supports and the free edge. Top negative steel along 
the supported edges consists of No. 4 (No. 13) bars at 12 in. on centers, except 
that in a 2 ft wide "strong band" parallel and adjacent to the free edge, four 
No. 5 (No. 16) bars are used. All negative bars extend past the points of 
inflection, as required by ACI Code. Material strengths are J; = 4000 psi 
and Jy = 60,000 psi. Using the yield line method, determine the factored 
load qu that can be carried. 

FIGURE P14.8 4 No. 5 (No. 16) top 
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14.9. Using virtual work and yield line theory, compute the flexural collapse load 
of the one-way slab in Example 13.1. Assume that all straight bars are used, 
according to Fig. 13.4b. Compare the calculated collapse load with the original 
factored design load, and comment on differences. 

14.10. Using virtual work and yield line theory, compute the flexural collapse load of 
the two-way column-supported flat plate of Example 13.3. To simplify the 
calculations, assume that all positive moment bars are carried to the edges of 
the panels, not cut off in the span. Consider all possible failure mechanisms, 
including a circular fan around the column. Neglect corner effects. Compare 
the calculated collapse load with the original factored design load and com
ment on differences. 
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Strip Method for Slabs 

15.1 INTRODUCTION 

In Section 14.2, the upper and lower bound theorems of the theory of plasticity were 
presented, and it was pointed out that the yield line method of slab analysis was an 
upper bound approach to determining the flexural strength of slabs. An upper bound 
analysis, if in error, will be so on the unsafe side. The actual carrying capacity will be 
less than, or at best equal to, the capacity predicted, which is certainly a cause for con
cern in design. Also, when applying the yield line method, it is necessary to assume 
that the distribution of reinforcement is known over the whole slab. It follows that the 
yield line approach is a tool to analyze the capacity of a given slab and can be used for 
design only in an iterative sense, for calculating the capacities of trial designs with 
varying reinforcement until a satisfactory arrangement is found. 

These circumstances motivated Hillerborg to develop what is known as the strip 
method for slab design, his first results being published in Swedish in 1956 (Ref. 15.1). 
In contrast to yield line analysis, the strip method is a lower bound approach, based 
on satisfaction of equilibrium requirements everywhere in the slab. By the strip 
method (sometimes referred to as the equilibrium theory), a moment field is first 
determined that fulfills equilibrium requirements, after which the reinforcement in the 
slab at each point is designed for this moment field. If a distribution of moments can 
be found that satisfies both equilibrium and boundary conditions for a given external 
loading, and if the yield moment capacity of the slab is nowhere exceeded, then the 
given external loading will represent a lower bound of the true carrying capacity. 

The strip method gives results on the safe side, which is certainly preferable in 
practice, and differences from the true carrying capacity will never impair safety. The 
strip method is a design method, by which the needed reinforcement can be calculated. 
It encourages the designer to vary the reinforcement in a logical way, leading to an 
economical arrangement of steel, as well as a safe design. It is generally simple to use, 
even for slabs with holes or irregular boundaries. 

In his original work in 1956, Hillerborg set forth the basic principles for edge
supported slabs and introduced the expression strip method (Ref. 15.1). He later 
expanded the method to include the practical design of slabs on columns and L-shaped 
slabs (Refs. 15.2 and 15.3). The first treatment of the subject in English was by 
Crawford (Ref. 15.4). In 1964, Blakey translated the earlier Hillerborg work into 
English (Ref. 15.5). Important contributions, particularly regarding continuity condi
tions, have been made by Kemp (Refs. 15.6 and 15.7) and Wood and Armer (Refs. 15.8, 
15.9, and 15.10). Load tests of slabs designed by the strip method were carried out by 
Armer (Ref. 15.11) and confirmed that the method produces safe and satisfactory 
designs. In 1975, Hillerborg produced Ref. 15.12 "for the practical designer, helping 
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him in the simplest possible way to produce safe designs for most of the slabs that he 
will meet in practice, including slabs that are irregular in plan or that carry unevenly 
distributed loads." Subsequently, he published a paper in which he summarized what 
has become known as the advanced strip method, pertaining to the design of slabs sup
ported on columns, reentrant comers, or interior walls (Ref. 15.13). Useful summaries 
of both the simple and advanced strip methods will be found in Refs. 15.14 and 15.15. 

The strip method is appealing not only because it is safe, economical, and versa
tile over a broad range of applications, but also because it formalizes procedures 
followed instinctively by competent designers in placing reinforcement in the best 
possible position. In contrast with the yield line method, which provides no inducement 
to vary bar spacing, the strip method encourages the use of strong bands of steel where 
needed, such as around openings or over columns, improving economy and reducing 
the likelihood of excessive cracking or large deflections under service loading. 

15.2 BASIC PRINCIPLES 

The governing equilibrium equation for a small slab element having sides dx and dy is 

,Pm x a2m y a2m xy 
- +- - 2-- = -q (15.1) 
ax2 ay2 axay 

where q = external load per unit area 
mx, my = bending moments per unit width in X and Y directions, respectively 

mxy = twisting moment (Ref. 15.16) 

According to the lower bound theorem, any combination of mx, my, and mxy that 
satisfies the equilibrium equation at all points in the slab and that meets boundary 
conditions is a valid solution, provided that the reinforcement is placed to carry 
these moments. 

The basis for the simple strip method is that the torsional moment is chosen 
equal to zero; no load is assumed to be resisted by the twisting strength of the slab. 
Therefore, if the reinforcement is parallel to the axes in a rectilinear coordinate system, 

m =O xy 

The equilibrium equation then reduces to 

a2mx ,Pmy 
--+--= -q 
ax2 ay2 (15.2) 

This equation can be split conveniently into two parts, representing twistless beam 
strip action 

(15.3a) 

and 

a2m 
_Y = -(1 - k)q 
ay2 

(15.3b) 

where the proportion of load taken by the strips is k in the X direction and 1 - k in the 
Y direction. In many regions in slabs, the value of k will be either O or 1. With k = 0, all 
of the load is dispersed by strips in the Y direction; with k = 1, all of the load is carried 
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in the X direction. In other regions, it may be reasonable to assume that the load is 
divided equally in the two directions (i.e., k = 0.5). 

15.3 CHOICE OF LOAD DISTRIBUTION 

FIGURE 15.1 
Square slab with load shared 
equally in two directions. 

Theoretically, the load q can be divided arbitrarily between the X and Y directions. 
Different divisions will, of course, lead to different patterns of reinforcement, and not 
all will be equally appropriate. The desired goal is to arrive at an arrangement of steel 
that is safe and economical and that will avoid problems at the service load level asso
ciated with excessive cracking or deflections. In general, the designer may be guided 
by knowledge of the general distribution of elastic moments. 

To see an example of the strip method and to illustrate the choices open to the 
designer, consider the square, simply supported slab shown in Fig. 15.1, with side 
length a and a uniformly distributed factored load q per unit area. 

The simplest load distribution is obtained by setting k = 0.5 over the entire slab, 
as shown in Fig. 15.1. The load on all strips in each direction is then q/2, as illustrated 
by the load dispersion arrows of Fig. 15.la. This gives maximum moments 

qa2 
mx =my= 16 (15.4) 

over the whole slab, as shown in Fig. 15.lc, with a uniform lateral distribution across 
the width of the critical section, as in Fig. 15. ld. 
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FIGURE 15.2 
Square slab with load 
dispersion lines following 
diagonals. 
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This would not represent an economical or serviceable solution because it is 
recognized that curvatures, hence moments, must be greater in the strips near tbe middle 
of the slab than near the edges in the direction parallel to the edge (see Fig. 13.5). If the 
slab were reinforced according to this solution, extensive redistribution of moments 
would be required, certainly accompanied by much cracking in the highly stressed 
regions near the middle of the slab. 

An alternative, more reasonable distribution is shown in Fig. 15.2. Here the 
regions of different load dispersion, separated by the dash-dotted "discontinuity lines," 
follow the diagonals, and all of the load on any region is carried in the direction giving 
the shortest distance to tbe nearest support. The solution proceeds, giving k values of 
either O or 1, depending on the region, with load transmitted in the directions indicated 
by the arrows of Fig. 15.2a. For a strip A-A at a distance y :5 a/2 from the X axis, the 
moment is 

(15.5) 

The load acting on a strip A-A is shown in Fig. 15.2b, and the resulting diagram of 
moment mx is given in Fig. 15.2c. The lateral variation of mx across the width of the 
slab is as shown in Fig. 15.2d. 

The lateral distribution of moments shown in Fig. 15.2d would theoretically 
require a continuously variable bar spacing, obviously an impracticality. One way 
of using the distribution in Fig. 15.2, which is considerably more economical than that 
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FIGURE 15.3 
Square slab with load near 
diagonals shared equally in 
two directions. 

in Fig. 15.1, would be to reinforce for the average moment over a certain width, 
approximating the actual lateral variation shown in Fig. 15.2d in a stepwise manner. 
Hillerborg notes that this is not strictly in accordance with the equilibrium theory and 
that the design is no longer certainly on the safe side, but other conservative assump
tions, e.g., neglect of membrane strength in the slab and neglect of strain hardening of 
the reinforcement, would surely compensate for the slight reduction in safety margin. 

A thiro alternative distribution is shown in Fig. 15.3. Here the division is made 
so that the load is carried to the nearest support, as before, but load near the diagonals 
has been divided, with one-half taken in each direction. Thus, k is given values of O or 1 
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along the middle edges and a value of 0.5 in the comers and center of the slab, with 
load dispersion in the directions indicated by the arrows shown in Fig. 15.3a. Two 
different strip loadings are now identified. For an X direction strip along section A-A, 
the maximum moment is 

q a a qa 2 

mx = - X - X - = --
2 4 8 64 

and for a strip along section B-B, the maximum moment is 

a a q a 3a 5qa2 

mx = q X - X - + - X - X - = ~-
4 8 2 4 8 64 

(15.6a) 

(15.6b) 

The variation of mx along the line x = a/2 is shown in Fig. 15.3d. This design leads to 
a practical arrangement of reinforcement, one with constant spacing through the center 
strip of width a/2 and a wider spacing through the outer strips, where the elastic 
curvatures and moments are known to be less. The averaging of moments necessitated 
in the second solution is avoided here, and the third solution is fully consistent with 
the equilibrium theory. 

Comparing the three solutions just presented shows that the first would be unsat
isfactory, as noted earlier, because it would require great redistribution of moments to 
achieve, possibly accompanied by excessive cracking and large deflections. The sec
ond, with discontinuity lines following the slab diagonals, has the advantage that the 
reinforcement more nearly matches the elastic distribution of moments, but it either 
leads to an impractical reinforcing pattern or requires an averaging of moments in 
bands that involves a deviation from strict equilibrium theory. The third solution, with 
discontinuity lines parallel to the edges, does not require moment averaging and leads 
to a practical reinforcing arrangement, so it will often be preferred. 

The three examples also illustrate the simple way in which moments in the slab 
can be found by the strip method, based on familiar beam analysis. It is important to 
note, too, that the load on the supporting beams is easily found because it can be com
puted from the end reactions of the slab beam strips in all cases. This information is 
not available from solutions such as those obtained by the yield line theory. 

15.4 RECTANGULAR SLABS 

With rectangular slabs, it is reasonable to assume that, throughout most of the area, the 
load will be carried in the short direction, consistent with elastic theory (see Section 13.4). 
In addition, it is important to take into account the fact that because of their length, 
longitudinal reinforcing bars will be more expensive than transverse bars of the same 
size and spacing. For a uniformly loaded rectangular slab on simple supports, Hillerborg 
presents one possible division, as shown in Pig. 15.4, with discontinuity lines origi
nating from the slab corners at an angle depending on the ratio of short to long sides 
of the slab. All of the load in each region is assumed to be carried in the directions 
indicated by the arrows. 

Instead of the solution of Fig. 15.4, which requires continuously varying rein
forcement to be strictly correct, Hillerborg suggests that the load can be distributed as 
shown in Fig. 15.5, with discontinuity lines parallel to the sides of the slab. For such 
cases, it is reasonable to take edge bands of width equal to one-fourth the short span 
dimension. Here the load in the comers is divided equally in the X and Y directions as 
shown, while elsewhere all of the load is carried in the direction indicated by the arrows. 
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FIGURE 15.4 
Rectangular slab with 
discontinuity lines 
originating at the comers. 

FIGURE 15.5 
Discontinuity lines parallel to 
the sides for a rectangular 
slab. 
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The second, preferred arrangement, shown in Fig. 15.5, gives slab moments as 
follows: 

In the X direction: 

Side strips: 

Middle strips: 

In the Y direction: 

Side strips: 

Middle strips: 

q b b qb2 
mx = - X - X - = -

2 4 8 64 

b b qb2 
mx = q X - X - = -

4 8 32 

qb2 
m =-

Y 64 

qb2 
m =-

Y 8 

(15.7a) 

(15.7b) 

(15.8a) 

(15.8b) 

This distribution, requiring no averaging of moments across band widths, is always on 
the safe side and is both simple and economical. 
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15.5 FIXED EDGES AND CONTINUITY 

FIGURE 15.6 
Slab strip with central region 
unloaded. 

Designing by the strip method has been shown to provide a large amount of flexibility in 
assigning load to various regions of slabs. This same flexibility extends to the assignment 
of moments between negative and positive bending sections of slabs that are fixed or 
continuous over their supported edges. Some attention should be paid to elastic moment 
ratios to avoid problems with cracking and deflection at service loads. However, the 
redistribution that can be achieved in slabs, which are typically rather lightly reinforced 
and, thus, have large plastic rotation capacities when overloaded, permits considerable 
arbitrary readjustment of the ratio of negative to positive moments in a strip. 

This is illustrated by Fig. 15.6, which shows a slab strip carrying loads only near 
the supports and unloaded in the central region, such as often occurs in designing by 
the strip method. It is convenient if the unloaded region is subject to a constant 
moment (and zero shear), because this simplifies the selection of positive reinforce
ment. The sum of the absolute values of positive span moment and negative end 
moment at the left or right end, shown as m1 and m, in Fig. 15.6, depends only on the 
conditions at the respective end and is numerically equal to the negative moment if 
the strip carries the load as a cantilever. Thus, in determining moments for design, one 
calculates the "cantilever" moments, selects the span moment, and determines the 
corresponding support moments. Hillerborg notes that, as a general rule for fixed 
edges, the support moment should be about 1.5 to 2.5 times the span moment in the 
same strip. Higher values should be chosen for longitudinal strips that are largely 
unloaded, and in such cases a ratio of support to span moment of 3 to 4 may be used. 
However, little will be gained by using such a high ratio if the positive moment steel 
is controlled by minimum requirements of the ACI Code. 

For slab strips with one end fixed and one end simply supported, the dual goals of 
constant moment in the unloaded central region and a suitable ratio of negative to posi
tive moments govern the location to be chosen for the discontinuity lines. Figure 15.7a 
shows a uniformly loaded rectangular slab having two adjacent edges fixed and the other 
two edges simply supported. Note that although the middle strips have the same width 
as those of Fig. 15.5, the discontinuity lines are shifted to account for the greater stiff
ness of the strips with fixed ends. Their location is defined by a coefficient a, with a 
value clearly less than 0.5 for the slab shown, its exact value yet to be determined. It will 
be seen that the selection of a relates directly to the ratio of negative to positive moments 
in the strips. 

The moment curve of Fig. 15.7b is chosen so that moment is constant over the 
unloaded part, i.e., shearing force is zero. With constant moment, the positive steel can 
be fully stressed over most of the strip. The maximum positive moment in the X direc
tion middle strip is then 

(15.9) 

1111 II 111 ~ 
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FIGURE 15.7 
Rectangular slab with two edges fixed and two edges simply supported. 

The cantilever moment at the left support is 

qb b 2 qb2 
mx = (1 - a)2 (1 - a)4 = (1 - a) 8 (15.10) 

and so the negative moment at the left support is 

qb2 qb2 qb2 
m = (I - a)2 - - a 2 - = (1 - 2a)-

xs 8 8 8 
(15.11) 

For reference, the ratio of negative to positive moments in the X direction middle strip is 

mxs 1 - 2a 

mxf a2 
(15.12) 

The moments in the X direction edge strips are one-half of those in the middle strips 
because the load is one-half as great. 

It is reasonable to choose the same ratio between support and span moments in 
the Y direction as in the X direction. Accordingly, the distance from the right support, 
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Fig. 15.7c, to the maximum positive moment section is chosen as ab. It follows that 
the maximum positive moment is 

ab qb2 

myf = aqb X 2 = a 2 

2 (15.13) 

Applying the same methods as used for the X direction shows that the negative support 
moment in the Y direction middle strips is 

qb2 
m = (1 - 2a)-

ys 2 (15.14) 

It is easily confirmed that the moments in the Y direction edge strips are just one
eighth of those in the Y direction middle strip. 

With the above expressions, all of the moments in the slab can be found once a 
suitable value for a is chosen. From Eq. (15.12), it can be confirmed that values of a 
from 0.35 to 0.39 give corresponding ratios of negative to positive moments from 2.45 
to 1.45, the range recommended by Hillerborg. For example, if it is decided that 
support moments are to be twice the span moments, the value of a should be 0.366, 
and the negative and positive moments in the central strip in the Y direction are, 
respectively, 0.134qb2 and 0.067qb2• In the middle strip in the X direction, moments 
are one-fourth those values; and in the edge strips in both directions, they are one
eighth of those values. 

EXAMPLE 15.1 Rectangular slab with fixed edges. Figure 15.8 shows a typical interior panel of a slab floor 
in which support is provided by beams on all column lines. Normally proportioned beams will 
be stiff enough, both flexurally and torsionally, that the slab can be assumed fully restrained on 
all sides. Clear spans for the slab, face to face of beams, are 25 and 20 ft, as shown. The floor 
must carry a service live load of 150 psf, using concrete with/; = 3000 psi and steel with.I;, = 
60,000 psi. Find the moments at all critical sections, and determine the required slab thickness 
and reinforcement. 

SOLUTION. The minimum slab thickness required by the ACI Code can be found from 
Eq. (13.8b), with ln = 25 ft and /3 = 1.25: 

25 X 12(0.8 + 60/200) . 
h = 36 + 9 X 1.25 = 6·98 m. 

A total thickness of7 in. will be selected, for which qd = 150 X 7/12 = 87.5 psf. Applying 
the load factors of 1.2 and 1.6 to dead load and live load, respectively, determines that the total 
factored load for design is 340 psf. For strip analysis, discontinuity lines will be selected as 
shown in Fig. 15.8, with edge strips of width b/4 = 20/4 = 5 ft. In the comers, the load is 
divided equally in the two directions; elsewhere, 100 percent of the load is assigned to the 
direction indicated by the arrows. A ratio of support moment to span moment of 2.0 will be 
used. Calculation of moments then proceeds as fQJlows: 

X direction middle strip: 

qb 2 400 
Cantilever: mx = 32 = 340 X 32 = 4250 ft-lb/ft 

Negative: 
2 

mxs = 4250 X 3 = 2833 

Positive: 
1 

mxf = 4250 X 3 = 1417 
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FIGURE 15.8 
Design example: two-way 
slab with fixed edges. 

5' 

-t 
10' 

1 ~ 
5' 

'"""7'7'::"77:"77."77.77777777?°'7"n"7'7'::7', - _l 

----a= 25' ----+I 

(a) Plan view 

DillW) 
t 

X 

( 
340 ) 

a11111111111111111111111~ 

t t 
-11,333 -11,333 

-2833 -2833 

~ A \...: ________ 7 
+1417 

(b) X direction middle strip 

CP 
t 

-1417 
f\_ 

<...... 
+708 

rTITTW) 
t 

-1417 

;:> 
;1 

(c) X direction edge strip 

X direction edge strips: 

+5666 

(d) Y direction middle strip 

CP 
t 

-1417 
f\_ ..____ 

-1417 

;:> 
;1 

+708 

(e) Ydirection edge strip 

qb 2 400 
Cantilever: mx = 64 = 340 X 64 = 2125 ft-lb/ft 

Negative: 
2 

m = 2125 X - = 1417 
XS 3 

Positive: 
1 

mxf= 2125 X 3 = 708 
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Y direction middle strip: 

qb 2 400 
Cantilever: m = - = 340 X - = 17 000 ft-lb/ft 

Y 8 8 ' 

2 
Negative: mys= 17,000 X 3 = 11,333 

1 
Positive: myf = 17,000 X 3 = 5666 

Y direction edge strips: 

qb 2 400 
Cantilever: my = 64 = 340 X 64 = 2125 ft-lb/ft 

2 
Negative: mys = 2125 X 3 = 1417 

Positive: 
1 

myf = 2125 X 3 = 708 

Strip loads and moment diagrams are as shown in Fig. 15.8. According to ACI Code 7.12, 
the minimum steel required for shrinkage and temperature crack control is 0.0018 X 7 X 12 = 
0.151 in2/ft strip. With a total depth of 7 in., with¾ in. concrete cover, and with estimated bar 
diameters of½ in., the effective depth of the slab in the short direction will be 6 in., and in the 
long direction, 5.5 in. Accordingly, the flexural reinforcement ratio provided by the minimum 
steel acting at the smaller effective depth is 

O.lSl = 0.0023 
Pmin = 5.5 X 12 

From Table A.Sa of Appendix A, R = 134, and the flexural design strength is 

0.90 X 134 X 12 X 5.52 

cpmn = cpRbd 2 = 
12 

= 3648 ft-lb/ft 

Comparing this with the required moment resistance shows that the minimum steel will 
be adequate in the X direction in both middle and edge strips and in the Y direction edge strips. 
No. 3 (No. 10) bars at 9 in. spacing will provide the needed area. In the Y direction middle strip, 
for negative bending, 

mu 11,333 X 12 
R = -- = ----- = 350 

cpbd 2 0.90 X 12 X 62 

and from Table A.Sa, the required reinforcement ratio is 0.0069. The required steel is then 

As = 0.0063 X 12 X 6 = 0.45 in2/ft 

This will be provided with No. 5 (No. 16) bars at'i~ in. on centers. For positive bending, 

R = 5666 X 12 = 175 
0.90 X 12 X 62 

for which p = 0.0030, and the required positive steel area per strip is 

As = 0.0030 X 12 X 6 = 0.22 in2/ft 

to be provided by No. 4 (No. 13) bars on 10 in. centers. Note that all bar spacings are less than 
2h = 2 X 7 = 14 in., as required by the Code, and that the reinforcement ratios are well below 
the value for a tension-controlled section of 0.0135. 
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Negative bar cutoff points can easily be calculated from the moment diagrams. For the 
X direction middle strip, the point of inflection a distance x from the left edge is found 
as follows: 

1700x - 2833 - 340( ~
2

) = 0 

X = 2.11 ft 
_,,,,.., 

According to the Code, the negative bars must be continued at least d or 12db beyond that point, 
requiring a 6 in. extension in this case. Thus, the negative bars will be cut off 2.11 + 0.50 = 
2.61 ft, say 2 ft 8 in., from the face of support. The same result is obtained for the X direction 
edge strips and the Y direction edge strips. For the Y direction middle strip, the distance 
y = 4.23 ft from face of support to inflection point is found in a similar manner. In this case, 
with No. 5 (No. 10) bars used, the required extension is 7.5 in., giving a total length past the 
face of supports of 4.23 + 0.63 = 4.86 ft or 4 ft 11 in. All positive bars will be carried 6 in. 
into the face of the supporting beams. 

15.6 UNSUPPORTED EDGES 

The slabs considered in the preceding sections, together with the supporting beams, 
could also have been designed by the methods of Chapter 13. The real power of the 
strip method becomes evident when dealing with nonstandard problems, such as 
slabs with an unsupported edge, slabs with holes, or slabs with reentrant corners 
(L-shaped slabs). 

For a slab with one edge unsupported, for example, a reasonable basis for 
analysis by the simple strip method is that a strip along the unsupported edge takes a 
greater load per unit area than the actual unit load acting, i.e., that the strip along 
the unsupported edge acts as a support for the strips at right angles. Such strips have 
been referred to by Wood and Armer as strong bands (Ref. 15.8). A strong band is, 
in effect, an integral beam, usually having the same total depth as the remainder of 
the slab but containing a concentration of reinforcement. The strip may be made 
deeper than the rest of the slab to increase its carrying capacity, but this will not 
usually be necessary. 

Figure 15.9a shows a rectangular slab carrying a uniformly distributed factored 
load q per unit area, with fixed edges along three sides and no support along one short 
side. Discontinuity lines are chosen as shown. The load on a unit middle strip in the 
X direction, shown in Fig. 15.9b, includes the downward load q in the region adjacent 
to the fixed left edge and the upward reaction kq in the region adjacent to the free edge. 
Summing moments about the left end, with moments positive clockwise and with the 
unknown support moment denoted mxs• gives 

from which 

m + qb2 - kqb (a - !:_) = 0 
~ 32 4 8 

1 + 32mxs/qb2 
k=------

8(a/b) - 1 

Thus, k can be calculated after the support moment is selected. 

(15.15) 



FIGURE 15.9 
Slab with free edge along 
short side. 
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The appropriate value of mxs to be used in Eq. (15.15) will depend on the shape 
of the slab. If a is large relative to b, the strong band in the Y direction at the edge will 
be relatively stiff, and the moment at the left support in the X direction strips will 
approach the elastic value for a propped cantilever. If the slab is nearly square, the 
deflection of the strong band will tend to increase the support moment; a value about 
one-half the free cantilever moment might be selected (Ref. 15.14). 

Once mxs is selected and k is known,,!$ is easily shown that the maximum span 
moment occurs when 

It has a value 

b 
x = (1 - k)-

4 

kqb
2
(8a ) m =-- --3+k 

xf 32 b (15.16) 
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FIGURE 15.10 
Slab with free edge in long
span direction. 

The moments in the X direction edge strips are one-half of those in the middle strip. In 
the Y direction middle strip, Fig. 15.9d, the cantilever moment is qlr/8. Adopting a ratio 
of support to span moment of 2 results in support and span moments, respectively, of 

qb2 
m = - (15.17a) 

ys 12 

qb2 
m -

yf- 24 (15.17b) 

Moments in the Y direction strip adjacent to the fixed edge, Fig. 15.9c, will be one
eighth of those values. In the Y direction strip along the free edge, Fig. 15.9e, moments 
can, with slight conservatism, be made equal to (1 + k) times those in the Y direction 
middle strip. 

If the unsupported edge is in the long-span direction, then a significant fraction 
of the load in the slab central region will be carried in the direction perpendicular to 
the long edges, and the simple distribution shown in Fig. 15.lOa is more suitable. A 
strong band along the free edge serves as an integral edge beam, with width {3b nor
mally chosen as low as possible considering limitations on tensile reinforcement ratio 
in the strong band. 

For a Y direction strip, with moments positive clockwise, 
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from which 

k 1 (1 - /3) 2 + 2mys/ qb 2 

k2 = /3(2 _ /3) (15.18) 

The value of k1 may be selected so as to make use of the minimum steel in the X direc
tion required by ACI Code 7.12. In choosing mys to be used in Eq. (15.18) for calcu
lating k2, one should again recognize that the deflection of the strong band along the 
free edge will tend to increase the Y direction moment at the supported edge above 
the propped cantilever value based on zero deflection. A value for mys of about one-half 
the free cantilever moment may be appropriate in typical cases. A high ratio of a/b will 
permit greater deflection of the free edge through the central region, tending to 
increase the support moment, and a low ratio will restrict deflection, reducing the 
support moment. 

EXAMPLE 15.2 Rectangular slab with long edge unsupported. The 12 X 19 ft slab shown in Fig. 15.lla, 
with three fixed edges and one long edge unsupported, must carry a uniformly distributed 
service live load of 125 psf; J; = 4000 psi, and !y = 60,000 psi. Select an appropriate slab 
thickness, determine all factored moments in the slab, and select reinforcing bars and spacings 
for the slab. 

SOLUTION. The minimum thickness requirements of the ACI Code do not really apply to the 
type of slab considered here. However, Table 13.5, which controls for beamless flat plates, can 
be applied conservatively because although the present slab is beamless along the free edge, it 
has infinitely stiff supports on the other three edges. From that table, with ln = 19 ft, 

19 X 12 
h = 

33 
= 6.91 in. 

A total thickness of7 in. will be selected. The slab dead load is 150 X rz = 88 psf, and the total 
factored design load is 1.2 X 88 + 1.6 X 125 = 306 psf. 

A strong band 2 ft wide will be provided for support along the free edge. In the main slab, 
a value k1 = 0.45 will be selected, resulting in a slab load in the Y direction of 0.45 X 

306 = 138 psf and in the X direction of 0.55 X 306 = 168 psf. 
First, with regard to the Y direction slab strips, the negative moment at the supported edge 

will be chosen as one-half the free cantilever value, which in tum will be approximated based 
on 138 psf over an 11 ft distance from the support face to the center of the strong band. The 
restraining moment is thus 

Then, from Eq. (15.18) 

1 
mys= 2 X 

138 X 112 

2 
= 4175 ft-lb/ft 

0.45(5/6) 2 
- 2 X 4175/(306 X 144) 

k2 = (1/6)(2 ~•,l/6) = 0.403 

Thus, an uplift of 0.403 X 306 = 123 psf will be provided for the Y direction strips by the 
strong band, as shown in Fig. 15.lld. For this loading, the negative moment at the left 
support is 

102 

mys = 138 X 2 - 123 X 2 X 11 = 4194 ft-lb/ft 

The difference from the original value of 4175 ft-lb/ft is caused by numerical rounding of 
the load terms. The statically consistent value of 4194 ft-lb/ft will be used for design. The 
maximum positive moment in the Y direction strips will be located at the point of zero shear. 
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FIGURE 15.11 
Design example: slab with 
long edge unsupported. 
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With y 1 as the distance of that point from the free edge to the zero shear location, and with 
reference to Fig. 15.lld, 

123 X 2 - 138(y1 - 2) = 0 

from which y1 = 3.78 ft. The maximum positive moment, found at that location, is 

1 782 

myf = 123 X 2(3.78 - 1) - 138 X ~ = 465 ft-lb/ft 

For later reference in cutting off bars, the point of inflection is located a distance y2 from the 
free edge: 

138 
123 X 2(y2 - 1) - 2 (y2 - 2) 2 = 0 



FIGURE 15.11 
( Continued) 
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resulting in Yi = 6.38 ft. 
For the X direction slab strips, the cantilever moment is 

Cantilever: 
168 X 192 

mx = 
8 

= 7581 ft-lb/ft 

A ratio of negative to positive moments of 2.0 will be chosen here, resulting in negative and 
positive moments, respectively, of 

Negative: 
2 

mxs = 7581 X 3 = 5054 ft-lb/ft 

Positive: 
1 

mxf = 7581 X 3 = 2527 ft-lb/ft 

as shown in Fig. 15.llb. 
The unit load on the strong band in the X direction is 

(1 + k 2)q = (1 + 0.403) X 306 = 429 psf 

so for the 2 ft wide band the load per foot is 2 X 429 = 858 psf, as indicated in Fig. 15.llc. 
The cantilever, negative, and positive strong band moments are, respectively, 

Cantilever: 

Negative: 

Positive: 

Mx = 858 X 192/8 = 38,700 ft-lb 

2 
Mxs = 38,700 X 3 = 25,800 ft-lb 

1 
Mxf = 38,700 X 3 = 12,900 ft-lb 

With a negative moment of -25,800 ft-lb and a support reaction of 858 X -1/ = 8151 lb, the 
point of inflection in the strong band is found as follows: 

858x 2 

-25,800 + 8151x - -
2

- = 0 
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giving x = 4.01 ft. The inflection point in the X direction slab strips will be at the same location. 
In designing the slab steel in the X direction, one notes that the minimum steel required 

by the ACI Code is 0.0018 X 7 X 12 = 0.15 in2/ft. The effective slab depth in the X direction, 
assuming½ in. diameter bars with¾ in. cover, is 7.0 - 1.0 = 6.0 in. The corresponding flexural 
reinforcement ratio in the X direction is p = 0.15/(12 X 6) = 0.0021. From Table A.Sa, R = 124, 
and the design strength is 

<J>mn = <J>Rbd2 = 0.
9

0 X 
12~t 12 

X 
62 

= 4018 ft-lb/ft 

It is seen that the minimum slab steel required by the Code will provide for the positive bend
ing moment of 2527 ft-lb/ft. The requirement of 0.15 in2/ft could be met by No. 3 (No. 10) bars 
at 9 in. spacing, but to reduce placement costs, No. 4 (No. 13) bars at the maximum permitted 
spacing of 2h = 14 in. will be selected, providing 0.17 in2/ft. The X direction negative moment 
of 5054 ft-lb/ft requires 

R = ~ = 5054 X 12 = 156 
</>bd2 0.90 X 12 X 62 

and Table A.Sa indicates that the required p = 0.0027. Thus, the negative bar requirement is 
A, = 0.0027 X 12 X 6 = 0.19 in2/ft. This will be provided by No. 4 (No. 13) bars at 12 in. 
spacing, continued 4.01 X 12 + 6 = 54 in., or 4 ft 6 in., from the support face. 

In the Y direction, the effective depth will be one bar diameter less than in the X direc
tion, or 5.5 in. Thus, the flexural reinforcement ratio provided by the shrinkage and 
temperature steel is p = 0.15/(12 X 5.5) = 0.0023. This results in R = 135, so the design 
strength is 

,,_m = 0.90 X 135 X 12 X 5.5
2 

= 3675 ft-lb/ft 
'f' n 12 

well above the requirement for positive bending of 473 ft-lb/ft. No. 4 (No. 13) bars at 14 in. 
will be satisfactory for positive steel in this direction also. For the negative moment of 
4194 ft-lb/ft, 

R = 4194 X 12 = 154 
0.90 X 12 X 5.52 

and from Table A.Sa, the required p = 0.0027. The corresponding steel requirement is 0.0027 X 
12 X 5.5 = 0.18 in2/ft. No. 4 (No. 13) bars at 12 in. will be used, and they will be extended 
5.62 X 12 + 6 = 74 in., or 6 ft 2 in., past the support face. 

In the strong band, the positive moment of 13,100 ft-lb requires 

R = 12,900 X 12 = 199 
0.90 X 24 X 62 

The corresponding reinforcement ratio is 0.0034, and the required bar area is 0.0034 X 24 X 
6 = 0.49 in2. This can be provided by two No. 5 (No. 16) bars. For the negative moment 
of 26,200 ft-lb, 

25,800 X 12 
8 R=-----=39 

0.90 X 24 X 62 

resulting in p = 0.0070, and required steel equal to 0.0070 X 24 X 6 = 1.01 in2. Four 
No. 5 (No. 16) bars, providing an area of 1.23 in2, will be used, and they will be cut off 
4.01 X 12 + 7.5 = 56 in., or 4 ft 8 in., from the support face. 

The final arrangement of bar reinforcement is shown in Fig. 15.1 le andf Negative bar 
cutoff locations are as indicated, and development by embedded lengths into the supports 
will be provided. All positive bars in the slab and strong band will be carried 6 in. into the 
support faces. 



FIGURE 15.12 
Slab with one free edge and 
linearly varying load. 
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A design problem commonly met in practice is that of a slab supported along 
three edges and unsupported along the fourth, with a distributed load that increases 
linearly from zero along the free edge to a maximum at the opposite supported edge. 
Examples include the wall of a rectangular tank subjected to liquid pressure and earth
retaining walls with buttresses or counterforts (see Section 17.1). 

Figure 15.12 shows such a slab, with load of intensity q0 at the long, supported 
edge, reducing to zero at the free edge. In the main part of the slab, a constant load 
k2% is carried in the X direction, as shown in Fig. 15.12c; thus, a constant load k2q0 
is deducted from the linear varying load in the Y direction, as shown in Fig. 15.12d. 
Along the free edge, a strong band of width (3b is provided, carrying a load k1q0, as in 
Fig. 15.12a, and so providing an uplift load equal to that amount at the end of the Y 
direction strip in Fig. 15.12d. The choice of k1 and k2 depends on the ratio of a/b. If 
this ratio is high, k2 should be chosen with regard to the minimum slab reinforcement 
required by the ACI Code. The value of k1 is then calculated by statics, based on a 
selected value of the restraining moment at the fixed edge, say one-half of the free 
cantilever value. In many cases it will be convenient to let k1 equal k2• Then it is the 
support moment that follows from statics. The value of /3 is selected as low as possi
ble considering the upper limit on tensile reinforcement ratio in the strong band 
imposed by the Code for beams. The strong band is designed for a load of intensity 
k1% distributed uniformly over its width (3b. 

yt 
i 

C 
I 

(a) Plan view 

~111111111111111111111111111 

(b) qxalong A-A 

( d) my along C-C 

~11111111111111111111111111I 

(c) qxalong B-B 
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15. 7 SLABS WITH HOLES 

Slabs with small openings can usually be designed as if there were no openings, 
replacing the interrupted steel with bands of reinforcing bars of equivalent area on 
either side of the opening in each direction (see Section 13.12). Slabs with larger open
ings must be treated more rigorously. The strip method offers a rational and safe basis 
for design itf such cases. Integral load-carrying beams are provided along the edges of 
the opening, usually having the same depth as the remainder of the slab but with extra 
reinforcement, to pick up the load from the affected regions and transmit it to the 
supports. In general, these integral beams should be chosen so as to carry the loads 
most directly to the supported edges of the slab. The width of the strong bands should 
be selected so that the reinforcement ratios p are at or below the value required to 
produce a tension-controlled member (i.e., E1 ~ 0.005 and <p = 0.90). Doing so will 
ensure ductile behavior of the slab. 

Use of the strip method for analysis and design of a slab with a large central hole 
will be illustrated by the following example. 

EXAMPLE 15.3 Rectangular slab with central opening. Figure 15.13a shows a 16 X 28 ft slab with fixed 
supports along all four sides. A central opening 4 X 8 ft must be accommodated. Estimated slab 
thickness, from Eq. (13.8b), is 7 in. The slab is to carry a uniformly distributed factored load 
of 300 psf, including self-weight. Devise an appropriate system of strong bands to reinforce the 
opening, and determine moments to be resisted at all critical sections of the slab. 

FIGURE 15.13 
Design example: slab with 
central hole. 

SOLUTION. The basic pattern of discontinuity lines and load dispersion will be selected 
according to Fig. 15.5. Edge strips are defined having width 1J = 4 ft. In the comers, the load 
is equally divided in the two directions. In the central region, 100 percent of the load is assigned 
to the Y direction, while along the central part of the short edges, 100 percent of the load is 
carried in the X direction. Moments for this "basic case" without the hole will be calculated and 
later used as a guide in selecting moments for the actual slab with hole. A ratio of support to 
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2' 2' 4' 
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(a) Plan view 
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span moments of 2.0 will be used generally, as for the previous examples. Moments for the slab, 
neglecting the hole, would then be as follows: 

X direction middle strips: 

Cantilever: 
qb 2 162 

mx = 32 = 300 X TI= 2400 ft-lb/ft 

Negative: 
2 

mxs = 2400 X 3 = 1600 

Positive: 
1 

m xf = 2400 X 3 = 800 

X direction edge-strip moments are one-half of the middle-strip moments. 

Y direction middle strips: 

Cantilever: 
qb 2 162 

my = S = 300 X S = 9600 ft-lb/ft 

Negative: 
2 

mys = 9600 X 3 = 6400 

Positive: 
1 

myf = 9600 X 3 = 3200 

Y direction edge-strip moments are one-half of the middle-strip moments. 

Because of the hole, certain strips lack support at one end. To support them, 1 ft wide 
strong bands will be provided in the X direction at the long edges of the hole and 2 ft wide 
strong bands in the Y direction on each side of the hole. The Y direction bands will provide for 
the reactions of the X direction bands. With the distribution of loads shown in Fig. 15.13a, strip 
reactions and moments are found as follows: 

Strip A-A 
It may at first be assumed that propped cantilever action is obtained, with the restraint moment 
along the slab edge taken as 6400 ft-lb/ft, the same as for the basic case. Summing moments 
about the left end of the loaded strip then results in 

300 X 6 X 3 - 6400 
qt= l X 

55 
= -182psf 

The negative value indicates that the cantilever strips are serving as supports for strip D-D, and 
in tum for the strong bands in the Y direction, which is hardly a reasonable assumption. Instead, 
a discontinuity line will be assumed 5 ft from the support, as shown in Fig. 15.13b, terminating 
the cantilever and leaving the 1 ft strip D-D along the edge of the opening in the X direction to 
carry its own load. It follows that the support moment in the cantilever strip is 

Negative: mys = 300 X 5 X 2.5 = 3750 ft-lb/ft 

StripB-B 
The restraint moment at the supported edge will be taken to be the same as the basic case, i.e., 
1600 ft-lb/ft. Summing moments about the left end of the strip of Fig. 15.13c then results in an 
uplift reaction at the right end, to be provided by strip E-E, of 

300 X 4 X 2 - 1600 
q2 = 

2 
X 

9 
= 44 psf 
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FIGURE 15.13 
( Continued) 
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The left reaction is easily found to be 1112 lb, and the point of zero shear is 3.70 ft from the 
left support. The maximum positive moment, at that point, is 

Positive: 
3.702 

mxf = 1112 X 3.70 - 1600 - 300 -
2

- = 461 ft-lb/ft 

Strip C-C 
Negative and positive moments and the reaction to be provided by strip E-E, as shown in 
Fig. 15.13d, are all one-half the corresponding values for strip B-B. 

StripD-D 
The 1 ft wide strip carries 300 psf in the X direction with reactions provided by the strong bands 
E-E, as shown in Fig. 15.13e. The maximum positive moment is 

mxf = 600 X 2 X 5 - 300 X 4 X 2 = 3600 ft-lb/ft 

StripE-E 
In reference to Fig. 15.13!, the strong bands in the Y direction carry the directly applied load of 
300 psf plus the 44 psf load from strip B-B, the 22 psf load from strip C-C, and the 600 psf end 
reaction from strip D-D. For strip E-E the cantilever, negative, and positive moments are 

Cantilever: 

Negative: 

Positive: 

my = 300 X 8 X 4 + 22 X 4 X 2 + 44 X 4 X 6 + 600 X 1 X 5.5 

= 14,132 ft-lb/ft 

2 
mys = 14,132 X 3 = 9421 

1 
myf = 14,132 X 3 = 4711 



FIGURE 15.13 
( Continued) 
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It should be emphasized that the loads shown are psf and would be multiplied by 2 to obtain 
loads per foot acting on the strong bands. Correspondingly, the moments just obtained are per 
foot width and must be multiplied by 2 to give the support and span moments for the 2 ft wide 
strong band. 

Strip F-F 
The moments for the Y direction middle strip of the basic case may be used without change; 
thus, in Fig. ·l5. l 3g, 

Negative: 

Positive: 

Strip G-G 

my, = 6400 ft-lb/ft 

myf = 3200 

Moments for the Y direction edge strips of the basic case are used without change, resulting in 

Negative: 

Positive: 

my, = 800 ft-lb/ft 

myf = 400 

as shown in Fig. l5.13h. 
The final distribution of moments across the negative and positive critical sections of the 

slab is shown in Fig. 15. l 3i. The selection of reinforcing bars and determination of cutoff points 
would follow the same methods as presented in Examples 15.1 and 15.2 and will not be given 
here. Reinforcing bar ratios needed in the strong bands are well below the maximum permitted 
for the 7 in. slab depth. 

It should be noted that strips B-B, C-C, and D-D have been designed as if they were 
simply supported at the strong band E-E. To avoid undesirably wide cracks where these strips 
pass over the strong band, nominal negative reinforcement should be added in this region. 
Positive bars should be extended fully into the strong bands. 

15.8 ADVANCED STRIP METHOD 

The simple strip method described in the earlier sections of this chapter is not directly 
suitable for the design of slabs supported by columns (e.g., flat plates) or slabs sup
ported at reentrant comers.t For such cases, Hillerborg introduced the advanced strip 
method (Refs. 15.2, 15.5, 15.12, and 15.13). 

Fundamental to the advanced strip method is the comer-supported element, such 
as that shown shaded in Fig. 15.14a. The comer-supported element is a rectangular 
region of the slab with the following properties: 

1. The edges are parallel to the reinforcement directions. 
2. It carries a uniform load q per unit area. 
3. It is supported at only one comer. 
4. No shear forces act along the edges. 
5. No twisting moments act along the edges. 
6. All bending moments acting along an edge have the same sign or are zero. 
7. The bending moments along the edges are the factored moments used to design 

the reinforcing bars. 

t However, Wood and Armer, in Ref. 15.8, suggest that beamless slabs with column supports can be solved by the simple strip method through the 
use of strong bands between columns or between columns and exterior walls. 



FIGURE 15.14 
Slab with central supporting 
column. 
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A uniformly loaded strip in the X direction, shown in Fig. 15.14b, will thus have 
shear and moment diagrams as shown in Fig. 15.14c and d, respectively. Maximum 
moments are located at the lines of zero shear. The outer edges of the corner-supported 
element are defined at the lines of zero shear in both the X and Y directions. 

A typical corner-supported element, with an assumed distribution of moments 
along the edges, is shown in Fig. 15.15. It will be assumed that the bending moment 
is constant along each half of each edge. The vertical reaction is found by summing 
vertical forces: 

R = qab 

and moment equilibrium about the Y axis gives 

qa2 
mxfm - mxsm = 2 

(15.19) 

(15.20) 
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FIGURE 15.15 
Comer-supported element. 
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where mxfm and mxsm are the mean span and support moments per unit width, and the 
beam sign convention is followed. Similarly, 

(15.21) 

The last two equations are identical with the condition for a corresponding part 
of a simple strip-Eq. (15.20) spanning in the X direction and Eq. (15.21) in the 
Y direction-supported at the axis and carrying the load qb or qa per foot. So if the 
comer-supported element forms a part of a strip, that part should carry 100 percent of 
the load q in each direction. (This requirement was discussed earlier in Chapter 13 and 
is simply a requirement of static equilibrium.) 

The distribution of moments within the boundaries of a comer-supported ele
ment is complex. With the load on the element carried by a single vertical reaction at 
one comer, strong twisting moments must be present within the element; this contrasts 
with the assumptions of the simple strip method used previously. 

The moment field within a comer-supported element and its edge moments have 
been explored in great detail in Ref. 15.12. It is essential that the edge moments, given 
in Fig. 15.15, are used to design the reinforcing bars (i.e., that nowhere within the ele
ment will a bar be subjected to a greater moment than at the edges). To meet this 
requirement, a limitation must be put on the moment distribution along the edges. 
Based on his studies (Ref. 15.12), Hillerborg has recommended the following restric
tion on edge moments: 

(15.22a) 



FIGURE 15.16 
Recommended distribution of 
moments for typical comer
supported element. 
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with 

0.25 :s a :s 0.7 (15.22b) 

where mxf2 and mxs2 are the positive and negative X direction moments, respectively, 
in the outer half of the element, as shown in Fig. 15.15. The corresponding restriction 
applies in the Y direction. He notes further that for most practical applications, the 
edge moment distribution shown in Fig. 15.16 is appropriate, with 

mxfl = mx/2 = mxfm 

mxs2 = 0 

mxsl = 2mxsm 

(15.23) 

(15.24a) 

(15.24b) 

(Alternatively, it is suggested in Ref. 15.14 that negative support moments across the 
column line be taken at 1.5mxsm in the half-element width by the column and at 
0.5mxsm in the remaining outside half-element width.) Positive reinforcement in the 
span should be carried through the whole comer-supported element. The negative 
reinforcement corresponding to mxsl - mxs2 in Fig. 15.15 must be extended at least 
0.6a from the support. The remaining negative steel, if any, should be carried 
through the whole comer-supported element. The corresponding restrictions apply 
in the Y direction. 

In practical applications, comer-supported elements are combined with each 
other and with parts of one-way strips, as shown in Fig. 15.14, to form a system of 
strips. In this system, each strip carries the total load q, as discussed earlier. In laying 
out the elements and strips, the concentrated comer support for the element may be 
assumed to be at the center of the supporting column, as shown in Fig. 15.14, unless 
supports are of significant size. In that case, the comer support may be taken at the 
comer of the column, and an ordinary simple strip may be included that spans 
between the column faces, along the edge of the comer-supported elements. Note in 
the figure that the comer regions of the slab are not included in the main strips that 

G-
b ~-- I 

j rm~:~~~ih-,..,...,...,..,..,.....,..,...,...,..,..,.....,..~-------+:=1 
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include the comer-supported elements. These may safely be designed for one-third 
of the corresponding moments in the main strips (Ref. 15.13). 

EXAMPLE 15.4 Edge-supported flat plate with central column. Figure 15.17a illustrates a flat plate with 
overall dimensions 34 X 34 ft, with fixed supports along the left and lower edges in the sketch, 
hinged supP,grts at the right and upper edges, and a single central column 16 in. square. It must 
carry a service live load of 40 psf over its entire surface plus its own weight and an additional 
superimposed dead load of 7 psf. Find the moments at all critical sections, and determine the 
required slab thickness and reinforcement. Material strengths are specified at .fy = 60,000 psi 
andJ; = 4000 psi. 

FIGURE 15.17 
Design example: edge
supported flat plate with 
central column. 

SOLUTION. A trial slab depth will be chosen based on Table 13.5, which governs for flat 
plates. It will be conservative for the present case, where continuous support is provided along 
the outer edges. 

17 X 12 
h= 

33 
=6.18in. 

A thickness of 6.5 in. will be selected tentatively, for which the self-weight is 150 X 6.5/12 = 
81 psf. The total factored load to be carried is thus 

qu = 1.2(81 + 7) + 1.6 X 40 = 170 psf 

The average strip moments in the X direction in the central region caused by the load of 
170 psf are found by elastic theory and are shown in Fig. 15.17c. The analysis in the Y direc
tion is identical. The points of zero shear ( and maximum moments) are located 9 .11 ft to the 
left of the column and 10.32 ft to the right, as indicated. These dimensions determine the size 
of the four comer-supported elements. 

Moments in the slab are then determined according to the preceding recommendations. 
At the fixed edge along the left side of the main strips, the moment mx, is simply the moment 

17'-----

(a) Plan view 

170 psf 
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(b) Strip load 

2 edges 
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16" X 16" 



FIGURE 15.17 
(Continued) 
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per foot strip from the elastic analysis, 3509 ft-lb/ft. At the left edge of the comer-supported 
element in the left span, 

m.,11 = m.,12 = m,/m = 1788 ft-lb/ ft 

Along the centerline of the slab, over the column, following the recommendations shown 
in Fig. 15.16, 

m.,,2 = 0 

m.,,1 = 2m.,m = 10,528 ft-lb/ ft 

At the right edge of the comer-supported element in the right span, 

m.,11 = mx12 = mxfm = 3789 ft-lb/ ft 

At the outer, hinge-supported edge, all moments are zero. Make a check of the a values, using 
Eq. (15.22b), and note from Eq. (15.20) that qa2/2 = m.,1m - mxsm· Thus, in the left span, 

mx/2 - mxs2 1788 - 0 

qa2/2 1788 + 5264 = 0·
25 a = 

and in the right span, 

= 3789 - 0 = 0.42 
a 3789 + 5264 

Because both vaJues are within the range of 0.25 to 0.75, the proposed distribution of moments 
is satisfactory. If the first value had been below the lower limit of 0.25, the negative moment in 
the column half-strip might have been reduced from 10,528 ft- lb/ft, and the negative moment 
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FIGURE 15.17 
(Continued) 
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in the adjacent half-strip might have been increased above the O value used. Alternatively, the 
total negative moment over the column might have been somewhat decreased, with a corre
sponding increase in span moments. 

Moments in the Y direction correspond throughout, and all results are summarized in 
Fig. 15.17d. Moments in the strips adjacent to the supported edges are set equal to one-third of 
those in the adjacent main strips. 
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With moments per ft strip known at all critical sections, the required reinforcement is 
easily found. With a ¾ in. concrete cover and ½ in. bar diameter, in general the effective depth 
of the slab will be 5.5 in. Where bar stacking occurs-i.e., over the central column and 
near the intersection of the two fixed edges-an average effective depth equal to 5.25 in. 
will be used. This will result in reinforcement identical in the two directions and will 
simplify construction. 

For the 6.5 in. thick slab, minimum steel for shrinkage and temperature crack control is 
0.0018 X 6.5 X 12 = 0.140 in2/ft strip, which will be provided by No. 3 (No. 10) bars at 9 in. 
spacing. The corresponding flexural reinforcement ratio is 

0
·
140 = 0.0021 

Pmin = 5.5 X 12 

Interpolating from Table A.Sa of Appendix A makes R = 124, and the design strength is 

<f>mn = <f>Rhd2 = 0.90 X 124 X 12 X 5.5 2/12 = 3376 ft-lb/ft 

In comparison with the required strengths summarized in Fig. 15.17d, this will be adequate 
everywhere except for particular regions as follows: 

Negative steel over column: 

R = ~ = 10,528 X 12 = 424 
<f>hd2 0.90 X 12 X 5.252 

for which p = 0.0076 (from Table A.Sa), and As = 0.0076 X 12 X 5.25 = 0.48 in2/ft. This will 
be provided using No. 5 (No. 16) bars at 7.5 in. spacing. They will be continued a distance 0.6 X 

9.11 = 5.47 ft, say 5 ft 6 in., to the left of the column centerline, and 0.6 X 10.32 = 6.19 ft, say 
6 ft 3 in., to the right. 

Negative steel along fixed edges: 

3509 X 12 
R = 0.90 X 12 X 5.502 = 

129 

for which p = 0.0022 and As = 0.0022 X 12 X 5.5 = 0.15 in2/ft. No. 3 (No. 10) bars at 9 in. 
spacing will be adequate. The point of inflection for the slab in this region is easily found to 
be 3.30 ft from the fixed edge. The negative bars will be extended 5.5 in. beyond that point, 
resulting in a cutoff 45 in., or 3 ft 9 in., from the support face. 

Positive steel in outer spans: 

3789 X 12 
R = ------ = 139 

0.90 X 12 X 5.502 

resulting in p = 0.0024 and As= 0.0024 X 12 X 5.5 = 0.16 in2/ft. No. 3 (No. 10) bars at 8 in. 
spacing will be used. In all cases, the maximum spacing of 2h = 13 in. is satisfied. That maximum 
would preclude the economical use of larger-diameter bars. 

Bar size and spacing and cutoff points for the top and bottom steel are summarized in 
Fig. 15.17e andf, respectively. 

Finally, the load carried by the central colulij,Il is 

P = 170 X 19.43 X 19.43 = 64,200 lb 

Investigating punching shear at a critical section taken d/2 from the face of the 16 in. column, 
with reference to Eq. (13.lla) and with h

0 
= 4 X (16.00 + 5.25) = 85 in., gives 

</>Ve = 4</>v'f!: h0d = 4 X 0.75\/4000 X 85 X 5.25 = 84,700 lb 

This is well above the applied shear of 64,200 lb, confirming that the slab thickness is adequate 
and that no shear reinforcement is required. 
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15.9 COMPARISONS OF METHODS FOR SLAB ANALYSIS 
AND DESIGN 

The conventional methods of slab analysis and design, as described in Chapter 13 and 
as treated in Chapter 13 of the ACI Code, are limited to applications in which slab 
panels are .supported on opposite sides or on all four sides by beams or walls or to the 
case of flat plates and related forms supported by a relatively regular array of columns. 
In all cases, slab panels must be square or rectangular, loads must be uniformly 
distributed within each panel, and slabs must be free of significant holes. 

Both the yield line theory and the strip method offer the designer rational methods 
for slab analysis and design over a much broader range, including the following: 

1. Boundaries of any shape, including rectangular, triangular, circular, and L-shaped 
boundaries with reentrant comers 

2. Supported or unsupported edges, skewed supports, column supports, or various 
combinations of these conditions 

3. Uniformly distributed loads, loads distributed over partial panel areas, linear 
varying distributed loads, line loads, and concentrated loads 

4. Slabs with significant holes 

The most important difference between the strip method and the yield line 
method is the fact that the strip method produces results that are always on the safe 
side, but yield line analysis may result in unsafe designs. A slab designed by the strip 
method may possibly carry a higher load than estimated, through internal force redis
tributions, before collapse; a slab analyzed by yield line procedures may fail at a lower 
load than anticipated if an incorrect mechanism has been selected as the basis or if the 
defining dimensions are incorrect. 

Beyond this, it should be realized that the strip method is a tool for design, by 
which the slab thickness and reinforcing bar size and distribution may be selected to 
resist the specified loads. In contrast, the yield line theory offers only a means for 
analyzing the capacity of a given slab, with known reinforcement. According to the 
yield line approach, the design process is actually a matter of reviewing the capaci
ties of a number of trial designs and alternative reinforcing patterns. All possible 
yield line patterns must be investigated and specific dimensions varied to be sure that 
the correct solution has been found. Except for simple cases, this is likely to be a 
time-consuming process. 

Neither the strip method nor the yield line approach provides any information 
regarding cracking or deflections at service load. Both focus attention strictly on 
flexural strength. However, by the strip method, if care is taken at least to approximate 
the elastic distribution of moments, little difficulty should be experienced with exces
sive cracking. The methods for deflection prediction presented in Section 13.13 can, 
without difficulty, be adapted for use with the strip method, because the concepts are 
fully compatible. 

With regard to economy of reinforcement, it might be supposed that use of the 
strip method, which always leads to designs on the safe side, might result in more 
expensive structures than the yield line theory. Comparisons, however, indicate that in 
most cases this is not so (Refs. 15.8 and 15.12). Through proper use of the strip 
method, reinforcing bars are placed in a nonuniform way in the slab (e.g., in strong 
bands around openings) where they are used to best effect; yield line methods, on the 
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other hand, often lead to uniform bar spacings, which may mean that individual bars 
are used inefficiently. 

Many tests have been conducted on slabs designed by the strip method (Ref. 15 .11; 
also, see the summary in Ref. 15.12). These tests included square slabs, rectangular 
slabs, slabs with both fixed and simply supported edges, slabs supported directly by 
columns, and slabs with large openings. The conclusions drawn determine that the 
strip method provides for safe design with respect to nominal strength and that at 
service load, behavior with respect to cracking and deflections is generally satisfac
tory. The method has been widely and successfully used in the Scandinavian countries 
since the 1960s. 

REFERENCES 
15.l. A. Hillerborg, "Equilibrium Theory for Reinforced Concrete Slabs" (in Swedish), Betong, vol. 41, no. 4, 

1956, pp. 171-182. 
15.2. A. Hillerborg, Strip Method for Slabs on Columns, L-Shaped Plates, Etc. (in Swedish), Svenska 

Riksbyggen, Stockholm, 1959. 
15.3. A. Hillerborg, "A Plastic Theory for the Design of Reinforced Concrete Slabs," Proc. Sixth Congr., 

International Association for Bridge and Structural Engineering, Stockholm, 1960. 
15.4. R. E. Crawford, Limit Design of Reinforced Concrete Slabs, thesis submitted to University of Illinois for 

the degree of Ph.D., Urbana, IL, 1962. 
15.5. F. A. Blakey, Strip Method for Slabs on Columns, L-Shaped Plates, Etc. (translation of Ref. 15.2), 

Commonwealth Scientific and Industrial Research Organization, Melbourne, 1964. 
15.6. K. 0. Kemp, "A Lower Bound Solution to the Collapse of an Orthotropically Reinforced Slab on Simple 

Supports," Mag. Coner. Res., vol. 14, no. 41, 1962, pp. 79-84. 
15.7. K. 0. Kemp, "Continuity Conditions in the Strip Method of Slab Design," Proc. Inst. Civ. Eng., vol. 45, 

1970, p. 283 (supplement paper 7268s). 
15.8. R. H. Wood and G. S. T. Armer, "The Theory of the Strip Method for the Design of Slabs," Proc. Inst. 

Civ. Eng., vol. 41, 1968, pp. 285-311. 
15.9. R. H. Wood, ''The Reinforcement of Slabs in Accordance with a Predetermined Field of Moments," 

Concrete, vol. 2, no. 2, 1968, pp. 69-76. 
15.10. G. S. T. Armer, "The Strip Method: A New Approach to the Design of Slabs," Concrete, vol. 2, no. 9, 

1968, pp. 358-363. 
15.11. G. S. T. Armer, "Ultimate Load Tests of Slabs Designed by the Strip Method," Proc. Inst. Civ. Eng., 

vol. 41, 1968, pp. 313-331. 
15.12. A. Hillerborg, Strip Method of Design, Viewpoint Publications, Cement and Concrete Association, 

Wexham Springs, Slough, England, 1975. 
15.13. A. Hillerborg, ''The Advanced Strip Method-a Simple Design Tool," Mag. Coner. Res., vol. 34, no. 121, 

1982, pp. 175-181. 
15.14. R. Park and W. L. Gamble, Reinforced Concrete Slabs, 2nd ed. (Chapter 6), John Wiley, New York, 2000, 

pp. 232-302. 
15.15. A. Hillerborg, Strip Method Design Handbook, E & FN Spon/Chapman & Hill, London, 1996. 
15.16. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed., McGraw-Hill, New 

York, 1959. 

PROBLEMS 
Note: For all the following problems, use material strengths J;, = 60,000 psi and 
J; = 4000 psi. All ACI Code requirements for minimum steel, maximum spacings, bar 
cutoff, and special comer reinforcement are applicable. 

15.1. The square slab of Fig. P15. l is simply supported by masonry walls along all 
four sides. It is to carry a service live load of 100 psf in addition to its self
weight. Specify a suitable load distribution; determine moments at all control
ling sections; and select the slab thickness, reinforcing bars, and spacing. 
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FIGURE P15.1 i--- 24' ----+j 
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15.2. The rectangular slab shown in Fig. P15.2 is a typical interior panel of a large 
floor system having beams on all column lines. Columns and beams are suffi
ciently stiff that the slab can be considered fully restrained along all sides. A 
live load of 100 psf and a superimposed dead load of 30 psf must be carried in 
addition to the slab self-weight. Determine the required slab thickness, and 
specify all reinforcing bars and spacings. Cutoff points for negative bars 
should be specified; all positive steel may be carried into the supporting 
beams. Take support moments to be 2 times the span moments in the strips. 

FIGURE P15.2 ,___ 24"---
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15.3. The slab of Fig. P15.3 may be considered fully fixed along three edges, but it 
is without support along the fourth, long side. It must carry a uniformly 
distributed live load of 80 psf plus an external dead load of 40 psf. Specify a 
suitable slab depth, and determine reinforcement and cutoff points. 

FIGURE P15.3 ----24' ------.i 

Free edge 

15.4. Figure P15.4 shows a counterfort retaining wall (see Section 17 .9) consisting of 
a base slab and a main vertical wall of constant thickness retaining the earth. 
Counterfort walls spaced at 19 ft on centers along the wall provide additional 
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Retaining 
wall 

support for the main slab. Each section of the main wall, which is 16 ft high and 
18 ft long, may be considered fully fixed at its base and also along its two ver
tical sides (because of full continuity and identical loadings on all such panels). 
The top of the main wall is without support. The horizontal earth pressure varies 
from O at the top of the wall to 587 psf at the top of the base slab. Determine a 
suitable thickness for the main wall, and select reinforcing bars and spacing. 

15.5. The triangular slab shown in Fig. PlS.5, providing cover over a loading dock, 
is fully fixed along two adjacent sides and free of support along the diagonal 
edge. A uniform snow load of 60 psf is anticipated. Dead load of 10 psf will 
act, in addition to self-weight. Determine the required slab depth and specify 
all reinforcement. (Hint: The main bottom reinforcement should be parallel to 
the free edge, and the negative reinforcement should be perpendicular to the 
supported edges.) 

2 edges 
fixed 

I+------ 24' ___ _____, 

15.6. Figure PlS.6 shows a rectangular slab with a large opening near one comer. It 
is simply supported along one long side and the adjacent short side, and the two 

FIGURE P15.6 I+------ 26' ----

Fixed edge 

2 simply-supported 
edges 

Fixed edge 
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edges adjacent to the opening are fully fixed. A factored load of 250 psf must 
be carried. Find the required slab thickness, and specify all reinforcement. 

15.7. The roof deck slab of Fig. P15.7 is intended to carry a total factored load, 
including self-weight, of 165 psf. It will have fixed supports along the two long 
sides and one short side, but the fourth edge must be free of any support. Two 
16 in. square columns will be located as shown. 
(a).. Determine an acceptable slab thickness. 
(b) Select appropriate load dispersion lines. 
(c) Determine moments at all critical sections. 
(d) Specify bar sizes, spacings, and cutoff points. 
(e) Check controlling sections in the slab for shear strength. 

FIGURE P15.7 3 edges fixed 
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Footings and Foundations 

16.1 TYPES AND FUNCTIONS 

The substructure, or foundation, is the part of a structure that is usually placed below 
the surface of the ground and that transmits the load to the underlying soil or rock. All 
soils compress noticeably when loaded and cause the supported structure to settle. The 
two essential requirements in the design of foundations are that the total settlement of 
the structure be limited to a tolerably small amount and that differential settlement 
of the various parts of the structure be eliminated as nearly as possible. With respect 
to possible structural damage, the elimination of differential settlement, i.e., different 
amounts of settlement within the same structure, is even more important than limita
tions on uniform overall settlement. 

To limit settlements as indicated, it is necessary (1) to transmit the load of the 
structure to a soil stratum of sufficient strength and (2) to spread the load over a suf
ficiently large area of that stratum to minimize bearing pressure. If adequate soil is not 
found immediately below the structure, it becomes necessary to use deep foundations 
such as piles or caissons to transmit the load to deeper, firmer layers. If satisfactory 
soil directly underlies the structure, it is merely necessary to spread the load, by foot
ings or other means. Such substructures are known as spread foundations, and it is 
mainly this type that will be discussed. Information on the more special types of deep 
foundations can be found in texts on foundation engineering, e.g., Refs. 16.1 to 16.4. 

16.2 SPREAD FOOTINGS 

Spread footings can be classified as wall and column footings. The horizontal outlines 
of the most common types are given in Fig. 16.1. A wall footing is simply a strip of 
reinforced concrete, wider than the wall, that distributes its pressure. Single-column 
footings are usually square, sometimes rectangular, and represent the simplest and 
most economical type. Their use under exterior columns meets with difficulties if 
property rights prevent the use of footings projecting beyond the exterior walls. In this 
case, combined footings or strap footings are used that enable one to design a footing 
that will not project beyond the wall column. Combined footings under two or more 
columns are also used under closely spaced, heavily loaded interior columns where 
single footings, if they were provided, would completely or nearly merge. 

Such individual or combined column footings are the most frequently used types 
of spread foundations on soils of reasonable bearing capacity. If the soil is weak and/or 
column loads are great, the required footing areas become so large as to be uneco
nomical. In this case, unless a deep foundation is called for by soil conditions, a mat 
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FIGURE 16.1 
Types of spread footing. 
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or raft foundation is resorted to. This consists of a solid reinforced concrete slab that 
extends under the entire building and, consequently, distributes the load of the struc
ture over the maximum available area. Such a foundation, in view of its own rigidity, 
also minimizes differential settlement. It consists, in its simplest form, of a concrete 
slab reinforced in both directions. A form that provides more rigidity consists of an 
inverted girder floor. Girders are located in the column lines in each direction, and the 
slab is provided with two-way reinforcement, spanning between girders. Inverted flat 
slabs, with capitals at the bottoms of the columns, are also used for mat foundations. 

16.3 DESIGN FACTORS 

FIGURE 16.2 
Bearing pressure distribution: 
(a) as assumed; (b) actual, 
for granular soils; (c) actual, 
for cohesive soils. 

In ordinary construction, the load on a wall or column is transmitted vertically to the 
footing, which in turn is supported by the upward pressure of the soil on which it rests. 
If the load is symmetrical with respect to the bearing area, the bearing pressure is 
assumed to be uniformly distributed (Fig. 16.2a). It is known that this is only approx
imately true. Under footings resting on coarse-grained soils, the pressure is larger at 
the center of the footing and decreases toward the perimeter (Fig. 16.2b). This is so 
because the individual grains in such soils are somewhat mobile, so that the soil 
located close to the perimeter can shift very slightly outward in the direction of lower 
soil stresses. In contrast, in clay soils pressures are higher near the edge than at the 
center of the footing, since in such soils the load produces a shear resistance around 
the perimeter that adds to the upward pressure (Fig. 16.2c). It is customary to disre
gard these nonuniformities (1) because their numerical amount is uncertain and highly 

p p p 

l l l 

(a) (b) (c) 
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variable, depending on types of soil, and (2) because their influence on the magnitudes 
of bending moments and shearing forces in the footing is relatively small. 

On compressible soils, footings should be loaded concentrically to avoid tilting, 
which will result if bearing pressures are significantly larger under one side of the 
footing than under the opposite side. This means that single footings should be placed 
concentrically under the columns and wall footings concentrically under the walls and 
that, for combined footings, the centroid of the footing area should coincide with the 
resultant of the column loads. Eccentrically loaded footings can be used on highly 
compacted soils and on rock. It follows that one should count on rotational restraint of 
the column by a single footing only when such favorable soil conditions are present 
and when the footing is designed for both the column load and the restraining moment. 
Even then, less than full fixity should be assumed, except for footings on rock. 

The accurate determination of stresses in foundation elements of all kinds is 
difficult, partly because of the uncertainties in determining the actual distribution of 
upward pressures but also because the structural elements themselves represent rela
tively massive blocks or thick slabs subject to heavy concentrated loads from the 
structure above. Design procedures for single-column footings are based largely on the 
results of experimental investigations by Talbot (Ref. 16.5) and Richart (Ref. 16.6). 
These tests and the recommendations resulting from them have been reevaluated in the 
light of more recent research, particularly that focusing on shear and diagonal tension 
(Refs. 16.7 to 16.9). Combined footings and mat foundations also can be designed by 
simplified methods, although increasing use is made of more sophisticated tools, such 
as finite element analysis and strut-and-tie models (Ref. 16.10). 

16.4 LOADS, BEARING PRESSURES, AND FOOTING SIZE 

Footing sizes are determined for unfactored service loads and allowable soil pres
sures, in contrast to the strength design of reinforced concrete members, which uses 
factored loads and factored nominal strengths. This is because, for footing design, 
safety is provided by overall safety factors, in contrast to the separate load and strength 
reduction factors used to dimension members. 

Allowable bearing pressures are established from principles of soil mechanics, 
on the basis of load tests and other experimental determinations (see, for example, 
Refs. 16.1 to 16.4 ). Allowable bearing pressures % under service loads are usually 
based on a safety factor of 2.5 to 3.0 against exceeding the bearing capacity of the 
particular soil and to keep settlements within tolerable limits. Many local building 
codes contain allowable bearing pressures for the types of soils and soil conditions 
found in the particular locality. 

For concentrically loaded footings, the required area is determined from 

(16.1) 

In addition, most building codes, including the International Building Code (IBC) 
(Ref. 16.11 ), which is used throughout the United States, permit a 33 percent increase 
in the allowable pressure when the effects of wind W or earthquake E are included, if 
specific loading combinations are used for foundation design. For example, 

D + L + S + E/1.4 
A=--------

reg 1.33qa 
D + L + wW 

Areq = or (16.2) 
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FIGURE 16.3 
Assumed bearing pressures 
under eccentrically loaded 
footing. 

where w = 1.3 if the wind load is calculated based on ASCE/SEI 7 (Ref. 16.12) and 
1.0 otherwise, and the 1.4 factor that divides E recognizes that a load factor of 1.0 is 
used for earthquake loads in strength design. 

The required footing area Areq is the larger of those determined by Eqs. (16.1) 
and (16.2). The loads in the numerators of Eqs. (16.1) and (16.2) must be calculated 
at the level of the base of the footing, i.e., at the contact plane between soil and 
footing. This means that the weight of the footing and surcharge (i.e., fill and possible 
liquid pressure on top of the footing) must be included. Wind loads and other lateral 
loads cause a tendency to overturn. In checking for overturning of a foundation, only 
those live loads that contribute to overturning should be included, and dead loads that 
stabilize against overturning should be multiplied by 0.9. A safety factor of at least 1.5 
should be maintained against overturning, unless otherwise specified by the local 
building code (Ref. 16.8). 

A footing is eccentrically loaded if the supported column is not concentric with 
the footing area or if the column transmits at its juncture with the footing not only a 
vertical load but also a bending moment. In either case, the load effects at the footing 
base can be represented by the vertical load Panda bending moment M. The result
ing bearing pressures are again assumed to be linearly distributed. As long as the 
resulting eccentricity e = M/P does not exceed the kern distance k of the footing area, 
the usual flexure formula 

P Mc 
q --±-

m~x A J 
mm 

(16.3) 

permits the determination of the bearing pressures at the two extreme edges, as shown 
in Fig. 16.3a. The footing area is found by trial and error from the condition qmax :5 %· 
If the eccentricity falls outside the kern, Eq. (16.3) gives a negative value (tension) for 
q along one edge of the footing. Because no tension can be transmitted at the contact 
area between soil and footing, Eq. (16.3) is no longer valid and bearing pressures are 
distributed as shown in Fig. 16.3b. For rectangular footings of size / X b, the maxi
mum pressure can be found from 

(16.4) 

cp M 

p p 
I I 1 ie 

----+l I lk 
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which, again, must be no larger than the allowable pressure qa. For nonrectangular 
footing areas of various configurations, kern distances and other aids for calculating 
bearing pressures can be found in Refs. 16.1 and 16.8 and elsewhere. 

Once the required footing area has been determined, the footing must then be 
designed to develop the necessary strength to resist all moments, shears, and other 
internal actions caused by the applied loads. For this purpose, the load factors of ACI 
Code 9.2 apply to footings as to all other structural components. Correspondingly, for 
strength design, the footing is dimensioned for the effects of the load combinations in 
Table 1.2. The most common is 

U = 1.2D + l.6L 

or if wind effects are to be included, 

U = 1.2D + 1.6W + l.OL + 0.5L, 

In seismic zones, earthquake forces E must be considered according to Table 1.2. The 
requirement that 

U = 0.9D + 1.6W 

will hardly ever govern the strength design of a footing, but will affect overturning and 
stability. Lateral earth pressure H and fluid pressure F must be included if present. 

These factored loads must be counteracted and equilibrated by corresponding 
bearing pressures in the soil. Consequently, once the footing area is determined, the 
bearing pressures are recalculated for the factored loads for purposes of strength 
computations. These are fictitious pressures that are needed only to determine the 
factored loads for use in design. To distinguish them from the actual pressures q 
under service loads, the soil pressures that equilibrate the factored loads U will be 
designated qu. 

16.5 WALL FOOTINGS 

The simple principles of beam action apply to wall footings with only minor modifi
cations. Figure 16.4 shows a wall footing with the forces acting on it. If bending 
moments were computed from these forces, the maximum moment would be found to 
occur at the middle of the width. Actually, the very large rigidity of the wall modifies 
this situation, and the tests cited in Section 16.3 show that, for footings under concrete 
walls, it is satisfactory to compute the moment at the face of the wall (section 1-1). 
Tension cracks in these tests formed at the locations shown in Fig. 16.4, i.e., under the 
face of the wall rather than in the middle. For footings supporting masonry walls, the 
maximum moment is computed midway between the middle and the face of the wall, 
because masonry is generally less rigid than concrete. The maximum bending moment 
in footings under concrete walls is therefore given by 

(16.5) 

For determining shear stresses, the vertical shear force is computed on section 2-2, 
located, as in beams, at a distance d from the face of the wall. Thus, 

Vu= qu( b; a - d) (16.6) 

The calculation of development length is based on the section of maximum 
moment, i.e., section 1-1. 
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FIGURE 16.4 
Wall footing. 
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EXAMPLE 16.1 Design of wall footing. A 16 in. concrete wall supports a dead load D = 14 kips/ft and a live 
load L = 10 kips/ft. The allowable bearing pressure is qa = 4.5 kips/ft2 at the level of the 
bottom of the footing, which is 4 ft below grade. Design a footing for this wall using 4000 psi 
concrete and Grade 60 steel. 

SOLUTION. With a 12 in. thick footing, the footing weight per square foot is 150 psf, and the 
weight of the 3 ft fill on top of the footing is 3 X 100 = 300 psf. Consequently, the portion of 
the allowable bearing pressure that is available or effective for carrying the wall load is 

q, = 4500 - (150 + 300) = 4050 psf 

The required width of the footing is therefore b = 24,000/4050 = 5.93 ft. A 6 ft wide footing 
will be assumed. 

The bearing pressure for strength design of the footing, caused by the factored loads, is 

1.2 X 14 + l.6 X 10 3 qu = 
6 

X 10 = 5470 psf 

From this, the factored moment at the face of the wall, section 1-1, for strength design is 

Mu=½ X 5470(6 - 1.33)2 X 12 = 178,900 in-lb/ft 

and assuming d = 9 in., the shear at section 2-2 is 

Vu= 5470[½(6 - 1.33) - :
2

] = 8670 lb/ft 

Shear usually governs the depth of footings, particularly since the use of shear reinforcements 
in footings is generally avoided as uneconomical. The design shear strength per foot [see 
Eq. (4.12b)] is 

</JY,; = <fJ(2Ji.vJ;bd) = 0.75(2 X 1V4000 X 12d) = 1138dlb/ft 

from which 

8670 
d = -- = 7.6in. 

1138 
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Since ACI Code 7.7.1 calls for a 3 in. clear cover on bars, a 12 in. thick footing will be selected, 
giving d = 8.5 in. This is sufficiently close to the assumed values, and the calculations need not 
be revised. 

To determine the required steel area, Mjcpbd2 = 178,900/(0.90 X 12 X 8.52) = 229 is 
used to enter Graph A.1 b of Appendix A. For this value, the curve 60 / 4 gives the reinforcement 
ratio p = 0.0038. The required steel area is then As = 0.0038 X 8.5 X 12 = 0.39 in2/ft. No. 5 
(No. 16), 9½ in. on centers, furnish As= 0.39 in2/ft. The required development length according 
to Table A.10 of Appendix A is 24 in. This length is to be furnished from section 1-1 outward. 
The length of each bar, if end cover is 3 in., is 72 - 6 = 66 in., and the actual development 
length from section 1-1 to the nearby end is ½(66 - 16) = 25 in., which is more than the 
required development length. 

Longitudinal shrinkage and temperature reinforcement, according to ACI Code 7 .12, 
must be at least 0.0018 X 12 X 12 = 0.26 in2/ft. No. 5 (No. 16) bars on 12 in. centers will 
furnish 0.31 in2/ft. 

16.6 COLUMN FOOTINGS 

FIGURE 16.5 
Types of single-column 
footings. 

In plan, single-column footings are usually square. Rectangular footings are used if 
space restrictions dictate this choice or if the supported columns have a strongly 
elongated rectangular cross section. In the simplest form, they consist of a single slab 
(Fig. 16.5a). Another type is that shown in Fig. 16.5b, where a pedestal or cap is 
interposed between the column and the footing slab; the pedestal provides for a more 
favorable transfer of load and in many cases is required to provide the necessary devel
opment length for dowels. This form is also known as a stepped footing. All parts of 
a stepped footing must be cast at one time to provide monolithic action. Sometimes 
sloped footings like those shown in Fig. 16.5c are used. They require less concrete 
than stepped footings, but the additional labor necessary to produce the sloping sur
faces (formwork, etc.) usually makes stepped footings more economical. In general, 
single-slab footings (Fig. 16.5a) are most economical for thicknesses up to 3 ft. 

Single-column footings can be represented as cantilevers projecting out from the 
column in both directions and loaded upward by the soil pressure. Corresponding 
tension stresses are caused in both of these directions at the bottom surface. Such foot
ings are, therefore, reinforced by two layers of steel, perpendicular to each other and 
parallel to the edges. 

The required bearing area is obtained by dividing the total load, including the 
weight of the footing, by the selected bearing pressure. Weights of footings, at this 
stage, must be estimated and usually amount to 4 to 8 percent of the column load, the 
former value applying to the stronger types of soils. 

In computing bending moments and shears, only the upward pressure qu that is 
caused by the factored column loads is considered. The weight of the footing proper 

U.L•..L'Lt ._,.._•..LU u .L•..L 'Lt .., .L•..L u 

(a) (b) (c) 
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does not cause moments or shears, just as no moments or shears are present in a book 
lying flat on a table. 

a. Shear 

Once the required footing area Areq has been established from the allowable bearing 
pressure qa .and the most unfavorable combination of service loads, including weight 
of footing and overlying fill (and such surcharge as may be present), the thickness h 
of the footing must be determined. In single footings, the effective depth d is mostly 
governed by shear. Since such footings are subject to two-way action, i.e., bending in 
both major directions, their performance in shear is much like that of flat slabs in the 
vicinity of columns (see Section 13.10). However, in contrast to two-way floor and 
roof slabs, it is generally not economical in footings to use shear reinforcement. For 
this reason, only the design of footings in which all shear is carried by the concrete 
will be discussed here. For the rare cases where the thickness is restricted so that shear 
reinforcement must be used, the information in Section 13.10 about slabs applies also 
to footings. 

Two different types of shear strength are distinguished in footings: two-way, or 
punching, shear and one-way, or beam, shear. 

A column supported by the slab shown in Fig. 16.6 tends to punch through that 
slab because of the shear stresses that act in the footing around the perimeter of the col
umn. At the same time, the concentrated compressive stresses from the column spread 
out into the footing so that the concrete adjacent to the column is in vertical or slightly 
inclined compression, in addition to shear. As a consequence, if failure occurs, the 
fracture takes the form of the truncated pyramid shown in Fig. 16.6 (or of a truncated 
cone for a round column), with sides sloping outward at an angle approaching 45°. The 
average shear stress in the concrete that fails in this manner can be taken as that acting 
on vertical planes laid through the footing around the column on a perimeter a distance 
d/2 from the faces of the column (vertical section through abed in Fig. 16.7). The con
crete subject to this shear stress v ul is also in vertical compression from the stresses 
spreading out from the column, and in horizontal compression in both major directions 
because of the biaxial bending moments in the footing. This triaxiality of stress increases 

g f 

p 

h e 

FIGURE 16.6 FIGURE 16.7 
Punching-shear failure in single footing. Critical sections for shear. 

1. I 
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the shear strength of the concrete. Tests of footings and of flat slabs have shown, 
correspondingly, that for punching-type failures the shear stress computed on the 
critical perimeter area is larger than in one-way action (e.g., beams). 

As discussed in Section 13.10, the ACI Code equations (13. lla,b,e) give the 
nominal punching-shear strength on this perimeter: 

(16.7a) 

except for columns of elongated cross section, for which 

¼ = ( 2 + i) ,\ vif b0 d (16.7b) 

For cases in which the ratio of critical perimeter to slab depth bald is very large, 

¼ = (a;:+ 2 ),\VJf b0 d (16.7e) 

where b
0 

is the perimeter abed in Fig. 16.7; f3 = a/bis the ratio of the long to short 
sides of the column cross section; and as is 40 for interior loading, 30 for edge loading, 
and 20 for corner loading of a footing. The punching-shear strength of the footing is 
to be taken as the smallest of the values given by Eqs. (16.7a), (16.7b), and (16.7e); 
and the design strength is </>Ve, as usual, where</> = 0.75 for shear. 

The application of Eqs. (16.7) to punching shear in footings under columns with 
other than a rectangular cross section is shown in Fig. 13.23. For such situations, ACI 
Code 11.11.1 indicates that the perimeter b 

O 
must be of minimum length but need not 

approach closer than d/2 to the perimeter of the actual loaded area. The manner of defin
ing a and b for such irregular loaded areas is also shown in Fig. 13.23. If a moment is 
transferred from the column to the footing, the criteria discussed in Section 13.11 for the 
transfer of moment by bending and shear at slab-column connections must be satisfied. 

Shear failures can also occur, as in beams or one-way slabs, at a section a dis
tance d from the face of the column, such as section ef of Fig. 16. 7. Just as in beams 
and one-way slabs, the nominal shear strength is given by Eq. (4.12a), that is, 

¼ = ( 1.9,\vjf + 2500p ~:)bd::; 3.5,\vjfbd 

where b = width of footing at distance d from face of column 
= ef in Fig. 16.7 

Vu = total factored shear force on that section 
= qu times footing area outside that section (area efgh in Fig. 16.7) 

Mu = moment of Vu about ef 

(16.8a) 

In footing design, the simpler and somewhat more conservative Eq. (4.12b) is gener
ally used, i.e., 

(16.8b) 

The required depth of footing d is then calculated from the usual equation 

(16.9) 

applied separately in connection with Eqs. (16.7) and (16.8). For Eq. (16.7), Vu = Vu1 
is the total upward pressure caused by qu on the area outside the perimeter abed in 
Fig. 16.7. For Eq. (16.8), Vu= Vu2 is the total upward pressure on the area efgh outside 
the section ef in Fig. 16. 7. The required depth is then the larger of those calculated 
from either Eq. (16.7) or (16.8). For shear, </> = 0.75. 
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FIGURE 16.8 
Definition of areas A 1 

andA2• 

Although the lightweight concrete factor A appears in Eqs. (16.7) and (16.8), 
normalweight concrete (A = 1) is almost universally used in foundations. 

b. Bearing: Transfer of Forces at Base of Column 

When a column rests on a footing or pedestal, it transfers its load to only a part of the 
total area of.•the supporting member. The adjacent footing concrete provides lateral 
support to the directly loaded part of the concrete. This causes triaxial compressive 
stresses that increase the strength of the concrete that is loaded directly under the col
umn. Based on tests, ACI Code 10.14.1 provides that when the supporting area is 
wider than the loaded area on all sides, the design bearing strength is 

(16.10) 

For bearing on concrete, </> = 0.65, J; is the specified compressive strength of 
the footing concrete, which frequently is less than that of the column, and A1 is the 
loaded area. A2 is the area of the lower base of the largest frustum of a pyramid, cone, 
or tapered wedge contained wholly within the support and having for its upper base 
the loaded area and having side slopes of I vertical to 2 horizontal. The meaning of 
this definition of A2 may be clarified by Fig. 16.8. For the somewhat unusual case 
shown, where the top of the support is stepped, a step that is deeper or closer to the 
loaded area than that shown may result in reduction in the value of A2• A footing for 
which the top surface is sloped away from the loaded area more steeply than I to 2 
will result in a value of A2 equal to A1. In most usual cases, for which the top of the 
footing is flat and the sides are vertical, A2 is simply the maximum area of the portion 
of the supporting surface that is geometrically similar to, and concentric with, the 
loaded area. 
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All axial forces and bending moments that act at the bottom section of a column 
must be transferred to the footing at the bearing surface by compression in the con
crete and by reinforcement. With respect to the reinforcement, this may be done 
either by extending the column bars into the footing or by providing dowels that are 
embedded in the footing and project above it. In the latter case, the column bars 
merely rest on the footing and in most cases are tied to dowels. This results in a 
simpler construction procedure than extending the column bars into the footing. To 
ensure the integrity of the junction between column and footing, ACI Code 15.8.2 
requires that the minimum area of reinforcement that crosses the bearing surface 
(dowels or column bars) be 0.005 times the gross area of the supported column. The 
length of the dowels or bars of diameter db must be sufficient on both sides of the 
bearing surface to provide the required development length for compression bars 
(see Section 5.8), that is, Ide;=:: 0.02Jydb/vf:: and ;:=:: 0.0003.f;,db. In addition, if 
dowels are used, the lapped length must be at least that required for a lap splice in 
compression (see Section 5.llb); i.e., the length of lap must not be less than the 
usual development length in compression and must not be less than 0.0005fydb. 
Where bars of different sizes are lap-spliced, the splice length should be the larger 
of the development length of the larger bar or the splice length of the smaller bar, 
according to the ACI Code. 

The two largest bar sizes, Nos. 14 (No. 43) and 18 (No. 57), are frequently used 
in columns with large axial forces. Under normal circumstances, the ACI Code specif
ically prohibits the lap splicing of these bars because tests have shown that welded 
splices or other positive connections are necessary to develop these heavy bars fully. 
A specific exception, however, is made for dowels for Nos. 14 (No. 43) and 18 (No. 57) 
column bars. Relying on long-standing successful use, ACI Code 12.16.2 permits 
these heavy bars to be spliced to dowels of lesser diameter [i.e., No. 11 (No. 36) or 
smaller], provided that the dowels have a development length into the column 
corresponding to that of the column bar [i.e., Nos. 14 or 18 (Nos. 43 or 57), as the case 
may be] and into the footing as prescribed for the particular dowel size [i.e., No. 11 
(No. 36) or smaller, as the case may be]. 

c. Bending Moments, Reinforcement, and Bond 

If a vertical section is passed through a footing, the bending moment that is caused 
in the section by the net upward soil pressure (i.e., factored column load divided by 
bearing area) is obtained from simple statics. Figure 16.9 shows such a section cd 
located along the face of the column. The bending moment about cd is that caused by 
the upward pressure qu on the area to one side of the section, i.e., the area abed. The 
reinforcement perpendicular to that section, i.e., the bars running in the long direction, 
is calculated from this bending moment. Likewise, the moment about section ef is 
caused by the pressure qu on the area befg, and the reinforcement in the short direc
tion, i.e., perpendicular to ef, is calculated.ior this bending moment. In footings that 
support reinforced concrete columns, the critical section cd or ef for bending is located 
at the face of the column, as shown in Fig. 16.lOa, according to ACI Code 15.4.2. 

In footings supporting masonry columns, the critical section cd or ef is located 
halfway between the centerline and the face of the column, as shown in Fig. 16.lOb; 
and in footings supporting steel columns, the critical section cd or ef is located 
halfway between the face of the steel column and the edge of the steel base plate, as 
shown in Fig. 16.lOc. 

In footings with pedestals, the width resisting compression in sections cd and ef 
is that of the pedestal; the corresponding depth is the sum of the thickness of pedestal 
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FIGURE 16.9 
Critical sections for bending 
and bond. 

FIGURE 16.10 
Critical sections cd or ef for 
concrete, masonry, and steel 
columns. 
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(a) Face of concrete 
column 

(b) Halfway between 
centerline and face of 

masonry wall or column 

(c) Halfway between face 
of steel column and edge 

of steel base plate 

and footing. Further sections parallel to cd and ef are passed at the edge of the 
pedestal, and the moments are determined in the same manner, to check the strength 
at locations in which the depth is that of the footing only. 

For footings with relatively small pedestals, the latter are often discounted in 
moment and shear computation, and bending is checked at the face of the column, 
with width and depth equal to that of the footing proper. 

In square footings, the reinforcement is uniformly distributed over the width of the 
footing in each of the two layers; i.e., the spacing of the bars is constant. The moments 
for which the two layers are designed are the same. However, the effective depth d for 
the upper layer is less by 1 bar diameter than that of the lower layer. Consequently, the 
required As is larger for the upper layer. Instead of using different spacings or different 
bar diameters in each of the two layers, it is customary to determine As based on aver
age depth and to use the same arrangement of reinforcement for both layers. 

In rectangular footings, the reinforcement in the long direction is again uni
formly distributed over the pertinent (shorter) width. In locating the bars in the short 
direction, one has to consider that the support provided to the footing by the column 
is concentrated near the middle. Consequently, the curvature of the footing is sharpest, 
i.e., the moment per foot largest, immediately under the column, and it decreases in 
the long direction with increasing distance from the column. For this reason, a larger 
steel area per longitudinal foot is needed in the central portion than near the far ends 
of the footing. ACI Code 15.4.4, therefore, provides the following: 

For reinforcement in the short direction, a portion of the total reinforcement 'YsAs shall 
be distributed uniformly over a band width (centered on the centerline of the column 
or pedestal) equal to the length of the short side of the footing. The remainder of the 
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reinforcement required in the short direction (1 - -y,)A5 shall be distributed uniformly 
outside the center band width of the footing 

reinforcement in band width 2 
'Y s = total reinforcement in short direction - _/3_+_1 

(16.11) 

where f3 is the ratio of the long side to the short side of the footing. 
According to the ACI Code 10.5.4, the usual minimum flexural reinforcement 

ratios of Section 3.4e need not be applied to either slabs or footings. Instead, the 
minimum steel requirements for shrinkage and temperature crack control for structural 
slabs are to be imposed, as given in Table 13.2. The maximum spacing of bars in the 
direction of the span is reduced to the lesser of 3 times the footing thickness h and 
18 in., rather than Sh as is normal for shrinkage and temperature steel. These require
ments for minimum steel and maximum spacing are to be applied to mat foundations 
as well as individual footings. 

Earlier editions of the ACI Code, through 1989, were somewhat ambiguous as 
to whether or not minimum steel requirements for flexural members were to be 
applied to slabs and footings. For slabs, the argument was presented that an overload 
would be distributed laterally and that a sudden failure is therefore less likely than for 
beams; therefore the usual requirement could be relaxed. Although that reasoning may 
apply to highly indeterminate building floors, the possibility for redistribution in 
a footing is much more limited. Because of this, and because of the importance of a 
footing to the safety of the structure, many engineers apply the minimum flexural 
reinforcement ratio ofEq. (3.41) to footings as well as beams. This seems prudent, and 
the following design examples use the more conservative minimum flexural steel 
requirements of Eq. (3.41). 

The critical sections for development length of footing bars are the same as those 
for bending. Development length may also have to be checked at all vertical planes in 
which changes of section or of reinforcement occur, as at the edges of pedestals or 
where part of the reinforcement may be terminated. 

EXAMPLE 16.2 Design of a square footing. A column 18 in. square, withJ; = 4 ksi, reinforced with eight 
No. 8 (No. 25) bars ofJy = 60 ksi, supports a dead load of 225 kips and a live load of 175 kips. 
The soil (fill) has a unit weight of 100 pcf. The allowable soil pressure qa is 5 kips/ft2• Design 
a square footing with base 5 ft below grade, usingJ; = 4 ksi andf;, = 60 ksi. 

SOLUTION. Since the space between the bottom of the footing and the surface will be occu
pied partly by concrete and partly by soil (fill), an average unit weight of 125 pcf will be 
assumed. The pressure of this material at the 5 ft depth is 5 X 125 = 625 psf, leaving a bearing 
pressure of q, = 5000 - 625 = 4375 psf available to carry the column service load. Hence, the 
required footing areaAreq = (225 + 175)/4.375 = 91.5 ft2• A base 9 ft 6 in. square is selected, 
furnishing a footing area of 90.3 ft2, which differs from the required area by about 1 percent. 

For strength design, the upward pressure...caused by the factored column loads is qu = 
(1.2 X 225 + 1.6 X 175)/9.52 = 6.10kips/ft2• 

The footing depth in square footings is usually determined based on two-way or punch
ing shear on the critical perimeter abed in Fig. 16.11. Trial calculations suggest d = 19 in. 
Hence, the length of the critical perimeter is 

b0 = 4(18 + d) = 148 in. 

The shear force acting on this perimeter, being equal to the total upward pressure minus 
that acting within the perimeter abed, is 

vu) = 6. 10[ 9.52 
- c~ y] = 492 kips 
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FIGURE 16.11 
Critical sections for 
Example 16.2. 
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The corresponding nominal shear strength [Eq. (13.1 la)] is 

19 
V,. = 4 X I V4000 X 148 X lOOO = 711 kips 

and 

</>Ve = 0.75 X 711 = 534 kips 

Since the design strength exceeds the factored shear Vu 1, the depth d = 19 in. is adequate for 
punching shear. The selected valued= 19 in. will now be checked for one-way or beam shear 
on section ef The factored shear force acting on that section is 

Vuz = 6.10 X 2.42 X 9.5 = 140 kips 

and the nominal shear strength is 

19 
V,. = 2 X 1V4000 X 9.5 X 12 X lO00 = 274kips 

The design shear strength 0.75 X 274 = 205 kips is larger than the factored shear Vuz• so that 
d = 19 in. is also adequate for one-way shear. 

The bending moment on section gh of Fig. 16.11 is 

(
4.0

2
) Mu= 6.10 X 9.5 2 12 = 5560 in-kips 

Because the depth required for shear is greatly in excess of that required for bending, the rein
forcement ratio will be low and the corresponding depth of the rectangular stress block small. 
If a = 2 in., the required steel area is 

A = 5560 = 5.72 in2 
s 0.90 X 60(19 - 1) 



FIGURE 16.12 
Footing in Example 16.2. 18" 
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Checking the minimum reinforcement ratio using Eq. (3.41) results in 

- 3-v'4ooo - . 2 
As,min - 60,000 X 114 X 19 - 6.85 m 

but not less than 

200 . 
As.min= 60,000 X 114 X 19 = 7.22 m

2 

The controlling value of 7.22 in2 is larger than the 5.72 in2 calculated for bending. Twelve 
No. 7 (No. 22) bars furnishing 7.20 in2 will be used in each direction. The required develop
ment length beyond section gh is found from Table A.10 to be 41 in., which is more than 
adequately met by the actual length of bars beyond section gh, namely, 48 - 3 = 45 in. 

Checking for transfer of forces at the base of the column shows that the footing 
concrete, which has the same J; as the column concrete and for which the strength is 
enhanced according to Eq. (16.10), is clearly capable of carrying that part of the column 
load transmitted by the column concrete. The force in the column carried by the steel will 
be transmitted to the footing using dowels to match the column bars. These must extend into 
the footing the full development length in co~yression, which is found from Table A.11 of 
Appendix A to be 19 in. for No. 8 (No. 25) bars. This is accommodated in a footing with 
d = 19 in. Above the top surface of the footing, the No. 8 (No. 25) dowels must extend into 
the column that same development length, but not less than the requirement for a lapped 
splice in compression (see Section 5.13b). The minimum lap splice length for the No. 8 
(No. 25) bars is 0.0005 X 1.0 X 60,000 = 30 in., which is seen to control here. Thus the 
bars will be carried 30 in. into the column, requiring a total dowel length of 49 in. This will 
be rounded upward for practical reasons to 4.25 ft, as shown in Fig. 16.12. It is easily 
confirmed that the minimum dowel steel requirement of 0.005 X 18 X 18 = 1.62 in2 does 
not control here. 
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FIGURE 16.13 
Grid foundation. 

For concrete in contact with ground, a minimum cover of 3 in. is required for corrosion 
protection. With d = 19 in., measured from the top of the footing to the center of the upper 
layer of bars, the total thickness of the footing that is required to provide 3 in. clear cover for 
the lower steel layer is 

h = 19 + 1.5 X 1 + 3 = 23.5 in. 

The footing, with 24 in. thickness, is shown in Fig. 16.12. 

16.7 COMBINED FOOTINGS 

Spread footings that support more than one column or wall are known as combined 
footings. They can be divided into two categories: those that support two columns and 
those that support more than two (generally large numbers of) columns. 

Examples of the first type, i.e., two-column footings, are shown in Fig. 16.1. In 
buildings where the allowable soil pressure is large enough for single footings to be 
adequate for most columns, two-column footings are seen to become necessary in two 
situations: (1) if columns are so close to the property line that single-column footings 
cannot be made without projecting beyond that line, and (2) if some adjacent columns 
are so close to each other that their footings would merge. Both situations are shown 
inFig.16.1. 

When the bearing capacity of the subsoil is low so that large bearing areas become 
necessary, individual footings are replaced by continuous strip footings that support 
more than two columns and usually all columns in a row. Sometimes such strips are 
arranged in both directions, in which case a grid foundation is obtained, as shown in 
Fig. 16.13. Strip footings can be made to develop a much larger bearing area much more 
economically than can be done by single footings because the individual strips repre
sent continuous beams whose moments are much smaller than the cantilever moments 
in large single footings that project far out from the column in all four directions. 



FIGURE 16.14 
Mat foundation. 
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In many cases, the strips are made to merge, resulting in a mat foundation, as 
shown in Fig. 16.14. That is, the foundation consists of a solid reinforced concrete slab 
under the entire building. In structural action, such a mat is very similar to a flat slab 
or a flat plate, upside down, i.e., loaded upward by the bearing pressure and downward 
by the concentrated column reactions. The mat foundation evidently develops the 
maximum available bearing area under the building. If the soil's capacity is so low that 
even this large bearing area is insufficient, some form of deep foundation, such as piles 
or caissons, must be used. These are discussed in texts on foundation design and fall 
outside the scope of the present volume. 

Mat foundations may be designed with the column pedestals, as shown in 
Figs. 16.13 and 16.14, or without them, depending on whether they are necessary for 
shear strength and the development length of dowels. 

Apart from developing large bearing areas, another advantage of strip and mat 
foundations is that their continuity and rigidity help in reducing differential settle
ments of individual columns relative to each other, which may otherwise be caused by 
local variations in the quality of subsoil, or other causes. For this purpose, continuous 
foundations are frequently used in situations where the superstructure or the type of 
occupancy provides unusual sensitivity to differential settlement. 

Much useful and important design information pertaining to combined footings 
and mats is found in Refs. 16.10 and 16.Ll: 

16.8 TWO-COLUMN FOOTINGS 

It is desirable to design combined footings so that the centroid of the footing area 
coincides with the resultant of the two column loads. This produces uniform bearing 
pressure over the entire area and forestalls a tendency for the footings to tilt. In plan, 
such footings are rectangular, trapezoidal, or T-shaped, the details of the shape being 
arranged to produce coincidence of centroid and resultant. The simple relationships 
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FIGURE 16.15 
Two-column footing. 
(Adapted from Ref 16.8.) 
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shown in Fig. 16.15 facilitate the determination of the shape of the bearing area (from 
Ref. 16.8). In general, the distances m and n are given, the former being the distance 
from the center of the exterior column to the property line and the latter the distance 
from that column to the resultant of both column loads. 

Another expedient that is used if a single footing cannot be centered under an 
exterior column is to place the exterior column footing eccentrically and to connect it 
with the nearest interior column footing by a beam or strap. This strap, being counter
weighted by the interior column load, resists the tilting tendency of the eccentric 
exterior footing and equalizes the pressure under it. Such foundations are known as 
strap, cantilever, or connected footings. 

The two examples that follow demonstrate some of the peculiarities of the 
design of two-column footings. 
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EXAMPLE 16.3 Design of a combined footing supporting one exterior and one interior column. An exterior 
24 X 18 in. column with D = 170 kips, L = I 30 kips, and an interior 24 X 24 in. column with 
D = 250 kips, L = 200 kips are to be supported on a combined rectangular footing whose outer 
end cannot protrude beyond the outer face of the exterior column (see Fig. 16.1). The distance 
center to center of columns is 18 ft O in., and the allowable bearing pressure of the soil is 6000 psf. 
The bottom of the footing is 6 ft below grade, and a surcharge of 100 psf is specified on the 
surface. Design the footing for J; = 3000 psi andfy = 60,000 psi. 

FIGURE 16.16 
Combined footing in 
Example 16.3. 

SOLUTION. The space between the bottom of the footing and the surface will be occupied 
partly by concrete (footing, concrete floor) and partly by backfill. An average unit weight of 
125 pcf can be assumed. Hence, the effective portion of the allowable bearing pressure that is 
available for carrying the column loads is q, = qa - (weight of fill and concrete + surcharge) = 
6000 - (6 X 125 + 100) = 5150 psf. Then the required area A,eq = sum of column loads/ 
q, = 750/5.15 = 145.5 ft2• The resultant of the column loads is located from the center of the 
exterior column a distance 450 X 18/750 = 10.8 ft. Hence, the length of the footing must be 
2(10.8 + 0.75) = 23.1 ft. A length of 23 ft 3 in. is selected. The required width is then 
145.5/23.25 = 6.3 ft. A width of 6 ft 6 in. is selected (see Fig. 16.16). 

Longitudinally, the footing represents a beam, loaded from below, spanning between 
columns and cantilevering beyond the interior column. Since this beam is considerably wider 
than the columns, the column loads are distributed crosswise by transverse beams, one under 
each column. In the present relatively narrow and long footing, it will be found that the 
required minimum depth for the transverse beams is smaller than is required for the footing in 
the longitudinal direction. These "beams," therefore, are not really distinct members but 
merely represent transverse strips in the main body of the footing, reinforced so that they are 
capable of resisting the transverse bending moments and the corresponding shears. It then 
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FIGURE 16.17 
Moment and shear diagrams 
for footing in Example 16.3. 

becomes necessary to decide how large the effective width of this transverse beam can be 
assumed to be. Obviously, the strip directly under the column does not deflect independently 
and is strengthened by the adjacent parts of the footing. The effective width of the transverse 
beams is therefore evidently larger than that of the column. In the absence of definite rules for 
this case, or of research results on which to base such rules, the authors recommend conserv
atively that the load be assumed to spread outward from the column into the footing at a slope 
of 2 vertical to 1 horizontal. This means that the effective width of the transverse beam is 
assumed to be equal to the width of the column plus d/2 on either side of the column, d being 
the effective depth of the footing. 

Strength design in longitudinal direction 
The net upward pressure caused by the factored column loads is 

1.2(170 + 250) + 1.6(130 + 200) 
2 qu = ----------- = 6.83 kips/ft 

23.25 X 6.5 

Then the net upward pressure per linear foot in the longitudinal direction is 6.83 X 6.5 = 
44.4 kips/ft. The maximum negative moment between the columns occurs at the section of 
zero shear. Let x be the distance from the outer edge of the exterior column to this section. 
Then ( see Fig. 16.17) 

Vu = 44,400x - 412,000 = 0 

412,000 lb 620,000 lb 

611111111 I I~! j I 
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results in x = 9.28 ft. The moment at this section is 

Mu = [ 44,400 
9

·~
82 

- 412,000(9.28 - 0.75)] 12 = -19,230,000 in-lb 

The moment at the right edge of the interior column is 

(
3 5

2
) Mu= 44,400 ~ 12 = 3,260,000 in-lb 

and the details of the moment diagram are as shown in Fig. 16.17. Try d = 37 .5 in. 
From the shear diagram in Fig. 16.17, it is seen that the critical section for flexural shear 

occurs at a distanced to the left of the left face of the interior column. At that point, the factored 
shear is 

V,, = 376,000 -
3
~} (44,400) = 237,000 lb 

and the design shear strength 

q,V,, = 0.75 X 2 X 1 \/3000 X 78 X 37.5 = 240,000 lb > V,, 

indicating that d = 37 .5 in. is adequate. 
Additionally, as in single footings, punching shear should be checked on a perimeter sec

tion a distance d/2 around the column, on which the nominal shear stress vc = 4 X 1 \/3000 = 

220 psi. Of the two columns, the exterior one with a three-sided perimeter a distance d/2 from 
the column is more critical in regard to this punching shear. The perimeter is 

( 
37.5/12) ( 375) b0 = 2 1.5 + 

2 
+ 2.0 + ~ = 11.25 ft 

and the shear force, being the column load minus the soil pressure within the perimeter, is 

Vu = 412,000 - 3.06 X 5.12(6830) = 305,000 lb 

On the other hand, the design shear strength on the perimeter section is 

<f>Vc = 0.75 X 220 X 11.25 X 12 X 37.5 = 835,000lb 

considerably larger than the factored shear Vu. 
With d = 37.5 in., and with 3.5 in. cover from the center of the bars to the top surface of 

the footing, the total thickness is 41 in. 
To determine the required steel area, Mjq,bd 2 = 19,230,000/(0.9 X 78 X 37.52) = 195 

is used to enter Graph A.lb of Appendix A. For this value, the curve 60/3 gives the reinforce
ment ratio p = 0.0035. The required steel area is As = 0.0035 X 37.5 X 78 = 10.3 in2. Eleven 
No. 9 (No. 29) bars furnish 11.00 in2. The required development length is found to be 6.7 ft. 
From Fig. 16.17, the distance from the point of maximum moment to the nearer left end of the 
bars is seen to be 9.30 - fz = 9.05 ft, much larger than the required minimum development 
length. The selected reinforcement is therefore adequate for both bending and bond. 

For the portion of the longitudinal beam that cantilevers beyond the interior column, the 
minimum required steel area controls. Here, 

- 3\/3000 - . 2 
As,min - 60,000 X 78 X 37.5 - 8.01 m 

but not less than 

_200 - ·2 
As,min -

6
0,000 X 78 X 37.5 - 9.75 m 

Sixteen No. 7 (No. 22) bars with As = 9.62 in2 are selected; their development length is com
puted and for bottom bars is found satisfactory. 
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Design of transverse beam under interior column 
The width of the transverse beam under the interior column can now be established as previ
ously suggested and is 24 + 2(d/2) = 24 + 2 X 18.75 = 61.5 in. The net upward load per 
linear foot of the transverse beam is 620,000/6.5 = 95,400 lb/ft. The moment at the edge of the 
interior column is 

(
2 25

2
) Mu= 95,400 -·-

2
- 12 = 2,900,000 in-lb 

Since the transverse bars are placed on top of the longitudinal bars (see Fig. 16.16), the actual 
value of d furnished is 37.5 - 1.0 = 36.5 in. The minimum required steel area controls; i.e., 

_200 - ·2 
As -

6
0,000 61.5 X 36.5 - 7.48 m 

Thirteen No. 7 (No. 22) bars are selected and placed within the 61.5 in. effective width of the 
transverse beam. 

Punching shear at the perimeter a distance d/2 from the column has been checked before. 
The critical section for regular flexural shear, at a distance d from the face of the column, lies 
beyond the edge of the footing, and therefore no further check on shear is needed. 

The design of the transverse beam under the exterior column is the same as the design of 
that under the interior column, except that the effective width is 36.75 in. The details of the 
calculations are not shown. It can be easily checked that eight No. 7 (No. 22) bars, placed within 
the 36.75 in. effective width, satisfy all requirements. Design details are shown in Fig. 16.16. 

EXAMPLE 16.4 Design of a strap footing. In a strap or connected footing, the exterior footing is placed eccen
trically under its column so that it does not project beyond the property line. Such an eccentric 
position would result in a strongly uneven distribution of bearing pressure, which could lead to 
tilting of the footing. To counteract this eccentricity, the footing is connected by a beam or strap 
to the nearest interior footing. 

FIGURE 16.18 
Forces and reactions on the 
strap footing in Example 16.4. 

Both footings are so proportioned that under service load the pressure under each of them 
is uniform and the same under both footings. To achieve this, it is necessary, as in other com
bined footings, that the centroid of the combined area for the two footings coincide with the 
resultant of the column loads. The resulting forces are shown schematically in Fig. 16.18. They 
consist of the loads Pe and P; of the exterior and interior columns, respectively, and of the net 
upward pressure q, which is uniform and equal under both footings. The resultants Re and R; of 
these upward pressures are also shown. Since the interior footing is concentric with the interior 
column, R; and P; are collinear. This is not the case for the exterior forces Re and Pe where the 
resulting couple just balances the effect of the eccentricity of the column relative to the center 

P; 

------------18'-0" --------+-! 



FIGURE 16.19 
Strap footing in Example 16.4. 
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of the footing. The strap proper is generally constructed so that it will not bear on the soil. This 
can be achieved by providing formwork not only for the sides but also for the bottom face and 
by withdrawing it before backfilling. 

To illustrate this design, the columns in Example 16.3 will now be supported on a strap 
footing. Its general shape, plus dimensions as determined only subsequently by calculations, is 
seen in Fig. 16.19. With an allowable bearing pressure of qa = 6.0 kips/ft2 and a depth of 6 ft 
to the bottom of the footing as before, the bearing pressure available for carrying the external 
loads applied to the footing is q, = 5.15 kips/ft2, as in Example 16.3. These external loads, for 
the strap footing, consist of the column loads and of the weight plus fill and surcharge of that 
part of the strap that is located between the footings. (The portion of the strap located directly 
on top of the footing displaces a corresponding amount of fill and therefore is already 
accounted for in the determination of the available bearing pressure q.) If the bottom of the 
strap is 6 in. above the bottom of the footings to prevent bearing on soil, the total depth to grade 
is 5.5 ft. If the strap width is estimated to be 2.5 ft, its estimated weight plus fill and surcharge 
is 2.5 X 5.5 X 0.125 + 0.100 X 2.5 = 2 kips/ft. If the gap between footings is estimated to 
be 8 ft, the total weight of the strap is 16 kips. Hence, for purposes of determining the required 
footing area, 8 kips will be added to the dead load of each column. The required total area of 
both footings is then (750 + 16)/5.15 = 149 ft2• The distance of the resultant of the two column 
loads plus the strap load from the axis of the exterior column, with sufficient accuracy, is 
458 X 18/766 = 10.75 ft, or 11.50 ft from the outer edge, almost identical to that calculated 
for Example 16.3. Trial calculations show that a rectangular footing 6 ft 0 in. X 11 ft 3 in. under 
the exterior column and a square footing 9 X 9 ft under the interior column have a combined 
area of 149 ft2 and a distance from the outer edge to the centroid of the combined areas of 
(6 X 11.25 X 3 + 9 X 9 X 18.75) + 149 = 11.55 ft, which is almost exactly equal to the 
previously calculated distance to the resultant of the external forces. 
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FIGURE 16.20 
Forces acting on strap in 
Example 16.4. 
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For strength calculations, the bearing pressure caused by the factored external loads, 
including that of the strap with its fill and surcharge, is 

1.2(170 + 250 + 16) + 1.6(130 + 200) 
2 qu = 

149 
= 7.06 kips/ft 

Design of footings 
The exterior footing performs exactly like a wall footing with a length of 6 ft. Even though the 
column is located at its edge, the balancing action of the strap results in uniform bearing 
pressure, the downward load being transmitted to the footing uniformly by the strap. Hence, the 
design is carried out exactly as it is for a wall footing (see Section 16.5). 

The interior footing, even though it merges in part with the strap, can safely be designed 
as an independent, square single-column footing (see Section 16.6). The main difference is that, 
because of the presence of the strap, punching shear cannot occur along the truncated pyramid 
surface shown in Fig. 16.6. For this reason, two-way or punching shear, according to Eq. ( 16. 7), 
should be checked along a perimeter section located at a distance d/2 outward from the longi
tudinal edges of the strap and from the free face of the column, d being the effective depth of 
the footing. Flexural or one-way shear, as usual, is checked at a section a distance d from the 
face of the column. 

Design of strap 
Even though the strap is in fact monolithic with the interior footing, the effect on the strap of the 
soil pressure under this footing can safely be neglected because the footing has been designed 
to withstand the entire upward pressure as if the strap were absent. In contrast, because the 
exterior footing has been designed as a wall footing that receives its load from the strap, the 
upward pressure from the wall footing becomes a load that must be resisted by the strap. With 
this simplification of the actually somewhat more complex situation, the strap represents a 
single-span beam loaded upward by the bearing pressure under the exterior footing and sup
ported by downward reactions at the centerlines of the two columns (Fig. 16.20). A width of 
30 in. is selected. For a column width of 24 in., this permits beam and column bars to be placed 
without interference where the two members meet and allows the column forms to be supported 
on the top surface of the strap. The maximum moment, as determined by equating the shear 
force to zero, occurs close to the inner edge of the exterior footing. Shear forces are large in the 
vicinity of the exterior column. Stirrup design is completed using a strut-and-tie model. The 
footing is drawn approximately to scale in Fig. 16.19, which also shows the general arrange
ment of the reinforcement in the footings and the strap. 

16.9 STRIP, GRID, AND MAT FOUNDATIONS 

As mentioned in Section 16.7, continuous foundations are often used to support heavily 
loaded columns, especially when a structure is located on relatively weak or uneven 
soil. The foundation may consist of a continuous strip footing supporting all columns 



FIGURE 16.21 
Strip footing. (Adapted from 

Ref. 16.8.) 
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in a given row, or of two sets of such strip footings intersecting at right angles so that 
they form one continuous grid foundation (Fig. 16.13). For even larger loads or weaker 
soils, the strips are made to merge, resulting in a mat foundation (Fig. 16.14). 

For the design of such continuous foundations, it is essential that reasonably 
realistic assumptions be made regarding the distribution of bearing pressures that act 
as upward loads on the foundation. For compressible soils, it can be assumed, as a 
first approximation, that the deformation or settlement of the soil at a given location 
and the bearing pressure at that location are proportional to each other. If columns 
are spaced at moderate distances and if the strip, grid, or mat foundation is quite 
rigid, the settlements in all portions of the foundation will be substantially the same. 
This means that the bearing pressure, also known as subgrade reaction, will be 
the same, provided that the centroid of the foundation coincides with the resultant 
of the loads. If they do not coincide, then for such rigid foundations the subgrade 
reaction can be assumed to vary linearly. Bearing pressures can be calculated based 
on statics, as discussed for single footings (see Fig. 16.3). In this case, all loads, the 
downward column loads as well as the upward-bearing pressures, are known. Hence, 
moments and shear forces in the foundation can be found by statics alone. Once 
these are determined, the design of strip and grid foundations is similar to that of 
inverted continuous beams, and that of mat foundations to that of inverted flat slabs 
or plates. 

On the other hand, if the foundation is relatively flexible and the column spacing 
large, settlements will no longer be uniform or linear. For one thing, the more heavily 
loaded columns will cause larger settlements, and thereby larger subgrade reactions, 
than the lighter ones. Also, since the continuous strip or slab midway between columns 
will deflect upward relative to the nearby columns, the soil settlement, and thereby 
the subgrade reaction, will be smaller midway between columns than directly at the 
columns. This is shown schematically for a strip footing in Fig. 16.21; the subgrade 
reaction can no longer be assumed to be uniform. Mat foundations likewise require 
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different approaches, depending on whether they can be assumed to be rigid when 
calculating the soil reaction. 

Criteria have been established as a measure of the relative stiffness of the 
structure versus the stiffness of the soil (Refs. 16.10 and 16.13 ). If the relative stiff
ness is low, the foundation should be designed as a flexible member with a nonlinear 
upward reaction from the soil. For strip footings, a reasonably accurate but fairly 
complex analysis can be done using the theory of beams on elastic foundations 
(Ref. 16.14). Kramrisch (Ref. 16.8) has suggested simplified procedures, based on 
the assumption that contact pressures vary linearly between load points, as shown 
in Fig. 16.21. 

For nonrigid mat foundations, great advances in analysis have been made using 
finite element methods, which can account specifically for the stiffnesses of both the 
structure and the soil. There are a large number of commercially available programs 
(e.g., pcaMats, Portland Cement Association, Skokie, Illinois) based on the finite 
element method, permitting quick modeling and analysis of combined footings, strip 
footings, and mat foundations. 

16.10 PILE CAPS 

If the bearing capacity of the upper soil layers is insufficient for a spread foundation, 
but firmer strata are available at greater depth, piles are used to transfer the loads to 
these deeper strata. Piles are generally arranged in groups or clusters, one under each 
column. The group is capped by a spread footing or cap that distributes the column 
load to all piles in the group. These pile caps are in most ways very similar to footings 
on soil, except for two features. For one, reactions on caps act as concentrated loads 
at the individual piles, rather than as distributed pressures. For another, if the total of 
all pile reactions in a cluster is divided by the area of the footing to obtain an equiva
lent uniform pressure (for purposes of comparison only), it is found that this equivalent 
pressure is considerably higher in pile caps than for spread footings. This means that 
moments, and particularly shears, are also correspondingly larger, which requires 
greater footing depths than for a spread footing of similar horizontal dimensions. To 
spread the load evenly to all piles, it is in any event advisable to provide ample rigidity, 
i.e., depth, for pile caps. 

Allowable bearing capacities of piles Ra are obtained from soil exploration, pile
driving energy, and test loadings, and their determination is not within the scope of the 
present book (see Refs. 16.1 to 16.4). As in spread footings, the effective portion of Ra 
available to resist the unfactored column loads is the allowable pile reaction less the 
weight of footing, backfill, and surcharge per pile. That is, 

(16.12) 

where W1 is the total weight of footing, fill, and surcharge divided by the number of piles. 
Once the available or effective pile reaction Re is determined, the number of piles 

in a concentrically loaded cluster is the integer next larger than 

D+L 
n=---

Re 

As far as the effects of wind, earthquake moments at the foot of the columns, and safety 
against overturning are concerned, design considerations are the same as described in 
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Section 16.4 for spread footings. These effects generally produce an eccentrically 
loaded pile cluster in which different piles carry different loads. The number and loca
tion of piles in such a cluster are determined by successive approximations based on 
the requirement that the load on the most heavily loaded pile not exceed the allowable 
pile reaction Ra. With a linear distribution of pile loads due to bending, the maximum 
pile reaction is 

p M 
Rmax = - + -/

n /pg C 
(16.13) 

where P is the maximum load (including weight of cap, backfill, etc.) and M the 
moment to be resisted by the pile group, both referred to the bottom of the cap; /pg is 
the moment of inertia of the entire pile group about the centroidal axis about which 
bending occurs; and c is the distance from that axis to the extreme pile. /pg = 
~;'(1 X yf); i.e., it is the moment of inertia of n piles, each counting as one unit and 
located a distance Y; from the described centroidal axis. 

Piles are generally arranged in tight patterns, which minimizes the cost of the 
caps, but they cannot be placed closer than conditions of driving and of undisturbed 
carrying capacity will permit. A spacing of about 3 times the butt (top) diameter of the 
pile but no less than 2 ft 6 in. is customary. Commonly, piles with allowable reactions 
of 30 to 70 tons are spaced at 3 ft O in. (Ref. 16.8). 

The design of footings on piles is similar to that of single-column footings. One 
approach is to design the cap for the pile reactions calculated for the factored column 
loads. For a concentrically loaded cluster, this would give Ru = (1.2D + I.6L)/n. 
However, since the number of piles was taken as the next-larger integral according to 
Eq. (16.13), determining Ru in this manner can lead to a design where the strength of 
the cap is less than the capacity of the pile group. It is therefore recommended that the 
pile reaction for strength design be taken as 

Ru = R, X average load factor (16.14) 

where the average load factor = (1.2D + 1.6L)/(D + L). In this manner, the cap is 
designed to be capable of developing the full allowable capacity of the pile group. 
Details of a typical pile cap are shown in Fig. 16.22. 

As in single-column spread footings, the depth of the pile cap is usually gov
erned by shear. ACI Code 15.5.3 specifies that when the distance between the axis of 
a pile and the axis of a column is more than 2 times the distance from the top of the 
pile cap and the top of the pile, shear design must follow the procedures for flat slabs 
and footings, as described in Section 16.6a. For closer spacings between piles and 
columns, the Code specifies either the use of the procedures described in Section 16.6a 
or the use of a three-dimensional strut-and-tie model (ACI Code Appendix A) based on 
the principles described in Chapter 10. In the latter case, the struts must be designed as 
bottle-shaped without transverse reinforcement (Table 10.1) because of the difficulty 
of providing such reinforcement in a pile cap. The use of strut-and-tie models to 
design pile caps is discussed in Ref. 16.15. 

When the procedures for flat slabs and footings are used, both punching or two
way shear and flexural or one-way shear need to be considered. The critical sections 
are the same as given in Section 16.6a. The difference is that shear in caps is caused 
by concentrated pile reactions rather than by distributed bearing pressures. This poses 
the question of how to calculate shear if the critical section intersects the circumfer
ence of one or more piles. For this case ACI Code 15.5.4 accounts for the fact that a 
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FIGURE 16.22 
Typical single-column 
footing on piles (pile cap). 
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pile reaction is not really a point load, but is distributed over the pile-bearing area. 
Correspondingly, for piles with diameters dpile• it stipulates as follows: 

Computation of shear on any section through a footing on piles shall be in accordance 
with the following: 
(a) The entire reaction from any pile whose center is located dpile/2 or more outside this 
section shall be considered as producing shear on that section. 
(b) The reaction from any pile whose center is located dpilJ2 or more inside the section 
shall be considered as producing no shear on that section. 
(c) For intermediate positions of the pile center, the portion of the pile reaction to 
be considered as producing shear on the section shall be based on straight-line inter
polation between the full value at dpilJ2 outside the section and zero at dp;i./2 inside 
the section. 

In addition to checking two-way and one-way shear, as just discussed, punch
ing shear must also be investigated for the individual pile. Particularly in caps on a 
small number of heavily loaded piles, it is this possibility of a pile punching upward 
through the cap that may govern the required depth. The critical perimeter for this 
action, again, is located at a distance d/2 outside the upper edge of the pile. However, 
for relatively deep caps and closely spaced piles, critical perimeters around adjacent 
piles may overlap. In this case, fracture, if any, would undoubtedly occur along an 



FIGURE 16.23 
Critical section for punching 
shear with closely spaced 
piles. 
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Overlap 

Pile 

Critical section 

outward-slanting surface around both adjacent piles. For such situations the critical 
perimeter is so located that its length is a minimum, as shown for two adjacent piles 
in Fig. 16.23. 
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PROBLEMS 
16.1. A continuous strip footing is to be located concentrically under a 12 in. wall 

that delivers service loads D = 25,000 lb/ft and L = 15,000 lb/ft to the top of 
the footing. The bottom of the footing will be 4 ft below the final ground 
surface. The soil has a density of 120 pcf and allowable bearing capacity of 
8000 psf. Material strengths areJ; = 3000 psi andJ;, = 60,000 psi. Find (a) the 
required width of the footing, (b) the required effective and total depths, based 
on shear, and ( c) the required flexural steel area. 

16.2. An interior column for a tall concrete structure carries total service loads 
D = 500 kips and L = 514 kips. The column is 22 X 22 in. in cross section 
and is reinforced with 12 No. 11 (No. 36) bars centered 3 in. from the column 
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faces (equal number of bars each face). For the column, J; = 4000 psi and 
J;, = 60,000 psi. The column will be supported on a square footing, with the 
bottom of the footing 6 ft below grade. Design the footing, determining all 
concrete dimensions and amount and placement of all reinforcement, including 
length and placement of dowel steel. No shear reinforcement is permitted. The 
allowable soil bearing pressure is 8000 psf. Material strengths for the footing 
aret; = 3000 psi andJ;, = 60,000 psi. 

16.3. Design a single-column footing (including dowels) to support an 11 in. square 
column reinforced with eight No. 9 (No. 29) bars centered 2.5 in. from the 
column faces (equal number of bars on each face). The unfactored axial dead 
load= 135 kips, and the unfactored axial live load= 125 kips. For the column, 
J; = 4000 psi and J;, = 60,000 psi. The base of the footing will be 3 ft below 
grade. The allowable soil bearing pressure is 3000 lb/ft2. Material strengths for 
the footing areJ; = 3000 psi andJ;, = 60,000 psi. 

16.4. Two interior columns for a high-rise concrete structure are spaced 15 ft apart, 
and each carries service loads D = 500 kips and L = 514 kips. The columns 
are to be 22 in. square in cross section, and will each be reinforced with 12 
No. 11 (No. 36) bars centered 3 in. from the column faces, with an equal number 
of bars at each face. For the columns, J; = 4000 psi and J;, = 60,000 psi. The 
columns will be supported on a rectangular combined footing with a long-side 
dimension twice that of the short side. The allowable soil bearing pressure is 
8000 psf. The bottom of the footing will be 6 ft below grade. Design the foot
ing for these columns, using J; = 3000 psi and J;, = 60,000 psi. Specify all 
reinforcement, including length and placement of footing bars and dowel steel. 

16.5. A pile cap is to be designed to distribute a concentric force from a single 
column to a nine-pile group, with geometry as shown in Fig. 16.22. The cap 
will carry calculated dead and service live loads of 280 and 570 kips, respec
tively, from a 19 in. square concrete column reinforced with six No. 14 (No. 43) 
bars. The permissible load per pile at service load is 100 kips, and the pile 
diameter is 16 in. Find the required effective and total depths of the pile cap 
and the required reinforcement. Check all relevant aspects of the design, 
including the development length for the reinforcement and transfer of forces 
at the base of the column. Material strengths for the column are J; = 4000 psi 
andJ;, = 60,000 psi, and for the pile cap areJ; = 3000 psi andJ;, = 60,000 psi. 

16.6. Complete the design of the strap footing in Example 16.4 and determine all 
dimensions and reinforcement. Compare the total volume of concrete in the 
strap footing in Example 16.4 with that of the rectangular combined footing in 
Example 16.3. It will be found that the strap footing is significantly more 
economical in terms of material (although forming would be more costly). 
This economy of material would increase with increasing distance between 
the columns. 



Retaining Walls 

17.1 FUNCTION AND TYPES OF RETAINING WALLS 

Retaining walls are used to hold back masses of earth or other loose material where 
conditions make it impossible to let those masses assume their natural slopes. Such 
conditions occur when the width of an excavation, cut, or embankment is restricted 
by conditions of ownership, use of the structure, or economy. For example, in railway 
or highway construction the width of the right of way is fixed, and the cut or embank
ment must be contained within that width. Similarly, the basement walls of buildings 
must be located within the property and must retain the soil surrounding the basement. 

Freestanding retaining walls, as distinct from those that form parts of structures, 
such as basement walls, are of various types, the most common of which are shown in 
Fig. 17 .1. The gravity wall (Fig. 17. la) retains the earth entirely by its own weight and 
generally contains no reinforcement. The reinforced concrete cantilever wall (Fig. 17.lb) 
consists of the vertical arm that retains the earth and is held in position by a footing or 
base slab. In this case, the weight of the fill on top of the heel, in addition to the weight 
of the wall, contributes to the stability of the structure. Since the arm represents a 
vertical cantilever, its required thickness increases rapidly with increasing height. To 
reduce the bending moments in vertical walls of great height, counterforts are used 
spaced at distances from each other equal to or slightly larger than one-half of the 
height (Fig. 17.lc). Property rights or other restrictions sometimes make it necessary 
to place the wall at the forward edge of the base slab, i.e., to omit the toe. Whenever 
it is possible, toe extensions of one-third to one-fourth of the width of the base provide 
a more economical solution. 

Which of the three types of walls is appropriate in a given case depends on a 
variety of conditions, such as local availability and price of construction materials and 
property rights. In general, gravity walls are economical only for relatively low walls, 
possibly up to about 10 ft. Cantilever walls are economical for heights from 10 to 20 ft, 
while counterforts are used for greater heights. 

17.2 EARTH PRESSURE 

In terms of physical behavior, soils and other granular masses occupy a position 
intermediate between liquids and solids. If sand is poured from a dump truck, it flows, 
but, unlike a frictionless liquid, it will not assume a horizontal surface. It maintains itself 
in a stable heap with sides reaching an angle of repose, the tangent of which is roughly 
equal to the coefficient of intergranular friction. If a pit is dug in clay soil, its sides can 
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FIGURE 17.1 
Types of retaining walls and 
back drains: (a) gravity wall; 
(b) cantilever wall; 
(c) counterfort wall. 
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usually be made vertical over considerable depths without support; i.e., the clay will 
behave as a solid and will retain the shape it is given. If, however, the pit is flooded, 
the sides will give way, and in many cases the saturated clay will be converted nearly 
into a true liquid. The clay is capable of maintaining its shape by means of its internal 
cohesion, but flooding reduces that cohesion greatly, often to zero. 

If a wall is built in contact with a solid, such as a rock face, no pressure is exerted 
on it. If, on the other hand, a wall retains a liquid, as in a reservoir, it is subject at any 
level to the hydrostatic pressure wwh, where ww is the unit weight of the liquid and h 
is the distance from the surface. If a vertical wall retains soil, the earth pressure simi
larly increases proportionally to the depth, but its magnitude is 

Ph= K0wh (17.1) 

where w is the unit weight of the soil and K0 is a constant known as the coefficient of 
earth pressure at rest. The value of K0 depends not only on the nature of the backfill 
but also on the method of depositing and compacting it. It has been determined exper
imentally that, for uncompacted noncohesive soils such as sands and gravels, K0 
ranges between 0.4 and 0.5, while it may be as high as 0.8 for the same soils in a 
highly compacted state (Refs. 17 .1 through 17 .3). For cohesive soils, K0 may be on the 
order of 0.7 to 1.0. Clean sands and gravels are considered superior to all other soils 



FIGURE 17.2 
Basis of active and passive 
earth pressure determination. 
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because they are free-draining and are not susceptible to frost action and because they 
do not become less stable with the passage of time. For this reason, noncohesive 
backfills are usually specified. 

Usually, walls move slightly under the action of the earth pressure. Since walls 
are constructed of elastic material, they deflect under the action of the pressure, and 
because they generally rest on compressible soils, they tilt and shift away from the fill. 
(For this reason, the wall is often constructed with a slight batter toward the fill on the 
exposed face so that, if and when such tilting takes place, the tilt does not appear 
evident to the observer.) Even if this movement at the top of the wall is only a fraction 
of a percent of the wall height (½ to to percent according to Ref. 17 .2), the rest pressure 
is materially decreased by it. 

If the wall moves away from the fill, a sliding plane ab (Fig. 17 .2) forms in the 
soil mass, and the wedge abc, sliding along that plane, exerts pressure against the wall. 
Here the angle <p is known as the angle of internal friction; i.e., its tangent is equal to 
the coefficient of intergranular friction, which can be determined by appropriate labo
ratory tests. The corresponding pressure is known as the active earth pressure. If, on 
the other hand, the wall is pushed against the fill, a sliding plane ad is formed, and the 
wedge acd is pushed upward by the wall along that plane. The pressure that this larger 
wedge exerts against the wall is known as the passive earth pressure. (This latter case 
will also occur at the left face of the gravity wall in Fig. 17. la when this wall yields 
slightly to the left under the pressure of the fill.) 

The magnitude of these pressures has been analyzed by Rankine, Coulomb, and 
others. If the soil surface makes an angle 5 with the horizontal (Fig. 17. la), then, 
according to Rankine, the coefficient for active earth pressure is 

cos 5 - v' cos2 5 - cos2 <p 
Ka = cos 5 ----r====== 

cos 5 + Ycos2 5 - cos2 <p 

and the coefficient for passive pressure is 

cos 5 + Ycos2 5 - cos2 <p 
KP = cos 5 ----,====== 

cos 5 - Ycos2 5 - cos2 <p 

(17.2) 

(17.3) 

Ka and KP replace K0 in Eq. ( 17 .1) to determine soil pressure Ph under active and passive 
conditions, respectively. 

For the frequent case of a horizontal surface, that is, 5 = 0 (Fig. 17 .2), for active 
pressure, 

1 - sin <p 
Kah=----

1 + sin <p 
(17.4) 
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and for passive pressure, 

1 + sin cf, 
Kh=----

p 1 - sin cf, 
(17.5) 

Rankine's theory is valid only for noncohesive soils such as sand and gravel but, with 
corresponding adjustments, can also be used successfully for cohesive clay soils. 

From·' Eqs. (17 .1) through (17 .5), it is seen that the earth pressure at a given 
depth h depends on the inclination of the surface 8, the unit weight w, and the angle 
of friction cf,. The first two of these are easily determined, while little agreement has 
yet been reached as to the proper values of cf,. For the ideal case of a dry, noncohesive 
fill, cf, could be determined by laboratory tests and then used in the formulas. This is 
impossible for clays, only part of whose resistance is furnished by intergranular fric
tion, while the rest is due to internal cohesion. For this reason, their actual cf, values 
are often increased by an arbitrary amount to account implicitly for the added cohesion. 
However, this is often unsafe since, as was shown by the example of the flooded pit, 
cohesion may vanish almost completely due to saturation and inundation. 

In addition, fills behind retaining walls are rarely uniform, and, what is more 
important, they are rarely dry. Proper drainage of the fill is vitally important to reduce 
pressures (see Section 17.6), but even in a well-drained fill, the pressure will tem
porarily increase during heavy storms or sudden thaws. This is so because even though 
the drainage may successfully remove the water as fast as it appears, its movement 
through the fill toward the drains causes additional pressure (seepage pressure). In 
addition, frost action and other influences may temporarily increase its value over that 
of the theoretical active pressure. Many walls that were designed without regard to 
these factors have failed, been displaced, or cracked. 

It is good practice, therefore, to select conservative values for cf>, considerably 
smaller than the actual test values, in all cases except where extraordinary and usually 
expensive precautions are taken to keep the fill dry under all conditions. An example 
of recommended earth pressure values, which are quite conservative, though based on 
extensive research and practical experience, can be found in Ref. 17.2. Less conser
vative values are often used in practical designs, but these should be employed (1) with 
caution in view of the fact that occasional trouble has been encountered with walls so 
designed and (2) preferably with the advice of a geotechnical engineer. 

Table 17 .1 gives representative values for w and cf, often used in engineering 
practice. (Note that the cf, values do not account for probable additional pressures due 
to porewater, seepage, frost, etc.) The table also contains values for the coefficient of 

TABLE 17.1 
Unit weights w, effective angles of internal friction cf>, and 
coefficients of friction with concrete f 

Unit Weight w, <J,, 
Soil pd deg 

1. Sand or gravel without fine particles, 
highly permeable 110--120 33-40 

2. Sand or gravel with silt mixture, low permeability 120--130 25-35 
3. Silty sand, sand and gravel with high clay content 110--120 23-30 
4. Medium or stiff clay 100--120 25-35a 
5. Soft clay, silt 90--110 20--25° 

" For saturated conditions, </> for clays and silts may be close to zero. 

f 

0.5-0.6 
0.4-0.5 
0.3-0.4 
0.2-0.4 
0.2-0.3 
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friction f between concrete and various soils. The values of <p for soils 3 through 5 
may be quite unconservative; under saturated conditions, clays and silts may become 
entirely liquid ( that is, <p = 0). Soils of type 1 or 2 should be used as backfill for retain
ing walls wherever possible. 

17 .3 EARTH PRESSURE FOR COMMON CONDITIONS 
OF LOADING 

h y= -
3 

(a) 

In computing earth pressures on walls, three common conditions of loading are most 
often met: (1) horizontal surface of fill at the top of the wall, (2) inclined surface of 
fill sloping up and back from the top of the wall, and (3) horizontal surface of fill 
carrying a uniformly distributed additional load (surcharge), such as from goods in a 
storage yard or traffic on a road. 

The increase in pressure caused by uniform surcharges (case 3) is computed by 
converting its load into an equivalent, imaginary height of earth h' above the top of the 
wall such that 

s 
h' =

w 
(17.6) 

and measuring the depth to a given point on the wall from this imaginary surface. This 
amounts to replacing h with h + h' in Eq. (17.1). 

The distributions of pressure for cases 1 to 3 are shown in Fig. 17 .3. The total 
earth thrust P per linear foot of wall is equal to the area under the pressure distribution 
figure, and its line of action passes through the centroid of the pressure. Figure 17 .3 
gives information, computed in this manner, on magnitude, point of action, and direc
tion of P for these three cases. 

h 

For 5 = <p, K8 = cos <p 

(b) 

FIGURE 17.3 

Kahw(h+h') 

h2 +3hh' 
y = 3(h+2h') 

P = ½Kahwh(h+2h') 

(c) 

Earth pressures for (a) horizontal surface; (b) sloping surface; (c) horizontal surface with 
surcharges. 
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Occasionally retaining walls must be built for conditions in which the groundwater 
level is above the base of the wall, either permanently or seasonally. In that case, the 
pressure of the soil above groundwater is determined as usual. The part of the wall 
below groundwater is subject to the sum of the water pressure and the earth pressure. 
The former is equal to the full hydrostatic pressure Pw = wwhw, where ww and hw are, 
respectively, the unit weight of water and the distance from the groundwater level to 
the point Oil, the wall. The additional pressure of the soil below the groundwater level 
is computed from Eq. (17.1), where, however, for the portion of the soil below water, 
w is replaced with w - ww, while h, as usual, is measured from the soil surface. That 
is, for submerged soil, buoyancy reduces the effective weight in the indicated manner. 
Pressures of this magnitude, which are considerably larger than those of drained soil, 
will also occur temporarily after heavy rainstorms or thaws in walls without provision 
for drainage, or if drains have become clogged. 

The seeming simplicity of the determination of earth pressure, as indicated here, 
should not lull the designer into a false sense of security and certainty. No theory is more 
accurate than the assumptions on which it is based. Actual soil pressures are affected 
by irregularities of soil properties, porewater and drainage conditions, and climatic 
and other factors that cannot be expressed in formulas. This situation, on the one hand, 
indicates that involved refinements of theoretical earth pressure determinations, as 
sometimes attempted, are of little practical value. On the other hand, the design of a 
retaining wall is seldom a routine procedure, since the local conditions that affect 
pressures and safety vary from one locality to another. 

17 .4 EXTERNAL STABILITY 

A wall may fail in two different ways: (1) its individual parts may not be strong 
enough to resist the acting forces, such as when a vertical cantilever wall is cracked by 
the earth pressure acting on it; and (2) the wall as a whole may be bodily displaced by the 
earth pressure, without breaking up internally. To design against the first possibility 
requires the determination of the necessary dimensions, thicknesses, and reinforcement 
to resist the moments and shears; this procedure, then, is in no way different from that 
of determining required dimensions and reinforcement of other types of concrete 
structures. The usual load factors and strength reduction factors of the ACI Code may 
be applied (see Section 17 .5). 

To safeguard the wall against bodily displacements, i.e., to ensure its external 
stability, requires special consideration. Consistent with current practice in geotechni
cal engineering, the stability investigation is based on actual earth pressures (as nearly 
as they may be determined) and on computed or estimated service dead and live loads, 
all without load factors. Computed bearing pressures are compared with allowable val
ues, and overall factors of safety evaluated by comparing resisting forces to maximum 
loads acting under service conditions. 

A wall, such as that in Fig. 17.4, together with the soil mass ijkl that rests on the 
base slab, may be bodily displaced by the earth thrust P that acts on the plane ak by 
sliding along the plane ab. Such sliding is resisted by the friction between the soil and 
footing along the same plane. To forestall motion, the forces that resist sliding must 
exceed those that tend to produce sliding; a factor of safety of 1.5 is generally assumed 
satisfactory in this connection. 

In Fig. 17.4, the force that tends to produce sliding is the horizontal component 
Ph of the total earth thrust P. The resisting friction force is fRv, where f is the coeffi
cient of friction between the concrete and soil (see Table 17.1) and Rv is the vertical 



FIGURE 17.4 
External stability of a 
cantilever wall. 

RETAINING WALLS 595 

n' 

component of the total resultant R; that is, Rv = W + Pv (W = weight of wall plus 
soil resting on the footing, Pv = vertical component of P). Hence, to provide suffi
cient safety, 

f(W + Pv) 2:: l.5Ph (17.7) 

Actually, for the wall to slide to the left, it must push with it the earth nmb, which gives 
rise to the passive earth pressure indicated by the triangle mzb. This passive pressure 
represents a further resisting force that could be added to the left side of Eq. (17.7). 
However, this should be done only if the proper functioning of this added resistance is 
ensured. For that purpose, the fill ghmv must be placed before the backfill ijkl is put 
in place and must be secure against later removal by scour or other means throughout 
the lifetime of the wall. If these conditions are not met, it is better not to count on the 
additional resistance of the passive pressure. 

If the required sliding resistance cannot be developed by these means, a key wall 
cdef can be used to increase horizontal resistance. In this case, sliding, if it occurs, 
takes place along the planes ad and tf. While along ad and ef, the friction coefficient! 
applies, sliding along te occurs within the soil mass. The coefficient of friction that 
applies in this portion is consequently tan cp, where the value of cp may be taken from 
the next to last column in Table 17.1. In this situation sliding of the front soil occurs 
upward along tn' so that if the front fill is secure, the corresponding resistance from 
passive soil pressure is represented by the pressure triangle stm. If doubt exists as to 
the reliability of the fill above the toe, the free surface should more conservatively be 
assumed at the top level of the footing, in which case the passive pressure is repre
sented by the triangle s'tg. 
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FIGURE 17.5 
Bearing pressures for 
different locations of 
resultant. 

Next, it is necessary to ensure that the pressure under the footing not exceed the 
permissible bearing pressure for the particular soil. Let a (Fig. 17.4) be the distance 
from the front edge b to the intersection of the resultant with the base plane, and let Rv 
be the vertical component of R. (This intersection need not be located beneath the 
vertical arm, as shown, even though an economical wall generally results if it is so 
located.) Then the base plane ab, I ft wide longitudinally, is subject to a normal force 
Rv and to a moment about the centroid (//2 - a)Rv. When these values are substituted 
in the usual formula for bending plus axial force 

N Mc 
q = - + - (17.8) r:;.~ A - I 

it will be found that if the resultant is located within the middle third (a > l/3), com
pression will act throughout the section, and the maximum and minimum pressures 
can be computed from the equations in Fig. 17 .Sa. If the resultant is located just at the 
edge of the middle third (a= l/3), the pressure distribution is as shown in Fig. 17.Sb, 
and Eq. (17 .8) results in the formula given there. 

t (llll11ll1lllID Jo, q1 
L 

(a) Resultant in middle third 

(b) Resultant at edge of middle third 

(c) Resultant outside middle third 

Rv 
q2 = (6a-2l)t2 

l Rv 
when a= 2, q1 = q2 = 1 
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If the resultant were located outside the middle third (a < 1/3), Eq. (17 .8) would 
indicate tension at and near point a. Obviously, tension cannot be developed between 
soil and a concrete footing that merely rests on it. Hence, in this case the pressure 
distribution of Fig. 17 .Sc will develop, which implies a slight lifting off the soil of the 
rear part of the footing. Equilibrium requires that Rv pass through the centroid of the 
pressure distribution triangle, from which the formula for q1 for this case can easily 
be derived. 

It is good practice, in general, to have the resultant located within the middle 
third. This not only will reduce the magnitude of the maximum bearing pressure but 
also will prevent too large a nonuniformity of pressure. If the wall is founded on a 
highly compressible soil, such as certain clays, a pressure distribution as in Fig. 17 .Sb 
will result in a much larger settlement of the toe than of the heel, with a corresponding 
tilting of the wall. In a foundation on such a soil, the resultant, therefore, should strike 
at or very near the center of the footing. If the foundation is on very incompressible 
soil, such as well-compacted gravel or rock, the resultant can be allowed to fall out
side the middle third (Fig. 17.Sc). 

A third mode of failure is the possibility of the wall overturning bodily around 
the front edge b (Fig. 17.4). For this to occur, the overturning moment yPh about 
point b would have to be larger than the restoring moment Wg + Pi in Fig. 17.4, 
which is the same as saying that the resultant would have to strike outside the edge b. 
If, as is mostly the case, the resultant strikes within the middle third, adequate safety 
against overturning exists, and no special check need be made. If the resultant is 
located outside the middle third, a factor of safety of at least 1.5 should be maintained 
against overturning; i.e., the restoring moment should be at least 1.5 times the over
turning moment. 

17.5 BASIS OF STRUCTURAL DESIGN 

In the investigation of a retaining wall for external stability, described in Section 17.4, 
it is the current practice to base the calculations on actual earth pressures, and on com
puted or estimated service dead and live loads, all with load factors of 1.0 (i.e., with
out load increase to account for a hypothetical overload condition). Computed soil 
bearing pressures, for service load conditions, are compared with allowable values set 
suitably lower than ultimate bearing values. Factors of safety against overturning and 
sliding are established, based on service load conditions. 

On the other hand, the structural design of a retaining wall should be consistent 
with methods used for all other types of members, and thus should be based on factored 
loads in recognition of the possibility of an increase above service loading. ACI Code 
load factors relating to structural design of retaining walls are summarized as follows: 

1. If resistance to earth pressure H is included in the design, together with dead 
loads D and live loads L, the required strength U shall be at least equal to 

U = 1.2D + I.6L + 1.6H 

2. Where D or L reduce the effect of H, the required strength U shall be at least 
equal to 

U = 0.9D + 1.6H 

3. For any combination of D, L, and H, the required strength shall not be less than 

U = 1.2D + I.6L 
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While the ACI Code approach to load factor design is logical and relatively easy 
to apply to members in buildings, its application to structures that are to resist earth 
pressures is not so easy. Many alternative combinations of factored dead and live loads 
and lateral pressures are possible. Dead loads such as the weight of the concrete 
should be multiplied by 0.9 where they reduce design moments, such as for the toe 
slab of a cantilevered retaining wall, but should be multiplied by 1.2 where they 
increase moments, such as for the heel slab. The vertical load of the earth over the heel 
should be multiplied by 1.6. Obviously, no two factored load states could be obtained 
concurrently. For each combination of factored loads, different reactive soil pressures 
will be produced under the structure, requiring a new determination of those pressures 
for each alternative combination. Furthermore, there is no reason to believe that soil 
pressure would continue to be linearly distributed at the overload stage, or would 
increase in direct proportion to the load increase; knowledge of soil pressure distribu
tions at incipient failure is incomplete. Necessarily, a somewhat simplified view of 
load factor design must be adopted in designing retaining walls. 

Following the ACI Code, lateral earth pressures are multiplied by a load factor 
of 1.6. In general, the reactive pressure of the soil under the structure at the factored 
load stage is taken equal to 1.6 times the soil pressure found for service load conditions 
in the stability analysis. t For cantilever retaining walls, the calculated dead load of the 
toe slab, which causes moments acting in the opposite sense to those produced by the 
upward soil reaction, is multiplied by a factor of 0.9. For the heel slab, the required 
moment capacity is based on the dead load of the heel slab itself and is multiplied by 
1.2, while the downward load of the earth is multiplied by 1.6. Surcharge, if present, 
is treated as live load with a load factor of 1.6. The upward pressure of the soil under 
the heel slab is taken equal to zero, recognizing that for the severe overload stage a 
nonlinear pressure distribution will probably be obtained, with most of the reaction 
concentrated near the toe. Similar assumptions appear to be reasonable in designing 
counterfort walls. 

In accordance with ACI Code 14.1.2, cantilever retaining walls are designed 
following the flexural design provisions covered in Chapter 3, with minimum hori
zontal reinforcement provided in accordance with ACI Code 14.3.3, which stipulates 
a minimum ratio of 

0.0020 for deformed bars not larger than No. 5 (No. 16) with a specified yield strength 
not less than 60,000 psi; or 0.0025 for other deformed bars; or 0.0020 for welded wire 
reinforcement not larger than W3 l or D3 l. 

17.6 DRAINAGE AND OTHER DETAILS 

Such failures or damage to retaining walls as have occasionally occurred were due, 
in most cases, to one of two causes: overloading of the soil under the wall with 
consequent forward tipping or insufficient drainage of the backfill. In the latter case, 
hydrostatic pressure from porewater accumulated during or after rainstorms greatly 
increases the thrust on the wall; in addition, in subfreezing weather, ice pressure of 
considerable magnitude can develop in such poorly drained soils. The two causes are 
often interconnected, since large thrusts correspondingly increase the bearing pres
sure under the footing. 

t These reactions are caused by the assumed factored load condition and have no direct relationship to ultimate soil bearing values or pressure 
distributions. 
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Allowable bearing pressures should be selected with great care. It is necessary, for 
this purpose, to investigate not only the type of soil immediately underlying the footing, 
but also the deeper layers. Unless reliable information is available at the site, subsurface 
borings should be made to a depth at least equal to the height of the wall. The founda
tion must be laid below frost depth, which amounts to 4 to 5 ft and more in the north
ern states, to ensure against heaving by the freezing of soils containing moisture. 

Drainage can be provided in various ways. Weep holes consisting of 6 or 8 in. 
pipe embedded in the wall, as shown in Fig. 17 .1 c, are usually spaced horizontally at 5 
to 10 ft. In addition to the bottom row, additional rows should be provided in walls of 
substantial height. To facilitate drainage and prevent clogging, 1 ft3 or more of crushed 
stone is placed at the rear end of each weeper. Care must be taken that the outflow from 
the weep holes is carried off safely so as not to seep into and soften the soil underneath 
the wall. To prevent this, instead of weepers, longitudinal drains embedded in crushed 
stone or gravel can be provided along the rear face of the wall (Fig. 17. lb) at one or 
more levels; the drains discharge at the ends of the wall or at a few intermediate points. 
The most efficient drainage is provided by a continuous backdrain consisting of a layer 
of gravel or crushed stone covering the entire rear face of the wall (Fig. 17.la), with 
discharge at the ends. Such drainage is expensive, however, unless appropriate material 
is cheaply available at the site. Wherever possible, the surface of the fill should be 
covered with a layer of low permeability and, in the case of a horizontal surface, should 
be laid with a slight slope away from the wall toward a gutter or other drainage. 

In long walls, provision must be made against damage caused by expansion 
or contraction from temperate changes and shrinkage. The AASHTO LRFD Bridge 
Design Specifications require that for gravity walls, as well as reinforced concrete 
walls, expansion joints be placed at intervals of 90 ft or less, and contraction joints at 
not more than 30 ft (Ref. 17.4 ). The same specifications provide that, in reinforced 
concrete walls, temperature reinforcement equal to 0.0018bh in both the vertical and 
horizontal directions be distributed uniformly on the exposed (including end) surfaces. 
This AASHTO requirement is expressed as an area of reinforcement per foot on each 
face equal to 

l.30bh 
A::::=----

s 2(b + h)J;, 

0.11 ::;; As::;; 0.60 in2/ft 

(17.9a) 

(17.9b) 

where b = least width of the component, h = least thickness of the component, and 
Jy = yield strength of the bars, expressed in ksi,::;; 75 ksi. Similar provisions are found 
in Ref. 17.5. 

17.7 EXAMPLE: DESIGN OF A GRAVITY RETAINING WALL 

A gravity wall is to retain a bank 11 ft 6 in. high whose horizontal surface is subject to 
a live load surcharge of 400 psf. The soil is a sand and gravel mixture with a rather 
moderate amount of fine, silty particles. It can, therefore, be assumed to be in class 2 
of Table 17.1 with the following characteristics: unit weight w = 120 pcf, cp = 30° 
(with adequate drainage to be provided), and base friction coefficient f = 0.5. With 
sin 30° = 0.5, from Eqs. (17.4) and (17.5), the soil pressure coefficients are Kah= 0.333 
and Kph = 3.0. The allowable bearing pressure is assumed to be 8000 psf. This coarse
grained soil has little compressibility, so that the resultant can be allowed to strike near 
the outer-third point (see Section 17.4). The weight of the concrete is we = 150 pcf. 
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FIGURE 17.6 
Gravity retaining wall. 
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The optimum design of any retaining wall is a matter of successive approximation. 
Reasonable dimensions are assumed based on experience, and the various conditions 
of stability are checked for these dimensions. On the basis of a first trial, dimensions 
are readjusted, and one or two additional trials usually result in a favorable design. In 
the following, only the final design is analyzed in detail. The final dimensions are 
shown in Fig. 17.6. 

The equivalent height of surcharge is h' = 400/120 = 3.33 ft. From Fig. 17.3c 
the total earth thrust is 

P = ½ X 0.333 X 120 X 15 X 21.67 = 6500 lb 

and its distance from the base is y = (225 + 150)/(3 X 21.67) = 5.77 ft. Hence, the 
overturning moment M

0 
= 6500 X 5.77 = 37,500 ft-lb. To compute the weight Wand 

its restoring moment M, about the edge of the toe, individual weights are taken, as 
shown in Fig. 17 .6. With x representing the distance of the line of action of each 
subweight from the front edge, the following computation results: 

W, x, M, = xW, 
Component Weights lb ft ft-lb 

W1: 10 X 2 X 150 3,000 5.0 15,000 
W2: 1.5 X 13 X 150 2,930 1.5 4,400 
W3: 7/2 X 13 X 150 6,830 4.58 31,300 
W4: 7/2 X 13 X 120 5,460 6.92 37,800 
W5: 0.75 X 13 X 120 1,170 9.63 11,270 

--
Total 19,390 99,770 

The distance of the resultant from the front edge is 

a = 99,770 - 37,500 = 3 21 ft 
19,390 . 

which is just outside the middle third. The safety factor against overturning, 
99,770/37,500 = 2.66, is ample. From Fig. 17.5c the maximum soil pressure is q = 
(2 X 19,390)/(3 X 3.21) = 4030 psf. 
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These computations were made for the case in which the surcharge extends only 
to the rear edge of the wall, point a of Fig. 17.6. If the surcharge extends forward to 
point b, the following modifications are obtained: 

W = 19,390 + 400 X 7.75 = 22,490 lb 

M, = 99,770 + 400 X 7.75 X 6.13 = 118,770 ft-lb 

118,770 - 37,500 f 
a = ------ = 3.61 t 

22,490 

This is inside the middle third, and from Fig. 17 .Sa, the maximum bearing pressure is 

(40.0 - 21.7)22,490 
q1 = 

100 
= 4120 psf 

The situation most conducive to sliding occurs when the surcharge extends only 
to point a, since additional surcharge between a and b would increase the total weight 
and the corresponding resisting friction. The friction force is 

F = 0.5 X 19,390 = 9695 lb 

Additionally, sliding is resisted by the passive earth pressure on the front of the wall. 
Although the base plane is 3.5 ft below grade, the top layer of soil cannot be relied 
upon to furnish passive pressure, since it is frequently loosened by roots and the like, 
or it could be scoured out by cloudbursts. For this reason, the top 1.5 ft will be dis
counted in computing the passive pressure, which then becomes 

J;, = ½wh2
Kph = ½ X 120 X 22 X 3.0 = 7201b 

The safety factor against sliding, (9695 + 720)/6500 = 1.6, is but slightly larger than 
the required value 1.5, indicating a favorable design. Ignoring the passive pressure 
gives a safety factor of 1.49, which is very close to the acceptable value. 

17.8 EXAMPLE: DESIGN OF A CANTILEVER RETAINING WALL 

A cantilever wall is to be designed for the situation of the gravity wall in Section 17. 7. 
Concrete withf: = 4500 psi and steel with.f;, = 60,000 psi will be used. 

a. Preliminary Design 

To facilitate computation of weights for checking the stability of the wall, it is advan
tageous first to ascertain the thickness of the arm and the footing. t For this purpose the 
thickness of the footing is roughly estimated, and then the required thickness of the 
arm is determined at its bottom section. With the bottom of the footing at 3.5 ft below 
grade and an estimated footing thickness of 1.5 ft, the free height of the arm is 13.5 ft. 
Hence, with respect to the bottom of the arm (see Fig. 17.3c), 

P = ½ X 0.333 X 120 X 13.5 X 20.16 = 5440 lb 

_ 183 + 135 _ 
5 

25 
y - 2 16 - . ft 3 X 0. 

Mu = 1.6 X 5440 X 5.25 = 45,700 ft-lb 

t Valuable guidance is provided for the designer in tabulated designs such as those found in Ref. 17.6 and by the sample calculations in Ref. 17.7. 
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b. 

For the given grades of concrete and steel, the maximum practical reinforcement ratio 
p0_005 = 0.0197. For economy and ease of bar placement, a ratio of about 40 percent 
of the maximum, or 0.008, will be used. Then from Graph A.lb of Appendix A, 

M 
_u_ = 430 
<f>bd2 

For a unit length of the wall (b = 12 in.), with cf> = 0.90, the required effective depth is 

d= 
45,700 X 12 . 

------ = 10.9 Ill. 
0.90 X 12 X 430 

A protective cover of 2 in. is required for concrete exposed to earth. Thus, estimating 
the bar diameter to be 1 in., the minimum required thickness of the arm at the base is 
13.4 in. This will be increased to 16 in., because the cost of the extra concrete in such 
structures is usually more than balanced by the simultaneous saving in steel and ease 
of concrete placement. The arm is then checked for shear at a distance d above the 
base, or 12.5 ft below the top of the wall: 

P = ½ X 0.333 X 120 X 12.5 X 19.16 = 4800 lb 

Vu= 1.6 X 4800 = 76801b 

</>¼ = </>2A \lf:bd 

= 0.75 X 2 X l V4500 X 12 X 13.5 

= 16,300 lb 

confirming that the arm is more than adequate to resist the factored shear force. 
The thickness of the base is usually the same as or slightly larger than that at 

the bottom of the arm. Hence, the estimated 1.5 ft need not be revised. Since the 
moment in the arm decreases with increasing distance from the base and is zero at 
the top, the arm thickness at the top will be made 8 in. It is now necessary to assume 
lengths of heel and toe slabs and to check the stability for these assumed dimensions. 
Intermediate trials are omitted here, and the final dimensions are shown in Fig. 17. 7 a. 
Trial computations have shown that safety against sliding can be achieved only by an 
excessively long heel or by a key. The latter, requiring the smaller concrete volume, 
has been adopted. 

Stability Investigation 

Weights and moments about the front edge are as follows: 

w, x, M,, 
Component Weights lb ft ft-lb 

W1: 0.67 X 13.5 X 150 1,360 4.08 5,550 
Wz: 0.67 X 0.5 X 13.5 X 150 680 4.67 3,180 
"'3: 9.75 X 1.5 X 150 2,190 4.88 10,700 
W4: 1.33 X 1.25 X 150 250 4.42 1,100 
Ws: 3.75 X 2 X 120 900 1.88 1,690 
"'1,: 0.67 X 0.5 X 13.5 X 120 540 4.86 2,620 
"'7: 4.67 X 13.5 X 120 7,570 7.42 56,200 

Total 13,490 81,040 



FIGURE 17.7 
Cantilever retaining wall: 
(a) cross section; (b) bearing 
pressure with surcharge 
to a; (c) bearing pressure 
with surcharge to b; 
(d) reinforcement; 
(e) moment variation 
with height. 
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The total soil pressure on the plane ac is the same as for the gravity wall designed 
in Section 17. 7; that is, P = 6500 lb, and the overturning moment is 

M0 = 37,500 ft-lb 

The distance of the resultant from the front edge is 

a = 81,040 - 37,500 = 23 ft 
13,490 

3
· 

which locates the resultant barely outside of the middle third. The corresponding max
imum soil pressure at the toe, from Fig. 17.5c, is 

2 X 13,470 
q1 = 

3 
X 

3
_
23 

= 2780 psf 

The factor of safety against overturning, 81,040/37,500 = 2.16, is ample. 
To check the safety against sliding, remember (Section 17.4) that if sliding 

occurs, it proceeds between concrete and soil along the heel and key (i.e., length ae 
in Fig. 17.4), but takes place within the soil in front of the key (i.e., along length 
te in Fig. 17.4 ). Consequently, the coefficient of friction that applies for the former 
length is/ = 0.5, while for the latter it is equal to the internal soil friction, i.e., 
tan 30° = 0.577. 

The bearing pressure distribution is shown in Fig. 17. 7 b. Since the resultant is 
at a distance a = 3.23 ft from the front, i.e., nearly at the middle third, it is assumed 
that the bearing pressure becomes zero exactly at the edge of the heel, as shown in 
Fig. 17.7b. 

The resisting force is then computed as the sum of the friction forces of the rear 
and front portion, plus the passive soil pressure in front of the wall. For the latter, as 
in Section 17. 7, the top 1.5 ft layer of soil will be discounted as unreliable. Hence, 

Friction, toe: (2780 + 1710) X 0.5 X 3.75 X 0.577 = 4860 lb 

Friction, heel and key: 1710 X 0.5 X 6 X 0.5 = 2570 lb 

Passive earth pressure: 0.5 X 120 X 3.252 X 3.0 = 1900 lb 

Total resistance to sliding: = 9330 lb 

The factor of safety against sliding, 9330/6500 = 1.44, is only 4 percent below 
the recommended value of 1.5 and can be regarded as adequate. 

The computations hold for the case in which the surcharge extends from the right 
to point a above the edge of the heel. The other case of load distribution, in which the 
surcharge is placed over the entire surface of the fill up to point b, evidently does not 
change the earth pressure on the plane ac. It does, however, add to the sum of the ver
tical forces and increases both the restoring moment M, and the friction along the base. 
Consequently, the danger of sliding or overturning is greater when the surcharge 
extends only to a, for which situation these two cases have been checked and found 
adequate. In view of the added vertical load, however, the bearing pressure is largest 
when the surface is loaded to b. For this case, 

W = 13,490 + 400 X 5.33 = 15,600 lb 

M, = 81,040 + 400 X 5.33 X 7.09 = 96,200 ft-lb 

_ 96,200 - 37,500 _ 
3 6 

f 
a - 15,600 - ·7 t 
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which places the resultant inside the middle third. Hence, from Fig. 17 .5a, 

15,600 
q1 = (39.0 - 22.5)--2 = 2710 psf 

9.75 

15,600 
q2 = (22.5 - 19.5)--2 = 492 psf 

9.75 

which is far below the allowable pressure of 8000 psf. The corresponding bearing 
pressure distribution is shown in Fig. 17. 7 c. 

The external stability of the wall has now been ascertained, and it remains to 
determine the required reinforcement and to check internal resistances. 

c. Arm and Key 

The moment at the bottom section of the arm has previously been determined as Mu = 
45,700 ft-lb, and a wall thickness of 16 in. at the bottom and 8 in. at the top has been 
selected. With a concrete cover of 2 in. clear, d = 16.0 - 2.0 - 0.5 = 13.5 in. Then 

Mu 45,700 X 12 
<J>bd2 = 0.90 X 12 X 13.52 = 279 

Interpolating from Graph A.lb of Appendix A, with.I;,= 60,000 psi andJ; = 4500 psi, 
the required reinforcement ratio pis 0.0049 and As= 0.0049 X 12 X 13.5 = 0.79 in2/ft. 
The required area of steel is provided by No. 7 (No. 22) bars at 9 in. on centers. 

The bending moment in the arm decreases rapidly with increasing distance from 
the bottom. For this reason, only part of the main reinforcement is needed at higher 
elevations, and alternate bars will be discontinued where no longer needed. To deter
mine the cutoff point, the moment diagram for the arm has been drawn by computing 
bending moments at two intermediate levels, 10 and 5 ft from the top. These two 
moments, determined in the same manner as that at the base of the arm, were found 
to be 21,300 and 4000 ft-lb, respectively. The resisting moment provided by alternate 
bars, i.e., by No. 7 (No. 22) bars at 18 in. center to center, at the bottom of the arm is 

</>Mn = 0.90 X O.~~ X 
60,000 (13.50 - 0.26) = 23,800 ft-lb 

At the top, d = 8.0 - 2.5 = 5.5 in., and the resisting moment of the same bars 
is only </>Mn = 23,800(5.5/13.5) = 9700 ft-lb. Hence, the straight line drawn in 
Fig. 17. 7 e indicates the resisting moment provided at any elevation by one-half the 
number of main bars. The intersection of this line with the moment diagram at a dis
tance of 3 ft 6 in. from the bottom represents the point above which alternate bars are 
no longer needed. ACI Code 12.10.3 specifies that any bar shall be extended beyond 
the point at which it is no longer needed to carry flexural stress for a distance equal to 
d or 12 bar diameters, whichever is greatef.1n the arm, at a distance of 3 ft 6 in. from 
the bottom, d = 11.4 in., while 12 bar diameters for No. 7 (No. 22) bars are equal to 
10.5 in. Hence, one-half the bars can be discontinued 12 in. above the point where no 
longer needed, or a distance of 4 ft 6 in. above the base. This exceeds the required 
development length of 39 in. above the base. 

To facilitate construction, the footing is placed first, and a construction joint is 
provided at the base of the arm, as shown in Fig. 17.7d. The main bars of the arm, 
therefore, end at the top of the base slab, and dowels are placed in the latter to be 
spliced with them; the integrity of the arm depends entirely on the strength of the 
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splices used for these tension bars. Splicing all tension bars in one section by simple 
contact splices can easily lead to splitting of the concrete owing to the stress concen
trations at the ends of the spliced bars. One way to avoid this difficulty is to weld all 
splices; this will entail considerable extra cost. 

In this particular wall, another way of placing the reinforcing offers a more 
economical solution. Because alternate bars in the arm can be discontinued at a 
distance of 1, ft 6 in. above the base, the dowels will be carried up 4 ft 6 in. from the 
top of the base. These need not be spliced at all, because above that level only alternate 
No. 7 (No. 22) bars, 18 in. on centers, are needed. These latter bars are placed full 
length over the entire height of the arm and are spliced at the bottom with alternate 
shorter dowels. By this means, only 50 percent of the bars needed at the bottom of the 
arm are spliced; this is not objectionable. 

For splices of deformed bars in tension, at sections where the ratio of steel 
provided to steel required is less than 2 and where no more than 50 percent of the steel 
is spliced, the ACI Code requires a Class B splice with a length equal to 1.3 times the 
development length of the bar (see Section 5. 13a). The development length of the No. 7 
(No. 22) bars for the given material strengths is 39 in., and so the required splice 
length is 1.3 X 39 = 50.7 in., which is less than the 4 ft 6 in. available. 

According to the ACI Code, main flexural reinforcement is not to be terminated 
in a tension zone unless one of three conditions is satisfied: (1) shear at the cutoff point 
does not exceed two-thirds that permitted, (2) certain excess shear reinforcement is 
provided, or (3) the continuing reinforcement provides double the area required for 
flexure at the cutoff point and the factored shear does not exceed three-fourths of the 
design shear. It is easily confirmed that the shear 4 ft 6 in. above the base is well below 
two-thirds the value that can be carried by the concrete; thus main bars can be termi
nated as planned. 

Prior to completing the design of the arm, the minimum tensile reinforcement ratio 
specified by the ACI Code must be checked. The actual ratio provided by the No. 7 
(No. 22) bars at 18 in. spacing, with d = 10.8 in. just above the cutoff point, is 0.0031, 
about 10 percent below the minimum value of 3\!'4500/60,000 = 0.0034. To handle 
this, the spacing of the No. 7 (No. 22) bars will be reduced to 8 in., giving a spacing of 
16 in. above the cutoff. This will increase the amount of steel, but by less than would 
be needed if the bars were extended to a height where the decreasing value of d allowed 
the minimum reinforcement ratio to be satisfied. A final ACI Code requirement is that 
the maximum spacing of the primary flexural reinforcement exceed neither 3 times the 
wall thickness nor 18 in.; these restrictions are satisfied as well. 

Since the dowels had to be extended at least partly into the key to produce the 
necessary length of embedment, they were bent as shown to provide both rein
forcement for the key and anchorage for the arm reinforcement. The exact force 
that the key must resist is difficult to determine, since probably the major part of 
the force acting on the portion of the soil in front of the key is transmitted to it 
through friction along the base of the footing. The relatively strong reinforcement 
of the key by means of the extended dowels is considered sufficient to prevent 
separation from the footing. 

The sloping sides of the key were provided to facilitate excavation without loos
ening the adjacent soil. This is necessary to ensure proper functioning of the key. 

In addition to the main steel in the stem, reinforcement must be provided in the 
horizontal direction to control shrinkage and temperature cracking, in accordance 
with ACI Code 14.3.3. Calculations will be based on the average wall thickness of 
12 in. The required steel area is 0.0020 times the gross concrete area. No. 4 (No. 13) 
bars 16 in. on centers, each face, will be used, as shown in Fig. 17. 7 d. Although not 
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required by the Code for cantilever retaining walls, vertical steel equal to 0.0012 times 
the gross concrete area will also be provided (to limit horizontal surface cracking), 
with at least one-half of this value provided on the exposed face, as specified for 
other walls under ACI Code 14.3.2. No. 4 (No. 13) bars 30 in. on centers will satisfy 
this requirement. 

d. Toe Slab 

The toe slab acts as a cantilever projecting outward from the face of the stem. It must 
resist the upward pressures shown in Fig. 17.7b or c and the downward load of the toe 
slab itself, each multiplied by appropriate load factors. The downward load of the 
earth fill over the toe will be neglected because it is subject to possible erosion or 
removal. A load factor of 1.6 will be applied to the service load bearing pressures. 
Comparison of the pressures of Fig. 17. 7 b and c indicates that for the toe slab, the 
more severe loading case results from surcharge to b. Because the self-weight of the 
toe slab tends to reduce design moments and shears, it will be multiplied by a load 
factor of 0.9. Thus the factored load moment at the outer face of the stem is 

( 
2710 2 1850 1 ) ( 1 ) Mu = 1.6 -

2
- X 3.752 X 3 + -

2
- X 3.752 X 3 - 0.9 225 X 3.752 X 2 

= 25,800 ft-lb 

For concrete cast against and permanently exposed to earth, a minimum protective 
cover for steel of 3 in. is required; if the bar diameter is about 1 in., the effective depth 
will be 18.0 - 3.0 - 0.5 = 14.5 in. Thus, for a 12 in. strip of toe slab, 

Mu 25,800 X 12 

cJ>bd 2 = 0.90 X 12 X 14.52 = 136 

Graph A. lb of Appendix A shows that, for this value, the required reinforcement ratio 
would be below the minimum of 3V'4500/60,000 = 0.0034. A somewhat thinner 
base slab appears possible. However, moments in the heel slab are yet to be investi
gated, as well as shears in both the toe and heel, and the trial depth of 18 in. will be 
retained tentatively. The required flexural steel 

As = 0.0034 X 12 X 14.5 = 0.59 in2/ft 

is provided by No. 7 (No. 22) bars 12 in. on centers. The required length of embed
ment for these bars past the exterior face of the stem is the full development length 
of 39 in. Thus, they will be continued 39 in. past the face of the wall, as shown 
in Fig. 17.7d. 

Shear will be checked at a distanced = 1.21 ft from the face of the stem (2.54 ft 
from the end of the toe), according to the usual ACI Code procedures. The service load 
bearing pressure at that location ( with refere1lce to Fig. 17. 7 c) is 2130 psf, and the fac
tored load shear is 

V., = 1.6(2710 X ½ X 2.54 + 2130 X ½ X 2.54) - 0.9(225 X 2.54) 

= 9320 lb 

The design shear strength of the concrete is 

</>Ve= 2 X 0.75V'4500 X 12 X 14.5 = 17,500 lb 

well above the required value Vu. 
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e. Heel Slab 

The heel slab, too, acts as a cantilever, projecting in this case from the back face of the 
stem and loaded by surcharge, earth fill, and its own weight. The upward reaction of 
the soil will be neglected here, for reasons given earlier. Applying appropriate load 
factors, the moment to be resisted is 

Mu= l,2 X 225 X 4.672 X ½ + 1.6(400 X 4.672 X ½ + 1620 X 4.672 X ½) 

= 38,200 ft-lb 

Thus, 

Mu 38,200 X 12 - ------ = 202 
</Jbd 2 - 0.90 X 12 X 14.52 

Interpolating from Graph A. lb, the required reinforcement ratio is 0.0035, just above 
the minimum value of 0.0034. The required steel area will again be provided using 
No. 7 (No. 22) bars 12 in. on centers, as shown in Fig. 17. 7 d. These bars are classed 
as top bars, as they have more than 12 in. of concrete below; thus the required length 
of embedment to the left of the inside face of the stem is 39 X 1.3 = 51 in. 

According to normal ACI Code procedures, the first critical section for shear 
would be a distance d from the face of support. However, the justification for this 
provision of the ACI Code is the presence, in the usual case, of vertical compressive 
stress near a support which tends to decrease the likelihood of shear failure in that 
region. However, the cantilevered heel slab is essentially hung from the bottom of the 
stem by the flexural tensile steel in the stem, and the concrete compression normally 
found near a support is absent here. Consequently, the critical section for shear in the 
heel slab will be taken at the back face of the stem. At that location, 

Vu = 1.2(225 X 4.67) + 1.6(2020 X 4.67) 

= 16,350 lb 

The design shear strength provided by the concrete is the same as for the toe slab: 

</JVc = 17,500 lb 

Because this is only 7 percent in excess of the required value Vu, no reduction in thick
ness of the base slab, considered earlier, will be made. 

The base slab is well below grade and will not be subjected to the extremes of 
temperature that will be imposed on the stem concrete. Consequently, crack control 
steel in the direction perpendicular to the main reinforcement is not a major consid
eration. No. 4 (No. 13) bars 12 in. on centers will be provided, at one face only, 
placed as shown in Fig. 17. 7 d. These bars serve chiefly as spacers for the main 
flexural reinforcement. 

17.9 COUNTERFORT RETAINING WALLS 

The external stability of a counterfort retaining wall is determined in the same manner 
as in the examples of Sections 17. 7 and 17 .8. The toe slab represents a cantilever built 
in along the front face of the wall, loaded upward by the bearing pressure, exactly 
as in the cantilever wall described in Section 17 .8. Reinforcement is provided by bars 
a in Fig. 17.8. 



FIGURE 17.8 
Details of counterfort 
retaining wall. 
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Section 8-8 

e 
d 

Section A-A 

A panel of the vertical wall between two counterforts is a slab acted upon by 
horizontal earth pressure and supported along three sides, i.e., at the two counterforts 
and the base slab, while the fourth side, the top edge, is not supported. The earth pres
sure increases with distance from the free surface. The determination of moments and 
shears in such a slab supported on three sides and nonuniformly loaded is rather invol
ved. It is customary in the design of such walls to disregard the support of the vertical 
wall by the base slab and to design it as if it were a continuous slab spanning hori
zontally between counterforts. This procedure is conservative, because the moments 
obtained by this approximation are larger than those corresponding to the actual 
conditions of support, particularly in the lower part of the wall. Hence, for very large 
installations, significant savings may be achieved by a more accurate analysis. The 
best computational tool for this is the Hillerborg strip method, a plasticity-based 
theory for design of slabs described in detail in Chapter 15. Alternatively, results of 
elastic analysis are tabulated for a range of variables in Ref. 17 .8. 

Slab moments are determined for strips 1 ft wide spanning horizontally, usually 
for the strip at the bottom of the wall and for three or four equally spaced additional 
strips at higher elevations. The earth pressure on the different strips decreases with 
increasing elevation and is determined using Eq. (17 .1). Moment values for the bottom 
strips may be reduced to account for the fact that additional support is provided by the 
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base slab. Horizontal bars b (Fig. 17 .8) are provided, as required, with increased spacing 
or decreased diameter corresponding to the smaller moments. Alternate bars are bent to 
provide for the negative moments in the wall at the counterforts, or additional straight 
bars are used as negative reinforcement, as shown in Section A-A of Fig. 17 .8. 

The heel slab is supported, as is the wall slab, i.e., by the counterforts and at the 
wall. It is loaded downward by the weight of the fill resting on it, its own weight, and 
such surcharge as there may be. This load is partially counteracted by the upward 
bearing pressure on the underside of the heel. As in the vertical wall, a simplified 
analysis consists in neglecting the influence of the support along the third side and in 
determining moments and shears for strips parallel to the wall, each strip representing 
a continuous beam supported at the counterforts. For a horizontal soil surface, the 
downward load is constant for the entire heel, whereas the upward load from the bearing 
pressure is usually smallest at the rear edge and increases frontward. For this reason, 
the span moments are positive ( compression on top) and the support moments nega
tive in the rear portion of the heel. Near the wall, the bearing pressure often exceeds 
the vertical weights, resulting in a net upward load. The signs of the moments are cor
respondingly reversed, and steel must be placed accordingly. Bars c are provided for 
these moments. 

The counterforts are wedge-shaped cantilevers built in at the bottom in the 
base slab. They support the wall slab and, therefore, are loaded by the total soil pres
sure over a length equal to the distance center to center between counterforts. They 
act as a T beam of which the wall slab is the flange and the counterfort the stem. The 
maximum bending moment is that of the total earth pressure, taken about the bottom 
of the wall slab. This moment is held in equilibrium by the force in the bars d, and 
hence, the effective depth for bending is the perpendicular distance pq from the 
center of bars d to the center of the bottom section of the wall slab. Since the 
moment decreases rapidly in the upper parts of the counterfort, part of the bars d can 
be discontinued. 

In regard to shear, the authors suggest the horizontal section oq as a conserva
tive location for checking adequacy. Modification of the customary shear computation 
is required for wedge-shaped members (see Section 4.7). Usually concrete alone is 
sufficient to carry the shear, although bars e act as stirrups and can be used for resist
ing excess shear. 

The main purpose of bars e is to counteract the pull of the wall slab, and they are 
thus designed for the full reaction of this slab. 

The remaining bars of Fig. 17.8 serve as shrinkage reinforcement, except that 
bars f have an important additional function. It will be recalled that the wall and heel 
slabs are supported on three sides. Even though they were designed as if supported 
only by the counterforts, they develop moments where they join. The resulting tension 
in and near the reentrant comer should be provided for by bars f. 

The question of reinforcing bar details, always important, is particularly so for 
comers subject to substantial bending moments, such as are present for both cantilever 
and counterfort retaining walls. Valuable suggestions are found in Ref. 17.9. 

17.10 PRECAST RETAINING WALLS 

Largely because of the high cost of forming cast-in-place retaining walls, there has 
been increasing use in recent years of various forms of precast concrete walls. 
Sections can be mass produced under controlled factory conditions using standardized 
forms, with excellent quality control. On-site construction time is greatly reduced, and 



FIGURE 17.9 
Precast T-Wall® retaining 
wall system. ( Courtesy 

Concrete Systems Inc., Hudson, 

New Hampshire.) 
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generally only a small crew using light equipment is required. Weather becomes much 
less of a factor in completion of the work than for cast-in-place walls. 

One type ofprecast wall is shown in Fig. 17.9. Precast T sections are used, each 
2.5 ft high and 5 ft wide, with T stems varying according to requirements from 4 ft to 
20 ft. Individual units are stacked, using shear keys in the space created where teeth 
of a top and bottom unit come together, at approximately a 6 ft spacing perpendicular 
to the face of the wall. Calculations for stability against sliding and overturning and 
for bearing pressures are the same as for cast-in-place cantilever or counterfort walls, 
with stability provided by the combined weight of the concrete wall and compacted 
select backfill. Such walls can be constructed with vertical face or battered section, 
with heights up to 25 ft. 

Walls of the type shown have been used for highways, parking lots, commercial 
and industrial sites, bank stabilization, wing walls, and similar purposes. 
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PROBLEMS 
17.1. A cantilever retaining wall is to be designed with geometry as indicated in 

Fig. Pl7.l. Backfill material will be well-drained gravel having unit weight 
w = 120 pcf, internal friction angle <p = 33°, and friction factor against the 
concrete base f = 0.55. Backfill placed in front of the toe will have the same 
properties and will be well compacted. The final grade behind the wall will be 
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FIGURE P17.1 

3'[ 

level with the top of the wall, with no surcharge. At the lower level, it will be 
3 ft above the top of the base slab. To improve sliding resistance, a key will be 
used, tentatively projecting to a depth 4 ft below the top of the base slab. (This 
dimension may be modified if necessary.) 
(a) Based on a stability investigation, select wall geometry suitable for the 

specified conditions. For a first trial, place the outer face of the wall ½ the 
.. width of the base slab back from the toe. 

(b) Prepare the complete structural design, specifying size, placement, and 
cutoff points for all reinforcement. Materials have strengths J; = 4000 psi 
andJ;, = 60,000 psi. Allowable soil bearing pressure is 5000 psf. 

Optional 
counterforts 

\ 
\ 
\ 
\ 

l 
18' 

j 
4' 

17.2. Redesign the wall of Problem 17.1 as a counterfort retaining wall. 
Counterforts are tentatively spaced 12 ft on centers, although this may be mod
ified if desirable. Include all reinforcement details, including reinforcement in 
the counterforts. 



Concrete Building Systems 

18.1 INTRODUCTION 

Most of the material in the preceding chapters has pertained to the design of reinforced 
concrete structural elements, e.g., slabs, columns, beams, and footings. These elements 
are combined in various ways to create structural systems for buildings and other 
construction. An important part of the total responsibility of the structural engineer is 
to select, from many alternatives, the best structural system for the given conditions. 
The wise choice of structural system is far more important, in its effect on overall 
economy and serviceability, than refinements in proportioning the individual mem
bers. Close cooperation with the architect in the early stages of a project is essential 
in developing a structure that not only meets functional and esthetic requirements 
but exploits to the fullest the special advantages of reinforced concrete, which include 
the following: 

Versatility of form. Usually placed in the structure in the fluid state, the mate
rial is readily adaptable to a wide variety of architectural and functional requirements. 

Durability. With proper concrete protection of the steel reinforcement, the 
structure will have long life, even under highly adverse climatic or environmental 
conditions. 

Fire resistance. With proper protection for the reinforcement, a reinforced 
concrete structure provides the maximum in fire protection. t 

Speed of construction. In terms of the entire period, from the date of approval 
of the contract drawings to the date of completion, a concrete building can often be 
completed in less time than a steel structure. Although the field erection of a steel 
building is more rapid, this phase must necessarily be preceded by prefabrication of 
all parts in the shop. 

Cost. In many cases the first cost of a concrete structure is less than that of a 
comparable steel structure. In almost every ~JlSe, maintenance costs are less. 

Availability of labor and material. It is always possible to make use of local 
sources of labor, and in many inaccessible areas, a nearby source of good aggregate 
can be found, so that only the cement and reinforcement need to be brought in from 
a remote source. 

Two record-setting examples of good building design in concrete are shown in Figs. 18.1 
and 18.2. 

t Code requirements for fire protection are presented in Ref. 18.1. 

613 



614 DESIGN OF CONCRETE STRUCTURES Chapter 18 

FIGURE 18.1 
View of 31 l South Wacker 

Drive under construction. 
When completed. it was the 
world's tallest concrete 
build.ing, with total height of 
946 ft. (Courtesy of Portla11d 

Cement Associa1io11.) 

18.2 FLOOR AND ROOF SYSTEMS 

The types of concrete floor and roof systems are so numerous as to defy concise 
classification. In steel construction, the designer usually is limited to using structural 
shapes that have been standardized in form and size by the relatively few producers in 
tbe field. In reinforced concrete, on tbe other hand, the engineer has almost complete 
control over the form of the structural parts of a building. In adclition, many small 
producers of reinforced concrete structural elements and accessories can compete 
profitably in this field, since plant and equipment requirements are not excessive. This 
has resulted in the development of a wide variety of concrete systems. Only the more 
common types can be mentioned in this text. 

In general, reinforced concrete floor and roof systems can be classified as one-way 
systems, in which the main reinforcement in each structural element runs in one direc
tion only, and two-way systems, in which the main reinforcement in at least one of 
the structural elements runs in perpendicular directions. Systems of each type can be 
identified in the following list: 

(a) One-way slab supported by monolithic concrete beams 
(b) One-way slab supported by steel beams (shear connectors are used for compos

ite action in the direction of the beam span) 



FIGURE18.2 
The Burg Dubai, shown 
under construc1ion, is the 
current record holder. not 
only as the tallest reinforced 
concrete building, bu1 also as 
the tallest structure of any 
type in Lhe world, with a total 
height in excess of 2 I 00 ft. 
(Burg Dubai, designed by 
and copyright to Skidmore, 
Owings and Merrill LLP.) 
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(c) One-way slab with cold-formed steel decking as form and reinforcement 
(d) One-way joist floor (also known as ribbed slab) 
(e) 1\vo-way slab supported by edge beams for each panel 
(f) Flat slabs, with column capitals or drop panels or both, but without beams 
(g) Flat plates, without beams and with no drop panels or column capitals 
(h) Two-way joist floors, with or without beams on the column lines 

Each of these types will be described briefly in the foUowing sections. Additional 
information will be found in Refs. 18.2 to 18.4. In addition to the cast-in-place floor 
and roof systems described in this section, a great variety of precast concrete systems 
have been devised. Some of these will be described in Section 18.5. 

a. Monolithic Beam-and-Girder Floors 

A beam-and-girder floor consists of a series of parallel beams supported at their 
extremities by girders, which in turn frame into concrete columns placed at more or 
less regular intervals over the entire floor area, as shown in Fig. 18.3. This framework 
is covered by a one-way reinforced concrete slab, the load from which is transmitted 
first to the beams and then to the girders and columns. The beams are usually spaced 
so that they come at the midpoints, at the third points, or at the quarter points of the 
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FIGURE 18.3 
Framing of beam-and-girder 
floor: (a) plan view; 
(b) section through beams; 
(c) section through girders. 
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girders. The arrangement of beams and spacing of columns should be determined by 
economical and practical considerations. These will be affected by the use to which 
the building is to be put, the size and shape of the ground area, and the load that must 
be carried. A comparison of a number of trial designs and estimates should be made 
if the size of the building warrants, and the most satisfactory arrangement selected. If 
the spans in one direction are not long, say 20 ft or less, the beams may be omitted 
altogether, and the slab, spanning in one direction, can be carried directly by girders 
spanning in the perpendicular direction on the column lines. Since the slabs, beams, 
and girders are built monolithically, the beams and girders are designed as T beams 
and advantage is taken of continuity. 

Beam-and-girder floors are adapted to any loads and to any spans that might be 
encountered in ordinary building construction. The normal maximum spread in live 
load values is from 40 to 400 psf, and the normal range in column spacings is from 16 
to 32 ft. 

The design and detailing of the joints where beams or girders frame into building 
columns should be given careful consideration, particularly for designs in which 
substantial horizontal loads are to be resisted by frame action of the building. In this 
case, the column region, within the depth of the beams framing into it, is subjected to 
significant horizontal shears as well as to axial and flexural loads. Special horizontal 
column ties must be included to avoid uncontrolled diagonal cracking and disintegra
tion of the concrete, particularly if the joint is subjected to load reversals. Specific 
recommendations for the design of beam-column joints are found in Chapter 11 and 
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Ref. 18.5. Joint design for buildings that resist seismic forces is subject to special ACI 
Code provisions (see Chapter 20). 

In normal beam-and-girder construction, the depth of the beams may be as much 
as 3 times the web width. Improved economy, however, is achieved by using beams 
with webs that are generally wider and shallower, coupled with girders that have the 
same depth as the beams. The resulting girders, more often than not, have webs that 
are wider than their effective depths. Although the flexural steel in the members is 
increased because of the reduced effective depth compared with deeper members, the 
increases in material costs are more than paid for by savings in forming costs ( one 
depth for all members) and easier construction (wider beams are easier to cast than 
narrow beams). Another key advantage is the reduced construction depth, which 
permits a reduction in the overall height of the building. 

For light loads, a floor system has been developed in which the beams are 
omitted in one direction, the one-way slab being carried directly by column-line 
beams that are very broad and shallow, as shown in Fig. 18.4. These beams, sup
ported directly by the columns, become little more than a thickened portion of the 
slab. This type of construction, in fact, is known as banded slab construction, and 
there are a number of advantages associated with its use, over and above those 
associated with shallow beam-and-girder construction. In the direction of the slab 
span, a haunched member is present, in effect, with the maximum effective depth at 
the location of greatest negative moment, across the support lines. Negative moments 
are small at the edge of the haunch, but the depth becomes less, and positive slab 
moments are reduced as well. The increased flexural steel in the beam (slab-band) 
resulting from the reduced effective depth is often outweighed by savings in the slab 
steel. Along with reduced construction depth, banded slab construction allows 
greater flexibility in locating columns, which may be displaced some distance from 
the centerline of the slab-band without significantly changing the structural action 
of the floor. Formwork is simplified because of the reduction in the number of framing 
members. For such systems, special attention should be given to design details at the 
beam-column joint. Transverse top steel may be required to distribute the column 
reaction over the width of the slab-band. In addition, punching shear failure is 
possible; this may be investigated using the same methods presented earlier for flat 
plates (see Section 13.10). 

b. Composite Construction with Steel Beams 

One-way reinforced concrete slabs are also frequently used in buildings for which the 
columns, beams, and girders consist of structural steel. The slab is normally designed 
for full continuity over the supporting beams, and the usual methods are followed. The 
spacing of the beams is usually 6 to 8 ft. 

To provide composite action, shear coqpectors are welded to the top of the steel 
beam and are embedded in the concrete slab, as shown in Fig. 18.5a. By preventing 
longitudinal slip between the slab and steel beam in the direction of the beam axis, 
the combined member is both stronger and stiffer than if composite action were not 
developed. Thus, for given loads and deflection limits, smaller and lighter steel beams 
can be used. 

Composite floors may also use encased beams, as shown in Fig. 18.5b, offering 
the advantage of full fireproofing of the steel, but at the cost of more complicated 
formwork and possible difficulty in placing the concrete around and under the steel 
member. Such fully encased beams do not require shear connectors as a rule. 
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FIGURE 18.4 
Banded slab floor system. 

(a) Interior slab band 

(b) Edge band at exterior column 

c. Steel Deck Reinforced Composite Slabs 

lt is nearly standard practice to use stay-in-place light-gage cold-formed steel deck 
panels in composite floor construction. As shown in Fig. 18.Sc, the steel deck serves 
as a stay-in-place form and, with suitable detailing, the slab becomes composite with 



FIGURE 18.5 
Composite beam-and-slab 
floor. 
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the steel deck, serving as the main tensile flexural steel. Suitable for relatively light 
floor loading and short spans, composite steel deck reinforced slabs are found in office 
buildings and apartment buildings, with column-line girders and beams in the perpen
dicular direction subdividing panels into spans up to about 12 ft. Temporary shoring 
may be used at the midspan or third point of the panels to avoid excessive stresses and 
deflections while the concrete is placed, when the steel deck panel alone must carry 
the load. 

d. One-Way Joist Floors 

A one-way joist floor consists of a series of small, closely spaced reinforced concrete 
T beams, framing into monolithically cast concrete girders, which are in turn carried 
by the building columns. The T beams, called joists, are formed by creating void 
spaces in what otherwise would be a solid slab. Usually these voids are formed using 
special steel pans, as shown in Fig. 18.6. Concrete is cast between the forms to create 
ribs, and placed to a depth over the top of the forms so as to create a thin monolithic 
slab that becomes the T beam flange. ,., 

Since the strength of concrete in tension is small and is commonly neglected in 
design, elimination of much of the tension concrete in a slab by the use of pan forms 
results in a saving of weight with little change in the structural characteristics of the 
slab. Ribbed floors are economical for buildings, such as apartment houses, hotels, and 
hospitals, where the live loads are fairly small and the spans comparatively long. They 
are not suitable for heavy construction such as in warehouses, printing plants, and 
heavy manufacturing buildings. 

Standard forms for the void spaces between ribs are either 20 or 30 in. wide and 
8, 10, 12, 14, 16, or 20 in. deep. They are tapered in cross section, as shown in 
Fig. 18.7, generally at a slope of 1 to 12, to facilitate removal. Any joist width can be 
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FIGURE 18.6 
Steel forms for one-way joist 
floor. 

obtained by varying the width of the soffit (bottom) form. Tapered end pans are used 
where it is desired to obtain a wider joist near the end supports, such as may be 
required for high shear or negative bending moment. After the concrete has hardened, 
the steel pans are removed for reuse. 

According to ACJ Code 8.13.2, ribs must not be less than 4 in. wide and may not 
have a depth greater than 3.5 times the minimum web width. (For easier bar placement 
and placement of concrete, a minimum web width of 5 in. is desirable.) The clear 
spacing between ribs (determined by the pan width) must not exceed 30 in. The slab 
thickness over the top of the pans must not be less than one-twelfth of the clear 
distance between ribs, nor less than 2 in., according to ACI Code 8. l 3.6. Table 18. l 
gives unit weights, in terms of psf of floor surface, for common combinations of joist 
width and depth, slab thickness, and form width. 

Reinforcement for the joists usually consists of two bars in the positive bending 
region, with one bar discontinued where no longer needed or bent up to provide 

~ 
Joist bars 

Welded wire 
reinforcement 

Joist bars 

Spandrel 
beam 

(a) Longitudinal section through joists (b) Transverse section through joists 

FIGURE 18.7 
One-way joist floor cross sections: (a) cross section through supporting girder showing ends of joists; (b) cross section 
through typical joists. 
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TABLE 18.1 
Weight of one-way joist floor systems 

3 in. Top Slab 4½ in. Top Slab 

Width of Width of 
Depth of Joist+ Depth of Joist+ 

Pan Form, Pan Form, Weight, Pan Form, Pan Form, Weight, 
in. in. psf in. in. psf 

8 5 + 20 60 8 5 + 20 79 
8 5 + 30 54 8 5 + 30 72 

10 5 + 20 67 10 5 + 20 85 
10 5 + 30 58 10 5 + 30 77 
12 5 + 20 74 12 5 + 20 92 
12 5 + 30 63 12 5 + 30 82 
14 5 + 30 68 14 5 + 30 87 
14 6 + 30 72 14 6 + 30 91 
16 6 + 30 78 16 6 + 30 97 
16 7 + 30 83 16 7 + 30 101 
20 6 + 30 91 20 6 + 30 109 
20 7 + 30 96 20 7 + 30 115 

Source: Adapted from Ref. 18.3. 

a part of the negative steel requirement over the supporting girders. Straight top bars 
are added over the support to provide for the negative bending moment. According to 
ACI Code 7.13.2, at least one bottom bar must be continuous over the support, or at 
noncontinuous supports, terminated with a standard hook or headed bar, as a measure 
to improve structural integrity in the event of major structural damage. 

ACI Code 7. 7 .1 permits a reduced concrete cover of ¾ in. to be used for joist 
construction, just as for slabs. The thin slab (top flange) is reinforced mainly for tem
perature and shrinkage stresses, using welded wire reinforcement or small bars placed 
at right angles to the joists. The area of this reinforcement is usually 0.18 percent of 
the gross cross section of the concrete slab. 

One-way joists are generally proportioned with the concrete providing all of 
the shear strength, with no stirrups used. A 10 percent increase in Ve above the 
value given by Eq. (4.12a) or (4.12b) is permitted for joist construction, according 
to ACI Code 8.13.8, based on the possibility of redistribution of local overloads to 
adjacent joists. Tests have shown that while local redistribution does occur, the 
shear strength of the full system (all joists acting together) is enhanced by less than 
10 percent (Ref. 18.6). 

The joists and the supporting girders are placed monolithically. Like the joists, 
the girders are designed as T beams. The shape of the girder cross section depends 
on the shape of the end pans that form the joists, as shown in Fig. 18. 7 a. If the girders 
are deeper than the joists, the thin concrete slab directly over the top of the pans 
is often neglected in the girder design. The girder width can be adjusted, as needed, 
by varying the placement of the end pans. The width of the web below the bottom of 
the joists must be at least 3 in. narrower than the flange ( on either side) to allow for 
pan removal. 

A type of one-way joist floor system has evolved known as a joist-band system 
in which the joists are supported by broad girders having the same total depth as the 
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joists, as illustrated in Fig. 18.7. Separate beam forms are eliminated, and the same 
deck forms the soffit of both the joists and the girders. The simplified form work, faster 
construction, level ceiling with no obstructing beams, and reduced overall height of 
walls, columns, and vertical utilities combine to achieve an overall reduction in cost 
in most cases. 

In one-way joist floors, the thickness of the slab is often controlled by fire resis
tance requirements. For a rating of 2 hours, for example, the slab must be about 4½ in. 
thick (Ref. 18.1). If20 or 30 in. pan forms are used, slab span is small and slab strength 
is underutilized. This has led to what is known as the wide module joist system, or skip 
joist system (Ref. 18.7). Such floors generally have 6 to 8 in. wide ribs that are 5 to 
6 ft on centers, with a 4½ in. top slab. These floors not only provide more efficient use 
of concrete in the slab, but also require less formwork labor. By ACI Code 8.13.4, 
wide module joist ribs must be designed as ordinary T beams, because the clear 
spacing between ribs exceeds the 30 in. maximum for joist construction, and the 
special ACI Code provisions for joists do not apply. Concrete cover for reinforcement 
is as required for beams, not joists, and the 10 percent increase in Ve does not apply. 
Often the joists in wide module systems are carried by wide beams on the column 
lines, the depth of which is the same as that of the joists, to form a joist-band system 
equivalent to that described earlier. 

Useful design information pertaining to one-way joist floors, including extensive 
load tables, will be found in the CRSI Design Handbook (Ref. 18.3). Suggested bar 
details and typical design drawings are found in the AC/ Detailing Manual (Ref. 18.4). 

e. Two-Way Edge-Supported Slabs 

Two-way solid slabs supported by beams on the column lines on all sides of each slab 
panel have been discussed in detail in Chapter 13. The perimeter beams are usually 
concrete cast monolithically with the slab, although they may also be structural steel, 
often encased in concrete for composite action and for improved fire resistance. For 
monolithic concrete, both the beams and the slabs are designed using the direct design 
method or the equivalent frame method described in Chapter 13. 

Two-way solid slab systems are suitable for intermediate to heavy loads on spans 
up to about 30 ft. This range corresponds closely to that for beamless slabs with drop 
panels and column capitals, described in the following section. The latter are often 
preferred because of the complete elimination of obstructing beams below the slab. 

For lighter loads and shorter spans, a two-way solid slab system has evolved in 
which the column-line beams are wide and shallow, such that a cross section through 
the floor in either direction resembles the slab-band shown earlier in Fig. 18.4. The 
result is a two-way slab-band floor that, from below, appears as a paneled ceiling. 
Advantages are similar to those given earlier for one-way slab-band floors and for 
joist-band systems. 

f. Beam less Flat Slabs with Drop Panels or Column Capitals 

By suitably proportioning and reinforcing the slab, it is possible to eliminate supporting 
beams altogether. The slab is supported directly on the columns. In a rectangular or 
square region centered on the columns, the slab may be thickened and the column tops 
flared, as shown in Fig. 18.8. The thickened slab is termed a drop panel, and the 
column flare is referred to as a column capital. Both of these serve a double purpose: 
they increase the shear strength of the floor system in the critical region around the 
column, and they provide increased effective depth for the flexural steel in the region 



FIGURE 18.8 
Flat slab garage floor with 
both drop panels and column 
capitals. (Courtesy of Portland 
Ceme111 Association.) 
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of high negative bending moment over the support. Beamless systems with drop 
panels or column capitals or both are termed flat slab systems (although almost all 
slabs in structural engineering practice are "flat" in the usual sense of the word), and 
are differentiated from flat plate systems, with absolutely no projections below the 
slab, which are described in the following section. 

In general, flat slab construction is economical for (jve loads of 100 psf or more 
and for spans up to about 30 ft. It is widely used for storage warehouses, parking 
garages, and below-grade structures carrying heavy earth-fill loads, for example. For 
lighter loads such as in apartment houses, hotels, and office buildings, flat plates 
(Section 18.2g) or some form of joist construction (Sections 18.2d and h) will usually 
prove less expensive. For spans longer than about 30 ft, beams and girders are used 
because of the greater stiffness of that form of construction. 

Flat slabs may be designed by the direct design method or the equivalent frame 
method, both described in detail in Chapter 13, or the strip method described in 
Chapter 15. 

g. Flat Plate Slabs 

A flat plate floor is essential1y a flat slab floor with the drop panels and column 
capitals omitted, so that a floor of uniform thickness is carried directly by prismatic 
columns. Flat plate floors have been found to be economical and otherwise advanta
geous for such uses as apartment buildings, as shown in Fig. 18.9, where the spans 
are moderate (up to about 30 ft) and loads relatively light. Prestressed concrete 
(Chapter 19) flat plate construction for residential and light commercial buildings has 
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FIGURE 18.9 
Flat plate floor construction. 
(Courtesy of Portland Cemellf 
Association.) 

spans up to 40 ft. The conslruction depth for each floor is held to the absol.ute 
minimum, with resultant savings in the overall height of the building. The smooth 
underside of the slab can be painted directly and left exposed for ceiling, or plaster 
can be applied to the concrete. Minimum construction time and low labor costs result 
from the very simple formwork. 

Certain problems associated with flat plate construction require special attention. 
Shear stresses near the columns may be very high, requiring the use of special types 
of slab reinforcement there. The transfer of moments from slab to columns may further 
increase these shear stresses and requires concentration of negative flexural steel in the 
region close to the columns. Both these problems are treated in detail in Chapter 13. 
At the exterior columns, where such shear and moment transfer may cause particular 
difficulty. the design is much improved by extending the slab past the column in a 
short cantilever. 

Some flat plate buildings are constructed by the lift slab method, shown in 
Fig. 18.10. A casting bed (often doubling as the ground-floor slab) is placed, steel 
columns are erected and braced, and at ground level successive slabs, which will later 
become the upper floors, are cast. A membrane or sprayed parting agent is laid down 
between successive pours so that each slab can be lifted in its tum, starting with the 
top. Jacks placed atop the columns are connected to threaded rods extending down 
the faces of the columns and connecting, in tum, to lifting collars embedded in the 
slabs, as shown in Fig. 13.24d. When a slab is in its final position, shear plates are 
welded to the column below the Lifting collar, or other devices are used to transfer 
the vertical slab reaction. Lifting collars such as those shown in Fig. 13.24d, in 
addition to providing anchorage for the lifting rods, serve to increase the effective 
size of the support for the slab and consequently improve the shear strength of the 



FIGURE 18.J0 
Lift slab const.ruclion used 
with flat plate floors: student 
dormitory at Clemson 
University, South Carolina. 
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slab. The successful erection of structures using lhe Lift slab method requires precise 
control of the lifting operation at all times. because even slight differences in level of 
the support collars may drastically change moments and shears in the slab, possibly 
leading to reversal of loading. Catastrophic accidents have resulted from failure to 
observe proper care in lifting or to provide adequate lateral bracing for the columns 
(Ref. 18.8). As a result of these accidents, this method of construction is used only 
by specialized contractors. 

h. Two-Way Joist Floors 

As in one-way floor systems, the dead weight of two-way slabs can be reduced 
considerably by creating void spaces in what would otherwise be a solid slab. For 
the most part, the concrete removed is in tension and ineffective, so the lighter floor 
has virtually the same structural characteristics as the corresponding solid floor. 
Voids are usually formed using dome-shaped steel pans that are removed for reuse 
after the s lab has hardened. Forms are placed on a plywood platform as shown in 
Fig. 18.11. Note in the figure that domes have been omitted near the columns to 
obtain a solid slab in the region of negative bending moment and high shear. The 
lower flange of each dome contacts that of the adjacent dome, so that the concrete 
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FIGURE 18.11 
Two-way joist floor under 
construction with steel dome 
forms. (Courtesy of Ceco 

Corporarion.) 

FIGURE 18.12 
Regency House Apartments. 
San Antonio, with 
cantilevered two-way joist 
slab plus integral beams on 
column lines. 

is cast entirely against a metal surface, resulting in an excellent finished appearance 
of Lhe s lab. A wafflelike appearance (these slabs are sometimes called waffle slabs) 
is imparted to the underside of the slab, which can be featu red to architectural 
advantage, as shown in Fig. 18.12. 
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TABLE 18.2 
Equivalent slab thickness and weight of two-way joist 
floor systems 

3 in. Top Slab 4½ in. Top Slab 

Equivalent 
Depth of Uniform 

Pan Form, Thickness, Weight, 
in. in. psf 

36 in. Module (30 in. pans plus 6 in. ribs) 

8 5.7 71 
10 6.4 80 
12 7.2 90 
14 8.0 JOO 
16 8.9 111 
20 10.6 132 

24 in. Module (19 in. pans plus S in. ribs) 

8 6.3 79 
JO 
12 
14 
16 

7.3 
8.2 
9.3 

10.3 

Source: Adapted from Ref. 18.3. 

91 
103 
116 
129 

Equivalent 
Uniform 

Thickness, 
in. 

7.2 
7.9 
8.7 
9.5 

10.3 
12.1 

7.8 
8.8 
9.8 

10.7 
11.8 

Weight, 
psf 

90 
99 

109 
119 
129 
151 

98 
110 
122 
134 
148 

Two-way joist floors are designed following the usual procedures for two-way 
solid slab systems, as presented in Chapter 13, with the solid regions at the columns 
considered as drop panels. Joists in each direction are divided into column strip joists 
and middle strip joists, the former including all joists that frame into the solid head. 
Each joist rib usually includes two bars for positive-moment resistance, and one may 
be discontinued where no longer required. Negative steel is provided by separate 
straight bars running in each direction over the columns. 

In design calculations, the self-weight of two-way joist floors is considered to be 
uniformly distributed, based on an equivalent slab of uniform thickness having the 
same volume of concrete as the actual ribbed slab. Equivalent thicknesses and weights 
are given in Table 18.2 for standard 30 and 19 in. pans of various depths and for either 
a 3 in. top slab or 4½ in. top slab, based on normalweight concrete (150 lb/ft3). 

18.3 PANEL, CURTAIN, AND BEARING WALLS •.. 

As a general rule, the exterior walls of a reinforced concrete building are supported at 
each floor by the skeleton framework, their only function being to enclose the building. 
Such walls are called panel walls. They may be made of concrete (often precast), 
concrete block, brick, tile blocks, or insulated metal panels. The latter may be faced 
with aluminum, stainless steel, or a porcelain-enamel finish over steel, backed by insu
lating material and an inner surface sheathing. The thickness of each of these types of 
panel walls will vary according to the material, type of construction, climatological 
conditions, and the building requirements governing the particular locality in which 
the construction takes place. 
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The pressure of the wind is usually the only load that is considered in determining 
the structural thickness of a wall panel, although in some cases exterior walls are 
used as diaphragms to transmit forces caused by horizontal loads down to the build
ing foundations. 

Curtain walls are similar to panel walls except that they are not supported at 
each story by the frame of the building, but are self-supporting. However, they are 
often ancho;:~d to the building frame at each floor to provide lateral support. 

A bearing wall may be defined as one that carries any vertical load in addition 
to its own weight. Such walls may be constructed of stone masonry, brick, concrete 
block, or reinforced concrete. Occasional projections or pilasters add to the strength 
of the wall and are often used at points of load concentration. In small commercial 
buildings, bearing walls may be used with economy and expediency. In larger com
mercial and manufacturing buildings, when the element of time is an important factor, 
the delay necessary for the erection of the bearing wall and the attendant increased 
cost of construction often dictate the use of some other arrangement. 

18.4 SHEAR WALLS 

FIGURE 18.13 
Building with shear walls 
subject to horizontal loads: 
(a) typical floor; (b) front 
elevation; (c) end elevation. 

Horizontal forces acting on buildings, e.g., those due to wind or seismic action, can be 
resisted by different means. Rigid-frame resistance of the structure, augmented by the 
contribution of ordinary masonry walls and partitions, can provide for wind loads in 
many cases. However, when heavy horizontal loading is likely, such as would result 
from an earthquake, reinforced concrete shear walls are used. These may be added 
solely to resist horizontal forces, or concrete walls enclosing stairways or elevator 
shafts may also serve as shear walls. 

Figure 18.13 shows a building with wind or seismic forces represented by arrows 
acting on the edge of each floor or roof. The horizontal surfaces act as deep beams to 
transmit loads to vertical resisting elements A and B. These shear walls, in tum, act as 
cantilever beams fixed at their base to carry loads down to the foundation. They are 

C 

A! D D D !a 
D 

(a) 

------------
------------

-'-Jf 
(b) (c) 



FIGURE 18.14 
Geometry and reinforcement 
of a typical shear wall: 
(a) cross section; 
(b) elevation. 
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subjected to (1) a variable shear, which reaches a maximum at the base; (2) a bending 
moment, which tends to cause vertical tension near the loaded edge and compression 
at the far edge; and (3) a vertical compression due to ordinary gravity loading from the 
structure. For the building shown, additional shear walls C and D are provided to resist 
loads acting in the long direction of the structure. 

Shear is apt to be critical for walls with a relatively low ratio of height to length. 
High shear walls are controlled mainly by flexural requirements. 

Figure 18.14 shows a typical shear wall with height hw, length lw, and thickness 
h. It is assumed to be fixed at its base and loaded horizontally along its left edge. 
Vertical flexural reinforcement of area As is provided at the left edge, with its centroid 
a distance d from the extreme compression face. To allow for reversal of load, identi
cal reinforcement is provided along the right edge. Horizontal shear reinforcement 
with area Av at spacing s is provided, as well as vertical shear reinforcement with area 
Ah at spacing s 1• Such distributed steel is normally placed in two layers, parallel to the 
faces of the wall. 

The design basis for shear walls, according to ACI Code 11.9, is of the same 
general form as that used for ordinary beams: 

(18.1) 

where 

(18.2) 

Based on tests (Refs. 18.9 and 18.10), an upper limit has been established on the 
nominal shear strength of walls: 

V,, ~ JOA v'J[ hd (18.3) 
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where A is the lightweight concrete strength modification factor (see Section 4.5a). In 
this and all other equations pertaining to the design of shear walls, the distance d is 
taken equal to 0.8/w. A larger value of d, equal to the distance from the extreme 
compression face to the center of force of all reinforcement in tension, may be used 
when determined by a strain compatibility analysis. 

The value of Ve, the nominal shear strength provided by the concrete, may be 
based on the usual equations for beams, according to ACI Code 11.9.5. For walls 
subject to vertical compression, 

V = 2AWhd e J e (18.4) 

and for walls subject to vertical tension Nu, 

¼ = 2( 1 + 50~~JAVJ;hd (18.5) 

Here, Nu is the factored axial load in pounds, taken negative for tension, and A
8 

is the 
gross area of horizontal concrete section in square inches. Alternately, the value of Ve 
may be based on a more detailed calculation, as the lesser of 

(18.6) 

or 

(18.7) 

where Nu is negative for tension as before. Equation (18.6) corresponds to the occur
rence of a principal tensile stress of approximately 4 vJ: at the centroid of the shear
wall cross section. Equation (18.7) corresponds approximately to the occurrence of a 
flexural tensile stress of 6 vJ: at a section /w/2 above the section being investigated. 
Thus, the two equations predict, respectively, web-shear cracking and flexure-shear 
cracking. When the quantity MufVu - lw/2 is negative, Eq. (18.7) is inapplicable. 
According to the ACI Code, horizontal sections located closer to the wall base than a 
distance lw/2 or hw/2, whichever is less, may be designed for the same Ve as that com
puted at a distance lw/2 or hw/2. 

When the factored shear force Vu does not exceed <p Vj2, a wall may be rein
forced according to minimum requirements. When Vu exceeds cp Vj2, reinforcement 
for shear is to be provided according to the following requirements. 

The nominal shear strength Vs provided by the horizontal wall steel is deter
mined on the same basis as for ordinary beams: 

AvJyd 
V:=--

s s (18.8) 

where Av = area of horizontal shear reinforcement within vertical distances, in2 

s = vertical distance between horizontal reinforcement, in. 
J;, = yield strength of reinforcement, psi 

Substituting Eq. (18.8) into Eq. (18.2), then combining with Eq. (18.1), one obtains the 
equation for the required area of horizontal shear reinforcement within a distance s: 

(V,, - </J¼)s 
Av=-----

cpJyd 
(18.9) 
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The minimum permitted ratio of horizontal shear steel to gross concrete area of vertical 
section is 

p1 = 0.0025 (18.10) 

and the maximum spacings is not to exceed lw/5, 3h, or 18 in. 
Test results indicate that for low shear walls, vertical distributed reinforcement 

is needed as well as horizontal reinforcement. Code provisions require vertical steel of 
area Ah within a spacing s1, such that the ratio of vertical steel to gross concrete area 
of horizontal section will be not less than 

Pz = 0.0025 + 0.5(2.5 - ~:) (p1 - 0.0025) (18.11) 

nor less than 0.0025. However, the vertical reinforcement ratio need not be greater 
than the required horizontal reinforcement ratio. The spacing of the vertical bars is not 
to exceed lw/3, 3h, or 18 in. 

Walls may be subject to flexural tension due to overturning moment, even when 
the vertical compression from gravity loads is superimposed. In many but not all cases, 
vertical steel is provided, concentrated near the wall edges, as shown in Fig. 18.14. The 
required steel area can be found by the usual methods for beams. 

The dual function of the floors and roofs in buildings with shear walls should be 
noted. In addition to resisting gravity loads, they must act as deep beams spanning 
between shear-resisting elements. Because of their proportions, both shearing and 
flexural stresses are usually quite low. According to ACI Code 9 .2.1, the load factor for 
live load drops to 1.0 when wind or earthquake effects are combined with the effects of 
gravity loads. Consequently, floor and roof reinforcement designed for gravity loads 
can usually serve as reinforcement for horizontal beam action also, with no increase in 
bar areas. 

ACI Code 11.9.1 permits walls with height-to-length ratios not exceeding 2.0 to 
be designed using strut-and-tie models (Chapter 10). The minimum shear reinforce
ment criteria of Eqs. (18.9) through (18.11) and the maximum spacing limits for s and 
s I must be satisfied. 

There are special considerations and requirements for the design of reinforced 
concrete walls in structures designed to resist forces associated with seismic motion. 
These are based on design for energy dissipation in the nonlinear range of response. 
This subject will be treated separately, in Chapter 20. 

18.5 PRECAST CONCRETE FOR BUILDINGS 

The earlier sections in this chapter have emphasized cast-in-place reinforced concrete 
structures. Construction of these structures requires a significant amount of skilled on
site labor. There is, however, another class of concrete construction for which the 
members are manufactured off site in precasting yards, under factory conditions, and 
subsequently assembled on site, a process that provides significant advantages in 
terms of economy and speed of construction. 

Precast concrete construction involves the mass production of repetitive and 
often standardized units: columns, beams, floor and roof elements, and wall panels. 
On large jobs, precasting yards are sometimes constructed on or adjacent to the site. 
More frequently, these yards are stationary regional enterprises that supply precast 
members to sizable areas within reasonable shipping distances, on the order of 200 mi. 
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Advantages of precast construction include less labor per unit because of mechanized 
series production; use of unskilled local labor, in contrast to skilled mobile construction 
labor; shorter construction time because site labor primarily involves only foundation 
construction and connecting the precast units; better quality control and higher concrete 
strength that are achievable under factory conditions; and greater independence of 
construction from weather and season. Disadvantages are the greater cost of trans
porting precast units, as compared with transporting materials, and the additional 
technical problems and costs of site connections of precast elements. 

Precast construction is used in all major types of structures: industrial buildings, 
residential and office buildings, halls of sizable span, bridges, stadiums, and prisons. 
Precast members frequently are prestressed in the casting yard. In the context of the 
present chapter, it is irrelevant whether a precast member is also prestressed. Discus
sion is focused on types of precast members and precast structures and on methods of 
connection; these are essentially independent of whether the desired strength of the 
member was achieved with ordinary reinforcement or by prestressing. A broader 
discussion of precast construction, which includes planning, design, materials, manu
facturing, handling, construction, and inspection, will be found in Refs. 18.11 and 
18.12. ACI Code Chapter 16 is dedicated to precast concrete. 

a. Types of Precast Members 

A number of types of precast units are in common use. Though most are not formally 
standardized, they are widely available, with minor local variations. At the same time, 
the precasting process is sufficiently adaptable for special shapes developed for par
ticular projects to be produced economically, provided that the number of repetitive 
units is sufficiently large. This is particularly important for exterior wall panels, which 
permit a wide variety of architectural treatments. 

Wall panels are made in a considerable variety of shapes, depending on archi
tectural requirements. The most frequent four shapes are shown in Fig. 18.15. These 
units are produced in one to four-story-high sections and up to 8 ft in width. They are 
used either as curtain walls attached to columns and beams or as bearing walls. To 
improve thermal insulation, sandwich panels are used that consist of an insulation core 
(e.g., foam glass, glass fiber, or expanded plastic) between two layers ofnormalweight 
or lightweight concrete. The two layers must be adequately interconnected through the 
core to act as one unit. A variety of surface finishes can be produced through the use of 
special exposed aggregates or of colored cement, sometimes employed in combination. 
The special design problems that arise in load-bearing wall panels, such as tilt-up 
construction, are discussed in Ref. 18.13. 

Stresses in wall panels are frequently more severe in handling and during erec
tion than in the finished structure, and the design must provide for these temporary 
conditions. Also, control of cracking is of greater importance in wall panels than in 
other precast units, for appearance more than for safety. To control cracking, the 
maximum tensile stress in the concrete, calculated by straight-line theory, should not 
exceed the modulus of rupture of the particular concrete with an adequate margin 
of safety. ACI Committee 533 (Ref. 18.14) recommends that tensile stresses for 
normal weight concrete be limited to 5 vJ: under the effects of form removal, handling, 
transportation, impact, and live load. Maximum tensile stresses equal to 75 and 
85 percent of this value are recommended for all-lightweight and sand-lightweight 
concrete, respectively. A wealth of information on precast wall panels is found in 
Refs. 18.12 and 18.14. 



FIGURE 18.15 
Precast concrete wall panels. 

FIGURE 18.16 
Precast floor and roof 
elements. 
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Roof and floor elements are made in a wide variety of shapes adapted to specific 
conditions, such as span lengths, magnitude of loads, desired fire ratings, and appear
ance. Figure 18.16 shows typical examples of the most common shapes, arranged in 
approximate order of increasing span length, even though the spans covered by the 
various configurations overlap widely. 

Flat slabs (Fig. 18.16a) are usually 4 in. thick, although they are used as thin 
as 2½ in. when continuous over several spans, and are produced in widths of 4 to 
8 ft and in lengths up to 36 ft. Depending on the magnitude of loads and on deflec
tion limitations, they are used over roof and floor spans ranging from 8 to about 
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FIGURE 18.17 
Precast beams and girders. 

22 ft. For lower weight and better insulation and to cover longer spans, hollow-core 
planks (Fig. 18.16b) with a variety of shapes are used. Some of these are made by 
extrusion in special machines. Depths range from 6 to 15 in., with widths of 3 or 
4 ft. Again depending on load and deflection requirements, they are used on roof 
spans from about 16 to 34 ft and on floor spans from 12 to 26 ft, which can be 
augmented to about 30 ft if a 2 in. topping is applied to act monolithically with the 
hollow plan.Is: 

For longer spans, double T members (Fig. 18.16c) are the most widely used 
shapes. Usual depths are from 14 to 36 in. They are used on roof spans up to 120 ft. 
When used as floor members, a concrete topping of at least 2 in. is usually applied to 
act monolithically with the precast members for spans up to about 50 ft, depending on 
load and deflection requirements. Finally, single T members are available in dimen
sions shown in Fig. 18.16d, mostly used for roof spans up to 100 ft and more. 

For all of these units, the member itself or its flange constitutes the roof or 
floor slab. If the floor or roof proper is made of other material (e.g., plywood, 
gypsum, and plank), it can be supported on precast joists in a variety of shapes for 
spans from about 15 to 60 ft. Reference 18.12 addresses the design of both rein
forced and prestressed concrete floor and roof units. 

The shape of precast beams depends chiefly on the manner of framing. If floor 
and roof members are supported on top of the beams, these are mostly rectangular 
in shape (Fig. 18.17 a). To reduce total depth of floor and roof construction, the 
tops of beams are often made flush with the top surface of the floor elements. To 
provide bearing, the beams are then constructed as ledger beams (Fig. 18.17 b) 
or L beams (Fig. 18.17c). Although these shapes pertain to building construction, 
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FIGURE 18.18 
Precast concrete columns. 
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precast beams or girders are also frequently used in highway bridges. As an example, 
Fig. 18.17d shows one of the various AASHTO bridge girders, so named because 
they were developed by the American Association of State Highway and Trans
portation Officials. 

If precast columns of single-story height are used so that the beams rest on 
top of the columns, simple prismatic columns are employed, which are available 
in sizes from about 12 X 12 to 24 X 24 in. (Fig. 18.18a). In this case, the beams 
are usually made continuous over the columns. Alternatively, in multistory con
struction, the columns can be made continuous for up to about six stories. In this 
case, integral brackets are frequently used to provide a bearing for the beams, as 
shown in Fig. 18.18b (see also Section 18.6b). Occasionally, T columns are used for 
direct support of double T floor members without the use of intermediate beams 
(Fig. 18.18c). 

Figures 18.19 to 18.27 illustrate some of the many ways in which precast 
members have been used. Figure 18.19 shows a floor slab element being placed on 
precast columns with integral column capitals. The entire building, including eleva
tor and stair shafts, is precast concrete. The photograph in Fig. 18.20 was taken in a 
precasting yard producing a variety of L, T, and rectangular shapes. Figure 18.21 
shows symmetrical precast I beams, such as are used both for buildings and bridges. 
The projecting stirrup bars along the top flange will provide secure interlock between 
the precast beams and a cast-in-place slab added later, ensuring composite action. 
Figure 18.22 shows a multistory parking garage in which three-story precast columns 
support L-section and inverted T-section girders. The girders, in turn, carry 60 ft 
span prestressed single T beams, which provide the deck surface. 

Figure 18.23 demonstrates that unusual architectural designs can be realized in 
precast concrete, as in this all-precast administration building. Wall panels are used to 
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FIGURE 18.19 
Precast slab element with 
precast columns, beams, and 
lateral framing. 

FIGURE 18.20 
Sand-blasted architectural 
finish applied to a precast L 
beam. 

produce a curved facade. Wedge-shaped repetitive floor units span freely from the 
exterior facade to the interior curved beam and column framework. In the insurance 
building shown in Fig. 18.24. 44 in. deep precast girders span 99 ft between exterior 
walls supported on four points each and provide six floors of office space entirely free 



FIGURE 18.21 
Precast I beams designed for 
composite action with a deck 
slab to be cast in place. 

FIGURE 18.22 
Precast parking garage at 
Cornell University. 
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of interior supports. The convention headquarters of Fig. 18.25 combines cast-in-place 
frames and floor slabs with precast double T roof beams and precast wall panels of 
special desi.gn. Figure 18.26 shows a 21 -story hotel under construction, which, except 
for the service units, consists enti rely of box-shaped, room-sized modules completely 
prefabricated and stacked on top of each other. Abroad, such precast modules, with 
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FIGURE 18.23 
All precast administration 
building. (Co11rte,5y of Portland 
Cement Associmion.) 

FIGURE 18.24 
Precast girders with 99 ft 
span and 44 in. depth for a 
column-free interior. 
(Courtesy of Pon/and Cement 
Associ(ltion.) 



FIGURE 18.25 
Pr..:cast roof and wall panels 
combined with cast-in-place 
frames and noor slabs. 
(Courtesy of Por1/011d Ce111e111 
Associarion.) 

FIGURE 18.26 
Precast room-sized modules 
for a 2 1-story hote l. (Counesy 

of Portland Cemefll Association.) 
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FIGURE 18.27 
Steel framing combined with 
prccast concrete noor planks 
for an 8-story hotel. (Courtesy 
of Bethlehem Steel Co.) 

plumbing, wiring, and heating preinstalJed, are widely used for multistory apartment 
bujldings as an alternative to making simi lar apartmenl structures in precast wall, roof, 
and floor panels, which are more easily shipped but less easily erected than box
shaped modules. 

Finally, Fig. I 8.27 shows an example of the frequent combined use of structural 
steel with precast concrete. [n this case, the framing of an eight-story hotel was done 
using bolted structural steel, while precast concrete floor and roof planks and precast 
wall panels were used for all other main structural components. This type of con
struction is economical for 6 to 12-story buildings, where it provides savings in both 
cost and construction time. It is one example of the increasingly important combined 
use of va1ious slfllctural materials and methods. 

b. Connections 

Cast-in-place reinforced concrete structures, by their very nature, tend to be monolithic 
and continuous. Connections, in the sense of joining two hitherto separate pieces. rarely 
occur in that type of construction. Precast structures, on lhe other hand, resemble 
steel construction in that the final structure consists of large numbers of prefabricated 
elements that are connected on site to form the finished structure. In both types of 
construction. such connections can be detailed to transmit gravity forces only, or gravity 
and horizontal forces, or moments in addition to these forces. In the last case, a con
tinuous structure is obtained much as in cast-in-place construction, and connections 
that achieve such continuity by appropriate use of special hardware, reinforcing steel, 
and concrete to transmit all tension. compression, and shear stresses are sometimes 
called hard connections. Ln contrast, connections that transmit reactions in one direc
tion only, analogous to rockers or rollers in steel structures, but permit a limited 
amount of motion to rel ieve other forces, such as horizontal reaction components, are 
sometimes known as soft connections (Ref. 18.15). l n almost all precast connections, 
bearing plates or pads are used 10 ensure distribution and reasonable uniformity of 
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bearing pressures. Bearing plates are made of steel, while bearing pads are made of 
materials such as chloroprene, fiber-reinforced polymers, and Teflon. If bearing plates 
are used, and the plates on two members are suitably joined by welding or other 
means, a hard connection is obtained in the sense that horizontal, as well as vertical, 
forces are transmitted. On the other hand, bearing pads transmit gravity loads but can 
permit sizable horizontal deformations and, thus, relieve horizontal forces. 

Precast concrete structures are subject to dimensional changes from creep, 
shrinkage, and relaxation of prestress in addition to temperature, while in steel 
structures only temperature changes produce dimensional variations. In the early 
development of precast construction, there was a tendency to use soft connections 
extensively to permit these dimensional changes to occur without causing restraint 
forces in the members, and particularly in the connections. Subsequent experience, 
however, has shown that the resulting structures possess insufficient stability against 
lateral forces, such as high wind and, particularly, earthquake effects. Therefore, 
current practice emphasizes the use of hard connections that provide a high degree 
of continuity (Refs. 18.12 and 18.16). When designing hard connections, provisions 
must be made to resist the restraint forces that are caused by the previously described 
volume changes (Ref. 18.12). Considerable information concerning this and other 
matters relating to connections is found in Refs. 18.12 and 18.16. 

Bearing stresses on plain concrete are limited by ACI Code 10.14.1 to 0.85</>J;, 
except when the supporting area is wider on all sides than the loaded area A 1• In such 
a case this value of the permissible bearing stress may be multiplied by ~ but 
not more than 2.0, where A2 is the maximum portion of the supporting surface that is 
geometrically similar to and concentric with the loading area (see Section 16.6b). 

In the design of connections, it is prudent to use load factors that exceed those 
required for the connected members. This is so because connections are generally 
subject to high stress concentrations that preclude the development of much ductility. 
In contrast, the members connected are likely to possess considerable ductility if 
designed by usual ACI Code procedures and will give warning of impending collapse 
if overloading should take place. In addition, imperfections in connection geometry 
may cause large changes in the magnitude of stresses compared with those assumed 
in the design. 

In designing members according to the ACI Code, load factors of 1.2 and 1.6 are 
applied to dead and live loads, D and L respectively, to determine the required strength. 
When volume change effects Tare considered, they are normally treated as dead load, 
and the factored load U is calculated from the equation U = I .2(D + T) + I .6L. 

A wide variety of connection details for precast concrete building components 
have evolved, only a few of which will be shown here as more or less representative 
connections. Many additional possibilities are described fully in Refs. 18.12 and 18.16. 

Column base connections are generally accomplished using steel base plates that 
are anchored into the precast column. Figure 18.28a shows a column base detail with 
projecting base plate. Four anchor bolts are.used, with double nuts facilitating erection 
and leveling of the column. Typically a minimum of 2 in. of nonshrink grout is used 
between the top of the pier, footing, or wall and the bottom of the steel base plate. 
Column reinforcement is welded to the top face of the base plate. Tests have confirmed 
that such column connections can transmit the full moment for which the column is 
designed, if properly detailed. 

An alternative base detail is shown in Fig. 18.28b, with the dimensions of the 
base plate the same as, or slightly smaller than, the outside column dimensions. 
Anchor bolt pockets are provided, either centered on the column faces as shown or 
located at the corners. Bolt pockets are grouted after the nuts are tightened. Column 
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FIGURE 18.28 
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bars, not shown here, would be welded to the top face of the base plate as before. 
Figure 18.29 shows the base plate detail, similar to Fig. 18.28b, that was used for the 
precast three-story columns in the parking garage shown in Fig. 18.22. 

In Fig. 18.28c, the main column bars project from the ends of the precast mem
ber a sufficient distance to develop their strength by bond. The projecting bars are 
inserted into grout-filled holes cast in the foundation when it is placed. 

In all of the cases shown, confining steel should be provided around the anchor 
bolts in the form of closed ties. A minimum of four No. 3 (No. 10) ties is recommended, 
placed on 3 in. centers near the top surface of the pier or wall. Tie reinforcement in the 
columns should be provided as usual. 

Figure 18.30 shows several beam-to-column connections. In all cases, rectangu
lar beams are shown, but similar details apply to I or T beams. The figure shows only 
the basic geometry; and auxiliary reinforcement, anchors, and ties are omitted for the 
sake of clarity. 

Figure 18.30a shows a joint detail with a concealed haunch. Well-anchored 
bearing angles are provided at the column seat and beam end. This type of connection 
may be used to provide vertical and horizontal reaction components, and with the 
addition of post-tensioned prestressing, will provide moment resistance as well. 

Figure 18.30b shows a typical bracket, common for industrial construction 
where the projecting bracket is not objectionable. The seat angle is welded to rein
forcing bars anchored in the column. A steel bearing plate is used at the bottom of the 
beam and anchored into the concrete. 

The embedded steel shape in Fig. 18.30c is used when it is necessary to avoid 
projections beyond the face of the column or below the bottom of the beam. A socket 



FIGURE 18.29 
Detail at base of precast 
column of Cornell University 
parking garage shown in 
Fig. 18.22. 
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is formed in casting the beam, with steel angle or plate at its top, to receive the beam 
stub. A steel connection can also be used in place of the bracket shown in Fig. 18.30b. 

Finally, Fig. 18.30d shows a doweled connection with bars projecting from the 
column into holes formed in the beam ends. These are grouted after the beams are in 
position. This connection is popular in precast concrete construction but has little 
flexural capacity (Ref. 18.17). 

Figure 18.31 shows several typical column-ro-column connections. Figure 18.3 la 
shows a detail using anchor bolt pockets and a double-nut system for leveling the 
upper column. Bolts can also be located at the center of the column faces, as shown in 
Fig. 18.28b. The detail shown in Fig. J 8.3 lb permits the main steel to be lap-spliced 
with that in the column below. One of the many possibilities for splicing a column 
through a continuous beam is shown in Fig. 18.3 lc. Main reinforcing bars in both 
upper and lower columns should be welded to steel cap and base plates to transfer their 
load, and anchor bolts should be designed with the same consideration. Closely spaced 
ties must be provided in the columns and in this case in the beam as well, to transfer 
the load between columns. ,.., 

Slab-to-beam connections generally use some vruiation of the detail shown in 
Fig. 18.32. Support is provided by an L beam (Fig. 18.32a) or an inverted T beam 
(Fig. 18.32b) that is flush with the top of the precast floor planks. The detail shown 
is sufficient if no mechanical tie is required between the precast parts. Where a pos
itive connection is required, steel plates are set into the top of the members, suitably 
anchored, and short connecting plates are welded so as to attach the built-in plates. 

Basic tools for the design of precast concrete connections are the shear friction 
design method described in detail in Chapter 4 and the strut-and-tie model described 
in Chapter IO. Example 4.6 (Section 4.9) demonstrated the use of the shear-friction 
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FIGURE 18.30 
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approach to determining the reinforcement for the end-bearing region of a precast 
concrete girder. The use of both the shear-friction method and a strut-and-tie model 
for joint behavior was shown in Section 11. 7, and Example 11.5 presented the detailed 
design of a bracket for a precast concrete column. Additional design information 
pertaining to precast concrete connection design will be found in Refs. 18.12, 18.15, 
and 18.16. 

c. Structural Integrity 

Precast concrete structures normally lack the joint continuity and high degree of 
redundancy characteristic of monolithic, cast-in-place reinforced concrete construction. 
Progressive collapse in the event of abnormal loading, in which the failure of one 
element leads to the collapse of another, then another, can produce catastrophic results. 
For this reason, the structural integrity of precast concrete structures is specifically 
addressed in ACI Code 16.5. ACI Code 16.5.1 does not permit the use of "soft" con
nections that rely solely on friction caused by gravity forces. Full moment-resisting 



FIGURE 18.31 
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connections are unusual, but some positive means of connecting members to their 
supports, with due regard to the need to accommodate dimensional changes associated 
with creep, shrinkage, and temperature effects, is strongly recommended. 

In addition, experience with precast structures has shown that the introduction of 
special reinforcement in the form of tension ties, though adding little to the cost of con
struction, can contribute greatly to maintaining structural integrity in the event of 
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extraordinary loading, such as loads caused by extreme winds, earthquake, or explosion. 
This tension reinforcement is best arranged in a three-dimensional grid, usually on the 
column lines, tying the floors together vertically and in both horizontal directions. For 
precast concrete construction, ACI Code 7.13.3 and 16.5.1 require that tension ties be 
provided in the transverse, longitudinal, and vertical directions of the structure and 
around its perimeter. Specific details vary widely. Although no specific guidance is 
offered in either the ACI Code or Commentary regarding steel placement or design 
forces, valuable suggestions will be found in Refs. 18.11, 18.12, and 18.16. 

18.6 ENGINEERING DRAWINGS FOR BUILDINGS 

Design information is conveyed to the builder mainly by engineering drawings. Their 
preparation is therefore a matter of the utmost importance, and they should be care
fully checked by the design engineer to ensure that concrete dimensions and rein
forcement agree with the calculations. 

Engineering drawings for buildings usually consist of a plan view of each floor 
showing overall dimensions and locating the main structural elements, cross-sectional 
views through typical members, and beam and slab schedules that give detailed infor
mation on the concrete dimensions and reinforcement in tabular form. Sectional views 
are usually drawn to a larger scale than the plan and serve to locate the steel and estab
lish cutoff and bend points as well as to define the shape of the member. Usually a 
separate drawing is included that gives, in the form of schedules and cross sections, 
the details of columns and footings. 

The contract documents, including the plans, specifications, and cost estimates, 
provide detailed descriptions of the material strengths. Additionally, many building 
officials, particularly in active seismic regions, require a description of the structural 
framing system, lateral load-resisting system, and design live loads to be included on 
the structural drawings. Typical concrete design drawings and details will be found 
in Ref. 18.4. 
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Prestressed Concrete 

19.1 INTRODUCTION 

Modem structural engineering tends to progress toward more economical structures 
through gradually improved methods of design and the use of higher-strength materi
als. This results in a reduction of cross-sectional dimensions and consequent weight 
savings. Such developments are particularly important in the field of reinforced concrete, 
where the dead load represents a substantial part of the total load. Also, in multistory 
buildings, any saving in depth of members, multiplied by the number of stories, can 
represent a substantial saving in total height, load on foundations, length of heating 
and electrical ducts, plumbing risers, and wall and partition surfaces. 

Significant savings can be achieved by using high-strength concrete and steel in 
conjunction with present-day design methods, which permit an accurate appraisal of 
member strength. However, there are limitations to this development, due mainly to 
the interrelated problems of cracking and deflection at service loads. The efficient use 
of high-strength steel is limited by the fact that the amount of cracking (width and 
number of cracks) is proportional to the strain, and therefore the stress, in the steel. 
Although a moderate amount of cracking is normally not objectionable in structural 
concrete, excessive cracking is undesirable in that it exposes the reinforcement to 
corrosion, it may be visually offensive, and it may trigger a premature failure by 
diagonal tension. The use of high-strength materials is further limited by deflection 
considerations, particularly when refined analysis is used. The slender members that 
result may permit deflections that are functionally or visually unacceptable. This is 
further aggravated by cracking, which reduces the flexural stiffness of members. 

These limiting features of ordinary reinforced concrete have been largely overcome 
by the development of prestressed concrete. A prestressed concrete member can be 
defined as one in which there have been introduced internal stresses of such magni
tude and distribution that the stresses resulting from the given external loading are 
counteracted to a desired degree. Concrete is basically a compressive material, with its 
strength in tension being relatively low. Prestressing applies a precompression to the 
member that reduces or eliminates undesirable tensile stresses that would otherwise be 
present. Cracking under service loads can be minimized or even avoided entirely. 
Deflections may be limited to an acceptable value; in fact, members can be designed 
to have zero deflection under the combined effects of service load and prestress force. 
Deflection and crack control, achieved through prestressing, permit the engineer to 
make use of efficient and economical high-strength steels in the form of strands, wires, 
or bars, in conjunction with concretes of much higher strength than normal. Thus, 
prestressing results in the overall improvement in performance of structural concrete 
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used for ordinary loads and spans and extends the range of application far beyond 
the limits for ordinary reinforced concrete, not only leading to much longer spans than 
previously thought possible, but also permitting innovative new structural forms to 
be employed. 

19.2 EFFECTS OF PRESTRESSING 

There are at least three ways to look at the prestressing of concrete: (a) as a method of 
achieving concrete stress control, by which the concrete is precompressed so that 
tension normally resulting from the applied loads is reduced or eliminated, (b) as a 
means for introducing equivalent loads on the concrete member so that the effects of 
the applied loads are counteracted to the desired degree, and (c) as a special varia
tion of reinforced concrete in which prestrained high-strength steel is used, usually in 
conjunction with high-strength concrete. Each of these viewpoints is useful in the 
analysis and design of prestressed concrete structures, and they will be illustrated in 
the following paragraphs. 

a. Concrete Stress Control by Prestressing 

Many important features of pres tressed concrete can be demonstrated by simple exam
ples. Consider first the plain, unreinforced concrete beam with a rectangular cross 
section shown in Fig. 19.la. It carries a single concentrated load at the center of its 
span. (The self-weight of the member will be neglected here.) As the load Wis grad
ually applied, longitudinal flexural stresses are induced. If the concrete is stressed 
only within its elastic range, the flexural stress distribution at midspan will be linear, 
as shown. 

At a relatively low load, the tensile stress in the concrete at the bottom of the 
beam will reach the tensile strength of the concrete f,., and a crack will form. Because 
no restraint is provided against upward extension of the crack, the beam will collapse 
without further increase of load. 

Now consider an otherwise identical beam, shown in Fig. 19. lb, in which a lon
gitudinal axial force P is introduced prior to the vertical loading. The longitudinal 
pres tressing force will produce a uniform axial compression.fc = P / Ac, where Ac is the 
cross-sectional area of the concrete. The force can be adjusted in magnitude so that 
when the transverse load Q is applied, the superposition of stresses due to P and Q will 
result in zero tensile stress at the bottom of the beam as shown. Tensile stress in the 
concrete may be eliminated in this way or reduced to a specified amount. 

It would be more logical to apply the prestressing force near the bottom of the 
beam, to compensate more effectively for the load-induced tension. A possible design 
specification, for example, might be to introduce the maximum compression at the 
bottom of the beam without causing tension at the top, when only the prestressing 
force acts. It is easily shown that, for a beam with a rectangular cross section, the point 
of application of the prestressing force should be at the lower third point of the 
section depth to achieve this. The force P, with the same value as before, but applied 
with eccentricity e = h/6 relative to the concrete centroid, will produce a longitudi
nal compressive stress distribution varying linearly from zero at the top surface to a 
maximum of 2.fc = P /Ac + Pec2/Jc at the bottom, where fc is the concrete stress at 
the concrete centroid, c2 is the distance from the concrete centroid to the bottom 
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FIGURE 19.1 
Alternative schemes for 
prestressing a rectangular 
concrete beam: (a) plain 
concrete beam; (b) axially 
prestressed beam; 
( c) eccentrically pres tressed 
beam; (d) beam with variable 
eccentricity; (e) balanced 
load stage for beam with 
variable eccentricity. 
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of the beam, and le is the moment of inertia of the cross section. This is shown in 
Fig. 19.lc. The stress at the bottom will be exactly twice the value produced before 
by axial prestressing. 

Consequently, the transverse load can now be twice as great as before, or 2Q, 
and still cause no tensile stress. In fact, the final stress distribution resulting from 
the superposition of load and prestressing force in Fig. 19. le is identical to that of 
Fig. 19.lb, with the same prestressing force, although the load is twice as great. The 
advantage of eccentric prestressing is obvious. 

The methods by which concrete members are prestressed will be discussed in 
Section 19.3. For present purposes, it is sufficient to know that one practical method 
of prestressing uses high-strength steel tendons passing through a conduit embedded 
in the concrete beam. The tendon is anchored, under high tension, at both ends of the 
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beam, thereby causing a longitudinal compressive stress in the concrete. The prestress 
force of Fig. 19.lb and c could easily have been applied in this way. 

A significant improvement can be made, however, by using a prestressing tendon 
with variable eccentricity with respect to the concrete centroid, as shown in Fig. 19.ld. 
The load 2Q produces a bending moment that varies linearly along the span, from zero 
at the supports to maximum at midspan. Intuitively, one suspects that the best arrange
ment of prestressing would produce a countermoment that acts in the opposite sense 
to the load-induced moment and that would vary in the same way. This would be 
achieved by giving the tendon an eccentricity that varies linearly, from zero at the sup
ports to maximum at midspan. This is shown in Fig. 19.ld. The stresses at midspan 
are the same as those in Fig. 19.lc, both when the load 2Q acts and when it does not. 
At the supports, where only the prestress force with zero eccentricity acts, a uniform 
compression stress fc is obtained as shown. 

For each characteristic load distribution, there is a best tendon profile that pro
duces a prestress moment diagram that corresponds to that of the applied load. If the 
prestress countermoment is made exactly equal and opposite to the load-induced 
moment, the result is a beam that is subject only to uniform axial compressive stress 
in the concrete all along the span. Such a beam would be free of flexural cracking, and 
theoretically it would not be deflected up or down when that particular load is in place, 
compared to its position as originally cast. Such a result would be obtained for a load 
of½ X 2Q = Q, as shown in Fig. 19. le, for example. 

Some important conclusions can be drawn from these simple examples as follows: 

1. Prestressing can control or even eliminate concrete tensile stress for specified loads. 
2. Eccentric prestress is usually much more efficient than concentric prestress. 
3. Variable eccentricity is usually preferable to constant eccentricity, from the view

points of both stress control and deflection control. 

b. Equivalent Loads 

The effect of a change in the vertical alignment of a prestressing tendon is to produce 
a vertical force on the concrete beam. That force, together with the prestressing force 
acting at the ends of the beam through the tendon anchorages, can be looked upon as 
a system of external loads. 

In Fig. 19.2a, for example, a tendon that applies force Pat the centroid of the 
concrete section at the ends of a beam and that has a uniform slope at angle 0 
between the ends and midspan introduces a transverse force 2P sin 0 at the point 
of change of slope at midspan. At the anchorages, the vertical component of the 
prestressing force is P sin 0 and the horizontal component is P cos 0. The hori
zontal component is very nearly equal to P for the usual flat slope angles. The 
moment diagram for the beam of Fig. 19.4g is seen to have the same form as that 
for any center-loaded simple span. 

The beam of Fig. 19.2b, with a curved tendon, is subject to a vertical upward 
load from the tendon as well as the forces P at each end. The exact distribution of the 
load depends on the profile of the tendon. A tendon with a parabolic profile, for exam
ple, will produce a uniformly distributed load. In this case, the moment diagram will 
be parabolic, as it is for a uniformly loaded simple span. 

If a straight tendon is used with constant eccentricity, as shown in Fig. 19.2c, 
there are no vertical forces on the concrete, but the beam is subject to a moment Pe at 
each end, as well as the axial force P, and a diagram of constant moment results. 
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Equivalent loads and moments produced by prestressing tendons. 

The end moment must also be accounted for in the beam shown in Fig. 19.2d, in 
which a parabolic tendon is used that does not pass through the concrete centroid at 
the ends of the span. In this case, a uniformly distributed upward load plus end anchor
age forces are produced, as shown in Fig. 19.2b, but in addition, the end moments 
M = Pe cos 0 must be accounted for. 

It may be evident that for any arrangement of applied loads, a tendon profile 
can be selected so that the equivalent loads acting on the beam from the tendon are 
just equal and opposite to the applied loads. The result would be a state of pure 
compressive stress in the concrete, as discussed in somewhat different terms in ref
erence to stress control and Fig. 19. le. An advantage of the equivalent load concept 
is that it leads the designer to select what is probably the best tendon profile for a 
particular loading. 

c. Prestressed Concrete as a Variation of Reinforced Concrete 

In the descriptions of the effects of prestressing in Sections 19.2a and b, it was 
implied that the prestress force remained constant as the vertical load was intro
duced, that the concrete responded elastically, and that no concrete cracking 
occurred. These conditions may prevail up to about the service load level, but if the 
loads should be increased much beyond that, flexural tensile stresses will eventually 
exceed the modulus of rupture and cracks will form. Loads, however, can usually be 
increased much beyond the cracking load in well-designed prestressed beams, and 



FIGURE 19.3 
Prestressed concrete beam at 
load near flexural failure: 
(a) beam with factored load 
applied; (b) equilibrium of 
forces on left half of beam. 
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depending on the level of prestress, the beam response at service load may vary from 
uncracked, to minor cracking, to fully cracked, as occurs for an ordinary reinforced 
concrete beam. 

Eventually both the steel and concrete at the cracked section will be stressed into 
the inelastic range. The condition at incipient failure is shown in Fig. 19.3, which 
shows a beam carrying a factored load equal to some multiple of the expected service 
load. The beam undoubtedly would be in a partially cracked state; a possible pattern 
of flexural cracking is shown in Fig. 19.3a. 

At the maximum moment section, only the concrete in compression is effective, 
and all of the tension is taken by the steel. The external moment from the applied loads 
is resisted by the internal force couple Cz = Tz. The behavior at this stage is almost 
identical to that of an ordinary reinforced concrete beam at overload. The main dif
ference is that the very high strength steel used must be prestrained before loads are 
applied to the beam; otherwise, the high steel stresses would produce excessive con
crete cracking and large beam deflections. 

Each of the three viewpoints described-concrete stress control, equivalent loads, 
and reinforced concrete using prestrained steel-is useful in the analysis and design of 
prestressed concrete beams, and none of the three is sufficient in itself. Neither an elas
tic stress analysis nor an equivalent load analysis provides information about strength 
or safety margin. However, the stress analy~s is helpful in predicting the extent of 
cracking, and the equivalent load analysis is often the best way to calculate deflections. 
Strength analysis is essential to evaluate safety against collapse, but it tells nothing 
about cracking or deflections of the beam under service conditions. 

19.3 SOURCES OF PRESTRESS FORCE 

Prestress can be applied to a concrete member in many ways. Perhaps the most obvi
ous method of precompressing is to use jacks reacting against abutments, as shown in 
Fig. 19.4a. Such a scheme has been employed for large projects. Many variations are 
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FIGURE 19.4 
Prestressing methods: 
(a) post-tensioning by 
jacking against abutments; 
(b) post-tensioning with 
jacks reacting against beam; 
(c) pretensioning with 
tendon stressed between 
fixed external anchorages. 
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possible, including replacing the jacks with compression struts after the desired stress 
in the concrete is obtained or using inexpensive jacks that remain in place in the struc
ture, in some cases with a cement grout used as the hydraulic fluid. The principal dif
ficulty associated with such a system is that even a slight movement of the abutments 
will drastically reduce the prestress force. 

In most cases, the same result is more conveniently obtained by tying the jack 
bases together with wires or cables, as shown in Fig. 19.4b. These wires or cables may 
be external, located on each side of the beam; more usually they are passed through a 
hollow conduit embedded in the concrete beam. Usually, one end of the prestressing 
tendon is anchored, and all of the force is applied at the other end. After reaching the 
desired prestress force, the tendon is wedged against the concrete and the jacking 
equipment is removed for reuse. In this type of prestressing, the entire system is 
self-contained and is independent of relative displacement of the supports. 

Another method of prestressing that is widely used is illustrated by Fig. 19.4c. 
The prestressing strands are tensioned between massive abutments in a casting yard 
prior to placing the concrete in the beam forms. The concrete is placed around the 
tensioned strands, and after the concrete has attained sufficient strength, the jacking 
pressure is released. This transfers the prestressing force to the concrete by bond and 
friction along the strands, chiefly at the outer ends. 

It is essential, in all three cases shown in Fig. 19.4, that the beam be supported 
in such a way as to permit the member to shorten axially without restraint so that the 
prestressing force can be transferred to the concrete. 

Other means for introducing the desired prestressing force have been attempted 
on an experimental basis. Thermal prestressing can be achieved by preheating the steel 
by electrical or other means. Anchored against the ends of the concrete beam while in 
the extended state, the steel cools and tends to contract. The prestress force is devel
oped through the restrained contraction. The use of expanding cement in concrete 
members has been tried with varying success. The volumetric expansion, restrained by 
steel strands or by fixed abutments, produces the prestress force. 



FIGURE 19.5 
Massive strand jacking 
abutment at the end of a long 
pretensioning bed. (Counesy 
of Concrete Technology 
Corporation.) 
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Most of the patented systems for applying prestress in current use are variations 
of those shown in Fig. 19.4b and c. Such systems can generally be classified as 
pretensioning or post-tensioning systems. In the case of pretensioning, the tendons are 
stressed before the concrete is placed, as in Fig. 19.4c. This system is well sujted for 
mass production, since casting beds can be made several hundred feet long, the entire 
length cast at once, and individual beams fabricated to the desired length in a single 
casting. Figure 19 .5 shows workers using a hydraulic jack to tension strands at the 
anchorage of a long pretensioning bed. Although each tendon is individually stressed 
in this case, large capacity jacks are often used to tension aJJ strands simultaneously. 

1n post-tensioned construction, shown"'in Fig. 19.4b, the tendons are tensioned 
after the concrete is placed and has gained its strength. Usually, a hollow conduit or 
sleeve is provided in the beam, through whlcb the tendon is passed. la some cases, 
tendons are placed in the interior of hollow box-section beams. The jacking force is 
usually applied against the ends of the hardened concrete, eliminating the need for mas
sive abutments. [n Fig. 19.6, six tendons, each consisting of many individual strands, 
are being post-tensioned sequentially using a portable hydraulic jack. 

A large number of particular systems, steel elements, jacks, and anchorage fit
tings have been developed in this country and abroad, many of which differ from each 
other only in mjnor details (Refs. 19.1 to 19.8). As far as the designer of prestressed 
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FIGURE 19.6 
Post-tensioning a bridge 
gi rder using a portable jack 
to stress multistrand tendons. 
( Courtesy of Concrete 

Technology Corporation.) 

concrete structures is concerned, it is unnecessary and perhaps even undesirable to 
specify in detail the technique that is to be followed and the equipment to be used. It 
is frequently best lo specify only the magnitude and line of action of the prest ress 
force. The contractor is then free, in bidding the work, to receive quotations from 
several different prestressing subcontractors, with resultant cost savings. IL is evidenl, 
however, that the designer must have some knowledge of the details of the various 
systems contemplated for use, so that in selecting cross-sectional dimensions, any one 
of several systems can be accommodated. 

19.4 PRESTRESSING STEELS 

Early attempts at prestressing concrete were unsuccessful because steel with ordinary 
structural strength was used. The low prestress obtainable in such rods was quickly 
lost due to shrinkage and creep in the concrete. 

Such changes in length of concrete have much less effect on prestress force if 
that force is obtained using highly stressed steel wires or cables. In Fig. 19.7a, a con
crete member of length Lis prestressed using steel bars with ordinary strength stressed 
to 24,000 psi. With£, = 29 X 106 psi, the unit strain Es required to produce the desired 
stress in the steel of 24,000 psi is 

E = fJ.L = J;, = 24,000 = 8.0 X 10- -1 
s L E 29 X 106 

J 

However, the long-term strain in the concrete due to shrinkage and creep alone. 
if the prestress force were maintained over a long period, would be on the order of 
8.0 X 10- -1 and would be sufficient to completely relieve the steel of all stress. 

Alternatively, suppose that the beam .is prestressed using high-strength steel 
stressed to 150.000 psi. The elastic modulus of steel does nol vary greatly, and the 



FIGURE 19.7 
Loss of pres tress due to 
concrete shrinkage and creep. 
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same value of 29 X 106 psi will be assumed here. Then in this case, the unit strain 
required to produce the desired stress in the steel is 

150,000 
5 7 

10-4 
Es = 29 X 106 = 1. X 

If shrinkage and creep strain are the same as before, the net strain in the steel after 
these losses is 

Es,net = (51.7 - 8.0) X 10-4 = 43.7 X 10-4 

and the corresponding stress after losses is 

fs = Es,netEs = (43.7 X 10-4)(29 X 106
) = 127,000 psi 

This represents a stress loss of about 15 percent, compared with 100 percent loss in 
the beam using ordinary steel. It is apparent that the amount of stress lost because of 
shrinkage and creep is independent of the original stress in the steel. Therefore, the 
higher the original stress, the lower the percentage loss. This is illustrated graphically 
by the stress-strain curves of Fig. 19.7b. C~rve A is representative of ordinary rein
forcing bars, with a yield stress of 60,000 psi, while curve B represents high tensile 
steel, with a tensile strength of 270,000 psi. The stress change llf resulting from a 
certain change in strain ilE is seen to have much less effect when high steel stress 
levels are attained. Prestressing of concrete is therefore practical only when steels of 
very high strength are used. 

Prestressing steel is most commonly used in the form of individual wires, stranded 
cable (strands) made up of seven wires, and alloy-steel bars. The physical properties 
of these have been discussed in Section 2.16, and typical stress-strain curves appear in 
Fig. 2.16. Virtually all strands in use are low-relaxation (Section 2.16c). 
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TABLE 19.1 
Maximum permissible stresses in prestressing steel 

1. Due to tendon jacking force but not greater than the 
lesser of 0.8Qt;,u and the maximum value recommended 
by the manufacturer of the prestressing steel or anchorage devices 

2. Immediately after prestress transfer but not greater than 0.74J;,u 
3. Post-tensi;;ing tendons, at anchorage devices and couplers, immediately 

after tendon anchorage 

0.94J;,y 

0.82J;,y 

0.70J;,u 

The tensile stress permitted by ACI Code 18.5 in prestressing wires, strands, or 
bars is dependent upon the stage of loading. When the jacking force is first applied, a 
maximum stress of 0.80fpu or 0.94};,y is allowed, whichever is smaller, where fpu is the 
tensile strength of the steel and J;,y is the yield strength. Immediately after transfer of 
prestress force to the concrete, the permissible stress is 0.74-J;,u or 0.82.f;,y, whichever is 
smaller (except at post-tensioning anchorages where the stress is limited to 0.70.f;,J. 
The justification for a higher allowable stress during the stretching operation is that the 
steel stress is known quite precisely at this stage. Hydraulic jacking pressure and total 
steel strain are quantities that are easily measured, and quality control specifications 
require correlation of load and deflection at jacking (Ref. 19 .9). In addition, if an acci
dentally deficient tendon should break, it can be replaced; in effect, the tensioning 
operation is a performance test of the material. The lower values of allowable stress 
apply after elastic shortening of the concrete, frictional loss, and anchorage slip have 
taken place. The steel stress is further reduced during the life of the member due to 
shrinkage and creep in the concrete and relaxation in the steel. ACI allowable stresses 
in prestressing steels are summarized in Table 19.1. 

The strength and other characteristics of prestressing wire, strands, and bars vary 
somewhat between manufacturers, as do methods of grouping tendons and anchoring 
them. Typical information is given for illustration in Table A.15 of Appendix A and in 
Refs. 19.1 to 19.8. 

19.5 CONCRETE FOR PRESTRESSED CONSTRUCTION 

Ordinarily, concrete of substantially higher compressive strength is used for prestressed 
structures than for those constructed of ordinary reinforced concrete. Most prestressed 
construction in the United States at present is designed for a compressive strength 
above 5000 psi. There are several reasons for this: 

1. High-strength concrete normally has a higher modulus of elasticity (see Fig. 2.3). 
This means a reduction in initial elastic strain under application of prestress force 
and a reduction in creep strain, which is approximately proportional to elastic 
strain. This results in a reduction in loss of prestress. 

2. In post-tensioned construction, high bearing stresses result at the ends of beams 
where the prestressing force is transferred from the tendons to anchorage fittings, 
which bear directly against the concrete. This problem can be met by increasing the 
size of the anchorage fitting or by increasing the bearing capacity of the concrete 
by increasing its compressive strength. The latter is usually more economical. 

3. In pretensioned construction, where transfer by bond is customary, the use of 
high-strength concrete will permit the development of higher bond stresses. 
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TABLE 19.2 
Permissible stresses in concrete in prestressed flexural members 

Class 

Condition u T C* 

a. Extreme fiber stress in compression immediately after transfer (except as in b) 0.60J;'.; 0.60J;; 0.60J;; 

b. Extreme fiber stress in compression at ends of simply supported members 

c. Extreme fiber stress in tension immediately after transfer (except as ind) 

d. Extreme fiber stress in tension immediately after transfer at the end 
of simply supported members t 

e. Extreme fiber stress in compression due to prestress plus sustained load 

f. Extreme fiber stress in compression due to prestress plus total load 

g. Extreme fiber stress in tensionJ; in precompressed tensile zone 
under service load 

* There are no service stress requirements for Class C. 

0.70J;; 0.70J;; 0.70J;; 

3'\ff:; 3 '\ff:; 3'\ff:; 
6Vl[; 6Vl[; 6vf[; 

0.45J: 0.45f; 

0.60J: 0.60J: 

$.7.5vf:: >7.5vf:: and $.l2vf:: 

t When computed tensile stresses exceed these values, bonded auxiliary prestressed or nonprestressed reinforcement shall be provided in the tensile 
zone to resist the total tensile force in the concrete computed with the assumption of an uncracked section. 

4. A substantial part of the prestressed construction in the United States is precast, 
with the concrete mixed, placed, and cured under carefully controlled conditions 
that facilitate obtaining higher strengths. 

The strain characteristics of concrete under short-term and sustained loads assume 
an even greater importance in prestressed structures than in reinforced concrete struc
tures because of the influence of strain on loss of prestress force. Strains due to stress, 
together with volume changes due to shrinkage and temperature changes, may have 
considerable influence on prestressed structures. In this connection, it is suggested that 
the reader review Sections 2.8 to 2.11, which discuss in some detail the compressive 
and tensile strengths of concrete under short-term and sustained loads and the changes 
in concrete volume that occur due to shrinkage and temperature change. 

As for prestressing steels, the allowable stresses in the concrete, according to ACI 
Code 18.4, depend upon the stage ofloading and the behavior expected of the member. 
ACI Code 18.3.3 defines three classifications of behavior, depending on the extreme 
fiber stress fr at service load in the precompressed tensile zone. The three classifications 
are U, T, and C. Class U flexural members are assumed to behave as uncracked mem
bers. Class T members represent a transition between uncracked and cracked flexural 
members, while Class C members are assumed to behave as cracked flexural members. 
Permissible stresses for these three classifications are given in Table 19.2. 

In Table 19.2, f~ is the compressive st;ength of the concrete at the time of initial 
prestress, and/; the specified compressive strength of the concrete. In parts e and f of 
Table 19.2, sustained load is any part of the service load that will be sustained for a 
sufficient period of time to cause significant time-dependent deflections, whereas total 
load refers to the total service load, a part of which may be transient or temporary live 
load. Thus, sustained load would include dead load and may or may not include service 
live load, depending on its duration. If the live load duration is short or intermittent, 
the higher limit of part f is permitted. 

Two-way slabs are designated as Class U flexural members with fr limited 
to values :s 6vf:. Class C flexural members have no service level stress requirements 



660 DESIGN OF CONCRETE STRUCTURES Chapter 19 

but must satisfy strength and serviceability requirements. Service load stress calculations 
are computed based on uncracked section properties for Class U and T flexural mem
bers and on the cracked section properties for Class C members. 

19.6 ELASTIC FLEXURAL ANALYSIS 

It has been noted earlier in this text that the design of concrete structures may be based 
either on providing sufficient strength, which would be used fully only if the expected 
loads were increased by an overload factor, or on keeping material stresses within 
permissible limits when actual service loads act. In the case of ordinary reinforced 
concrete members, strength design is used. Members are proportioned on the basis of 
strength requirements and then checked for satisfactory service load behavior, notably 
with respect to deflection and cracking. The design is then modified if necessary. 

Class C members are principally designed based on strength. Class U and T 
members, however, are proportioned so that stresses in the concrete and steel at actual 
service loads are within permissible limits. These limits are a fractional part of the 
actual capacities of the materials. There is some logic to this approach, since an impor
tant objective of prestressing is to improve the performance of members at service 
loads. Consequently, service load requirements often control the amount of prestress 
force used in Class U and Class T members. Design based on service loads may usually 
be carried out assuming elastic behavior of both the concrete and the steel, since 
stresses are relatively low in each. 

Regardless of the starting point chosen for the design, a structural member must 
be satisfactory at all stages of its loading history. Accordingly, prestressed members 
proportioned on the basis of permissible stresses must also be checked to ensure that 
sufficient strength is provided should overloads occur, and deflection and cracking 
under service loads should be investigated. Consistent with most U.S. practice, in this 
text the design of prestressed concrete beams will start with a consideration of stress 
limits, after which strength and other properties will be checked. 

It is convenient to think of prestressing forces as a system of external forces 
acting on a concrete member, which must be in equilibrium under the action of those 
forces. Figure 19.8a shows a simple-span prestressed beam with curved tendons, typical 
of many post-tensioned members. The portion of the beam to the left of a vertical 
cutting plane x-x is taken as a free body, with forces acting as shown in Fig. 19.8b. The 
force P at the left end is exerted on the concrete through the tendon anchorage, while 
the force Pat the cutting plane x-x results from combined shear and normal stresses 
acting at the concrete surface at that location. The direction of P is tangent to the curve 
of the tendon at each location. Note the presence of the force N, acting on the concrete 
from the tendon, due to tendon curvature. This force will be distributed in some man
ner along the length of the tendon, the exact distribution depending upon the tendon 
profile. Its resultant and the direction in which the resultant acts can be found from the 
force diagram of Fig. 19.8c. 

It is convenient when working with the prestressing force P to divide it into 
its components in the horizontal and vertical directions. The horizontal component 
(Fig. 19.8d) is H = P cos 0, and the vertical component is V = H tan 0 = P sin 0, 
where 0 is the angle of inclination of the tendon centroid at the particular section. 
Since the slope angle is normally quite small, the cosine of 0 is very close to unity and 
it is sufficient for most calculations to take H = P. 

The magnitude of the prestress force is not constant. The jacking force ½ is 
immediately reduced to what is termed the initial prestress force P; because of elaGtic 
shortening of the concrete upon transfer, slip of the tendon as the force is transferred 



FIGURE 19.8 
Prestressing forces acting on 
concrete. 
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from the jacks to the beam ends, and loss due to friction between the tendon and 
the concrete (post-tensioning) or between the tendon and cable alignment devices 
(pretensioning). There is a further reduction of force from P; to the effective prestress 
Pe, occurring over a long period of time at a gradually decreasing rate, because of 
concrete creep under the sustained prestress force, concrete shrinkage, and relaxation 
of stress in the steel. Methods for predicting losses will be discussed in Section 19 .13. 
Of primary interest to the designer are the initial prestress P; immediately after trans
fer and the final or effective prestress Pe after all losses. 

In developing elastic equations for flexural stress, the effects of prestress force, 
self-weight moment, and dead and live load moments are calculated separately, and 
the separate stresses are superimposed. When the initial prestress force P; is applied 
with an eccentricity e below the centroid of the cross section with area Ac and top and 
bottom fiber distances c 1 and c2, respectively, it causes the compressive stress - PJ Ac 
and the bending stresses + P;ec 1/Jc and - P;ec2/Jc in the top and bottom fibers, respec
tively (compressive stresses are designated as negative, tensile stresses as positive), as 
shown in Fig. 19.9a. Then, at the top fiber, the stress is 

P; P;ec1 P; ( ec1 ) !1=--+--=-- 1--
Ac IC Ac r2 

(19.la) 

and at the bottom fiber 

(19.lb) 

where r is the radius of gyration of the concrete section. Normally, as the eccentric 
prestress force is applied, the beam deflects upward. The beam self-weight w

0 
then 

causes additional moment M
0 

to act, and the net top and bottom fiber stresses become 

f1 = - :: ( 1 - :c2
1

) - Mt, (19.2a) 

P; ( ec2) M0 c2 !2 = -- 1 + - + --
Ac r2 le 

(19.2b) 
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FIGURE 19.9 
Concrete stress distributions 
in beams: (a) effect of 
prestress; (b) effect of 
prestress plus self-weight of 
beam; (c) effect of prestress, 
self-weight, and external 
dead and live service loads. 

_ P; (1- ec1 ) 
Ac r2 

(b)~ + T = ·-·1-...£oncretecentro;d 

as shown in Fig. 19.9b. At this stage, time-dependent losses due to shrinkage, creep, 
and relaxation commence, and the prestressing force gradually decreases from P; to Pe. 
It is usually acceptable to assume that all such losses occur prior to the application of 
service loads, since the concrete stresses at service loads will be critical after losses, 
not before. Accordingly, the stresses in the top and bottom fiber, with Pe and beam load 
acting, become 

(19.3a) 

(19.3b) 

When full service loads (dead load in addition to self-weight of the beam, plus service 
live load) are applied, the stresses are 

Pe ( eci) f1 = - Ac 1 - ? (19.4a) 

!1 = - :: ( 1 + e:} ) (19.4b) 

as shown in Fig. 19.9c. 



FIGURE 19.10 
Stress limits: (a) unloaded 
beam, with initial prestress 
plus self-weight; (b) loaded 
beam, with effective 
prestress, self-weight, 
and full service load. 
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(a) Unloaded (b) Loaded 

It is necessary, in reviewing the adequacy of a beam ( or in designing a beam on 
the basis of permissible stresses), that the stresses in the extreme fibers remain within 
specified limits under any combination of loadings that can occur. Normally, the 
stresses at the section of maximum moment, in a properly designed beam, must stay 
within the limit states defined by the distributions shown in Fig. 19 .10 as the beam 
passes from the unloaded stage (P; plus self-weight) to the loaded stage (Pe plus full 
service loads). In the figure, fc; and fti are the permissible compressive and tensile 
stresses, respectively, in the concrete immediately after transfer, andfcs andfts are the 
permissible compressive and tensile stresses at service loads (see Table 19.2). 

In calculating the section properties Ac, le, etc., to be used in the above equations, 
it is relevant that, in post-tensioned construction, the tendons are usually grouted in the 
conduits after tensioning. Before grouting, stresses should be based on the net section 
with holes deducted. After grouting, the transformed section should be used with holes 
considered filled with concrete and with the steel replaced with an equivalent area of 
concrete. However, it is satisfactory, unless the holes are quite large, to compute section 
properties on the basis of the gross concrete section. Similarly, while in pretensioned 
beams the properties of the transformed section should be used, it makes little differ
ence if calculations are based on properties of the gross concrete section. t 

It is useful to establish the location of the upper and lower kern points of a 
cross section. These are defined as the limiting points inside which the prestress force 
resultant may be applied without causing tension anywhere in the cross section. Their 
locations are obtained by writing the expression for the tensile fiber stress due to appli
cation of an eccentric prestress force acting alone and setting this expression equal to 
zero to solve for the required eccentricity. In Fig. 19.11, to locate the upper kern-point 
distance k1 from the neutral axis, let the prestress force resultant P act at that point. 
Then the bottom fiber stress is 

P ( ec2 ) /2=-- 1+- =O 
Ac r2 

Thus, with 

one obtains the corresponding eccentricity 

r2 

Cz 
(19.5a) 

t ACI Code 18.2.6 contains the following provision: "In computing section properties prior to bonding of prestressing steel, the effect of loss of 
area due to open ducts shall be considered." It is noted in ACI Commentary 18.2.6 that "If the effect of the open duct area on design is deemed 
negligible, section properties may be based on total area. In post-tensioned members after grouting and in pretensioned members, section properties 
may be based on effective sections using transformed areas of bonded prestressing steel and nonprestressed gross sections, or net sections." 
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FIGURE 19.11 
Location of kem points. 
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Similarly, the lower kern-point distance "2 is 

r 2 
k2 = -

C1 
(19.5b) 

The region between these two .limiting points is known as the kem, or in some cases 
the core, of the section. 

EXAMPLE 19.1 Pretensioned I beam with constant eccentricity. A simply supported symmetrical I beam 
shown in cross section in Fig. L9. l 2a will be used on a 40 ft simple span. It bas tbe following 
section properties 

Moment of inertia: le = 12,000 in4 

Concrete area: Ac = 176 in2 

Radius of gyration: r 2 = 68.2 in2 

Section modulus: S = 1000 in3 

Self-weight: w0 = 0.183 kips/ ft 

and is to carry a superimposed dead plus live load (considered "sustained," not short-tenn) of 
0. 750 kips/ft in addition to its own weight. The beam will be pretensioned with multiple seven
wire strands with the centroid at a constant eccentricity of 7.91 in. The prestress force P; imme
diately after transfer will be 158 kips; after time-dependent losses, the force wiU reduce to 
P, = 134 kips. The specified compressive strength of the concreteJ; = 5000 psi, and at the time 
of prestressing the strength will bef~ = 3750 psi. Calculate the concrete flexural stresses at the 
midspan section of the beam at tbe time of transfer, and after all losses with full service load in 
place. Compare with ACI allowable stresses for a Class U member. 

SOLUTION. Stresses in the concrete along the length of the beam resulting from the injtjaJ 
prestress force of 158 kips may be found by Eqs. (19. la} and (19.lb): 

fl = 158,000 ( I _ 7.91 X 12) = + 352 i 
176 68.2 ps 

158,000 ( 7.91 X 12) 
2 7 

. 
L76 I + 68.2 = - 14 pSi 

The self-weight of the beam causes the immediate superposition of a moment at midspan of 

402 

M0 = 0.183 X 8 = 36.6 ft-kips 

and corresponding stresses of M0c/J = 36,600 X 12/ 1000 = 439 psi, so that the net stresses at 
the top and bottom of the concrete section at midspan due to initial prestress and self-weight, 
from Eqs. (19.2a) and (19.2b), are 

J1 = +352 - 439 = -87 psi 

/ 2 = -2147 + 439 = - 1708 psi 
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Pretensioned I beam. Design example: (a) cross section, (b) stresses at midspan (psi), (c) stresses at ends (psi). 

After losses, the prestress force is reduced to 134 kips, and the concrete stresses at midspan due 
to that force plus self-weight are 

134 
f, = +352 X 

158 
- 439 = 140 psi 

134 
f 2 = -2147 X 

158 
+ 439 = -1382 psi 

and stresses at the end of the beam are 

( 
134) f, = + 352 - = 299 
158 

( 
134) /2 = -2147 158 = 1821 

The superimposed load of 0.750 kip/ft produces a midspan moment of Md + M1 = 0.750 x 
402/8 = 150 ft-kips and the corresponding stresses of 150,000 x 12/ 1000 = 1800 psi in com
pression and tension at the top and bottom of the beam, respectively. Thus, the service load 
stresses at the top and bottom faces at midspan are 

f, = -140 -1800 = -1940 psi 

f2 = - 1382 + 1800 = +418 psi 

Concrete stresses at midspan are shown in Fig. 19.12b and at the beam end in Fig. 19.1 2c. 
According to the ACI Code (see Table 19.2), the stresses permitted in the concrete are 

Tension at transfer: f,1 = 3V3750 = + 184 psi 

Compression at transfer: Jc; = 0.60 X 3750 = -2250 psi 

Tension at service load: f,, = 7.5-v'sooo = +530 psi 

Compression at service load: f ,. = 0.45 X 5000 = - 2250 psi 

At the initial stage, with prestress plus self-weight in p lace, the actual compressive 
stress of 1708 psi is well below the limit of 2250 psi, and no tension acts at the top, although 
184 psi is allowed. While more prestress force or more eccentricity might be suggested to 
more fully utilize the section, to attempt to do so in this beam, with constant eccentricity, 
would violate limits at the support, where self-weight moment is zero. It is apparent that at 
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the supports, the initial prestress force acting alone produces tension of 352 psi at the top of 
the beam (Fig. 19.12c), barely below the value of 6\.1'3756 = 367 permitted at the beam end, 
so very little improvement can be made. The compressive stress at the supports is -2147 psi, 
well below the magnitude of the permitted value of 0. 70f~ = -2625 psi. Finally, at full service 
load, the tension of 418 psi is under the allowed 530 psi, and compression of 1940 psi is well 
below the permitted 2250 psi. 

19.7 FLEXURAL STRENGTH 

In an ordinary reinforced concrete beam, the stress in the tensile steel and the com
pressive force in the concrete increase in proportion to the applied moment up to and 
somewhat beyond service load, with the distance between the two internal stress 
resultants remaining essentially constant. In contrast to this behavior, in a prestressed 
beam, increased moment is resisted by a proportionate increase in the distance between 
the compressive and tensile resultant forces, the compressive resultant moving upward 
as the load is increased. The magnitude of the internal forces remains nearly constant 
up to, and usually somewhat beyond, service loads. 

This situation changes drastically upon flexural tensile cracking of the prestressed 
beam. When the concrete cracks, there is a sudden increase in the stress in the steel as 
the tension that was formerly carried by the concrete is transferred to it. After cracking, 
the prestressed beam behaves essentially as an ordinary reinforced concrete beam. The 
compressive resultant cannot continue to move upward indefinitely, and increasing 
moment must be accompanied by a nearly proportionate increase in steel stress and 
compressive force. The strength of a prestressed beam can, therefore, be predicted by 
the same methods developed for ordinary reinforced concrete beams, with modifica
tions to account for (a) the different shape of the stress-strain curve for prestressing 
steel, as compared with that for ordinary reinforcement, and (b) the tensile strain 
already present in the prestressing steel before the beam is loaded. 

Highly accurate predictions of the flexural strength of prestressed beams can be 
made based on a strain compatibility analysis that accounts for these factors in a 
rational and explicit way (Ref. 19.1). For ordinary design purposes, certain approxi
mate relationships have been derived. ACI Code 18.7 and the accompanying ACI 
Commentary 18.7 include approximate equations for flexural strength that will be 
summarized in the following paragraphs. 

a. Stress in the Prestressed Steel at Flexural Failure 

When a prestressed concrete beam fails in flexure, the prestressing steel is at a stress 
J;,s that is higher than the effective pres tress fpe but below the tensile strengthfw If the 
effective prestressJ;,e = P,jAps is not less than 0.50J;,u, ACI Code 18.7.2 permits use 
of certain approximate equations for fps· These equations appear quite complex as they 
are presented in the ACI Code, mainly because they are written in general form to 
account for differences in type of prestressing steel and to apply to beams in which 
nonprestressed bar reinforcement may be included in the flexural tension zone or the 
compression region or both. Separate equations are given for members with bonded 
tendons and unbonded tendons because, in the latter case, the increase in steel stress 
at the maximum moment section as the beam is overloaded is much less than if the 
steel were bonded throughout its length. 
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For the basic case, in which the prestressed steel provides all of the flexural 
reinforcement, the ACI Code equations can be stated in simplified form as follows: 

1. For members with bonded tendons: 

f, = f, ( l _ 'Yp Pp/pu) 
ps pu /31 J: (19.6) 

where Pp = Aps/bdP, dP = effective depth to the prestressing steel centroid, 
b = width of compression face, {31 = the familiar relations between stress block 
depth and depth to the neutral axis [Eq. (3.26)], and 'Yp is a factor that depends on 
the type of prestressing steel used, as follows: 

{

0.55 

'Yp = 0.40 
0.28 

for /py/ /2,u 2::: 0. 80 ( typical high-strength bars) 

for/py//2,u 2::: 0.85 (typical ordinary strand) 

forJ;,y/J;,u 2::: 0.90 (typical low-relaxation strand) 

2. For members with unbonded tendons and with a span-depth ratio of 35 or less 
(this includes most beams), 

t: 
J;,s = J;,e + 10,000 + -

00 1 Pp 

but not greater than.t;,Y and not greater thanfp, + 60,000 psi. 

(19.7) 

3. For members with unbonded tendons and with span-depth ratio greater than 35 
(applying to many slabs), 

t: hs =he+ 10,000 + -- (19.8) 
300pp 

but not greater than.t;,Y and not greater thanfp, + 30,000 psi. 

b. Nominal Flexural Strength and Design Strength 

With the stress in the prestressed tensile steel when the member fails in flexure estab
lished by Eq. (19.6), (19.7), or (19.8), the nominal flexural strength can be calculated 
by methods and equations that correspond directly with those used for ordinary rein
forced concrete beams. For rectangular cross sections, or flanged sections such as I or 
T beams in which the stress block depth is equal to or less than the average flange 
thickness, the nominal flexural strength is 

where 

Mn = Apshs( dp - ~) 

Aps/2,s 
a= 

0.85J;b 

Equations (19.9) and (19.10) can be combined as follows: 

Mn= Pp/p.bd;(1 - 0.588 Pis) 

(19.9) 

(19.10) 

(19.11) 

In all cases, the flexural design strength is taken equal to <f>Mn, where </> is the strength 
reduction factor for flexure (see Section 19.7c). 
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If the stress block depth exceeds the average flange thickness, the method for 
calculating flexural strength is exactly analogous to that used for ordinary reinforced 
concrete I and T beams. The total prestressed tensile steel area is divided into two parts 
for computational purposes. The first part A Pf' acting at the stress J,,s, provides a tensile 
force to balance the compression in the overhanging parts of the flange. Thus, 

f 
AP!= 0.85 -(b - hw)h1 

J;,s 
(19.12) 

The remaining prestressed steel area 

Apw = Aps - Apf (19.13) 

provides tension to balance the compression in the web. The total resisting moment is 
the sum of the contributions of the two force couples: 

Mn= Apwhs(dp - ~) + Apfhs(dp - ;) (19.14a) 

or 

(19.14b) 

where 

AµwJ;,s 
a= 

0.85J;hw 
(19.15) 

As before, the design strength is taken as </JMn, where <p is typically 0.90, as discussed 
in Section 19.7c. 

If, after a prestressed beam is designed by elastic methods at service loads, it 
has inadequate strength to provide the required safety margin under factored load, 
nonprestressed reinforcement can be added on the tension side and will work in com
bination with the prestressing steel to provide the needed strength. Such nonprestressed 
steel, with area As, can be assumed to act at its yield stress!;,, to contribute a tension 
force at the nominal moment of Asl;,· The reader should consult ACI Code 18.7 and 
ACI Commentary 18.7 for equations for prestressed steel stress at failure and for flex
ural strength, which are direct extensions of those given above. 

c. Limits for Reinforcement 

The ACI Code classifies prestressed concrete flexural members as tension-controlled 
or compression-controlled based on the net tensile strain e1 in the same manner as done 
for ordinary reinforced concrete beams. Section 3.4d describes the strain distributions 
and the variation of strength reduction factors associated with limitations on the net 
tensile strain. Recall that the net tensile strain excludes strains due to creep, shrinkage, 
temperature, and effective prestress. To maintain a strength reduction factor <p of 0.90 
and ensure that if flexural failure were to occur, it would be a ductile failure, a net 
tensile strain of at least 0.005 is required. Due to the complexity of computing net tensile 
strain in prestressed members, it is easier to perform the check using the c/d1 ratio. 
From Fig. 3.10a, this simplifies to 

C 
- :;; 0.375 
dt 

(19.16) 
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where d1 is the distance from the extreme compressive fiber to the extreme tensile 
steel. In many cases, d1 will be the same as dP, the distance from the extreme com
pressive fiber to the centroid of the prestressed reinforcement. However, when sup
plemental nonprestressed steel is used or the prestressing strands are distributed 
through the depth of the section, d1 will be greater than dP. If the prestressed beam does 
not meet the requirements of Eq. (19.16), it may no longer be considered as tension
controlled, and the strength reduction factor </> must be determined as shown in 
Fig. 3.9. If cld1 :::: 0.60, corresponding to E1 ::s 0.002, the section is considered to be 
overreinforced, and alternative equations must be derived for computing the flexural 
strength (see Ref. 19.1). 

It will be recalled that a minimum tensile reinforcement ratio is required for 
ordinary reinforced concrete beams, so that the beams will be safe from sudden failure 
upon the formation of flexural cracks. Because of the same concern, ACI Code 18.8.2 
requires that the total tensile reinforcement in members with bonded prestressed rein
forcement be adequate to support a factored load of at least 1.2 times the cracking load 
of the beam, calculated on the basis of a modulus of rupture of 7.5vf!. A similar 
requirement is not placed on members with unbonded prestressed reinforcement. 
Unlike members with bonded reinforcement, which are subject to tendon failure when 
the concrete cracks and the tensile force in the concrete is suddenly transferred to the 
bonded steel, abrupt failure does not occur in beams with unbonded tendons because 
the reinforcement can undergo slip, which distributes the increased strain along the 
length of the tendon, lowering the magnitude of the increased stress in the tendon. 

d. Minimum Bonded Reinforcement 

To control cracking in beams and one-way prestressed slabs with unhanded tendons, 
some bonded reinforcement must be added in the form of nonprestressed reinforcing 
bars, uniformly distributed over the tension zone as close as permissible to the 
extreme tension fiber. According to ACI Code 18.9.2, the minimum amount of such 
reinforcement is 

As = 0.004Act (19.17) 

where Act is the area of that part of the cross section between the flexural tension face 
and the centroid of the gross concrete cross section. ACI Code 18.9.3 provides excep
tions for two-way slabs with very low tensile stresses. 

EXAMPLE 19.2 Flexural strength of pretensioned I beam. The prestressed I beam shown in cross section 
in Fig. 19.13 is pretensioned using five low relaxation stress-relieved Grade 270 ½ in. diameter 
strands, carrying effective prestressfp, = 160 ksi. Concrete strength isJ; = 4000 psi. Calculate 
the design strength of the beam. 

SOLUTION. The effective prestress in the strands of 160 ksi is well above 0.50 X 270 = 135 ksi, 
confirming that the approximate ACI equations are applicable. The tensile reinforcement 
ratio is 

Pp = 0.765 = 0.0037 
12 X 17.19 

and the steel stress fps when the beam fails in flexure is found from Eq. (19.6) to be 

f, =f, (i _ 'Yp Ppfr'") = 2 o( _ 0.28 0.0037 X 270) = . 
ps pu /3i J; 7 1 0_85 4 248 ks1 
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FIGURE 19.13 
Post-tensioned beam of 
Example 19.2. 
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Next, it is necessary to check whether the stress block depth is greater or less than the 
average flange thickness of 4.5 in. On the assumption that it is not greater than the flange 
thickness, Eq. (19.10) is used: 

a = Apf,,, = 0.765 X 248 = 
4

_
65 

in. 
0.85/; b 0.85 X 4 X 12 

It is concluded from this trial calculation that a actually exceeds h1, so the trial calcula
tion is not valid and equations for flanged members must be used. The steel that acts with the 
overhanging flanges is found from Eq. ( l 9. 12) to be 

_ 0.85 X 4(12 - 4)4.5 _ . 
2 AP/ -

248 
- 0.494 ID 

and from Eq. ( 19.13), the steel acting with the web is 

AP..,= 0.765 - 0.494 = 0.271 in2 

The actual stress block depth is now found from Eq. ( 19.15): 

0.271 X 248 
a = 0.85 X 4 X 4 = 4·94 in. 

a 4.94 
c=-=-= 5.81 

/31 0.85 

A check should now be made to determine if the beam can be considered tension
controlled. As shown in Fig. 19.13, d, = 19.64 in. FromEq. (19.16), 

~=~=0.338 
d, 17.19 

This is less than 0.375 for €1 ~ 0.005, coo.fuming that this can be considered to be 
a tension-controlled prestresscd beam, and <f> = 0.90. The nominal flexural strength, from 
Eq. (19.14b), is 

Mn= 0.271 X 248(17. 1.9 - 2.47) + 0.85 X 4(12 - 4)4.5(17.19 - 2.25) 

= 2818 in-kips = 235 ft-kips 

and, finally, the design strength is <f>Mn = 21 I ft-kips. 

19.8 PARTIAL PRESTRESSING 

Early in the development of prestressed concrete, the goal of prestressing was the com
plete elimination of concrete tensile stress at service load. This kind of design, in which 
the service load tensile stress limitJ;s = 0, is often referred to as full prestressing. 
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While full prestressing offers many advantages over nonprestressed construction, 
some problems can arise. Heavily prestressed beams, particularly those for which full 
live load is seldom in place, may have excessively large upward deflection, or camber, 
which will increase with time because of concrete creep under the eccentric prestress 
force. Fully prestressed beams may also have a tendency for severe longitudinal short
ening, causing large restraint forces unless special provision is made to permit free 
movement at one end of each span. If shortening is permitted to occur freely, prestress 
losses due to elastic and creep deformation may be large. Furthermore, if heavily 
prestressed beams are overloaded to failure, they may fail in a sudden and brittle 
mode, with little warning before collapse. 

Today there is general recognition of the advantages of partial prestressing, in 
which flexural tensile stress and some limited cracking are permitted under full service 
load. That full load may be infrequently applied. Typically, many beams carry only 
dead load much of the time, or dead load plus only part of the service live load. Under 
these conditions, a partially prestressed beam would normally not be subject to flex
ural tension, and cracks that form occasionally, when the full live load is in place, 
would close completely when that live load is removed. Controlled cracks prove no 
more objectionable in prestressed concrete structures than in reinforced concrete struc
tures. With partial prestressing, excessive camber and troublesome axial shortening 
are avoided. Should overloading occur, there will be ample warning of distress, with 
extensive cracking and large deflections (Refs. 19.10 to 19.13). 

Although the amount of prestressing steel may be reduced in partially prestressed 
beams compared with fully prestressed beams, a proper safety margin must still be 
maintained, and to achieve the necessary flexural strength, partially prestressed beams 
may require additional tensile reinforcement. In fact, partially prestressed beams are often 
defined as beams in which (1) flexural cracking is permitted at full service load and 
(2) the main flexural tension reinforcement includes both prestressed and nonpre
stressed steel. Analysis indicates, and tests confirm, that such nonprestressed steel is 
fully stressed to J;, at flexural failure. 

The ACI Code does not specifically mention partial prestressing but does include 
the concept explicitly in the classification of flexural members. Class T flexural mem
bers require service level stress checks and have maximum allowable tensile stresses 
above the modulus of rupture. Class C flexural members do not require stress checks 
at service load but do require crack control checks (Section 19.18). The designations 
of Class T and Class C flexural members bring the ACI Code into closer agreement 
with European practice (Refs. 19.13 to 19.15). 

The three classes of prestressed flexural members, U, T, and C, provide the 
designer with considerable flexibility in achieving economical designs. To attain the 
required strength, supplemental reinforcement in the form of nonprestressed ordinary 
steel or unstressed prestressing strand may be required. Reinforcing bars are less expen
sive than high-strength prestressing steel. Strand, however, at twice the cost of ordinary 
reinforcement, provides 3 times the strengt);l. Labor costs for bar placement are gene
rally similar to those for placing unstressed strand on site. Similarly, the addition of a 
small number of strands in a plant prestressing bed is often more economical than 
adding reinforcing bars. The designer may select the service level performance strategy 
best suited for the project. A criterion that includes no tensile stress under dead load 
and a tensile stress less than the modulus of rupture at the service live load is possible 
with Class U and T flexural members, while Class C members use prestressing primarily 
for deflection control. 

The choice of a suitable degree of prestress is governed by a number of factors. 
These include the nature of the loading (for example, highway or railroad bridges, and 
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storage warehouses), the ratio of live to dead load, the frequency of occurrence of the 
full service load, and the presence of a corrosive environment. 

19.9 FLEXURAL DESIGN BASED ON CONCRETE 
STRESS LIMITS 

,., 

As in reinforced concrete, problems in prestressed concrete can be separated generally 
as analysis problems or design problems. For the former, with the applied loads, the 
concrete cross section, steel area, and the amount and point of application of the 
prestress force known, Eqs. (19.1) to (19.4) permit the direct calculation of the resulting 
concrete stresses. The equations in Section 19.7 will predict the flexural strength. 
However, if the dimensions of a concrete section, the steel area and centroid location, 
and the amount of prestress are to be found-given the loads, limiting stresses, and 
required strength-the problem is complicated by the many interrelated variables. 

There are at least three practical approaches to the flexural design of a prestressed 
concrete member. Some engineers prefer to assume a concrete section, calculate the 
required prestress force and eccentricities for what will probably be the controlling 
load stage, then check the stresses at all stages using the preceding equations, and 
finally check the flexural strength. The trial section is then revised if necessary. If a 
beam is to be chosen from a limited number of standard shapes, as is often the case 
for shorter spans and ordinary loads, this procedure is probably best. For longer spans 
or when customized shapes are used, a more efficient member may result by designing 
the cross section so that the specified concrete stress limits of Table 19.2 are closely 
matched. This cross section, close to "ideal" from the limit stress viewpoint, may then 
be modified to meet functional requirements (e.g., providing a broad top flange for a 
bridge deck) or to meet strength requirements, if necessary. Equations facilitating this 
approach will be developed in this section. A third method of design is based on load 
balancing, using the concept of equivalent loads (see Section 19.2b). A trial section is 
chosen, after which the prestress force and tendon profile are selected to provide uplift 
forces as to just balance a specified load. Modifications may then be made, if needed, 
to satisfy stress limits or strength requirements. This third approach will be developed 
in Section 19.12. 

Notation is established pertaining to the allowable concrete stresses at limiting 
stages as follows: 

le; = allowable compressive stress immediately after transfer 

J;; = allowable tensile stress immediately after transfer 

fcs = allowable compressive stress at service load, after all losses 

fts = allowable tensile stress at service load, after all losses 

The values of these limit stresses are normally set by specification (see Table 19.2). 

a. Beams with Variable Eccentricity 

For a typical Class U or T beam in which the tendon eccentricity is permitted to vary 
along the span, flexural stress distributions in the concrete at the maximum moment 
section are shown in Fig. 19.14a. The eccentric prestress force, having an initial value 
of P;, produces the linear stress distribution (1). Because of the upward camber of the 
beam as that force is applied, the self-weight of the member is immediately intro
duced, the flexural stresses resulting from the moment M

0 
are superimposed, and the 



FIGURE 19.14 
Flexural stress distributions 
for beams with variable 
eccentricity: (a) maximum 
moment section; (b) support 
section. 
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distribution (2) is the first that is actually attained. At this stage, the tension at the top 
surface is not to exceed J;;, and the compression at the bottom surface is not to exceed 
fci• as shown in Fig. 19.14a. 

It will be assumed that all the losses occur at this stage, and that the stress 
distribution changes to distribution (3). The losses produce a reduction of tension in 
the amount 1)./1 at the top surface and a reduction of compression in the amount 1)./2 at 
the bottom surface. 

As the superimposed dead load moment Md and the service live load moment 
M1 are introduced, the associated flexural stresses, when superimposed on stresses 
already present, produce distribution (4). AJ this stage, the tension at the bottom sur
face must not be greater thanfts, and the compression at the top of the section must not 
exceed fcs as shown. 

The requirements for the sections moduli S 1 and S2 with respect to the top and 
bottom surfaces, respectively, are 

Md+M1 
S1 2:----

/i, 
Md+M1 

S2 2: ----
/2, 

(a) 

(b) 
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where the available stress rangesf1, andf2, at the top and bottom face can be calculated 
from the specified stress limitsJ;;Jcs,frs, andfc;, once the stress changes l1f1 and l1f2, 
associated with prestress loss are known. 

The effectiveness ratio R accounts for the loss of prestress and is defined as 

P, 
R=

P; 

Thus, the loss in prestress force is 

P; - P, = (1 - R)P; 

(19.18) 

(19.19) 

The changes in stress at the top and bottom faces, l1f1 and l1f2, as losses occur, are 
equal to (1 - R) times the corresponding stresses due to the initial prestress force 
P; acting alone: 

l!:.f1 = (1 - R)(fti + ;
1
°) (c) 

l!:.f2 = (1 - R)( -fci + ;; ) (d) 

where l!:.J; is a reduction of tension at the top surface and l!:.f2 is a reduction of com
pression at the bottom surface. t Thus, the stress ranges available as the superimposed 
load moments Md + M1 are applied are 

and 

or 

fir = ft; - f1f1 - fcs 

Mo = + - R+. - (l - R)-
Jts ale, S

2 

The minimum acceptable value of S1 is thus established: 

Md+M, S1 ~ ----------
Rft; - (1 - R)M0 /S1 - fcs 

(1 - R)M0 + Md + M1 
S1~--------

RJ;; - fcs 

Similarly, the minimum value of S2 is 

(1 - R)M0 + Md + M1 
S2 ~ ---------

!is - Rfc; 

(e) 

(f) 

(19.20) 

(19.21) 

t Note that the stress limits such as fr; and other specific points along the stress axis are considered signed quantities, whereas stress changes such as 
M

0
/S1 and !::i.J2 are taken as absolute values. 
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The cross section must be selected to provide at least these values of S1 and S2. 

Furthermore, since le = S1c1 = S2c2, the centroidal axis must be located such that 

Ct S2 

Cz St 
(g) 

or in terms of the total section depth h = c1 + c2 

h 
(19.22) 

From Fig. 19.14a, the concrete centroidal stress under initial conditionsfcci is 
given by 

Ct 
fcci =fti - h Uri - fc;) (19.23) 

The initial prestress force is easily obtained by multiplying the value of the concrete 
centroidal stress by the concrete cross-sectional area Ac. 

(19.24) 

The eccentricity of the prestress force may be found by considering the flexural 
stresses that must be imparted by the bending moment P;e. With reference to 
Fig. 19 .14, the flexural stress at the top surface of the beam resulting from the eccentric 
prestress force alone is 

P;e M 0 Si = Uri - fcci) + Si 
from which the required eccentricity is 

S1 Mo 
e = Uri - fcci) p + p 

I I 

(h) 

(19.25) 

Summarizing the design process to determine the best cross section and the 
required prestress force and eccentricity based on stress limitations: the required section 
moduli with respect to the top and bottom surfaces of the member are found from 
Eqs. (19.20) and (19.21) with the centroidal axis located using Eq. (19.22). Concrete 
dimensions are chosen to satisfy these requirements as nearly as possible. The con
crete centroidal stress for this ideal section is given by Eq. (19.23), the desired initial 
prestress force by Eq. (19.24), and its eccentricity by Eq. (19.25). 

In practical situations, very seldom will the concrete section chosen have exactly 
the required values of S1 and S2 as found by this method, nor will the concrete centroid 
be exactly at the theoretically ideal level. Rounding concrete dimensions upward, 
providing broad flanges for functional reasons, or using standardized cross-sectional 
shapes will result in a member whose section properties will exceed the minimum 
requirements. In such a case, the stresses in the concrete as the member passes from 
the unloaded stage to the full service load stage will stay within the allowable limits, 
but the limit stresses will not be obtained exactly. An infinite number of combinations 
of prestress force and eccentricity will satisfy the requirements. Usually, the design 
requiring the lowest value of prestress force, and the largest practical eccentricity, will 
be the most economical. 

The total eccentricity in Eq. (19.25) includes the term Mof P;. As long as the beam 
is deep enough to allow this full eccentricity, the girder dead load moment is carried with 
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no additional penalty in terms of prestress force, section, or stress range. This ability to 
carry the beam dead load "free" is a major contribution of variable eccentricity. 

The stress distributions shown in Fig. 19.14a, on which the design equations are 
based, apply at the maximum moment section of the member. Elsewhere, M

0 
is less, 

and, consequently, the prestress eccentricity or the force must be reduced if the stress 
limits ft; and fci are not to be exceeded. In many cases, tendon eccentricity is reduced 
to zero at tbe support sections, where all moments due to transverse load are zero. In 
this case, the stress distributions of Fig. 19. l 4b are obtained. The stress in the concrete 
is uniformly equal to the centroidal value fcci under conditions of initial prestress and 
fcce after losses. 

EXAMPLE 19.3 Design of beam with variable eccentricity tendons. A post-tensioned prestressed concrete 
beam is to carry an intermittent live load of 1000 lb/ft and superimposed dead load of 500 lb/ft, 
in addition to its own weight, on a 40 ft simple span. Normal-density concrete will be used with 
design strength J; = 6000 psi. It is estimated that, at the time of transfer, the concrete will have 
attained 70 percent of J;, or 4200 psi. Time-dependent losses may be assumed to be 15 percent 
of the initial prestress, giving an effectiveness ratio of 0.85. Determine the required concrete 
dimensions, magnitude of prestress force, and eccentricity of the steel centroid based on ACI 
stress limitations for a Class U beam, as given in Sections 19.4 and 19.5. 

SOLUTION. Referring to Table 19.2, the stress limits are 

fc; = - 0.60 X 4200 = - 2520 psi 

!,; = 3 \/4200 = + 194 psi 

fcs = - 0.60 X 6000 = - 3600 psi 

f,s = 7.5\/6000 = +581 psi 

The self-weight of the girder will be estimated at 250 lb/ft. The service moments due to 
transverse loading are 

1 . 
M0 = S X 0.250 X 402 = 50 ft-kips 

Md + M 1 = ½ X 1.500 X 402 = 300 ft-kips 

The required section moduli with respect to the top and bottom surfaces of the concrete 
beam are found from Eqs. (19.20) and (19.21). 

(l - R)M0 +Md+ M1 (0.15 X 50 + 300)12,000 
3 S1 2: --------- = --------- = 980 in 

Rf,; - fcs 0.85 X 194 + 3600 

(1 - R)M0 +Md+ M1 (0.15 X 50 + 300)12,000 . 
3 S2 2: --------- = --------- = 1355 m 

f,s - Rfci 581 + 0.85 X 2520 

The values obtained for S1 and S2 suggest that an asymmetrical section is most appropriate. 
However, a symmetrical section is selected for simplicity and to ensure sufficient compression 
area for flexural strength. The 28 in. deep I section shown in Fig. 19.15a will meet the require
ments and has the following properties: 

Jc = 19,904 in4 

S = 1422 in3 

Ac= 240 in2 

r2 = 82.9 in2 

w O = 250 lb/ft ( as assumed) 



FIGURE 19.15 
Design ex.ample of beam 
with variable eccentricity of 
tendons: (a) cross section 
dimensions; (b) concrete 
stresses at midspan (psi). 
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P;= 279 kips 

(a) 

0 

+ 196 

I 

0 
+ 452 

Next, the concrete centroidal stress is found from Eq. (19.23): 

-2429 

I 

P;+ M0 

-2521 

(b) 

C1 l 
!IX/= f,/ - ,;(J,; - f.:,) = 194 - 2(195 + 2520) = - J J63 psi 

and from Eq. (19.24) the initial prestress force is 

P1 = Acfcc1 = 240 X 1.163 = 279 kips 

From Eq. ( 19.25), the required tendon eccentricity at the maximum moment section of the 
beam is 

Si M 0 1422 50 X 12,000 
e = (f,; - fee;) Pi+ P; = (195 + 1163) 279,000 + 279,000 

= 9.07 in. 

Elsewhere along the span, the eccentricity will be reduced so that the concrete stress limits will 
not be violated. 

The required initial prestress force of 279 kips will be provided using tendons consisting 
of ½ in. diameter Grade 270 low-relaxation strands (see Section 2.16). The minimum tensile 
strength is J,,,, = 270 ksi, and the yield strength may be taken as J,,y = 0.90 X 270 = 243 ksi. 
According to the ACI Code (see Section 19.4), the permissible stress in the strand immediately 
after transfer must not exceed 0.82JPY = 199 ksi or 0.74 J,,. = 200 ksi. The first criterion con
trols. The required area of prestressing steel is 

279 w 
A = - = 140in2 

ps 199 . 

The cross-sectional area of one ½ in. diameter strand is 0.153 in2; hence, the number of strands 
required is 

l.40 
Number of strands= 

0
_
153 

= 9.2 

Two five-strand tendons will be used, as shown in Fig. 19. 15a, each stressed to 139.5 kips 
immediately following transfer. 
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It is good practice to check the calculations by confirming that stress limits are not 
exceeded at critical load stages. The top and bottom surface concrete stresses produced, in this 
case, by the separate loadings are 

,
1 

= 279,000 ( l _ 9.07 X 14) = + 618 si· 
£1: JI 240 82.9 p 

279,000 ( 9.07 X 14) 
f 2 = -

240 
1 + 

82
_
9 

= -2943 psi 

P,: f 1 = 0.85 X 618 = 525 psi 

f 2 = 0.85 ( - 2943) = - 2502 psi 

50 X 12,000 = _ 422 si 
1422 p 

f 2 = +422 psi 

300 X 12,000 
3 

. 

1422 
= -25 2 psi 

f 2 = +2532 psi 

Thus, when the initial prestress force of 279 kips is applied and the beam self-weight acts, the 
top and bottom stresses in the concrete at midspan are, respectively, 

f 1 = +618 - 422 = + 196 psi 

f 2 = -2943 + 422 = -2521 psi 

When the prestress force has decreased to its effective value of 237 kips and the full service 
load is applied, the concrete stresses are 

f 1 = + 525 - 422 - 2532 = - 2429 psi 

f 2 = -2502 + 422 + 2532 = +452 psi 

These stress distributions are shown in Fig. 19.15b. Comparison with the specified limit 
stresses confirms that the design is satisfactory. 

b. Beams with Constant Eccentricity 

The design method presented in the previous section was based on stress conditions at 
the maximum moment section of a beam, with the maximum value of moment M

0 

resulting from the self-weight immediately being superimposed. If P; and e were to be 
held constant along the span, as is often convenient in pretensioned prestressed con
struction, then the stress limits fti and fci would be exceeded elsewhere along the span, 
where M

0 
is less than its maximum value. To avoid this condition, the constant eccen

tricity must be less than that given by Eq. (19.25). Its maximum value is given by con
ditions at the support of a simple span, where M

0 
is zero. 

Figure 19.16 shows the flexural stress distributions at the support and midspan 
sections for a beam with constant eccentricity. In this case, the stress limits ft; and fc; 
are not to be violated when the eccentric prestress moment acts alone, as at the sup
ports. The stress changes !),,J1 and !),,J2 as losses occur are equal to (1 - R) times the top 
and bottom surface stresses, respectively, due to initial prestress alone: 

!),,Ji = (1 - R) (fr;) 
!),,J2 = (1 - R)(-fc;) 

(a) 

(b) 



FIGURE 19.16 
Flexural stress distributions 
for beam with constant 
eccentricity of tendons: 
(a) maximum moment 
section; (b) support section. 
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0 

CD P; alone 

@ Pe alone 
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In this case, the available stress ranges between limit stresses must provide for the 
effect of M0 as well as Md and M1, as seen from Fig. 19.16a, and are 

f1r = /r; - ~fl - fcs 

= R/r; - !cs 
f2r = frs - fc; - ~/2 

= !rs - Rfci 

and the requirements on the section moduli are that 

M +·-Md+ M1 S12::_o ____ _ 

R/r; - fcs 

M0 +Md+ M1 
S2 2:: --------

!rs - Rfci 

(c) 

(d) 

(19.26) 

(19.27) 

The concrete centroidal stress may be found by Eq. (19.23) and the initial prestress 
force by Eq. (19.24) as before. However, the expression for required eccentricity dif
fers. In this case, referring to Fig. 19.16b, 

(e) 
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from which the required eccentricity is 

(19.28) 

A significant difference between beams with variable eccentricity and those with 
constant eccentricity will be noted by comparing Eqs. (19.20) and (19.21) with the 
corresponding Eqs. (19.26) and (19.27). In the first case, the section modulus require
ment is governed mainly by the superimposed load moments Md and M1• Almost all of 
the self-weight is carried "free," that is, without increasing section modulus or prestress 
force, by the simple expedient of increasing the eccentricity along the span by the 
amount M

0
/ P;. In the second case, the eccentricity is controlled by conditions at the 

supports, where M
0 

is zero, and the full moment M
0 

due to self-weight must be included 
in determining section moduli. Nevertheless, beams with constant eccentricity are often 
used for practical reasons. 

EXAMPLE 19.4 Design of beam with constant eccentricity tendons. The beam in the preceding example is 
to be redesigned using straight tendons with constant eccentricity. All other design criteria are 
the same as before. At the supports, a temporary concrete tensile stress f,; = 6 VJ:: = 389 psi 
and a compressive stressfci = 0.1J;; = 2940 psi are permitted. 

SOLUTION. Anticipating a somewhat less efficient beam, the dead load estimate will be 
increased to 270 lb/ft in this case. The resulting moment M

0 
is 54 ft-kips. The moment due to 

superimposed dead load and live load is 300 ft-kips as before. 
Using Eqs. (19.26) and (19.27), the requirements for section moduli based on the 

midspan allowable stresses are 

M 0 +Md+ M1 (54 + 300)12,000 . 
3 S1 2: ------ = ------- = 1128 m 

R.ft; - fcs 0.85 X 194 + 3600 

M 0 +Md+ M 1 (54 + 300)12,000 . 
3 S2 2: ------ = ------- = 1560 m 

f,s - Rfci 581 + 0.85 X 2520 

Once again, a symmetrical section will be chosen. Flange dimensions and web width will be 
kept unchanged compared with the previous example, but in this case a beam depth of 30.0 in. 
is required. The dimensions of the cross section are shown in Fig. 19 .17 a. The following prop
erties are obtained: 

le = 24,084 in4 

S = 1606 in3 

Ac= 252 in2 

r2 = 95.6 in2 

w O = 263 lb/ft ( close to the assumed value) 

The concrete centroidal stress, from Eq. (19.23), is 

C1 1 
lcci = .ft; - ,;(.ft; - lei) = 194 - 2(390 + 2520) = -1163 psi 

and from Eq. (19.24), the initial prestress force is 

P; = Acfcci = 252 X 1.163 = 293 kips 

From Eq. (19.28), the required constant eccentricity is 

S1 1606 . 
e = (.ft; - fee;)-= (389 + 1163) -- = 8.51 m. 

P; 293,000 



P1 = 268 kips 

(a) 

FIGURE 19.17 
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-2242 

I 

- 2313 

+332 \ O 
+ 390, 

11 

0 
- 2308 -2715 

(c) 

Design example of beam with constant eccentricity of tendons: (a) cross section dimensions; (b) stresses at 
midspan (psi); (c) stresses at supports (psi). 

Again, two tendons will be used to provide the required prestress force, each com
posed of multiple ½ in. diameter Grade 270 low-relaxation strands. With the maximum 
permissible stress in the stranded cable just after transfer of 199 ksi, the total required steel 
area is 

- 293 - . . 2 
Ap, -

199 
- 1.47 m 

A total of 10 strands is required. Two identical five-strand tendons will be used as before, in 
this case being stressed to a total of 293 kips. 

The calculations will be checked by verifying the concrete stresses at the top and bottom 
of the beam for the critical load stages. The component stress contributions are 

", = 293,000 ( I _ 8.51 X 15.0) = + 390 . 
P;: JI 252 95.6 p Sl 

"
2 

= 293,000 ( 8.51 X 15.0) _ . 
J; 252 J + 95.6 - -2715 psi 

P, : / 1 = 0.85 X 390 = + 332 psi 

/ 2 = 0.85(-2715) ".: -2308 psi 

54 X 12,000 
--

1
-
6
-
06

- - = - 403 psi 

/ 2 = + 403 psi 

300 X 12,000 . 

1606 
= -2242 psi 

f 2 = + 2242 psi 

Superimposing the appropriate stress contributions, the stress distributions in the concrete at 
midspan and at the supports are obtained, as shown in Fig. 19.17b and c, respectively. When 
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the initial prestress force of 268 kips acts alone, as at the supports, the stresses at the top and 
bottom surfaces are 

/ 1 = +390 psi 

f2 = -2715 psi 

After losses, the prestress force is reduced to 228 kips and the support stresses are reduced 
accordingly....A.t midspan, the beam weight is immediately superimposed, and stresses resulting 
from P; plus M

0 
are 

J1 = +390 - 403 = -13 psi 

f2 = - 2715 + 403 = -23 12 psi 

When the full service load acts, together with P, , the midspan stresses are 

Ji = +332 - 403 - 2242 = -2313 psi 

f2 = -2308 + 403 + 2242 = + 337 psi 

If we check against the specified limiting stresses, it is evident that the design is satisfactory in 
this respect at the critical load stages and locations. 

19.10 SHAPE SELECTION 

lJ 

One of the special features of prestressed concrete design is the freedom to select 
cross-section proportions and dimensions to suit the special requirements of the job at 
hand. The member depth can be changed, the web thickness modified, and the flange 
widths and thicknesses varied independently to produce a beam with nearly ideal pro
portions for a given case. 

Several common precast shapes are shown in Fig. 19.18. Some of these are stan
dardized and mass-produced, employing reusable steel or fiberglass forms. Others are 
individually proportioned for large and important works. The double T (Fig. 19.18a) is 
probably the most widely used cross section in U.S. prestressed construction. A flat 
surface is provided, 4 to 12 ft wide. Slab thicknesses and web depths vary, depending 
upon requirements. Spans to 60 ft are not unusual. The single T (Fig. 19.18b) is more 
appropriate for longer spans, to 120 ft, and heavier loads. The I and bulb T sections 

lJ 
c:: 

1f 
___J I C: :::, 

~ 
(a) Double T (b) Single T (c) I Girder (d) Bulb T 

u 
(e) Channel slab 

FIGURE 19.18 
Typical beam cross sections. 

J1 
(f) Box girder (g) Inverted T 
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(Fig. 19.18c and d) are widely used for bridge spans and roof girders up to about 
140 ft, while the channel slab (Fig. 19.18e) is suitable for floors in the intermediate 
span range. The box girder (Fig. 19.18!) is advantageous for bridges of intermediate 
and major span. The inverted T section (Fig. 19.18g) provides a bearing ledge to carry 
the ends of precast deck members spanning in the perpendicular direction. Local 
precasting plants can provide catalogs of available shapes. This information is also 
available in the PC! Design Handbook (Ref. 19.8). 

As indicated, the cross section may be symmetrical or unsymmetrical. An 
unsymmetrical section is a good choice (1) if the available stress ranges/,, and/2, at 
the top and bottom surfaces are not the same; (2) if the beam must provide a flat, useful 
surface as well as offering load-carrying capacity; (3) if the beam is to become a part 
of composite construction, with a cast-in-place slab acting together with a precast 
web; or (4) if the beam must provide support surfaces, such as shown in Fig. 19.18g. 
In addition, T sections provide increased flexural strength, since the internal arm of 
the resisting couple at maximum design load is greater than for rectangular sections. 

Generally speaking, I, T, and box sections with relatively thin webs and flanges 
are more efficient than members with thicker parts. However, several factors limit the 
gain in efficiency that may be obtained in this way. These include the instability of 
very thin overhanging compression parts, the vulnerability of thin parts to breakage in 
handling (in the case of precast construction), and the practical difficulty of placing 
concrete in very thin elements. The designer must also recognize the need to provide 
adequate spacing and concrete protection for tendons and anchorages, the importance 
of construction depth limitations, and the need for lateral stability if the beam is not 
braced by other members against buckling (Ref. 19.16). 

19.11 TENDON PROFILES 

The equations developed in Section 19.9a for members with variable tendon eccen
tricity establish the requirements for section modulus, prestress force, and eccentricity 
at the maximum moment section of the member. Elsewhere along the span, the eccen
tricity of the steel must be reduced if the concrete stress limits for the unloaded stage 
are not to be exceeded. (Alternatively, the section must be increased, as demonstrated 
in Section 19.9b.) Conversely, there is a minimum eccentricity, or upper limit for the 
steel centroid, such that the limiting concrete stresses are not exceeded when the beam 
is in the full service load stage. 

Limiting locations for the prestressing steel centroid at any point along the span 
can be established using Eqs. (19.2) and (19.4), which give the values of concrete stress 
at the top and bottom of the beam in the unloaded and service load stages, respectively. 
The stresses produced for those load stages should be compared with the limiting 
stresses applicable in a particular case, such as the ACI stress limits of Table 19 .2. This 
permits a solution for tendon eccentricity e Mi a function of distance x along the span. 

To indicate that both eccentricity e and moments M0 or M1 are functions of 
distance x from the support, they will be written as e(x) and M/x) or Mi(x), respec
tively. In writing statements of inequality, it is convenient to designate tensile stress as 
larger than zero and compressive stress as smaller than zero. Thus, +450 > -1350, 
and -600 > -1140, for example. 

Considering first the unloaded stage, the tensile stress at the top of the beam , 
must not exceedJ;;- From Eq. (19.2a), 

fr; "2:. _ P; [ 1 _ e(x~c1 ] _ M0 (x) (a) 
Ac r S1 



; 
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Solving for the maximum eccentricity gives 

f, .s s M (x) 
e(x) -:5. ..E....J., + _!_ + - 0

-

P; Ac P; 
(19.29) 

At the bottom of the unloaded beam, the stress must not exceed the limiting initial 
compressio~; From Eq. (19.2b), 

P; [ e(x)c2 ] M0 (x) 1,.-:s.--1+-- +--
Cl Ac r2 S2 

(b) 

Hence, the second lower limit for the steel centroid is 

(19.30) 

Now considering the member in the fully loaded stage, the upper limit values for 
the eccentricity may be found. From Eq. (19.4a), 

f, -:s. _ Pe[l _ e(x)ci] _ Mr(x) 
cs Ac r2 S1 

(c) 

from which 

(19.31) 

and using Eq. (19.4b) 

(d) 

from which 

(19.32) 

Using Eqs. (19.29) and (19.30), the lower limit of tendon eccentricity is estab
lished at successive points along the span. Then, using Eqs. (19.31) and (19.32), the 
corresponding upper limit is established. This upper limit may well be negative, indi
cating that the tendon centroid may be above the concrete centroid at that location. 

It is often convenient to plot the envelope of acceptable tendon profiles, as done 
in Fig. 19.19, for a typical case in which both dead and live loads are uniformly 
distributed. Any tendon centroid falling completely within the shaded zone would be 
satisfactory from the point of view of concrete stress limits. It should be emphasized 
that it is only the tendon centroid that must be within the shaded zone; individual 
cables are often outside of it. 

The tendon profile actually used is often a parabolic curve or a catenary in the 
case of post-tensioned beams. The duct containing the prestressing steel is draped to 
the desired shape and held in that position by wiring it to the transverse web rein
forcement, after which the concrete may be placed. In pretensioned beams, deflected 
tendons are often used. The cables are held down at midspan, at the third points, or at 
the quarter points of the span and held up at the ends, so that a smooth curve is approx
imated to a greater or lesser degree. 

In practical cases, it is often not necessary to make a centroid zone diagram, such 
as is shown in Fig. 19.19. By placing the centroid at its known location at midspan, at or 



FIGURE 19.19 
Typical limiting zone for 
centroid of prestressing steel. 
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close to the concrete centroid at the supports, and with a near-parabolic shape between 
those control points, satisfaction of the limiting stress requirements is ensured. With 
nonprismatic beams, beams in which a curved concrete centroidal axis is employed, or 
with continuous beams, diagrams such as Fig. 19.19 are a great aid. 

19.12 FLEXURAL DESIGN BASED ON LOAD BALANCING 

It was pointed out in Section 19.2b that the effect of a change in the alignment of a 
prestressing tendon in a beam is to produce a vertical force on the beam at that loca
tion. Prestressing a member with curved or deflected tendons thus has the effect of 
introducing a set of equivalent loads, and these may be treated just as any other loads 
in finding moments or deflections. Each particular tendon profile produces its own 
unique set of equivalent forces. Typical tendon profiles, with corresponding equivalent 
loads and moment diagrams, were illustrated in Fig. 19.2. Both Fig. 19.2 and 
Section 19.2b should be reviewed carefully. 

The equivalent load concept offers an alternative approach to the determination 
of required prestress force and eccentricity. The prestress force and tendon profile can 
be established so that external loads that will act are exactly counteracted by the 
vertical forces resulting from prestressing. The net result, for that particular set of 
external loads, is that the beam is subjected only to axial compression and no bending 
moment. The selection of the load to be balanced is left to the judgment of the 
designer. Often the balanced load chosen is the sum of the self-weight and superim
posed dead load. 

The design approach described in this section was introduced in the United 
States by T. Y. Lin in 1963 and is known as the load-balancing method. The fun
damentals will be illustrated in the context of the simply supported, uniformly 
loaded beam shown in Fig. 19.20a. The beam is to be designed for a balanced load 
consisting of its own weight w 

0
, the superimposed dead load w d• and some frac

tional part of the live load, denoted by kbw1• Since the external load is uniformly 
distributed, it is reasonable to adopt a tencttm having a parabolic shape. It is easily 
shown that a parabolic tendon will produce a uniformly distributed upward load 
equal to 

(19.33) 

where P = magnitude of prestress force 
y = maximum sag of tendon measured with respect to the chord between its 

endpoints 
l = span length 
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FIGURE 19.20 
Load balancing for uniformly 
loaded beam: (a) external 
and equivalent loads; 
( b) concrete stresses resulting 
from axial and bending 
effects of prestress plus 
bending resulting from 
balanced external load; 
( c) concrete stresses resulting 
when load kbw1 is removed. 
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If the downward load exactly equals the upward load from the tendon, these two 
loads cancel and no bending stress is produced, as shown in Fig. 19.20b. The bending 
stresses due to prestress eccentricity are equal and opposite to the bending stresses 
resulting from the external load. The net resulting stress is uniform compression fa 
equal to that produced by the axial force P cos 0. Excluding consideration of time
dependent effects, the beam would show no vertical deflection. 

If the live load is removed or increased, then bending stresses and deflections 
will result because of the unbalanced portion of the load. Stresses resulting from this 
differential loading must be calculated and superimposed on the axial compression to 
obtain the net stresses for the unbalanced state. Referring to Fig. 19.20c, the bending 
stresses J; resulting from removal of the partial live loading are superimposed on the 
uniform compressive stress fa, resulting from the combination of eccentric prestress 
force and full balanced load to produce the final stress distribution shown. 

Loads other than uniformly distributed would lead naturally to the selection of 
other tendon configurations. For example, if the external load consisted of a single 
concentration at midspan, a deflected tendon such as that of Fig. 19.2a would be 
chosen, with maximum eccentricity at midspan, varying linearly to zero eccentricity 
at the supports. A third-point loading would lead the designer to select a tendon 
deflected at the third points. A uniformly loaded cantilever beam would best be 
stressed using a tendon in which the eccentricity varied parabolically, from zero at the 
free end to y at the fixed support, in which case the upward reaction of the tendon 
would be 

(19.34) 
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It should be clear that, for simple spans designed by the load-balancing concept, 
it is necessary for the tendon to have zero eccentricity at the supports because the 
moment due to superimposed loads is zero there. Any tendon eccentricity would 
produce an unbalanced moment (in itself an equivalent load) equal to the horizontal 
component of the prestress force times its eccentricity. At the simply supported ends, 
the requirement of zero eccentricity must be retained. 

In practice, the load-balancing method of design starts with selection of a trial 
beam cross section, based on experience and judgment. An appropriate span-depth 
ratio is often applied. The tendon profile is selected using the maximum available 
eccentricity, and the prestress force is calculated. The trial design may then be checked 
to ensure that concrete stresses are within the allowable limits should the live load be 
totally absent or fully in place, when bending stresses will be superimposed on the 
axial compressive stresses. There is no assurance that the section will be adequate for 
these load stages, or that adequate strength will be provided should the member be 
overloaded. Revision may be necessary. 

It should further be observed that obtaining a uniform compressive concrete 
stress at the balanced load stage does not ensure that the member will have zero 
deflection at this stage. The reason is that the uniform stress distribution is made up of 
two parts: that from the eccentric prestress force and that from the external loads. The 
prestress force varies with time because of shrinkage, creep, and relaxation, changing 
the vertical deflection associated with the prestress force. Concurrently, the beam will 
experience creep deflection under the combined effects of the diminishing prestress 
force and the external loads, a part of which may be sustained and a part of which may 
be short-term. However, if load balancing is carried out based on the effective prestress 
force Pe plus self-weight and external dead load only, the result may be near-zero 
deflection for that combination. 

The load-balancing method provides the engineer with a useful tool. For simple 
spans, it leads the designer to choose a sensible tendon profile and focuses attention 
very early on the matter of deflection. But the most important advantages become 
evident in the design of indeterminate prestressed members, including both continuous 
beams and two-way slabs. For such cases, at least for one unique loading, the member 
carries only axial compression but no bending. This greatly simplifies the analysis. 

EXAMPLE 19.5 Beam design initiating with load balancing. A post-tensioned beam is to be designed to 
carry a uniformly distributed load over a 30 ft span, as shown in Fig. 19.21. In addition to its 
own weight, it must carry a dead load of 150 lb/ft and a service live load of 600 lb/ft. Concrete 
strength of 4000 psi will be attained at 28 days; at the time of transfer of the prestress force, the 
strength will be 3000 psi. Prestress loss may be assumed at 20 percent of P;. On the basis that 
about one-quarter of the live load will be sustained over a substantial time period, kb of 0.25 
will be used in determining the balanced load. 

SOLUTION. On the basis of an arbitrarily chosen span-depth ratio of 18, a 20 in. deep, IO in. 
wide trial section is selected. The calculated self-weight of the beam is 208 lb/ft, and the 
selected load to be balanced is 

Whal = W0 + wd + kbwl = 208 + 150 + 150 = 508 lb/ft 

Based on a minimum concrete cover from the steel centroid to the bottom face of the beam of 
4 in., the maximum eccentricity that can be used for the 20 in. trial section is 6 in. A parabolic 
tendon will be used to produce a uniformly distributed upward tendon load. To equilibrate the 
sustained downward loading, the prestress force Pe after losses, from Eq. (19.33), should be 

Whal l 2 508 X 900 
P = s°y = 

8 
X 

0
_
5 

= 114,000 lb 
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FIGURE 19.21 
Example of design by load 
balancing: (a) beam profile 
and cross section; (b) flexural 
stresses at maximum moment 
section (psi). 

(a) 

0 

+150 -266 -1480 
I I -510 I 

+340 -874 -1580 
-570 

(b) 

and the corresponding initial prestress force is 

P = Pe = ll4,000 = 143 000 lb 
' R 0.8 ' 

For the balanced load stage, the concrete will be subjected to a uniform compressive stress of 

114,000 
fbal = 200 = - 570 psi 

as shown in Fig. 19.21b. Should the partial live load of 150 lb/ft be removed, the stresses to be 
superimposed on fbal result from a net upward load of 150 lb/ft. The section modulus for the 
trial beam is 667 in3 and 

900 
Munbal = 150 X S = 16,900 ft-lb 

Hence, the unbalanced bending stresses at the top and bottom faces are 

12 

Thus, the net stresses are 

funbal = 16,900 X 
667 

= 304 psi 

f1 = -570 + 304 = -266 psi 

f 2 = -570 - 304 = -874 psi 

Similarly, if the full live load should act, the stresses to be superimposed are those resulting from 
a net downward load of 450 lb/ft. The resulting stresses in the concrete at fu]] service load are 

f 1 = -570 - 910 = -1480 psi 

f 2 = -570 + 910 = +340psi 
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Stresses in the concrete with live load absent and live load fully in place are shown in Fig. 19.21b. 
It is also necessary to investigate the stresses in the initial unloaded stage, when the 

member is subjected to P; plus moment due to its own weight. 

900 
M0 = 208 X g = 23,400 ft-lb 

Hence, in the initial stage: 

143,000 ( 6 X 10) 23,400 X 12 1 - -- - ----= +150psi 
200 33.35 667 

143,000 ( 6 X 10) 23,400 X 12 
1 + -- + ---- = -1580psi 

200 33.35 667 

The stresses in the unloaded and full service load stages must be checked against these 
permitted by the ACI Code. With J; = 4000 psi and J;; = 3000 psi, the stresses permitted for 
a Class U member are 

/ti= +165 psi 

lei = -1800 psi 

f,s = +474 psi 

fcs = - 2400 psi 

The actual stresses, shown in Fig. 19.21b, are within these limits and acceptably close, and no 
revision will be made in the trial 10 X 20 in. cross section on the basis of stress limits. 

The flexural strength of the members must now be checked, to ensure that an adequate 
margin of safety against collapse has been provided. The required P; of 143,000 lb will be pro
vided using Grade 270 strand, with fpu = 270,000 psi and !py = 243,000 psi. Referring to 
Section 19.4, the initial stress immediately after transfer must not exceed 0.74 X 270,000 = 
200,000 psi, or 0.82 X 243,000 = 199,000 psi, which controls in this case. Accordingly, the 
required area of tendon steel is 

Aps = 143,000/199,000 = 0.72 in2 

This will be provided using five½ in. strands, giving an actual area of0.765 in2 (Table A.15). 
The resulting stresses at the initial and final stages are 

143,000 
/p; = 

0
_
765 

= 187,000 psi 

114,000 
/pe = 

0
_
765 

= 149,000 psi 

Using the ACI approximate equation for steel stress at failure [see Eq. (19.6)], with Pp = 
0.765/160 = 0.0048, and 'Yp = 0.40 for the ordinary Grade 270 tendons, the stressJ,,s is given by 

( 
'Yp Pp/pu) 

/ps = /pu 1 - f3J y 

( 
0.40 0.0048 X 270) = 270 1 - ------
0.85 4 

= 229 ksi 

Then 
ApJps 

a= 
0.85/;b 

0.765 X 229 
= 0.85 X 4 X 10 = 5,l5 in. 

5.15 
C = 

0
_
85 

= 6.06 

~ = 
6

·
06 

= 0.379 
d, 16 
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This exceeds c/d1 = 0.375, reducing <p to 0.89. The nominal flexural strength is 

Mn = Apsfps ( d - ~) = 0.765 X 229,0oo( 16 -
5
·;

5
) /

2 

= 196,000 ft-lb 

and the design strength with <p = 0.89 is 

</JMn = 0.89 X 196,000 = 174,000 ft-lb 

It will be recalled that the ACI load factors with respect to dead and live loads are, respectively, 
1.2 and 1.6. Calculating the factored load, 

Wu = 1.2(208 + 150) + 1.6(600) = 1390 lb/ft 

1390(900) 
Mu = 

8 
= 156,000 ft-lb 

Thus, </JMn > Mu, and the design is judged satisfactory. 

19.13 LOSS OF PRESTRESS 

As discussed in Section 19.6, the initial prestress force P; immediately after transfer is 
less than the jacking force Pj because of elastic shortening of the concrete, slip at the 
anchorages, and frictional losses along the tendons. The force is reduced further, after 
a period of many months or even years, due to length changes resulting from shrink
age and creep of the concrete and relaxation of the highly stressed steel; eventually it 
attains its effective value Pe. In the preceding sections of this chapter, losses were 
accounted for, making use of an assumed effectiveness ratio R = Pe/P;, Losses have 
no effect on the nominal strength of a member with bonded tendons, but overestima
tion or underestimation of losses may have a pronounced effect on service conditions 
including camber, deflection, and cracking. 

The estimation of losses can be made on several different levels. Lump-sum 
losses, used in the early development of prestressed concrete, are now considered 
obsolete. Values of R based on detailed calculations and verified in field applications 
are used in design offices, as are tables of individual loss contributions. For cases where 
greater accuracy is required, it is necessary to estimate the separate losses, taking 
account of the conditions of member geometry, material properties, and construction 
methods that apply. Accuracy of loss estimation can be improved still further by 
accounting for the interdependence of time-dependent losses, using the summation of 
losses in a sequence of discrete time steps. These methods will be discussed briefly in 
the following paragraphs. 

a. Lump-Sum Estimates of Losses 

It was recognized very early in the development of prestressed concrete that there 
was a need for approximate expressions to be used to estimate prestress losses in 
design. Many thousands of successful prestressed structures have been built based 
on such estimates, and where member sizes, spans, materials, construction proce
dures, pres tress forces, and environmental conditions are not out of the ordinary, this 
approach is satisfactory. For such conditions, the American Association of State 
Highway and Transportation Officials (AASHTO, Ref. 19.17) has recommended 
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TABLE 19.3 
Estimate of prestress losses 

Type of Beam Section 

Rectangular beams, solid slabs 

Box girder 

I girder 
Single T, double T, 

hollow core and voided slab 

Level 

Upper bound 
Average 
Upper bound 
Average 
Average 
Upper bound 
Average 

Wires or Strands with 
fpu = 235, 250, or 270 ksi8 

33.0 ksi 
30.0 ksi 
25.0 ksi 
23.0 ksi 

33.0[1 - 0.15(!; - 6.0)/6.0] + 6.0 
39.0[1 - 0.15(!; - 6.0)/6.0] + 6.0 
39.0[1 - 0.15(!; - 6.0)/6.0] + 6.0 

a Values are for fully prestressed beams; reductions are allowed for partial prestress. 
Losses due to friction are excluded. Friction losses should be computed according to Section 19 .13b. 
For low-relaxation strands, the values specified may be reduced by 4.0 ksi for box girders; 6.0 ksi for 
rectangular beams, solid slabs, and I girders; and 8.0 ksi for single T's, double T's, hollow core and voided slabs. 

Source: Adapted from Ref. 19.17. 

the values in Table 19 .3 for preliminary design or for certain controlled precasting 
conditions. It should be noted that losses due to friction must be added to these val
ues for post-tensioned members. These may be calculated separately by the equations 
of Section 19.13b below. 

The AASHTO recommended losses of Table 19.3 include losses due to elastic 
shortening, creep, shrinkage, and relaxation (see Section 19.13b). Thus for compari
son with R values for estimating losses, such as were employed for the preceding 
examples, which included only the time-dependent losses due to shrinkage, creep, and 
relaxation, elastic shortening losses should be estimated by the methods discussed in 
Section 19.13b and deducted from the total. 

b. Estimate of Separate Losses 

A separate estimate of individual losses is made for most designs and specifically 
required when using the ACI Code. Such an analysis is complicated by the interde
pendence of time-dependent losses. For example, the relaxation of stress in the tendons 
is affected by length changes due to creep of concrete. Rate of creep, in tum, is altered 
by change in tendon stress. In the following six subsections, losses are treated as if they 
occurred independently, although certain arbitrary adjustments are included to account 
for the interdependence of time-dependent losses. If greater refinement is necessary, a 
step-by-step approach like that mentioned in Section 19.13c may be used (see also 
Refs. 19.8, 19.18, and 19.19). 

(1) SLIP AT THE ANCHORAGES As the load is transferred to the anchorage device 
in post-tensioned construction, a slight inward movement of the tendon will occur as 
the wedges seat themselves and as the anchorage itself deforms under stress. The 
amount of movement will vary greatly, depending on the type of anchorage and on 
construction techniques. The amount of movement due to seating and stress deforma
tion associated with any particular type of anchorage is best established by test. Once 
this amount M is determined, the stress loss is easily calculated from 

AL 
Afs.slip = L Es (19.35) 
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It is significant to note that the amount of slip is nearly independent of the cable 
length. For this reason, the stress loss will be large for short tendons and relatively 
small for long tendons. The practical consequence of this is that it is most difficult to 
post-tension short tendons with any degree of accuracy. 

(2) ELASTIC SHORTENING OF THE CONCRETE In pretensioned members, as the 
tendon force, is transferred from the fixed abutments to the concrete beam, elastic 
instantaneous compressive strain will take place in the concrete, tending to reduce the 
stress in the bonded prestressing steel. The steel stress loss is 

dfs,elastic =Es; = nfc 
C 

(19.36) 

where fc is the concrete stress at the level of the steel centroid immediately after 
prestress is applied: 

P; ( e
2

) M0 e fc= -- 1 +2 +--
Ac r le 

(19.37) 

If the tendons are placed with significantly different effective depths, the stress loss in 
each should be calculated separately. 

In computing.fc by Eq. (19.37), the prestress force used should be that after the 
losses being calculated have occurred. It is usually adequate to estimate this as about 
10 percent less than Pj. 

In post-tensioned members, if all of the strands are tensioned at one time, there 
will be no loss due to elastic shortening, because this shortening will occur as the 
jacking force is applied and before the prestressing force is measured. On the other 
hand, if various strands are tensioned sequentially, the stress loss in each strand will 
vary, being a maximum in the first strand tensioned and zero in the last strand. In most 
cases, it is sufficiently accurate to calculate the loss in the first strand and to apply one
half that value to all strands. 

(3) FRICTIONAL LOSSES Losses due to friction, as the tendon is stressed in post
tensioned members, are usually separated for convenience into two parts: curvature 
friction and wobble friction. The first is due to intentional bends in the tendon profile 
as specified and the second to the unintentional variation of the tendon from its intended 
profile. It is apparent that even a "straight" tendon duct will have some unintentional 
misalignment so that wobble friction must always be considered in post-tensioned 
work. Usually, curvature friction must be considered as well. The force at the jacking 
end of the tendon P 

0
, required to produce the force Px at any point x along the tendon, 

can be found from the expression 

where e = base of natural logarithms 
Ix = tendon length from jacking end to point x 
a = angular change of tendon from jacking end to point x, rad 
K = wobble friction coefficient, lb/lb per ft 
µ, = curvature friction coefficient 

(19.38a) 

There has been much research on frictional losses in prestressed construction, particularly 
with regard to the values of Kand µ,. These vary appreciably, depending on construc
tion methods and materials used. The values in Table 19.4, from ACI Commentary 
R18.6, may be used as a guide. 
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TABLE 19.4 
Friction coefficients for post-tensioned tendons 

Wobble Curvature 
Coefficient Coefficient 

Type of Tendon K, per ft I!:. 
Grouted tendons in metal sheathing 

Wire tendons 0.0010-0.0015 0.15-0.25 
High-strength bars 0.0001-0.0006 0.08-0.30 
Seven-wire strand 0.0005-0.0020 0.15-0.25 

Unbonded tendons 
Mastic-coated wire tendons 0.0010-0.0020 0.05-0.15 
Mastic-coated seven-wire strand 0.0010-0.0020 0.05-0.15 
Pregreased wire tendons 0.0003-0.0020 0.05-0.15 
Pregreased seven-wire strand 0.0003-0.0020 0.05-0.15 

If one accepts the approximation that the normal pressure on the duct causing 
the frictional force results from the undiminished initial tension all the way around the 
curve, the following simplified expression for loss in tension is obtained: 

(19.38b) 

where a is the angle between the tangents at the ends. The ACI Code permits the use 
of the simplified form, if the value of Klx + µ,a is not greater than 0.3. 

The loss of prestress for the entire tendon length can be computed by segments, 
with each segment assumed to consist of either a circular arc or a length of tangent. 

( 4) CREEP OF CONCRETE Shortening of concrete under sustained load has been 
discussed in Section 2.8. It can be expressed in terms of the creep coefficient Cc
Creep shortening may be several times the initial elastic shortening, and it is evident 
that it will result in loss of prestress force. The stress loss can be calculated from 

(19.39) 

Ultimate values of Cc for different concrete strengths for average conditions of humidity 
Ccu are given in Table 2.2. 

In Eq. (19.39), the concrete stress fc to be used is that at the level of the steel 
centroid, when the eccentric prestress force plus all sustained loads are acting. 
Equation (19.37) can be used, except that the moment M

0 
should be replaced by the 

moment due to all dead loads plus that due to any portion of the live load that may be 
considered sustained. 

It should be noted that the prestress force causing creep is not constant but dimin
ishes with the passage of time due to relaxation of the steel, shrinkage of the concrete, and 
length changes associated with creep itself"To account for this, it is recommended that 
the prestress force causing creep be assumed at 10 percent less than the initial value P;. 

(5) SHRINKAGE OF CONCRETE It is apparent that a decrease in the length of a 
member due to shrinkage of the concrete will be just as detrimental as length changes 
due to stress, creep, or other causes. As discussed in Section 2.11, the shrinkage strain 
esh may vary between about 0.0004 and 0.0008. A typical value of0.0006 may be used 
in lieu of specific data. The steel stress loss resulting from shrinkage is 

Ll..fs,shrink = EshEs (19.40) 
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Only that part of the shrinkage that occurs after transfer of prestress force to the 
concrete need be considered. For pretensioned members, transfer commonly takes 
place just 18 hours after placing the concrete, and nearly all the shrinkage takes place 
after that time. However, post-tensioned members are seldom stressed at an age earlier 
than 7 days and often much later than that. About 15 percent of ultimate shrinkage 
may occur within 7 days, under typical conditions, and about 40 percent by the age 
of 28 days. ,, 

(6) RELAXATION OF STEEL The phenomenon of relaxation, similar to creep, was 
discussed in Section 2.16c. Loss of stress due to relaxation will vary depending upon 
the stress in the steel, and may be estimated using Eqs. (2.11) and (2.12). To allow for 
the gradual reduction of steel stress resulting from the combined effects of creep, 
shrinkage, and relaxation, the relaxation calculation can be based on a prestress force 
10 percent less than P;. 

It is interesting to observe that the largest part of the relaxation loss occurs 
shortly after the steel is stretched. For stresses of 0.801;,u and higher, even a very short 
period of loading will produce substantial relaxation, and this in turn will reduce the 
relaxation that will occur later at a lower stress level. The relaxation rate can thus be 
artificially accelerated by temporary overtensioning. This technique is the basis for 
producing low-relaxation steel. 

c. Loss Estimation by the Time-Step Method 

The loss calculations of the preceding paragraphs recognized the interdependence of 
creep, shrinkage, and relaxation losses in an approximate way, by an arbitrary reduc
tion of 10 percent of the initial prestress force P; to obtain the force for which creep 
and relaxation losses were calculated. For cases requiring greater accuracy, losses 
can be calculated for discrete time steps over the period of interest. The prestress force 
causing losses during any time step is taken equal to the value at the end of the pre
ceding time step, accounting for losses due to all causes up to that time. Accuracy can 
be improved to any desired degree by reducing the length and increasing the number 
of time steps. 

A step-by-step method developed by the Committee on Prestress Losses of the 
Prestressed Concrete Institute uses only a small number of time steps and is adequate 
for ordinary cases (Ref. 19.18). 

19.14 SHEAR, DIAGONAL TENSION, 
AND WEB REINFORCEMENT 

In prestressed concrete beams at service load, there are two factors that greatly 
reduce the intensity of diagonal tensile stresses, compared with stresses that would 
exist if no prestress force were present. The first of these results from the combina
tion of longitudinal compressive stress and shearing stress. An ordinary tensile rein
forced concrete beam under load is shown in Fig. 19.22a. The stresses acting on a 
small element of the beam taken near the neutral axis and near the support are shown 
in (b). It is found by means of Mohr's circle of stress (c) that the principal stresses 
act at 45° to the axis of the beam (d) and are numerically equal to the shear stress 
intensity; thus 

(a) 



FIGURE 19.22 
Principal stress analysis for 
an ordinary reinforced 
concrete beam. 

FIGURE 19.23 
Principal stress analysis for a 
prestressed concrete beam. 
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(a) 

(0, +v) 

(0, -v) 

(c) 

--v 

(b) 

Now suppose that the same beam, with the same loads, is subjected to a precompression 
stress in the amount c, as shown in Fig. 19.23a and b. From Mohr's circle (Fig. 19.23c), 
the principal tensile stress is 

and the direction of the principal tension with respect to the beam axis is 

2v 
tan2a = -

C 

as shown in Fig. 19.23d. 

-I □ 1-7777...,.. ________ &..,.. 

(a) 

(b) 

(d) 
(c) 

(b) 

(c) 
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Comparison ofEq. (a) with Eq. (b) and Fig. 19.22c with Fig. 19.23c shows that, 
with the same shear stress intensity, the principal tension in the prestressed beam is 
much reduced. 

The second factor working to reduce the intensity of the diagonal tension at 
service loads results from the slope of the tendons. Normally, this slope is such as to 
produce a shear due to the prestress force that is opposite in direction to the load
imposed shear. The magnitude of this countershear is VP = Pe sin 0, where 0 is the 
slope of the tendon at the section considered (see Fig. 19.8). 

It is important to note, however, that in spite of these characteristics of prestressed 
beams at service loads, an investigation of diagonal tensile stresses at service loads 
does not ensure an adequate margin of safety against failure. In Fig. 19 .23c, it is evident 
that a relatively small decrease in compressive stress and increase in shear stress, 
which may occur when the beam is overloaded, will produce a disproportionately 
large increase in the resulting principal tension. In addition to this effect, if the coun
tershear of inclined tendons is used to reduce design shear, its contribution does not 
increase directly with load, but much more slowly (see Section 19.7). Consequently, a 
small increase in total shear may produce a large increase in the net shear for which 
the beam must be designed. For these two reasons, it is necessary to base design for 
diagonal tension in prestressed beams on conditions at factored load rather than at 
service load. The study of principal stresses in the uncracked prestressed beam is sig
nificant only in predicting the load at which the first diagonal crack forms. 

At loads near failure, a prestressed beam is usually extensively cracked and 
behaves much like an ordinary reinforced concrete beam. Accordingly, many of the 
procedures and equations developed in Section 4.5 for the design of web reinforce
ment for nonprestressed beams can be applied to prestressed beams also. Shear design 
is based on the relation 

(19.41) 

where Vu is the total shear force applied to the section at factored loads and Vn is the 
nominal shear strength, equal to the sum of the contributions of the concrete Ve and 
web reinforcement Vs: 

(19.42) 

The strength reduction factor</> is equal to 0.75 for shear. 
In computing the factored load shear Vu, the first critical section is assumed to 

be at a distance h/2 from the face of a support, and sections located a distance less than 
h/2 are designed for the shear computed at h/2. 

The shear force Ve resisted by the concrete after cracking has occurred is taken 
equal to the shear that causes the first diagonal crack. Two types of diagonal cracks 
have been observed in tests of prestressed concrete beams: 

1. Flexure-shear cracks, occurring at nominal shear Ve;, start as nearly vertical 
flexural cracks at the tension face of the beam, then spread diagonally upward 
(under the influence of diagonal tension) toward the compression face. These are 
common in beams with a low value of prestress force. 

2. Web-shear cracks, occurring at nominal shear Vew• start in the web due to high 
diagonal tension, then spread diagonally both upward and downward. These are 
often found in beams with thin webs with high prestress force. 

On the basis of extensive tests, it was established that the shear causing flexure 
shear cracking can be found using the expression 

(a) 
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where V cr,o+d+l is the shear force, due to total load, at which the flexural crack forms 
at the section considered, and 0.6vf:bwdp represents an additional shear force 
required to transform the flexural crack into an inclined crack. 

While self-weight is generally uniformly distributed, the superimposed dead and 
live loads may have any distribution. Consequently, it is convenient to separate the 
total shear into V

0 
caused by the beam self-weight (without load factor) and Ve,, the 

additional shear force, due to superimposed dead and live loads, corresponding to flex
ural cracking. Thus, 

¼; = 0.6vf:bwdp + ¼ + ¼r 

The shear Ver due to superimposed loads can then be found conveniently from 

¼+1 
¼r = --Mere 

Md+/ 

(b) 

(c) 

where Vd+tfMd+t• the ratio of superimposed dead and live load shear to moment, 
remains constant as the load increases to the cracking load, and 

IC ~ fr, 
Mere = - (6A vf; + J;,, - fo) 

Yr 
(19.43) 

where y1 = distance from concrete centroid to tension face 
J;,, = compressive stress at tension face resulting from effective prestress force 

alone 
f

0 
= stress due to beam self-weight (unfactored) at extreme fiber of section 

where tensile stress is caused by externally applied dead and live loadst 

The first term inside the parentheses is a conservative estimate of the modulus 
of rupture. The bottom-fiber stress due to self-weight is subtracted here because self
weight is considered separately in Eq. (b). Thus, Eq. (b) becomes 

~ fr, ¼+1 ¼; = 0.6A Yfcbwdp + ¼ + -- Mere 
Md+/ 

(19.44) 

Tests indicate that Vci need not be taken less than 1. 7 A vf: bwdp. The value of dP need 
not be taken less than 0.80h for this and all other equations relating to shear, accord
ing to the ACI Code, unless specifically noted otherwise. Additionally, the values Vd+t 
and Md+/ should be computed for the load combination causing the maximum moment 
in the section. Because Vd+t is the incremental load above the beam self-weight, the 
ACI Code uses the notation ½Mcre/Mmax• noting that Mer, comes from Eq. (19.43). 

The shear force causing web-shear cracking can be found from an exact princi
pal stress calculation, in which the principal tensile stress is set equal to the direct 
tensile capacity of the concrete (conservatively taken equal to 4A v7[' according to the 
ACI Code). Alternatively, the ACI Code permits use of the approximate expression 

(19.45) 

in which fpc is the compressive stress in the concrete, after losses, at the centroid of 
the concrete section (or at the junction of the web and the flange when the centroid 
lies in the flange) and VP is the vertical component of the effective pres tress force. In 
a pretensioned beam, the 0.3fpc contribution to Vcw should be adjusted from zero at the 
beam end to its full value one transfer length ( see Section 19. l Sb) in from the end of 
the beam. 

t All stresses are used with absolute value here, consistent with ACI convention. 
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After Ve; and Vew have been calculated, then Ve, the shear resistance provided by 
the concrete, is taken equal to the smaller of the two values. 

Calculating Me,e• Vei• and Vew for a prestressed beam is a tedious matter because 
many of the parameters vary along the member axis. For hand calculations, the required 
quantities may be found at discrete intervals along the span, such as at //2, l/3, l/6, and 
at h/2 from the support face, and stirrups spaced accordingly, or computer spreadsheets 
may be used~., 

To shorten the calculation required, the ACI Code includes, as a conservative 
alternative to the above procedure, an equation for finding the concrete shear resist
ance Ve directly: 

(19.46) 

in which Mu is the bending moment occurring simultaneously with shear force Vu, but 
Vudp/Mu is not to be taken greater than 1.0, and d is the effective depth including 
prestressed and nonprestressed reinforcement. When this equation is used, Ve need not 
be taken less than 2A vf:bwdp and must not be taken greater than SA v/:bwdp. While 
Eq. (19.46) is temptingly easy to use and may be adequate for uniformly loaded mem
bers of minor importance, its use is apt to result in highly uneconomical designs for 
I beams with medium and long spans and for composite construction (Ref. 19.20). 

When shear reinforcement perpendicular to the axis of the beam is used, its 
contribution to shear strength of a prestressed beam is 

Avf;,1d 
V:=--

s s (19.47) 

the same as for a nonprestressed member. According to the ACI Code, the value of Vs 
must not be taken greater than 8v/:bwd. 

The total nominal shear strength Vn is found by summing the contributions of the 
concrete and steel, as indicated by Eq. (19.42): 

Then, from Eq. (19.41), 

from which 

AJy1d 
V,.=V,,+--

s 

_ ( AJyrd) v,, - cf> V,,+ 
s 

(19.48) 

(19.49) 

The required cross-sectional area of one stirrup Av can be calculated by suitable trans
position of Eq. (19.49). 

(V,, - cf>¼)s 
A=----

v cf>/2,rd 
(19.50) 

Normally, in practical design, the engineer will select a trial stirrup size, for which the 
required spacing is found. Thus, a more convenient form of the last equation is 

(19.51) 
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A minimum area of shear reinforcement is required in all prestressed concrete 
members where the total factored shear force is greater than one-half the design shear 
strength provided by the concrete <f, Ve- Exceptions are made for slabs and footings, 
concrete-joist floor construction, and certain very shalJow beams, according to the 
ACI Code. The minimum area of shear reinforcement to be provided in all other cases 
is equal to the smaller of 

(19.52) 

and 

A = Aps /pu !__ Jcl 
'' 80 /y1 d \j ,;: (19.53) 

in which Aps is the cross-sectional area of the prestressing steet JP,, is the tensile 
strength of the prestressing steel, and all other terms are as defined above. 

The ACI Code contains certain restrictions on the maximum spacing of web 
reinforcement to ensure that any potential diagonal crack wiU be crossed by at least a 
minimum amount of web steel. For prestressed members, this maximum spacing is not 
to exceed the smaller of 0. 75h or 24 in. If the value Vs exceeds 4 vJ: bwdp, these limits 
are reduced by one-half. 

EXAMPLE 19.6 The unsymmetrical I beam shown in Fig. l9.24 carries an effective prestress force of 288 kips 
and supports a superimposed dead load of 345 lb/ft and service live load of 900 lb/ft, in addi
tion to its own weight of 255 lb/ft, on a 50 ft simple span. At the maximum moment section, 
the effective depth to the main steel is 24.S in. (eccentricity 11.4 in.). The strands are deflected 
upward starting 15 ft from the support, and eccentricity is reduced linearly to zero at the sup
port. If concrete with J; = 5000 psi and stirrups with J,., = 60,000 psi are used, and if the 
prestressed strands have strength fpu = 270 ksi, what is the required stirrup spacing at a point 
10 ft from the support? 

FIGURE 19.24 
Post-tensioned beam in 
Example 19.6. 

SOLUTION. For a cross section with the given dimensions, it is easily confirmed that I, = 
24,200 in4, A,. = 245 in2, and ,2 = /0/A, = 99 in2• At a distance 10 ft from the support center
line, the tendon eccentricity is 

10 
e = 11.4 X - = 7 .6 in. 

15 

i--- 18"-J 

151= •. n 
I I _1 245" 

29" 19" NA - i . 

Lt ... 15.9" 
•••""""'---1---L-Aps= 1.75 in2 

5" ....__·_·_·_ ..... 

l-12''--l 
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corresponding to an effective depth d from the compression face of 20.7 in. According to the 
ACI Code, the larger value of d = 0.80 X 29 = 23.2 in. will be used. Calculation of Vci is 
based on Eqs. (19.43) and (19.44). The bottom-fiber stress due to effective prestress acting 
alone is 

288,000 ( 7.6 X 15.9) 
2600 

. 
245 1 + 99 = - psi 

The moment ;~d shear at the section due to beam load alone are, respectively, 

W 0 X 
M0 .10 = 2 (l - x) = 0.255 X 5 X 40 = 51 ft-kips 

Vo.JO= W0 (½- X) = 0.255 X 15 = 3.8 kips 

and the bottom-fiber stress due to this load is 

f 
= 51 X 12,000 X 15.9 = 402 si 

20 24,200 p 

Then, from Eq. (19.43), 

24,200(425 + 2600 - 402) 
Mere = 15.9 X 12 = 333,000 ft-lb 

The ratio of superimposed load shear to moment at the section is 

vd+1 = , - 2x = ~ = o.015 n-1 
Md+l x(l - x) 400 

Equation (19.44) is then used to determine the shear force at which flexure-shear cracks can be 
expected to form. 

\I;,; = [0.6 X 1 V5000(5 X 23.2) + 3800 + 0.D75 X 330,000] X l~O = 33.5 kips 

The lower limit of 1.7 X 1 \!'5000(5 X 23.2)/1000 = 13.9 kips does not control. 
Calculation of Vew is based on Eq. (19.45). The slope 0 of the tendons at the section under 

consideration is such that sin 0 = tan 0 = 11.4/(15 X 12) = 0.063. Consequently, the vertical 
component of the effective prestress force is VP = 0.063 X 288 = 18.1 kips. The concrete com
pressive stress at the section centroid is 

= 288,000 = 1170 si 
fpe 245 p 

Equation (19.45) can now be used to find the shear at which web-shear cracks should occur. 

'1cw = [ (3.5 X 1 \!'5000 + 0.3 X 1170)5 X 23.2 + 18,100] X l~O = 87.5 kips 

Thus, in the present case, 

Ve = Vci = 33.5 kips 

At the section considered, the total shear force at factored loads is 

Vu = 1.2 X 0.600 X 15 + 1.6 X 0.900 X 15 = 32.4 kips 

When No. 3 (No. 10) U stirrups are used, for which Av = 2 X 0.11 = 0.22 in2, the required 
spacing is found from Eq. (19.51) to be 

s = 0.15 X 0.22 X 60,000 X 23.2 = 32 in. 
32,400 - 0.75 X 33,500 
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Equation (19.53) is then applied to establish a maximum spacing criterion. 

1.75 270 s /23.2 
0.22 = 8() X 6() X 

23
.2\JS-

5
- = 0.0091s 

s = 24.1 in. 

The other criteria for maximum spacing, ¾ X 29 = 22 in. and 24 in., however, control here. 
Open U stirrups will be used, at a spacing of 22 in. 

For comparison, the concrete shear will be calculated on the basis of Eq. (19.46). The 
ratio Vu/ Mu is 0.075, and 

( 
O.Q75 ) 1 ~. = 0.6 X 1 \l'5000 + 700 X l2 X 23.2 (5 X 23.2) X lOO0 = 16.7 kips 

The lower and upper limits, 2 X 1 V'5000(5 X 23.2)/1000 = 16.4 kips and 5 X l 'V5000(5 X 
23.2)/1000 = 41.0 kips, do not control. Thus, on the basis of Ve obtained from Eq. (19.46), the 
required spacing of No. 3 (No. 10) U stirrups is 

0.75 X 0.22 X 60,000 X 23.2 
s = ---------- = 11.6 in. 

32,400 - 0.75 X 16,700 

For the present case, an I-section beam of intermediate span, nearly 2 times the web steel is 
required at the location investigated if the alternative expression giving Ve directly is used. 

19.15 BOND STRESS, TRANSFER LENGTH, 
AND DEVELOPMENT LENGTH 

There are two separate sources of bond stress in prestressed concrete beams: ( 1) flexural 
bond, which exists in pretensioned construction between the tendons and the concrete 
and in grouted post-tensioned construction between the tendons and the grout, and 
between the conduit (if any) and concrete; and (2) prestress transfer bond, generally 
applicable to pretensioned members only. 

a. Flexural Bond 

Flexural bond stresses arise due to the change in tension along the tendon resulting 
from differences in bending moment at adjacent sections. They are proportional to the 
rate of change of bending moment, hence to the shear force, at a given location along 
the span. Provided the concrete member is uncracked, flexural bond stress is very low. 
After cracking, it is higher by an order of magnitude. However, flexural bond stress 
need not be considered in designing prestressed concrete beams, provided that ade
quate end anchorage is furnished for the- tendon, in the form of either mechanical 
anchorage (post-tensioning) or strand embedment (pretensioning). 

b. Transfer Length and Development Length 

For pretensioned beams, when the external jacking force is released, the prestressing 
force is transferred from the steel to the concrete near the ends of the member by bond, 
over a distance which is known as the transfer length. The transfer length depends 
upon a number of factors, including the steel stress, the configuration of the steel cross 
section (e.g., strands vs. wires), the condition of the surface of the steel, and the 
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suddenness with which the jacking force is released. Based on tests of seven-wire 
prestressing strand (Ref. 19.21), the effective prestressJ;,e in the steel may be assumed 
to act at a transfer length from the end of the member equal to 

l = J;,e d 
1 3000 b 

where /1 = transfer length, in. 
db = nominal strand diameter, in. 

l;,e = effective prestress, psi 

(a) 

The same tests indicate that the additional distance past the original transfer 
length necessary to develop the failure strength of the steel is closely represented by 
the expression 

l' = (hs -he )d 
1 1000 b (b) 

where the quantity in parentheses is the stress increment above the effective prestress 
level, in psi units, to reach the calculated steel stress at failureJ;,s· Thus the total devel
opment length at failure is 

(c) 

or 

[ = (fps - Upe)d 
d 1000 b (19.54) 

The ACI Code does not require that flexural bond stress be checked in either preten
sioned or post-tensioned members, but for pretensioned strand it is required that the 
full development length, given by Eq. (19.54), be provided beyond the critical bending 
section. Investigation may be limited to those cross sections nearest each end of the 
member that are required to develop their full flexural strength under the specified 
factored load. 

The development length of prestressing strand affects both shear and flexural 
strength at the end of pretensioned beams. The prestress component of the concrete 
shear contribution in Eq. (19.45) is usually considered to vary linearly from zero at the 
beam end to its full value of 0.3J;,c at the end of the transfer length /1, according to ACI 
Commentary 12.9; and the flexural strength reduction factor</> = 0.75 from the end of 
the member to the end of the transfer length and then varies linearly from 0.75 to 0.9 
from the end of the transfer length to the end of the development length ld, according 
to ACI Code 9.3.2.7. These reductions are especially relevant if concentrated loads are 
applied between the beam end and the end of the development length. 

19.16 ANCHORAGE ZONE DESIGN 

In prestressed concrete beams, the prestressing force is introduced as a load concen
tration acting over a relatively small fraction of the total member depth. For post
tensioned beams with mechanical anchorage, the load is applied at the end face, while 
for pretensioned beams it is introduced somewhat more gradually over the transfer 
length. In either case, the compressive stress distribution in the concrete becomes 
linear, conforming to that dictated by the overall eccentricity of the applied forces, 
only after a distance from the end roughly equal to the depth of the beam. 



FIGURE 19.25 
Contours of equal vertical 
stress. (Adapred from Ref. 

19. 16.) 

FIGURE 19.26 
Post-tensioned J beam with 
rectangular end block. 
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This transition of longitudinal compressive stress, from concentrated to linearly 
distributed, produces transverse (vertical) tensile stresses that may lead to longitudinal 
cracking of the member. The pattern and magnitude of the concrete stresses depend on 
the location and distribution of the concentrated forces applied by the tendons. Numerous 
studies have been made using the methods of classical elasticity, photoelasticity, and 
finite element analysis, and typical results are given in Fig. 19.25. Here the beam is 
loaded uniformly over a height equal to h/8 at an eccentricity of 3h/8. Contour lines 
a.re drawn through points of equal vertical tension, with coefficients expressing the 
ratio of vertical stress to average longitudinal compression. Typically, there are high 
bursting stresses along the axis of the load a short distance inside the end zone and 
high spallin.g stresses at the loaded face. 

In many post-tensioned prestressed I beams, solid end blocks are provided, as 
shown in Fig. 19.26. While these are often necessary to accommodate end-anchorage 
hardware and supplemental reinforcement, they are of little use in reducing transverse 
tension or avoiding crackfog. 

0---
0---

-End anchorages 

--------- ---

Rectangular 
end block 

Tendons 
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FIGURE 19.27 
Post-tensioned end 
block: (a) local and 
general zone; (b) strut
and-tie model. 

Steel reinforcement for end-zone stresses may be in the form of vertical bars of 
relatively small iliameter and close spacing and shouJd be well anchored at the top and 
bottom of the member. Closed stirrups are commonly used, with auxiliary horizontal 
bars inside the 90° bends. 

Rational design of the reinforcement for end zones must recognize that horizon
tal cracking is likely. If adequate reinforcement is provided, so that the cracks are 
restricted to ,..a few inches in length and to 0.01 in. or less in width, these cracks will 
not be detrimental to the performance of the beam either at service load or at the 
factored load stage. It should be noted that end-zone stresses in pretensioned and 
bonded post-tensioned beams do not increase in proportion to loads. The failure stress 
l,,s in the tendon at beam failure is attained only at the maximwn moment section. 

For pretensioned members, based on tests reported in Ref. 19.22, a very simple 
equation has been proposed for the design of end-zone reinforcement: 

P,h 
A, = 0.021 -'

f ,l, 

where A, = total cross-sectional area of stirrups necessary, in2 

P1 = initial prestress force, lb 
h = total member depth, in. 
fs = allowable stress in stirrups, psi 
l, = transfer length, in. 

(19.55) 

An allowable stress fs = 20,000 psi has been found in tests to produce acceptably 
small crack widths. The required reinforcement having total area A, shouJd be distrib
uted over a length equal to h/5 measured from the end face of the beam, and for most 
efficient crack control the first stirrup should be placed as close to the end face as 
practical. It is recommended in Ref. 19.22 that vertical reinforcement according to 
Eq. (19.55) be provided for all pretensioned members, unJess tests or experience indi
cates that cracking does not occur at service or overload stages. 

For post-tensioned members, the end region is divided into two zones, local and 
general, as shown in Fig. 19.27a. The local zone is a rectangular prism immediately 
surrounding the anchorage device and any confining reinforcement around the device. 
The general zone consists of a region that is approximately one structural depth h from 
the end of the beam and includes the local zone. For internal anchors, such as used in 
slabs, the general zone extends a distance h ahead of and behind the anchorage hard
ware. Stresses in the local zone are detennined based on tests. The post-tensioning 
supplier specifies the reinforcement details for the local zone. 

h dburst 

a II 

l L :J------ P1 Bursting 
zone P1 Tburst 2 

e 
h ----

J ' ' P1 ------
2 

Concrete centroid 

(a) (b) 
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Stress variations in the general zone are nonlinear and are characterized by a 
transition from the local zone to an assumed uniform stress gradient a distance h from 
the anchor. Reinforcement in the general zone may be designed by one of three methods. 
These methods include equilibrium-based plasticity models, such as the strut-and-tie 
model, linear stress analysis such as finite element analysis, and simplified elasticity 
solutions similar to the photoelastic model shown graphically in Fig. 19.25 or elasticity 
analyses described in Ref. 19.23. Simplified equations are not permitted for nonrec
tangular cross sections, where multiple anchorages are used (unless closely spaced), 
or where discontinuities disrupt the force flow path. 

Strut-and-tie design approaches for highway girder anchorages are detailed in 
theAASHTO LRFD Bridge Design Specifications (Refs. 19.17 and 19.23). An abbre
viated version of the AASHTO Specifications is incorporated in ACI Commentary 
R18.13. ACI Code 18.15 requires that complex, multistrand anchorage systems con
form to the full AASHTO Specifications. 

For the common case of a rectangular end block and simple anchorage (Fig. 19.27b), 
ACI Commentary 18.13 offers simplified equations based on test results and strut-and
tie modeling. The magnitude of the bursting force Tburst and the location of its centroid 
distance from the front of the anchor dburst may be calculated as 

( 
hanc) 'Iiourst = 0.25L~u 1 - h 

(19.56) 

and 

dburst = 0.5 (h - 2eanc) (19.57) 

where LPpu = sum of total factored post-tensioning force 
eanc = absolute value of eccentricity of anchorage device to centroid of con

crete section 
h = depth of cross section 

hanc = depth of anchorage device 

The use of the factored post-tensioning force Ppu recognizes that the tendon force is 
acting as a load. Hence, the maximum jacking stress 0.80.t;,u is multiplied by a load 
factor of 1.2 to calculate Ppu· 

(19.58) 

Transverse reinforcement with total area As= Tbursi/</>Jy is added in a region that 
is centered on the location dburst to carry the bursting force. 

In cases where the simplified equations do not apply, a strut-and-tie model 
(Chapter 10) or finite element analysis may be required to design the bursting zone. 

EXAMPLE 19.7 Design of end-zone reinforcement for post-tensioned beam. End-zone reinforcement is to 
be designed for the rectangular post-tensioned beam shown in Fig. 19.28. The initial prestress 
force P; of 250 kips is applied by two closely spaced tendons having a combined eccentricity 
of 8.0 in. Material properties are J;; = 4250 psi and Jy = 60,000 psi. 

SOLUTION. The rectangular section and the closely spaced anchorage devices allow the use of 
the simplified ACI equations. 

dburst = 0.5(h - 2eanc) = 0.5(30 - 2 X 8) = 7 in. 
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FIGURE 19.28 
Design of post-tensioned 
anchor zone: (a) section at 
end anchors; (b) end zone 
reinforcement. 
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(b) 

4 No. 4 (No. 13) 
closed stirrups 

The initial prestressing force is 250 kips, which corresponds to a tendon stress level of 
0.82Jpy The maximum jacking stress level in the tendons is 0.94JPY, or 0.80 fpu· In this exam
ple, only the initial prestress is provided. Hence, the factored tendon force is calculated as 

(
0.94) ½m = 1.2 - 250 = 344 kips 
0.82 

for which 

( hanc) ( 6 ) . 7;,urst = 0.25~½,u 1 - h = 0.25 X 344 1 -
30 

= 68.8 kips 

The area of steel needed to resist Tburst is 

68
·
8 

= 1.35 in2 

0.85 X 60 

Using No. 4 (No. 13) closed stirrups with an area of 2 X 0.20 in2 gives 

1.35 
n = --- = 3.4 stirrups 

2 X 0.20 

Four No. 4 (No. 13) closed stirrups will be used. The first stirrup will be placed 2-½ in. from 
the anchor plate, and the other three stirrups will be placed 3 in. on center, as shown in 
Fig. 19.28b, centering the stirrups a distance dburst from the anchor plate. The closed stirrups 
ensure that anchorage requirements are satisfied. Details of the reinforcement in the local 
zone are not shown. 

19.17 DEFLECTION 

Deflection of the slender, relatively flexible beams that are made possible by prestressing 
must be predicted with care. Many members, satisfactory in all other respects, have 
proved to be unserviceable because of excessive deformation. In some cases, the 
absolute amount of deflection is excessive. Often, it is the differential deformation 
between adjacent members (e.g., precast roof-deck units) that causes problems. More 
often than not, any difficulties that occur are associated with upward deflection due to 
the sustained prestress load. Such difficulties are easily avoided by proper considera
tion in design. 
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When the prestress force is first applied, a beam will normally camber upward. 
With the passage of time, concrete shrinkage and creep will cause a gradual reduction 
of prestress force. In spite of this, the upward deflection usually will increase, due to 
the differential creep, affecting the highly stressed bottom fibers more than the top. 
With the application of superimposed dead and live loads, this upward deflection will 
be partially or completely overcome, and zero or downward deflection obtained. 
Clearly, in computing deformation, careful attention must be paid to both the age of 
the concrete at the time of load application and the duration of the loading. 

The prediction of deflection can be approached at any of several levels of 
accuracy, depending upon the nature and importance of the work. In some cases, it is 
sufficient to place limitations on the span-depth ratio, based on past experience. 
Generally, deflections must be calculated. (Calculation is required for all prestressed 
members, according to ACI Code 9.5.4.) The approximate method described here will 
be found sufficiently accurate for most purposes. In special circumstances, where it is 
important to obtain the best possible information on deflection at all important load 
stages, such as for long-span bridges, the only satisfactory approach is to use a sum
mation procedure based on incremental deflection at discrete time steps, as described 
in Refs. 19.1, 19.8, 19.24, and 19.25. In this way, the time-dependent changes in 
prestress force, material properties, and loading can be accounted for to the desired 
degree of accuracy. 

Normally, the deflections of primary interest are those at the initial stage, when 
the beam is acted upon by the initial prestress force P; and its own weight, and one or 
more combinations of load in service, when the prestress force is reduced by losses to 
the effective value Pe- Deflections are modified by creep under the sustained prestress 
force and due to all other sustained loads. 

The short-term deflection llp; due to the initial prestress force P; can be found 
based on the variation of prestress moment along the span, making use of moment
area principles and superposition. For statically determinate beams, the ordinates of 
the moment diagram resulting from the eccentric prestress force are directly propor
tional to the eccentricity of the steel centroid line with respect to the concrete cen
troid. For indeterminate beams, eccentricity should be measured to the thrust line 
rather than to the steel centroid (see Ref. 19.1). In either case, the effect of prestress 
can also be regarded in terms of equivalent loads and deflections found using familiar 
deflection equations. 

The downward deflection !1
0 

due to girder self-weight, which is usually uni
formly distributed, is easily found by conventional means. Thus, the net deflection 
obtained immediately upon prestressing is 

(19.59) 

where the negative sign indicates upward displacement. 
Long-term deflections due to prestress occur as that force is gradually reducing 

from P; to Pe- This can be accounted for in aa approximate way by assuming that creep 
occurs under a constant prestress force equal to the average of the initial and final 
values. Corresponding to this assumption, the total deflection resulting from prestress 
alone is 

(19.60) 

where 
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TABLE 19.5 

Deflection and crack width requirements for prestressed 
concrete members 

Class 

Condition u T C 

Assumed beh;vior Uncracked Transition between Cracked 
cracked and 
uncracked 

Deflection calculation basis Gross section Cracked section- Cracked section-
bilinear behavior bilinear behavior 

and Cc is set equal to the ultimate creep coefficient Cu for the concrete (see Table 2.1). 
The long-term deflection due to self-weight is also increased by creep and can 

be obtained by applying the creep coefficient directly to the instantaneous value. Thus, 
the total member deflection, after losses and creep deflections, when effective prestress 
and self-weight act, is 

Ap; + Ape 
A = -Ape -

2 
cc+ Ao(l + CJ (19.61) 

The deflection due to superimposed loads can now be added, with the creep 
coefficient introduced to account for the long-term effect of the sustained loads, to 
obtain the net deflection at full service loading: 

Ap; + Ape 
A= -Ape - --- cc+ (Ao+ Ad)(l +Cc)+ A, 

2 
(19.62) 

where Ad and A1 are the immediate deflections due to superimposed dead and live 
loads, respectively. 

The selection of section properties for the calculation of deflections is dependent 
upon the cracking in the section. Table 19.5 defines the appropriate section properties 
and deflection calculation methodology for Class U, T, and C members (Refs. 19.1, 
19.23, and 19.24). Bilinear behavior in Table 19.5 implies that deflections based 
on loads up to the cracking moment are based on the gross section, and deflections on 
loads greater than the cracking load are based on the effective cracked section proper
ties (Ref. 19.8). 

EXAMPLE 19.8 The 40 ft simply supported T beam shown in Fig. 19.29 is prestressed with a force of 314 kips, 
using a parabolic tendon with an eccentricity of 3 in. above the concrete centroid at the sup
ports and 7.9 in. below the centroid at midspan. After time-dependent losses have occurred, 
this prestress is reduced to 267 kips. In addition to its own weight of 330 lb/ft, the girder 
must carry a short-term superimposed live load of 900 lb/ft. Estimate the deflection at all 
critical stages of loading. The creep coefficient Cc = 2.0, Ee = 4 x 106 psi, and modulus of 
rupture = 530 psi. 

SOLUTION. It is easily confirmed that the stress in the bottom fiber when the beam carries the 
maximum load to be considered is 80 psi compression, meeting the requirements for a Class U 
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FIGURE 19.29 
T beam of Example 19.8: (a) cross section; (b) tendon profile; (c) moment from initial prestressing force (in-lb). 

member. All deflection calculations can, therefore, be based on the moment of inertia of the 
gross concrete section le = 15,800 in4• It is convenient to calculate the deflection due to 
prestress and that due to girder load separately, superimposing the results later. For the eccen
tricities of the tendon proftle shown in Fig. 19.29b, the application of P; = 314 kips causes 
the moments shown in Fig. 19.29c. Applying the second moment-area theorem by talcing 
moments of the M/EI diagram between midspan and the support, about the support, produces 
the vertical displacement between those two points as follows: 

-(3.42 X 106 X 240 X j X 240 X n + (0.942 X 106 X 240 X 120} . 
Apl = 4 X 106 X 15,800 = -0.87 m. 

the minus sign indicating upward deflection due to initial prestress alone. The downward 
deflection due to the self-weight of the girder is calculated by the well-known equation 

5wl4 5 X 330 X 404 X 124 

A = -- = 6 = +0.30in. 0 
384£/ 384 X 12 X 4 X 10 X 15,800 

When these two results are superimposed, the net upward deflection when initial prestress and 
girder load act together is 

- Ap1 + A0 = -0.87 + 0.30 = -0.57 in. 

Shrinkage and creep of the concrete cause a ~adual reduction of prestress force from P1 = 
314 kips to P, = 267 kips and reduce the bending moment due to prestress proportionately. 
Concrete creep, however, acts to increase both the upward deflection component due to the 
prestress force and the downward deflection component due to the girder load. The net deflec
tion after these changes take place is found using Eq. ( 19.60), with lip, = -0.87 X 267 /314 = 
- 0.74 in.: 

0.87 + 0.74 ( 
A = - 0.74 -

2 
X 2.0 + 0.30 I + 2.0) 

= - 0.74 - 1.61 + 0.90 = - 1.45 in. 
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In spite of prestress loss, the upward deflection is considerably larger than before. Finally, as 
the 900 lb/ft short-term superimposed load is applied, the net deflection is 

(
900) . .1 = -1.45 + 0.30 
330 

= -0.63 Ill. 

Thus, a net upward deflection of about 1/750 times the span is obtained when the member car
ries its full sqperimposed load. 

19.18 CRACK CONTROL FOR CLASS C FLEXURAL MEMBERS 

The service level stress limitations for Class U and T flexural members are sufficient 
to control cracking at service loads. Class C flexural members must satisfy the crack 
control provisions for ordinary reinforced concrete members, modified by ACI Code 
18.4.4. These requirements take the form of limitations on tendon spacing and on the 
change in stress in the prestressing tendon under service load. 

For Class C prestressed flexural members not subjected to fatigue or aggressive 
exposure, the spacing of bonded reinforcement nearest the extreme tension face may 
not exceed that given for nonprestressed concrete in Section 6.3. Aggressive conditions 
occur where the tendons may be exposed to chemical attack and include seawater and 
corrosive industrial environments. In these situations, the designer should increase the 
concrete cover or reduce the tensile stresses, based on professional judgment, com
mensurate with the exposure risk. 

The spacing requirements for reinforcement in Class C members may be satis
fied by using nonprestressed bonded tendons. The spacing between bonded tendons, 
however, may not exceed two-thirds of the maximum spacing for nonprestressed rein
forcement given in Eq. (6.3). When both conventional reinforcement and bonded 
tendons are used to meet the spacing requirements, the spacing between a tendon and 
a bar may not exceed five-sixths of that permitted in Eq. (6.3). When applying 
Eq. (6.3), 4[ps is substituted for fs, where !::.fps is the difference between the tendon 
stress at service loads based on a cracked section and the decompression stress fdc' 
which is equal to the stress in the tendon when concrete stress at the level of the tendon 
is zero. ACI Code 18.4.4 permits fdc to be taken as the effective prestress l,,e· The 
magnitude of !::.J,,s is limited to a maximum of 36 ksi. When !::.fps is less than 20 ksi, the 
reduced spacing requirements need not be applied. If the effective depth of the mem
ber exceeds 36 in., additional skin reinforcement along the sides of the member web, 
as described in Section 6.3, is required to prevent excessive surface crack widths above 
the main flexural reinforcement. 
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PROBLEMS 
19.1. A rectangular concrete beam with width b = 11 in. and total depth h = 28 in. 

is post-tensioned using a single parabolic tendon with an eccentricity of 7 .8 in. 
at midspan and 0 in. at the simple supports. The initial prestress force P; = 
334 kips, and the effectiveness ratio R = 0.84. The member is to carry super
imposed dead and live loads of 300 and 1000 lb/ft, respectively, uniformly dis
tributed over the 40 ft span. Specified concrete strengthJ; = 5000 psi, and at 
the time of transfer J;; = 4000 psi. Determine the flexural stress distributions 
in the concrete at midspan (a) for initial conditions before application of super
imposed load and (b) at full service load. Compare with the ACI limit stresses 
for Class U members. 

19.2. A pretensioned prestressed beam has a rectangular cross section of 6 in. width 
and 20 in. total depth. It is built using normal-density concrete with a specified 
strengthJ; = 4000 psi and a strengttr at transfer off~ = 3000 psi. Stress limits 
are as follows:J;; = 165 psi,fc.; = -1800 psi,frs = 475 psi, andfc.s = -1800 psi. 
The effectiveness ratio R may be assumed equal to 0.80. For these conditions, 
find the initial prestress force P; and eccentricity e to maximize the superim
posed load moment Md + M1 that can be carried without exceeding the stress 
limits. What uniformly distributed load can be carried on a 30 ft simple span? 
What tendon profile would you recommend? 

19.3. A pretensioned beam is to carry a superimposed dead load of 600 lb/ft and ser
vice live load of 1200 lb/ft on a 55 ft simple span. A symmetrical I section with 
b = 0.5h will be used. Flange thickness h1 = 0.2h and web width bw = 0.4b. 
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FIGURE P19.4 

The member will be prestressed using Grade 270 strands. Time-dependent 
losses are estimated at 20 percent of P;, Normal-density concrete will be used, 
withl; = 5000 psi andl;; = 3000 psi. 
(a) Using straight strands, find the required concrete dimensions, prestress 

force, and eccentricity. Select an appropriate number and size of tendons, 
and show by sketch their placement in the section. 

(b) .Revise the design of part (a) using tendons harped at the third points of the 
span, with eccentricity reduced to zero at the supports. 

(c) Comment on your results. In both cases, ACI stress limits are to be 
applied. You may assume that deflections are not critical and that the beam 
is Class T at full service load. 

19.4. The hollow core section shown in Fig. P19.4 is prestressed with four½ in. diam
eter, 270 ksi low-relaxation strands and is simply supported on masonry walls 
with a span length of 20 ft, center to center of the supports. In addition to its 
self-weight, the section carries a superimposed live load of 225 psf. Material 
properties are 1; = 5000 psi andl~ = 3500 psi. Determine (a) if service load 
stresses in the section are suitable for a Class U flexural member using R = 0.82 
and (b) if the section has sufficient capacity for the specified loads. 
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Self-weight = 53.5 psf 

19.5. For the beam in Problem 19.4, make a detailed computation of the losses in the 
prestressing force. Compare your results to the assumed value of R = 0.82. 

19.6. Establish the required spacing of No. 3 (No. 10) stirrups at a beam cross sec
tion subject to factored load shear Vu of 35.55 kips and moment Mu of 474 ft
kips. Web width bw = 5 in., effective depth d = 24 in., and total depth h = 
30 in. The concrete shear contribution may be based on the approximate rela
tionship of Eq. (19.46). Use .f,, = 60,000 psi for stirrup steel, and take 1; = 
5000 psi. 

19.7. A symmetrical prestressed I beam having total depth 48 in., flange width 24 in., 
flange thickness 9.6 in., and web thickness 9.6 in. is to span 70 ft. It is post
tensioned using 18 Grade 270 ½ in. diameter low-relaxation strands in a single 
tendon having a parabolic profile, with e = 18 in. at midspan and 0 in. at the 
supports. (The curve can be approximated by a circular arc for loss calcula
tions.) The jacking force Pj = 618 kips. Calculate losses due to slip, elastic 
shortening, friction, creep, shrinkage, and relaxation. Express your results in 
tabular form both numerically and as percentages of initial prestress P;, Creep 
effects may be assumed to occur under the combination of prestress force plus 
self-weight. The beam is prestressed when the concrete is aged 7 days. 
Anchorage slip = 0.25 in., coefficient of strand friction = 0.20, coefficient of 
wobble friction = 0.0010, creep coefficient = 2.35. Member properties are as 
follows: Ac= 737 in2, Jc= 192,000 in4, c1 = c2 = 24 in.,J; = 5000 psi, Ec = 
4,000,000 psi, Es = 27,000,000 psi, wc = 150 pcf, and Cc = 2.65. 
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19.8. The concrete T beam shown in Fig. P19.8 is post-tensioned at an initial force 
P; = 229 kips, which reduces after 1 year to an effective value Pe = 183 kips. 
In addition to its own weight, the beam will carry a superimposed short-term 
live load of 21.5 kips at midspan. Using the approximate method described in 
Section 19.17, find (a) the initial deflection of the unloaded girder and (b) the 
deflection at the age of 1 year of the loaded girder. The following data are 
given: Ac= 450 in2, c1 = 8 in., Jc= 24,600 in4, Ec = 3,500,000 psi, Cc= 2.5. 
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Seismic Design 

20.1 INTRODUCTION 

Earthquakes result from the sudden movement of tectonic plates in the earth's crust. 
The movement takes place at fault lines, and the energy released is transmitted through 
the earth in the form of waves that cause ground motion many miles from the epicenter. 
Regions adjacent to active fault lines are the most prone to experience earthquakes. 
The map in Fig. 20.1 shows the maximum considered ground motion for the contiguous 
48 states. The mapped values, expressed as a percent of gravity, represent the expected 
peak acceleration of a single-degree-of-freedom system with a 0.2 sec period and 
5 percent of critical damping. Known as the 0.2 sec spectral response accelerations. 
(subscript s for short period), it is used, along with the 1.0 sec spectral response accel
eration S1 (mapped in a similar manner), to establish the loading criteria for seismic 
design. Accelerations s. and S1 are based on historical records and local geology. For 
most of the country, they represent earthquake ground motion with a "likelihood 
of exceedance of 2 percent in 50 years," a value that is equivalent to a return period of 
about 2500 years (Ref. 20.1). 

As experienced by structures, earthquakes consist of random horizontal and ver
tical movements of the earth's surface. As the ground moves, inertia tends to keep 
structures in place (Fig. 20.2), resulting in the imposition of displacements and forces 
that can have catastrophic results. The purpose of seismic design is to proportion 
structures so that they can withstand the displacements and the forces induced by the 
ground motion. 

Historically in North America, seismic design has emphasized the effects of 
horizontal ground motion because the horizontal components of an earthquake usually 
exceed the vertical component and because structures are usually much stiffer and 
stronger in response to vertical loads than they are in response to horizontal loads. 
Experience has shown that the horizontal components are the most destructive. For 
structural design, the intensity of an earthquake is usually described in terms of the 
peak ground acceleration as a fraction of the acceleration of gravity, i.e., 0. lg, 0.2g, or 
0.3g. Although peak acceleration is an important design parameter, the frequency 
characteristics and duration of an earthquake are also important; the closer the fre
quency of the earthquake motion is to the natural frequency of a structure and the 
longer the duration of the earthquake, the greater the potential for damage. 

Based on elastic behavior, structures subjected to a major earthquake would be 
required to undergo large displacements. However, North American practice (Ref. 20.2) 
requires that structures be designed for only a fraction of the forces associated with 
those displacements. The relatively low design forces are justified by the observations 
that buildings designed for low forces have behaved satisfactorily and that structures 
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FIGURE20.2 
Structure subjected to ground 
motion. 

Inertia forces _____,.. 

-Ground motion 

Members 
subjected to 
earthquake-induced 
forces 

dissipate significant energy as the materials yield and behave inelastically. This nonlinear 
behavior, however, usually translates into increased displacements, which may require 
significant ductility and result in major nonstructural damage. Displacements may 
also be of such a magnitude that the strength of the structure is affected by stability 
considerations, such as discussed for slender columns in Chapter 9. 

Designers of structures that may be subjected to earthquakes, therefore, are faced 
with a choice: (1) providing adequate stiffness and strength to limit the response of 
structures to the elastic range or (2) providing lower-strength structures, with presum
ably lower initial costs, that have the ability to withstand large inelastic deformations 
while maintaining their load-carrying capability. 

20.2 STRUCTURAL RESPONSE 

The safety of a structure subjected to seismic loading rests on the designer's under
standing of the response of the structure to ground motion. For many years, the goal 
of earthquake design in North America has been to construct buildings that will with
stand moderate earthquakes without damage and severe earthquakes without collapse. 
Building codes have undergone regular modification as major earthquakes have exposed 
weaknesses in existing design criteria. 

Design for earthquakes differs from design for gravity and wind loads in the 
relatively greater sensitivity of earthquake-induced forces to the geometry of the struc
ture. Without careful design, forces and displacements can be concentrated in portions 
of a structure that are not capable of providing adequate strength or ductility. Steps to 
strengthen a member for one type of loading may actually increase the forces in the 
member and change the mode of failure from ductile to brittle. 

a. Structural Considerations 

The closer the frequency of the ground motion is to one of the natural frequencies of 
a structure, the greater the likelihood of the structure experiencing resonance, resulting 
in an increase in both displacement and damage. Therefore, earthquake response 
depends strongly on the geometric properties of a structure, especially height. Tall 
buildings respond more strongly to long-period (low-frequency) ground motion, while 
short buildings respond more strongly to short-period (high-frequency) ground motion. 
Figure 20.3 shows the shapes for the principal modes of vibration of a three-story 
frame structure. The relative contribution of each mode to the lateral displacement of 
the structure depends on the frequency characteristics of the ground motion. The first 
mode (Fig. 20.3a) usually provides the greatest contribution to lateral displacement. 



FIGURE 20.3 
Modal shapes for a three
story building: (a) first mode; 
(b) second mode; (c) third 
mode. (Adapted from Ref 20.3.) 
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The taller a structure, the more susceptible it is to the effects of higher modes of 
vibration, which are generally additive to the effects of the lower modes and tend to 
have the greatest influence on the upper stories. Under any circumstances, the longer 
the duration of an earthquake, the greater the potential for damage. 

The configuration of a structure also has a major effect on its response to an 
earthquake. Structures with a discontinuity in stiffness or geometry can be subjected 
to undesirably high displacements or forces. For example, the discontinuance of shear 
walls, infill walls, or even cladding at a particular story level, such as shown in 
Fig. 20.4, will have the result of concentrating the displacement in the open, or "soft," 
story. The high displacement will, in tum, require a large amount of ductility if the 
structure is not to fail. Such a design is not recommended, and the stiffening members 
should be continued to the foundation. The problems associated with a soft story are 
illustrated in Fig. 20.5, which shows the Olive View Hospital following the 1971 San 
Fernando earthquake. The high ductility "demand" could not be satisfied by the column 
at the right, with low amounts of transverse 1einforcement. Even the columns at center, 
with significant transverse reinforcement, performed poorly because the transverse 
reinforcement was not continued into the joint, resulting in the formation of hinges at 
the column ends. Figure 20.6 illustrates structures with vertical geometric and plan 
irregularities, which result in torsion induced by ground motion. 

Within a structure, stiffer members tend to pick up a greater portion of the load. 
When a frame is combined with a shear wall, this can have the positive effect of 
reducing the displacements of the structure and decreasing both structural and non
structural damage. However, when the effects of higher stiffness members, such as 
masonry infill walls, are not considered in the design, unexpected and often undesirable 
results can occur. 
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FIGURE 20.S 
Damage to soft story 
columns in the Olive View 
Hospital as a result of the 
197 I San Fernando 
earthquake. (PhotoKraph by 

James L Stmlfa. Courtesy of the 
Fedeml Emergency Mmwgeme/11 
Age111·y.} 

FIGURE20.6 
Structures with (a) vertical 
geometric and (b) plan 
irregularities. (Ada1md from 
Ref 20.3.) 

(a) (b) 

Finally, any discussion of structural considerations would be incomplete wilhout 
emphasizing lhe need to provide adequate separation between structures. LateraJ dis
placements can result in structures coming in contact during an earthquake, resulting 
in major damage due to hammering, as shown in Fig. 20.7. Spacing requirements to 
ensure that adjacent structures do not come into contact as the result of earthquake
induced motion are specified in Ref. 20.2. 

b. Member Considerations 

Members designed for seismic loading must perform in a ductile fashion and dissipate 
energy in a manner that does not compromise the strength of the structure. Both the 
overall design and the structural details must be considered to meet this goal. 



FIGURE 20.7 
Damage caused by 
hammering for buildings 
with inadequate separation 
in the 1985 Mexico City 
earthquake. (Photograph 

by Jack M oehle.) 
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The principal method of ensuring ductility in members subject to shear and 
bending is to provide confinement for the concrete. This is accomplished through 
the use of closed hoops or spiral reinforcement, which enclose the core of beams and 
columns. Specific criteria are discussed in Sections 20.4, 20.5, and 20.6. When 
confinement is provided, beams and columns can undergo nonlinear cyclic bending 
while maintaining their flexural strength and without deteriorating due to diagonal 
tension cracking. The formation of ductile hinges allows reinforced concrete frames 
to dissipate energy. 

Successful seismic design of frames requires that the structures be propor
tioned so that hinges occur at locations that least compromise strength. For a frame 
undergoing lateral displacement, such as shown in Fig. 20.8a, the flexural capac
ity of the members at a joint (Fig. 20.8b) should be such that the columns arc 
s tronger than the beams. In this way. hinges wi ll form in the beams rather than the 
columns, minimizing the portion of the structure affected by nonl inear behavior 
and maintaining the overall vertical load capacity. For these reasons, the "weak 
beam-strong column·• approach is used to design reinforced concrete frames subject 
to seismic loading. 

When hinges form in a beam. or in extreme cases within a column, the moments 
at the end of the member, which are governed by flexural strength, determine the shear 
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FIGURE 20.8 
Frame subjected to lateral 
loading: (a) deflected shape; 
(b) moments acting on beam
column joint; (c) deflected 
shape and forces acting on a 
beam; (d) forces acting on 
faces of a joint due to lateral 
load. (a) 

i.---- ln ----+1 

V= M++M-
ln 

(c) 

(b) 

(d) 

that must be carried, as illustrated in Fig. 20.8c. The shear V corresponding to a flexural 
failure at both ends of a beam or column is 

M+ +M
V=---

ln 

where M+ and M- = flexural capacities at the ends of the member 
ln = clear span between supports 

(20.1) 

The member must be checked for adequacy under the shear V in addition to 
shear resulting from dead and live gravity loads. Transverse reinforcement is added, 
as required. For members with inadequate shear capacity, the response will be domi
nated by the formation of diagonal cracks, rather than ductile hinges, resulting in a 
substantial reduction in the energy dissipation capacity of the member. 

If short members are used in a frame, the members may be unintentionally strong 
in flexure compared to their shear capacity. An example would be columns in a struc
ture with deep spandrel beams or with "nonstructural" walls with openings that expose 
a portion of the columns to the full lateral load. As a result, the exposed region, called 
a captive column, responds by undergoing a shear failure, as shown in Fig. 20.9. 

The lateral displacement of a frame places beam-column joints under high shear 
stresses because of the change from positive to negative bending in the flexural 
members from one side of the joint to the other, as shown in Fig. 20.8d. The joint must 



FIGURE 20.9 
Shear failure in a captive 
column without adequate 
transverse reinforcement. 
(Photograph by Jack Moehle.) 
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be able to withstand the high shear stresses and aJlow for a change in bar stress from 
tension to compression be1ween the faces of tbe joint. Such a transfer of shear and 
bond is often made difficult by congestion of reinforcement through the joint. Thus, 
designers must ensure that joints not only have adequate strength but are also con
structable. Two-way systems without beams are especially vulnerable because of low 
ductility at the slab-column intersection. 

Additional discussion of seismic design can be found in Refs. 20.3 to 20.7. 

20.3 SEISMIC LOADING CRITERIA 

In the United States, the design criterfa for earthquake loading are based on design 
procedures developed by the Building Seismic Safety Council (Ref. 20.1) and incor
porated in Minimum Design Loads for Buildings and Other Srrucrures (ASCE/SEI 7) 
(Ref. 20.2). The values of !be spectral response accelerations Ss and S1 are obtained 
from detailed maps produced by the UnitetStates Geological Surveyt (e.g., Fig. 20. 1) 
and included in ASCE/SEl 7 . The values of S, and S1 are used to determine the spec
tral response accelerations S05 and S01 that are used in design. 

(20.2) 

(20.3) 

' A full set of maps is available at Lhe United States Geological Survey website. 
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FIGURE 20.10 
Design response spectrum. 
(Adapted from Ref 20.2.) 
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where Fa and Fv are site coefficients that range from 0.8 to 0.25 and from 0.8 to 0.35, 
respectively, as a function of the geotechnical properties of the building site and the 
values of s. and S1, respectively. Higher values of Fa and Fv are possible for some sites. 
The coefficients Fa and Fv increase in magnitude as site conditions change from hard 
rock to thick, soft clays and (for softer foundations) as the values of s. and S1 decrease. 

Both S0 s and Sm are used to construct the design response spectrum shown in 
Fig. 20.10, which relates the spectral response acceleration Sa, used to calculate the 
earthquake force, to the fundamental period of the structure T. In the spectrum, 
T0 = 0.2S01/S0 s, Ts = Sm/Sos, and TL is the site-specific long-period transition period, 
which, likes. and S1, is obtained from maps provided by the U.S. Geological Survey. 

Structures are assigned to one of six Seismic Design Categories (SDCs) A through 
Fas a function of (1) structure occupancy and use and (2) the values of S0 s and Sm. 
Requirements for seismic design and detailing are minimal for SDCs A and B but 
become progressively more rigorous for SDCs C through F. 

As presented in Table 1.2, earthquake loading is included in two combinations 
of factored load. 

where D = dead load 

U = 1.2D + I.OE + I.OL + 0.2S 

U = 0.9D + I.OE + 1.6H 

E = earthquake load 
H = weight or pressure from soil 
L = live load 
S = snow load 

(20.4) 

(20.5) 

For SDC A, the earthquake load E is a horizontal load equal to 1 percent of the dead 
load D assigned to each floor. For SDCs B through F, the values of the earthquake load 
E used in Eqs. (20.4) and (20.5) are, respectively, 

E = pQE + 0.2S0sD (20.6a) 

(20.6b) 
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where QE = effect of horizontal seismic forces 
p = reliability factor 

The factor p is taken as 1.0 for structures assigned to SDCs B and C and as 1.3 for 
structures assigned to SDCs D though F, except for structures meeting specific crite
ria described in Ref. 20.2, in which case p may be taken as 1.0. 

Combining Eq. (20.4) with Eq. (20.6a) and Eq. (20.5) with Eq. (20.6b) gives 

U = (1.2 + 0.2SDs)D + pQE + l.0L + 0.2S (20.7) 

U = (0.9 - 0.2SDs)D + pQE + l .6H (20.8) 

Equations (20.4) and (20.6a) are used when dead load adds to the effects of 
horizontal ground motion, while Eqs. (20.5) and (20.6b) are used when dead load 
counteracts the effects of horizontal ground motion. Thus, the total load factor for 
dead load is greater than 1.2 in Eq. (20.7) and less than 0.9 in Eq. (20.8). 

ASCE/SEI 7 specifies six procedures (if SDC A is included) for determining the 
horizontal earthquake load QE. These procedures include three progressively more 
detailed methods that represent earthquake loading through the use of equivalent static 
lateral loads, modal response spectrum analysis, linear time-history analysis, and 
nonlinear time-history analysis. The method selected depends on the seismic design 
category. All but the most basic reinforced concrete structures in Seismic Design 
Categories B through F must be designed using equivalent lateral force analysis (the 
most detailed of the three equivalent static lateral load procedures), modal response 
analysis, or time-history analysis. These procedures are discussed next. 

a. Equivalent Lateral Force Procedure 

According to ASCE/SEI 7 (Ref. 20.2), equivalent lateral force analysis may be applied 
to all structures with SDs less than 0.33g and Sm less than 0.133g, as well as struc
tures subjected to much higher design spectral response accelerations, if the structures 
meet certain requirements. More sophisticated dynamic analysis procedures must be 
used otherwise. 

The equivalent lateral force procedure provides for the calculation of the total 
lateral force, defined as the design base shear V, which is then distributed over the 
height of the building. The design base shear V is calculated for a given direction of 
loading according to the equation 

V= CsW 

where Wis the total dead load plus applicable portions of other loads and 

SDs 
C =-

s R/1 
which need not be greater than 

or 

but may not be less than 

Sm 
C=--

s T(R/1) 
for T :5 Tz, 

for T > 1i., 

Cs = 0.44/SDs ~ 0.01 

(20.9) 

(20.10) 

(20.11) 

(20.12) 

(20.13) 
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or where S1 ;;::: 0.6g, 

0.5S1 C =--
s R/1 

(20.14) 

where R = response modification factor (depends on structural system). Values of 
R. for most reinforced concrete structures range from 4 to 8, based on 
ability of structural system to sustain earthquake loading and to dissi
pate energy 

I = occupancy important factor = 1.0, 1.25, or 1.5, depending upon the occu
pancy and use of structure 

T = fundamental period of structure 

According to ASCE/SEI 7, the period T can be calculated based on an analysis 
that accounts for the structural properties and deformational characteristics of the 
elements within the structure. Approximate methods may also be used in which the 
fundamental period of the structure may be calculated as 

(20.15) 

where hn = height above the base to the highest level of structure, ft 
Ct= 0.016 for reinforced concrete moment-resisting frames in which frames 

resist 100 percent of required seismic force and are not enclosed or 
adjoined by more rigid components that will prevent frame from deflect
ing when subjected to seismic forces, and 0.020 for all other reinforced 
concrete buildings 

x = 0.90 for ct= 0.016 and 0.75 for ct= 0.020 

Alternately, for structures not exceeding 12 stories in height, in which the lateral
force-resisting system consists of a moment-resisting frame and the story height is at 
least 10 ft, 

T= 0.IN 

where N = number of stories. 

For shear wall structures, ASCE/SEI 7 permits T to be approximated as 

_ 0.0019 h 
T- ~r;=, n 

vCw 

where C = 100 ± ( hn )
2 

A; 
w AB i=I h; 1 + 0.83(hJD;)2 

where AB = base area of structure, ft2 

A; = area of shear wall, ft2 

D; = length of shear wall i, ft 

(20.16) 

(20.17) 

(20.18) 

n = number of shear walls in building that are effective in resisting lateral 
forces in direction under consideration 

The total base shear Vis distributed over the height of the structure in accordance 
with Eq. (20.19). 

Fx = ::xh! V 

LW;k} 
i=I 

(20.19) 



FIGURE 20.11 
Forces based on ASCE/SEI 7 
(Ref. 20.2) equivalent 
lateral force procedure: 
(a) structure; (b) distribution 
of lateral forces over height; 
( c) story shears. 

Levelx r~ ~ 

(a) (b) 

where Fx = lateral seismic force induced at level x 
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~ v--1 
(c) 

wx, w; = portion of Wat level x and level i, respectively 
hx, h; = height to level x and level i, respectively 

k = exponent related to structural period, = 1 for T ::s 0.5 sec and = 2 for 
T 2: 2.5 sec. For 0.5 < T < 2.5, k is determined by linear interpolation 
or set to a value of 2 

The design shear at any story Vx equals the sum of the forces Fx at and above that 
story. For a 10-story building with a uniform mass distribution over the height and 
T = 1.0 sec, the lateral forces and story shears are distributed as shown in Fig. 20.11. 

At each level, Vx is distributed in proportion to the stiffness of the elements in the 
vertical lateral-force-resisting system. To account for unintentional building irregular
ities that may cause a horizontal torsional moment, a minimum 5 percent eccentricity 
must be applied if the vertical lateral-force-resisting systems are connected by a floor 
system that is rigid in its own plane. 

In addition to the criteria just described, ASCE/SEI 7 includes criteria to account 
for overturning effects and provides limits on story drift. P-ll effects must be consid
ered (as discussed in Chapter 9), and the effects of upward loads must be accounted 
for in the design of horizontal cantilever components and prestressed members. 

b. Dynamic Lateral Force Procedures,., 

ASCE/SEI 7 includes dynamic lateral force procedures that involve the use of (1) 
response spectra, which provide the earthquake-induced forces as a function of the 
natural periods of the structure, or (2) time-history analyses of the structural response 
based on a series of ground motion acceleration histories that are representative of 
ground motion expected at the site. Both procedures require the development of a 
mathematical model of the structure to represent the spatial distribution of mass and 
stiffness. Response spectra, such as shown in Fig. 20.10, are used to calculate peak 
forces for a "sufficient number of nodes to obtain the combined modal mass partici
pation of at least 90 percent of the actual mass in each of two orthogonal directions" 
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(Ref. 20.2). Since these forces do not always act in the same direction, as shown 
in Fig. 20.3, the peak forces are averaged statistically, in most cases using the square 
root of the sum of the squares to obtain equivalent static lateral forces for use in 
design. In cases where the periods in the translational and torsional modes are closely 
spaced and result in significant cross correlation of the modes, the complete quadratic 
combination method is used (Ref. 20.8). When time-history analyses, which may 
include a linear or nonlinear representation of the structure, are used, design forces are 
obtained directly from the analyses. Both modal response spectrum and time-history 
procedures provide more realistic representations of the seismically induced forces in 
a structure than do equivalent lateral force analyses. The details of these methods are 
presented in Refs. 20.1 and 20.2. 

20.4 ACI PROVISIONS FOR EARTHQUAKE-RESISTANT 
STRUCTURES 

Criteria for seismic design are contained in Earthquake-Resistant Structures, Chapter 21 
of the ACI Code (Ref. 20.9). The principal goal of the provisions is to ensure ade
quate toughness under inelastic displacement reversals brought on by earthquake 
loading. The provisions accomplish this goal by requiring the designer to provide for 
concrete confinement and inelastic rotation capacity. The provisions apply to frames, 
walls, coupling beams, diaphragms, and trusses in structures assigned to Seismic 
Design Categories D, E, and F, and to frames, including two-way slab systems, and 
precast walls in structures assigned to Seismic Design Category C. Structural systems 
in SDCs D, E, and F are referred to as special, while systems in SDC C are referred 
to as intermediate. 

The requirements for frame structures assigned to SDC B, described as ordinary 
moment frames, are limited. Beams must have at least two longitudinal bars that are 
continuous along both the top and bottom faces of the beam and developed at the face 
of the supports; and columns with a clear height less than or equal to 5 times the 
column dimension in the direction of bending must be designed for shear, as required 
for intermediate frames (described in Section 20.8). There are no special requirements 
in ACI Code Chapter 20 for structures assigned to SDC A. 

The ACI provisions are based on many of the observations made earlier in this 
chapter. The effect of nonstructural elements on overall structural response must be 
considered, as must the response of the nonstructural elements themselves. Structural 
elements that are not specifically proportioned to carry earthquake loads must also 
be considered. 

The load factors used for earthquake loads are given in Eqs. (20.4) and (20.5). 
The strength reduction factors used for seismic design are the same as those used for 
nonseismic design (Table 1.3), with the additional requirements that cp = 0.60 for shear, 
if the nominal shear capacity of a member is less than the shear based on the nominal 
flexural strength [see Eq. (20.1)], and cp = 0.85 for shear in joints and diagonally rein
forced coupling beams. 

To ensure adequate ductility and toughness under inelastic rotation, ACI Code 21.1.4 
sets a minimum concrete strength of 3000 psi. For lightweight aggregate concrete, an 
upper limit of 5000 psi is placed on concrete strength; this limit is based on a lack of 
experimental evidence for higher-strength lightweight concretes. 

Under ACI Code 21.1.5, reinforcing steel must meet ASTM A706 (see Table 2.4). 
ASTM A 706 specifies a Grade 60 steel with a maximum yield strength of 78 ksi and 



FIGURE 20.12 
Example of transverse 
reinforcement in columns; 
consecutive crossties 
engaging the same 
longitudinal bars must have 
90° hooks on opposite sides 
of columns. (Adapted from 

SEISMIC DESIGN 727 

Ref 20.9.) Ash1 

bc1 

X;~ 14 in. 

a minimum tensile strength equal to 80 ksi. The actual tensile strength must be at least 
1.25 times the actual yield strength. In addition to reinforcement manufactured under 
ASTM A 706, the Code allows the use of Grades 40 and 60 reinforcement meeting the 
requirements of ASTM A615, provided that the actual yield strength does not exceed 
the specified yield by more than 18 ksi and that the actual tensile strength exceeds the 
actual yield strength by at least 25 percent. The upper limits on yield strength are used 
to limit the maximum moment capacity of the section because of the dependency of 
the earthquake-induced shear on the moment capacity [Eq. (20.1)). The minimum 
ratio of tensile strength to yield strength helps provide adequate inelastic rotation 
capacity. Evidence reported in Ref. 20.10 indicates that an increase in the ratio of the 
ultimate moment to the yield moment results in an increase in the nonlinear deforma
tion capacity of flexural members. 

Confinement for concrete is provided by transverse reinforcement consisting of 
stirrups, hoops, and crossties. To ensure adequate anchorage, a seismic hook [ with a 
bend not less than 135° and a 6 bar diameter (but not less than 3 in.) extension that 
engages the longitudinal reinforcement and projects into the interior of the stirrup or 
hoop] is used on stirrups, hoops, and crossties. Hoops, shown in Figs. 7. lla, c-e and 
20.12, are closed ties that can be made up of several reinforcing elements, each having 
seismic hooks at both ends, or continuously wound ties with seismic hooks at both 
ends. A crosstie (see Fig. 20.12) is a continuous reinforcing bar with a seismic hook 
at one end and a hook with not less than a 90° bend and at least a 6 bar diameter exten
sion at the other end. The hooks on crossties must engage peripheral longitudinal 
reinforcing bars. 

In the following sections, ACI requirements for frames, walls, diaphragms, and 
trusses subject to seismic loading are discussed. Sections 20.5 and 20.6 describe the 
general design and detailing criteria for members in structures assigned to SDCs D, E, 
and F. Specific shear strength requirements are presented in Section 20.7. Section 20.8 
describes requirements for frame structures assigned to SOC C. 

20.5 ACI PROVISIONS FOR SPECIAL MOMENT FRAMES 

ACI Code Chapter 21 addresses four member types in frame structures, termed special 
moment frames, subject to high seismic risk: flexural members, members subjected to 
bending and axial load, joints, and members not proportioned to resist earthquake 
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forces. Two-way slabs without beams are prohibited as lateral-load-resisting systems 
in structures assigned to SDCs D, E, and F. 

a. Flexural Members 

Flexural members are defined by ACI Code 21.5.1 as structural members that resist 
earthquake-induced forces but have a factored axial compressive load Pu that does not 
exceed AgJ;/10, where Ag is the gross area of the cross section. The members must 
have a clear span-to-effective-depth ratio of at least 4 and a width bw not less than 0.3h 
or 10 in. The width bw may not be wider than the support width c2 plus a distance 
on either side of the support equal to the smaller of the width of the supporting mem
ber c2 or 0.75 times the dimension of the supporting member in the direction of the 
span c1, as shown in Fig. 20.13. The minimum clear span-to-depth ratio helps ensure 
that flexural rather than shear strength dominates member behavior under inelastic 
load reversals. Minimum web dimensions help provide adequate confinement for the 
concrete, whereas the width relative to the support (typically a column) is limited to 
provide adequate moment transfer between beams and columns. 

In accordance with ACI Code 21.5.2, both top and bottom minimum flexural 
steel is required. As.min should not be less than given by Eq. (3.41) but need not be 
greater than four-thirds of that required by analysis, with a minimum of two reinforc
ing bars, top and bottom, throughout the member. In addition, the positive moment 
capacity at the face of columns must be at least one-half of the negative moment 
strength at the same location, and neither positive nor negative moment strength at any 
section in a member may be less than one-fourth of the maximum moment strength at 
either end of the member. These criteria are designed to provide for ductile behavior 
throughout the member, although the minimum of two reinforcing bars on the top and 
bottom is based principally on construction requirements. A maximum reinforcement 
ratio of 0.025 is set to limit problems with steel congestion and to ensure adequate 
member size for carrying shear that is governed by the flexural capacity of the mem
ber [Eq. (20.1)]. 

To obtain ductile performance, the location of lap splices is limited. They may 
not be used within joints, within twice the member depth from the face of a joint, or 
where analysis indicates that flexural yielding is caused by inelastic lateral displace
ments of the frame. Lap splices must be enclosed by hoops or spirals with a maximum 
spacing of one-fourth of the effective depth or 4 in. Welded and mechanical connec
tions may be used, provided that they are not used within a distance equal to twice the 
member depth from the face of a column or beam or sections where yielding of the 
reinforcement is likely to occur due to inelastic displacements under lateral load, in 
accordance with ACI Code 21.1.6 and 21.1.7. 

Transverse reinforcement is required throughout flexural members in frames 
resisting earthquake-induced forces. According to ACI Code 21.5.3, transverse 
reinforcement in the form of hoops must be used over a length equal to twice the 
member depth measured from the face of the supporting member toward midspan, 
at both ends of the flexural member, and over lengths equal to twice the member 
depth on both sides of a section where flexural yielding is likely to occur in con
nection with inelastic lateral displacements of the frame. The first hoop must be 
located not more than 2 in. from the face of the supporting member, and the maxi
mum spacing of the hoops must not exceed one-fourth of the effective depth, 
8 times the diameter of the smallest longitudinal bar, 24 times the diameter of the 
hoop bars, or 12 in. 



FIGURE 20.13 
Maximum effective width of 
wide beam and required 
transverse reinforcement. 
(Adapted from Ref. 20.9.) 

A 
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Direction of t 
analysis 

Note: 

Transverse reinforcement through 
the column to confine beam 
longitudinal reinforcement passing 
outside the column core 

Plan 

Not greater than the smaller 
of c1 and 0.75c2 

.. 
Transverse reinforcement in column above and 
below the joint not shown for clarity 

Section A-A 

.I 

To provide adequate support for longitudinal bars on the perimeter of a flexural 
member when the bars are placed in compression due to inelastic rotation, ACI 
Code 21.5.3 requires that hoops be arranged so that every corner and alternate longi
tudinal bar is provided lateral support by ties, in accordance with ACI Code 7.10.5.3. 
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Arrangements meeting these criteria are illustrated in Fig. 8.3. Where hoops are not 
required, stirrups with seismic hooks at both ends must be provided throughout the 
member, with a maximum spacing of one-half of the effective depth. Hoops can be 
made up of a single reinforcing bar or two reinforcing bars consisting of a stirrup with 
seismic hooks at both ends and a crosstie. Examples of hoop reinforcement are pre
sented in Figs. 7.1 la, c-e and 20.12. 

b. Members Subjected to Bending and Axial Load 

To help ensure constructability and adequate confinement of the concrete, ACI 
Code 21.6.1 requires that members in frames designed to resist earthquake-induced 
forces, with a factored axial force exceeding Ag/; /10, have (1) a minimum cross
sectional dimension of at least 12 in. when measured on a straight line passing through 
the geometric centroid and (2) a ratio of the shortest cross-sectional dimension to the 
perpendicular dimension of at least 0.4. 

To obtain a weak beam-strong column design, ACI Code 21.6.2 requires that the 
nominal flexural strengths of the columns framing into a joint exceed the nominal 
flexural strengths of the girders framing into the joint by at least 20 percent. This 
requirement is expressed as 

6 
'i,M nc ::::: S 'i,M nb (20.20) 

where 'i,Mnc = sum of nominal flexural strengths of columns framing into joint, eval
uated at the faces of the joint. Values of Mnc are based on the factored 
axial load, consistent with the direction of the lateral forces, resulting 
in the lowest flexural strength 

'i,Mnb = sum of nominal flexural strengths of beams framing into joint, evalu
ated at the faces of the joint. In T-beam construction, where the slab is in 
tension under moment at the face of the joint, slab reinforcement 
within the effective flange width (see Section 3.8) is assumed to con
tribute to flexural strength if the slab reinforcement is developed at the 
critical section for flexure 

As shown in Fig. 20.8b, the flexural strengths are summed so that the column moments 
oppose the beam moments. Equation (20.20) must be satisfied for beam moments acting 
both clockwise and counterclockwise on the joint. 

If Eq. (20.20) is not satisfied for beam moments acting in both directions, the 
lateral strength and stiffness of the columns framing into the joint must be ignored 
when determining the strength and stiffness of the structures, and the columns must 
be designed under the provisions of ACI Code 21.13 for members that are not desig
nated as part of the seismic-force-resisting system, as described in Section 20.5d. If 
the stiffness of the columns increases the design base shear or the effects of torsion, 
they must be included in the analysis, but still may not be considered as contributing 
to structural capacity. 

In accordance with ACI Code 21.6.3, the column reinforcement ratio based 
on the gross section Pg must meet the requirement: 0.01 ::5 Pg ::5 0.06. Welded splices 
and mechanical connections in columns must satisfy the same requirements specified 
for flexural members, whereas lapped splices must be designed for tension and are 
permitted only within the center half of columns. 

ACI Code 21.6.4 specifies the use of minimum transverse reinforcement over 
length l

0 
from each joint face and on both sides of any section where flexural yielding 
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is likely because of inelastic lateral displacement of the frame. The length 10 may not 
be less than ( 1) the depth of the member at the joint face or at the section where 
flexural yielding is likely to occur, (2) one-sixth of the clear span of the member, or 
(3) 18 in. 

The transverse reinforcement may consist of single or overlapping spirals satis
fying Eq. (8.5) and the provisions of ACI Code 7.10.4, circular hoops, or rectilinear 
hoops (Fig. 20.12) with or without crossties. The crossties may be the same size or 
smaller than the bars used for the hoops and may not be spaced more than 14 in., as 
shown in Fig. 20.12. 

Ash is evaluated in both the 1 and 2 directions, as indicated in Fig. 20.12. In accor
dance with ACI Code 21.6.4, the spacing of transverse reinforcement within 1

0 
may not 

exceed one-quarter of the minimum member dimension, 6 times the diameter of the 
longitudinal bar, or 

14 - h =4+ X 
So 3 

4 in. :5 S0 :5 6 in. 

(20.21a) 

(20.21b) 

where hx is the maximum horizontal spacing of hoop or crosstie legs on all faces of 
the column (largest value of X; in Fig. 20.12). 

Minimum transverse reinforcement is specified in terms of the ratio of the vol
ume of the transverse reinforcement to the volume of the core confined by the rein
forcement (measured out-to-out of the confining steel) Ps for spirals or circular hoop 
reinforcement as 

J; 
Ps = 0.12~ 

Jyt 

(20.22) 

but not less than specified in Eq. (8.5), where ty1 is the specified yield strength of 
transverse reinforcement. 

To provide similar confinement using rectangular hoop reinforcement, ACI 
Code 21.4.4 requires a minimum total cross-sectional area of transverse reinforcement 
Ash along the length of the longitudinal reinforcement that may not be less than 

or 

Ash = 0.3 _c_J c_ __g - 1 sb +' ( A ) 
hr Ach 

sb +' 
A = 0 09 _c_Jc_ 

sh · .f 
Jyt 

(20.23) 

(20.24) 

where Ach = cross-sectional area of column core, measured out-to-out of transverse 
reinforcement 

s = spacing of transverse reinforcement 
be= cross-sectional dimension of column core, measured to outside edges of 

transverse reinforcement composing Ash 

For regions outside of 1
0

, when the minimum transverse reinforcement defined 
above is not provided, the spacing of spiral or hoop reinforcement may not exceed 
6 times the diameter of the longitudinal column bars or 6 in. 
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To account for the major ductility demands that are placed on columns that support 
rigid members (see Figs. 20.4 and 20.5), the Code specifies that, for such columns, the 
minimum transverse reinforcement requirements must be satisfied throughout the full 
column height and that the transverse reinforcement must extend into the discontinued 
stiff member for at least the development length of the largest longitudinal reinforcement 
for walls and at least 12 in. into foundations. 

If the concrete cover outside the coo.fining transverse reinforcement is greater 
than 4 in., the Code requires the addition of transverse reinforcement with a cover of 
4 in. or less to limit the potential hazard caused by spalling of the concrete shelJ away 
from the column. 

EXAMPLE 20.1 Relative fle.xuraJ strengths of members at a joint and minimum transverse column rein
forcement. The exterior joint shown in Fig. 20.14 is part of a reinforced concrete frame 
designed to resist earthquake loads. A 6 in. slab, not shown, is reinforced with No. 5 (No. 16) 
bars spaced 10 in. center to center at the same level as the flexural steel in the beams. The 
member section dimensions and reinforcement are as shown. The frame story height is 12 ft. 
Material strengths areJ; = 4000 psi and.{y = 60,000 psi. The maximum factored axial load on 
the upper column framing into the joint is 2210 kips, and the maximum factored axial load on the 
lower column is 2306 kips. Determine if the nominal flexural strengths of the columns exceed 

FIGURE 20.14 
Exterior beam-column joint 
for Examples 20.1 and 20.2: 
(a) plan view; (b) cross 
section through spandrel 
beam; (c) cross section 
through normal beam. Note 
that confining reinforcement 
is not shown, except for 
column hoops and crossties 
in (a). 

Minimum 
transverse 
reinforcement 
= No. 4 (No. 13) 
hoops and crossties 
@ 4" spacing 

Hoops and 
cross ties 
not shown 
for clarity 

(a) 

111 I I 
111 I I 
I ~:J-r
I 
I 

(b) 

Spandrel beams 
27" x 36" (top flange 
effective width = 54") 
5 No. 1 o (No. 32) top 
5 No. 9 (No. 29) bottom 

Normal beam 
27" X 36" 
5 No. 9 (No. 29) top 
5 No. 8 (No. 25) bottom 

Column 36" x 36" 
12 No. 11 (No. 36) 
story height = 12' 

(c) 
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those of the beams by at least 20 percent, as required by Eq. (20.20), and determine the mini
mum transverse reinforcement required over the length 1

0 
in the columns. 

SOLUTION. Checking the relative flexural strengths in the frame of the spandrel beams will be 
sufficient, since this is clearly the controlling case for the joint. In addition, because the beam 
reinforcement is the same on both sides of the joint, a single comparison will suffice for both 
clockwise and counterclockwise beam moments. 

The negative nominal flexural strength of the beam at the joint is governed by the top 
steel, which consists of five No. 10 (No. 32) bars in the beams plus four No. 5 (No. 16) bars in 
the slab within the effective width of the top flange, A. = 6.35 + l.24 = 7.59 in2• The yield 
force in the steel is 

Asfy = 1.59 X 60 = 455 kips 

The effective depth is d = 36.0 - 1.5 - 0.5 - 1.27 /2 = 33.4 in., and with stress block depth 
a = 455/(0.85 X 4 X 27) = 4.96 in., the nominal moment is 

455 ( 4.96) . Mnb = l2 33.4 - -
2
- = 1172 ft-kips 

The positive nominal flexural strength of the beam at the joint is determined by the bottom 
steel, five No. 9 (No. 29) bars, As = 5.00 in2• The yield force in the steel is 

A./y = 5.00 X 60 = 300 kips 

The effective depth is d = 36.0 - l.5 - 0.5 - 1.128/2 = 33.4 in., and with stress block depth 
a = 300/(0.85 X 4 X 54) = l.63 in., the nominal moment is 

300 ( l.63) . Mnb = l2 33.4 - -
2
- = 815 ft-kips 

The minimum nominal flexural strengths of the columns in this example depend on the 
maximum factored axial loads, which are 22 l O and 2306 kips for the upper and lower columns, 
respectively. For the 36 X 36 in. columns, this gives 

2210 
4 X 1296 = 0.426 upper column 

P. 2306 = 
0

_
445 

J;A8 4 X 1296 
lower column 

With total reinforcement of 12 No. 11 (No. 36) bars, A.,= 18.72 in2 and the reinforcement 
ratio p

8 
= 18.72/1296 = 0.0144. Using cover to the center of the bars of 3 in., 'Y = (36 -

6)/36 = 0.83, Graphs A.7 and A.8 in Appendix A are appropriate for determining the 
flexural capacity. 

For the upper column, 

Mnc 
Rn= +"'Ah = 0.167 

Jc g 

36 
Mnc = 0.167 X 4 X 1296 X l2 = 2597 ft-kips 

For the lower column, 

Mnc 
Rn= +"'Ah= 0.164 

Jc g 

Mnc = 0.164 X 4 X 1296 X ~~ = 2550 ft-kips 
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Checking the relative flexural capacities, 

LMnc = 2597 + 2550 = 5147 ft-kips 

LMnb = 1172 + 815 = 1987 ft-kips 

By inspection, 2,Mnc ~ ~ 2,Mnb· 
Minimum transverse reinforcement is required over a length 1

0 
on either side of the joint. 

According to ACI Code 21.6.4, 1
0 

is the greater of (1) the depth h = 36 in., (2) one-sixth of the 
clear span = (f2 X 12 - 36)/6 = 18 in., or (3) 18 in. Since every comer and alternate longi
tudinal bar must have lateral support and because the spacing of crossties and legs of hoops is 
limited to a maximum of 14 in. within the plane of the transverse reinforcement, the scheme 
shown in Fig. 20.14a will be used, giving a maximum spacing of slightly less than 12.5 in. The 
maximum spacing of transverse reinforcement s is limited to the smaller of one-quarter of 
the minimum member dimension = 36/4 = 9 in., 6 times the diameter of the longitudinal bar, 
6 X 1.41 = 8.46 in., or 

14 - 12.5 
S0 = 4 + 

3 
= 4.5 in. 

with 4 in. ::S s
0 

::S 6 in. A 4 in. spacing will be used. 
Using No. 4 (No. 13) bars, the cross-sectional dimension of the column core, measured 

to the outside edges of the confining steel, is be = 33 in., and the cross-sectional area 
of column core, also measured to the outside edges of the confining steel, is Ach = 33 X 

33 = 1089 in2• 

For hr = 60 ksi, the total area of transverse reinforcement with the 4 in. spacing is the 
larger of Eqs. (20.23) and (20.24). 

4 X 33 X 4 ( 1296 ) . 2 Ash = 0.3 
60 1089 

- 1 = 0.50 m 

4 X 33 X 4 . 2 Ash= 0.09 
60 

= 0.79 m 

The requirement for 0.79 in2 is satisfied by four No. 4 (No. 13) bar legs. 

c. Joints and Development of Reinforcement 

The design of beam-column joints is discussed in Section 11.2. The forces acting on 
a joint subjected to lateral loads are illustrated in Fig. 11.4. The factored shear acting 
on a joint is 

V,, = Ti + C2 - ¼01 

= Ti + ½ - ¼01 
(20.25) 

where T1 = tensile force in negative moment beam steel on one side of a joint 
T2 = tensile force in positive moment beam steel on one side of a joint 
C2 = compressive force counteracting T2 

Vcol = shear in the column at top and bottom faces of the joint corresponding to 
the net moment in the joint and points of inflection at midheight of 
columns (see Fig. 11.5) 

For seismic design, the forces T1 and T2 ( = C2) must be based on a stress in the 
flexural tension reinforcement of 1.25,[y. In accordance with ACI Code 21.7.4, the 
nominal shear capacity of a joint depends on the degree of confinement provided by 
members framing into the joint. 



FIGURE 20.15 
Effective area of joint Ai . 
which must be considered 
separately for forces in each 
direction of framing. Note 
that the joint illustrated 
does not meet conditions 
necessary to be considered 
as confined because the 
forming members do not 
cover at least ¾ of each joint 
face. (Adapted from Ref. 20.9.) 
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Joint depth = h 
in plane of 
reinforcement 
generating shear 

Reinforcement 
generating shear 

Direction of forces 
generating shear 

For joints confined on all four faces 

Effective 
joint width 
,.;; b + h 
,.;; b + 2x 

For joints confined on three faces or two opposite faces 
For others 

20-vf[Ai 
15vf{Ai 
12-vf[Ai 

where A1 is the effective cross-sectional area of the joint in a plane parallel to the 
plane of reinforcement generating shear in the joint. The joint depth is the overaU 
depth of the column. For beams framing into a support of larger width, the effective 
width of the joint is the smaller of (I) beam width plus joinl depth or (2) twice the 
smaller perpendicular distance from the longitudinal axis of the beam to the column 
side. The effective area of a joint is illustrated in Fig. 20.15. The nominal shear 
strength for lightweight aggregate concrete is limited to three-quarters of the values 
given above. 

To provide adequate confinement within a joint, the transverse reinforcement 
used in columns must be continued through the joint, in accordance with ACJ Code 
21.5.2. This reinforcement may be reduced by one-half within the depth of the shal
lowest framing member, and the spacing of spirals or hoops may be increased to 6 in., 
if beams or girders frame into all four sides of the joinl and the flexural members cover 
at least three-fourths of the column width. 

For joints where the beam is wider than lhe column, transverse reinforcement, 
as required for columns (ACI Code 21.5.3), must be provided to confine the flexural 
steel in the beam, as shown in Fig. 20.137\lnless confinement is provided by a trans
verse flexural member. 

To provide adequate development of beam reirtforcement passing through a 
joint, AC! Code 21.7.2 requires that the column dimension parallel to the beam 
reinforcement be at least 20 times the diameter of the largest longitudinal bar for 
normalweight concrete and 26 times the bar diameter for lightweight concrete. For 
beam longitudinal reinforcement that is terminated within a column, both hooked and 
straight reinforcement must be extended to the far face of the column core. The use 
of headed deformed reinforcement is not addressed. The reinforcement must be 
anchored in compression as described in Section 5.8 (ACI Code Chapter 12) and 
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anchored in tension in accordance with ACI Code 21.7.5, which requires that the 
development length of bars with 90° hooks ldh not be less than 8db, 6 in., or 

/ydb 
l =--
dh 65v7: 

(20.26) 

For lightweight aggregate concrete, these values are, respectively, IOdb, 7.5 in., and 
1.25 times the value in Eq. (20.26). The 90° hook must be located within the confined 
core of the column. 

For straight bars anchored within a column core, the development length ld of 
bottom bars must be at least 2.5 times the value required for hooks; ld for top bars must 
be at least 3.25 times the length required for hooks. 

According to ACI Code 21. 7 .5, straight bars that are terminated at a joint 
must pass through the confined core of a column or a boundary element (discussed 
in Section 20.6a). Because of the lower degree of confinement provided outside 
of the confined region, the Code requires that any portion of the straight embed
ment length that is not within the core be increased by a factor of 1.6. Thus, the 
required development length ldm of a bar that is not entirely embedded in confined 
concrete is 

ldm = I .6(/d - ldJ + ldc 

ldm = 1.6/d - 0.6/dc 

(20.27a) 

(20.27b) 

where ld = required development length for a straight bar embedded in confined 
concrete 

ldc = length embedded in confined concrete 

EXAMPLE 20.2 Design of exterior joint. Design the joint shown in Fig. 20.14. 

SOLUTION. As discussed in Chapter 11, a joint must be detailed so that the beam and column 
bars do not interfere with each other and so that placement and consolidation of the concrete 
are practical. Bar placement is shown in Fig. 20.14. 

Development of the spandrel beam flexural steel within the joint is checked based on the 
requirement that the column dimension be at least 20 times the bar diameter of the largest bars. 
This requirement is met for the No. 10 (No. 32) bars used as top reinforcement. 

20 X 1.27 = 25.4 in. < 36 in. 

The flexural steel in the normal beam must be anchored within the core of the column 
based on Eq. (20.26), but not less than Sdh or 6 in. For the No. 9 (No. 29) top bars, Eq. (20.26) 
controls 

60,000 X 1.128 . 
ldh = , ~ = 16.5 Ill. 

65 V 4000 

The same holds true for the No. 8 (No. 25) bottom bars, which must also be anchored in tension 
(ACI Code 12.11.2) because lateral loading will subject the beam to both positive and negative 
bending moments at the exterior joint. 

60,000 X 1.0 . 
ldh = , ~ = 14.6m. 

65 V 4000 

Since 3.25ldh is not available for the top bars and 2.5ldh is not available for the bottom bars, all 
flexural steel from the normal beam must be anchored using hooks, not straight reinforcement, 
extended to the far face of the column core, as shown in Fig. 20.14b. 



FIGURE 20.16 
Free-body diagrams in 
plane of spandrel beam for 
Example 20.2: (a) column 
and joint region; (b) forces 
acting on joint due to lateral 
load. 
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~-----l Vcol = 186 kips 

Vcol = 186 kips - ,-T1 = 476 kips -Vu = T1 + T2 - Vcol 
= 665 kips 

TVcol (b) 

(a) 

To check the shear strength of the joint, the shear forces acting on the joint must be 
calculated based on a stress of 1.25.,fy in the flexural reinforcement. By inspection, shear in the 
plane of the spandrel beam will control. 

The tensile force in the negative steel is 

T1 = 1.25 X 6.35 X 60 = 476 kips 

For an effective depth of 33.4 in. (Example 20.1) and a depth of stress block a = 476/(0.85 X 

4 X 27) = 5.19 in., the moment due to negative bending is 

476 ( 5.19) M- = l2 33.4 - -
2
- = 1222 ft-kips 

For positive bending on the other side of the column, 

Tz = 1.25 X 5.00 X 60 = 375 kips 

375 
a = ----- = 2.04 in. 

0.85 X 4 X 54 

375 ( 2.04) M+ = 12 33.4 - -
2
- = 1012 ft-kips 

The column shear corresponding to the sum of the moments M+ and M- and based 
on the free body of the column between assumed midheight inflection points, as shown in 
Fig. 20.16a, is VcoI = (1222 + 1012)/12 = 186 kips. The shear forces acting on the joint are 
shown in Fig. 20.16b, and the factored joint shear is 

vu = T, + Tz - vcol = 476 + 375 - 186 = 665 kips 

For a joint confined on three faces with an effective cross-sectional areaAj = 36 X 36 = 1296 in2, 

the nominal and design capacities of the joint are 

15\/4000 X 1296 
V. = l5Vf'A = ------ = 1229 kips 

n Jc J 1000 

<f,V,, = 0.85 X 1229 = 1045 kips 

Since <f, Vn > Vu, the joint is satisfactory for shear. 
Because the joint is not confined on all four sides, the transverse reinforcement in the 

column must be continued, unchanged, through the joint. 
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d. Members Not Designated as Part of Seismic-Force-Resisting System 

Frame members in structures assigned to SDCs D, E, and F that are assumed not to 
contribute to the structure's ability to carry earthquake forces must still be able to 
support the factored gravity loads [see Eqs. (20.4) and (20.5)) for which they are 
designed as the structures undergo lateral displacement. To provide adequate strength 
and ductility, ACI Code 21.13.2 requires that these members be designed based on 
moments corresponding to the design displacement, which ACI Commentary 21.13 
suggests should be based on models that will provide a conservatively large estimate 
of displacement. In this case, ACI Code 21.13.3 permits the load factor for live load L 
to be reduced to 0.5, except for garages, places of public assembly, and areas where 
L > 100 psf. 

When the induced moments and shears, combined with the factored gravity 
moments and shears (see Table 1.2), do not exceed the design capacity of a frame 
member, ACI Code 21.13.3 requires that members with factored gravity axial forces 
below AgJ;/10 contain minimum longitudinal top and bottom reinforcement as pro
vided in Eq. (3.41), a reinforcement ratio not greater than 0.025, and at least two 
continuous bars top and bottom. In addition, stirrups are required with a maximum 
spacing of d/2 throughout. 

For members with factored gravity axial forces exceeding AgJ;/10, the longitudinal 
reinforcement must meet the requirements for columns proportioned for earthquake 
loads, and the transverse reinforcement must consist of hoops and crossties, as used in 
columns designed for seismic loading (as required by ACI Code 21.6.4.2). The maxi
mum longitudinal spacing of the transverse reinforcement s0 may not be more than 
6 times the diameter of the smallest longitudinal bar or 6 in. throughout the column 
height. In addition, the transverse reinforcement must carry shear induced by inelastic 
rotation at the ends of the member, as required by ACI Code 21.6.5 (discussed in 
Section 20. 7). Members with factored gravity axial forces exceeding 35 percent of the 
axial capacity without eccentricity 0.35P0 must be designed with transverse 
reinforcement equal to at least one-half of that specified in ACI Code 21.6.4.4 [see 
Eqs. (20.21) through (20.24)). 

If the induced moments or shears under the design lateral displacements exceed 
the design moment or shear strengths, or if such a calculation is not made, ACI Code 
21.13.4 requires that the members meet the material criteria for concrete and steel in 
ACI Code 21.1.4 and 21.1.5 (see Section 20.4), along with criteria for mechanical 
and welded splices (ACI Code 21.1.6 and 21.1.7.1, respectively). For frame members 
with factored gravity axial loads below AgJ;/10, the minimum reinforcement criteria 
specified in ACI Code 21.5.2 must be met, along with the requirement that the shear 
capacity of the member be adequate to carry forces induced by flexural yielding under 
the criteria of ACI Code 21.5.4 [see Fig. 20.18 and Eq. (20.30) in Section 20.7). In 
addition, stirrups may not be spaced at greater than d/2 throughout the length of the 
member. For members with factored gravity axial forces exceeding Agf:'./10, the lon
gitudinal reinforcement ratio Pg must be within the range 0.01 to 0.06, and all 
requirements for transverse reinforcement and shear capacity specified for columns 
designed for earthquake-induced lateral loading must be satisfied. In addition, the 
transverse column reinforcement must be continued within the joints, as required by 
ACI Code 21.7.3.1 (see Section 20.5c) for frames in structures assigned to SDCs D, 
E, and F. 

To reduce the potential for a punching shear failure for slab-column connections 
in two-way slabs without beams, ACI Code 12.13.6 requires that stirrups or headed 
studs satisfying the requirements of ACI Code 11.11.3 or 11.11.5, respectively 



SEISMIC DESIGN 739 

(see Section 13.10), and providing Vs of at least 3.5 \/J;h0 d extend at least 4 times the 
slab thickness away from the face of the support, unless either (1) the requirements of 
ACI Code 11.11. 7 are satisfied using the factored shear due to gravity load Vug and the 
induced moment transferred between the slab and column under the design displace
ment, as described in Section 13.11, or (2) the design story drift ratio (relative lateral 
displacement under design load from the top to the bottom of a story divided by the 
height of the story) does not exceed the larger of 0.005 and [0.035 - 0.05(Vug/<p VJ]. 
The design story drift ratio is equal to the larger of the design story drift ratios of the 
stories above and below the slab-column connection. Ve is defined by Eqs. (13. lla) 
through (13.llc), and Vug is the factored shear force on the slab critical section for 
two-way action for the load combination 1.2D + 1.0L + 0.2S. The load factor on the 
live load L may be reduced to 0.5, except for garages, places of public assembly, and 
cases in which L exceeds 100 lb/ft2. 

20.6 ACI PROVISIONS FOR SPECIAL STRUCTURAL WALLS, 
COUPLING BEAMS, DIAPHRAGMS, AND TRUSSES 

FIGURE 20.17 
Cross sections of structural 
walls with boundary 
elements. 

ACI Code Chapter 21 includes requirements for stiff structural systems and members 
that carry earthquake forces or distribute earthquake forces between portions of struc
tures that carry earthquake forces. Structural walls, coupling beams, diaphragms, trusses, 
struts, ties, chords, and collector elements are in this category. The general requirements 
for these members are presented in this section. The requirements for shear design are 
presented in Section 20.7c. 

a. Structural Walls 

To ensure adequate ductility, ACI Code 21.9.2 requires that structural walls have 
minimum shear reinforcement ratios in both the longitudinal and transverse directions 
p1 and p1 of 0.0025 and a maximum reinforcement spacing of 18 in. If the factored 
shear force assigned to a wall exceeds 2AcvA \/1::, where Acv is the net area of the 
concrete section bounded by the web thickness and the length of the section in the 
direction of the factored shear force, at least two curtains of reinforcement must be used. 
If, however, the factored shear is not greater than AcvA \/1::, the minimum reinforce
ment criteria of ACI Code 14.3 govern. 

Boundary elements are added along the edges of structural walls and diaphragms 
to increase strength and ductility. The elements include added longitudinal and 
transverse reinforcement and may lie entirely within the thickness of the wall or may 
require a larger cross section, as shown in Fig. 20.17. Under certain conditions, open
ings must be bordered by boundary elements. For walls that are continuous from the 
base of the structure to the top of a wall, compression zones must be reinforced with 

::::::::::: 

[J: : : : : : : : : : : 

Boundary 
elements 
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special boundary elements when the depth to the neutral axis c exceeds the value 
given in Eq. (20.28). 

(20.28) 

where lw and hw are the length and width of the wall, respectively, and ou is the design 
displacement. In Eq. (20.28), oufhw is not taken greater than 0.007. When special 
boundary elements are required based on Eq. (20.28), the reinforcement in the bound
ary element must be extended vertically from the critical section a distance equal to 
the greater of lw or Mu/4Vu. 

Structural walls are also required to have boundary elements at boundaries and 
around openings where the maximum extreme fiber compressive stress under factored 
loads exceeds o.2J;. Stresses are calculated based on a linear elastic model using the 
gross cross section [CT = (P/A) ± (My/I)]. The boundary elements may be discontin
ued once the calculated compressive stress drops below 0.15!;. The confinement 
provided by the boundary element increases both the ductility of the wall and its ability 
to carry repeated cycles of loading. When required, the boundary element must extend 
horizontally from the extreme compressive fiber a distance not less than c - 0.1 lw or c /2, 
whichever is greater, where c is the largest neutral axis depth calculated for the fac
tored load and nominal moment capacity consistent with the displacement ou. When 
flanged sections are used, the boundary element is defined based on the effective 
flange width and extends at least 12 in. into the web. Transverse reinforcement within 
the boundary element must meet the requirements for columns in ACI Code 21.6.2 
through 21.6.4 (discussed in Section 20.5b), but need not meet the requirements in 
Eq. (20.23), and the spacing limit for transverse reinforcement of one-quarter of the 
minimum member dimension in columns [described prior to Eq. (20.21) and specified 
in ACI Code 21.6.4.3(a)] is changed to one-third of the least dimension of the boundary 
element. The transverse reinforcement within a boundary element must extend into the 
support a distance equal to at least the development length of the largest longitudinal 
reinforcement, except where the boundary element terminates at a footing or mat, in 
which case the transverse reinforcement must extend at least 12 in. into the founda
tion. Horizontal reinforcement in the wall web must be anchored within the confined 
core of the boundary element, a requirement that usually requires standard 90° hooks 
or mechanical anchorage. 

When boundary elements are not required and when the longitudinal reinforce
ment ratio in the wall boundary is greater than 400/J;,, the transverse reinforcement at 
the boundary must consist of hoops or spirals at the wall boundary with crossties or 
legs that are not spaced more than 14 in. on center extending into the wall a distance 
of c - 0. llw or c/2, whichever is greater, at a spacing of not greater than 8 in. The 
transverse reinforcement in such cases must be anchored with a standard hook around 
the edge reinforcement, or the edge reinforcement must be enclosed in U stirrups of 
the same size and spacing as the transverse reinforcement. This requirement need not 
be met if the maximum shear force is less than AcvA Vfc. 

b. Coupling Beams 

Coupling beams connect structural walls, as shown in Fig. 20.18a. Under lateral loading, 
they can increase the stiffness of the structure and dissipate energy. Deeper cou
pling beams can be subjected to significant shear, which is carried effectively by 
diagonal reinforcement. According to ACI Code 21.9.7, coupling beams with clear 
span-to-total-depth ratios ln/h of 4 or greater may be designed using the criteria for 
flexural members described in Section 20.5a. In this case, however, the limitations 



FIGURE 20.18 
Coupled shear walls and 
coupling beam. (Parts b and c 

adapted from Ref 20.9.) 

0 
0 
□ 
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(a) Coupled shear walls 

Note: For clarity, only part of the required reinforcement 
is shown on each side of the line of symmetry. Transverse reinforcement 

spacing measured perpendicular 
to the axis of the diagonal bars 
not to exceed 14 in. 

Horizontal beam 
reinforcement at 
wall does not 
develop fy 

Spacing not 
exceeding smaller 
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wall does not 
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Avd = total area 
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Section a-a 
(b) Coupling beam with confinement of individual diagonals 

Note: For clarity, only part of the required 
reinforcement is shown on each Transverse 

reinforcement 
spacing not to 
exceed 8 in. 

side of the line of symmetry. 
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Avd = total area 
of reinforcement 
in each group of 
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Section b-b 

Transverse 
reinforcement 
spacing not to 
exceed 8 in. 

Note: Consecutive crossties engaging the same 
longitudinal bar have their 90-degree hooks on 
opposite sides of beam. 

(c) Coupling beam with full confinement of diagonally reinforced concrete beam section 

741 



742 DESIGN OF CONCRETE STRUCTURES Chapter 20 

on width-to-depth ratio and total width for flexural members need not be applied if it 
can be shown by analysis that the beam has adequate lateral stability. Coupling beams 
with ln/h less than 2 and a factored shear Vu > 4,\ vf:Acw• where Acw is the concrete 
area resisting shear, must be reinforced with two intersecting groups of diagonal 
reinforcement, as shown in Fig. 20.18b and c, unless it can be shown that the loss of 
stiffness and strength in the beams will not impair the vertical load-carrying capacity 
of the structu;;e, egress from the structure, or the integrity of nonstructural components 
and their connections to the structure. Coupling beams with 2 :::; ljh < 4 may be 
designed using the criteria for flexural members or may be reinforced using two inter
secting groups of diagonally placed bars that are symmetrical about the midspan. Such 
reinforcement is not effective unless it is placed at a steep angle (Refs. 20.11 and 
20.12) and thus is not permitted for coupling beams with ljh ~ 4. The criteria for 
shear reinforcement in coupling beams are discussed in Section 20.7c. 

c. Structural Diaphragms 

Floors and roofs serve as structural diaphragms in buildings. In addition to supporting 
vertical dead, live, and snow loads, they connect and transfer lateral forces between 
the members in the vertical lateral-force-resisting system and support other building 
elements, such as partitions, that may resist horizontal forces but do not act as part of 
the vertical lateral-force-resisting system. Floor and roof slabs that act as diaphragms 
may be monolithic with the other horizontal elements in the structures or may include 
a topping slab. ACI Code 21.11.6 requires that concrete slabs and composite topping 
slabs designed as structural diaphragms to transmit earthquake forces be at least 2 in. 
thick. Topping slabs placed over precast floor or roof elements that do not rely on 
composite action must be at least 2½ in. thick. 

d. Collector and Structural Truss Elements 

To provide adequate confinement and ductility, collector elements, which act in tension 
or compression to transmit seismic forces between structural diaphragms and vertical 
load-carrying elements, with compressive stresses greater than 0.2/; must meet the same 
transverse reinforcement requirements as boundary elements in seismic-load-resisting 
frames, but over the full length of the elements. The special transverse reinforcement 
may be discontinued at a section where the calculated compressive stress is less than 
0.15/; in accordance with ACI Code 21.11.7.5. Transverse reinforcement is also 
required for truss elements with compressive stresses greater than 0.2J;, but in con
trast with collector elements, must be continued over the full length of the element. 
For trusses, the requirements for columns in ACI Code 21.6.4.2 through 21.6.4.4 and 
21.6.4.7 are used, as described in Section 20.5b. Compressive stresses in collector 
and truss elements are calculated for the factored forces using a linear elastic model 
and the gross section properties of the elements. Continuous reinforcement in stiff 
structural systems must be anchored and spliced to develop J;, in tension. 

20.7 ACI PROVISIONS FOR SHEAR STRENGTH 

a. Beams 

A prime concern in the design of seismically loaded structures is the shear induced in 
members due to nonlinear behavior in flexure [Eq. (20.1)]. As discussed in Section 20.2, 
increasing the flexural strength of beams and columns may increase the shear in these 



FIGURE 20.19 
Forces considered in the 
shear design of flexural 
members subjected to 
seismic loading. W /2 is the 
shear corresponding to 
gravity loads based on 
1.2D + I .OL + 0.2S. 
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Mp,1 ( Vet I J J J J J J J J J J J J I l Ve ) Mpr2 
,__ ____ zn ____ ____.., 

members if the structure is subjected to severe lateral loading. As a result, the ACI Code 
requires that beams and columns in frames that are part of the seismic-force-resisting 
system (including some members that are not designed to carry lateral loads) be 
designed for the combined effects of factored gravity load and shear induced by the 
formation of plastic hinges at the ends of the members. 

For members with axial loads less than AgJ;/10, ACI Code 21.5.4 requires 
that the design shear force Ve be based on the factored tributary gravity load along 
the span plus shear induced by moments of opposite sign corresponding to the 
probable flexural strength Mp,· Loading corresponding to this case is shown in 
Fig. 20.19. The probable flexural strength Mp, is based on the reinforcing steel 
achieving a stress of 1.25fy• 

Mp, = l.25A.Jy ( d - ~) (20.29a) 

where 

1.25.{yA. 
a= 

0.85J;b 
(20.29b) 

The shear Ve is given by 

(20.30) 

where Mp,I and Mp,2 = probable moment strengths at two ends of member when 
moments are acting in the same sense 

In = length of member between faces of supports 
wu = factored uniform gravity load based on 1.2D + l.OL + 0.2S 

Equation (20.30) should be evaluated separately for moments at both ends acting in 
the clockwise and then counterclockwise directions. 

To provide adequate ductility and concrete confinement, the transverse rein
forcement over a length equal to twice the member depth from the face of the 
support, at both ends of the flexural member, must be designed based on a concrete 
shear capacity Ve = 0, when the earthqaake-induced shear force in Eq. (20.30) 
(Mp,I + Mp,2)/ln is one-half or more of the maximum required shear strength within 
that length and the factored axial compressive force in the member, including 
earthquake effects, is below AgJ;/20. 

EXAMPLE 20.3 Beam shear design. An 18 in. wide by 24 in. deep reinforced concrete beam spans between 
two interior columns in a building frame designed for a region of high seismic risk. The clear 
span is 24 ft, and the reinforcement at the face of the support consists of four No. 10 (No. 32) 
top bars and four No. 8 (No. 25) bottom bars. The effective depth is 21.4 in. for both top and 
bottom steel. The maximum factored shear wJn/2 = (l.2wd + l.Ow1)ln/2 = 32 kips at each 
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FIGURE 20.20 
Configuration of hoop 
reinforcement for beam in 
Example 20.3. 
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No. 3 (No. 1 O) 
hoops@ 5" 

end of the beam. Materials strengths are J; = 5000 psi and Jy = 60,000 psi. Design the shear 
reinforcement for the regions adjacent to the column faces. 

SOLUTION. The probable moment strengths Mpr are based on a steel stress of l .25Jy. For negative 
bending, the area of steel is A, = 5.08 in2 at both ends of the beam, the stress block depth 
is a = 1.25 X 5.08 X 60/(0.85 X 5 X 18) = 4.98 in., and the probable strength is 

M I = 1.25 X 5.08 X 60 (21.4 - 4.98) = 600 ft-kips 
pr 12 2 

For positive bending, the area of steel is A, = 3 .16 in2, the effective width is 90 in., the stress block 
depth a = 1.25 X 3.16 X 60/(0.85 X 5 X 90) = 0.62 in., and the probable strength is 

1.25 X 3.16 X 60 ( 0.62) f k" 
Mpr2 = 

12 
21.4 - -

2
- = 417 t- 1ps 

As given in the problem statement, the effect of factored gravity loads wJn/2 = (1.2wd + 
l.0w1)ln/2 = 32 kips giving a design shear force at each end of the beam, according to 
Eq. (20.30), of 

600 + 417 . 
V, = 

24 
+ 32 = 42 + 32 = 74 kips 

Since the earthquake-induced force, 42 kips, is greater than one-half of the maximum required 
shear strength, the transverse hoop reinforcement must be designed to resist the full value of 
V, (i.e., cf,V, ~ V,) over a length 2h = 48 in. from the face of the column, in accordance with 
ACI Code 21.3.3. The maximum spacing of the hoops s is based on the smaller of d/4 = 
5.4 in., 8db for the smallest longitudinal bars = 8 in., or 24db for the hoop bars [assumed to 
be No. 3 (No. 10) bars] = 9 in., or 12 in. A spacings= 5 in. will be used. 

The area of shear reinforcement within a distance s is 

Av= (V,/cf,)s = (74/0.75)5 = 0.38 in2 
Jy,d 60 X 21.4 

Providing support for comer and alternate longitudinal bars, in accordance with ACI Code 
21.5.3, leads to the use of overlapping hoop reinforcement, shown in Fig. 20.20, and a total area 
of transverse steel Av = 0.44 in2• 

The first hoop is placed 2 in. from the face of the column. The other hoops are spaced 
at 5 in. within 48 in. from each column face. Transverse reinforcement for the balance of 
the beam is calculated based on the value of V, at that location and a nonzero concrete con
tribution V,. The stirrups must have seismic hooks and a maximum spacing of d/2. 

b. Columns 

In accordance with ACI Code 21.6.5, shear provisions similar to those used for beams 
to account for the formation of inelastic hinges must also be applied to members with 



FIGURE 20.21 
(a) Forces considered in the 
shear design of columns 
subjected to seismic loading. 
(b) Column interaction 
diagram used to determine 
maximum probable moment 
strengths. Note that Mpr for 
columns is usually governed 
by Mpr of the girders framing 
into a joint, rather than Mmax· 
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(a) 

(b) 

axial loads greater than A
8
J;/10. In this case, the loading is illustrated in Fig. 20.21a, 

and the factored shear is 

(20.31) 

where lu is the clear distance between beams, and Mp,I and Mp,2 are based on a steel 
tensile strength of l .25J;,. 

In Eq. (20.31), Mprl and Mp,2 are the maximum probable moment strengths for 
the range of factored axial loads to which the column will be subjected, as shown in 
Fig. 20.21b; Ve, however, need not be greater than a value based on Mp, for the trans
verse members framing into the joint. Fo'f most frames, the latter will control. Of 
course, Ve may not be less than that obtained from the analysis of the structure under 
factored loads. 

The ACI Code requires that the transverse reinforcement in a column over a 
length /

0 
(the greater of the depth of the member at the joint face, one-sixth of the 

clear span, or 18 in.) from each joint face be proportioned to resist shear based on 
a concrete shear capacity Ve = 0 when (1) the earthquake-induced shear force is 
one-half or more of the maximum required shear strength within those lengths 
and (2) the factored axial compressive force, including earthquake effects, is less 
than A8J;/20. 
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c. Walls, Coupling Beams, Diaphragms, and Trusses 

According to ACI Code 21.9.3 and 21.11.9, the factored shear force Vu for walls, 
coupling beams, diaphragms, and trusses must be obtained from analysis based on 
the factored (including earthquake) loads. 

In accordance with ACI Code 21.9.4, the nominal shear strength Vn of structural 
walls and diaphragms is taken as 

V,, = Acv(a)1.v'f:, + Prh) (20.32) 

where Acv = gross area of concrete section bounded by the web thickness and length 
of the section in the direction of shear force 

Pr = ratio of distributed shear reinforcement on a plane perpendicular to the 
plane of Acv 

ac = 3.0 for hwflw ::S 1.5, = 2.0 for hw/lw 2:: 2.0, and varies linearly for inter-
mediate values of hw/ lw 

The values of hw and lw used to calculate ac are the height and length, respectively, of 
the entire wall or diaphragm or segments of the wall or diaphragm. lw is measured in the 
direction of the shear force. In applying Eq. (20.32), the ratio hwf lw is the larger of the 
ratios for the entire member or the segment of the member being considered. The use 
of ac greater than 2.0 is based on the higher shear strength observed for walls with low 
aspect ratios. 

As described in Section 20.6, ACI Code 21.9.2 requires that walls and diaphragms 
contain distributed shear reinforcement in two orthogonal directions in the plane of the 
member. For hw/ lw ::S 2.0, the reinforcement ratio for steel crossing the plane of Acv• 
p1, must at least equal Pr· The nominal shear strength of all wall piers (vertical regions 
of a wall separated by openings) that together carry the lateral force is limited to a 
maximum value of 8Acv v'J:, with no individual pier assumed to carry greater than 
lOAcw vJ:, where Acv is the total cross-sectional area and Acw is the cross-sectional 
area of an individual pier. The nominal shear strength of horizontal wall segments 
(regions of a wall bounded by openings above and below) and coupling beams is 
limited to lOAcw v'f:. 

For coupling beams reinforced with two intersecting groups of diagonally placed 
bars symmetrical about the midspan (Fig. 20.18b), each group of the diagonally placed 
bars must consist of at least four bars provided in two or more layers and embedded 
into the wall not less than 1.25 times the development length required for Jy in tension. 
The nominal strength provided by the diagonal bars is given by 

(20.33) 

where Avd = total area of longitudinal reinforcement in an individual diagonal 
Acw = area of concrete section resisting shear 

a = angle between diagonal reinforcement and longitudinal axis of coupling 
beam 

The upper limit in Eq. (20.33) is a safe upper bound based on the experimental 
observation that coupling beams remain ductile at shear forces exceeding this value 
(Ref. 20.12). 

ACI Code 21.9.7 allows two options for providing confinement for coupling 
beams. In the first, shown in Fig. 20.18b, each group of diagonal bars must be enclosed 
by transverse reinforcement having out-to-out dimensions not smaller than 0.5bw in 
the direction parallel to bw and 0.2bw along the other sides (i.e., perpendicular to bw). 
The transverse reinforcement must consist of hoops satisfying Eqs. (20.23) and (20.24), 
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with a spacing measured parallel to the diagonal bars satisfying Eq. (20.21), but not 
exceeding 6 times the diameter of the diagonal bars, and have spacing of crossties or 
legs of hoops measured perpendicular to the diagonal bars not exceeding 14 in. When 
computingA

8 
foruse in Eqs. (8.5) and (21.23), the concrete cover required by ACI Code 7.7 

(see Section 3.6a) is assumed on all four sides of each group of diagonal bars. The 
transverse reinforcement must be continued through the intersection of the diagonal 
bars. Additional longitudinal and transverse reinforcement must be distributed around 
the beam perimeter with a total area in each direction not less than 0.002b,.,s and spac
ing not greater than 12 in. 

For the second option, shown in Fig. 20.18c, ACI Code 21.9.7 allows hoops to 
be provided for the entire beam cross section satisfying Eqs. (20.23) and (20.24) and 
extra confining transverse reinforcement, as required by ACI Code 21.6.4.7 when the 
cover exceeds 4 in., with longitudinal spacing not exceeding the smaller of 6 in. and 
6 times the diameter of the diagonal bars, and with spacing of crossties or legs of 
hoops both vertically and horizontally in the plane of the beam cross section not 
exceeding 8 in. Each crosstie and each hoop leg must engage a longitudinal bar of 
equal or larger diameter. 

According to ACI Code 21.11.9, the maximum nominal shear strength of 
diaphragms is 

(20.34) 

where Acv is the gross area of the concrete bounded by the diaphragm thickness and 
length of the diaphragm in the direction of the shear force. Web reinforcement in the 
diaphragm is distributed uniformly in both directions. 

20.8 ACI PROVISIONS FOR INTERMEDIATE 
MOMENT FRAMES 

ACI Code 21.3 governs the design of frames in structures assigned to SDC C. The 
requirements include specified loading and detailing requirements. Unlike structures 
assigned to SDCs D, E, and F, two-way slab systems without beams are allowed to 
serve as lateral-load-resisting systems. Walls, diaphragms, and trusses in regions of 
moderate seismic risk are designed using the main part of the Code. 

ACI Code 21.3.3 offers two options for the shear design of frame members. The 
first option is similar to that illustrated in Figs. 20.19 and 20.21 and Eqs. (20.30) and 
(20.31), with the exception that the probable strengths Mp, are replaced by the nomi
nal strengths Mn- For beams,JY is substituted for 1.25/y in Eq. (20.29). For columns, 
the moments used at the top and bottom of the column [Fig. 20.21 and Eq. (20.31)] 
are based on the capacity of the column alone (not considering the moment capacity 
of the beams framing into the joints) under,.the factored axial load Pu that results in the 
maximum nominal moment capacity. 

As an alternative to designing for shear induced by the formation of hinges at the 
ends of the members, ACI Code 21.3.3 allows shear design to be based on load com
binations that include an earthquake effect that is twice that required by the governing 
building code. Thus, Eq. (20.4) becomes 

U = 1.2D + 2.0E + 1.0L + 0.2S (20.35) 

For beams and columns, the Code prescribes detailing requirements that are not 
as stringent as those used in regions of high seismic risk, but that provide greater con
finement and increased ductility compared to those used in structures not designed for 
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earthquake loading. For beams, the positive-moment strength at the face of a joint 
must be at least one-third of the negative-moment strength at the joint, in accordance 
with ACI Code 21.3.4. Both the positive and negative-moment strength along the full 
length of a beam must be at least one-fifth of the maximum moment strength at the 
face of either joint. Hoops are required at both ends of beams over a length equal to 
twice the member depth; the first hoop must be placed within 2 in. of the face of the 
support, and the maximum spacing in this region may not exceed one-fourth of the effec
tive depth, 8 times the diameter of the smallest longitudinal bar, 24 times the stirrup 
diameter, or 12 in. The maximum stirrup spacing elsewhere in beams is one-half of the 
effective depth. 

For columns, within length l
0 

from the joint face, the tie spacing s
0 

may not exceed 
8 times the diameter of the smallest longitudinal bar, 24 times the diameter of the tie 
bar, one-half of the smallest cross-sectional dimension of the column, or 12 in. The 
length l0 must be greater than one-sixth of the column clear span, the maximum cross
sectional dimension of the member, or 18 in. The first tie must be located not more 
than s0 /2 from the joint face. Outside of 1

0
, the spacing of the transverse reinforcement 

must not exceed d/2 or 24 in. and must satisfy the requirements specified by ACI Code 
7.10 for transverse reinforcement in columns. In accordance with ACI Code 21.3.5 
and 11.10, lateral joint reinforcement with an area as specified in Eq. ( 4.13) must be 
provided within the column for a depth not less than the depth of the deepest flexural 
member framing into the joint. 

Like columns in special moment frames, columns in intermediate moment 
frames must be designed to provide for ductile behavior when supporting discontinuous 
stiff members, such as walls. Columns in intermediate moment frames must contain 
transverse reinforcement with spacing s

0 
over the full height beneath the level at which 

the discontinuity occurs if the portion of factored axial compressive force in the 
columns related to earthquake effects exceeds A

8
J;/10. This transverse reinforcement 

must extend above and below the columns into the discontinued stiff member for at 
least the development length of the largest longitudinal reinforcement for walls and 
at least 12 in. into foundations. 

For two-way slabs without beams, ACI Code 21.3.6 requires design for 
earthquake effects using Eqs. (20.4) and (20.5). Under these loading conditions, the 
reinforcement provided to resist the unbalanced moment transferred between the 
slab and the column Ms (Mu in Section 13.11) must be placed within the column 
strip. Reinforcement to resist the fraction of the unbalanced moment Ms defined by 
Eq. (13.16a), Mub = y1Mu = y1Ms, but not less than one-half of the reinforcement 
in the column strip at the support, must be concentrated near the column. This rein
forcement is placed within an effective slab width located between lines I .Sh on 
either side of the column or column capital, where h is the total thickness of the slab 
or drop panel. 

To ensure ductile behavior throughout two-way slabs without beams, at least one
quarter of the top reinforcement at the support in column strips must be continuous 
throughout the span, as must bottom reinforcement equal to at least one-third of the top 
reinforcement at the support in column strips. A minimum of one-half of all bottom 
reinforcement at midspan in both column and middle strips must be continuous and 
develop its yield strength at the face of the support. For discontinuous edges of the slab, 
both the top and bottom reinforcement must be developed at the face of the support. 
Finally, at critical sections for two-way shear at columns (Section 13.lOa), Vu may not 
exceed 0.4<f>Vc The latter provision may be waived if the requirements of ACI Code 
21.13.6 for slab-column connections in members not designated as part of the seismic
force-resisting system are met (see Section 20.Sb ). 
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PROBLEMS 
20.1. An interior column joint in a reinforced concrete frame structure assigned to 

SDC D consists of 28 in. wide by 20 in. deep beams and 36 in. wide by 20 in. 
deep girders framing into a 28 X 28 in. column. The slab thickness is 5 in., and 
the effective overhanging flange width on either side of the web of the flexural 
members is 40 in. Girder reinforcement at the joint consists of five No. 10 
(No. 32) top bars and five No. 8 (No. 25) bottom bars. Beam reinforcement 
consists of four No. 10 (No. 32) top bars and four No. 8 (No. 25) bottom bars. 
As the flexural steel crosses the joint, the top and bottom girder bars rest on 
the respective top and bottom beam bars. Column reinforcement consists of 12 
No. 9 (No. 29) bars evenly spaced around the perimeter of the column, simi
lar to the placement shown in Fig. 20.14. Clear cover on the outermost main 
flexural and column longitudinal reinforcement is 2 in. Assume No. 4 (No. 13) 
stirrups and ties. For earthquake loading, the maximum factored axial load on 
the upper column framing into the joint is 1098 kips, and the maximum fac
tored axial load on the lower column is 1160 kips. For a frame story height of 
13 ft, determine if the nominal flexural strengths of the columns exceed those 
of the beams and girders by at leas't 20 percent, and determine the minimum 
transverse reinforcement required in the columns adjacent to the beams. Use 
J; = 4000 psi and Jy = 60,000 psi. 

20.2. Design the joint and the transverse column reinforcement for the members 
described in Problem 20.1. The factored shears due to earthquake load are 
29 kips in the upper column and 31 kips in the lower column. Minimum fac
tored axial loads are 21 and 25 kips below the forces specified in Problem 20.1 
for the upper and lower columns, respectively. 

20.3. In Example 20.1, the columns are spaced 28 ft on center in the direction of the 
spandrel beams. The total dead load on the spandrel beam (including self-weight) 
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is 2 kips/ft and the total live load is 0.93 kips/ft. Design the spandrel beam 
transverse reinforcement for a building subject to high seismic risk. 

20.4. Repeat Problem 20.3 for an intermediate frame. 
20.5. An interior column joint in a reinforced concrete frame structure assigned to 

SDC E consists of 20 in. wide by 28 in. deep beams and girders framing into 
26 X 26 in. columns. The slab thickness is 4 in., and the effective overhang
ing fhmge width on either side of the web of the flexural members is 32 in. 
Girder and beam reinforcement at the joint consists of four No. 10 (No. 32) top 
bars and four No. 9 (No. 29) bottom bars. As the flexural steel crosses the 
joint, the top and bottom girder bars are outside the respective top and bottom 
beam bars. Column reinforcement consists of eight No. 14 (No. 43) bars 
evenly spaced around the perimeter of the column, similar to the placement 
shown in Fig. 11.10. Clear cover on the outermost main flexural and column 
longitudinal reinforcement is 2 in. Assume No. 4 (No. 13) stirrups and ties. For 
earthquake loading, the maximum factored axial load on the upper column 
framing into the joint is 1100 kips, and the maximum factored axial load on 
the lower column is 1230 kips. The story height is 12 ft, and the columns are 
spaced 24 ft on center in the direction of the girders. Use J: = 4000 psi and 
fr = 60,000 psi. 
(a) Determine if the nominal flexural strengths of the columns exceed those of 

the beams and girders by at least 20 percent, and determine the minimum 
transverse reinforcement required in the columns adjacent to the beams. 

(b) The total dead load on the girder (including self-weight) is 2.8 kips/ft, and 
the total live load is 1.3 kips/ft. Design the girder transverse reinforcement. 



APPENDIX 

Design Aids 

TABLE A.1 
Designations, diameters, areas, and weights of standard bars 

Bar No. Cross-Sectional Nominal Weight, 
lnch-Pounda Sib Diameter, in. Area, in2 lb/ft 

3 10 ¾ = 0.375 0.11 0.376 

4 13 ½ = 0.500 0.20 0.668 

5 16 tr= 0.625 0.31 1.043 

6 19 ¾ = 0.750 0.44 1.502 

7 22 i = 0.875 0.60 2.044 

8 25 I= 1.000 0.79 2.670 

9 29 1½ = 1.128' 1.00 3.400 

10 32 1¼ = 1.270' 1.27 4.303 

II 36 1~ = 1.410' 1.56 5.313 

14 43 I¾= 1.693' 2.25 7.650 

18 57 2¼ = 2.257' 4.00 13.600 

"Based on the number of eighths of an inch included in the nominal diameter of the bars. The nominal 
diameter of a deformed bar is equivalent to the diameter of a plain bar having the same weight per foot as the 
deformed bar. 

hBar number approximates the number of millimeters included in the nominal diameter of the bar. Bars are 
marked with this designation. 

'Approximate to nearest ½ in. 

751 
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TABLE A.2 
Areas of groups of standard bars, in2 

Bar No. 
Number of Bars 

Inch-
Pound SI 1 2 3 4 5 6 7 8 9 10 11 12 

4 13 0.20 0.40 0.60 , .. 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 
5 16 0.31 0.62 0.93 1.24 1.55 1.86 2.17 2.48 2.79 3.10 3.41 3.72 
6 19 0.44 0.88 1.32 1.76 2.20 2.64 3.08 3.52 3.96 4.40 4.84 5.28 
7 22 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 6.60 7.20 
8 25 0.79 1.58 2.37 3.16 3.95 4.74 5.53 6.32 7.11 7.90 8.69 9.48 
9 29 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 

10 32 1.27 2.54 3.81 5.08 6.35 7.62 8.89 10.16 11.43 12.70 13.97 15.24 
11 36 1.56 3.12 4.68 6.24 7.80 9.36 10.92 12.48 14.04 15.60 17.16 18.72 
14 43 2.25 4.50 6.75 9.00 11.25 13.50 15.75 18.00 20.25 22.50 24.75 27.00 
18 57 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 40.00 44.00 48.00 

TABLE A.3 
Areas of bars in slabs, in2/ft 

Inch-
Bar No. 

Spacing, Pound: 3 4 5 6 7 8 9 10 11 
in. SI: 10 13 16 19 22 25 29 32 36 

3 0.44 0.78 1.23 1.77 2.40 3.14 4.00 5.06 6.25 

3½ 0.38 0.67 1.05 1.51 2.06 2.69 3.43 4.34 5.36 
4 0.33 0.59 0.92 1.32 1.80 2.36 3.00 3.80 4.68 
41 

2 0.29 0.52 0.82 1.18 1.60 2.09 2.67 3.37 4.17 
5 0.26 0.47 0.74 1.06 1.44 1.88 2.40 3.04 3.75 

5½ 0.24 0.43 0.67 0.96 1.31 1.71 2.18 2.76 3.41 
6 0.22 0.39 0.61 0.88 1.20 1.57 2.00 2.53 3.12 

6½ 0.20 0.36 0.57 0.82 1.11 1.45 1.85 2.34 2.89 
7 0.19 0.34 0.53 0.76 1.03 1.35 1.71 2.17 2.68 

7½ 0.18 0.31 0.49 0.71 0.96 1.26 1.60 2.02 2.50 
8 0.17 0.29 0.46 0.66 0.90 1.18 1.50 1.89 2.34 
9 0.15 0.26 0.41 0.59 0.80 1.05 1.33 1.69 2.08 

10 0.13 0.24 0.37 0.53 0.72 0.94 1.20 1.52 1.87 
12 0.11 0.20 0.31 0.44 0.60 0.78 1.00 1.27 1.56 
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TABLE A.4 
Limiting steel reinforcement ratios for tension-controlled members 

Po.cos 
a 

Pmax a 
3v1; 200 

fy, psi f~ psi P, Et= 0.00Sb Et= 0.004c Pmin = -f- Pmin =-f-
y y 

40,000 3000 0.85 0.0203 0.0232 0.0050 0.0041 
4000 0.85 0.0271 0.0310 0.0050 0.0047 
5000 0.80 0.0319 0.0364 0.0050 0.0053 
6000 0.75 0.0359 0.0410 0.0050 0.0058 
7000 0.70 0.0390 0.0446 0.0050 0.0063 
8000 0.65 0.0414 0.0474 0.0050 0.0067 
9000 0.65 0.0466 0.0533 0.0050 0.0071 

50,000 3000 0.85 0.0163 0.0186 0.0040 0.0033 
4000 0.85 0.0217 0.0248 0.0040 0.0038 
5000 0.80 0.0255 0.0291 0.0040 0.0042 
6000 0.75 0.0287 0.0328 0.0040 0.0046 
7000 0.70 0.0312 0.0357 0.0040 0.0050 
8000 0.65 0.0332 0.0379 0.0040 0.0054 
9000 0.65 0.0373 0.0426 0.0040 0.0057 

60,000 3000 0.85 0.0135 0.0155 0.0033 0.0027 
4000 0.85 0.0181 0.0206 0.0033 0.0032 
5000 0.80 0.0213 0.0243 0.0033 0.0035 
6000 0.75 0.0239 0.0273 0.0033 0.0039 
7000 0.70 0.0260 0.0298 0.0033 0.0042 
8000 0.65 0.0276 0.0316 0.0033 0.0045 
9000 0.65 0.0311 0.0355 0.0033 0.0047 

75,000 3000 0.85 0.0108 0.0124 0.0027 0.0022 
4000 0.85 0.0145 0.0165 0.0027 0.0025 
5000 0.80 0.0170 0.0194 0.0027 0.0028 
6000 0.75 0.0191 0.0219 0.0027 0.0031 
7000 0.70 0.0208 0.0238 0.0027 0.0033 
8000 0.65 0.0221 0.0253 0.0027 0.0036 
9000 0.65 0.0249 0.0284 0.0027 0.0038 

"p = 0.85/3, .t_;_ 0.003 
f.; 0.003 + €, 

b C _ a _ 
- - o.375, -;; - 0.31513, 
d, ' 

C a 
C - = 0.429, - = 0.429/3, 

d, d, 
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TABLE A.Sa ( pf. ) 
Flexural resistance factor: R = pfy 1 - 0.588 f: psi 

fy = 40,000 psi fy = 60,000 psi 

f~, psi f~, psi 

p 3000 4000 5006' 6000 3000 4000 5000 6000 

0.0005 20 20 20 20 30 30 30 30 
0.0010 40 40 40 40 59 59 60 60 
0.0015 59 59 60 60 88 89 89 89 
0.0020 79 79 79 79 117 118 118 119 
0.0025 98 99 99 99 146 147 147 148 

0.0030 117 118 118 119 174 175 176 177 
0.0035 136 137 138 138 201 204 205 206 
0.0040 155 156 157 157 229 232 233 234 
0.0045 174 175 176 177 256 259 261 263 
0.0050 192 194 195 196 282 287 289 291 

0.0055 211 213 214 215 309 314 317 319 
0.0060 229 232 233 234 335 341 345 347 
0.0065 247 250 252 253 360 368 372 375 
0.0070 265 268 271 272 385 394 399 403 
0.0075 282 287 289 291 410 420 426 430 

0.0080 300 305 308 310 435 446 453 457 
0.0085 317 323 326 329 459 472 479 485 
0.0090 335 341 345 347 483 497 506 511 
0.0095 352 359 363 366 506 522 532 538 
0.0100 369 376 381 384 529 547 558 565 

0.0105 385 394 399 403 552 572 583 591 
0.0110 402 412 417 421 575 596 609 617 
0.0115 419 429 435 439 597 620 634 643 
0.0120 435 446 453 457 618 644 659 669 
0.0125 451 463 471 476 640 667 684 695 

0.0130 467 480 488 494 661 691 708 720 
0.0135 483 497 506 511 681 714 733 746 
0.0140 499 514 523 529 702 736 757 771 
0.0145 514 531 540 547 722 759 781 796 
0.0150 529 547 558 565 741 781 805 821 

0.0155 545 563 575 582 760 803 828 845 
0.0160 560 580 592 600 825 852 870 
0.0165 575 596 609 617 846 875 894 
O.ol70 589 612 626 635 867 898 918 
O.ol75 604 628 642 652 888 920 942 

0.0180 618 644 659 669 909 943 966 
0.0185 633 660 676 686 929 965 989 
0.0190 647 675 692 703 949 987 1013 
0.0195 661 691 708 720 969 1009 1036 
0.0200 675 706 725 737 988 1031 1059 
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TABLE A.Sb ( pf. ) 
Flexural resistance factor: R = pfy 1 - 0.588 f: psi 

fy = 40,000 psi fy = 60,000 psi 

f~, psi f~, psi 

p 3000 4000 5000 6000 3000 4000 5000 6000 

0.003 117 118 118 119 174 175 176 177 
0.004 155 156 157 157 229 232 233 234 
0.005 192 194 195 196 282 287 289 291 

0.006 229 232 233 234 335 341 345 347 
0.007 265 268 271 272 385 394 399 403 
0.008 300 305 308 310 435 446 453 457 
0.009 335 341 345 347 483 497 506 511 
0.010 369 376 381 384 529 547 558 565 

0.011 402 412 417 421 575 596 609 617 
0.012 435 446 453 457 618 644 659 669 
0.013 467 480 488 494 661 691 708 720 
0.014 499 514 523 529 702 736 757 771 
0.Ql5 529 547 558 565 741 781 805 821 

0.016 560 580 592 600 779 825 852 870 
0.017 589 612 626 635 867 898 918 
0.Ql8 618 644 659 669 909 943 966 
0.019 647 675 692 703 949 987 1013 
0.020 675 706 725 737 988 1031 1059 

0.021 702 736 757 771 1073 1104 
0.022 728 766 789 804 1115 1149 
0.023 754 796 820 837 1156 1193 
0.024 825 852 870 1196 1237 
0.025 853 882 902 1280 

0.026 881 913 934 1322 
0.027 909 943 966 1363 
0.028 936 972 997 
0.029 962 1002 1028 
0.030 988 1031 1059 

0.031 1014 1059 1089 
0.032 1087 1119 
0.033 1115 1149 
0.034 1142 1179 
0.Q35 1170 1208 

,,. 

0.036 1196 1237 
0.037 1265 
0.038 1294 
0.039 1322 
0.040 1349 
0.041 1376 
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TABLE A.6 
Parameters k and j for elastic, cracked section beam analysis, where 
k = Y2pn + (pn )2 - pn; j = 1 - }k 

n=7 n=8 n=9 n = 10 
p k j k j k j k j 

.,.,, 
0.0010 0.112 0.963 0.119 0.960 0.125 0.958 0.132 0.956 
0.0020 0.154 0.949 0.164 0.945 0.173 0.942 0.180 0.940 
0.0030 0.185 0.938 0.196 0.935 0.207 0.931 0.217 0.928 
0.0040 0.210 0.930 0.223 0.926 0.235 0.922 0.246 0.918 
0.0050 0.232 0.923 0.246 0.918 0.258 0.914 0.270 0.910 

0.0054 0.240 0.920 0.254 0.915 0.267 0.911 0.279 0.907 
0.0058 0.247 0.918 0.262 0.913 0.275 0.908 0.287 0.904 
0.0062 0.254 0.915 0.269 0.910 0.283 0.906 0.296 0.901 
0.0066 0.261 0.913 0.276 0.908 0.290 0.903 0.303 0.899 
0.0070 0.268 0.911 0.283 0.906 0.298 0.901 0.311 0.896 

0.0072 0.271 0.910 0.287 0.904 0.301 0.900 0.314 0.895 
0.0074 0.274 0.909 0.290 0.903 0.304 0.899 0.318 0.894 
0.0076 0.277 0.908 0.293 0.902 0.308 0.897 0.321 0.893 
0.0078 0.280 0.907 0.296 0.901 0.311 0.896 0.325 0.892 
0.0080 0.283 0.906 0.299 0.900 0.314 0.895 0.328 0.891 

0.0082 0.286 0.905 0.303 0.899 0.317 0.894 0.331 0.890 
0.0084 0.289 0.904 0.306 0.898 0.321 0.893 0.334 0.889 
0.0086 0.292 0.903 0.308 0.897 0.324 0.892 0.338 0.887 
0.0088 0.295 0.902 0.311 0.896 0.327 0.891 0.341 0.886 
0.0090 0.298 0.901 0.314 0.895 0.330 0.890 0.344 0.885 

0.0092 0.300 0.900 0.317 0.894 0.332 0.889 0.347 0.884 
0.0094 0.303 0.899 0.320 0.893 0.335 0.888 0.350 0.883 
0.0096 0.306 0.898 0.323 0.892 0.338 0.887 0.353 0.882 
0.0098 0.308 0.897 0.325 0.892 0.341 0.886 0.355 0.882 
0.0100 0.311 0.896 0.328 0.891 0.344 0.885 0.358 0.881 

0.0104 0.316 0.895 0.333 0.889 0.349 0.884 0.364 0.879 
0.0108 0.321 0.893 0.338 0.887 0.354 0.882 0.369 0.877 
0.0112 0.325 0.892 0.343 0.886 0.359 0.880 0.374 0.875 
0.0116 0.330 0.890 0.348 0.884 0.364 0.879 0.379 0.874 
0.0120 0.334 0.889 0.353 0.882 0.369 0.877 0.384 0.872 

0.0124 0.339 0.887 0.357 0.881 0.374 0.875 0.389 0.870 
0.0128 0.343 0.886 0.362 0.879 0.378 0.874 0.394 0.867 
0.0132 0.347 0.884 0.366 0.878 0.383 0.872 0.398 0.867 
0.0136 0.351 0.883 0.370 0.877 0.387 0.871 0.403 0.866 
0.0140 0.355 0.882 0.374 0.875 0.392 0.869 0.407 0.864 

0.0144 0.359 0.880 0.378 0.874 0.396 0.868 0.412 0.863 
0.0148 0.363 0.879 0.382 0.873 0.400 0.867 0.416 0.861 
0.0152 0.367 0.878 0.386 0.871 0.404 0.865 0.420 0.860 
0.0156 0.371 0.876 0.390 0.870 0.408 0.864 0.424 0.859 
0.0160 0.374 0.875 0.394 0.869 0.412 0.863 0.428 0.857 

0.0170 0.383 0.872 0.403 0.867 0.421 0.860 0.437 0.854 
0.0180 0.392 0.869 0.412 0.863 0.430 0.857 0.446 0.851 
0.0190 0.400 0.867 0.420 0.860 0.438 0.854 0.455 0.848 
0.0200 0.407 0.864 0.428 0.857 0.446 0.851 0.463 0.846 
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TABLE A.7 
Maximum number of bars as a single layer in beam stems 

¾ in. Maximum Size Aggregate, No. 4 (No. 13) Stirrupsa 

Bar No . Beam Width bw, in. .. _ 

Inch-
Pound SI 8 10 12 14 16 18 20 22 24 26 28 30 

5 16 2 4 5 6 7 8 10 11 12 13 15 16 
6 19 2 3 4 6 7 8 9 10 11 12 14 15 
7 22 2 3 4 5 6 7 8 9 10 11 12 13 
8 25 2 3 4 5 6 7 8 9 10 11 12 13 
9 29 2 3 4 5 6 7 8 9 9 10 11 

10 32 2 3 4 5 6 6 7 8 9 10 10 
11 36 2 3 3 4 5 5 6 7 8 8 9 
14 43 2 2 3 3 4 5 5 6 6 7 8 
18 57 1 2 2 3 3 4 4 4 5 5 6 

1 in. Maximum Size Aggregate, No. 4 (No. 13) Stirrupsa 

Bar No. Beam Width bw, in. 
Inch-

Pound SI 8 10 12 14 16 18 20 22 24 26 28 30 

5 16 2 3 4 5 6 7 8 9 10 11 12 13 
6 19 2 3 4 5 6 7 8 9 9 10 11 12 
7 22 1 2 3 4 5 6 7 8 9 10 10 11 
8 25 2 3 4 5 6 7 7 8 9 10 11 
9 29 2 3 4 5 6 7 7 8 9 9 10 

10 32 2 3 4 5 6 6 7 7 8 9 10 

"Minimum concrete cover assumed to be t½ in. to the No. 4 (No. 13) stirrup. 
Source: Adapted from Ref. 3.8. Used by permission of American Concrete Institute. 
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TABLE A.8 
Minimum number of bars as a single layer in beam stems governed by crack control 
requirements of the ACI Code 

(a) 2 in. clear cover, sides and bottom 
Minimum Number of Bars as a Single Layer of a Beam Stem 

Bar No. Beam Stem Width bw, in. 

Inch-
Pound SI 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 

3-14 10-43 2 2 3 3 3 3 3 4 4 4 4 4 5 
18 57 2 2 2 3 3 3 3 3 4 4 4 4 4 

(b) 1½ in. clear cover, sides and bottom 
Minimum Number of Bars as a Single Layer of a Beam Stem 

Bar No. Beam Stem Width bw, in. 

Inch-
Pound SI 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 

3-4 10-13 2 2 3 3 3 3 3 4 4 4 4 4 4 
5-14 16-43 1 2 2 3 3 3 3 3 3 4 4 4 4 4 

18 57 1 1 2 2 2 3 3 3 3 3 4 4 4 4 4 



DESIGN AIDS 759 

TABLE A.9 
Design strength cf>Mn for slab sections 12 in. wide, ft-kips; fy = 60 ksi; 
cf,M" = cf,pfybd2(1 - 0.59pfy/f~) 

Effective Depth d, in. 

f~, psi p 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 8.0 9.0 10.0 12.0 

3000 0.002 0.9 1.3 1.7 2.1 2.6 3.2 3.8 4.5 5.2 6.7 8.5 10.5 15.2 
0.003 1.4 1.9 2.5 3.2 3.9 4.7 5.6 6.6 7.7 10.0 12.7 15.6 22.5 
0.004 1.9 2.5 3.3 4.2 5.1 6.2 7.4 8.7 10.1 13.2 16.7 20.6 29.6 
0.005 2.3 3.1 4.1 5.1 6.4 7.7 9.1 10.7 12.4 16.3 20.6 25.4 36.6 
0.006 2.7 3.7 4.8 6.1 7.5 9.1 10.8 12.7 14.8 19.3 24.4 30.1 43.4 
0.007 3.1 4.2 5.5 7.0 8.7 10.5 12.5 14.7 17.0 22.2 28.1 34.7 49.9 
0.008 3.5 4.8 6.3 7.9 9.8 11.8 14.1 16.5 19.2 25.0 31.7 39.1 56.3 
0.009 3.9 5.3 7.0 8.8 10.9 13.1 15.6 18.4 21.3 27.8 35.2 43.4 62.6 
0.010 4.3 5.8 7.6 9.6 11.9 14.4 17.1 20.1 23.3 30.5 38.6 47.6 68.6 
0.011 4.7 6.3 8.3 10.5 12.9 15.6 18.6 21.8 25.3 33.1 41.9 51.7 74.4 

4000 0.002 1.0 1.3 1.7 2.1 2.7 3.2 3.8 4.5 5.2 6.8 8.6 10.6 15.3 
0.003 1.4 1.9 2.5 3.2 3.9 4.8 5.7 6.7 7.7 10.1 12.8 15.8 22.7 
0.004 1.9 2.6 3.3 4.2 5.2 6.3 7.5 8.8 10.2 13.3 16.9 20.8 30.0 
0.005 2.3 3.2 4.1 5.2 6.5 7.8 9.3 10.9 12.6 16.5 20.9 25.8 37.2 
0.006 2.8 3.8 4.9 6.2 7.7 9.3 11.0 13.0 15.0 19.6 24.9 30.7 44.2 
0.007 3.2 4.3 5.7 7.2 8.9 10.7 12.8 15.0 17.4 22.7 28.7 35.5 51.1 
0.008 3.6 4.9 6.4 8.1 10.0 12.1 14.5 17.0 19.7 25.7 32.5 40.1 57.8 
0.009 4.0 5.5 7.2 9.1 11.2 13.5 16.1 18.9 21.9 28.6 36.2 44.7 64.4 
0.010 4.4 6.0 7.9 10.0 12.3 14.9 17.7 20.8 24.1 31.5 39.9 49.2 70.9 
0.011 4.8 6.6 8.6 10.9 13.4 16.2 19.3 22.7 26.3 34.3 43.4 53.6 77.2 
0.012 5.2 7.1 9.3 11.7 14.5 17.5 20.9 24.5 28.4 37.1 46.9 57.9 83.4 
0.013 5.6 7.6 9.9 12.6 15.5 18.8 22.4 26.2 30.4 39.8 50.3 62.1 89.5 
0.014 6.0 8.1 10.6 13.4 16.6 20.0 23.8 28.0 32.5 42.4 53.6 66.2 95.4 
0.D15 6.3 8.6 11.2 14.2 17.6 21.2 25.3 29.7 34.4 45.0 56.9 70.2 101.2 

5000 0.002 1.0 1.3 1.7 2.2 2.7 3.2 3.8 4.5 5.2 6.8 8.6 10.6 15.3 
0.003 1.4 1.9 2.5 3.2 4.0 4.8 5.7 6.7 7.8 10.1 12.8 15.9 22.8 
0.004 1.9 2.6 3.4 4.3 5.2 6.3 7.6 8.9 10.3 13.4 17.0 21.0 30.2 
0.005 2.3 3.2 4.2 5.3 6.5 7.9 9.4 11.0 12.8 16.7 21.1 26.0 37.5 
0.006 2.8 3.8 5.0 6.3 7.8 9.4 11.2 13.1 15.2 19.9 25.1 31.0 44.7 
0.007 3.2 4.4 5.7 7.3 9.0 10.9 12.9 15.2 17.6 23.0 29.1 35.9 51.7 
0.008 3.7 5.0 6.5 8.3 10.2 12.3 14.7 17.2 20.0 26.1 33.0 40.8 58.7 
0.009 4.1 5.6 7.3 9.2 11.4 13.8 16.4 19.2 22.3 29.1 36.9 45.5 65.5 
0.010 4.5 6.1 8.0 10.2 12.5 15.2 18.1 21.2 24.6 32.1 40.6 50.2 72.3 
0.011 4.9 6.7 8.8 11.1 13.7 16.6 19.7 23.1 26.8 35.1 44.4 54.8 78.9 
0.012 5.3 7.3 9.5 12.0 14.8 17.9 21.3 25.1 29.1 37.9 48.0 59.3 85.4 
0.013 5.7 7.8 10.2 12.9 15.9 19.3 22.9 26.9 31.2 40.8 51.6 63.7 91.8 
0.014 6.1 8.3 10.9 13.8 17.0 20.6 24.5 28-:8 33.4 43.6 55.2 68.1 98.1 
0.015 6.5 8.9 11.6 14.7 18.1 21.9 26.1 30.6 35.5 46.3 58.6 72.4 104.3 
0.016 6.9 9.4 12.3 15.5 19.2 23.2 27.6 32.4 37.5 49.0 62.1 76.6 110.3 
0.017 7.3 9.9 12.9 16.4 20.2 24.4 29.1 34.1 39.6 51.7 65.4 80.8 116.3 
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TABLE A.10 
Simplified tension development length in bar diameters IJ db for 
uncoated bars and normalweight concrete 

No. 6 (No. 19) and Smallera No. 7 (No. 22) and Larger 

f;, psi f;, psi 

f, ksi 4000 5000 6000 4000 5000 6000 

(1) Bottom bars 

Spacing, cover 40 25 23 21 32 28 26 
and ties as per 50 32 28 26 40 35 32 
Case a orb 60 38 34 31 47 42 39 

Other cases 40 38 34 31 47 42 39 
50 47 42 39 59 53 48 
60 57 51 46 71 64 58 

(2) Top bars 

Spacing, cover 40 33 29 27 41 37 34 
and ties as per 50 41 37 34 51 46 42 
Case a orb 60 49 44 40 62 55 50 

Other cases 40 49 44 40 62 55 50 
50 62 55 50 77 69 63 
60 74 66 60 92 83 76 

Case a: Clear spacing of bars being developed or spliced 2: db, clear cover 2: db, and stirrups or ties throughout Id not less than 
the Code minimum. 

Case b: Clear spacing of bars being developed or spliced 2: 2db, and clear cover not less than db. 

"ACI Committee 408 recommends that the values indicated for bar sizes No. 7 (No. 22) and larger be used for all bar sizes. 
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TABLE A.11 
Development length in compression, in., for normalweight concrete 
Ide= greater of (0.02fy/~)db or 0.0003fydb (Minimum length 8 in. in all cases.) 

f~, psi 

Bar No. 3000 4000 5000 6000 

Inch- fy, Basic Basic Basic Basic 

Pound SI ksi /db Confined /db Confined /db Confined /db Confined 

3 10 40 8 8 8 8 8 8 8 8 
50 8 8 8 8 8 8 8 8 
60 8 8 8 8 8 8 8 8 

4 13 40 8 8 8 8 8 8 8 8 
50 9 8 8 8 8 8 8 8 
60 11 8 9 8 9 8 9 8 

5 16 40 9 8 8 8 8 8 8 8 
50 11 9 10 8 9 8 9 8 
60 14 10 12 9 11 8 11 8 

6 19 40 11 8 9 8 9 8 9 8 
50 14 10 12 9 11 8 11 8 
60 16 12 14 11 14 10 14 10 

7 22 40 13 10 11 8 11 8 11 8 
50 16 12 14 10 13 10 13 10 

60 19 14 17 12 16 12 16 12 

8 25 40 15 11 13 9 12 9 12 9 
50 18 14 16 12 15 11 15 11 
60 22 16 19 14 18 14 18 14 

9 29 40 16 12 14 11 14 10 14 10 
50 21 15 18 13 17 13 17 13 
60 25 19 21 16 20 15 20 15 

10 32 40 19 14 16 12 15 11 15 11 

50 23 17 20 15 19 14 19 14 
60 28 21 24 18 23 17 23 17 

11 36 40 21 15 18 13 17 13 17 13 
50 26 19 22 17 21 16 21 16 
60 31 23 27 20 25 19 25 19 

14 43 40 25 19 21 16 20 15 20 15 
50 31 23 27 20 25 19 25 19 
60 37 28 32 24 30 23 30 23 

18 57 40 33 25 29 21 27 20 27 20 
50 41 31 36 27 34 25 34 25 
60 49 37 43 32 41 30 41 30 
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TABLE A.12 
Common stock styles of welded wire reinforcement N'/WR) 

Steel Area, in2/ft Weight 
(Approximate), 

Steel Designations Longitudinal Transverse lb per 100 ft2 

-Rolls 

6 X 6-Wl.4 X Wl.4 0.028 0.028 19 
6 X 6-W2.0 X W2.0 0.040 0.040 27 
6 X 6-W2.9 X W2.9 0.058 0.058 39 
6 X 6-W4.0 X W4.0 0.080 0.080 54 
4 X 4-Wl.4 X Wl.4 0.042 0.042 29 
4 X 4-W2.0 X W2.0 0.060 0.060 41 
4 X 4-W2.9 X W2.9 0.087 0.087 59 
4 X 4-W4.0 X W4.0 0.120 0.120 82 

Sheets 

6 X 6-W2.9 X W2.9 0.058 0.058 39 
6 X 6-W4.0 X W4.0 0.080 0.080 54 
6 X 6-W5.5 X W5.5 0.110 0.110 75 
4 X 4-W4.0 X W4.0 0.120 0.120 82 

aThe designation W indicates smooth wire; WWR is also available as deformed wire, designated with a D. 



TABLE A.13A 
Coefficients for slabs with variable moment of inertiaa 

C1A C18 

ri7 ~ 
_l 

7 
h1 

l 1 
A 

!2 in perpendicular direction 
B 

Cf. Cf. 

Column Uniform Load Stiffness 
Dimension FEM = Coeff.(q/2 /r) Factorb 

C1A/f1 c1a/f1 MAB MBA kAB kBA 

0.00 0.00 0.083 0.083 4.00 4.00 
0.05 0.083 0.084 4.01 4.04 
0.10 0.082 0.086 4.03 4.15 
0.15 0.081 0.089 4.07 4.32 
0.20 0.079 0.093 4.12 4.56 
0.25 0.077 0.097 4.18 4.88 

0.05 0.05 0.084 0.084 4.05 4.05 
0.10 0.083 0.086 4.07 4.15 
0.15 0.081 0.089 4.11 4.33 
0.20 0.080 0.092 4.16 4.58 
0.25 0.Q78 0.096 4.22 4.89 

0.10 0.10 0.085 0.085 4.18 4.18 
0.15 0.083 0.088 4.22 4.36 
0.20 0.082 0.091 4.27 4.61 
0.25 0.080 0.095 4.34 4.93 

0.15 0.15 0.086 0.086 4.40 4.40 
0.20 0.084 0.090 4.46 4.65 
0.25 0.083 0.094 4.53 4.98 

0.20 0.20 0.088 0.088 4.72 4.72 
0.25 0.086 0.092 4.79 5.05 

0.25 0.25 0.090 0.090 5.14 5.14 

aApplicable when c1//1 = c2//2• For other relationships between these ratios, the constants will be slightly in error. 
hStiffness is KA8 = kA8E(l2hi/12l1) and K8A = k8AE(l2hi/12l 1). 
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Carryover 
Factor 

COFAB COFBA 

0.500 0.500 
0.504 0.500 
0.513 0.499 
0.528 0.498 
0.548 0.495 
0.573 0.491 

0.503 0.503 
0.513 0.503 
0.528 0.501 
0.548 0.499 
0.573 0.494 

0.513 0.513 
0.528 0.511 
0.548 0.508 
0.573 0.504 

0.526 0.526 
0.546 0.523 
0.571 0.519 

0.543 0.543 
0.568 0.539 

0.563 0.563 
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TABLE A.138 
Coefficients for slabs with variable moment of inertiaa 

h1 

~ 

~~L21, ___ J~j 77 
1.25 h1 

I 6 3 6 I 

l1 
A 

/ 2 in perpendicular direction 
B 

~ ~ 

Column Uniform Load Stiffness 
Dimension FEM = Coeff.(q/2/f) Factorb 

c1A/t, c,a/1, MAB MsA kAs ksA 

0.00 0.00 0.088 0.088 4.78 4.78 
0.05 0.087 0.089 4.80 4.82 
0.10 0.087 0.090 4.83 4.94 
0.15 0.085 0.093 4.87 5.12 
0.20 0.084 0.096 4.93 5.36 
0.25 0.082 0.100 5.00 5.68 

0.05 0.05 0.088 0.088 4.84 4.84 
0.10 0.087 0.090 4.87 4.95 
0.15 0.085 0.093 4.91 5.13 
0.20 0.084 0.096 4.97 5.38 
0.25 0.082 0.100 5.05 5.70 

0.10 0.10 0.089 0.089 4.98 4.98 
0.15 0.088 0.092 5.03 5.16 
0.20 0.086 0.094 5.09 5.42 
0.25 0.084 0.099 5.17 5.74 

0.15 0.15 0.090 0.090 5.22 5.22 
0.20 0.089 0.094 5.28 5.47 
0.25 0.087 0.097 5.37 5.80 

0.20 0.20 0.092 0.092 5.55 5.55 
0.25 0.090 0.096 5.64 5.88 

0.25 0.25 0.094 0.094 5.98 5.98 

"Applicable when c1/ 11 = c2/ / 2• For other relationships between these ratios, the constants will be slightly in error. 
bStiffness is KAs = kA8 E(/2ht/12l 1) and KsA = k8 AE(/2hi/12li). 

Carryover 
Factor 

COFAs COF8A 

0.541 0.541 
0.545 0.541 
0.553 0.541 
0.567 0.540 
0.585 0.537 
0.606 0.534 

0.545 0.545 
0.553 0.544 
0.567 0.543 
0.584 0.541 
0.606 0.537 

0.553 0.553 
0.566 0.551 
0.584 0.549 
0.606 0.546 

0.565 0.565 
0.583 0.563 
0.604 0.559 

0.580 0.580 
0.602 0.577 

0.598 0.598 



TABLE A.13C 
Stiffness factors for columns with variable moment of inertiaa 

Slab Half-depth Stiffness Factor Slab Half-depth Stiffness Factor 

C1A//1 kAB C1A//1 kAB 

0.00 4.00 0.14 9.43 
0.02 4.43 0.16 11.01 
0.04 4.94 0.18 13.01 
0.06 5.54 0.20 15.56 
0.08 6.25 0.22 18.87 
0.10 7.11 0.24 23.26 
0.12 8.15 

"Adapted from S. H. Simmonds and J. Misic, "Design Factors for the Equivalent Frame Method," J. AC/, 
vol. 68, no. 11, 1971, pp. 825-83 I. 

TABLE A.14 
Size and pitch of spirals, ACI Code 

f~, psi 

Diameter of Out to Out 
Column, in. of Spiral, in. 3000 4000 5000 

Jy = 40,000 psi 
}-1 ½-2½ ,,. ½-1 ¾ 14, 15 11, 12 

16 13 }-1 ½-2½ ½-2 
17-19 14-16 }-1 ½-2½ ½-2 
20-23 17-20 }-1 ½-2½ ½-2 
24-30 21-27 }-2 ½-2½ ½-2 

Jy = 60,000 psi 
}-2 }-2 ½-2¾ 14, 15 11, 12 

16--23 13-20 }-2 i-2 ½-3 
24-29 21-26 i-3 }-2¼ ½-3 
30 27 i-3 }-2¼ ½-3¼ 
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TABLE A.15 
Properties of prestressing steels 

Seven-Wire Strand, fpu = 270 ksi 

Nominal 

Diameter Area, Weight, 0.7fpuAps• 0.75fpuAps• O.BfpuAps• fpuAps• 

(in.) in2 plf kips kips kips kips 

0.375 0.085 0.29 16.1 17.3 18.4 23.0 
0.438 0.115 0.39 21.7 23.3 24.8 31.0 
0.500 0.153 0.52 28.9 31.0 33.0 41.3 
0.520 0.167 0.57 31.5 33.8 36.0 45.0 
0.563 0.192 0.65 36.2 38.8 41.4 51.7 
0.600 0.217 0.74 41.0 44.0 46.9 58.6 
0.700 0.294 1.00 55.6 59.6 63.5 79.4 

Prestressing Wire 

Area, Weight, fpu• 0.7fpuAps• O.BfpuAps• fpuAps• 

Diameter in2 plf ksi kips kips kips 

0.192 0.0290 0.098 250 5.07 5.80 7.25 
0.196 0.0302 0.100 250 5.28 6.04 7.55 
0.250 0.0491 0.170 240 8.25 9.43 11.78 
0.276 0.0598 0.200 235 9.84 11.24 14.05 

Deformed Prestressing Bars 

Nominal 

Diameter Area, Weight, fpu• 0.7fpuAps• O.BfpuAps• fpuAps• 

(in.) in2 plf ksi kips kips kips 
5 0.28 0.98 157 30.5 34.8 43.5 8 

0.85 3.01 150 89.3 102.0 127.5 
0.85 3.01 160 95.2 108.8 136.0 

11 
4 1.25 4.39 150 131.3 150.0 187.5 

11 
4 1.25 4.39 160 140.0 160.0 200.0 

1.:l. 
8 1.58 5.56 150 165.9 159.6 237.0 

1¾ 2.58 9.10 150 270.9 309.6 387.0 
21 

2 5.16 18.20 150 541.8 619.2 774.0 
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Moment capacity of 
rectangular sections. 
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GRAPH A.lb 
Moment capacity of 
rectangular sections. 
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GRAPHA.2 
Location of points where 
bars can be bent up or cut off 
for simply supported beams 
uniformly loaded. 
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GRAPHA.3 
Approximate locations of 
points where bars can be bent 
up or down or cut off for 
continuous beams uniformly 
loaded and built integrally 
with their supports according 
to the coefficients in the ACI 
Code. 
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GRAPHA.4 
Interpolation charts for 
lateral distribution of slab 
moments. 
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Column strength interaction diagram for circular section with y = 0.60. 
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APPENDIX 

Spans 
Displacements 
Surface area 
Volume 

SI Conversion Factors: 
Inch-Pound Units to SI Units 

Overall Geometry 

1 ft = 0.3048 m 
1 in. = 25.4 mm 
1 ft 2 = 0.0929 m2 

1 ft 3 = 0.0283 m3 

1 yd3 = 0.765 m3 

Structural Properties 

Cross-sectional dimensions 
Area 

1 in. = 25.4 mm 
1 in2 = 645.2 mm2 

Section modulus 
Moment of inertia 

Density 

Modulus and stress 

Concentrated loads 

Density 
Linear loads 
Surface loads 

Stress 

Moment or torque 

1 in3 = 16.39 X 103 mm3 

1 in4 = 0.4162 X 106 mm4 

Material Properties 

l lb/ft3 = 16.03 kg/m3 

1 lb/in2 = 0.006895 MPa 

1 kip/in2 = 6.895 MPa 

Loadings 

I lb= 4.448 N 
1 kip = 4.448 kN 
1 lb/ft3 = 0.1571 kN/m3 

1 kip/ft = 14.59 kN/m 

l lb/ft2 = 0.0479 kN/m2 

1 kip/ft2 = 47.9 kN/m2 

Stress and Moments 

1 lb/in2 = 0.006895 MPa 

1 kip/in2 = 6.895 MPa 
1 ft-lb = 1.356 N-m 
1 ft-kip = 1.356 kN-m 

785 
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slender. See Slender columns 
spirally reinforced, 21, 265 
splices in, 206, 292 
tied, 21, 265 
transformed section, 23, 264 
unbraced frame analysis, 

308,320 
unsymmetrically reinforced, 278 

Column-supported slabs, 436, 622 
Combined footings, 574 
Compacting of concrete, 33 
Compatibility torsion, 241, 251 
Compression, axial, 40 
Compression field theory, 152 

design provisions, 156 
modified, 153 
shear, 152 

Compression members, 262 

Compression-reinforced beams, 99 
Compression steel yield test, 101 
Compression struts, 332 
Concentrated loads on slabs, 515 
Concrete 

admixtures, 1, 38 
biaxial strength, 48, 49 
compacting of, 33 
components, 1 
compression strength, 40 
consistency, 32 
creep, 43 
curing, 1, 33 
definition of, 1 
density, 30 
fatigue, 45 
heavyweight, 30 
high-strength, 52 
lightweight, 30 
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