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Preface

Preface to Second Edition
The possibility of publishing an affordable electronic version of this book was the
primary reason for writing the second edition. I have also taken the opportunity to
reformat, rearrange, and update the original edition. New examples have been added
and for most of the examples, such as the rolling disk and the particle on a cone,
more detailed analyses have been presented. Several explanations in the text have, I
hope, been improved upon. Where appropriate, numerical results for the motion of
individual systems have been included.

It is a pleasure to take this opportunity to once again thank Achi Dosanjh at
Springer-Verlag in New York for her editorial support. Charles Taylor’s daughter,
Mary Anne Taylor Urry, kindly gave me permission to use the photo shown in
Figure 10.1. I am also grateful to Joanna Chang, Nur Adila Faruk Senan, and Daniel
Kawano for their help with this edition and to many others for their comments on
the first edition. Although I hope that there are no typographical errors in this edi-
tion, in the event that my hopes are dashed, I would welcome hearing about them by
email at oreilly@berkeley.edu. An updated errata will be posted on my University
of California at Berkeley homepage.

All of the author royalties from the sales of this book will be donated to the
United Nations Children’s Fund (UNICEF).

Berkeley, December 2009 Oliver M. O’Reilly
www.me.berkeley.edu/faculty/oreilly/

Preface to First Edition
This primer is intended to provide the theoretical background for the standard under-
graduate course in dynamics. This course is usually based on one of the following
texts: Bedford and Fowler [6], Beer and Johnston [7], Hibbeler [36], Meriam and
Kraige [48], Riley and Sturges [63], and Shames [69], among others. Although most
teachers will have certain reservations about these texts, there appears to be a general
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consensus that the selection of problems each of them presents is an invaluable and
essential aid for studying and understanding dynamics.

I use Meriam and Kraige [48] when teaching such a course, which is referred
to as ME104 at the University of California at Berkeley (UCB). However, I have
found that the gap between the theory presented in the aforementioned texts and the
problems I wished my students to solve was too large. As a result, I prepared my
own set of notes on the relevant theory, and I used Meriam and Kraige [48] as a
problem and homework resource. This primer grew out of these notes. Its content
was also heavily influenced by three other courses that I teach: one on rigid body
dynamics, one on Lagrangian mechanics, and another on Hamiltonian mechanics.1

Because I use the primer as a supplement, I have only included a set of brief exer-
cises at the end of each chapter. Furthermore, dimensions of physical quantities and
numerical calculations are not emphasized in the primer because I have found that
most students do not have serious problems with these matters.

This primer is intended for three audiences: students taking an undergraduate en-
gineering dynamics course, graduate students needing a refresher in such a course,
and teachers of such a course. For the students, I hope that this primer succeeds
in providing them with a succinct account of the theory needed for the course, an
exploration of the limitations of such a course, and a message that the subject at
hand can be mastered with understanding and not rote memorization of formulae.
For all of these audiences, an appendix provides the notational and presentational
correspondences between the chapters in this primer and the aforementioned texts.
In addition, each chapter is accompanied by a summary section.

I have noticed an increased emphasis on “practical” problems in engineering dy-
namics texts. Although such an emphasis has its merits, I think that the most valu-
able part of an education is the evolution and maturation of the student’s thinking
abilities and thought processes. With this in mind, I consider the development of the
student’s analytical skills to be paramount. This primer reflects my philosophy in
this respect.

The material in this primer is not new. I have merely reorganized some classical
thoughts and theories on the subject in a manner that suits an undergraduate en-
gineering dynamics course. My sources are contained in the references section at
the end of this primer. Apart from the engineering texts listed above, the works of
Beatty [5], Casey [14, 16], and Synge and Griffith [78] had a significant influence
on my exposition.

I have also included some historical references and comments in this primer in
the hopes that some students may be interested in reading the original work. Most of
the historical information in the primer was obtained from Scribner’s Dictionary of
Scientific Biography. I heartily recommend reading the biographies of Euler, Kepler,
Leibniz, and others contained in this wonderful resource.

Finally, for two reasons I have tried wherever possible to outline the limitations
of what is expected from a student. First, some students will decide to extend their

1 These courses are referred to as ME170, ME175, and ME275 in the UCB course catalog.
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knowledge beyond these limitations, and, second, it gives a motivation to the types
of questions asked of the student.

My perspective on dynamics has been heavily influenced by both the contin-
uum mechanics and dynamics communities. I mention in particular the writings and
viewpoints of Jim Casey, Jim Flavin, Phil Holmes, Paul M. Naghdi, Ronald Rivlin,
and Clifford Truesdell. I owe a large debt of gratitude to Jim Casey both for showing
me the intimate relationship between continuum mechanics and dynamics, and for
supporting my teaching here at Berkeley.

The typing of this primer using LATEXwould not have been possible without the
assistance of Bonnie Korpi, Laura Cantú, and Linda Witnov. Laura helped with the
typing of Chapters 7, 8, 9, and 10. Linda did the vast majority of the work on the
remaining chapters. Her patience and cheerful nature in dealing with the numerous
revisions and reorganizations was a blessing for me. David Kramer was a copy-
reader for the primer, and he provided valuable corrections to the final version of
the primer. The publication of this primer was made possible by the support of Achi
Dosanjh at Springer-Verlag. Achi also organized two sets of helpful reviews. Several
constructive criticisms made by the anonymous reviewers have been incorporated,
and I would like to take this opportunity to thank them.

Many of my former students have contributed directly and indirectly to this
primer. In particular, Tony Urry read through an earlier draft and gave numerous
insightful comments on the presentation. I have also benefited from numerous con-
versations with my former graduate students Tom Nordenholz, Jeffrey Turcotte, and
Peter Varadi. As I mentioned earlier, this primer arose from my lecture notes for
ME104. My interactions with the former students in this course have left an indeli-
ble impression on this primer.

Finally, I would like to thank my wife, Lisa, my parents, Anne and Jackie, and
my siblings, Séamus and Sibéal, for their support and encouragement.

Berkeley, December 2000 Oliver M. O’Reilly
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Part I
Dynamics of a Single Particle





Chapter 1
Elementary Particle Dynamics

TOPICS

Here, we cover the basics on kinematics and kinetics of particles and discuss three
ubiquitous examples. We conclude with a discussion of Euler’s first law (which is
also known as Newton’s second law or the balance of linear momentum). Our treat-
ment of dynamics makes extensive use of vector calculus. For the interested student,
a summary of the needed results from vector calculus is presented in Appendix A.

1.1 An Example

Consider the example of a particle that is launched into the air from a point with
an initial velocity. During the subsequent motion of the particle, it is subject to a
gravitational force and a drag force. The gravitational force is constant whereas the
magnitude of the drag force is proportional to the cube of the speed of the particle

Inc. drag

g

Ex

Ey

v

v

a

a
O

Fig. 1.1 Representative paths of a particle falling under gravity and subject to a drag force of
−mk ||v||2 v. Some examples of the velocity, v, and acceleration, a, vectors of the particle are also
shown.

O.M. O’Reilly, Engineering Dynamics: A Primer, DOI 10.1007/978-1-4419-6360-4 1, 3
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Path of particle

Fixed origin

Inc. time t

v
r

O

Fig. 1.2 Some kinematical quantities pertaining to a particle and its motion.

and opposes the motion of the particle. For a given set of initial conditions, sample
trajectories for the particle can be seen in Figure 1.1. After reading this chapter, you
should be able to show that a representation for the drag force is −mCd ||v||2 v where
the coefficient of drag Cd is a constant, to know how to formulate the differential
equations governing the motion of the particle, and to understand the analytical
solution to the resulting equations when the drag force is absent.

1.2 Kinematics of a Particle

Consider a particle moving in a three-dimensional space E
3. The position vector

r of the particle relative to a fixed origin O as a function of time is denoted by
the function r(t). That is, given a time t, the location of the particle is determined
by the value r = r(t) (see Figure 1.2). Varying t, r(t) defines the motion and the
path C of the particle. This path in many cases coincides with a specific curve, for
example, a particle moving on a circular ring or a particle in motion on a circular
helix. Otherwise, the particle is either free or in motion on a surface.

The (absolute) velocity vector v of the particle can be determined by differenti-
ating r(t) with respect to time t:

v = v(t) =
dr
dt

= lim
�t→0

r(t +Δ t)− r(t)
Δt

.

The speed v of the particle is given by the magnitude of the velocity vector: v =
||v||. We often denote the time derivative of a function by a superposed dot, for
example, v = ṙ. The (absolute) acceleration vector a of the particle is determined by
differentiating the (absolute) velocity vector with respect to time:

a = a(t) =
dv
dt

= lim
�t→0

v(t + Δt)−v(t)
Δ t

.
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To calculate the distance traveled by a particle along its path, it is convenient to
introduce the arc-length parameter s. This parameter is defined by

ds
dt

= ||v|| .

Clearly, ds/dt ≥ 0 is the speed of the particle. Integrating this relationship one finds
that

s(t)− s0 =
∫ t

t0

ds
dt

(τ)dτ =
∫ t

t0

√
v(τ) ·v(τ) dτ.

It should be noted that s(t)− s0 is the distance traveled by the particle along its
path C during the time interval t − t0. Also, s(t0) = s0, where t0 and s0 are initial
conditions. You should also notice that we use a dummy variable τ when performing
the integration.1

Often, instead of using t to parametrize the motion of the particle, one uses the
arc-length parameter s. We show several examples of this parametrization in Chap-
ter 3. The motion will, in general, be a different function of s than it is of t. To
distinguish these functions, we denote the motion as a function of t by r(t) and the
motion as a function of s is denoted by r̂(s). Provided ṡ is never zero, these functions
provide the same value of r: r(t) = r̂(s(t)).2

With the above proviso in mind, one has the relations

s = s(t) = s0 +
∫ t

t0

√
v(τ) ·v(τ) dτ,

r = r(t) = r̂(s(t)),

v =
dr(t)

dt
=

dr
ds

ds
dt

,

a =
dv(t)

dt
=

d2r
ds2

(
ds
dt

)2

+
dr
ds

d2s
dt2 .

At this stage, we have not used a particular coordinate system, so all of the pre-
vious results are valid for any coordinate system. For most of the remainder of
this primer we use three different sets of orthonormal bases: Cartesian {Ex,Ey,Ez},
cylindrical polar {er,eθ ,Ez}, and the Serret-Frenet triad {et ,en,eb}. Which set one
uses depends on the problem of interest. Knowing which one to select is an art, and
to acquire such experience is very important.3

1 It is necessary to use a dummy variable τ as opposed to the variable t when evaluating this integral
because we are integrating the magnitude of the velocity as τ varies between t0 and t . If we take
the derivative with respect to t of the integral, then, using the fundamental theorem of calculus,
we would find, as expected, that ṡ(t) = ||v||. Had we not used the dummy variable τ but rather t
to perform the integration, then the derivative of the resulting integral with respect to t would not
yield ṡ(t) = ||v(t)||.
2 Here, we are invoking the inverse function theorem of calculus. If ṡ were zero, then the particle
would be stationary (i.e., s would be constant), but time would continue increasing, so there would
not be a one-to-one correspondence between s and t .
3 In other words, the more problems one examines, the better.
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Circle of radius R0

Inc. s and t

Ex

Ey

a

v

r

O

Fig. 1.3 Path of a particle performing a circular motion.

1.3 A Circular Motion

We now elucidate the preceding developments with a simple example. Suppose the
position vector of a particle has the representation

r = r(t) = R0 (cos(ωt)Ex + sin(ωt)Ey) ,

where ω is a positive constant and R0 is greater than zero. In Figure 1.3, the path
of the particle is shown. You should notice that the path of the particle is a circle of
radius R0 that is traversed in a counterclockwise direction.4 The question we seek
to answer here is what are v(t), a(t), s(t), t(s), v̂(s), and â(s)?

First, let’s calculate v(t) and a(t):

v = ṙ = R0ω(−sin(ωt)Ex + cos(ωt)Ey),

a = r̈ = v̇ = −R0ω2(cos(ωt)Ex + sin(ωt)Ey) = −ω2r.

Next,

s(t)− s0 =
∫ t

t0

√
v(τ) ·v(τ) dτ =

∫ t

t0

√
ω2R2

0dτ = R0ω (t − t0) .

Hence,

t(s) = t0 +
1

R0ω
(s− s0) .

4 Later on, we hope sooner rather than later, you should revisit this problem using the cylindrical
polar coordinates, r = R0 and θ = ωt , and establish the forthcoming results using cylindrical polar
basis vectors. This coordinate system is discussed in Chapter 2.
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The last formula allows us to write down the following results with a minimum
of effort using v(t) and a(t):

v = v̂(s) = R0ω
(
−sin

(
s− s0

R0
+ωt0

)
Ex + cos

(
s− s0

R0
+ωt0

)
Ey

)
,

a = â(s) = −R0ω2
(

cos

(
s− s0

R0
+ωt0

)
Ex + sin

(
s− s0

R0
+ωt0

)
Ey

)

= −ω2r̂(s).

Alternatively, one could use the expression for t(s) to determine r as a function of s
and then differentiate with respect to t to obtain the desired functions.

1.4 Rectilinear Motions

In this section, we consider the motion of a particle along a straight line. We take Ex

to be parallel to this line and the vector c to be a constant. Then,

r = r(t) = x(t)Ex + c,

v = v(t) =
dx
dt

Ex = v(t)Ex,

a = a(t) =
d2x
dt2 Ex = a(t)Ex.

It is important to note that
ds
dt

=
∣∣∣∣dx

dt

∣∣∣∣ ,
so unless ẋ > 0 or ẋ < 0, x and s cannot be easily interchanged.

The material that follows should be familiar to you from other courses. Fur-
thermore, graphical interpretations of the forthcoming results are readily available.
Essentially, they involve relating t, x, v, and a. There are three cases to consider.

1.4.1 Given Acceleration as a Function of Time

Suppose one knows a(t); then v(t) and x(t) can be determined by integrating a(t):

v(t) = v(t0)+
∫ t

t0
a(u)du,

x(t) = x(t0)+
∫ t

t0
v(τ)dτ = x(t0)+

∫ t

t0

(
v(t0)+

∫ τ

t0
a(u)du

)
dτ.

You should notice that u and τ in these expressions are dummy variables.
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1.4.2 Given Acceleration as a Function of Speed

The next case to consider is when a = ā(v) and one is asked to calculate x̄(v) and
t̄(v). The former task is achieved by noting that dt = dv/a, whereas the latter task is
achieved by using the identities

a =
dv
dt

=
(

dv
dx

)(
dx
dt

)
= v

dv
dx

.

In summary,

t̄(v) = t̄(v0)+
∫ v

v0

1
ā(u)

du, x̄(v) = x̄(v0)+
∫ v

v0

u
ā(u)

du.

We remark that the identity a = vdv/dx is very useful and is featured in Sections
3.5.4 and 5.3.

1.4.3 Given Acceleration as a Function of Placement

The last case to consider is when a = â(x) is known and one seeks v̂(x) and t̂(x).
Again, the former result is calculated using the identity a = vdv/dx, and the latter is
calculated using the identity dt = dx/v:

v̂2(x) = v̂2(x0)+ 2
∫ x

x0

â(u)du, t̂(x) = t̂(x0)+
∫ x

x0

du
v̂(u)

.

1.5 Kinetics of a Particle

Consider a particle of constant mass m. Let F denote the resultant external force
acting on the particle, and let G = mv be the linear momentum of the particle. Euler’s
first law5 (also known as Newton’s second law6 or the balance of linear momentum)
postulates that

F =
dG
dt

= ma.

5 Leonhard Euler (1707–1783) made enormous contributions to mechanics and mathematics. We
follow C. Truesdell (see Essays II and V in [79]) in crediting F = ma to Euler. As noted by Trues-
dell, these differential equations can be seen on pages 101–105 of a 1749 paper by Euler [24].
Truesdell’s essays also contain copies of certain parts of a related seminal paper [25] by Euler that
was published in 1752.
6 Isaac Newton (1642–1727) wrote his second law in Volume 1 of his famous Principia in 1687 as
follows: The change of motion is proportional to the motive force impressed; and is made in the
direction of the right line in which that force is impressed. (Cf. page 13 of [52].)
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It is crucial to note that a is the absolute acceleration vector of the particle. In the
following we write this equation with respect to several sets of basis vectors. For
instance, with respect to a (right-handed) Cartesian basis, the vector equation F =
ma is equivalent to three scalar equations:

Fx = max = m
d2x
dt2 ,

Fy = may = m
d2y
dt2 ,

Fz = maz = m
d2z
dt2 ,

where
F = FxEx + FyEy + FzEz, a = axEx + ayEy + azEz.

1.5.1 Action and Reaction

When dealing with the forces of interaction between particles, a particle and a rigid
body, and rigid bodies, we also invoke Newton’s third law: “For every action there
is an equal and opposite reaction.” For example, consider a particle moving on a
surface. From this law, the force exerted by the surface on the particle is equal
in magnitude and opposite in direction to the force exerted by the particle on the
surface.

1.5.2 The Four Steps

There are four steps to solving problems using F = ma:

1. Pick an origin and a coordinate system, and then establish expressions for r,v,
and a.

2. Draw a free-body diagram.
3. Write out F = ma.
4. Perform the analysis.

These four steps will guide you through most problems. We amend them later on, in
an obvious way, when dealing with rigid bodies. If you follow them, they will help
you with homework and exams.

One important point concerns the free-body diagram. This is a graphical sum-
mary of the external forces acting on the particle. It does not include any acceler-
ations. Here, in contrast to some other treatments, it is used only as an easy visual
check on one’s work.
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1.6 A Particle Under the Influence of Gravity

Consider a particle of mass m that is launched with an initial velocity v0 at t = 0.
At this instant, r = r0. During the subsequent motion of the particle it is under the
influence of a vertical gravitational force −mgEy. In SI units, g is approximately
9.81 meters per second per second (m s−2). One is asked to determine the path r(t)
of the particle.

The example of interest is a standard projectile problem. It also provides a model
for the motion of the center of mass of many falling bodies where the influence of
drag forces is ignored. For example, it is a model for a vehicle falling through the
air. To determine the motion of the particle predicted by this model, we follow the
four aforementioned steps. After completing the analysis, we show how a drag force
can be included.

1.6.1 Kinematics

For this problem it is convenient to use a Cartesian coordinate system. One then has
the representations

r = xEx + yEy + zEz, a = ẍEx + ÿEy + z̈Ez.

1.6.2 Forces

The sole force acting on the particle is gravity, so F = −mgEy and the free-body
diagram is trivial. It is shown in Figure 1.4.

−mgEy

Fig. 1.4 Free-body diagram of a particle in a gravitational field.
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Path of particle

g

Ey

Ex

Ez

v
a

O

Fig. 1.5 Representative paths of a particle falling under the influence of gravity.

1.6.3 Balance Law

From F = ma, we obtain three second-order ordinary differential equations:

mẍ = 0,

mÿ = −mg,

mz̈ = 0.

1.6.4 Analysis

The final step in solving the problem involves finding the solution to the previous
differential equations that satisfies the given initial conditions:

r0 = r(t = 0) = x0Ex + y0Ey + z0Ez,

v0 = v(t = 0) = ẋ0Ex + ẏ0Ey + ż0Ez.

The differential equations in question have simple solutions:

x(t) = ẋ0t + x0,

y(t) = −1
2

gt2 + ẏ0t + y0,

z(t) = ż0t + z0.

Hence, the motion of the particle can be written in a compact form:

r(t) = r0 + v0t − 1
2

gt2Ey.
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v = ||v|| (m/s)

Inc. drag

0
0

20

3

v→
∞

v → vterm = 9.94

v → vterm = 5.81

t (seconds)

Fig. 1.6 The speed v = ||v|| of the particle as a function of time for the three particle paths shown
in Figure 1.1.

By specifying particular sets of initial conditions, the results for the motion of the
particle apply to numerous special cases. Several representative examples of these
paths where r0 is fixed and v0 is varied are shown in Figure 1.5.

We now consider the modifications needed to the analysis if a drag force FD were
included. You may recall that this example was discussed in Section 1.1. We suppose
that the drag force is proportional to v3 and opposes the motion of the particle. The
latter assumption implies that FD is parallel to v/||v||. As v = ||v||, we infer that FD

has the representation
FD = −mCdv2v,

where Cd is a nonnegative constant. With the drag force introduced, F = −mgEy −
mCdv2v. Using a balance of linear momentum, we arrive at the equations of motion:

mẍ = −mCdv2ẋ, mÿ = −mg−mCdv2ẏ, mz̈ = −mCdv2ż,

where
v2 = ẋ2 + ẏ2 + ż2.

Solutions to the equations of motion for the values Cd = 0,0.01,0.05 and the initial
conditions r(0) = 0 and v(0) = 5Ex + 10Ey are shown in Figure 1.1. The speed of
the particle as a function of time for these three cases is shown in Figure 1.6.

You may have noticed from Figure 1.1 that as the drag coefficient Cd increases
the trajectory deviates more and more from the parabolic form of the drag-free case.
In the presence of drag, the trajectory asymptotes to a rectilinear vertical motion
and the speed of the particle asymptotes to the terminal velocity vterm. To compute
the terminal velocity, we set the accelerations to zero in the equations of motion and
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solve for the resulting velocity vector:

vterm = −vtermEy = −
(

g
Cd

)1/3

Ey.

Clearly, the terminal speed vterm is independent of the initial velocity vector of the
particle and tends to ∞ as Cd → 0 (see Figure 1.6).

1.7 Summary

In this chapter, several definitions of kinematical quantities pertaining to a single
particle were presented. In particular, the position vector r relative to a fixed origin
was defined. This vector defines the path of the particle. Furthermore, the velocity v
and acceleration a vectors were defined:

v = v(t) =
dr
dt

, a = a(t) =
d2r
dt2 .

These vectors can also be defined as functions of the arc-length parameter s: v = v̂(s)
and a = â(s). Here, s is defined by integrating the differential equation ṡ = ||v||. The
parameter s can be used to determine the distance traveled by the particle along its
path. Using the chain rule, it was shown that

v = ṡ
dr
ds

, a = ṡ2 d2r
ds2 + s̈

dr
ds

.

Two special cases of the aforementioned results were discussed in Sections 1.3 and
1.4. First, in Section 1.3, the kinematics of a particle moving in a circular path was
discussed. Then, in Section 1.4, the corresponding quantities pertaining to rectilinear
motion were presented.

The balance of linear momentum F = ma was then introduced. This law relates
the motion of the particle to the resultant force F acting on the particle. In Cartesian
coordinates, it can be written as three scalar equations:

Fx = max = mẍ,

Fy = may = mÿ,

Fz = maz = mz̈,

where
F = FxEx + FyEy + FzEz, a = axEx + ayEy + azEz.

In order to develop a helpful problem-solving methodology, a series of four steps
was introduced. These steps are designed to provide a systematic framework to help
guide you through problems. To illustrate the steps, a well-known projectile problem
was discussed in Section 1.6.
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1.8 Exercises

The following short exercises are intended to assist you in reviewing the present
chapter.

1.1. Why are the time derivatives of Ex, Ey, and Ez all equal to zero?
1.2. Suppose that you are given a vector as a function of s: f(s). Why do you

need to know how s depends on time t in order to determine the derivative
of f as a function of time?

1.3. Consider a particle of mass m that lies at rest on a horizontal surface. A
vertical gravitational force −mgEy acts on the particle. Draw a free-body
diagram of the particle. If one follows the four steps, then why is it a mistake
to write mgEy for the normal force instead of NEy, where N is unknown, in
the free-body diagram?

1.4. The motion of a particle is such that its position vector r(t) = 10Ex +
10tEy + 5tEz (meters). Show that the path of the particle is a straight line
and that the particle moves along this line at a constant speed of

√
125 me-

ters per second. Furthermore, show that the force F needed to sustain this
motion is 0.

1.5. The motion of a particle is such that its position vector r(t) = 3tEx +4tEy +
10Ez (meters). Show that the path of the particle is a straight line and that
the particle moves along this line at a constant speed of 5 meters per second.
Using this information, show that the arc-length parameter s is given by
s(t) = 5(t − t0)+ s0. Finally, show that the particle moves 50 meters along
its path every 10 seconds.

1.6. The motion of a particle is such that its position vector r(t)= 10cos(nπt)Ex +
10sin(nπt)Ey (meters). Show that the particle is moving on a circle of ra-
dius 10 meters and describes a complete circle every 2/n seconds. If the
particle has a mass of 2 kilograms, then what force F is needed to sustain
this motion?

1.7. To model the free-fall of a ball of mass m, the ball is modeled as a particle
of the same mass. Suppose the particle is dropped from the top of a 100
meter high building. Following the steps discussed in Section 1.6, show that
it takes

√
200/9.81 seconds for the ball to reach the ground. Furthermore,

show that it will hit the ground at a speed of
√

1962 meters per second.7

1.8. A projectile is launched at time t0 = 0 seconds from a location r(t0) = 0.
The initial velocity of the projectile is v(t0) = v0 cos(α)Ex + v0 sin(α)Ey.
Here, v0 and α are constants. During its flight, a vertical gravitational force
−mgEy acts on the projectile. Modeling the projectile as a particle of mass
m, show that its path is a parabola:

y(x) = −
(

g

2v2
0 cos2(α)

)
x2 + tan(α)x.

7 This speed is equal to 99.09 miles per hour.
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Why is this result not valid when α = ±π/2?
1.9. Consider the ball discussed in Exercise 1.7, and now suppose that the parti-

cle is subject to a drag force whose magnitude is proportional to the speed
of the particle. Argue that the drag force has the representation −mkv in this
case, and show that the terminal speed of the ball is vterm = g/k.





Chapter 2
Particles and Cylindrical Polar Coordinates

TOPICS

Here, we discuss the cylindrical polar coordinate system and how it is used in par-
ticle mechanics. This coordinate system and its associated basis vectors {er,eθ ,Ez}
are vital to understand and practice.

It is a mistake to waste your time memorizing formulae here. Instead, focus on
understanding the material. You will repeat it countless times which will naturally
develop the ability to derive the results from scratch.

2.1 The Cylindrical Polar Coordinate System

Consider the pendulum system shown in Figure 2.1. Here, a particle of mass m is
attached by an inextensible string of length L to a fixed point O. Assuming that the
string remains taut, then the distance from O to the particle remains constant: ||r||=

Ex

Ey

Og

mg

Tension in string

t

Fig. 2.1 An example of the motion of a pendulum. The behavior of the tension T in the string
during this motion is also shown.

O.M. O’Reilly, Engineering Dynamics: A Primer, DOI 10.1007/978-1-4419-6360-4 2, 17
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Ex

Ey

ereθ

θ

θ

Fig. 2.2 The unit vectors er and eθ .

L. This system is a prototypical example of a situation where a polar coordinate
system can be effectively used.

To define a cylindrical polar coordinate system {r,θ ,z}, we start with a Cartesian
coordinate system {x,y,z} for the three-dimensional space E

3. Using these coordi-
nates, we define r, θ , and z as

r =
√

x2 + y2, θ = tan−1
(y

x

)
, z = z.

The coordinate r ≥ 0. Apart from the points {x,y,z} = {0,0,z} , given r, θ , and z,
we can uniquely determine x, y, and z:

x = r cos(θ), y = r sin(θ), z = z.

Here, θ is taken to be positive in the counterclockwise direction.
If we now consider the position vector r of a point in this space, we have, as

always,
r = xEx + yEy + zEz.

We can write this position vector using cylindrical polar coordinates by substituting
for x and y in terms of r and θ :

r = r cos(θ )Ex + r sin(θ)Ey + zEz.

Before we use this representation to establish expressions for the velocity and ac-
celeration vectors, it is convenient to introduce the unit vectors er and eθ :

⎡
⎣ er

eθ
Ez

⎤
⎦=

⎡
⎣ cos(θ ) sin(θ) 0
−sin(θ ) cos(θ ) 0

0 0 1

⎤
⎦
⎡
⎣Ex

Ey

Ez

⎤
⎦ .

Two of these vectors are shown in Figure 2.2.
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Note that {er,eθ ,Ez} are orthonormal and form a right-handed basis1 for E
3. You

should also be able to see that
⎡
⎣Ex

Ey

Ez

⎤
⎦=

⎡
⎣ cos(θ ) −sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

⎤
⎦
⎡
⎣ er

eθ
Ez

⎤
⎦ .

Because er = er(θ ) and eθ = eθ (θ ), these vectors change as θ changes:

der

dθ
= −sin(θ )Ex + cos(θ)Ey = eθ ,

deθ
dθ

= −cos(θ )Ex − sin(θ)Ey = −er.

It is crucial to note that θ is measured positive in the counterclockwise direction.
Returning to the position vector r, it follows that

r = xEx + yEy + zEz = r cos(θ )Ex + r sin(θ)Ey︸ ︷︷ ︸
=rer

+zEz = rer + zEz.

Furthermore, because {er,eθ ,Ez} is a basis, we then have, for any vector b, that

b = brer + bθ eθ + bzEz = bxEx + byEy + bzEz.

It should be clear that br = b · er, bθ = b · eθ , and bz = b ·Ez.

2.2 Velocity and Acceleration Vectors

Consider a particle moving in space: r = r(t). We recall that

r = rer + zEz = xEx + yEy + zEz.

As the particle is in motion, its coordinates are functions of time: x = x(t), y = y(t),
r = r(t), θ = θ(t), and z = z(t). To calculate the (absolute) velocity vector v of the
particle, we differentiate r(t):

v =
dr
dt

=
dr
dt

er + r
der

dt
+

dz
dt

Ez.

Now, using the chain rule, ėr = θ̇der/dθ = θ̇eθ . Also,

deθ
dθ

= −er,
der

dθ
= eθ .

1 Details of these results are discussed in Section A.4 of Appendix A.
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It follows that

v =
dr
dt

er + r
dθ
dt

eθ +
dz
dt

Ez

=
dx
dt

Ex +
dy
dt

Ey +
dz
dt

Ez.

To calculate the (absolute) acceleration vector a, we differentiate v with respect
to time:

a =
dv
dt

=
d
dt

(
dr
dt

er

)
+

d

dt

(
r

dθ
dt

eθ

)
+

d2z

dt2 Ez.

Using the chain rule to determine the time derivatives of the vectors er and eθ ,
and after collecting terms in the expressions for a, the final form of the results is
obtained:

a =

(
d2r
dt2 − r

(
dθ
dt

)2
)

er +
(

r
d2θ
dt2 + 2

dr
dt

dθ
dt

)
eθ +

d2z
dt2 Ez

=
d2x
dt2 Ex +

d2y
dt2 Ey +

d2z
dt2 Ez.

We have also included the representations for the velocity and acceleration vectors
in Cartesian coordinates to emphasize the fact that the values of these vectors do not
depend on the coordinate system used.

2.2.1 Common Errors

In my experience, the most common error with using cylindrical polar coordinates
is to write r = rer +θeθ + zEz. This is not true. Another mistake is to differentiate
er and eθ incorrectly with respect to time. Last, but not least, many people presume
that all of the results presented here apply when θ is taken to be positive in the
clockwise direction. Alas, this is not the case.

2.3 Kinetics of a Particle

Consider a particle of mass m. Let F denote the resultant external force acting on
the particle, and let G = mv be the linear momentum of the particle. Euler’s first law
(which is also known as Newton’s second law or the balance of linear momentum)
postulates that

F =
dG
dt

= ma.
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With respect to a Cartesian basis F = ma is equivalent to three scalar equations:

Fx = max = mẍ, Fy = may = mÿ, Fz = maz = mz̈,

where F = FxEx + FyEy + FzEz and a = axEx + ayEy + azEz.
With respect to a cylindrical polar coordinate system, the single vector equation

F = ma is equivalent to three scalar equations:

(F = ma) · er : Fr = m

(
d2r
dt2 − r

(
dθ
dt

)2
)

,

(F = ma) · eθ : Fθ = m

(
r

d2θ
dt2 + 2

dr
dt

dθ
dt

)
,

(F = ma) ·Ez : Fz = m
d2z
dt2 .

Finally, we recall for emphasis the relations

er = cos(θ)Ex + sin(θ )Ey,

eθ = −sin(θ)Ex + cos(θ )Ey,

Ex = cos(θ)er − sin(θ )eθ ,

Ey = sin(θ)er + cos(θ )eθ .

You will use these relations countless times in an undergraduate engineering dy-
namics course.

2.4 The Planar Pendulum

The planar pendulum is a classical problem in mechanics. As shown in Figure 2.3,
a particle of mass m is suspended from a fixed point O either by an inextensible
massless string or rigid massless rod of length L. The particle is free to move on a
plane (z = 0), and during its motion a vertical gravitational force −mgEy acts on the
particle.

We ask the following questions: what are the equations governing the motion
of the particle and what is the tension in the string or rod? The answers to these
questions are used to construct the motion of the particle and the plot of tension as
a function of time that were shown in Figure 2.1 at the beginning of this chapter.
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−Ter

−mgEy
NEz

Ex

Ey

θ

g O

Particle of mass m

Massless rod or string of length L

Fig. 2.3 The planar pendulum and the free-body diagram of the particle of mass m.

2.4.1 Kinematics

We begin by establishing some kinematical results. We note that r = Ler. Differ-
entiating with respect to t, and noting that L is constant, gives us the velocity v.
Similarly, we obtain a from v:

v = L
der

dt
= L

dθ
dt

eθ ,

a = L
d2θ
dt2 eθ + L

dθ
dt

deθ
dt

= L
d2θ
dt2 eθ −L

(
dθ
dt

)2

er.

Alternatively, one can get these results by substituting r = L and z = 0 in the general
expressions recorded in Section 2.2. I do not recommend this approach inasmuch as
it emphasizes memorization.

2.4.2 Forces

Next, as shown in Figure 2.3, we draw a free-body diagram. There is a tension force
−Ter and a normal force NEz acting on a particle. The role of the tension force is
to ensure that the distance of the particle from the origin is L and the normal force
ensures that there is no motion in the direction of Ez. These two forces are known
as constraint forces. They are indeterminate (we need to use F = ma to determine
them). One should also note that the gravitational force has the representations

−mgEy = −mgsin(θ)er −mgcos(θ )eθ .
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2.4.3 Balance Law

The third step is to write down the balance of linear momentum (F = ma):

−Ter + NEz −mgEy = mLθ̈eθ −mLθ̇ 2er.

We obtain three scalar equations from this vector equation:

mLθ̈ = −mgcos(θ), T = mLθ̇ 2 −mgsin(θ ), N = 0.

2.4.4 Analysis

The first of these equations is a second-order differential equation for θ(t):

mLθ̈ = −mgcos(θ ).

Given the initial conditions θ(t0) and θ̇(t0), one can solve this equation and deter-
mine the motion of the particle. Next, the second equation gives the tension T in the
string or rod once θ (t) is known:

−Ter = −(mLθ̇ 2 −mgsin(θ )
)

er.

A representative example of the behavior of T during a motion of the pendulum is
shown in Figure 2.1. This figure was constructed by first numerically solving the
ordinary differential equations for θ(t) and then computing the corresponding T (t).

For a string, it is normally assumed that T > 0, and for some motions of the string
it is possible that this assumption is violated. In this case, the particle behaves as if
it were free to move on the plane and r �= L. Regardless, the normal force NEz is
zero in this problem.

2.5 Summary

In this chapter, the cylindrical polar coordinate system {r,θ ,z} was introduced. To
assist with certain expressions, the vectors er = cos(θ )Ex + sin(θ )Ey and eθ =
−sin(θ )Ex + cos(θ)Ey were introduced. It was also shown that the position vec-
tor of a particle has the representations

r = rer + zEz =
√

x2 + y2er + zEz

= r cos(θ )Ex + r sin(θ )Ey + zEz

= xEx + yEy + zEz.
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By differentiating r with respect to time, the velocity and acceleration vectors were
obtained. These vectors have the representations

v =
dr
dt

= ṙer + rθ̇eθ + żEz

= ẋEx + ẏEy + żEz,

a =
dv
dt

=
(
r̈− rθ̇ 2)er +

(
rθ̈ + 2ṙθ̇

)
eθ + z̈Ez

= ẍEx + ÿEy + z̈Ez.

To establish these results, the chain rule and the important identities ėr = θ̇eθ and
ėθ = −θ̇er were used.

Using a cylindrical polar coordinate system, F = ma can be written as three scalar
equations:

Fr = m
(
r̈− rθ̇ 2) ,

Fθ = m
(
rθ̈ + 2ṙθ̇

)
,

Fz = mz̈.

These equations were illustrated using the example of the planar pendulum.

2.6 Exercises

The following short exercises are intended to assist you in reviewing the present
chapter.

2.1. Using Figure 2.2, verify that er = cos(θ)Ex +sin(θ)Ey and eθ =−sin(θ )Ex +
cos(θ )Ey. Then, by considering cases where er lies in the second, third, and
fourth quadrants, verify that these definitions are valid for all values of θ .

2.2. Starting from the definitions er = cos(θ)Ex +sin(θ )Ey and eθ =−sin(θ )Ex +
cos(θ )Ey, show that ėr = θ̇eθ and ėθ = −θ̇er. In addition, verify that
Ex = cos(θ)er − sin(θ )eθ and Ey = sin(θ )er + cos(θ )eθ .

2.3. Calculate the velocity vectors of particles whose position vectors are 10er and
5er + tEz, where θ = πt. Why do all of these particles move with constant
speed ||v|| yet have a nonzero acceleration?

2.4. The position vector of a particle of mass m that is placed at the end of a
rotating telescoping rod is r = 6ter, where θ = 10t + 5 (radians). Calculate
the velocity and acceleration vectors of the particle, and determine the force F
needed to sustain the motion of the particle. What is the force that the particle
exerts on the telescoping rod?

2.5. In solving a problem, one person uses cylindrical polar coordinates whereas
another uses Cartesian coordinates. To check that their answers are identical,
they need to examine the relationship between the Cartesian and cylindrical
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polar components of a certain vector, say b = brer +bθ eθ . To this end, show
that

bx = b ·Ex = br cos(θ )−bθ sin(θ ), by = b ·Ey = br sin(θ)+ bθ cos(θ).

2.6. Consider the projectile problem discussed in Section 1.6 of Chapter 1. Using
a cylindrical polar coordinate system, show that the equations governing the
motion of the particle are

mr̈−mrθ̇ 2 = −mgsin(θ ), mrθ̈ + 2mṙθ̇ = −mgcos(θ), mz̈ = 0.

Notice that, in contrast to using Cartesian coordinates to determine the gov-
erning equations, solving these differential equations is nontrivial.

2.7. Consider a spherical bead of mass m and radius R that is placed inside a long
cylindrical tube. The inner radius of the tube is R, and the tube is pivoted so
that it rotates in a horizontal plane. Furthermore, the contact between the tube
and the bead is smooth. Here, the bead is modeled as a particle of mass m.
Now suppose that the tube is whirled at a constant angular speed Ω (radians
per second). The whirling motion of the tube is such that the velocity vector
of the bead is v = ṙer + Ωreθ . Show that the equation governing the motion
of the bead is

r̈−Ω 2r = 0,

and the force exerted by the tube on the particle is mgEz + 2mṙΩeθ .
2.8. Consider the case where the bead is initially at rest relative to the whirling

tube at a location r0 = L. Using the solution to the differential equation r̈−
Ω 2r = 0 recorded in Section A.5.3 of Appendix A, show that, unless L = 0,
the bead discussed in the previous exercise will eventually exit the whirling
tube.





Chapter 3
Particles and Space Curves

TOPICS

In this chapter we discuss the differential geometry of space curves (a curve embed-
ded in Euclidean three-space E

3). In particular, we introduce the Serret-Frenet basis
vectors {et ,en,eb}. This is followed by the derivation of an elegant set of relations
describing the rate of change of the tangent et , principal normal en, and binormal
eb vectors. Several examples of space curves are then discussed. We end the chap-
ter with some applications to the mechanics of particles. Subsequent chapters also
discuss several examples.

(a) (b)

2R2R

κ = 0 κ = 0κ = 0κ = 0

κ = 1
R

κ = 1
R κ = 1

R
κ = 1.215

Rκ = 1.215
R

κ = 1.5861
R

Fig. 3.1 Two potential designs for a loop-the-loop track section of a roller coaster and selected
values of the curvature κ along their lengths: (a) a design based on connecting two semicircular
track sections of radius R with two straight track sections and (b) a design based on connecting
two clothoid track sections.
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3.1 Space Curves

For many systems, such as those featuring motion of a particle on a straight line
or on a plane, it suffices to know how to manipulate Cartesian or polar coordi-
nates. However, these coordinate systems become cumbersome for many problems.
In general, the path of the particle is a curve in space and we refer to such curves
as space curves. In many instances, this space curve is prescribed, as in the case
of a particle moving on a circular path, or else it may lie on a surface. More often
than not, this curve is not known a priori. In this chapter, the tools needed to analyze
problems where a particle is moving on a space curve are developed and applied.

One of the most interesting applications of the tools we develop in this chapter is
the design of roller coasters. A naive approach to designing a loop-the-loop section
of a roller coaster would be to connect two circular arcs together (cf. Figure 3.1).
Unfortunately, this design will lead to undesirable changes in acceleration at the
base of the loop. Instead, dating to the mid-1970s, a design based on a curve known
as a clothoid is used [60].1 One of the differences in the two designs can be seen
from a parameter known as the curvature κ which we shortly define. For the design
featuring the circular arcs, κ is piecewise constant and κ varies in a linear manner
for the clothoid design. In fact, moving along the clothoid loop shown in Figure
3.1(b), we would find that κ increases linearly with the distance traveled on the path
from 0 to a maximum of 1.5861/R and then decreases linearly to zero.2 In contrast
for a circle-based design with the same total height of 2R, the curvature would be 0
on the straight sections and jump instantaneously to 1/R on the circular sections of
the path.

3.1.1 The Arc-Length Parameter

Consider a fixed curve C that is embedded in E
3 (i.e., C is a space curve). Let the

position vector of a point P ∈ C be denoted by r. This vector has the representation

r = xEx + yEy + zEz,

where x, y, and z are the usual Cartesian coordinates and Ex, Ey, and Ez are the
orthonormal basis vectors associated with these coordinates.

Associated with the curve C , we can define an arc-length parameter s, where by
definition, (

ds
dt

)2

=
dr
dt

· dr
dt

=
dx
dt

dx
dt

+
dy
dt

dy
dt

+
dz
dt

dz
dt

.

1 The clothoid loop is also used in the design of freeway exit ramps [60].
2 We explore this matter in further detail later on in Section 5.8.4.
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Fig. 3.2 A space curve and the Serret-Frenet triad at one of its points.

This parameter uniquely identifies a point P of C , and we can use it to obtain a
different representation of the position vector of a point on the curve:

r = r̂(s).

3.1.2 The Serret-Frenet Triad

In the sequel we need to examine the forces acting on a particle as it moves on a
curve and use this information to determine the motion of the particle. For cases
where the particle is moving on a straight line or a circular path, we can use Carte-
sian and cylindrical polar coordinate systems, respectively, to simplify our analy-
sis. However when the particle is moving on a curve in the form of a parabola or
clothoid, it is not convenient to use these two coordinate systems. We now turn to
examining a set of basis vectors that will help us for these more complex cases.

Consider a fixed space curve such as the one shown in Figure 3.2. We wish to
define the so-called Serret-Frenet basis vectors {et ,en,eb} for a point P of this space
curve.3

To define a tangent vector, we consider two points P and P′ of C , where the
position vectors of P and P′ are r̂(s) and r̂(s + Δs), respectively. We define the
vector et as

et = êt(s) =
dr
ds

= lim
�s→0

r̂(s+ Δs)− r̂(s)
Δs

.

3 These triads and formulae for their rates of change were established by Jean-Frédéric Frenet
(1816–1900) in 1847 (see [28]) and Joseph Alfred Serret (1819–1885) in 1851 (see [68]). One can
extend our forthcoming discussion to curves that are moving in space, for example, a curve in the
form of a circle whose radius changes with time. In this case r = r(s, t), and the Serret-Frenet triad
is obtained by the partial differentiation of r with respect to s. Such an extension is well known and
needed for discussing the theory of rods but is beyond the scope of an undergraduate engineering
dynamics course.
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Because r̂(s+Δs)− r̂(s) → Δset as Δs → 0,4 et is known as the unit tangent vector
to C at the point P (see Figure 3.2).

We next consider the second derivative of r with respect to s:

d2r
ds2 =

det

ds
.

After noting that et ·et = 1 and then differentiating this relation, we find that det/ds
is perpendicular to et . We define κ to be the magnitude of det/ds and en to be its
direction:

κen =
det

ds
.

The vector en is known as the (unit) principal normal vector to C at the point P, and
the scalar κ is known as the curvature of C at the point P.5 It should be noted that
en and κ are functions of s:

κ = κ̂(s), en = ên(s).

Often an additional variable ρ , which is known as the radius of curvature, is defined:

ρ = ρ̂(s) =
1
κ

.

For the degenerate case where det/ds = 0 for a particular s, the curvature κ is 0 and
the vector en is not uniquely defined. In this case, one usually defines en to be a unit
vector perpendicular to et . The most common case of this occurrence is when the
curve C is a straight line.

We show that a circle of radius R has a curvature of 1/R. Another special plane
curve of particular interest is the clothoid shown in Figure 3.3. For this curve, κ is a
linear function of s.6 It is easy to see how one can use the clothoid shown in Figure
3.3 to smoothly connect a straight line to an arc of a circle of radius a/2π.

The final vector of interest is eb, and it is defined by

eb = êb(s) = et × en.

Clearly, eb is a unit vector. It is known as the (unit) binormal vector to C at the point
P.

It should be noted that the set of vectors {et ,en,eb} is defined for each point of C ,
is orthonormal, and, because eb · (et × en) = 1, forms a right-handed set. We refer to
the set {et ,en,eb} as the Serret-Frenet triad. Because this set is orthonormal it may

4 This may be easily seen by sketching the curve and the position vectors of P and P′ and then
taking the limit as Δs tends to 0.
5 Often the convention that κ is nonnegative is adopted. This allows the convenient identification
that en points in the direction of det/ds. We adhere strictly to this convention.
6 This result is left as an exercise for the interested reader (see Exercise 3.11 on page 51).
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κ = 0
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(
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(
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Fig. 3.3 A section of a plane curve known as a clothoid. For this curve, κ = s/a2 where a is a
constant.

be used as a basis for E
3. That is, given any vector b, one has the representations

b = btet + bnen + bbeb = bxEx + byEy + bzEz,

where bt = b · et , and so on.
At a particular s, the plane defined by the vectors et and en is known as the

osculating plane, and the plane defined by the vectors et and eb is known as the
rectifying plane. These planes will, in general, depend on the particular point P of
C .7

3.2 The Serret-Frenet Formulae

These three formulae relate the rate of change of the vectors et , en, and eb with
respect to the arc-length parameter s to the set of vectors {et ,en,eb}.

Consider the vector et . Recalling one of the previous results, the first of the de-
sired formulae is recorded:

det

ds
= κen.

7 It is beyond our purposes to present an additional discussion on these planes. The interested
reader is referred to an introductory text on differential geometry, several of which are available.
We mention in particular Kreyszig [42], Spivak [73], and Struik [77].
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It is convenient to consider next the vector eb. This vector is a unit vector, therefore
it cannot change along its own length. Mathematically, we see this by noting that

eb = et × en =⇒ eb · eb = 1

=⇒ deb

ds
· eb = 0.

Consequently, deb/ds has components only in the directions of et and en. Let’s first
examine what the component of deb/ds is in the et direction:

et · eb = 0 =⇒ det

ds
· eb +

deb

ds
· et = 0

=⇒ κen · eb +
deb

ds
· et = 0

=⇒ deb

ds
· et = 0.

It now follows that deb/ds is parallel to en. Consequently, we define

deb

ds
= −τen,

where τ = τ̂(s) is the torsion of the curve C at the particular point P corresponding
to the value of s. The negative sign in the above formula is conventional.

To obtain the final Serret-Frenet formula for den/ds, we perform a direct calcu-
lation:

den

ds
=

d
ds

(eb × et) =
deb

ds
× et + eb × det

ds
= (−τen)× et + eb × (κen).

After simplifying this result by evaluating the cross products, we obtain

den

ds
= −κet + τeb.

The Serret-Frenet formulae can be conveniently summarized as

⎡
⎣

det
ds

den
ds

deb
ds

⎤
⎦=

⎡
⎣ 0 κ 0
−κ 0 τ
0 −τ 0

⎤
⎦
⎡
⎣ et

en

eb

⎤
⎦ .

One can define what is often referred to as the Darboux8 vector ωSF:

ωSF = κeb + τet .

8 Gaston Darboux (1842–1917) was a French mathematician who wrote an authoritative four-
volume treatise on differential geometry, which was published between 1887 and 1896 (see [21]).
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Plane curve y = f (x) and z = z0
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Fig. 3.4 An example of a plane curve and the Serret-Frenet triad {et ,en,eb} at two distinct points
along its length.

Using the Darboux vector, the Serret-Frenet relations can also be written in the form

dei

ds
= ωSF × ei,

where i = t, n, or b.

3.3 Examples of Space Curves

We proceed to discuss four examples of spaces curves: a plane curve, a circle, a
space curve parametrized by x, and a circular helix. The degenerate case of a straight
line is discussed in conjunction with the plane curve.

3.3.1 A Curve on a Plane

As shown in Figure 3.4,9 consider a curve on a plane in E
3. The plane is defined by

the relation z = z0, and the curve is defined by the intersection of two 2-dimensional
surfaces:

z = z0, y = f (x),

where we assume that f is as smooth as necessary. A specific example is presented
in Section 3.5.

The position vector of a point P on this curve is

r = xEx + yEy + zEz = xEx + f (x)Ey + z0Ez.

To determine the arc-length parameter s of the curve, we first note that

dr
dt

=
dx
dt

Ex +
d f
dx

dx
dt

Ey.

9 The convention that κ ≥ 0 has been used to define the vector en.
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Consequently, (
ds
dt

)2

=

(
1 +
(

d f
dx

)2
)(

dx
dt

)2

,

or, assuming that s increases in the direction of increasing x,

ds
dt

=

√√√√
(

1 +
(

d f
dx

)2
)

dx
dt

.

Integrating both sides of the above equation, we obtain10

s = s(x) =
∫ x

x0

√
1 +
(

d f
dx

)2

du + s(x0).

As follows from our previous development, we should invert s(x) to determine x(s).
However, because we prefer to keep the function f (x) arbitrary, we express the
results as functions of x.

To determine the tangent vector, we recall its definition and use the chain rule:

et = et(x) =
dr
ds

=
dr
dx

dx
ds

=
1√

1 +
(

d f
dx

)2

(
Ex +

d f

dx
Ey

)
,

where we have also used the identity

dx
ds

=
(

ds
dx

)−1

.

The expected unit magnitude of et should be noted.
The principal normal vector en and the curvature κ are determined by evaluating

the derivative of et with respect to s:

κen =
det

ds
=

det

dx
dx
ds

=
det

dx

(
ds
dx

)−1

.

Omitting the details of the calculation, after some subsequent rearrangement we
obtain

κen =
d2 f
dx2(

1 +
(

d f
dx

)2
)2

(
Ey − d f

dx
Ex

)
.

10 It is tacitly understood that we need to express d f /dx in terms of the dummy variable u in order
to evaluate this integral.
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Recalling that en is a unit vector and that κ is positive, the final results are obtained:

κ = κ(x) =

∣∣∣ d2 f
dx2

∣∣∣
(√

1 +
(

d f
dx

)2
)3 ,

en = en(x) =
sgn
(

d2 f
dx2

)
√

1 +
(

d f
dx

)2

(
Ey − d f

dx
Ex

)
.

Here, sgn(a) = 1 if a > 0 and −1 if a < 0.
Finally, the binormal vector eb may be determined:

eb = et × en = sgn

(
d2 f
dx2

)
Ez,

and, because this vector is a piecewise constant, the torsion of the curve is

τ = 0.

Returning briefly to Figure 3.4, you may have noticed that for certain segments of
the curve eb = Ez and for others eb = −Ez. The points where this transition occurs
are those where d2 f/dx2 = 0. At these points, κ = 0 and en is not defined by the
Serret-Frenet formula det/ds = κen.

For the plane curve, many texts use a particular representation of the tangent and
normal vectors by defining an angle β = β (s):

et = cos(β (s))Ex + sin(β (s))Ey,

en = cos(β (s))Ey − sin(β (s))Ex.

Notice that et and en are unit vectors, as expected. By differentiating these expres-
sions with respect to s, one finds that

κ =
dβ
ds

.

Consequently, κ can be interpreted as a rate of rotation of the vectors et and en about
eb = ±Ez.
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3.3.1.1 The Straight Line

A special case of the plane curve arises when f (x) = ax + b, where a and b are
constants. In this case, we find from above that

et = et(x) =
1√

1 +
(

d f
dx

)2

(
Ex +

d f
dx

Ey

)
=

1√
1 + a2

(Ex + aEy) .

It should be clear that we are assuming that

ds
dx

=

√
1 +
(

d f
dx

)2

,

as opposed to −
√

1 +(d f/dx)2. Turning to the principal normal vector, because
det/ds = 0, the curvature κ = 0 and en is not defined. For consistency, it is conve-
nient to choose en to be perpendicular to et . The binormal vector is then defined by
eb = et × en.

3.3.2 A Space Curve Parametrized by x

Consider a curve C in E
3. Suppose that the curve is defined by the intersection of

the two 2-dimensional surfaces

z = g(x), y = f (x),

where we assume that f and g are as smooth as necessary. The plane curve discussed
in Section 3.3.1 can be considered as a particular example of a space curve. The
position vector of a point P on this curve is

r = xEx + f (x)Ey + g(x)Ez.

The arc-length parameter s may be determined in a manner similar to what was
discussed previously:

s = s(x) =
∫ x

x0

√
1 +
(

d f
dx

)2

+
(

dg
dx

)2

du + s(x0) .

As in Section 3.3.1, we assume that the function x(s) is available to us and express
all of our results as functions of x. It follows that we can later express all of our
results as functions of s if required.
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To calculate the tangent vector, we use the chain rule as before:

et = et(x) =
dr
ds

=
dr
dx

dx
ds

=
1√

1 +
(

d f
dx

)2
+
(

dg
dx

)2

(
Ex +

d f
dx

Ey +
dg
dx

Ez

)
.

The principal normal vector en and the curvature κ are determined by evaluating the
derivative of et with respect to s:

κen =
det

ds
=

det

dx
dx
ds

=
det

dx

(
ds
dx

)−1

.

Finally, the binormal vector eb may be determined using its definition. We omit
details of the expressions for the principal normal en and binormal eb vectors, cur-
vature κ , and the torsion τ . They may be obtained using the quoted relations, and
their specific general forms are not of further interest here.

3.3.3 A Circle on a Plane

As shown in Figure 3.5, consider a curve in the form of a circle that lies on a plane
in E

3. The plane is defined by the relation z = z0, and the curve is defined by the
intersection of two 2-dimensional surfaces:

z = z0, r = R =
√

x2 + y2.

In addition, it is convenient to recall the relations

θ = tan−1
(y

x

)
,

er = cos(θ )Ex + sin(θ )Ey, eθ = cos(θ )Ey − sin(θ)Ex.

The position vector of a point P on this curve is

r = xEx + yEy + z0Ez = Rer + z0Ez.

To determine the arc-length parameter s of the curve, we first note that

v =
dr
dt

= R
der

dt
= R

dθ
dt

eθ .

Consequently,
ds
dt

= R
dθ
dt

.
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et = eθ

et = −eθ
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Fig. 3.5 A circle of radius R. On the left, the direction of increasing s and θ are identical, whereas
they are opposite to each other in the right-hand side image.

Here, we have assumed that s increases in the direction of increasing θ .11 Integrating
both sides of this equation, we obtain

s(θ) = R(θ −θ0)+ s(θ0).

Fortunately, we can invert the function s(θ) to solve for θ (s):

θ (s) =
1
R

(s− s0)+ θ(s0).

The previous result enables us to write

r = r̂(s) = Rêr(s)+ z0Ez,

where
êr(s) = cos(θ (s))Ex + sin(θ (s))Ey.

It should be noted that the function êθ (s) can be defined in a similar manner.
To determine the tangent vector, we differentiate r as a function of s:

et = êt(s) =
dr
ds

= R
der

dθ
dθ
ds

= Reθ
1
R

= eθ .

The expected unit magnitude of et should again be noted. The principal normal
vector en and the curvature κ are determined by evaluating the derivative of et with
respect to s:

κen = κ̂(s)ên(s) =
det

ds
=

deθ
dθ

dθ
ds

= − 1
R

er.

11 Otherwise, ds/dθ = −R and the forthcoming results need some minor modifications. As can be
seen from Figure 3.5, when ds/dθ = −R, et = −eθ , en = −er , and eb = −Ez.
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Recalling that en has unit magnitude and adopting the convention that κ ≥ 0, we
obtain

κ =
1
R

, en = −er.

Finally, the binormal vector eb may be determined:

eb = et × en = Ez.

Because this vector is constant, the torsion of the circular curve is, trivially,

τ = 0.

In summary, one has for a circle in the Ex −Ey plane,

et = eθ , en = −er, eb = Ez, ρ = R, τ = 0.

Based on previous work with cylindrical polar coordinates, the tangent and normal
vectors for this curve should have been anticipated.

3.3.4 A Circular Helix

Consider a curve in the form of a helix that is embedded in E
3.12 The helix is defined

by the intersection of a pair of two-dimensional surfaces. One of these surfaces is a
cylinder defined by the relation

r = R,

where {r,θ ,z} are the usual cylindrical polar coordinates:

r =
√

x2 + y2, θ = tan−1
(y

x

)
.

The second surface is defined by the equation

z = g(r,θ) = αrθ .

This surface is known as a helicoid.13 Taking the intersection of the cylinder and
helicoid one obtains a circular helix. The helix is right-handed if α > 0, left-handed
if α < 0, and degenerates to a circle if α = 0. An example of a right-handed circular
helix is shown in Figure 3.6. The angle γ whose tangent is α is known as the pitch
angle of the helix.

12 This is an advanced example. According to Kreyszig [42], the circular helix is the only nontrivial
example of a curve with constant torsion and constant curvature.
13 See, for example, Section 2.2 and Fig. 3-4 of Struik [77].
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Fig. 3.6 Examples of Serret-Frenet triads for a portion of a (right-handed) circular helix. The inset
image shows the relationship between the pitch angle γ and the parameter α .

In Cartesian coordinates, the circular helix may be represented by

x = Rcos(θ), y = Rsin(θ), z = αRθ .

The position vector of a point P on the helix is

r = xEx + yEy + zEz = Rer + αRθEz,

where for convenience we have defined, as always,

er = cos(θ )Ex + sin(θ)Ey, eθ = −sin(θ)Ex + cos(θ )Ey.

To determine the arc-length parameter s of the curve we first note that

dr
dt

= R
der

dt
+

d
dt

(αRθEz) = R
dθ
dt

eθ +αR
dθ
dt

Ez.

Consequently,
ds
dt

= R
√

1 + α2 dθ
dt

.
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Here, we have assumed that s increases in the direction of increasing θ .14 Integrating
both sides of this equation we obtain

s(θ ) = R
√

1 + α2(θ −θ0)+ s(θ0).

Fortunately, as in the case of the plane circle, we can invert the function s(θ ) to
solve for θ (s):

θ (s) =
1

R
√

1 + α2
(s− s0)+ θ (s0) .

The previous result enables us to write r as a function of s:

r = r̂(s) = Rêr(s)+
(

1

R
√

1 + α2
(s− s0)+ θ(s0)

)
RαEz,

where
êr(s) = cos(θ (s))Ex + sin(θ (s))Ey.

It should be noted that the function êθ (s) can be defined in a similar manner.
To determine the tangent vector, we differentiate r with respect to s:

et = êt(s) =
dr
ds

= R
der

dθ
dθ
ds

+ Rα
dθ
ds

Ez =
1√

1 + α2
(eθ +αEz) .

The expected unit magnitude of et should again be noted. The principal normal
vector en and the curvature κ are determined as usual by evaluating the derivative
of et with respect to s:

κen = κ̂(s)ên(s) =
det

ds
=

1√
1 + α2

deθ
ds

+
d
ds

(
α√

1 + α2
Ez

)

= − 1
R(1 + α2)

er.

Recalling that the vector en has unit magnitude and adopting the convention that
κ ≥ 0, we obtain

κ =
1

R(1 + α2)
, en = −er.

Finally, the binormal vector eb may be determined:

eb = et × en =
1√

1 + α2
(−αeθ + Ez) .

14 Otherwise, ds/dθ = −R
√

1+α2 and the forthcoming results need some minor modifications:
en remains equal to −er but et →−et and eb →−eb.
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The binormal vector is not constant. Differentiating eb with respect to s and rear-
ranging the resulting expression reveals that the torsion of the circular helix is

τ =
α

R(1 + α2)
.

Observe that the torsion is constant. Indeed, τ = ακ for a circular helix.

3.4 Application to Particle Mechanics

In applications of the Serret-Frenet formulae to particle dynamics we make two
identifications:

1. The space curve C is identified as the path of the particle.
2. The arc-length parameter s is considered to be a function of t.

In particular, we note that s may be identified as the distance traveled along the curve
C from a given reference point.

With the identifications in mind, the position vector r of the particle can be given
the equivalent functional representations

r = xEx + yEy + zEz = r(t) = r̂(s(t)) .

Using these representations, we obtain for the velocity vector v of the particle

v = ẋEx + ẏEy + żEz = ṙ(t) =
dr
ds

ds
dt

=
ds
dt

et .

It is important to see here that

v =
ds
dt

et = vet .

Because the speed v is greater than or equal to zero, it is apparent that et is the unit
vector in the direction of v. Similarly, for the acceleration vector a we obtain the
expression

a = v̇ =
d
dt

(
ds
dt

et

)
=

d2s
dt2 et +

ds
dt

det

dt
=

d2s
dt2 et +

ds
dt

det

ds
ds
dt

.

Recalling the definitions of the principal normal vector en and the speed v = ṡ, we
obtain the final desired expression for a:

a = v̇ =
d2s
dt2 et +κ

(
ds
dt

)2

en =
dv
dt

et +κv2en.



3.4 Application to Particle Mechanics 43

Path of the particle on a space curve C en

v = vet

a = v̇et +κv2en

r

O

Fig. 3.7 The velocity v and acceleration a vectors of a particle moving on a space curve.

This remarkable result states that the acceleration vector of the particle lies entirely
in the osculating plane (see Figure 3.7).

We note in passing that the distance traveled by the particle along its path may
be determined from the vector v. To see this, we first recall that

v ·v =
dr
dt

· dr
dt

=
(

ds
dt

)2

.

This implies that

s− s0 =
∫ s

s0

ds =
∫ t

t0

√
v(μ) ·v(μ)dμ ,

where s0 denotes the value of s when t = t0.
For a particle of mass m, Newton’s second law states that

F = ma,

where F is the resultant external force acting on the particle. Recalling that, for each
s, the set of vectors {et ,en,eb} forms a basis for E

3, we may write

F = Ftet + Fnen + Fbeb,

where

Ft = F̂t(s) = F · êt(s),
Fn = F̂n(s) = F · ên(s),
Fb = F̂b(s) = F · êb(s).
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Fixed smooth curve y = −x2 and z = 0
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Fig. 3.8 A particle moving on a curve under gravity.

Using these results, we find that

(F = ma) · et : Ft = m
d2s
dt2 ,

(F = ma) · en : Fn = mκ
(

ds
dt

)2

,

(F = ma) · eb : Fb = 0.

In certain cases, these three equations are completely uncoupled and allow a prob-
lem in particle dynamics to be easily solved. We note that the previous equations
also imply that F lies entirely in the osculating plane.

3.5 A Particle Moving on a Fixed Curve Under Gravity

As shown in Figure 3.8, we consider a particle of mass m moving on a smooth plane
curve defined by y = f (x) = −x2 and z = 0. A vertical gravitational force −mgEy

acts on the particle. We seek to determine the differential equation governing the
motion of the particle and the force exerted by the curve on the particle. In addition,
we examine the conditions on the motion of the particle that result in its losing
contact with the curve.

3.5.1 Kinematics

We first consider the Serret-Frenet triad for this plane curve. From the results in
Section 3.1.2, we find that the arc-length parameter s of the curve as a function of x
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N = Nnen +Nbeb

−mgEy

Fig. 3.9 Free-body diagram of the particle.

is

s = s(x) =
∫ x

0

√
1 + 4u2du + s(0)

=
x
2

√
1 + 4x2 +

1
4

sinh−1(2x)+ s(0).

Here, we have taken the arbitrary constant x0 = 0. One can also determine the radius
of curvature:

ρ =
1
2

(√
1 + 4x2

)3
.

The Serret-Frenet triad as a function of x can be calculated:

et =
1√

1 + 4x2
(Ex −2xEy) ,

en =
−1√

1 + 4x2
(Ey + 2xEx) ,

eb = −Ez.

The kinematics of the particle is given by the formulae in Section 3.4:

a = v̇ =
d2s
dt2 et + κ

(
ds
dt

)2

en.

3.5.2 Forces

As shown in Figure 3.9, we next consider a free-body diagram of the particle. The
forces acting on the particle are due to the gravitational force and the normal force
N = Nnen + Nbeb:

F = −mgEy + Nnen + Nbeb.

Here, N is the force that the curve exerts on the particle.
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3.5.3 Balance Law

Taking the components of F = ma with respect to the Serret-Frenet triad, three scalar
equations are obtained:

ms̈ =
2xmg√
1 + 4x2

, Nn =
mṡ2

ρ
− mg√

1 + 4x2
, Nb = 0.

3.5.4 Analysis

The last two of the above equations determine the normal force N:

N =
(

mv2

ρ
− mg√

1 + 4x2

)
en.

The first equation above determines the motion of the particle on the curve:

mv̇ =
2xmg√
1 + 4x2

.

To proceed to describe this equation as a differential equation for x(t), we note that

v =
ds
dt

=
ds
dx

dx
dt

=
dx
dt

√
1 + 4x2,

dv
dt

=
d2s
dt2 =

4x√
1 + 4x2

(
dx
dt

)2

+
√

1 + 4x2 d2x
dt2 .

You should note that v 	= dx/dt. For the example at hand, we substitute these re-
sults into the differential equation for dv/dt. After some rearranging, we obtain the
desired ordinary differential equation:

d2x

dt2 =
1

1 + 4x2

(
2xg−4x

(
dx
dt

)2
)

.

Given the initial conditions x(t0) and ẋ(t0), the solution x(t) of this equation can
then be used to determine the motion r(t) = x(t)Ex − x2(t)Ey of the particle and the
force N(t) exerted by the curve on the particle.

The nonlinear ordinary differential equation governing x(t) is formidable. Devel-
oping an analytical solution for x(t) is well beyond the scope of an undergraduate
engineering dynamics course. Instead, one is content with finding the speed v as a
function of x. To this end, one uses the identity

at = a · et =
dv
dt

=
dv
dx

dx
dt

=
v√

1 + 4x2

dv
dx

.
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v(x) =
√

g
2 (1+4x2)

v(x) = −
√

g
2 (1+4x2)

x

v

−1 1

4

−4

u

u

p

p

p

pp

en

en

et

et

N > 0

N < 0

Fig. 3.10 The speed v of a particle moving on the curve y = −x2 shown in Figure 3.8. The arrows
in this figure denote increasing time, and the curves formed by v(x) = ±

√
g(1+4x2)/2 divide

regions where N > 0 and N < 0, where N = −Nen. The six situations labeled p are physically
possible because N > 0, whereas the two curves v(x) labeled u are not.

It follows that

v2(x) = v2(x0)+ 2
∫ x

x0

at(u)
√

1 + 4u2du.

For the example at hand,

at(x) =
2xg√

1 + 4x2
,

and hence,

v2(x) = v2(x0)+
∫ x

x0

4ugdu = v2(x0)+ 2g
(
x2 − x2

0

)
.

Here, x0 and v(x0) are given initial conditions. Because y = −x2, you may have
noticed that this is none other than a conservation of energy result (cf. the latter part
of Section 5.7 of Chapter 5 where this problem is revisited).

We are now in a position to establish a criterion for the particle leaving the curve.
One can use the previous equation and the expression for ρ to calculate the force N
as a function of x:

N =
(

mv2

ρ
− mg√

1 + 4x2

)
en =

⎛
⎜⎝2mv2(x0)−mg(1 + 4x2

0)(√
1 + 4x2

)3

⎞
⎟⎠en.
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Notice that if v(x0) is sufficiently large, then N · en ≥ 0 and the particle will not
remain on the curve. Specifically, if

v2(x0) ≥ g
2

(
1 + 4x2

0

)
,

then the particle immediately loses contact with the curve.
To illustrate the results for v(x) and the loss of contact, we first use energy conser-

vation, v2(x) = v2(x0)+2g
(
x2 − x2

0

)
, to show representative cases of v(x) in Figure

3.10. We also show the curves where v2 = g
(
1 + 4x2

)
/2. You should notice from

this figure that for certain motions of the particle, it moves up the curve y = −x2

towards x = 0 but does not reach the summit. Instead, it stops, reverses its direction
of motion, and starts moving down the curve. We leave it as an exercise to interpret
the three other types of situations shown in Figure 3.10. You should note that for
two of these situations, labeled u, the normal force needed to prevent the particle
leaving the curve is a suction force and so the motions are not physically possible.

3.6 Summary

This chapter established the machinery needed to examine the dynamics of particles
moving in a general manner in three-dimensional space. To this end, some results
pertaining to curves in three-dimensional space were presented.

For a given space curve, the Serret-Frenet basis vectors {et ,en,eb} form a right-
handed orthonormal basis at each point of the curve. The three vectors are defined
by

et =
dr
ds

, κen =
d2r
ds2 , eb = et × en.

The rate of change of these vectors as the arc-length parameter s of the curve varies
is given by the Serret-Frenet relations:

det

ds
= κen,

den

ds
= −κet + τeb,

deb

ds
= −τen.

These relations and the Serret-Frenet basis vectors were illustrated for the case of a
plane curve, a straight line, a circle, a space curve parametrized by x, and a circular
helix. For three of these examples, it was convenient to describe the Serret-Frenet
basis vectors, torsion τ, and curvature κ as functions of x rather than s. In a similar
manner, the variable θ was used for the circle and circular helix.

To use these results in particle dynamics, the path of the particle is identified with
a space curve. Then, we showed that

v = ṡ
dr
ds

= ṡet = vet ,

a = ṡ2 d2r
ds2 + s̈

dr
ds

= κ ṡ2en + s̈et = κv2en + v̇et .
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In these equations, v = ṡ. Using the Serret-Frenet basis vectors, the balance of linear
momentum can be described by three equations:

Ft = F · et = mv̇, Fn = F · en = mκv2, Fb = F · eb = 0.

These equations were illustrated using the example of a particle moving on a smooth
fixed curve.

3.7 Exercises

The following short exercises are intended to assist you in reviewing the material in
the present chapter.

3.1. For the space curve r = xEx + axEy, show that

et =
1√

1 + a2
(Ex + aEy) , κ = 0.

In addition, show that en is any vector perpendicular to et , for example,

en =
1√

1 + a2
(−aEx + Ey) .

Why is the torsion τ of this curve 0?
3.2. Calculate the Serret-Frenet basis vectors for the space curve

r = xEx +
x3

3
Ey.

It is convenient to describe these vectors as functions of x. In addition, show
that the arc-length parameter s as a function of x is given by

s = s(x) =
∫ x

x0

√
1 + u4du + s(x0).

3.3. Consider the space curve

r = xEx +
x3

3
Ey +

x2

2
Ez.

Calculate the Serret-Frenet basis vectors for this curve. Again, it is conve-
nient to describe these vectors as functions of x. In addition, show that the
arc-length parameter s as a function of x is given by

s = s(x) =
∫ x

x0

√
1 + u4 + u2du + s(x0).
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3.4. Consider the plane circle r = 10er. Show that et = eθ , en = −er, κ = 0.1,
ρ = 10, τ = 0, and eb = Ez.

3.5. Calculate the Serret-Frenet basis vectors for the circular helix r = 10er +
10θEz. In addition, show that s(θ ) = 10

√
2(θ −θ0)+ s(θ0) and κ = τ =

1/20.
3.6. Starting from r = r(s(t)), show that v = vet and a = v̇et + κv2en.
3.7. A section of track of a roller coaster can be defined using the space curve

r = xEx + f (x)Ey. The measurement system used to determine the speed of
a trolley moving on this track measures x(t) rather than s(t). Consequently,
in order to establish and verify the equations of motion of the trolley, it is
desirable to know ẋ and ẍ in terms of ṡ and s̈. Starting from the definition
ṡ = ||v||, show that

ṡ =

√
1 +
(

d f
dx

)2

ẋ.

Using this result and the chain rule, show that

s̈ =
1√

1 +
(

d f
dx

)2

(
d f
dx

d2 f
dx2 ẋ2 +

(
1 +
(

d f
dx

)2
)

ẍ

)
.

3.8. Using the results of Exercise 3.7 and the expressions for the Serret-Frenet
basis vectors recorded in Section 3.3.1, write out the equations govern-
ing the motion of the trolley. You should assume that a gravitational force
−mgEy acts on the trolley while it is moving on the track, and model the
trolley as a particle of mass m.

3.9. Consider a particle of mass m moving on a circular helix r = ReR +αRθEz.
A gravitational force −mgEz acts on the particle. Show that

s(θ) = R
√

1 + α2 (θ −θ0)+ s(θ0), s̈ = R
√

1 + α2θ̈ .

Using F = ma and the results of Section 3.4, show that

F · et = − mgα√
1 + α2

= mR
√

1 + α2θ̈ ,

F · en = Nn = mRθ̇ 2,

F · eb = Nb − mg√
1 + α2

.

Here, Nnen + Nbeb is the normal force exerted by the curve on the particle.
3.10. Show that the polar coordinate θ of the particle discussed in Exercise 3.9 is

θ (t) = − gα
2R(1 + α2)

(t − t0)
2 + θ̇0 (t − t0)+ θ0.
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For various initial conditions θ0 and θ̇0, discuss the motion of the particle
on the helix. You should notice the similarities between the results of this
exercise and the projectile problem discussed in Section 1.6 of Chapter 1.

3.11. The equation of a clothoid is given by

x(u) = a
√

π
∫ u/

√
π

0
cos

(
πz2

2

)
dz,

y(u) = a
√

π
∫ u/

√
π

0
sin

(
πz2

2

)
dz,

where a > 0 is a constant (see Figure 3.3). Show that the arc-length param-
eter s of the clothoid is governed by the equation

ds
du

= a.

Verify that the curvature is given by the simple expression κ = u/a, and
compute the Serret-Frenet triad for the clothoid.





Chapter 4
Friction Forces and Spring Forces

TOPICS

Two types of forces are discussed in this chapter: friction forces and spring forces.
We start with the former and consider a simple classical experiment. Based on this
experiment, general (coordinate-free) expressions for friction forces are obtained.
The chapter closes with the corresponding developments for a spring force.

The reason for including a separate chapter on these two types of forces is that
I have found that they present the most difficulty to students when they are formu-
lating problems. In particular, many students have the impression that if they do
not correctly guess the direction of spring and friction forces in their free-body di-
agram, then they will obtain the wrong answer. The coordinate-free formulation of
these forces in this chapter bypasses this issue.

4.1 An Experiment on Friction

Most theories of friction forces arise from studies by the French scientist Charles
Augustin Coulomb.1 Here, we review a simple experiment that is easily replicated
(at least qualitatively) using a blackboard eraser, some weights, and a table.

As shown in Figure 4.1, consider a block of mass m that is initially at rest on a
horizontal plane. A force PEx acts on the block.

Upon increasing P, several observations can be made:

(a) For small values of P, the block remains at rest.
(b) Beyond a critical value P = P∗, the block starts to move.
(c) Once in motion, a constant value of P = P∗∗ is required to move the block at

a constant speed.
(d) Both P∗ and P∗∗ are proportional to the magnitude of the normal force N.

1 The most-cited reference to his work is his prize-winning paper [18], which was published in
1785. Accounts of Coulomb’s work on friction are contained in Dugas [23] and Heyman [35].
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Ex

Ey

g

PExO

Fig. 4.1 A block on a rough horizontal plane.

Let’s now analyze this experiment. We model the block as a particle of mass m,
and set

r = xEx + y0Ey + z0Ez,

where y0 and z0 are constants. We leave it as an exercise to derive expressions for v
and a.

The free-body diagram of the particle is shown in Figure 4.2. In this figure, F f =
FfxEx +FfzEz is the friction force exerted by the surface on the particle and N = NEy

is the normal (or reaction) force exerted by the surface on the particle.
From F = ma, we obtain three equations:

Ffx + P = mẍ,

N −mg = 0,

Ffz = 0.

For the static case, ẍ = 0, and from F = ma we find that F f = −PEx. As noted
previously, as the magnitude of P is increased beyond a critical value P∗, the block
starts to move. The critical value of P∗ is proportional to the magnitude of the nor-
mal force N. We denote this constant of proportionality by the coefficient of static
friction μs. Hence,

∣∣Ffx

∣∣≤ μs |N|= μsmg and P∗ = μsmg. In summary, for the static
case, F f = −PEx until P = μsmg. As P increases beyond this value, then the block
moves and the friction force is no longer equal to −PEx.

When the block starts moving, then the friction force opposes the motion. As a
result, its direction is opposite to v. Furthermore, as noted above, its magnitude is
proportional to the magnitude of N. The constant of proportionality is denoted by
μd , the coefficient of dynamic friction. Hence, assuming that the block moves to the

−mgEy

NEy

F f

PEx

Fig. 4.2 Free-body diagram of the block.
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right, F f = −μd|N|Ex = −μdmgEx. If the block moves at constant speed, then we
find from F = ma that P∗∗ = μdmg.

The coefficients of static friction and dynamic friction depend on the nature of
the surfaces of the horizontal surface and the block. They must be determined ex-
perimentally.

4.2 Static and Dynamic Coulomb Friction Forces

Among other assumptions, the previous developments assumed that the horizontal
surface was flat and stationary. For many problems, our developments are insuffi-
cient and need to be generalized in several directions:

(a) Cases where the surface on which the particle lies is curved.
(b) Cases where the particle is moving on a space curve.
(c) Cases where the particle moves on a space curve or surface which is in motion.

It is to these cases that we now turn. The theory that we present here is not uni-
versally applicable, although it is used extensively in engineering.2 For instance, in
theories proposed to explain the squealing induced by brake pads pressing on ro-
tors in automobiles, the Coulomb friction theory is used extensively [41]. On the
other hand, this friction theory is generally not used in modeling the contact forces
between tires and the surface of the road.

To proceed, the position vector and absolute velocity vector of the particle are
denoted by r and v, respectively. If the particle is in motion on a space curve, then
the velocity vector of the point of the space curve that is in contact with the particle
is denoted by vc. Similarly, if the particle is in motion on a surface, then the velocity
vector of the point of the surface that is in contact with the particle is denoted by vs.

4.2.1 A Particle on a Surface

Here, we assume that the particle is moving on a surface. Referring to Figure 4.3, at
the point P of the surface that is in contact with the particle, we assume that there is
a well-defined unit normal vector n. At this point of contact one also has a pair of
unit tangent vectors t1 and t2. We choose these tangent vectors such that {t1, t2,n}
is a right-handed basis for Euclidean three-space.

It is convenient to consider some examples. First, if the particle is moving on a
horizontal plane, then n = Ez, t1 = Ex, and t2 = Ey. Another example, which we

2 For further information on the limitations of the Coulomb friction theory, we refer the reader to
Rabinowicz [62] and Ruina [67].
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n

t1

t2

P

Fig. 4.3 The pair of tangent vectors t1 and t2 and normal vector n at a point P of a surface.

examine later in Section 4.5, is a particle on the inner surface of a cone z = r tan(α).
Here, α is the angle of inclination of the conical surface. In this case, we have

n = cos(α)Ez − sin(α)er, t1 = cos(α)er + sin(α)Ez, t2 = eθ .

Notice how these vectors have been normalized so as to have unit magnitude.
Recall that vs denotes the absolute velocity vector of the point of contact P. Then,

the velocity vector of the particle relative to P is

vrel = v−vs = v1t1 + v2t2.

If vrel = 0, then the particle is said to be stationary relative to the surface. Specifi-
cally, we have

static friction when vrel = 0 and dynamic friction when vrel �= 0.

The force exerted by the surface on the particle is composed of two parts: the nor-
mal (or reaction) force N and the friction force F f . For both the static and dynamic
cases,

N = Nn.

Furthermore, N is indeterminate. It can be found only from F = ma. The static
friction force is

F f = Ff1 t1 + Ff2t2,

where Ff1 and Ff2 are also indeterminate. The amount of static friction available is
limited by the coefficient of static friction:

∣∣∣∣F f
∣∣∣∣ ≤ μs ||N|| .

If this criterion fails, then the particle will move relative to the surface. The friction
force in this case is dynamic:

F f = −μd ||N|| vrel

||vrel|| .
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et

φ
φ

en

en
eb
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n1

n1

n2

n2

P

Fig. 4.4 The tangent vector et and two normal vectors n1 and n2 at a point P of a curve. The inset
figure shows the pair of normal vectors lying in the plane formed by en and eb.

You should notice that this force opposes the motion of the particle relative to the
surface.

4.2.2 A Particle on a Space Curve

Here, we assume that the particle is moving on a curve. At the point P of the curve
that is in contact with the particle, we assume that there is a well-defined unit tangent
vector et (see Figure 4.4). At this point of contact, one also has two unit normal
vectors n1 and n2. We choose these vectors such that {n1,n2,et} is a right-handed
basis for Euclidean three-space. The vectors n1 and n2 lie in the plane spanned by
en and eb. For instance, if the particle is moving on a horizontal line, then we can
choose et = Ex, n1 = Ey, and n2 = Ez.

Recall that vc denotes the absolute velocity vector of the point of contact P. Then,
the velocity vector of the particle relative to P is

vrel = v−vc = vtet .

If vrel = 0, then the particle is said to be stationary relative to the curve. Specifically,
we again have that

static friction when vrel = 0 and dynamic friction when vrel �= 0.

The force exerted by the curve on the particle is composed of two parts: the nor-
mal (or reaction) force N and the friction force F f . For both the static and dynamic
cases,

N = N1n1 + N2n2.

Furthermore, N1 and N2 are indeterminate. They can be found only from F = ma.
The static friction force is

F f = Ff et ,
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where Ff is also indeterminate. The amount of static friction available is limited by
the coefficient of static friction:

∣∣∣∣F f
∣∣∣∣ ≤ μs ||N|| .

Specifically, ∣∣Ff
∣∣ ≤ μs

√
N2

1 + N2
2 .

If this criterion fails, then the particle will move relative to the curve. The friction
force in this case is dynamic:

F f = −μd ||N|| vrel

||vrel||
= −μd

√
N2

1 + N2
2

vt

|vt |et .

You should notice that this force opposes the motion of the particle relative to the
curve.

4.2.3 Additional Comments

In the static friction case, vrel = 0 and the particle is stuck on the surface or curve.
For these instances, both the friction force F f and the normal force N are unknown.
However, because the motion of the surface/curve is known, the motion of the parti-
cle is also known and a can be determined. Hence, F = ma provides three equations
to determine these forces.

An error many students make is setting the static friction force Ffx , say, equal to
μsN or, worse, μsmg. Setting the static friction force equal to one of its maximum
values is generally not valid. The easiest example to explain this error is shown in
Figure 4.5. In this figure, two examples of the friction force for a block that is ini-
tially placed at rest on a plane are shown. If the plane were horizontal, then it would
be easy to show that F f = 0. As the angle of inclination φ of the plane is increased,
the magnitude of the friction force increases. Eventually, there is insufficient static
friction to hold the block at rest and it starts moving. Once in motion, the friction
force changes to dynamic Coulomb friction and the block accelerates down the in-
cline.

The careful reader will have noted that we are using et to denote the tangent
vector to a moving curve. However, our previous developments in Chapter 3 were
limited to a fixed curve. As mentioned there, they can be extended to a moving
curve. Specifically, let p denote the position vector to any point on a moving space
curve. This position vector depends on the arc-length parameter and time:

p = p̃(s,t).
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(a)

(b)

φ

φ

F f = mgsin(φ)Ex

F f = μdmgcos(φ)Ex

tan(φ) < μs

tan(φ) > μs

Fig. 4.5 A block on a rough plane at various angles of inclination: (a) tan(φ) < μs and the block
remains at rest and (b) tan(φ) > μs and there is insufficient static friction to prevent motion of the
block.

One now has derivatives featuring in the definitions of the Serret-Frenet triad are
partial derivatives with respect to s:

et = ẽt(s,t) =
∂p
∂ s

, κen =
∂ et

∂ s
, eb = et × en.

In essence one is freezing time and evaluating the Serret-Frenet triad for the frozen
curve. Another point of interest is that the velocity vc discussed earlier is equal to
∂p/∂ t. It is interesting to note that these developments are used in theories of rods
(see, e.g., Antman [1] or Love [46]).

4.3 A Particle on a Rough Moving Plane

To illustrate the previous developments, we consider the problem of a particle mov-
ing on a rough horizontal plane as shown in Figure 4.6. Every point on this plane is
assumed to be moving with a velocity vs = vsEz. A vertical gravitational force also
acts on the particle.

For this problem,

t1 = Ex, t2 = Ey, n = Ez.
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vs = vsEz

O

Fig. 4.6 A particle moving on a horizontal plane.

Furthermore, the velocity vector of the particle is

v = ẋEx + ẏEy + vsEz.

The relative velocity vector of the particle is

vrel = v−vs = ẋEx + ẏEy.

We leave it as an exercise to draw the free-body diagrams of the particle for the
static and dynamic cases.

Turning to the results for the static case, we have

F = NEz + FfxEx + FfyEy −mgEz = ma = mv̇sEz.

It follows from these equations that

F f = 0, N = m(g + v̇s)Ez.

As expected, the friction force is zero in this case.
Alternatively for the dynamic case we have

F = NEz −μd |N| vrel

||vrel|| −mgEz = ma.

From these three scalar equations, we find that the normal force is

N = m(g + v̇s)Ez.
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In addition, two ordinary differential equations of the motion of the particle relative
to the surface are obtained:

mẍ = −μd |m(g + v̇s)| ẋ√
ẋ2 + ẏ2

, mÿ = −μd |m(g + v̇s)| ẏ√
ẋ2 + ẏ2

.

As expected, these differential equations are valid only when ||vrel|| is nonzero.

4.4 Hooke’s Law and Linear Springs

The classical result on linear springs is due to a contemporary of Isaac Newton,
Robert Hooke (1635–1703), who announced his result in the form of the anagram
ceiiinosssttuu in 1660. He later published his result in his work Lectures de Potentia
restitutiva, or, Of spring explaining the power of springing bodies in 1678:

Ut tensio sic vis

which tranlates to “the power of any spring is in the same proportion with the tension
thereof.”3 His result is often known as Hooke’s law.

As with Coulomb’s work on friction, Hooke’s law is based on experimental ev-
idence. It is not valid in all situations. For instance, it implies that it is possible to
extend a spring as much as desired without the spring breaking, which is patently
not true. However, for many applications, where the change in the spring’s length is
small, it is a valid and extremely useful observation.

Referring to Figure 4.7, we wish to develop a general result for the force exerted
by a (massless) spring on a particle when the motion of the particle changes the
length of the spring. One end of the spring is attached to a point A which has a
position vector rA. Its other end is attached to a mass particle whose position vector
is r. We confine our attention to a linear spring and denote its stiffness by K. That
is, we assume Hooke’s law is valid.

The force generated by the spring is assumed to be linearly proportional to its
extension/compression. Here, the change in length of the spring is

||r− rA||−L,

where L is the unstretched length of the spring. If this number is positive, then the
spring is extended. The magnitude of the spring force Fs is

||Fs|| = |K (||r− rA||−L)| .

This is a statement of Hooke’s law.

3 From the Historical Introduction to Love [46]. In modern terminology, power is force and tension
is extension.
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Fig. 4.7 A spring attached to a mass particle.

It remains to determine the direction of Fs. First, suppose the spring is extended.
Then the force Fs will attempt to pull the particle towards A. In other words, its
direction is

− r− rA

||r− rA|| .

Combining this observation with the result on the magnitude of the spring force,
and noting that the extension is positive, we arrive at the expression

Fs = −K (||r− rA||−L)
r− rA

||r− rA|| .

On the other hand, if the spring is compressed, then this force will attempt to
push the particle away from A. As a result its direction will be

r− rA

||r− rA|| .

Because the change in length of the spring force is negative, we find that the mag-
nitude of the spring force in this case is

||Fs|| = −K (||r− rA||−L) .

Consequently, the spring force when the spring is compressed is

Fs = −K (||r− rA||−L)
r− rA

||r− rA|| .

It should be clear that the final expressions for Fs we have obtained for the ex-
tended and compressed springs are identical. In summary, for a spring of stiffness
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Fig. 4.8 A particle moving on a rough spinning cone.

K and unstretched length L, the force exerted by the spring on the particle is

Fs = −K (||r− rA||−L)
r− rA

||r− rA|| .

If, for a specific problem, one can choose the point A to be the origin, then the
expression for Fs simplifies considerably:

Fs = −K (||r||−L)
r
||r|| .

4.5 A Particle on a Rough Spinning Cone

We now consider the dynamics of a particle on a rough circular cone z = r tan(α).
The cone is rotating about its axis of symmetry with an angular speed Ω = Ω(t).
As shown in Figure 4.8, the particle is attached to the apex of the cone by a spring
of stiffness K and unstretched length L.

In what follows, we seek to determine the differential equations governing the
motion of the particle and, in the event that the particle is not moving, the force ex-
erted by the surface on the particle. The problem presented here is formidable; it has
spring forces, friction, and a nontrivial surface. However, various special cases of
this system arise in many problems in mechanics. For instance, by setting α = 0◦ or
90◦, one has the problem of a particle on a cylinder or horizontal plane, respectively.
Representative trajectories of the particle for the case when the cone is smooth are
shown in Figure 4.9.

4.5.1 Kinematics

We choose our origin to coincide with the fixed apex of the cone. Neglecting the
thickness of the spring, this point also coincides with the point of attachment of the
spring to the apex of the cone. It is convenient to use a cylindrical polar coordinate
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Fig. 4.9 Examples of the trajectories of a particle moving on a smooth cone. The particle is at-
tached to the apex O of the cone by a linear spring and a vertical gravitational force also acts on
the particle. For (a) θ̇(0) > 0 and for (b) θ̇(0) < 0.

system to describe the kinematics of this problem:

r = rer + r tan(α)Ez.

Differentiating this position vector, we find that

v = ṙ (er + tan(α)Ez)+ rθ̇eθ ,

a = r̈ (er + tan(α)Ez)+
(
rθ̈ + 2ṙθ̇

)
eθ − rθ̇ 2er.

We also note that ||r|| = r/cos(α).
The position vector of the point of contact P of the particle with the cone is the

same as that for the particle. It follows that, at P, the normal and tangential vectors
are

n = cos(α)Ez − sin(α)er, t1 = cos(α)er + sin(α)Ez, t2 = eθ .

Turning to the velocity vector of the point P, it is easily seen that this vector is

vs = rΩeθ .

Consequently,
vrel = ṙ (er + tan(α)Ez)+ r(θ̇ −Ω)eθ .

You should notice that, in general, θ̇ �= Ω . However, if vrel is zero, then a simplifies
considerably.
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Fs = −K (||r||−L) r
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Fig. 4.10 Free-body diagram of the particle.

4.5.2 Forces

The free-body diagram for this problem is shown in Figure 4.10. Because we have
chosen the origin to be the point of attachment of the spring, the spring force has
the representation

Fs = −K (||r||−L)
r
||r|| = −K (rsec(α)−L) t1.

Notice that we are taking the general expression for the spring force that was estab-
lished in Section 4.4 and substituting for r. Alternatively, one can derive the second
expression for the spring force above from scratch. We follow the (far easier) pro-
cedure of substituting directly into the general expression throughout the remainder
of this book. Furthermore, the normal and friction forces acting on the particle are

N = Nn, F f = Ff1 t1 + Ffθ eθ .

The resultant force acting on the particle is

F = Nn+
(
Ff1 −K (rsec(α)−L)

)
t1 + Ffθ eθ −mgEz.

4.5.3 Balance Law

It is convenient to take the t1, eθ , and n components of F = ma:

Ff1 −K (rsec (α)−L)−mgsin(α) = m
(
r̈sec (α)− rθ̇ 2 cos(α)

)
,

Ffθ = mrθ̈ + 2mṙθ̇ ,

N −mgcos(α) = mrθ̇ 2 sin(α).
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We have omitted several algebraic details that were used to arrive at the final form
of these equations.

4.5.4 Analysis

From the three equations above, we find that the normal force N is

N = mgcos(α)n+ mrθ̇ 2 sin(α)n.

If the particle is not moving relative to the surface, then θ̇ = Ω and r = r0. As a
result, the expression for N becomes

N =
(
mgcos(α)+ mr0Ω 2 sin(α)

)
n.

In both cases, this force always points in the direction of n, so the particle does not
lose contact with the surface.

Turning to the static friction case, we find from the remaining two equations that
the friction force is

F f =
(
K (r0sec (α)−L)+ mgsin(α)−mr0Ω 2 cos(α)

)
t1 + mr0Ω̇eθ ,

where r0 = r0er + r0 tan(α)Ez. You should notice that if Ω is constant, then the
static friction force has no component in the eθ direction. The static friction force is
limited by the static friction criterion:

∣∣∣∣F f
∣∣∣∣ ≤ μs ||N|| = μs

∣∣mgcos(α)+ mr0Ω 2 sin(α)
∣∣ .

When this criterion fails, then the particle begins to move relative to the surface.
When the particle is in motion relative to the surface, the friction force is

F f = −μd ||N|| vrel

||vrel||
= −μd |mgcos(α)+ mrθ̇ 2 sin(α)| vrel

||vrel|| ,

where
vrel = ṙ (er + tan(α)Ez)+ r(θ̇ −Ω)eθ .

Substituting for the components of the dynamic friction force in the two equations
obtained from F = ma,

Ff1 −mgsin(α)−K (rsec (α)−L) = m
(
r̈sec (α)− rθ̇ 2 cos(α)

)
,

Ffθ = mrθ̈ + 2mṙθ̇ ,
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one arrives at a pair of ordinary differential equations for r and θ . The solution of
these equations determines the motion of the particle relative to the surface. It is
these equations that were integrated numerically with Ff1 = Ffθ = 0 to produce the
results shown in Figure 4.9.

4.6 Summary

Two types of forces were discussed in this chapter: friction forces and spring forces.
For the friction forces, two classes needed to be considered, namely, static friction
forces and dynamic friction forces. In addition, it was necessary to consider the two
cases of a particle moving relative to a curve and a particle moving relative to a
surface.

For a particle moving relative to a curve, a triad {et ,n1,n2} associated with each
point of the curve was defined. It should be noted that the vectors en and eb will
lie in the plane spanned by n1 and n2. The velocity vector of the point of the curve
that is in contact with the particle was denoted vc. Hence, the velocity vector of the
particle relative to its point of contact with the curve was vrel = v− vc = vtet . The
friction force in this case had one component, F f = Ff et , whereas the normal force
had two components: N = N1n1 + N2n2.

For a particle moving relative to a surface, a triad {n, t1, t2} associated with each
point of the surface was defined. The velocity vector of the point of the surface
that is in contact with the particle was denoted vs. Hence, the velocity vector of the
particle relative to its point of contact with the surface was vrel = v−vs = v1t1 +v2t2.
The friction force in this case had two components, F f = Ff1t1 +Ff2 t2, whereas the
normal force had one component: N = Nn.

For both cases, when vrel is nonzero, the friction force is of the dynamic Coulomb
friction type:

F f = −μd ||N|| vrel

||vrel|| .

However, if there is no relative motion, then vrel = 0 and F f is indeterminate. In
other words, it must be calculated from F = ma. However, the magnitude of the
friction force is limited by the static friction criterion

∣∣∣∣F f
∣∣∣∣ ≤ μs ||N||.

The second force we examined was the spring force. We considered a linear
spring of stiffness K and unstretched length L. One end of the spring was attached
to a fixed point A and the other end was attached to a particle. Using Hooke’s law,
the spring force was shown to be

Fs = −K (||r− rA||−L)
r− rA

||r− rA|| .

Finally, several examples were presented to illustrate the use of the aforemen-
tioned expressions for the spring and friction forces.
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4.7 Exercises

The following short exercises are intended to assist you in reviewing Chapter 4.

4.1. Consider a particle moving on a circle of radius R. The position vector of the
particle is r = Rer. Show that the dynamic friction force and normal force
have the representations

F f = −μd ||N|| θ̇
|θ̇ |eθ , N = Nrer + NzEz.

4.2. Consider a particle moving on a cylinder of radius R. The position vector of
the particle is r = Rer +zEz. Show that the dynamic friction force and normal
force have the representations

F f = −μd ||N|| Rθ̇eθ + żEz√
R2θ̇ 2 + ż2

, N = Ner.

4.3. Consider a particle that is stationary on a rough circle of radius R. The posi-
tion vector of the particle is r = Rer. Show that the static friction force and
normal force have the representations

F f = Ff eθ , N = Nrer + NzEz.

In addition, show that the static friction criterion for this problem is

|Ff | ≤ μs

√
N2

r + N2
z .

Show that this inequality is equivalent to

−μs

√
N2

r + N2
z ≤ Ff ≤ μs

√
N2

r + N2
z .

4.4. Consider a particle that is stationary on a rough cylinder of radius R. The
position vector of the particle is r = Rer + zEz. Show that the static friction
force and normal force have the representations

F f = Ffθ eθ + FfzEz, N = Ner.

In addition, show that the static friction criterion for this problem is
√

F2
fθ

+ F2
fz
≤ μs |N| .

4.5. A particle of mass m is connected to a fixed point O by a spring of stiffness
K and unstretched length L. The particle is free to move on a circle of radius
R which lies on the z = z0 plane. A vertical gravitational force −mgEz acts
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on the particle. If the circle is smooth, show that the resultant force F acting
on the particle has the representation

F = −mgEz + NzEz + Nrer −K

(√
R2 + z2

0 −L

)
Rer + z0Ez√

R2 + z2
0

.

4.6. Suppose that the particle in Exercise 4.5 is moving on a rough circle. Show
that the resultant force F acting on the particle now has the representation

F = −mgEz + NzEz + Nrer −K

(√
R2 + z2

0 −L

)
Rer + z0Ez√

R2 + z2
0

−μd

√
N2

r + N2
z

θ̇∣∣θ̇ ∣∣eθ .

4.7. For the dynamic friction force it is a common error to write

F f = −μd ||N|| v
||v|| .

Give two examples which illustrate that this expression is incorrect when the
surface or curve that the particle is moving on is itself in motion.

4.8. A particle of mass m is connected to a fixed point O by a spring of stiffness K
and unstretched length L. Show that the spring force has the representations

Fs = −K
(√

x2 + y2 + z2 −L
) xEx + yEy + zEz√

x2 + y2 + z2

= −K
(√

r2 + z2 −L
) rer + zEz√

r2 + z2
.

4.9. For the system considered in Section 4.5, establish the differential equations
governing the motion of the particle when the contact between the cone and
the particle is smooth. In addition, specialize your results to the case where
the spring is replaced by an inextensible cable of length L.





Chapter 5
Power, Work, and Energy

TOPICS

We begin here by discussing the notions of power and work. Subsequently, we make
these ideas more precise by defining the mechanical power of a force and, from this,
the work done by the force during the motion of a particle. Next, the work-energy
theorem Ṫ = F ·v is derived from the balance of linear momentum. It is then appro-
priate to discuss conservative forces, and we spend some added time discussing the
potential energies of gravitational and spring forces. With these preliminaries aside,
energy conservation is discussed. Finally, some examples are presented that show
how all of these ideas are used.

5.1 The Concepts of Work and Power

You may recall from other courses the notion that the work done by a constant
force in moving an object through a distance is the product of the force and the
distance. This idea has been traced to Coriolis in the 1820s (see [39]).1 Subsequent
works on the notion of work extended the concept to nonconstant forces moving a
particle along a curved path at a nonconstant speed. For this more general case, it
is convenient to use the concept of mechanical power or the rate at which a force
performs work. Energy is defined as the ability to perform work.

In SI units, the units of work are Newton meters (or Joule) and the units of power
are Newton meters per second (or Watt). The Scotsman James Watt (1736–1819)
played a seminal role in the development of the steam engine, and James P. Joule
(1818–1889) was an English physicist who is famed for his discovery of the formula
for the heat developed by passing a current through a conductor. The power of an
automotive engine is often described in units of horsepower (Hp). Noting that one

1 Gaspard-Gustav de Coriolis (1792–1843) was a French engineer, mathematician, and scientist.
His most famous contribution to science was the discovery of the Coriolis effect.

O.M. O’Reilly, Engineering Dynamics: A Primer, DOI 10.1007/978-1-4419-6360-4 5, 71
c© Springer Science+Business Media, LLC 2010
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Fig. 5.1 Schematic of the motion of a particle.

(metric) Hp ≈ 735.5 Watts, the power rating of the Bugatti Veyron of 1001 metric
Hp translates to 736 kiloWatts. Assuming perfect energy conversion, such a car
engine has the ability to generate enough electricity to power over seven thousand
100-Watt light bulbs. In nutrition, the unit of work most often used is the calorie
(≈ 4200 Joules). Hence, one calorie is sufficient energy to raise 100 kilograms
through a distance of ≈ 4.3 meters.

5.2 The Power of a Force

Consider a force P acting on a particle of mass m. We do not assume that the force
is constant or that the particle moves in a straight line. The rate of work done by the
force P on the particle is known as its mechanical power:

Mechanical Power of P = P ·v.

Here, the particle has a position vector r and an absolute velocity vector v = ṙ.
Consequently, if P · v = 0 (i.e., P is normal to v), then the force P does no work.
There are several instances of this occurrence presented in the remainder of this
book.

Consider the work done by P as the particle moves from r = r(tA) = rA to r =
r(tB) = rB (cf. Figure 5.1). At A, the arc-length parameter s = sA, whereas at B,
s = sB. In what follows, the vector et is the unit tangent vector to the path of the
particle. If the particle is moving on a fixed curve, then this vector is also the unit
tangent vector to the fixed curve. On the other hand, if the particle is in motion on
a moving curve, then the respective tangent vectors to the curve and the path of the
particle will not coincide.2

2 The easiest example that illuminates this point is to consider a particle moving on a horizontal
line. The tangent vector is constant, say Ex. However, if the line is moving, say with a velocity
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With some algebra, we obtain several equivalent expressions for the work done
by P by integrating its power with respect to time:

WAB =
∫ tB

tA
P · dr

dt
dt

=
∫ rB

rA

P ·dr

=
∫ tB

tA
P · ds

dt
et dt

=
∫ sB

sA

P · etds.

We see from these results, that only the tangential component of P does work. In
particular, forces that are normal to the path of the particle do no work.

Writing the force P and the differential dr = vdt with respect to their components
in various bases,

P = PxEx + PyEy + PzEz

= Prer + Pθ eθ + PzEz

= Ptet + Pnen + Pbeb,

dr = dxEx + dyEy + dzEz

= drer + rdθeθ + dzEz = dset ,

we obtain the component forms of the previous results:

WAB =
∫ rB

rA

P ·dr =
∫ rB

rA

Pxdx + Pydy + Pzdz

=
∫ rB

rA

Prdr + Pθ rdθ + Pzdz

=
∫ sB

sA

P · etds

=
∫ sB

sA

Ptds.

These integrals are evaluated along the path of the particle.

vcEy, then the velocity vector of the particle is not vxEx, rather it is vxEx + vcEy =
(√

v2
x + v2

c

)
et ,

where et is the unit tangent vector to the path of the particle.
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5.3 The Work-Energy Theorem

The kinetic energy T of a particle is defined to be

T =
1
2

mv ·v =
1
2

mv2 =
1
2

m
(
v2

x + v2
y + v2

z

)
,

where v = vet . The work-energy theorem relates the change in kinetic energy to the
resultant force F acting on the particle:

dT
dt

=
d
dt

(
1
2

mv ·v
)

=
1
2

mv̇ ·v +
1
2

mv · v̇ = mv̇ ·v = F ·v.

In sum, the work-energy theorem is

dT
dt

= F ·v.

In words, the rate of change of the kinetic energy is equal to the mechanical power
of the resultant force. You should note that this theorem is a consequence of F = ma.

We can integrate Ṫ = F ·v with respect to time to get a result that you have used
previously:

1
2

mv2
B −

1
2

mv2
A =

∫ tB

tA
Ṫ dt =

∫ tB

tA
F ·vdt =

∫ sB

sA

F · etds

=
∫ sB

sA

ma · etds

= m
∫ sB

sA

atds.

That is,

v2
B − v2

A =
∫ sB

sA

2atds.

Alternatively, you could derive this result from at = v̇ = vdv/ds.

5.4 Conservative Forces

A force P is defined to be conservative when

P = −grad(U) = −∂U
∂r

.

Here, U = U(r) is the potential energy of the force P, and the negative sign is a
historical convention.



5.5 Examples of Conservative Forces 75

The potential energy function U has several representations:

U = U(r) = Ū(s) = Û(x,y,z) = Ũ(r,θ ,z).

Furthermore, this energy is defined modulo an arbitrary additive constant. Here, we
always take this constant to be zero. The gradient of U has several representations
depending on the coordinate system used:

∂U
∂ r

=
∂Û
∂x

Ex +
∂Û
∂y

Ey +
∂Û
∂ z

Ez

=
∂Ũ
∂ r

er +
1
r

∂Ũ
∂θ

eθ +
∂Ũ
∂ z

Ez.

You can also use any of these representations to obtain the results discussed below.
However, it is easier to derive most of them without specifying a particular basis or
coordinate system.

If a force P is conservative, then the work done by P in any motion depends only
on the endpoints and not on the path. To see this, we use our earlier results on the
work done by P:

WAB =
∫ tB

tA
Ẇ dt =

∫ tB

tA
P · dr

dt
dt

=
∫ rB

rA

P ·dr = −
∫ rB

rA

∂U
∂r

·dr

= U (rA)−U (rB) .

Hence, if A and B have the same position vector, then no work is done by P. This
leads to the statement that the work done by a conservative force in a closed path of
the particle is zero.

It is important to note that if P is conservative then its mechanical power has a
simple expression:

P ·v = −∂U
∂r

·v = −dU
dt

.

Not all forces are conservative. For example, tension forces in inextensible strings,
friction forces F f , and normal forces N are not conservative.

5.5 Examples of Conservative Forces

The two main examples of conservative forces one encounters are constant forces
C, of which the gravitational force is an example, and spring forces Fs.
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Fig. 5.2 A particle under the influence of conservative forces C and Fs. The total potential energy
of the particle is U = Uc +Us.

5.5.1 Constant Forces

The conservative nature of the gravitational force −mgEz can be seen by defining
the potential energy Uc of any constant force C:

Uc = −C · r.

To see that Uc is indeed the potential energy of the force C, we need to show that,
for all velocity vectors v,

C ·v = −∂Uc

∂r
·v = −dUc

dt
.

Let’s do this:
dUc

dt
=

d
dt

(−C · r) = −Ċ · r−C ·v = −C ·v.

Based on this result, we then have the following representative constant forces and
their potential energies:

C = −mgEy, Uc = mgEy · r,
C = −mgEz, Uc = mgEz · r,
C = 10Ex, Uc = −10Ex · r.

You can easily construct some others. Notice that the gravitational potential energy
is “mg” times the “height.”
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5.5.2 Spring Forces

Consider a linear spring of stiffness K and unstretched length L. As shown in Figure
5.2, one end of the spring is attached to a particle of mass m and the other end is
attached to a fixed point D. You should recall that in Section 4.4 of the previous
chapter we showed that the force exerted by the spring on the particle is

Fs = −K (||r− rD||−L)
r− rD

||r− rD|| .

This force is conservative and has a potential energy

Us =
K
2

(||r− rD||−L)2 .

That is, the potential energy of a linear spring is half the stiffness times the change
in length squared.

To show that Us is indeed the potential energy of Fs, we need to determine its
gradient or, equivalently, we need to show that, for all velocity vectors v,

Fs ·v = −∂Us

∂r
·v = −dUs

dt
.

Because Fs is not constant,

Fs ·v �= d
dt

(Fs · r) ,
and, as a result, this is a difficult result to establish. To show that Us is the correct
potential energy, we first need to establish an intermediate result. Suppose x is a
function of time, then

d ||x||
dt

=
d
dt

(√
x ·x)

=
1

2
√

x ·x
d
dt

(x ·x)

=
1

2
√

x ·x (ẋ ·x + x · ẋ)

=
ẋ ·x
||x|| .

If we let x = r− rD, then we find the result

d ||r− rD||
dt

=
(ṙ− ṙD) · (r− rD)

||r− rD|| =
v · (r− rD)
||r− rD|| .
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Let’s now differentiate Us:

dUs

dt
=

d
dt

(
K
2

(||r− rD||−L)2
)

= K (||r− rD||−L)
d
dt

(||r− rD||−L)

= K (||r− rD||−L)
ṙ · (r− rD)
||r− rD||

= −Fs ·v.

Hence, Us is indeed the potential energy of the linear spring force. You should no-
tice that in the proof we used the fact that vD = 0. Finally, the expression we have
obtained for Us is valid even when rD = 0, that is, when the point D can be chosen
to be the origin.

5.6 Energy Conservation

Consider a particle of mass m that is acted upon by a set of forces: n of these forces
are conservative, F1, F2, . . . ,Fn, and the remainder, whose resultant we denote by
Fnc, are nonconservative. The potential energies of the conservative forces are de-
noted by U1, U2, . . . ,Un:

Fi = −∂Ui

∂r
,

where i = 1, . . . ,n. The resultant conservative force acting on the particle is

Fc =
n

∑
i=1

Fi = −
n

∑
i=1

∂Ui

∂r
= −∂U

∂r
,

where U , the total potential energy of the conservative forces, is

U =
n

∑
i=1

Ui.

In summary,

F = Fnc + Fc = Fnc − ∂U
∂ r

.

To establish energy-conservation results, we start with the work-energy theorem:

dT
dt

= F ·v.
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For the case at hand,

dT
dt

= F ·v = (Fc + Fnc) ·v =
(
−∂U

∂r
+ Fnc

)
·v

= −dU
dt

+ Fnc ·v.

We now define the total energy E of the particle:

E = T +U.

This energy is the sum of the kinetic and potential energies of the particle. Rear-
ranging the previous equation with the assistance of the definition of E , we find
that

dE
dt

= Fnc ·v.

This equation can be viewed as an alternative form of the work-energy theorem.
If the nonconservative forces do no work during a motion of the particle, that is,

Fnc ·v = 0, then the total energy E of the particle is conserved:3

dE
dt

= 0.

This implies that E is a constant E0 during the motion of the particle:4

E = T +U =
1
2

mv2 +U(r) = E0.

During an energy-conserving motion, there is a transfer between the kinetic and
potential energies of a particle.

In problems, one uses energy conservation Ė = 0 to solve for one unknown. For
example, suppose one is given an initial speed v0 and location r0 of a particle at
some instant during an energy-conserving motion. One can use energy conservation
to determine the speed v at another location r during this motion:

v2 =
2
m

(U(r0)−U(r))+ v2
0.

In light of our earlier discussion in Section 5.3 of the identity at = dv/dt = vdv/ds,
you should notice that

1
m

(U(r0)−U(r)) =
∫ s

s0

at(u)du =
1
m

∫ t

t0
F ·vdτ.

3 This is a classical result that was known, although not in the form written here, to the Dutch
scientist Christiaan Huygens (1629–1695) and the German scientist Gottfried Wilhelm Leibniz
(1646–1716). These men were contemporaries of Isaac Newton (1643–1727).
4 A common error is to assume that Ė = 0 implies that E = 0. It does not.
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Path of particle on a rough curve

Spring

A
B

C

v = vet

rC

rA

r

rB

O

g

Fig. 5.3 A particle in motion on a fixed space curve. The total potential energy of the particle is
the sum of the gravitational and spring potential energies.

That is, if the only forces that do work are conservative, then the existence of the
potential energies makes integrating the power of F trivial.

5.7 A Particle Moving on a Rough Curve

Consider a particle of mass m that is moving on the rough space curve shown in
Figure 5.3. A gravitational force −mgEz acts on the particle. In addition, a linear
spring of stiffness K and unstretched length L is attached to the particle and a fixed
point C.

We wish to determine the work done by the friction force on the particle as it
moves from r = r(tA) = rA to r = r(tB) = rB. Furthermore, we ask the question, if
the curve were smooth, then given v(tA), what would v(tB) be?

5.7.1 Kinematics

Here, we use the Serret-Frenet triads, and we tacitly assume that these vectors can
be calculated for the curve at hand. We then have the usual results

v = vet , a = v̇et +κv2en, T =
1
2

mv2.
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5.7.2 Forces

We leave the free-body diagram as an exercise and record that the resultant force F
acting on the particle is

F = F f + Nnen + Nbeb −mgEz −K (||r− rC||−L)
r− rC

||r− rC|| .

If the friction is dynamic Coulomb friction, then

F f = −μd ||Nnen + Nbeb|| v
||v|| .

On the other hand, if the particle is stationary, then the friction is static Coulomb
friction.

5.7.3 Work Done by Friction

We are now in a position to start from the work-energy theorem and establish how
the rate of change of total energy is related to the power of the friction force:

dT
dt

= F ·v

= F f ·v + Nnen ·v + Nbeb ·v−mgEz ·v−K (||r− rC||−L)
r− rC

||r− rC|| ·v.

However, the normal forces are perpendicular to the velocity vector, and the spring
and gravitational forces are conservative:

Nnen ·v = 0,

Nbeb ·v = 0,

−mgEz ·v = − d
dt

(mgEz · r) ,

−K (||r− rC||−L)
r− rC

||r− rC|| ·v = − d
dt

(
K
2

(||r− rC||−L)2
)

.

As a result,
dE
dt

= F f ·v,

where the total energy of the particle E is

E = T +
K
2

(||r− rC||−L)2 + mgEz · r.
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You could also have arrived at this result by starting with the alternative form of the
work-energy theorem, Ė = Fnc ·v, and noting that the normal forces are perpendic-
ular to the velocity of the particle and hence are workless.

The work done by the friction force can be found by integrating the above equa-
tion for the time rate of change of the total energy E:

∫ tB

tA
F f ·vdt = EB−EA

=
1
2

m
(
v2

B − v2
A

)
+ mgEz · (rB − rA)

+
K
2

(
(||rB − rC||−L)2 − (||rA − rC||−L)2

)
.

Clearly, if you know rA, rB, vA, and vB, then you don’t need to directly integrate
F f ·v to determine the work done by the friction force. Furthermore, given the above
information, one doesn’t need to calculate the Serret-Frenet triads for each point
along the curve.

It is interesting to note that if the friction were of the dynamic Coulomb type,
then

dE
dt

= F f ·v = −μd ||Nnen + Nbeb|| v
||v|| ·v

= −μd ||Nnen + Nbeb|| ||v|| < 0.

In other words, such a friction force will dissipate energy, as expected.

5.7.4 The Smooth Curve

For a smooth curve, F f = 0 and we have energy conservation: Ė = 0. In this case,
given rA, rB, and vA, one can calculate vB by equating EA to EB:

v2
B = v2

A + 2gEz · (rA − rB)+
K
m

(
(||rA − rC||−L)2 − (||rB − rC||−L)2

)
.

This is the main use of energy conservation in the problems discussed in engineering
dynamics courses. Notice that because the only forces that do work on the particle
are conservative, the velocity at B does not depend on the path between A and B.

A specific example of this case was discussed in Section 3.5. In this example,
the spring force was absent, and it was shown there, without using the work-energy
theorem directly, that

v2(x) = v2(x0)+
∫ x

x0

4ugdu = v2(x0)+ 2g
(
x2 − x2

0

)
.
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Our earlier comment in Section 3.5.4 of Chapter 3 that this was an energy conser-
vation result should now be obvious to you.

5.8 Further Examples of Energy Conservation

We can use the results of the previous problem for many others after performing
some minor modifications.

5.8.1 A Particle in a Conservative Force Field

Consider a particle moving in space, as opposed to along a fixed curve. The particle
is assumed to be under the sole influences of a gravitational force and a spring force:

F = −mgEz −K (||r− rC||−L)
r− rC

||r− rC|| .

By setting F f = 0 and N = 0 in the previous example, one finds that the total energy
E of the particle is conserved, where

E = T +
K
2

(||r− rC||−L)2 + mgEz · r.

The Serret-Frenet triad for this example pertains to the path of the particle as op-
posed to the prescribed fixed curve, and it is impossible to explicitly determine this
triad without first solving F = ma for the motion r(t) of the particle.

5.8.2 A Particle on a Fixed Smooth Surface

If a particle is moving on any fixed smooth surface under conservative gravitational
and spring forces, then

F = −mgEz −K (||r− rC||−L)
r− rC

||r− rC|| + N.

Here, N is the normal (or reaction) force exerted by the surface on the particle.
However, because this force is perpendicular to the velocity vector of the particle,
N ·v = 0. Consequently, the total energy is again conserved, where

E = T +U, U =
K
2

(||r− rC||−L)2 + mgEz · r.
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(a) (b)

m

O

0
0
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2t

E(t)
E(0)

T (t)
E(0)

U(t)
E(0)

Fig. 5.4 Conservation of energy for a particle moving on a smooth cone under the action of gravity
and a linear spring force: (a) a motion of the particle and (b) the corresponding total energy E(t),
kinetic energy T (t), and potential energy U(t) for the particle.

We have already seen two examples of energy conservation: the pair of motions
of the particle shown in Figure 4.9 are such that the total energy E of the particle
remains equal to its initial value. The conservation for the motion shown in Figure
4.9(a) is illustrated in Figure 5.4. You should notice how the potential and kinetic
energies of the particle vary in time and their sum is constant.

5.8.3 The Planar Pendulum

We described the planar pendulum in Section 2.4. For this example, one can show
using the work-energy theorem that the total energy E of the particle is conserved.
To begin,

dT
dt

= F ·v
= Nrer ·v−mgEy ·v + NEz ·v
= − d

dt
(mgEy · r) ,

where we have changed notation and defined Nrer as the tension force in the
string/rod. This force and the normal force NEz are perpendicular to the velocity
vector and, as a result, are workless. It now follows that the total energy E of the
particle is conserved:

d
dt

(
E =

1
2

mv ·v + mgEy · r
)

= 0.
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v

m

Fig. 5.5 Schematic of a particle of mass m moving on a smooth clothoid loop, and the normalized
acceleration κv2/g experienced by the particle, for a range of initial velocities vA, as it moves from
the bottom A to the top D of the loop.

An example of this conservation can be seen in the pendulum motion displayed in
Figure 2.1.

5.8.4 The Roller Coaster

Consider a loop-the-loop design for a section of a roller coaster that is shown in Fig-
ure 5.5. The design features the clothoid loop that was discussed earlier in Chapter
3. We assume that the loop is smooth and model the roller coaster cart as a particle
of mass m. Our interest lies in examining the normal acceleration κv2 of the cart as
it moves along the smooth loop.

The problem at hand is a special case of the situation discussed earlier of a parti-
cle moving on a smooth curve under the influence of conservative forces (see Sec-
tion 5.7.4). Thus, we have the energy conservation result

v2 = v2
A + 2g(yA − y) .

We take the point A as shown in Figure 5.5 and set the arc-length parameter sA = 0
and position vector rA = 0. It follows readily that the normal acceleration divided
by the gravitational acceleration (for a point on the track whose vertical ordinate is
y) is given by

κv2

g
= κ

(
v2

A

g
−2y

)
.

Using the results of Exercise 3.11 (see page 51), we note that κ = s/a2 where a is a
constant and we also note the expression for y. By picking sufficiently large values
of vA we can determine how κv2/g changes as the particle moves along the loop.5

5 It can be shown for a loop with H = 35 meters that vA >
√

2gH ≈ 26.21 meters per second in
order for the particle to reach the top D of the loop. By way of background, 27 meters per second
is approximately 60 mph, 35 meters is approximately 115 feet, and a value of H = 35 corresponds
to a value of the clothoid parameter a = 27.657.
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A range of numerical results is shown in Figure 5.5. For these results, the height H
of the loop is 35 meters, and we consider a range of values of vA from 27 meters
per second to 40 meters per second. From the figure, you might notice the high
g-force values experienced by the particle and the fact that the maximum normal
acceleration does not always occur when the particle is at the apex D of the loop.
For roller coaster designs the duration and magnitude of the normal accelerations
are relevant to passenger safety and must be considered in the design.6

5.9 Summary

The first concept introduced in this chapter was the mechanical power of a force P
acting on a particle whose absolute velocity vector is v: P · v. The work done by a
force P in a interval of time [tA,tB] is the integral of its power with respect to time:

WAB =
∫ tB

tA
P ·vdt.

Depending on the coordinate system used, there are numerous representations of
this integral. You should notice that in order to evaluate the integral it is necessary
to know the path of the particle. If, for all possible paths, WAB = 0, then the force P
does no work and its power must be zero. In other words, P must be normal to v.

An important class of forces was then discussed: conservative forces. A force P
is conservative if one can find a potential energy function U = U(r) such that, for
all possible motions,

P = −∂U
∂r

,

or, equivalently,
U̇ = −P ·v.

Because a conservative force is the gradient of a scalar function U = U(r), the work
done by this class of forces is independent of the path of the particle. In Section
5.5 of this chapter, it was shown that a spring force Fs and a constant force C are
conservative:

Fs = −K (||r− rD||−L)
r− rD

||r− rD|| = −∂Us

∂r
,

C = −∂Uc

∂r
,

where

Us =
K
2

(||r− rD||−L)2 , Uc = −C · r.

6 For a discussion on the relationships between brain trauma and g-forces in roller coaster rides,
we refer the reader to [72].
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Not all forces are conservative. In particular, friction and normal forces are noncon-
servative.

Using the notion of mechanical power, two versions of the work-energy theorem
were established:

Ṫ = F ·v, Ė = Fnc ·v.

Here, T = m
2 v ·v is the kinetic energy of the particle, E = T +U is the total energy

of the particle, U is the sum of the potential energies of all the conservative forces
acting on the particle, and Fnc is the resultant nonconservative force acting on the
particle. You should notice that Fnc = F + ∂U/∂r.

The remainder of the chapter was concerned with using the work-energy theo-
rem to examine the work done by friction forces and providing examples of systems
where the total energy E was conserved. For all of the examples of energy conserva-
tion, the work-energy theorem was used to show that Fnc ·v = 0 and, consequently,
E must be conserved. As illustrated in the examples of energy conservation, when
E is conserved then certain information on the speed of the particle as a function of
position can be determined without explicitly integrating the differential equations
governing the motion of the particle.

5.10 Exercises

The following short exercises are intended to assist you in reviewing the present
chapter.

5.1. Give examples to illustrate the following statement: “Every constant force is
conservative, but not all conservative forces are constant.”

5.2. Starting from the definition of the kinetic energy T , establish the work-energy
theorem Ṫ = F · v. Then, using this result, derive the alternative form of the
work-energy theorem: Ė = Fnc ·v.

5.3. Give three examples of particle problems where the total energy E is con-
served.

5.4. A particle is moving on a smooth horizontal plane. A gravitational force
−mgEz acts on the particle. If the plane is given a vertical motion, then why
does the normal force acting on the particle perform work? Using this exam-
ple, show that the normal force is not a conservative force.

5.5. Give three examples of particle problems where the total energy E is not
conserved.

5.6. A particle is free to move on a smooth plane z = 0. It is attached to a fixed
point O by a linear spring of stiffness K and unstretched length L. A grav-
itational force −mgEz acts on the particle. Starting from the work-energy
theorem, prove that

E =
m
2

(
ṙ2 + r2θ̇ 2)+

K
2

(r−L)2
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is conserved.
5.7. Consider the same system discussed in Exercise 5.6, but in this case assume

that the surface is rough. Show that

Ė = −μdmg
√

ṙ2 + r2θ̇ 2.

5.8. For any vector b show that

d
dt

||b|| = b · ḃ
||b|| .

Using this result, show that if the magnitude of b is constant, then any change
in b must be normal to b.

5.9. With the assistance of the identity established in Exercise 5.8, show that New-
ton’s gravitational force,

FN = −GMm

||r||2
r
||r|| ,

is conservative with a potential energy

UN = −GMm
||r|| .

Here, G, M, and m are constants.



Part II
Dynamics of a System of Particles





Chapter 6
Momenta, Impulses, and Collisions

TOPICS

As a prelude to the discussion of a system of particles, the linear and angular mo-
menta of a single particle are introduced in this chapter. In particular, conditions for
the conservation of these kinematical quantities are established. This is followed by
a discussion of impact problems where particles are used as models for the impact-
ing bodies.

6.1 Linear Momentum and Its Conservation

Consider a particle of mass m moving in space. As usual, the position vector of the
particle relative to a fixed origin is denoted by r. We recall that the linear momentum
G of the particle is defined to be

G = mv = mṙ.

6.1.1 Linear Impulse and Linear Momentum

A more primitive form of the balance of linear momentum F = ma is its integral
form:

G(t1)−G(t0) =
∫ t1

t0
Fdt.

This equation is assumed to hold for all intervals of time and hence for all times t0
and t1. The time integral of a force is known as its linear impulse.

The reason the integral form is more primitive than the equation F = ma is that
it does not assume that v can always be differentiated to determine a. We use the

O.M. O’Reilly, Engineering Dynamics: A Primer, DOI 10.1007/978-1-4419-6360-4 6, 91
c© Springer Science+Business Media, LLC 2010
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integral form of the balance of linear momentum in our forthcoming discussion of
impact.

6.1.2 Conservation of Linear Momentum

The conservation of some component of linear momentum of the particle is an im-
portant feature of many problems. Suppose that the component of G in the direction
of a given vector c is conserved:

d
dt

(G · c) = 0.

To examine the conditions under which this arises, we expand the time derivative
on the right-hand side of the above equation to find that

d
dt

(G · c) = Ġ · c + G · ċ.

Consequently, given a vector c,

G · c is conserved if, and only if, F · c + G · ċ = 0.

A special case of this result arises when c is constant. In this case, the condition
for the conservation of the linear momentum in the direction of c is none other than
F · c = 0. That is, there is no force in this direction.

In general, the most difficult aspect of using the conservation of linear momentum
is to find appropriate directions c. This is an art.

6.1.3 Examples

You have already seen several examples of linear momentum conservation. For in-
stance, consider a particle moving in a gravitational field. Here, F = −mgEy. As a
result, F ·Ez = 0 and F ·Ex = 0. The linear momenta of the particle and, as a result,
its velocity in the directions Ex and Ez are conserved. It is perhaps instructive to
note that the linear momentum of the particle in the Ey direction is not conserved.

6.2 Angular Momentum and Its Conservation

As shown in Figure 6.1, let r be the position vector of a particle relative to a fixed
point O, and let v be the absolute velocity vector of the particle. Then, the angular
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Particle of mass m

r

HO = r×mv

G = mv

O

Fig. 6.1 Some kinematical quantities pertaining to a particle of mass m.

momentum of the particle relative to O is denoted by HO and defined as

HO = r×mv = r×G.

In Cartesian coordinates, HO has the representation

HO = r×mv

= det

⎡
⎣ Ex Ey Ez

x y z
mẋ mẏ mż

⎤
⎦

= m(yż− zẏ)Ex + m(zẋ− xż)Ey + m(xẏ− yẋ)Ez.

In cylindrical polar coordinates, HO has the representation

HO = r×mv

= det

⎡
⎣ er eθ Ez

r 0 z
mṙ mrθ̇ mż

⎤
⎦

= −mzrθ̇er + m(zṙ− rż)eθ + mr2θ̇Ez.

When the motion of the particle is planar,

r = rer, v = ṙer + rθ̇eθ ,

and two of the previous representations for HO simplify to

HO = m(xẏ− yẋ)Ez = mr2θ̇Ez.
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6.2.1 Angular Momentum Theorem

To determine how the angular momentum changes with time, we invoke the balance
of linear momentum and compute an expression for ḢO:

dHO

dt
=

d
dt

(r×mv) = v×mv + r×mv̇ = r×F.

The final result is known as the angular momentum theorem:

dHO

dt
= r×F.

As opposed to our later developments with rigid bodies, a balance of angular mo-
mentum ḢO = r×F is not an independent postulate. It arises as a consequence of
the balance of linear momentum.

6.2.2 Conservation of Angular Momentum

The conservation of some component of angular momentum of the particle is an
important feature of many problems. Suppose that the component of HO in the di-
rection of a given vector c is conserved:

d
dt

(HO · c) = 0.

To examine the conditions under which this arises, we expand the time derivative on
the left-hand side of the above equation and invoke the angular momentum theorem
to find that

d
dt

(HO · c) = ḢO · c + HO · ċ
= (r×F) · c + HO · ċ.

Consequently, for a given vector c,

HO · c is conserved if, and only if, (r×F) · c + HO · ċ = 0.

A special case of this result arises when c is constant. Then, the condition for the
conservation of the angular momentum in the direction of c is none other than (r×
F) · c = 0.

In an undergraduate dynamics course, problems where angular momentum is
conserved can usually be set up so that c = Ez. We shortly examine such an example.
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6.2.3 Central Force Problems

A central force problem is one where F is parallel to r. The angular momentum
theorem in this case implies that ḢO = r×F = 0. It follows that HO is conserved.
This conservation implies several interesting results, which we now discuss.

Because HO is conserved, HO = hh, where h and h are constant. We can choose
h to be a unit vector. Because r×mv is constant, the vectors r and v form a plane
with a constant unit normal vector h. This plane passes through the origin O and is
fixed. Given a set of initial conditions r(t0) and v(t0), we can choose a cylindrical
polar coordinate system such that Ez = h, r = rer, and v = ṙer + rθ̇eθ . To do this, it
suffices to choose Ez so that

HO = hEz = r(t0)×mv(t0) .

This simplifies the problem of determining the motion of the particle considerably.
Furthermore, h = mr2θ̇ is constant during the motion of the particle.

6.2.4 Kepler’s Problem

The most famous example of a central force problem, and angular momentum con-
servation, was solved by Newton. In seeking to develop a model for planetary mo-
tion which would explain Kepler’s laws1 and astronomical observations, he postu-
lated a model for the resultant force F exerted on a planet of mass m by a fixed
planet of mass M. The force F that Newton postulated was conservative:

F = −GmM

||r||2
r
||r|| = −∂U

∂ r
, U = −GmM

||r|| .

Here, the fixed planet is located at the origin O and G is the universal gravitational
constant:

G ≈ 6.673×10−11 m3 kg−1 s−2.

By way of additional background, the mass of the Sun is ≈ 2× 1030 kilograms
whereas the mass of the Earth is ≈ 5.98× 1024 kilograms. Clearly, the force that
Newton postulated is an example of a central force. Thus, we can use the previous
results on central force problems here.

Using the balance of linear momentum for the planet of mass m, we find two
ordinary differential equations:

mr̈−mrθ̇ 2 = −GMm
r2 , mrθ̈ + 2mṙθ̇ = 0.

1 Johannes Kepler (1571–1630) was a German astronomer and physicist who, based on observa-
tions of the orbits of certain planets, proposed three laws to explain planetary motion. His three
laws are the most famous of his many scientific contributions.
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Fig. 6.2 A particle moving on a smooth cone.

The solution of these equations is facilitated by the use of two conserved quantities,
the total energy E and the magnitude of the angular momentum h:

E =
1
2

mv ·v +U =
1
2

m
(
ṙ2 + r2θ̇ 2)− GmM

r
,

h = HO ·Ez = mr2θ̇ .

However, we do not pursue this matter any further here.2

6.2.5 A Particle on a Smooth Cone

As shown in Figure 6.2, we return to an example discussed in Section 4.5 of Chapter
4. Here, however, the surface of the cone is assumed to be smooth. We wish to show
that HO ·Ez is conserved for the particle.3

Let us first recall some kinematical results from Section 4.5 of Chapter 4:

r = rer + r tan(α)Ez,

v = ṙ (er + tan(α)Ez)+ rθ̇eθ .

A simple calculation shows that the angular momentum of the particle is

HO = r×mv =
mr2θ̇

cos(α)
(cos(α)Ez − sin(α)er) .

2 For further treatments of these equations, see, for example, Arnol’d [2] and Moulton [50]. Dis-
cussions of this central force problem can also be found in every undergraduate dynamics text, for
example, in Section 13, Chapter 3 of Meriam and Kraige [48] and Section 15, Chapter 5 of Riley
and Sturges [63]. You should notice that these texts assume that the motion of the particle is planar.
3 We leave it as an exercise to show that the total energy and angular momentum HO ·Ez are also
conserved when the spring is replaced by an inextensible string.
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Fig. 6.3 Conservation of HO ·Ez for a particle moving on a smooth cone under the action of gravity
and a linear spring force: (a) a motion of the particle, (b) the corresponding angular momentum
components HO ·Ex, HO ·Ey, and HO ·Ez for the particle, and (c) the angular momentum vector
HO.

We also note that the resultant force acting on the particle is composed of a normal
force, a gravitational force, and a spring force:

F = Nn−mgEz −K (||r||−L)
r
||r|| .

The moment of the resultant force is in the eθ direction:

r×F = r×Nn− r×mgEz + r×
(
−K (||r||−L)

r
||r||
)

=
(

mgr− Nr
cos(α)

)
eθ .

Consequently, HO ·Ez is conserved:

mr2θ̇ = constant.

You should notice that during the motion of the particle it is impossible for θ̇ to
change sign. Indeed, two examples of this phenomenon were shown earlier in Figure
4.9. To further illustrate the conservation of HO ·Ez, we plot this component for a
motion of the particle in Figure 6.3(b). As shown in Figure 6.3(c), if we construct
the angular momentum vector HO for the motion of the particle, we would find that,
as it evolves in time, it traces out a cone.
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Fig. 6.4 The four stages of a collision.

6.3 Collision of Particles

The collision of two bodies involves substantial deformations during the impact and
may induce permanent deformations. Ignoring the rotational motion of the bodies,
the simplest model to determine the postcollision velocities of the bodies is to use
a mass particle to model each individual body. However, mass particles cannot de-
form, and so one needs to introduce some (seemingly ad hoc) parameter to account
for this feature. The parameter commonly used is the coefficient of restitution e.

The theory we present here is often referred to as frictionless, oblique, central
impact of two particles. Other theories are available that account for friction and
rotational inertias. The reader is referred to Brach [12], Goldsmith [31], Routh [64],
Rubin [66], and Stewart [74] for discussions on other theories, applications and un-
resolved issues. For a discussion of some of Newton’s contributions to this subject,
see Problem 12 on pages 148–151 of [53]. There, Newton discusses the impact of
two spheres.

6.3.1 The Model and Impact Stages

In what follows, we model two impacting bodies of masses m1 and m2 by two mass
particles of masses m1 and m2, respectively. Furthermore, as the bodies are assumed
to be in a state of purely translational motion, the velocity vector of any point of one
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of the bodies is identical to the velocity of the mass particle modeling the body. The
position vector of the mass particle is defined to coincide with the center of mass of
the body that it is modeling.

As summarized in Figure 6.4, we have four time periods to examine: I, just prior
to impact; II, during the compression phase of the impact; III, during the restitution
phase of the impact; and IV, immediately after the impact. This figure also summa-
rizes the notation for the velocities that we use.

When the two bodies are in contact they are assumed to have a common unit
normal n at the single point of contact. This vector is normal to the lateral surfaces
of both bodies at the unique point of contact. We also define a set of orthonormal
vectors {n, t1, t2} by selecting t1 and t2 to be unit tangent vectors to the lateral
surfaces of both bodies at the point of contact. The impact is assumed to be such
that these vectors are constant for the duration of the collision.4

The impact is assumed to occur at time t = t0. Stage II of the collision occurs
during the time interval (t0,t1) and stage III occurs during the time interval [t1,t2).
At t = t2, the bodies have just lost contact. At the end of stage II, the velocities of
the bodies in the direction of n are assumed to be equal (= vII).

6.3.2 Linear Impulses During Impact

Pertaining to the forces exerted by the bodies on each other during the impact, let
F1d and F1r be the forces exerted by body 2 on body 1 during stages II and III,
respectively. Similarly, we denote by F2d and F2r the forces exerted by body 1 on
body 2 during stages II and III, respectively. All other forces acting on bodies 1 and
2 are assumed to have the resultants R1 and R2, respectively.

The following three assumptions are made for the aforementioned forces. First,
the impact is frictionless:

F1d = F1d n, F1r = F1r n, F2d = F2d n, F2r = F2r n.

That is, these forces have no tangential components. Second, the linear impulse of
these forces dominates those due to R1 and R2:

∫ t1

t0

(
F1d (τ)+ R1(τ)

)
dτ ≈

∫ t1

t0
F1d (τ)dτ,

∫ t2

t1
(F1r(τ)+ R1(τ))dτ ≈

∫ t2

t1
F1r(τ)dτ,

∫ t1

t0

(
F2d (τ)+ R2(τ)

)
dτ ≈

∫ t1

t0
F2d (τ)dτ,

∫ t2

t1
(F2r(τ)+ R2(τ))dτ ≈

∫ t2

t1
F2r(τ)dτ.

4 An example illustrating these three vectors is shown in Figure 6.8. We also note that for many
problems these vectors will coincide with the Cartesian basis vectors.
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It is normally assumed that the time interval [t0,t2] is small in order for this assump-
tion to hold. Finally, we assume equal and opposite collisional forces: F1r = −F2r

and F1d = −F2d .
We now define the coefficient of restitution e:

e =

∫ t2
t1

F1r(τ) ·ndτ∫ t1
t0

F1d (τ) ·ndτ
=

∫ t2
t1

F2r (τ) ·ndτ∫ t1
t0

F2d (τ) ·ndτ
.

Here, we used the equal and opposite nature of the interaction forces. You should
notice that if e = 1, then the linear impulse during the compression stage is equal
to the linear impulse during the restitution phase. In this case, the collision is said
to be perfectly elastic. If e = 0, then the linear impulse during the restitution phase
is zero, and the collision is said to be perfectly plastic. In general, 0 ≤ e ≤ 1, and e
must be determined from an experiment.

To write the coefficient of restitution in a more convenient form using velocities,
we first record the following integral forms of the balance of linear momentum for
each particle in the direction of n during stages II and III:

m1vII −m1v1 ·n =
∫ t1

t0
F1d (τ) ·ndτ,

m2vII −m2v2 ·n =
∫ t1

t0
F2d (τ) ·ndτ,

m1v
′
1 ·n−m1vII =

∫ t2

t1
F1r(τ) ·ndτ = e

∫ t1

t0
F1d (τ) ·ndτ,

m2v
′
2 ·n−m2vII =

∫ t2

t1
F2r(τ) ·ndτ = e

∫ t1

t0
F2d (τ) ·ndτ.

In these four equations vII is the common velocity in the direction of n at the end of
the compression phase, and the prime distinguishes the postimpact velocity vectors
from their preimpact counterparts v1 and v2. From these four equations, we can
determine the velocity vII :

vII =
v
′
1 ·n+ ev1 ·n

1 + e
=

v
′
2 ·n+ ev2 ·n

1 + e
.

We can also manipulate these four equations to find a familiar expression for the
coefficient of restitution:

e =
v
′
2 ·n−v

′
1 ·n

v1 ·n−v2 ·n .

This equation is used by many authors as the definition of the coefficient of restitu-
tion.
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6.3.3 Linear Momenta

We now consider the integral forms of the balance of linear momentum for each
particle. The time interval of integration is the duration of the impact:

m1v
′
1 −m1v1 =

∫ t1

t0

(
F1d (τ)+ R1(τ)

)
dτ +

∫ t2

t1
(F1r(τ)+ R1(τ))dτ,

m2v
′
2 −m2v2 =

∫ t1

t0

(
F2d (τ)+ R2(τ)

)
dτ +

∫ t2

t1
(F2r(τ)+ R2(τ))dτ.

Using the coefficient of restitution e, the assumptions that F1d = −F2d , F1r =−F2r ,
and that the linear impulses of these forces dominate those due to R1 and R2, we
find that

m1v
′
1 −m1v1 = (1 + e)

∫ t1

t0
F1d (τ)dτ,

m2v
′
2 −m2v2 = −(1 + e)

∫ t1

t0
F1d (τ)dτ.

We now take the three components of these equations with respect to the basis
vectors {n, t1, t2}. The components of these equations in the tangential directions
imply that the linear momenta of the particles in these directions are conserved:

v
′
1 · t1 = v1 · t1, v

′
1 · t2 = v1 · t2,

v
′
2 · t1 = v2 · t1, v

′
2 · t2 = v2 · t2.

In addition, from the two components in the n direction, we find that the linear
momentum of the system in this direction is conserved:

m2v
′
2 ·n+ m1v

′
1 ·n = m2v2 ·n+ m1v1 ·n,

m2v
′
2 ·n−m2v2 ·n = −(1 + e)

∫ t1

t0
F1d (τ) ·ndτ.

The previous six equations should be sufficient to determine the six postimpact ve-
locities v

′
1 and v

′
2 provided that one knows the preimpact velocities and the lin-

ear impulse of F1d during the collision. However, this linear impulse is problem-
dependent, and so one generally supplements these equations with the specification
of the coefficient of restitution to determine the postimpact velocity vectors.

6.3.4 The Postimpact Velocities

It is convenient at this point to summarize the equations and show how they are used
to solve certain problems. For the problems of interest one is often given e, v1, v2,
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m1, m2, and {n, t1, t2} and asked to calculate the postimpact velocity vectors v
′
1 and

v
′
2.

From the previous two sets of equations and the specification of the coefficient of
restitution, we see that we have one equation to determine the deformational linear
impulse and six equations to determine the postimpact velocity vectors. With some
algebra, one obtains

v
′
1 = (v1 · t1) t1 +(v1 · t2) t2 +

1
m1 + m2

((m1 − em2)v1 ·n+(1 + e)m2v2 ·n)n,

v
′
2 = (v2 · t1) t1 +(v2 · t2) t2 +

1
m1 + m2

((m2 − em1)v2 ·n+(1 + e)m1v1 ·n)n.

You should notice how the postimpact velocity vectors depend on the mass ratios.
We could also calculate the linear impulse of F1d , but we do not pause to do so here.

It is important to remember that the above expressions for the postimpact veloci-
ties are consequences of the following: (i) the linear momenta of each particle in the
tangential directions t1 and t2 are conserved during the impact, (ii) the combined
linear momentum of the particles in the normal direction is conserved during the
impact, and (iii) the coefficient of restitution e needs to be provided to determine the
aforementioned velocity vectors.5

6.3.5 Kinetic Energy and the Coefficient of Restitution

Previously, we have used two equivalent definitions of the coefficient of restitution:

e =
v
′
2 ·n−v

′
1 ·n

v1 ·n−v2 ·n ,

and

e =

∫ t2
t1

F1r(τ) ·ndτ∫ t1
t0

F1d (τ) ·ndτ
=

∫ t2
t1

F2r (τ) ·ndτ∫ t1
t0

F2d (τ) ·ndτ
.

Often, the change in kinetic energy is used to specify the coefficient of restitution.
We now examine why this is possible.

5 It should be clear that, given the preimpact velocity vectors, the balance laws give only six
equations from which one needs to determine the six postimpact velocities and the linear impulses
of F1d and F1r . The introduction of the coefficient of restitution e and the assumption of a common
normal velocity vII at time t = t1 gives two more equations which renders the system of equations
solvable. That is, these two equations close the system of equations.
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The kinetic energy of the system just prior to impact T and the kinetic energy
immediately following the collision T

′
are, by definition,6

T =
1
2

m1v1 ·v1 +
1
2

m2v2 ·v2, T
′
=

1
2

m1v
′
1 ·v

′
1 +

1
2

m2v
′
2 ·v

′
2.

We recall that the collision changes only the n components of the velocity vectors.
Hence,

T −T
′
=

1
2

m1

(
(v1 ·n)2 −

(
v
′
1 ·n
)2
)

+
1
2

m2

(
(v2 ·n)2 −

(
v
′
2 ·n
)2
)

.

Substituting for the normal components of the postimpact velocity vectors, we ob-
tain the well-known equation

T −T
′
=

m1m2

2m1 + 2m2
(v1 ·n−v2 ·n)2 (1− e2) .

Hence, if −1 ≤ e ≤ 1, the kinetic energy of the system cannot be increased as a
result of the impact.

6.3.6 Negative Values of the Coefficient of Restitution

It follows from the previous equation that assuming e is negative does not preclude
energy loss during an impact. Indeed, Brach [12] considers the example of a ball
shattering and then passing through a window as an example of a problem where e
is negative. In problems where e is negative,

e =
v
′
2 ·n−v

′
1 ·n

v1 ·n−v2 ·n < 0,

and hence, v
′
1 · n − v

′
2 · n and v1 · n − v2 · n have the same sign. As a result, the

colliding bodies must interpenetrate and pass through each other during the course
of the impact. To eliminate this behavior, it is generally assumed that e is positive.

6.4 Impact of a Particle and a Massive Object

To illustrate the previous results, consider a particle of mass m1 that collides with
a massive object (see Figure 6.5). Intuitively, we expect that the velocity of the
massive object will not be affected by the collision. The analysis below confirms
this.

6 The definition of the kinetic energy of a system of particles is discussed in further detail in Section
7.2.4 of Chapter 7.
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v1
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′
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Fig. 6.5 Impact of a particle and a massive object. The ratio of the masses m1/(m1 +m2) ≈ 0.

For the problem at hand, m2 is assumed to be far greater than m1:

m1

m1 + m2
≈ 0,

m2

m1 + m2
≈ 1.

Substituting these results into the expressions for the postimpact velocities, we find
that

v
′
1 = (v1 · t1) t1 +(v1 · t2) t2 +(−ev1 ·n+(1 + e)v2 ·n)n,

v
′
2 = (v2 · t1) t1 +(v2 · t2) t2 +(v2 ·n)n = v2.

As expected, v2 is unaltered by the collision. You should also notice that if e = 1 and
v2 = 0, then the particle rebounds with its velocity in the direction of n reversed, as
expected. Finally, for a plastic collision, e = 0 and the velocity of m1 in the direction
of n attains the velocity of the massive object in this direction. We leave it as an
exercise to calculate the energy lost in the collision. This exercise involves using the
expression we previously established for T −T

′
.

6.5 A Bouncing Ball

As a further illustration of the general developments, consider the problem of a ball
bouncing on a massive stationary surface (see Figure 6.6). We assume that the ball
is launched with an initial velocity v0. The ball climbs to a height h1 and then falls
through the same distance and collides with the smooth surface. A rebound occurs
and the ball then climbs to a height of h2, and so on.

It what follows, we model the ball as a particle of mass m1. Using the results
from Section 6.4, we can consider the massive object as fixed. Furthermore, we
assume that the coefficient of restitution e is a constant and less than 1. The model
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Fig. 6.6 Schematic of a ball bouncing on a smooth horizontal surface.

we develop predicts that although the ball will bounce an infinite number of times it
will stop bouncing in a finite amount of time.7

As the particle is launched with an initial velocity of v0 = v0xEx +v0yEy, it is not
too difficult to see that the ball rises to a maximum height h1 and travels a distance
L1 before it impacts the surface. To compute h1 and L1, we ignore drag and use our
earlier results from the projectile problem discussed in Section 1.6 in Chapter 1:

h1 =
v2

0y

2g
, L1 =

(
2v0y

g

)
v0x .

The velocity vector of the particle just prior to impact is v1 = v0xEx − v0yEy. With
the help of the results of Section 6.4, we can conclude that the rebound velocity
vector v

′
1 is

v
′
1 = v0xEx + ev0yEy.

Furthermore, it is easy to infer that the particle rises to a maximum height h2 and
travels a distance L2 before the next collision:

h2 =
e2v2

0y

2g
, L2 =

(
2ev0y

g

)
v0x .

Clearly,
h2 = e2h1, L2 = eL1.

Continuing with this analysis, we find that

hi = e2(i−1)h1, Li = e(i−1)L1 (i = 1,2,3, . . .) .

Notice that as i → ∞, then hi → 0.
To determine how far the ball travels along the surface before it stops bouncing

and starts moving at a constant speed v0x , we need to compute the infinite sum L of

7 The model we discuss is a prototypical example in control theory for illustrating Zeno behavior
(see, e.g., Liberzon [45]). The term Zeno behavior is in reference to the Greek philosopher Zeno
of Elea and his famous dichotomy paradox. He is perhaps more famous for his paradox about the
Tortoise and the Hare.
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the distances Li:

L =
∞

∑
i=1

Li =

(
1 + e + e2 + · · ·=

∞

∑
i=1

e(i−1)

)
L1 =

(
1

1− e

)
L1

=
(

2v0y

g(1− e)

)
v0x .

It may come as a surprise to note that, although the number of impacts is infinite,
the distance L is finite. Furthermore, the time T = L/v0x taken for the ball to stop
bouncing is also finite:

T =
2v0y

g(1− e)
.

This is the Zeno behavior we mentioned earlier.
One might ask the question of what would happen if the surface that the ball is

bouncing on started to move vertically? Some answers to this question can be found
in a 1982 paper by Holmes [37]. These answers are surprisingly complex. Indeed,
depending on the motion of the surface and the coefficient of restitution, Holmes
showed that the time between impacts could vary in a chaotic manner. His paper
has generated considerable interest in, and inspired many published works on, the
bouncing ball system during the past thirty years.

6.6 Collision of Two Spheres

Another example of interest is shown in Figure 6.7. There, a sphere of mass m1

and radius R that is moving at a constant velocity v1 = 100Ex (meters per second)
collides with a stationary sphere of radius r and mass m2 = 2m1.

At the instant of impact, the position vectors of the centers of mass of the spheres
differ in height by an amount h. Given that the coefficient of restitution e = 0.5, one
seeks to determine the velocity vectors of the spheres immediately following the
impact.

It is first necessary to determine the normal and tangent vectors at the contact
point of the spheres during the impact. Referring to Figure 6.8, we see that these

m1

m2 = 2m1

O

v1 = 100Ex v2 = 0

Ex

Ey

Fig. 6.7 An impact of two spheres.
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Fig. 6.8 The geometry of the impacting spheres.

vectors are

n = cos(β )Ex − sin(β )Ey, t1 = cos(β )Ey + sin(β )Ex, t2 = Ez.

Here, the angle β is defined by the relations

sin(β ) =
h

R + r
, cos(β ) =

√
(r + R)2 −h2

r + R
.

Notice that this angle depends on h, r, and R.
Without calculating the postimpact velocity vectors, we can calculate the energy

lost in the collision by using the formula for T − T
′

which was established previ-
ously:

T −T
′
=

m1m2

2m1 + 2m2
(v1 ·n−v2 ·n)2 (1− e2)

=
m1

3
(100cos(β ))2 (1− e2) ,

where e = 0.5.
One method of solving this problem is to use the formulae given previously for

the postimpact velocity vectors:

v
′
1 = (v1 · t1) t1 +(v1 · t2) t2 +

1
m1 + m2

((m1 − em2)v1 ·n+(1 + e)m2v2 ·n)n,

v
′
2 = (v2 · t1) t1 +(v2 · t2) t2 +

1
m1 + m2

((m2 − em1)v2 ·n+(1 + e)m1v1 ·n)n.

Substituting for the values for the problem at hand,

v1 = 100Ex, v2 = 0, e = 0.5, m2 = 2m1,
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into these equations, we find that

v
′
1 = (v1 · t1) t1 = 100sin(β )t1,

v
′
2 =

1
2

(v1 ·n)n = 50cos(β )n.

Notice that the initial velocity of the sphere of radius R in the direction of n has been
annihilated by the collision (cf. Figure 6.8).

6.7 Summary

The first new concept in this chapter was the definition of the linear momentum
G = mv. In addition, the integral form of the balance of linear momentum was
introduced:

G(t1)−G(t0) =
∫ t1

t0
Fdt.

This equation is assumed to hold for all intervals of time and hence for all times t0
and t1. Because this balance law does not assume that v is differentiable, it is more
general than F = ma.

The angular momentum HO = r×G of a particle relative to a fixed point O
was introduced in Section 6.2. The time-rate of change of this momentum can be
determined using the angular momentum theorem:

ḢO = r×F.

Associated with G and HO are instances where certain components of these vectors
are conserved. For a given vector c, potential conservations of G · c and HO · c can
be established using the equations

d
dt

(G · c) = F · c + G · ċ = 0,

d
dt

(HO · c) = (r×F) · c + HO · ċ = 0.

Several examples of linear and angular momenta conservations were discussed in
the present chapter. Specifically, the conservation of a component of G for impact
problems and projectile problems was covered. The more conceptually challenging
conservation of a component of HO was illustrated using a central force problem,
Kepler’s problem, and a particle moving on the surface of a smooth cone.

The majority of the chapter was devoted to a discussion of impact problems.
Specifically, given two bodies of masses m1 and m2 whose respective preimpact ve-
locity vectors are v1 and v2, we wished to find the postimpact velocity vectors v

′
1 and

v
′
2. The collisions of interest were restricted to cases where there was a unique point
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of contact with a well-defined unit normal vector n. This normal vector was then
used to construct a right-handed orthonormal triad {n, t1, t2}. To solve the problems
of interest, it was necessary to introduce a phenomenological constant, the coeffi-
cient of restitution e. In Sections 6.3.2 and 6.3.5, three alternative definitions of this
constant were presented:

e =
v
′
2 ·n−v

′
1 ·n

v1 ·n−v2 ·n ,

e =

∫ t2
t1

F1r(τ) ·ndτ∫ t1
t0

F1d (τ) ·ndτ
=

∫ t2
t1

F2r(τ) ·ndτ∫ t1
t0

F2d (τ) ·ndτ
,

T −T
′
=

m1m2

2m1 + 2m2
(v1 ·n−v2 ·n)2 (1− e2) .

We also noted that the restriction 0 ≤ e≤ 1 is normally imposed so as to preclude in-
terpenetrability of the impacting bodies. If e = 1, the collision is said to be perfectly
elastic and if e = 0, then the collision is said to be perfectly plastic.

Using the definition of the coefficient of restitution, conservation of linear mo-
menta of each particle in the t1 and t2 directions, and conservation of the total linear
momentum of the system of particles in the n direction, expressions were obtained
for the postimpact velocity vectors:

v
′
1 = (v1 · t1) t1 +(v1 · t2) t2 +

1
m1 + m2

((m1 − em2)v1 ·n+(1 + e)m2v2 ·n)n,

v
′
2 = (v2 · t1) t1 +(v2 · t2) t2 +

1
m1 + m2

((m2 − em1)v2 ·n+(1 + e)m1v1 ·n)n.

The solutions of impact problems using these formulae were presented in Sections
6.4–6.6.

6.8 Exercises

The following short exercises are intended to assist you in reviewing the present
chapter.

6.1. A particle of mass m is in motion on a smooth horizontal surface. Using
F = ma, show that the resultant force F acting on the particle is zero and
hence its linear momentum G remains constant.

6.2. For a particle of mass m that is falling under the influence of a gravitational
force −mgEz, show that G ·Ez is not conserved.

6.3. A particle of mass m is in motion on a smooth horizontal surface. Here,
a gravitational force −mgEz and an applied force P = P(t)Ex acts on the
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particle. Using F = ma, show that F = P. Furthermore, show that

G(t) = G(t0)+
(∫ t

t0
P(τ)dτ

)
Ex.

6.4. Starting from HO = r×mv, prove the angular momentum theorem: ḢO =
r×F.

6.5. For a particle of mass m moving on a horizontal plane z = 0, show that
HO = mr2θ̇Ez. When this momentum is conserved, show, with the aid of
graphs of θ̇ as a function of r for various values of h = HO ·Ez, that the sign
of θ̇ cannot change. What does this imply about the motion of the particle?

6.6. Consider the example discussed in Section 6.2.5. Show that HO ·Ez is con-
served when the spring is replaced by an inextensible string of length L.
In your solution, assume that the string is being fed from an eyelet at O.
Consequently, the length of string between O and the particle can change:
L = L(t).

6.7. Does the solution to Exercise 6.6 change if the angle α = 0? To what phys-
ical problem does this case correspond?

6.8. Recall Kepler’s problem discussed in Section 6.2.4. Show that angular mo-
mentum conservation can be used to reduce the equations governing θ and
r to a single differential equation:

r̈− h2

m2r3 +
GMm

r2 = 0.

Show that this equation predicts a circular motion r = r0, where

r0 =
h2

GMm3 , θ̇ =
h

mr2
0
.

Finally, show that the velocity vector of the particle of mass m must be

v =
GMm2

h
eθ .

Using the expression for r0, estimate the angular momentum of the Earth
orbiting the Sun.

6.9. With the help of the following result, which was established in Section 6.3.5,

T −T
′
=

m1m2

2m1 + 2m2
(v1 ·n−v2 ·n)2 (1− e2) ,

discuss the circumstances for which the kinetic energy loss is maximized or
minimized in a collision.

6.10. Why is it necessary to know the coefficient of restitution e in order to solve
an impact problem?



6.8 Exercises 111

6.11. When two bodies are in contact at a point, there are two possible choices for
n: ±n. Why do the formulae for e, v

′
1, and v

′
2 that are presented in Section

6.7 give the same results for either choice of n?
6.12. Recall the problem discussed in Section 6.4 where a particle of mass m

impacts a massive object. If e = 0, verify that v
′
1 · n = v2 · n. On physical

grounds why are the components of v1 in the t1 and t2 directions unaltered
by the collision?

6.13. Using the results for the problem discussed in Section 6.4, show that if e is
negative, then the particle passes through the massive object. When e =−1,
show that the particle is unaffected by its collision with the massive object.

6.14. Using the results of the example discussed in Section 6.6, determine the
postimpact velocity vectors of the spheres for the two cases h = 0 and h =
R + r.

6.15. In order to examine aspects of the bouncing ball problem discussed in Sec-
tion 6.5, I asked my daughter and stepson to drop a ball from a height of 3
feet, and we measured the successive rebound heights. The following three
sets of estimates for hi were recorded:

Expt. 1: h1 = 36, h2 = 30, h3 = 22,

Expt. 2: h1 = 36, h2 = 27, h3 = 22.5,

Expt. 3: h1 = 36, h2 = 25, h3 = 21.

The dimensions of hi are in inches. Calculate an estimate of e for the impact
of the ball with the ground.

6.16. For the bouncing ball problem discussed in Section 6.5, show that the total
vertical distance 2H traveled by the particle before it stops bouncing is

2H =

(
v2

0y

g

)
1

1− e2 .

Give an interpretation of this result when e = 0.





Chapter 7
Dynamics of Systems of Particles

TOPICS

In this chapter, we continue the process of extending several results pertaining to a
single particle to a system of particles. We start by defining the linear momentum,
angular momenta, and kinetic energy for a system of particles. Next, we introduce
a new concept, the center of mass C of a system of particles. A discussion of the
conservation of kinematical quantities follows, which we illustrate with two detailed
examples.

7.1 Preliminaries

We consider a system of n particles, each of mass mi (i = 1, . . . ,n). The position
vector of the particle of mass mi relative to a fixed point O is denoted by ri. Several
quantities pertaining to the kinematics of this system are shown in Figure 7.1.

ri − rP

ri − rC

mi

C

P

rP

ri

r

O

Fig. 7.1 Some kinematical quantities pertaining to a particle of mass mi.
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The velocity vector of the particle of mass mi is defined as

vi =
dri

dt

and the (absolute) acceleration vector ai of this particle is

ai =
d2ri

dt2 =
dvi

dt
.

We then have that the linear momentum Gi of the particle of mass mi is

Gi = mivi,

and the angular momentum HPi of the particle of mass mi relative to a point P is

HPi = (ri − rP)×Gi,

where rP is the position vector of the point P relative to O. Finally, the kinetic energy
Ti of the particle of mass mi is

Ti =
1
2

mivi ·vi.

7.2 Center of Mass, Momenta, and Kinetic Energy

7.2.1 The Center of Mass

The center of mass C of the system of particles is defined as the point whose position
vector r is defined by

r =
1
m

n

∑
k=1

mkrk,

where

m =
n

∑
k=1

mk

is the total mass of the system of particles.
The velocity v of the center of mass is obtained from the above equation by

differentiating the expression for r with respect to time:

v =
1
m

n

∑
k=1

mkvk =
1
m

n

∑
k=1

Gk.

You should notice that the velocity of the center of mass is a weighted sum of the
velocities of the particles.



7.2 Center of Mass, Momenta, and Kinetic Energy 115

It is convenient to record the identities

n

∑
k=1

mk(r− rk) = 0,
n

∑
k=1

mk(v−vk) = 0.

These identities are shortly used to derive convenient expressions for the linear and
angular momenta and kinetic energy of a system of particles. The method of manip-
ulation employed there is similar to that used later for rigid bodies.

7.2.2 Linear Momentum

The linear momentum G of the system of particles is the sum of the linear momenta
of the individual particles. It follows from the definition of the center of mass that

G = m
dr
dt

=
n

∑
k=1

mk
drk

dt
=

n

∑
k=1

Gk.

In words, the linear momentum of the center of mass is the linear momentum of the
system.

7.2.3 Angular Momentum

Similarly, the angular momentum HP of the system of particles relative to a point
P, whose position vector relative to O is rP, is the sum of the individual angular
momenta:

HP =
n

∑
k=1

HPk =
n

∑
k=1

(rk − rP)×mkvk.

Using the definition of the center of mass, we can write HP in a more convenient
form:

HP =
n

∑
k=1

HPk =
n

∑
k=1

(rk − rP)×Gk

=
n

∑
k=1

(rk − r + r− rP)×Gk

=

(
n

∑
k=1

(rk − r)×Gk

)
+(r− rP)×

(
n

∑
k=1

Gk

)
.

That is,
HP = HC +(r− rP)×G.
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In this equation,

HC =
n

∑
k=1

(rk − r)×mkvk

is the angular momentum of the system of particles relative to its center of mass C.

7.2.4 Kinetic Energy

The kinetic energy T of the system of particles is defined to be the sum of their
individual kinetic energies:

T =
n

∑
k=1

Tk =
n

∑
k=1

1
2

mkvk ·vk.

In general, the kinetic energy of the system is not equal to the kinetic energy of its
center of mass. This shortly becomes evident.

Using the center of mass, T can be expressed in another form:

T =
n

∑
k=1

Tk =
1
2

n

∑
k=1

mkvk ·vk

=
1
2

n

∑
k=1

mkvk ·vk −v ·
n

∑
k=1

mk(vk −v).

Notice that we have added a term to the right-hand side that is equal to zero. Some
minor manipulations of this result can then be used to show that

T =
1
2

n

∑
k=1

mkvk ·vk −v ·
n

∑
k=1

mk(vk −v)

=
1
2

n

∑
k=1

mkv ·v +
1
2

n

∑
k=1

mk(vk ·vk −2vk ·v + v ·v).

Completing the square, we obtain the final desired result:

T =
1
2

mv ·v +
1
2

n

∑
k=1

mk(vk −v) · (vk −v).

That is, the kinetic energy of a system of particles is the kinetic energy of its center
of mass plus another term that is proportional to the magnitude of the velocity of the
particles relative to the center of mass.1

1 This result is sometimes known as the Koenig decomposition of the kinetic energy of a system
of particles. In Section 9.2 of Chapter 9, the corresponding decomposition for a rigid body is
discussed.



7.5 The Cart and the Pendulum 117

7.3 Kinetics of Systems of Particles

For each individual particle one has Euler’s first law (which is equivalent to New-
ton’s second law and the balance of linear momentum):

Fi = miai.

Adding these n equations and using the definition of the center of mass, we find that

F = ma,

where a = v̇ and F is the resultant force acting on the system of particles:

F =
n

∑
k=1

Fk.

The equation F = ma is very useful and allows us to solve for the motion of the
center of mass of the system.

In many systems of particles problems, determining the motions of the parti-
cles, by solving the set of coupled second-order ordinary differential equations for
r1(t), . . . ,rn(t), is an extremely difficult task2 and one that is well beyond the scope
of an undergraduate engineering dynamics course.

7.4 Conservation of Linear Momentum

We first consider conditions for the conservation of the component of the linear
momentum G in the direction of a given vector c = c(t). The result parallels the
case for a single particle discussed in Section 6.1 of Chapter 6, and so we merely
quote it. If F · c + G · ċ = 0, then G · c is conserved. In the next section, an example
of this situation is discussed.

A second form of linear momentum conservation arises in the impact problems
where the total linear momentum of the system is conserved. Examples of this type
were explored in Sections 6.3–6.6 of Chapter 6.

7.5 The Cart and the Pendulum

As a first example of a system where conservation of linear momentum arises, con-
sider the system shown in Figure 7.2. A particle of mass m1 is attached by a spring of
stiffness K and unstretched length L to another particle of mass m2. A vertical grav-
itational force also acts on each particle. The mass m1 is free to move on a smooth

2 This can, perhaps, be appreciated by considering the examples discussed in Sections 7.5 and 7.7.
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m1

m2

O

Smooth horizontal rail

Linear spring

g

r

θ

Ex

Ey

er

eθ

Fig. 7.2 The cart and the pendulum.

horizontal rail, and the second particle is free to move on a vertical plane. We wish
to show that the linear momentum of the system in the Ex direction is conserved and
then examine what this means for the motion of the system.

7.5.1 Kinematics

We first give some details on the kinematics of the system by defining the position
vectors of both particles:

r1 = xEx + y0Ey + z0Ez, r2 = r1 + rer,

where y0 and z0 are constants and the position vector of m2 relative to m1 is described
using a cylindrical polar coordinate system. As expected, the position vector of the
center of mass of the system lies at some point along the spring:

r =
1

m1 + m2
(m1r1 + m2r2) = r1 +

m2

m1 + m2
rer = r2 − m1

m1 + m2
rer.

We can differentiate these position vectors in the usual manner to obtain the veloci-
ties and accelerations of the mass particles and the center of mass. Here, we record
only the velocity vectors:

v1 = ẋEx, v2 = ẋEx + ṙer + rθ̇eθ ,
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m1m1

m2

m2

−m1gEy−m1gEy

−m2gEy

−m2gEy

Fs1

Fs2 = −Fs1

N1N1

N2

N2

Fig. 7.3 Free-body diagrams for the cart, pendulum, and system.

v = ẋEx +
m2

m1 + m2
(ṙer + rθ̇eθ ).

The acceleration vectors can be obtained in the usual manner. They are used below.

7.5.2 Forces

We now turn to the free-body diagrams for the individual particles and the system
of particles. These are shown in Figure 7.3. The spring forces are (see Section 4.4
in Chapter 4)

Fs1 = −Fs2 = −K (||r1 − r2||−L)
r1 − r2

||r1 − r2|| = K(r−L)er.

You should note that these forces do not appear in the free-body diagram of the
system. The normal forces acting on the particles are

N1 = N1yEy + N1zEz, N2 = N2z Ez.

7.5.3 Balance Laws

We now consider the balances of linear momentum for the individual particles. For
the particle of mass m1 and the particle of mass m2, we have, respectively,

−m1gEy + N1yEy + N1zEz + K(r−L)er = m1ẍEx,

−m2gEy + N2zEz −K(r−L)er = m2ẍEx + m2(r̈− rθ̇ 2)er + m2(rθ̈ + 2ṙθ̇ )eθ .



120 7 Dynamics of Systems of Particles

These are six equations to determine the three unknown components of N1 and N2

and provide differential equations for r, x, and θ as functions of time.
With very little work, we find that

N1 = (m1g−K(r−L)sin(θ ))Ey, N2 = 0.

Next, we obtain a set of nonlinear second-order ordinary differential equations:

m1ẍ = K(r−L)cos(θ),
m2ẍcos(θ)+ m2(r̈− rθ̇ 2) = −K(r−L)−m2gsin(θ),

−m2ẍsin(θ)+ m2(rθ̈ + 2ṙθ̇) = −m2gcos(θ ).

Notice how the motions of the two particles are coupled. Given a set of initial con-
ditions, r (t0), θ (t0), x(t0), ṙ (t0), θ̇ (t0), and ẋ (t0), the solution r(t), θ (t), and x(t) of
these equations can be used to determine the motions r1(t) and r2(t) of the particles.
Such an analysis is beyond the scope of an undergraduate engineering dynamics
course.

7.5.4 Analysis

Next, we consider the balance of linear momentum for the system of particles:3

−(m2 + m1)gEy + N1 + N2 = (m1 + m2)ẍEx + m2(r̈− rθ̇ 2)er + m2(rθ̈ + 2ṙθ̇ )eθ .

We see immediately that F ·Ex = 0.4 In other words, the linear momentum of the
system in the Ex direction is conserved. This momentum is

G ·Ex = (m1 + m2)v ·Ex

= (m1 + m2)ẋ + m2(ṙ cos(θ )− rθ̇ sin(θ )) .

As a result of this conservation, the velocity of the center of mass in the Ex di-
rection is constant, and the masses m1 and m2 move in such a manner as to preserve
this constant velocity. If the initial value of G ·Ex is equal to G0, then the motion of
the particle of mass m1 is such that

ẋ =
1

m1 + m2

(
G0 −m2(ṙ cos(θ )− rθ̇ sin(θ))

)
.

3 Due to the equal and opposite nature of the spring forces acting on the particles, this equation is
equivalent to the addition of the balances of linear momentum for the individual particles. Because
the spring is assumed to be massless, the equal and opposite nature of the spring forces can also be
interpreted using Newton’s third law.
4 That is, c = Ex.
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We return to this example later on to show that the total energy of this system is
conserved.5

7.6 Conservation of Angular Momentum

In Section 7.2 we noted that the angular momentum of the system of particles rela-
tive to an arbitrary point P is

HP = HC +(r− rP)×G,

where

HC =
n

∑
k=1

(rk − r)×mkvk

is the angular momentum of the system of particles relative to its center of mass C.
We first calculate an expression for its rate of change with respect to time:

ḢP =
n

∑
k=1

((vk −v)×mkvk +(rk − r)×mkak)+ (v−vP)×G +(r− rP)× Ġ,

where we have used the product rule. Invoking the balances of linear momentum,
Fi = miai and F = ma = Ġ, the above equation becomes

ḢP =
n

∑
k=1

((vk −v)×mkvk +(rk − r)×Fk)+ (v−vP)×G +(r− rP)× Ġ.

We next eliminate those terms that are zero on the right-hand side of this equation
with the partial assistance of the identities

v×G = 0,
n

∑
k=1

v×mkvk = v×mv = 0.

The final result now follows:

ḢP =
n

∑
k=1

(rk − rP)×Fk −vP×G.

This result is known as the angular momentum theorem for a system of particles.
We note that the resultant moment of the system of forces relative to P is

MP =
n

∑
k=1

(rk − rP)×Fk.

5 It is a good exercise to convince yourself that a similar result for linear momentum conservation
applies when one replaces the spring with a rigid rod of length L.
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With this notation, the angular momentum theorem has a more compact form:

ḢP = MP −vP ×G.

It is very important to notice that ḢP is not necessarily equal to MP.
There are two important special cases of the angular momentum theorem. First,

when P is a fixed point O, where rO = 0, then

ḢO = MO, where MO =
n

∑
k=1

rk ×Fk

and MO is the resultant moment relative to O. The second case arises when P is the
center of mass C. In this case, as v×G = 0, the expression for the rate of change of
angular momentum simplifies to

ḢC = MC, where MC =
n

∑
k=1

(rk − r)×Fk

and MC is the resultant moment relative to C. For both of these cases we have the
usual interpretation that the rate of change of angular momentum relative to a point
is the resultant moment due to the forces acting on each particle. However, for the
arbitrary case where P may be moving this interpretation does not hold.

We next consider the conditions whereby a component of the angular momentum
HP in the direction of a given vector c = c(t) is conserved. The result parallels that
for a single particle. However, here we allow for the possibility that P is moving.
For a given vector c, which may be a function of time, we wish to determine when

d
dt

(HP · c) = 0.

Using the previous results, we find that for this conservation it is necessary and
sufficient that

(MP −vP ×G) · c + HP · ċ = 0.

For a given problem and a specific point P, it is very difficult to find c such that this
equation holds. In most posed problems at the undergraduate level, P is either the
center of mass C or an origin O and c = Ez.

7.7 A System of Four Particles

The main class of problems where angular momentum conservation is useful is the
mechanism shown in Figure 7.4. Here, four particles are attached to a vertical axle,
by springs of stiffness Ki and unstretched length Li (i = 1, 2, 3, or 4). The particles
are free to move on smooth horizontal rails. The rails and axle are free to rotate about
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m1

m2

m3

m4

O

ω

Axle

Smooth rail

Linear spring

Ex

Ey

er1

eθ1

er4

eθ4

Fig. 7.4 A system of four particles.

the vertical with an angular speed ω . We now examine why HO ·Ez is conserved in
this problem.

7.7.1 Kinematics

For each of the four particles, one defines a cylindrical polar coordinate system
{ri,θi,zi}. In particular, dθi/dt = ω , θ2 −θ1 = π/2, θ3 −θ2 = π/2, θ4 −θ3 = π/2,
and θ1 −θ4 = π/2. We then have some familiar results:

ri = rieri + z0Ez, vi = ṙieri + riωeθi ,

where z0 = 0. The angular momentum of the system relative to the fixed point O is
easily calculated using the definition of this angular momentum to be

HO =
(
m1r2

1 + m2r2
2 + m3r2

3 + m4r2
4

)
ωEz.

7.7.2 Forces and Balance Laws

Leaving the free-body diagrams as an exercise, the resultant force on each particle
is

Fi = −Ki (ri −Li)eri +(Nθi)eθi +(Niz −mig)Ez,
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(a) (b)

(c) (d)
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r1 ·Ey

r2 ·Ex
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r3 ·Ey

r4 ·Ex

r4 ·Ey

Fig. 7.5 An example of the motions of the four particles for the system shown in Figure 7.4: (a)
motion of m1, (b) motion of m2, (c) motion of m3, and (d) motion of m4.

where i = 1, 2, 3, or 4.
From Fi = miai, one finds that Niz = mig, as expected. Performing a balance of

angular momentum relative to O of the rails and axle in the Ez direction, we find, on
ignoring the inertias of the rails and axle, that if there is no applied moment in the
Ez direction, then6

r1Nθ1 + r2Nθ2 + r3Nθ3 + r4Nθ4 = 0.

7.7.3 Analysis

We are now in a position to show that HO ·Ez is conserved:

d
dt

(HO ·Ez) =
4

∑
k=1

(rk ×Fk) ·Ez

=
4

∑
k=1

(rk × (−Kk(rk −Lk)erk + Nθk
eθk

)) ·Ez

= r1Nθ1 + r2Nθ2 + r3Nθ3 + r4Nθ4 = 0.

6 Strictly speaking, the axle and rails constitute a rigid body, so this result becomes clearer when
we deal with kinematics of rigid bodies later on.
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It follows that
HO ·Ez =

(
m1r2

1 + m2r2
2 + m3r2

3 + m4r2
4

)
ω

is constant. Here, if one knows the locations of the particles and the speed ω at one
instant, then, for example, given the locations of the particles at a later time one can
determine ω .

An example of the motion of the system of four particles where HO is conserved
is shown in Figure 7.5. This figure was obtained by numerically integrating the eri

components of the balances of linear momenta for each of the four particles, and
using the conservation of HO to determine ω . Integrating ω with respect to time
then provides θ1,2,3,4(t).

7.8 Work, Energy, and Conservative Forces

We first recall that for each particle in a system of n particles, we have the work-
energy theorem: Ṫk = Fk · vk. Recalling that the kinetic energy T of the system of
particles is the sum of the individual kinetic energies, one immediately has the work-
energy theorem for the system of particles:

dT
dt

=
n

∑
k=1

Fk ·vk.

We can start here and, paralleling the developments of Chapter 5, develop a theorem
for the conservation of the total energy of the system of particles. To do this, it is
convenient to decompose each Fk into the sum of conservative and nonconservative
parts:

Fk = Fnck + Fck , Fck = − ∂U
∂rk

,

where U = U (r1, . . . ,rn) is the total potential energy of the system. Thus,

dT
dt

=
n

∑
k=1

(
Fck + Fnck

) ·vk

= −
(

n

∑
k=1

∂U
∂ rk

·vk

)

︸ ︷︷ ︸
=U̇

+
n

∑
k=1

Fnck ·vk.

Taking U̇ to the left-hand side and defining the total energy E = T +U , we conclude
that

Ė =
n

∑
k=1

Fnck ·vk.

This alternative form of the work-energy theorem is very useful in applications.
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We next examine two systems that were previously discussed and show how the
total energy is conserved. We then make some general comments at the conclusion
of this section.

7.8.1 The Cart and the Pendulum

We first consider the system of two particles discussed in Section 7.5. For this sys-
tem, the work-energy theorem gives

dT
dt

= (Fs1 −m1gEy + N1) ·v1 +(Fs2 −m2gEy + N2) ·v2.

Now, the normal forces are perpendicular to the velocities: N1 · v1 = N2 · v2 = 0.
Furthermore,7

Fs1 ·v1 + Fs2 ·v2 = −K(||r1 − r2||−L)
(

r1 − r2

||r1 − r2||
)
· (v1 −v2)

= − d
dt

(
K
2

(||r1 − r2||−L)2
)

.

In summary,

dT
dt

= − d
dt

(
K
2

(||r1 − r2||−L)2 + m1gEy · r1 + m2gEy · r2

)
.

It follows that the total energy of the system of particles is conserved:

d
dt

(
E = T +

K
2

(||r1 − r2||−L)2 + m1gEy · r1 + m2gEy · r2

)
= 0.

We can modify the cart-pendulum system by replacing the spring by a rigid mass-
less rod of length L. The total energy of the modified system will again be conserved.
We now show this. For the modified system, one has the kinematical results

r2 − r1 = Ler, v2 −v1 = Lθ̇eθ , (r2 − r1) · (v2 −v1) = 0.

7 To establish this result, one uses results from Section 5.5 of Chapter 5, replacing rD with r2 and
noting that v2 �= 0. In addition, the identity

d ||x||
dt

=
x · ẋ
||x||

discussed in Section 5.5.2 is used.
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Starting from the work-energy theorem

dT
dt

= (Ser −m1gEy + N1) ·v1 +(−Ser −m2gEy + N2) ·v2.

Here, Ser is the tension force in the rod. Again, the normal forces are perpendicular
to the velocity vectors and, with the help of the kinematical results above, we can
easily conclude energy conservation:

dE

dt
=

d
dt

(T + m1gEy · r1 + m2gEy · r2) = Ser · (v1 −v2)

= Ser ·
(
Lθ̇eθ

)
= 0.

Notice that the tension force does work on each of the particles. However, its com-
bined power is zero.

7.8.2 A System of Four Particles

Our final example is the system discussed in Section 7.7. Here, the work-energy
theorem is

dT
dt

=
4

∑
i=1

Fi ·vi

=
4

∑
i=1

(−Ki (ri −Li)eri +(Nθi)eθi +
(
Niz −mig

)
Ez

) ·vi.

Simplifying the right-hand side of this equation, we obtain the result

dT
dt

=
4

∑
i=1

(−Ki(ri −Li)ṙi +
(
riNθi

)
ω

)
.

We note that

Ki(ri −Li)ṙi =
d
dt

(
Ki

2
(ri −Li)2

)
.

Furthermore, after recalling the result that

r1Nθ1 + r2Nθ2 + r3Nθ3 + r4Nθ4 = 0,

we conclude that

d
dt

(
E =

1
2

4

∑
i=1

mivi ·vi + Ki (||ri||−Li)2

)
= 0.

In other words, the total energy of the system is conserved.
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7.8.3 Comment

In problems involving systems of particles, one uses energy conservation in an iden-
tical manner as in dealing with a single particle. A subtle feature of systems of par-
ticles is that the energy of the individual particles may not be conserved, but the
sum of their energies is. This feature is present in the examples discussed above.
It is a good exercise to repeat the analyses of energy conservation for the exam-
ples we have just considered using the alternative form of the work-energy theorem:
Ė = ∑n

k=1 Fnck ·vk.

7.9 Summary

This chapter was devoted to the kinematics and kinetics of a system of n particles.
The first new concept that was introduced was the center of mass C of the system of
particles:

r =
1
m

n

∑
k=1

mkrk,

where m = ∑n
k=1 mk is the total mass of the system of particles. We then described

how the linear momentum G of the system of particles was equal to the sum of their
linear momenta:

G = mv = mṙ =
n

∑
k=1

mkvk.

Following this, the angular momentum HP of the system of particles was shown to
be the angular momentum of the center of mass plus the angular momentum HC of
the system of particles relative to their center of mass:

HP =
n

∑
k=1

(rk − rP)×mkvk = (r− rP)×mv + HC,

where

HC =
n

∑
k=1

(rk − r)×mkvk.

Finally, the kinetic energy T of the system of particles was defined to be the sum of
the kinetic energies of the individual particles:

T =
1
2

n

∑
k=1

mkvk ·vk =
1
2

mv ·v +
1
2

n

∑
k=1

mk(vk −v) · (vk −v).

In the expressions for T given above, we have also recorded the expression for the
kinetic energy in terms of the kinetic energy of the center of mass and the “relative”
kinetic energy of the particles relative to the center of mass.
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Once the kinematical quantities for a system of particles were defined, their kinet-
ics was discussed. By combining the balances of linear momentum for each particle,
it was shown that

F =
n

∑
k=1

Fk = Ġ = mv̇.

This equation was used in Section 7.4 to establish a linear momentum conservation
result. The following angular momentum theorems were established in Section 7.6:

ḢO = MO, ḢC = MC,

where O is a fixed point. These results were then used to show when a component
of an angular momentum was conserved.

In Section 7.8, the work-energy theorem for a system of particles was discussed:

Ṫ =
n

∑
k=1

Fk ·vk.

This theorem was the starting point for proving energy conservation for systems of
particles. From this theorem, it was shown that

Ė =
n

∑
k=1

Fnck ·vk,

where Fnck is the nonconservative force acting on the kth particle and E is the total
energy of the system of particles.

7.10 Exercises

The following short exercises are intended to assist you in reviewing the present
chapter.

7.1. Starting from the definition of the position vector of the center of mass,
show that

n

∑
k=1

mk (rk − r) = 0,
n

∑
k=1

mk (vk −v) = 0.

Where were these identities used?
7.2. Starting from the definition of the angular momentum of a system of parti-

cles relative to a point P, prove that

HP = (r− rP)×mv + HC.
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7.3. Starting from the definition of the kinetic energy T of a system of particles,
show that

T =
1
2

mv ·v +
1
2

n

∑
k=1

mk (vk −v) · (vk −v) .

Using this result, show that the kinetic energy of a system of particles is not,
in general, equal to the kinetic energy of the center of mass.

7.4. Consider two particles that are free to move on a horizontal surface z =
0. Vertical gravitational forces −m1gEz and −m2gEz act on the respective
particles. The position vectors of the particles are

r1 = xEx + yEy, r2 = r1 + rer.

Derive an expression for the position vector r of the center of mass C of this
system of particles. Verify your answer by examining the limiting cases that
m1 is much larger than m2 and vice versa.

7.5. Consider the system of particles discussed in Exercise 7.4. Suppose the par-
ticles are connected by a linear spring of stiffness K and unstretched length
L. Show that the linear momenta G ·Ex and G ·Ey are conserved. What do
these results imply about the motion of the center of mass C of this system
of particles?

7.6. For the system of particles discussed in Exercise 7.5, prove that HC ·Ez is
conserved. What does this result imply about θ̇?

7.7. Consider the system of particles discussed in Exercise 7.5. Starting from
the work-energy theorem, prove that the total energy E of the system of
particles is conserved. Here,

E =
1
2

(m1v1 ·v1 + m2v2 ·v2)+
K
2

(r−L)2 .

7.8. For the cart and pendulum system discussed in Section 7.5, show that G ·Ex

and the total energy E are still conserved if the spring is replaced by an
inextensible string of length L.

7.9. Consider the system of four particles discussed in Section 7.7. If one had
the ability to measure r1, r2, r3, r4, and ω for this system, how would one
verify that HO ·Ez was conserved?

7.10. Referring to the system of four particles discussed in Section 7.7, what are
the eri and eθi components of the balances of linear momenta for each of the
four particles? How could the resulting differential equations and conserva-
tion of HO be used to compute the motions of the four particles (cf. Figure
7.5)?
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Dynamics of a Single Rigid Body





Chapter 8
Planar Kinematics of Rigid Bodies

TOPICS

In this chapter background material on the planar kinematics of rigid bodies is pre-
sented. In particular, we show how to establish certain useful representations for the
velocity and acceleration vectors of any material point of a rigid body. We also dis-
cuss the angular velocity vector of a rigid body. These concepts are illustrated using
two important applications: mechanisms and rolling rigid bodies. Finally, we dis-
cuss the linear G and angular (H,HO,HA) momenta of rigid bodies and the inertias
that accompany them.1

8.1 The Motion of a Rigid Body

8.1.1 General Considerations

A body B is a collection of material points (mass particles or particles). We denote
a material point by X . The position of the material point X , relative to a fixed origin,
at time t is denoted by x (see Figure 8.1). The present (or current) configuration κ t

of the body is a smooth, one-to-one, onto function that has a continuous inverse.
It maps material points X of B to points in three-dimensional Euclidean space:
x = κ t(X). As the location x of the particle X changes with time, this function
depends on time, hence the subscript t.

It is convenient to define a fixed reference configuration κ0 of the body. This con-
figuration is defined by the function X = κ0(X). Because this function is invertible,

1 The details presented here are far more advanced than those in most undergraduate texts. This is
partially because the presentation is influenced by the recent renaissance in continuum mechanics.
We mention in particular the influential works by Beatty [5] and Casey [13, 14, 15, 16], who used
the fruits of this era to present enlightening treatments of rigid body mechanics. This chapter is
based on the aforementioned works and Chapter 4 of Gurtin [33].

O.M. O’Reilly, Engineering Dynamics: A Primer, DOI 10.1007/978-1-4419-6360-4 8, 133
c© Springer Science+Business Media, LLC 2010
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Reference configuration κ0
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X

X2

O

Fig. 8.1 Configurations of a body B.

we can use the position vector X of a material point X in the reference configuration
to uniquely define the material point of interest. One can then define the motion of
the body as a function of X and t:

x = χ(X,t).

Notice that the motion of a material point of B depends on time and the material
point of interest. To see this imagine a compact disc spinning in a CD player. The
motion of a particle on the outer rim of the disc is clearly different from the motion
of a particle on the inner rim of the disc. Furthermore, the place in space that each
of these particles occupies depends on the time t of interest.

The previous developments are general and are used in continuum mechanics, a
field that encompasses the mechanics of solids and fluids.

8.1.2 Rigidity

For rigid bodies, the nature of the function χ(X,t) can be simplified dramatically.
We refer to the rigid motion as x = χR(X,t). First, for rigid bodies the distance
between any two mass particles, say X1 and X2, remains constant for all motions.
Mathematically, this is equivalent to saying that

||x1 −x2|| = ||X1 −X2|| .
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Secondly, the motion of the rigid body preserves orientations. Using a classical re-
sult,2 it can be proven that the motion of a rigid body has the form

⎡
⎣ (x1 −x2) ·Ex

(x1 −x2) ·Ey

(x1 −x2) ·Ez

⎤
⎦=

⎡
⎣Q11(t) Q12(t) Q13(t)

Q21(t) Q22(t) Q23(t)
Q31(t) Q32(t) Q33(t)

⎤
⎦
⎡
⎣ (X1 −X2) ·Ex

(X1 −X2) ·Ey

(X1 −X2) ·Ez

⎤
⎦ .

Here, the matrix whose components are Q11, . . . ,Q33 is a proper-orthogonal or rota-
tion matrix.

To abbreviate the subsequent developments, we introduce notations for a matrix,
its transpose, and the identity matrix:

Q =

⎡
⎣Q11(t) Q12(t) Q13(t)

Q21(t) Q22(t) Q23(t)
Q31(t) Q32(t) Q33(t)

⎤
⎦ , QT =

⎡
⎣Q11(t) Q21(t) Q31(t)

Q12(t) Q22(t) Q32(t)
Q13(t) Q23(t) Q33(t)

⎤
⎦ ,

I =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ .

The relations satisfied by any rotation matrix Q can be expressed compactly as

QQT = I, det(Q) = 1.

In words, the inverse of a rotation matrix is its transpose, and the determinant of a
rotation matrix is one. The relations QQT = I can be interpreted as six conditions
on the nine components of Q. It follows that only three of the nine components
Qik are independent. One then has the problem of parametrizing Q in terms of three
independent parameters. There are several methods of doing this, Euler angles being
the most popular.3 In an undergraduate engineering dynamics course one considers a
particular one-parameter family of rotation matrices. Finally, we note that det(Q) =
1 implies that Q preserves orientations.

Because Q is a rotation matrix, we note that4

0 =
dI

dt
=

d(QQT )
dt

=
dQ

dt
QT +Q

dQT

dt
.

2 The proof of this result is beyond the scope of this course. One proof may be found on pages 49–
50 of Gurtin [33]. A good discussion on the relationship between this result with Euler’s theorem
on the motion of a rigid body and Chasles’ theorem can be found in Beatty [5] (see also Beatty [4]).
Euler’s representation of rigid body motion can be seen on pages 30–32 of Euler [26].
3 Details on these parametrizations can be found, for example, in Beatty [5], Greenwood [32],
O’Reilly [55], Shuster [71], Synge and Griffith [78], and Whittaker [81].
4 Recall that the transpose of a product of two matrices A and B is (AB)T = BT AT . Furthermore,
a matrix C is symmetric if C = CT and is skew-symmetric if C = −CT .
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That is,
dQ

dt
QT = −Q

dQT

dt
= −

(
dQ

dt
QT
)T

.

Hence, Q̇QT is a skew-symmetric matrix:

Q̇QT =

⎡
⎣ 0 −Ω21 Ω13

Ω21 0 −Ω32

−Ω13 Ω32 0

⎤
⎦ .

The three components Ω21, Ω13, and Ω32 can be expressed in terms of the compo-
nents of Q and its time derivatives, but we leave this as an exercise.

8.1.3 Angular Velocity and Acceleration Vectors

Returning to the discussion of a rigid body, we recall that
⎡
⎣ (x1 −x2) ·Ex

(x1 −x2) ·Ey

(x1 −x2) ·Ez

⎤
⎦=

⎡
⎣Q11(t) Q12(t) Q13(t)

Q21(t) Q22(t) Q23(t)
Q31(t) Q32(t) Q33(t)

⎤
⎦
⎡
⎣ (X1 −X2) ·Ex

(X1 −X2) ·Ey

(X1 −X2) ·Ez

⎤
⎦ .

Because the matrix Q is a rotation matrix, we can easily invert this relationship by
multiplying both sides of it by the transpose of Q:

⎡
⎣ (X1 −X2) ·Ex

(X1 −X2) ·Ey

(X1 −X2) ·Ez

⎤
⎦=

⎡
⎣Q11(t) Q21(t) Q31(t)

Q12(t) Q22(t) Q32(t)
Q13(t) Q23(t) Q33(t)

⎤
⎦
⎡
⎣ (x1 −x2) ·Ex

(x1 −x2) ·Ey

(x1 −x2) ·Ez

⎤
⎦ .

Now let us examine the relationship between the velocity and acceleration vec-
tors of two material points of the body. A simple differentiation, where we note that
X1 and X2 are constant, gives

⎡
⎣ (v1 −v2) ·Ex

(v1 −v2) ·Ey

(v1 −v2) ·Ez

⎤
⎦=

⎡
⎣ Q̇11(t) Q̇12(t) Q̇13(t)

Q̇21(t) Q̇22(t) Q̇23(t)
Q̇31(t) Q̇32(t) Q̇33(t)

⎤
⎦
⎡
⎣ (X1 −X2) ·Ex

(X1 −X2) ·Ey

(X1 −X2) ·Ez

⎤
⎦ .

Here, v1 = ẋ1 and v2 = ẋ2. We next substitute for X1 and X2 and use the earlier
observation about Q̇QT to find that

⎡
⎣ (v1 −v2) ·Ex

(v1 −v2) ·Ey

(v1 −v2) ·Ez

⎤
⎦=

⎡
⎣ 0 −Ω21 Ω13

Ω21 0 −Ω32

−Ω13 Ω32 0

⎤
⎦
⎡
⎣ (x1 −x2) ·Ex

(x1 −x2) ·Ey

(x1 −x2) ·Ez

⎤
⎦ .

We can write this important result in vector notation:

v1 −v2 =ω× (x1 −x2),
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where ω is known as the angular velocity vector of the rigid body:

ω= Ω32Ex +Ω13Ey + Ω21Ez.

You should notice that this vector depends on time and not on the particle of the
body: it has the same value for each X . This is because ω is obtained by differenti-
ating Q and the matrix Q is a function of t only.

We can easily find the relationships between the accelerations a1 and a2 of the
material points X1 and X2 by differentiating the relationship between their velocities:

a1 −a2 = v̇1 − v̇2

= ω̇× (x1 −x2)+ω× (v1−v2)
= α× (x1 −x2)+ω× (ω× (x1−x2)).

Here, α is the angular acceleration vector of the rigid body:

α= ω̇.

8.1.4 Fixed-Axis Rotation

All of the aforementioned developments are general. In an introductory undergrad-
uate engineering dynamics course one considers a special case. In this special case,
the axis of rotation is fixed and is normally taken to coincide with Ez.

For this special case, the rotation matrix Q has a particularly simple form:

Q =

⎡
⎣ cos(θ) −sin(θ ) 0

sin(θ ) cos(θ ) 0
0 0 1

⎤
⎦ .

The angle θ represents a counterclockwise rotation of the rigid body about Ez.
Let us now establish the angular velocity and acceleration vectors associated with

this rotation matrix:

Q̇QT = θ̇

⎡
⎣−sin(θ) −cos(θ ) 0

cos(θ) −sin(θ) 0
0 0 0

⎤
⎦
⎡
⎣ cos(θ ) sin(θ ) 0
−sin(θ) cos(θ ) 0

0 0 1

⎤
⎦

= θ̇

⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦ .
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Present configuration κ t

Reference configuration κ0
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ex

ey

ez

O

Fig. 8.2 The corotational basis {ex,ey,ez} and the fixed Cartesian basis {Ex,Ey,Ez}.

Hence, examining the components of the above matrix, we conclude that

ω= θ̇Ez, α= θ̈Ez.

8.2 Kinematical Relations and a Corotational Basis

In our previous developments we used a fixed (right-handed) Cartesian basis. It
is convenient, when discussing the dynamics of rigid bodies, to introduce another
basis which is known as a corotational basis.5 This section discusses such a basis
and points out some features of its use.

8.2.1 The Corotational Basis

Here, we define a basis {ex,ey,ez} that rotates with the body. As a result, it is known
as a corotational basis. Our discussion of this basis follows Casey [13, 16].

Referring to Figure 8.2, we start by picking four material points X1, X2, X3, and
X4 of the body. These points are chosen such that the three vectors

Ex = X1 −X4, Ey = X2 −X4, Ez = X3 −X4

form a fixed, right-handed, Cartesian basis. We next consider the present relative lo-
cations of the four material points. Because Q preserves lengths and orientations, the

5 This basis is often referred to as a body fixed frame or an embedded frame.
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three vectors x1−x4, x2−x4, and x3−x4 will also form a right-handed orthonormal
basis.6 As a result, we define the corotational basis to be

ex = x1 −x4, ey = x2 −x4, ez = x3 −x4.

Inasmuch as the corotational basis moves with the body, we can use our previous
results for relative velocities in Section 8.1.37 to show that

ėx = ω× ex, ėy = ω× ey, ėz = ω× ez.

Furthermore, we can differentiate these results to find that

ëx = α× ex +ω× (ω× ex).

Related results hold for ëy and ëz. The aforementioned relations prove useful when
we establish certain kinematical results later on.

Because the set {ex,ey,ez} is a basis, given any vector b, one has the representa-
tions

b = bxex + byey + bzez

= BxEx + ByEy + BzEz.

If b is a constant vector, ḃ = 0, then Bx, By, and Bz are constant. However, because
the corotational basis changes with time, the constancy of b does not imply that bx,
by, and bz are constant.

8.2.2 The Corotational Basis for the Fixed-Axis Case

As mentioned previously, for the fixed-axis case, the rotation matrix Q has a partic-
ularly simple form:

Q =

⎡
⎣ cos(θ) −sin(θ ) 0

sin(θ ) cos(θ ) 0
0 0 1

⎤
⎦ .

The angle θ represents a counterclockwise rotation of the rigid body about Ez.

6 The proof of this result is beyond our scope here. A proof may be found in Casey [13]. For the
special case of a fixed-axis rotation, we give an explicit demonstration of this result in Section
8.2.2.
7 For example, ėx = v1 −v4 = ω× (x1 −x4) = ω× ex.
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θ

θ
Ex

Ey

exey

Fig. 8.3 The corotational basis for a fixed-axis rotation about Ez.

Taking the aforementioned four points, we find that
⎡
⎣ (ex = x1 −x4) ·Ex

(ex = x1 −x4) ·Ey

(ex = x1 −x4) ·Ez

⎤
⎦ =

⎡
⎣ cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

⎤
⎦
⎡
⎣ (Ex = X1 −X4) ·Ex

(Ex = X1 −X4) ·Ey

(Ex = X1 −X4) ·Ez

⎤
⎦=

⎡
⎣ cos(θ)

sin(θ)
0

⎤
⎦ ,

⎡
⎣ (ey = x2 −x4) ·Ex

(ey = x2 −x4) ·Ey
(ey = x2 −x4) ·Ez

⎤
⎦ =

⎡
⎣ cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

⎤
⎦
⎡
⎣ (Ey = X2 −X4) ·Ex

(Ey = X2 −X4) ·Ey
(Ey = X2 −X4) ·Ez

⎤
⎦=

⎡
⎣−sin(θ)

cos(θ)
0

⎤
⎦ ,

⎡
⎣ (ez = x3 −x4) ·Ex

(ez = x3 −x4) ·Ey

(ez = x3 −x4) ·Ez

⎤
⎦ =

⎡
⎣ cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

⎤
⎦
⎡
⎣ (Ez = X3 −X4) ·Ex

(Ez = X3 −X4) ·Ey

(Ez = X3 −X4) ·Ez

⎤
⎦=

⎡
⎣ 0

0
1

⎤
⎦ .

In summary, we obtain the results shown graphically in Figure 8.3:
⎡
⎣ ex

ey

ez

⎤
⎦=

⎡
⎣ cos(θ ) sin(θ ) 0
−sin(θ ) cos(θ) 0

0 0 1

⎤
⎦
⎡
⎣Ex

Ey

Ez

⎤
⎦ .

These relations have a familiar form. It is a useful exercise to verify that the corota-
tional basis is right-handed: ez · (ex × ey) = 1.

For the case of a fixed-axis rotation about Ez, we showed previously that

ω= θ̇Ez, α= θ̈Ez.

We can use these results to conclude that

ėx = ω× ex = θ̇ey ,

ėy = ω× ey = −θ̇ex,

ėz = ω× ez = 0.

Alternatively, we can work directly with the representations for ex, ey, and ez in
terms of Ex, Ey, and Ez to arrive at the same results.



8.2 Kinematical Relations and a Corotational Basis 141

Circular disk
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x X
r O

Fig. 8.4 A particle moving on a rotating disk.

8.2.3 A Particle Moving on a Rigid Body

It is convenient at this stage to consider an example. As shown in Figure 8.4, a
particle moves on the surface of a circular disk. The disk is rotating about the Ez

axis with an angular speed θ̇ = ω and an angular acceleration θ̈ = α . The center of
the disk O is fixed. We seek to determine the velocity vector of the particle and the
velocity vector of a point X of the disk.

For the example of interest, suppose that the position vector of the particle is
given by the function

r = 10t2ex + 20tey.

Furthermore, let the position vector of X be

x = xex + yey,

where x and y are constants.
To calculate the velocity vectors, we merely differentiate the position vectors and

use our previous results on the derivatives of ex and ey:

ṙ = 20tex + 10t2ėx + 20ey + 20t ėy

= 20tex + 10t2ωey + 20ey−20tωex,

ẋ = xėx + yėy

= xωey − yωex.

You should notice that
ẋ = ω×x, ṙ �=ω× r.
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Fig. 8.5 A four-bar linkage.

The reason for these results lies in the fact that x is the position vector of a point of
the disk and r is the position vector of a particle that moves relative to the disk.

We leave it as an exercise to determine the acceleration vectors of the particle
and X .

8.3 Mechanisms

One of the main applications of the theory of rigid bodies is an analysis of the
kinematics of mechanisms. Two of the most important mechanisms are the slider
crank and the four-bar linkage. In general, elements of mechanisms are deformable
bodies, but a primitive analysis assumes that these elements are rigid. Here, we also
assume that the motions of these elements are coplanar but it is not very difficult to
consider the more general case.8

As an example, consider the four-bar linkage shown in Figure 8.5. Here, the bar
AD is fixed:

vA = vD = 0.

The motion of the bar AB is assumed to be known. In other words, θ1, θ̇1, and
θ̈1 are prescribed. The bars AD, DC, AB, and BC are interconnected by pin-joints.
One seeks to determine the motion of the two bars DC and BC. That is, one seeks
θ2, θ̇2, θ̈2,θ3, θ̇3, and θ̈3 as functions of time. You should note that the angular

8 The study of mechanisms is an important area of mechanical engineering. Our discussion here
touches but a small part of it. The interested reader is referred to the textbooks of Bottema and
Roth [11], Mabie and Ocvirk [47], and Paul [59] for further treatments and issues.
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velocity vectors of the bars AB, BC, and DC are, respectively,

ωAB = θ̇1Ez, ωBC = θ̇2Ez, ωDC = θ̇3Ez.

First, the linkages are connected together:

rDA = rBA + rCB + rDC,

where rDA = rD − rA and so on. Introducing the angles shown in Figure 8.5, we find
that this relationship can be written as

rDA = aEx + bEy = L1(cos(θ1)Ex + sin(θ1)Ey)
− L2(cos(θ2)Ex + sin(θ2)Ey)−L3(cos(θ3)Ex + sin(θ3)Ey).

This constitutes two scalar equations for the unknown angles θ2 and θ3:

a = L1 cos(θ1)−L2 cos(θ2)−L3 cos(θ3),
b = L1 sin(θ1)−L2 sin(θ2)−L3 sin(θ3).

These equations are nonlinear and, in general, have multiple solutions (θ2,θ3). To
see this, one merely has to draw different possible configurations of the mechanism.

To obtain a second set of equations, we differentiate the position vector relation-
ship above:

vDA = vBA + vCB + vDC.

Writing out the two scalar equations, we find that

0 = −L1θ̇1 sin(θ1)+ L2θ̇2 sin(θ2)+ L3θ̇3 sin(θ3),
0 = L1θ̇1 cos(θ1)−L2θ̇2 cos(θ2)−L3θ̇3 cos(θ3).

To solve these equations for the unknown velocities θ̇2 and θ̇3, it is convenient to
write them in matrix form:

[
L1θ̇1 sin(θ1)
L1θ̇1 cos(θ1)

]
=
[

sin(θ2) sin(θ3)
cos(θ2) cos(θ3)

][
L2θ̇2

L3θ̇3

]
.

Inverting the matrix and using a trigonometric identity,9 the desired results are ob-
tained:

θ̇2 =
(

L1 sin(θ1 −θ3)
L2 sin(θ2 −θ3)

)
θ̇1, θ̇3 =

(
L1 sin(θ2 −θ1)
L3 sin(θ2 −θ3)

)
θ̇1.

9 The identity that we use is sin(α − β ) = sin(α)cos(β )− sin(β )cos(α). We also recall the
expression for the inverse of a matrix:

[
a b
c d

]−1

=
1

ad − cb

[
d −b
−c a

]
.
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Fig. 8.6 An example of the motions of a four-bar linkage where a = L1 = L2 = 10, L3 = b = 5.
The image on the left shows the motions of the linkages, and the image on the right displays the
evolution of the angles θ1, θ2, and θ3.

This solution is valid provided that sin(θ2 − θ3) is not equal to zero. This occurs
when the bars BC and DC are parallel, and then it is not possible to determine the
angular velocities of the bars DC and BC.

To establish equations to determine the angular accelerations of the bars DC and
BC, we could differentiate the previous velocity vector equation to obtain

aDA = aBA + aCB + aDC.

The resulting two scalar equations, when supplemented by the two scalar position
equations and two scalar velocity equations, could be used to obtain expressions for
θ̈2 and θ̈3. An easier method of obtaining the desired accelerations is to differentiate
the previous expressions for θ̇2 and θ̇3:

θ̈2 =
d
dt

(
L1 sin(θ1 −θ3)
L2 sin(θ2 −θ3)

)
θ̇1 +

(
L1 sin(θ1 −θ3)
L2 sin(θ2 −θ3)

)
θ̈1,

θ̈3 =
d
dt

(
L1 sin(θ2 −θ1)
L3 sin(θ2 −θ3)

)
θ̇1 +

(
L1 sin(θ2 −θ1)
L3 sin(θ2 −θ3)

)
θ̈1.

In conclusion, given the motion of the link AB, it is possible to solve for the
angular displacements, angular speeds, and angular accelerations of the bars DC
and BC. To illustrate these developments, we consider a specific mechanism and
use the results established in this section to determine θ2 and θ3 for a given
θ1(t) = π/2+0.5sin(0.5t). The results are shown in Figure 8.6, and can be used to
infer the angular velocities and accelerations of the links.

We note that the analysis of a slider crank mechanism is similar to that presented
here for a four-bar linkage. For the slider crank, the six unknowns are the displace-
ment of the slider and the angular displacement of the link connecting the slider to
the crank, along with the first and second time derivatives of these quantities.
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8.4 Center of Mass and Linear Momentum

In all of the previous developments, we defined the motion of one material point
relative to another material point of the same body. It is convenient for later purposes
to now define a particular point: the center of mass C.

We first dispense with some preliminaries. Let R0 and R denote the regions of
Euclidean three-space occupied by the body in its reference and present configura-
tions, respectively. Furthermore, let X and x be the position vectors of a material
point X of the body in its reference and present configurations, respectively (see
Figure 8.1).

8.4.1 The Center of Mass

The position vectors of the center of mass of the body in its reference and present
configurations are defined by

X̄ =

∫
R0

Xρ0dV∫
R0

ρ0dV
, x̄ =

∫
R xρdv∫
R ρdv

,

where ρ0 = ρ0(X) and ρ = ρ(x,t) are the mass densities per unit volume of the body
in the reference and present configurations.10

We assume that the mass of the body is conserved:

dm = ρ0dV = ρdv,

m =
∫
R0

ρ0dV =
∫
R

ρdv.

This is the principle of mass conservation. Hence,

mX̄ =
∫

R0

Xρ0dV, mx̄ =
∫

R
xρdv.

In addition, one has the useful identities

0 =
∫
R0

(X− X̄)ρ0dV, 0 =
∫

R
(x− x̄)ρdv.

You should compare these expressions to those we obtained in Chapter 7 for a sys-
tem of particles.

A special feature of rigid bodies is that the center of mass behaves as if it were
a material point. We denote this point by C. For many bodies, such as a rigid

10 If a body is homogeneous, then ρ0 is a constant that is independent of X. Our use of the symbol
ρ here should not be confused with our use of the same symbol for the radius of curvature of a
space curve in Chapter 3.
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homogeneous sphere, the center of mass corresponds to the geometric center of
the sphere, whereas for others, such as a rigid circular ring, it does not correspond
to a material point. It can be proven that for any material point Y of a rigid body,
one has11

⎡
⎣ (x̄−y) ·Ex

(x̄−y) ·Ey

(x̄−y) ·Ez

⎤
⎦=

⎡
⎣Q11(t) Q12(t) Q13(t)

Q21(t) Q22(t) Q23(t)
Q31(t) Q32(t) Q33(t)

⎤
⎦
⎡
⎣ (X̄−Y) ·Ex

(X̄−Y) ·Ey

(X̄−Y) ·Ez

⎤
⎦ .

That is, x̄ = χR(X̄,t). Differentiating these results as in Section 8.1.3, we find that

v̄− ẏ = ω× (x̄−y),
ā− ÿ = α× (x̄−y)+ω× (ω× (x̄−y)).

Here, v̄ and ā are the velocity and acceleration vectors of the center of mass C.

8.4.2 The Linear Momentum

We next turn to the linear momentum G of a rigid body. By definition, this momen-
tum is

G =
∫
R

vρdv.

That is, the linear momentum of a rigid body is the sum of the linear momenta of
its constituents. We can establish an alternative expression for G using the center of
mass:12

G =
∫

R
vρdv =

∫
R

dx
dt

ρdv

=
d
dt

(∫
R

xρdv

)

=
d
dt

(mx̄) .

Hence,
G = mv̄.

You may recall that a related result holds for a system of particles.

11 The proof is beyond the scope of an undergraduate engineering dynamics course. For complete-
ness, however, one proof is presented in Section 8.9.
12 Some may notice that we take the time derivative to the outside of an integral whose region of
integration R depends on time. This is generally not possible. However, for the integral of interest
it is shown in Section 8.9 that such a manipulation is justified.
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Fig. 8.7 The geometry of contact.

8.5 Kinematics of Rolling and Sliding

Many mechanical systems consist of a body in motion that is in contact with one
point of another body. The resulting contact conditions are known as kinematical
constraints. The discussion and description of these constraints is complicated by
the fact that the particular material point of the body that is in contact changes with
time.

There are two types of contact that are of interest here: rolling and sliding. The
study of rolling and sliding contact is a classical area of dynamics. In particular,
some rolling rigid bodies such as the wobblestone (also known as a celt or rattle-
back) exhibit interesting counterintuitive dynamics.13

To proceed, we consider a rigid body B that is in contact with a fixed surface S
(see Figure 8.7). As the body moves on this fixed surface, the material point of the
body that is in contact with the surface may change. We denote the material point of
the body that is in contact at time t by P = XP(t). We denote the position vector of
P by rP and its velocity vector by vP. Finally, the unit normal to S at P is denoted
by n.

For any material point X of B, recall that the velocity and acceleration vectors
are

v = v̄+ω× (x− x̄),
a = ā+α× (x− x̄)+ω× (ω× (x− x̄)).

13 The standard modern reference to this area was written by two Soviet mechanicians: Neimark
and Fufaev [51]. One of the prime contributors to this area was Routh [64, 65]. Indeed, the problem
of determining the motion of a sphere rolling on a surface of revolution is known as Routh’s
problem. We also mention the interesting classical work on billiards (pool) by Coriolis [17] from
1835.
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Consequently, for P, one has the relations

vP = v̄+ω× (rP− x̄) ,
aP = ā+α× (rP− x̄)+ω× (ω× (rP− x̄)).

For a rigid body that is sliding on the fixed surface S , the component of vP in the
direction of n is zero:

vP ·n = 0.

This implies the sliding condition:

v̄ ·n = −(ω× (rP− x̄)) ·n.

For a rigid body that is rolling on the fixed surface S , the velocity of the instanta-
neous point of contact P is zero:

vP = 0.

This implies the rolling condition:

v̄ = −ω× (rP− x̄).

We also note for a rolling rigid body that

aP = ā+α× (rP− x̄)+ω× (ω× (rP− x̄)),

and this acceleration vector is not necessarily 0.

8.6 Kinematics of a Rolling Circular Disk

The main examples of rolling rigid bodies are upright rolling disks and cylinders.
These examples are often used as simple models for wheel-road interactions in ve-
hicle dynamics as well as numerous examples of bearing surfaces and mechanism
driving devices. Here, we focus on a circular disk. The developments for a cylinder
are easily inferred.14

As shown in Figure 8.8, we consider an upright homogeneous disk of radius R
that is rolling on a plane. To start, we define a corotational basis for the disk:

ex = cos(θ )Ex + sin(θ)Ey, ey = cos(θ )Ey − sin(θ)Ex, ez = Ez.

14 For further references to, and discussions of, rolling disks and sliding disks see Borisov and
Mamaev [10], Cushman et al. [20], Hermans [34], and O’Reilly [54]. References [10, 54] contain
discussion of the important works on these systems by Chaplygin in 1897, Appell and Korteweg
in 1900, and Vierkandt in 1892.



8.6 Kinematics of a Rolling Circular Disk 149

Circular disk of radius R

Horizontal planeEx

Ex

Ey

Ey

θ
θ

exey

x̄

rP P

C

O

Fig. 8.8 A circular disk rolling on a horizontal plane.

Because the motion is a fixed-axis rotation,

ω= θ̇Ez, α= θ̈Ez.

Furthermore, because the center of mass C of the disk is at its geometric center,

x̄ = xEx + yEy + zEz.

The position vector of the instantaneous point of contact P of the disk with the plane
is

rP = x̄−REy.

The unit normal n mentioned earlier is Ey for this problem.
Because the disk is rolling, vP = 0, we find that

v̄ = −ω× (rP− x̄) = −θ̇Ez × (−REy)
= −Rθ̇Ex.

This vector equation is equivalent to three scalar equations:

ẋ = −Rθ̇ , ẏ = 0, ż = 0.

The last two of these equations imply that the velocity of C is only in the Ex direc-
tion, as expected. It follows from these equations that the motion of the center of
mass is completely determined by the rotational motion of the disk:

v̄ = ẋEx = −Rθ̇Ex, ā = ẍEx = −Rθ̈Ex.
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Components of vA

Fig. 8.9 (a) The loci of two points A and B on a disk that is rolling with a constant angular velocity
θ̇ < 0 on a horizontal surface: v̄ = vEx = −Rθ̇Ex. In (b) the Ex and Ey components of the velocity
vector vA of the point A on the disk are shown.

Let us now examine the acceleration of the instantaneous point of contact P =
XP(t). We know that the velocity vector of this point is 0. However,

aP = ā+α× (rP− x̄)+ω× (ω× (rP− x̄))
= ẍEx + θ̈Ez × (−REy)+ θ̇Ez × (θ̇Ez ×−REy)

= Rθ̇ 2Ey.

This acceleration is not zero because the material point XP that is in contact with the
surface changes with time.

To determine the velocity and acceleration vectors of any material point X of the
rolling rigid disk, we note that

x− x̄ = x1ex + y1ey,

where x1 and y1 are constants. Next, we use the previous results

v = v̄+ω× (x− x̄),
a = ā+α× (x− x̄)+ω× (ω× (x− x̄)).

Because,

v̄ = −Rθ̇Ex, ā = −Rθ̈Ex, ω= θ̇Ez, α= θ̈Ez,
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we find that

v = −Rθ̇Ex + θ̇Ez × (x1ex + y1ey)
= −Rθ̇Ex + θ̇(x1ey − y1ex),

a = −Rθ̈Ex + θ̈Ez × (x1ex + y1ey)+ θ̇Ez × (θ̇Ez × (x1ex + y1ey))

= −Rθ̈Ex + θ̈(x1ey − y1ex)− θ̇ 2(x1ex + y1ey).

It is a good exercise to choose various values of x1 and y1 and examine the corre-
sponding velocity and acceleration vectors.

As an example of the previous exercise, we consider a disk rolling on a horizontal
surface at constant speed. The case x1 = 0 and y1 = R corresponds to the point B
in Figure 8.9(a) and the case x1 = 0 and y1 = −R corresponds to the point A in
Figure 8.9(a). In Figure 8.9(b), the components of the velocity vector of the point A
are shown. You should notice how vA = 0 when A corresponds to the instantaneous
point of contact. The curves traced by the points A and B are well-known examples
of a plane curve known as the cycloid.

8.6.1 A Common Error

It is a commmon error to start with the equation rP = x̄−REy, and then differentiate
this equation to try to get vP and aP. This leads to the incorrect answers vP = v̄
and aP = ā. The reason for these errors lies in the fact that the position vector of
XP(t) relative to the center of mass C is −REy only at the instant t. At other times,
its relative position vector does not have this value. When one differentiates rP =
x̄−REy, the derivative of REy is equal to 0. Hence, one is falsely assuming that the
same material point is the instantaneous point of contact for the entire duration of
the motion.

8.6.2 The Sliding Disk

It is interesting to pause briefly to consider the sliding disk. For such a disk, the
sliding condition yields

v̄ ·Ey = −(θ̇Ez × (−REy)
) ·Ey.

This implies that
v̄ ·Ey = ẏ = 0.

Hence, the rotational and translational motions of the disk are not coupled.
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Fig. 8.10 Relative position vectors Π and π of a material point X of a body.

8.7 Angular Momenta

Preparatory to a discussion of the balance laws for a rigid body, we now address
the angular momenta of a rigid body. The momentum relative to two points, the
center of mass C and a fixed point O, are of considerable importance in the next two
chapters. For convenience, we assume that the fixed point O is also the origin (see
Figure 8.10).

By definition, the angular momenta of a rigid body relative to its center of mass
C, H, and a fixed point O, HO, are

H =
∫

R
(x− x̄)×vρdv, HO =

∫
R

x×vρdv.

These momenta are related by a simple and important formula. To find this formula,
we perform some manipulations on HO:

HO =
∫

R
x×vρdv

=
∫

R
(x− x̄+ x̄)×vρdv

=
∫

R
(x− x̄)×vρdv +

∫
R

x̄×vρdv

= H + x̄×
∫
R

vρdv.

That is,
HO = H + x̄×G.
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In words, the angular momentum of a rigid body relative to a fixed point O is the
sum of the angular momentum of the rigid body about its center of mass and the
angular momentum of its center of mass relative to O.

As an extension of the previous result, it is a good exercise to show that the an-
gular momentum of a rigid body relative to an arbitrary point A satisfies the identity

HA =
∫
R

(x−xA)×vρdv = H +(x̄−xA)×G.

Here, xA is the position vector of the point A. You might recall that we had a similar
identity for a system of particles.

In the forthcoming balance laws, we need to measure H and HO at various in-
stants of time. Using the formulae above, this is a tedious task. It is simplified
tremendously by the introduction of inertia tensors.

8.8 Inertia Tensors

In this section we first establish the inertia tensor for a rigid body relative to its
center of mass C. Some comments on the parallel-axis theorem are presented at the
end of this section.

To start, we recall that for any material point X of a rigid body, one has the
relation

v = v̄+ω× (x− x̄).

As shown in Figure 8.10, we also define the relative position vectors

π= x− x̄, Π= X− X̄.

Because the motion of the body is rigid, these vectors have interesting representa-
tions:

π = x− x̄ = Πxex +Πyey +Πzez,

Π = X− X̄ = ΠxEx +ΠyEy +ΠzEz.

Notice that the components ofΠ relative to the fixed Cartesian basis are identical to
those of π relative to the corotational basis. This implies that the latter components
can be measured using the fixed reference configuration.
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8.8.1 Where the Inertia Tensor Comes From

Consider the angular momentum H:

H =
∫

R
(x− x̄)×vρdv

=
∫

R
π×vρdv

=
∫

R
π× (v̄+ω×π)ρdv

=
∫

R
π× v̄ρdv +

∫
R
π× (ω×π)ρdv.

However, inasmuch as C is the center of mass and the velocity vector of C is inde-
pendent of the region of integration,

∫
R
π× v̄ρdv =

∫
R
πρdv× v̄ = 0× v̄ = 0.

Hence,

H =
∫

R
π× (ω×π)ρdv =

∫
R

((π ·π)ω− (π ·ω)π)ρdv.

In writing this equation, we used the identity a× (b× c) = (a · c)b− (a ·b)c.
Substituting the representations15

π = x− x̄ = Πxex + Πyey +Πzez,

ω = ωxex +ωyey +ωzez,

into the last equation and expanding, we find that

H = (Ixxωx + Ixyωy + Ixzωz)ex +(Ixyωx + Iyyωy + Iyzωz)ey

+(Ixzωx + Iyzωy + Izzωz)ez.

In this expression, the inertias Ixx, . . . , Izz are the six independent components of the
inertia tensor of the body relative to its center of mass:

Ixx =
∫

R

(
Π 2

y +Π 2
z

)
ρdv =

∫
R0

(
Π 2

y + Π2
z

)
ρ0dV,

Iyy =
∫

R

(
Π 2

x +Π 2
z

)
ρdv =

∫
R0

(
Π 2

x + Π2
z

)
ρ0dV,

Izz =
∫

R

(
Π 2

x +Π 2
y

)
ρdv =

∫
R0

(
Π 2

x + Π2
y

)
ρ0dV,

15 Earlier, in Section 8.1.3, we expressed ω in terms of the fixed basis: ω = Ω32Ex + Ω13Ey +
Ω21Ez. Here, it is more convenient to express ω in terms of the corotational basis.
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and

Ixy = −
∫
R

ΠxΠyρdv = −
∫

R0

ΠxΠyρ0dV,

Ixz = −
∫
R

ΠxΠzρdv = −
∫
R0

ΠxΠzρ0dV,

Iyz = −
∫
R

ΠyΠzρdv = −
∫
R0

ΠyΠzρ0dV.

You should notice that all of the inertias can be evaluated in the fixed reference
configuration of the rigid body.16

The integrals in the expressions for Ixx, . . . , Izz are standard volume integrals. For
many bodies they are tabulated in texts, for example, Table D/4 of Meriam and
Kraige [48]. In most texts, Ixx, Iyy, and Izz are known as the moments of inertia,
whereas −Ixy, −Ixz, and −Iyz, are known as the products of inertia.

8.8.2 Angular Momentum and the Inertia Tensor

Recall that we have just shown that

H = (Ixxωx + Ixyωy + Ixzωz)ex +(Ixyωx + Iyyωy + Iyzωz)ey

+(Ixzωx + Iyzωy + Izzωz)ez.

We can write this result in a more transparent form:
⎡
⎣H · ex

H · ey

H · ez

⎤
⎦=

⎡
⎣ Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

⎤
⎦
⎡
⎣ω · ex

ω · ey

ω · ez

⎤
⎦ .

The matrix in this equation is known as the inertia matrix. Its components are the
components of the inertia tensor.

We notice that the inertia matrix is symmetric. It may also be shown that it is
positive definite. As a result, its eigenvalues (or principal values) are real positive
numbers.17 You should also notice that the components of this matrix depend on
the corotational basis chosen and, as a result, the fixed Cartesian basis also. If the
vectors Ex, Ey, and Ez are chosen to coincide with the eigenvectors of this matrix,
then the sets of vectors {Ex,Ey,Ez} and {ex,ey,ez} are said to be the principal axes
of the body in its reference and present configurations, respectively. In this case, the

16 These results are discussed in Casey [13, 16] and in Section 13, Chapter 4 of Gurtin [33]. For
further details on the transformation of the integrals, see Section 8.9 below.
17 These results can be easily found in texts on linear algebra; see, e.g., Bellman [8] or Strang [75].
One also uses these results for the (Cauchy) stress tensor when constructing Mohr’s circle in solid
mechanics courses.
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Fig. 8.11 A circular cylinder of mass m, radius R, and length L.

above expression for H simplifies considerably:
⎡
⎣H · ex

H · ey

H · ez

⎤
⎦=

⎡
⎣ Ixx 0 0

0 Iyy 0
0 0 Izz

⎤
⎦
⎡
⎣ω · ex

ω · ey

ω · ez

⎤
⎦ .

If possible, one chooses {Ex,Ey,Ez} and {ex,ey,ez} to be the sets of principal axes.

8.8.3 A Circular Cylinder

As an example, we consider a rigid homogeneous circular cylinder of mass m, radius
R, and length L shown in Figure 8.11. For this body, we choose {Ex,Ey,Ez} to be
the principal axes of the body: Ixy = Ixz = Iyz = 0. The center of mass C of the cylinder
is at its geometric center.

Evaluating the volume integrals discussed previously, one obtains

⎡
⎣ Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

⎤
⎦=

⎡
⎣

1
4 mR2 + 1

12 mL2 0 0
0 1

4 mR2 + 1
12 mL2 0

0 0 1
2 mR2

⎤
⎦ .

Notice that by setting R = 0 one can use these results to determine the inertias of a
slender rod. Similarly, by setting L = 0, the inertias for a thin circular disk can be
obtained.

8.8.4 The Parallel-Axis Theorem

In many problems, it is convenient to consider the inertia matrix relative to a point
A that is not the center of mass. The relevant inertias IAxx , . . . , IAzz can be deter-
mined from the components of the inertia matrix for the body relative to its center
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of mass using the parallel-axis theorem (see, for instance, Appendix B of Meriam
and Kraige [48]). When A is a point of the rigid body, the inertias IAxx , . . . , IAzz can
then be used to determine a convenient expression for HA. Here, we find it more
convenient to use the relationship

HA =
∫
R

(x−xA)×vρdv = H +(x̄−xA)×G.

Here, xA is the position vector of the point A. This equation holds even if A is not a
material point of the rigid body. Moreover, it subsumes the parallel-axis theorem. A
specific example is discussed in Section 9.4 of Chapter 9.

8.9 Some Comments on Integrals and Derivatives

In several of the developments in Sections 8.4, 8.7, and 8.8 some identities were
used that are beyond the scope of an undergraduate engineering dynamics course.
Here, we present some further details on these identities for the interested reader.

A difficulty with evaluating the expressions for x̄ and H is that the region of
integration R depends on time. We have similar issues in the next chapter when
evaluating the derivatives of certain integrals. We now record some results pertain-
ing to these integrals when the motion of the body is rigid: x = χR(X,t). Proofs of
these results can be found in the literature on continuum mechanics.18

First, we have the local conservation of mass result

ρ0(X) = ρ(x = χR(X,t),t).

In words, this implies that the mass density at a material point X of the rigid body is
the same in its reference and present configurations.

The second result is a change of variables theorem for any sufficiently smooth
function f : ∫

R
f (x,t)dv =

∫
R0

f (χR(X,t),t)dV.

We used this result and mass conservation to establish expressions for the inertias
in Section 8.8.

The last result is a version of Reynolds’ transport theorem for a sufficiently
smooth function g:

d
dt

∫
R

g(x,t)ρdv =
∫
R

d
dt

(g(x,t))ρdv.

18 These results follow from the local forms of mass conservation, changes of variables theorem,
and Reynolds’ transport theorem in continuum mechanics because a rigid body’s motion is iso-
choric (see, e.g., Casey [13], Gurtin [33], and Truesdell and Toupin [80]).
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We used this result in Section 8.4 when we took the time derivative outside the
integral to establish the result that G = mv̄.

In Section 8.4 we used the result that the center of mass of a rigid body behaves
as if it were a material point. This result is accepted without comment by most texts.
The first proof of it, to our knowledge, is by Casey [13]. Our outline here is far
longer than his proof. The reason for this is that he uses a compact tensor notation.
We first recall from Section 8.1 that for any two material points X and Y of a rigid
body, ⎡

⎣ (x−y) ·Ex

(x−y) ·Ey

(x−y) ·Ez

⎤
⎦=

⎡
⎣Q11(t) Q12(t) Q13(t)

Q21(t) Q22(t) Q23(t)
Q31(t) Q32(t) Q33(t)

⎤
⎦
⎡
⎣ (X−Y) ·Ex

(X−Y) ·Ey

(X−Y) ·Ez

⎤
⎦ .

One now substitutes these results into the right-hand side of the identity

x̄−y =
1
m

∫
R

xρdv−y =
1
m

∫
R

xρdv−
∫
R ρdv

m
y =

1
m

∫
R

(x−y)ρdv.

Next, one uses the change of variables result recorded above and the definition of X̄
to conclude that

⎡
⎣ (x̄−y) ·Ex

(x̄−y) ·Ey

(x̄−y) ·Ez

⎤
⎦=

⎡
⎣Q11(t) Q12(t) Q13(t)

Q21(t) Q22(t) Q23(t)
Q31(t) Q32(t) Q33(t)

⎤
⎦
⎡
⎣ (X̄−Y) ·Ex

(X̄−Y) ·Ey

(X̄−Y) ·Ez

⎤
⎦ .

This result implies that the center of mass C of the rigid body behaves as if it were
a material point of the body. For deformable bodies, this is not true.19

8.10 Summary

The first part of this chapter was devoted to examining the kinematical relationships
among the position vectors, velocity vectors, and acceleration vectors of two ma-
terial points X1 and X2 of a rigid body. Then expressions for the linear momentum
G and angular momenta H, HO, and HA were presented. Expressions for the angu-
lar momenta were simplified using the inertia tensor. For pedagogical reasons, we
found it convenient to present many of the results for arbitrary rotations and then
simplify them for the case of a fixed-axis of rotation.

Denoting the position vectors of the material points X1 and X2 by x1 and x2,
respectively, it was shown that

v1 −v2 = ω× (x1 −x2),
a1 −a2 = α× (x1 −x2)+ω× (ω× (x1−x2)),

19 For example, take a flexible ruler. Initially, suppose that it is straight. One can approximately
locate its center of mass; suppose that it is at the geometric center. Now, bend the ruler into a circle.
The center of mass no longer coincides with the same material point of the ruler.
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where ω is the angular velocity vector of the rigid body and α = ω̇ is the angular
acceleration vector of the rigid body. To facilitate working with several problems, a
corotational basis {ex,ey,ez} was also introduced. This basis rotates with the body.
We also showed that ėx = ω× ex, ėy = ω× ey, and ėz = ω× ez. In Section 8.4, the
center of mass C of the rigid body was introduced. For a rigid body, C behaves as a
material point of the rigid body. In addition, the linear momentum of the rigid body
is

G = mv̄,

where v̄ is the velocity vector of the center of mass and m is the mass of the rigid
body. The angular momentum of a rigid body relative to its center of mass has the
representation

H = (Ixxωx + Ixyωy + Ixzωz)ex +(Ixyωx + Iyyωy + Iyzωz)ey

+(Ixzωx + Iyzωy + Izzωz)ez.

The inertias Ixx, . . . , Izz are constants associated with the rigid body. They depend
on the mass and geometry of the rigid body and the choice of the basis vectors
{Ex,Ey,Ez}. If possible these vectors are chosen to be principal axes of the body, in
which case Ixy = Iyz = Ixz = 0. It was also shown that

HO = H + x̄×G, HA = H +(x̄−xA)×G.

Most of the results in this chapter were specialized to the case of a fixed-axis of
rotation. This axis was chosen to be Ez, and the angle of rotation of the rigid body
was denoted by θ . All of the aforementioned kinematical results simplify for this
case. For instance,

ω= θ̇Ez, α= θ̈Ez,

and

ex = cos(θ )Ex + sin(θ)Ey, ey = cos(θ )Ey − sin(θ)Ex, ez = Ez.

The most substantial simplification occurs in the expression for H:

H = Ixzθ̇ex + Iyzθ̇ey + Izzθ̇Ez.

The kinematical results presented in the chapter were used to examine the kine-
matics of mechanisms and rolling and sliding rigid bodies. In the mechanism prob-
lem discussed in Section 8.3, it was shown how to determine the angular velocities
and angular accelerations of two of the linkages in a four-bar mechanism as func-
tions of the angular velocity and acceleration of a third linkage. For rolling and
sliding rigid bodies, the important conditions vP = 0 and vP ·n = 0 were discussed.
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8.11 Exercises

The following short exercises are intended to assist you in reviewing the present
chapter. In the exercises, we restrict attention to the fixed-axis of rotation case: ω=
θ̇Ez.

8.1. Show that
ėx = θ̇ey, ėy = −θ̇ex, ėz = 0.

8.2. The position vector of a material point of a rigid body relative to a fixed
point O of the rigid body is

x = xex + yey + zez.

By differentiating this result, show that the expressions for v and a are iden-
tical to those you would have obtained had you used the formulae

v = ω×x, a = α×x +ω× (ω×x).

8.3. A particle of mass m is free to move in a groove that is machined on a rigid
body. The center of mass C of the rigid body is fixed. If the position vector
of the particle relative to C is

r− x̄ = 5ex + yey,

calculate ṙ and r̈. Here, y is not a constant.
8.4. How do the results of Exercise 8.3 change if the center of mass C has a

motion x̄ = 10tEx + t2Ey?
8.5. For the mechanism discussed in Section 8.3, determine the angular veloci-

ties and accelerations of the links DC and BC at the instant where

θ1 =
π
2

radians, θ̇1 = 1.0 RPM, θ̈1 = 0.1 radians/sec2.

The dimensions of the linkages are

L1 = 10 meters, L2 = 5 meters, L3 = 10 meters.

8.6. For the rolling disk discussed in Section 8.6, determine the velocity and
acceleration vectors of the material point X whose position vector relative
to the center of mass is

x− x̄ = Rex.

At an instant during each revolution of the disk, why does X have a velocity
vector 0?

8.7. For the sliding disk discussed in Section 8.6, determine the velocity and
acceleration vectors of the material point X whose position vector relative
to the center of mass is

x− x̄ = Rex.
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When is it possible for X to have the same acceleration and velocity as the
center of mass?

8.8. For the rolling conditions on a circular disk discussed in Section 8.6, many
people, in haste, write ẋ = Rθ̇ . Show that this result does not imply that
vP ·Ex = 0. What does it imply?

8.9. For the rolling circular disk discussed in Section 8.6, derive expressions for
H and HP.

8.10. Calculate the time derivative of

H = Ixzθ̇ex + Iyzθ̇ey + Izzθ̇Ez.

The answer is displayed in Section 9.1.3 of Chapter 9.





Chapter 9
Kinetics of a Rigid Body

TOPICS

We start by discussing Euler’s laws for a rigid body. These laws are known as the
balances of linear and angular momenta. An alternative form of these laws is also
presented that is useful for solving many classes of problems. We then discuss the
kinetic energy of a rigid body and establish the Koenig decomposition. This de-
composition, combined with the balance laws, can be used to prove a work-energy
theorem for a rigid body. As illustrations of the theory we consider four classes of
problems: purely translational motion of a rigid body, rigid bodies that are free to
rotate about one of their fixed material points, rolling and sliding bodies, and an im-
balanced rotor problem. These applications are far from exhaustive, but we feel they
are the chief representatives of problems for an undergraduate engineering dynamics
course.

9.1 Balance Laws for a Rigid Body

Euler’s laws for a rigid body can be viewed as extensions to Newton’s second law
for a particle. There are two laws (postulates): the balance of linear momentum and
the balance of angular momentum.1

1 For a single particle or system of particles, the balance of angular momentum is not an inde-
pendent postulate: as shown in Chapter 7, it follows from the balance of linear momentum. You
should also notice that we do not attempt, as many texts do, to derive the balances of linear and
angular momenta from the balance of linear momentum for each of the material points of a rigid
body. Such a derivation entails placing restrictions on the nature of the internal forces acting on the
particles. Here, we follow the approach in continuum mechanics and postulate two independent
balance laws (see Essay V of Truesdell [79] for further discussions on this matter).

O.M. O’Reilly, Engineering Dynamics: A Primer, DOI 10.1007/978-1-4419-6360-4 9, 163
c© Springer Science+Business Media, LLC 2010
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Fig. 9.1 A force Fi and a moment Mp acting on a rigid body.

9.1.1 Resultant Forces and Moments

Before discussing the balance laws, we dispense with some preliminaries. The re-
sultant force F acting on the rigid body is the sum of all the forces acting on the
rigid body. Similarly, the resultant moment relative to a fixed point O, MO, is the
resultant external moment relative to O of all of the moments acting on the rigid
body. We also denote the resultant moment relative to the center of mass C by M.
These moments may be decomposed into two additive parts: the moment due to the
individual external forces acting on the rigid body and applied external moments
that are not due to external forces.

As an example, consider a system of forces and moments acting on a rigid body.
Here, a set of K forces Fi (i = 1, . . . ,K) act on the rigid body. The force Fi acts at the
material point Xi, which has a position vector xi. In addition, a moment Mp, which
is not due to the moment of an applied force, acts on the rigid body (see Figure 9.1).
For this system of applied forces and moments, the resultants are

F =
K

∑
i=1

Fi,

MO = Mp +
K

∑
i=1

xi ×Fi,

M = Mp +
K

∑
i=1

(xi − x̄)×Fi.

Notice how Mp features in these expressions.
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9.1.2 Euler’s Laws

The balance laws for a rigid body are often known as Euler’s laws.2 The first of
these laws is the balance of linear momentum:

F = Ġ = m ˙̄v.

The second law is the balance of angular momentum for a rigid body:

MO = ḢO.

The pair of balance laws represent six scalar equations.
In many cases it is convenient to give an alternative description of the balance of

angular momentum. To do this we start with the identity

HO = H + x̄×G.

Differentiating and invoking the balance of linear momentum, we find that

ḢO = Ḣ+ v̄×G + x̄× Ġ

= Ḣ+ x̄×F.

Hence, invoking the balance of angular momentum,

MO = ḢO = Ḣ+ x̄×F.

However, the resultant moment relative to a fixed point O, MO, and the resultant
moment relative to the center of mass C, M, are related by3

MO = M+ x̄×F.

It follows that
M = Ḣ,

which is known as the balance of angular momentum relative to the center of mass
C. This form of the balance law is used in many problems where the rigid body has
no fixed point O.

We now recall the developments of Section 8.8 of Chapter 8, where we intro-
duced the inertia tensor:

H = (Ixxωx + Ixyωy + Ixzωz)ex +(Ixyωx + Iyyωy + Iyzωz)ey

+(Ixzωx + Iyzωy + Izzωz)ez.

2 See Truesdell [79]. For a rigid body, they may be seen on pages 224–225 of another seminal
paper [26] by Euler which was published in 1776.
3 This may be seen from our previous discussion of a system of forces and moments acting on a
rigid body.
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Here, Ixx, . . . , Izz are the components of the inertia tensor of the rigid body relative to
the center of mass and the angular velocity vector of the rigid body is ω = ωxex +
ωyey +ωzez. In the balance laws, the derivative of H is required. This is obtained by
differentiating the expression for H above. The resulting expression is conveniently
written in the form

Ḣ =
o
H +ω×H,

where
o
H is the corotational rate of H. This is the time derivative of H that is obtained

while keeping ex, ey, and ez fixed:

o
H = (Ixxω̇x + Ixyω̇y + Ixzω̇z)ex +(Ixyω̇x + Iyyω̇y + Iyzω̇z)ey

+(Ixzω̇x + Iyzω̇y + Izzω̇z)ez.

Clearly, the resulting balance of angular momentum M = Ḣ gives rise to a complex
set of equations.

9.1.3 The Fixed-Axis of Rotation Case

Simplifying the aforementioned results to the fixed-axis of rotation case:

ex = cos(θ )Ex + sin(θ)Ey, ey = cos(θ )Ey − sin(θ)Ex, ez = Ez,

ėx = θ̇ey, ėy = −θ̇ex, ω= θ̇Ez = ωEz.

Furthermore,

H = Ixzωex + Iyzωey + IzzωEz,

Ḣ =
(
Ixzω̇ − Iyzω2)ex +

(
Iyzω̇ + Ixzω2)ey + Izzω̇Ez.

The balance laws for the fixed-axis of rotation case can be written as

F = m ˙̄v,

M =
(
Ixzω̇ − Iyzω2)ex +

(
Iyzω̇ + Ixzω2)ey + Izzω̇Ez.

The first three of these equations, F = m ˙̄v, give the motion of the center of mass and
any reaction forces acting on the body. The fourth and fifth equations (M ·ex = Ḣ ·ex

and M · ey = Ḣ · ey) give the reaction moment Mc which ensures that the rotation
of the rigid body is only about the Ez-axis. Last, but not least, the sixth equation
(M ·Ez = Ḣ ·Ez) gives a differential equation for θ (t).
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9.1.4 The Four Steps

In solving problems, we follow the four steps used earlier for particles. There are
some modifications:

1. Pick an origin, a coordinate system, and a corotational basis, and then establish
expressions for H (or HO), x̄, v̄, and ā.

2. Draw a free-body diagram showing the external forces Fi and moments Mp.
3. Write out the six equations F = mā and M = Ḣ (or MO = ḢO).
4. Perform the analysis.

These steps will guide you through most problems. We emphasize once more
that the free-body diagram is only used as an aid to checking one’s solution.

It is a common beginner’s mistake to use the balance of angular momentum about
a point, say A, that is neither the center of mass C nor fixed (vA �= 0). If one does
this then it is important to note that MA �= ḢA, rather MA = ḢA + vA ×G.

9.2 Work-Energy Theorem and Energy Conservation

Here, we first show the Koenig decomposition for the kinetic energy of a rigid body:

T =
1
2

mv̄ · v̄+
1
2

H ·ω.

This is then followed by a development of the work-energy theorem for a rigid body:

dT
dt

= F · v̄+ M ·ω=
K

∑
i=1

Fi ·vi + Mp ·ω.

As in particles and systems of particles, this theorem can be used to establish con-
servation of the total energy of a rigid body during a motion.

9.2.1 Koenig’s Decomposition

We begin with Koenig’s4 decomposition of the kinetic energy of a rigid body.5 By
definition, the kinetic energy T of a rigid body is

T =
1
2

∫
R

v ·vρdv.

4 Johann Samuel Koenig (1712–1757) was a German mathematican and philosopher. He was also
a contemporary of Euler.
5 Our proof of Koenig’s decomposition follows Casey [13, 16].
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We next recall that the velocity vector of any material point X of the rigid body has
the representation

v = v̄+ω×π,
where the relative position vector π and the angular velocity vector ω are

π= x− x̄, ω= ωxex +ωyey + ωzez.

Substituting for v in the expression for T and expanding, we find that

T =
1
2

∫
R

(v̄ · v̄+ 2v̄ · (ω×π)+ (ω×π) · (ω×π))ρdv.

However,

1
2

∫
R

v̄ · v̄ρdv =
v̄ · v̄

2

∫
R

ρdv =
1
2

mv̄ · v̄,

∫
R

v̄ · (ω×π)ρdv = v̄ ·
(
ω×

∫
R
πρdv

)
= v̄ · (ω×0) = 0.

Consequently,

T =
1
2

mv̄ · v̄+
1
2

∫
R

(ω×π) · (ω×π)ρdv.

We can simplify the second expression of the right-hand side of this equation using
a vector identity:

(ω×π) · (ω×π) = ((π ·π)ω− (π ·ω)π) ·ω.

Substituting this result into the expression for T and rearranging, we find that

T =
1
2

mv̄ · v̄+
1
2

(∫
R

((π ·π)ω− (π ·ω)π)ρdv

)
·ω.

Recall from Section 8.8 of Chapter 8 that the angular momentum relative to the
center of mass C of the rigid body is

H =
∫

R
π× (ω×π)ρdv =

∫
R

((π ·π)ω− (π ·ω)π)ρdv.

Hence, we obtain the Koenig decomposition:

T =
1
2

mv̄ · v̄+
1
2

H ·ω.

In words, the kinetic energy of a rigid body can be decomposed into the sum of the
rotational kinetic energy and the translational kinetic energy of the center of mass.
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9.2.2 The Work-Energy Theorem

To establish a work-energy theorem for a rigid body, we start by differentiating T :

Ṫ =
1
2

m ˙̄v · v̄+
1
2

mv̄ · ˙̄v+
1
2

Ḣ ·ω+
1
2

H · ω̇.

To proceed further, we need to show that Ḣ ·ω = H · ω̇. In the preceding pages all
of these terms except for one are recorded. The only missing term is

α= ω̇ =
d
dt

(ωxex + ωyey + ωzez)

= ω̇xex + ω̇yey + ω̇zez +ωxėx +ωyėy +ωzėz

= ω̇xex + ω̇yey + ω̇zez +ω× (ωxex +ωyey +ωzez)
= ω̇xex + ω̇yey + ω̇zez.

Another direct calculation using this expression for α shows that

H · ω̇ = (Ixxωx + Ixyωy + Ixzωz)ω̇x +(Ixyωx + Iyyωy + Iyzωz) ω̇y

+(Ixzωx + Iyzωy + Izzωz) ω̇z.

Comparing this to the corresponding expression for Ḣ ·ω, we find that they are
equal. Consequently,

Ṫ =
1
2

m ˙̄v · v̄+
1
2

mv̄ · ˙̄v+
1
2

Ḣ ·ω+
1
2

Ḣ ·ω.

This result implies that
Ṫ = m ˙̄v · v̄+ Ḣ ·ω.

Invoking the balance of linear momentum and the balance of angular momentum,
we obtain the work-energy theorem:

Ṫ = F · v̄+ M ·ω.

You should notice how this is a natural extension of the work-energy theorem for a
single particle.

9.2.3 An Alternative Form of the Work-Energy Theorem

In applications, it is convenient to use an equivalent form of the work-energy theo-
rem. This can be obtained by substituting for the moments and forces discussed at
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the beginning of Section 9.1:

F =
K

∑
i=1

Fi, M = Mp +
K

∑
i=1

(xi − x̄)×Fi.

Hence, the mechanical power of the resultant forces and moments can be written as

F · v̄+ M ·ω=

(
K

∑
i=1

Fi

)
· v̄+ Mp ·ω+

(
K

∑
i=1

(xi − x̄)×Fi

)
·ω.

With some minor manipulations involving the identity a · (b× c) = c · (a×b) and
noting that vi = v̄ + ω× (xi − x̄), we find that

F · v̄+ M ·ω=
K

∑
i=1

Fi ·vi + Mp ·ω.

In conclusion, we have an alternative form of the work-energy theorem that
proves to be far easier to use in applications:

Ṫ =
K

∑
i=1

Fi ·vi + Mp ·ω.

We present examples shortly involving this theorem to illustrate how it is used to
establish conservation of energy results.

It is crucial to note from the work-energy theorem that the mechanical powers of
a force P acting at a material point X whose position vector is x and a moment L are

Mechanical power of a force P acting at x: P · ẋ,
Mechanical power of a moment L: L ·ω.

These expressions can be easily used to determine whether a force or moment is
workless and thus does not contribute to the change of kinetic energy of the rigid
body during a motion.

9.3 Purely Translational Motion of a Rigid Body

A rigid body performing a purely translational motion is arguably the simplest class
of problems associated with these bodies. For these problems, the angular velocity
ω and acceleration α vectors are 0. The velocity and acceleration of any material
point of the rigid body are none other than those for the center of mass C. Recalling
the expression for the angular momentum H,

H = (Ixxωx + Ixyωy + Ixzωz)ex +(Ixyωx + Iyyωy + Iyzωz)ey

+(Ixzωx + Iyzωy + Izzωz)ez,
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Fig. 9.2 A side view and a plan view of a cart moving on a smooth horizontal track.

one also finds that, for these problems, H and Ḣ are 0.
For purely translational problems, the balance laws are simply

F = m ˙̄v, M = 0.

These give six equations that are used to solve for the constraint forces and moments
and the motion of the center of mass of the rigid body. In addition, the work-energy
theorem is simply

Ṫ = F · v̄.

9.3.1 The Overturning Cart

We now consider an example. As shown in Figure 9.2, a cart of mass m, height 2a,
width 2b, and depth 2c is being driven by a force P = PEx. This force is applied to a
point on one of its sides. The cart is free to move on a smooth horizontal track. We
wish to determine the restrictions on P such that the cart will not topple. In addition,
we prove that the total energy of the cart is conserved.

You should notice how the solution of this problem follows the four steps we
discussed earlier.
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Fig. 9.3 Free-body diagram of the cart.

9.3.1.1 Kinematics

We start with the kinematics and choose a Cartesian coordinate system to describe
x̄:

x̄ = xEx + y0Ey + z0Ez,

where y0 and z0 are constant because we only consider the case where all four wheels
of the cart remain in contact with the track. Differentiating this expression gives the
velocity and acceleration vectors of the center of mass. For the present problem,
one does not need to establish an expression for H. Furthermore, we find no need to
explicitly mention the existence of a corotational basis {ex,ey,ez} because we can
choose ex = Ex, ey = Ey, and ez = Ez.

9.3.1.2 Forces and Moments

We next consider the free-body diagram (shown in Figure 9.3). Notice that there are
four reaction forces, one on each of the four wheels: Ni acts on the wheel numbered
i in Figure 9.2, where i = 1, 2, 3, or 4. These forces have components in the Ey and
Ez directions.6

The resultant force acting on the system is

F = PEx −mgEy +
(
N1y + N2y + N3y + N4y

)
Ey +

(
N1z + N2z + N3z + N4z

)
Ez.

6 The components of the normal forces in the Ez direction ensure that the cart will not start to rotate
about the Ey-axis.
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The resultant moment can be calculated by taking the moments of these forces about
the center of mass:

M = ((h−a)Ey −bEx)×PEx + 0×−mgEy

+(−aEy −bEx + cEz)×
(
N1y Ey + N1zEz

)
+(−aEy + bEx + cEz)×

(
N2y Ey + N2zEz

)
+(−aEy + bEx − cEz)×

(
N3y Ey + N3zEz

)
+(−aEy −bEx − cEz)×

(
N4y Ey + N4zEz

)
.

With some work, the expression for M can be simplified:

M = (a−h)PEz + c(−N1y −N2y + N3y + N4y)Ex

−a(N1z + N2z + N3z + N4z)Ex + b(N1z −N2z −N3z + N4z)Ey

+b(−N1y + N2y + N3y −N4y)Ez.

9.3.1.3 Balance Laws

We now invoke the balance laws and take their components with respect to Ex, Ey,
and Ez to obtain the six equations

P = mẍ,

−mg + N1y + N2y + N3y + N4y = 0,

N1z + N2z + N3z + N4z = 0,

−c(N1y + N2y −N3y −N4y) = a(N1z + N2z + N3z + N4z),
N1z −N2z −N3z + N4z = 0,

(h−a)P = b(−N1y + N2y + N3y −N4y).

There are nine unknowns: x(t), N1y , N2y , N3y , N4y , N1z , N2z , N3z , and N4z . It follows
that the system of equations is indeterminate and additional assumptions may be
required to solve the problem.

9.3.1.4 Analysis

First, let’s determine the motion of the system. From the six equations given above,
we see that

ẍ =
P

m
.
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Subject to the initial conditions at t = 0 that x̄(0) = y0Ey + z0Ez and v̄(0) = v0Ex,
we can integrate this equation to find that the motion of the center of mass is

x̄ =
(

v0t +
Pt2

2m

)
Ex + y0Ey + z0Ez.

In words, the cart’s center of mass is accelerated in the direction of the applied force
PEx, a result that shouldn’t surprise you.

Next, we seek to determine the toppling force. From the six equations above,
we obtain five equations for the eight unknown reaction forces. As mentioned ear-
lier, this is an indeterminate system of equations. In the sequel, we can ignore the
horizontal forces N1z ,N2z ,N3z , and N4z . To proceed to solve for the other unknown
forces (N1y ,N2y ,N3y , and N4y ) we need to make two additional assumptions.7 These
assumptions relate the forces on the individual wheels:

N1y = N4y , N2y = N3y .

That is, the vertical forces on the rear wheels are identical and the vertical forces on
the front wheels are identical. Solving for the reaction forces we find that

N1y = N4y =
1
4

(
mg− P

b
(h−a)

)
,

N2y = N3y =
1
4

(
mg +

P
b

(h−a)
)

.

To determine the allowable range of P, we set the Ey components of the reaction
forces to zero. Consequently, the front wheels will lose contact, provided that N2y =
N3y < 0:

P < − mgb
h−a

.

Similarly, the rear wheels lose contact when

P >
mgb
h−a

.

Observe that if h = a, then the reaction forces never vanish and overturning in this
case never occurs. For a given cart and h �= a, one can now easily determine the
allowable range of P. We leave this as an exercise. In the course of this exercise,
notice that if a cart is tall (i.e., a � b) then the toppling force P is smaller than if the
cart were stout (i.e., a � b).

7 Of course, the correct approach here would be to model each of the four wheels attached to the
cart as individual rigid bodies. Then, instead of modeling this system as a single rigid body, one
has a system of five rigid bodies. Unfortunately, one has a similar indeterminacy in this model also.
In vehicle system dynamics, an area that is primarily concerned with modeling automobiles using
interconnected rigid bodies, this issue is usually not seen because one incorporates suspension
models (see Gillespie [30]).



9.4 A Rigid Body with a Fixed Point 175
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Fig. 9.4 Conservation of the total energy E of the cart.

We now address energy conservation for this problem. Starting from the work-
energy theorem, we find that

Ṫ =
K

∑
i=1

Fi · v̄ = (−mg + N1y + N2y + N3y + N4y)Ey · v̄

+(N1z + N2z + N3z + N4z)Ez · v̄+ PEx · v̄.

However, the normal forces and gravity have no mechanical power in this problem
and P is constant:

Ṫ = PEx · v̄ =
d
dt

(PEx · x̄) .

Hence, the total energy E of this system is conserved:

d
dt

(
E = T −PEx · x̄ =

1
2

mẋ2 −Px

)
= 0.

For this problem, the rotational kinetic energy of the cart is zero: T = 0.5mv̄ · v̄. The
energy conservation of the cart is illustrated in Figure 9.4 for a specific example
where ẋ(0) > 0 and x(0) = 0.

9.4 A Rigid Body with a Fixed Point

In the class of problems considered in this section, a rigid body is attached at one
of its material points by a pin-joint to a fixed point (cf. Figure 9.5). Here, we take
this fixed point to be the origin O of our coordinate system. At the pin-joint there
is a reaction force R and a reaction moment Mc. These ensure that the point of
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Fig. 9.5 A representative example of a rigid body rotating about a fixed point O.

attachment remains fixed and the axis of rotation of the rigid body remains fixed,
respectively.

The example shown in Figure 9.5 is representative. We assume that a gravita-
tional force −mgEy acts on the body, in addition to a spring force:

Fs = −K(||xs − rA||−L0)
xs − rA

||xs − rA|| .

One end of the spring is attached to the material point Xs of the rigid body whose
position vector is xs. The other end is attached to a fixed point A whose position
vector is rA.

Restricting attention to planar motions, we seek to determine the differential
equation governing the motion of this rigid body, the reaction forces, and the re-
action moments. We also prove that the total energy of this rigid body is conserved.

9.4.1 Kinematics

Because the motion is constrained to be planar, ω= θ̇Ez = ωEz and α = θ̈Ez. The
corotational basis is defined in the usual manner:

ex = cos(θ)Ex + sin(θ )Ey, ey = −sin(θ)Ex + cos(θ )Ey, ez = Ez.

We also recall the relations

ėx = θ̇ey, ėy = −θ̇ex, ėz = 0.

Taking the fixed point O as the origin, we denote the position vector of the center of
mass of the body by

x̄ = xex + yey + zez.
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Here, x, y, and z are constants. Differentiating this expression, we find that

v̄ = θ̇ (xey − yex), ā = θ̈ (xey − yex)− θ̇ 2(xex + yey).

We also define the position vectors of the spring’s attachment points:

xs = xsex + ysey + zsez, rA = XAEx +YAEy + ZAEz,

where all of the displayed coordinates are constant. To keep the development clear,
we avoid explicit use of these representations for xs and rA.

Next, we address the angular momenta of the rigid body. Because the axis of
rotation is fixed, we recall from Section 9.1 that

H = Ixzωex + Iyzωey + IzzωEz,

Ḣ =
(
Ixzω̇ − Iyzω2)ex +

(
Iyzω̇ + Ixzω2)ey + Izzω̇Ez.

It is convenient in this problem to determine HO. To this end, we recall that

HO = H + x̄×G.

Substituting for the problem of interest, we obtain

HO = Ixzωex + Iyzωey + IzzωEz +(xex + yey + zez)×mθ̇(xey − yex).

With some rearranging, we find that

HO = (Ixz −mxz)ωex +(Iyz −myz)ωey +
(
Izz + m

(
x2 + y2))ωEz.

These results are identical to those that would have been obtained had one used the
parallel-axis theorem to determine the moment of inertia tensor of the body about
point O.

For future purposes, we also determine the kinetic energy T of the rigid body.
We start from the Koenig decomposition and substitute for the various kinematical
quantities to find that

T =
1
2

mv̄ · v̄+
1
2

H ·ω

=
1
2

(
Izz + m

(
x2 + y2)) θ̇ 2.

Notice that T = 1
2 HO ·ω for this problem.
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Fig. 9.6 Free-body diagram.

9.4.2 Forces and Moments

The free-body diagram for the body is shown in Figure 9.6. Notice that there is a
reaction force R at O:

R = RxEx + RyEy + RzEz.

In addition, there is a reaction moment Mc acting on the body:

Mc = Mcx ex + Mcyey.

The moment Mc ensures that the rotation of the body is constrained to being about
the Ez axis. This is normally not mentioned in engineering dynamics texts. We
shortly show why it is needed. The resultant force and moment on the body are

F = −mgEy + Fs + R, MO = Mc − x̄×mgEy + xs ×Fs.

9.4.3 Balance Laws

We now turn to the balances of linear and angular momenta for the rigid body. Due
to the unknown force R, it is easiest to use the balance of angular momentum about
O. The balance laws are

F = mā, MO = ḢO.

Substituting for the resultant forces and moments, we find that

Fs −mgEy + R = mā, Mc − x̄×mgEy + xs×Fs = ḢO.
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We have refrained from substituting for the inertias and accelerations here. These
six equations may be solved for the five unknown reactions, R and Mc, and they
also provide a differential equation for θ (t).

9.4.4 Analysis

We first determine the unknown forces and moments. From the balance of linear
momentum, we obtain three equations for the three unknown components of R:

R = mgEy −Fs + mā

= mgEy + K (||xs − rA||−L0)
xs − rA

||xs − rA|| + m
(
θ̈ (xey − yex)− θ̇ 2(xex + yey)

)
.

Next, we find, from the balance of angular momentum, that

Mcx = Mc · ex =
(−xs ×Fs + x̄×mgEy + ḢO

) · ex,

Mcy = Mc · ey =
(−xs ×Fs + x̄×mgEy + ḢO

) · ey.

The expression for the spring force Fs and rate of change of angular momentum
ḢO can be substituted into these expressions if desired. Notice that if the reaction
moment were omitted, then the ex and ey components of the balance of angular
momentum would not be satisfied. As a result the body could not move as one had
assumed when setting up the kinematics of the problem.8

The motion of the rigid body can be found from the sole remaining equation.
This equation is the ez = Ez component of the balance of angular momentum:

(xs ×Fs − x̄×mgEy) ·Ez = ḢO ·Ez.

Substituting for the forces and momentum, we find that
(
Izz + m

(
x2 + y2)) θ̈ = −mg(xcos(θ )− ysin(θ))

+K (||xs − rA||−L0)
(xs × rA) ·Ez

||xs − rA|| .

Given the initial conditions θ (t0) = θ0 and θ̇ (t0) = ω0, the solution of this equation
determines the motion of the body.9

For this type of problem, one could also take the balance of angular momentum
relative to the center of mass C. In this case, the reaction force R would make its

8 The error in neglecting Mc is equivalent to ignoring the normal force acting on a particle that is
assumed to move on a surface.
9 This is a nonlinear differential equation. As mentioned for a related example in Appendix A, its
analytical solution can be found and expressed in terms of Jacobi’s elliptic functions. The interested
reader is referred to Lawden [43] or Whittaker [81] for details on these functions and how they are
used in the solution of dynamics problems.
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Fig. 9.7 The oscillatory motion of a rod that is attached to a fixed point A by a linear spring. Plots
of θ(t), θ̇(t), T (t), U(t), and E(t) are also shown.

presence known in all six equations. By taking the balance of angular momentum
relative to the point O, this reaction force does not enter three of the six equations
and, consequently, makes the system of six equations easier to solve.

Let us now prove why the total energy E of the system is conserved. We start
with the (alternative form of the) work-energy theorem and substitute for the forces
and moments:

Ṫ = R ·vO −mgEy · v̄+ Mc ·ω+ Fs ·vs.

An expression for the kinetic energy T for this problem was recorded earlier. Now,
because O is fixed, vO = 0, so R has no mechanical power. Similarly, Mc is per-
pendicular to ω, so it too has no power. The spring and gravitational forces are
conservative:

−mgEy · v̄ = − d
dt

(mgEy · x̄) , Fs ·vs = − d
dt

(
K
2

(||xs − rA||−L0)
2
)

.

Combining these results, we find that the total energy E of the rigid body is con-
served:

d
dt

(
E = T + mgEy · x̄+

K
2

(||xs − rA||−L0)
2
)

= 0.

One uses this equation in a similar manner as with particles. For instance, given the
initial conditions θ (t0) = θ0 and θ̇ (t0) = ω0, one can then use the conservation of E
to determine θ̇ at a later instant of the motion when θ is given.

To illustrate the results of this section, we consider a rod of length L and mass m
which is pin-jointed at O. The other end of the rod is attached to a fixed point A by
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a spring of stiffness K and unstretched length L0 = L. Here, rA = −LEx +LEy. The
differential equation governing θ (t) can be easily derived using the results presented
previously.10 We assume that the rod is initially vertical and then set it in motion
with a small initial velocity. Provided the spring is sufficiently stiff, the rod will
oscillate about the vertical. An example of this situation is shown in Figure 9.7.
In one of the plots shown in this figure, energy conservation during this motion is
illustrated:

T =
mL2

3
θ̇ 2, U =

mgL
2

sin(θ)+
K
2

(||xs − rA||−L)2 , E = T +U.

The other plot shows the oscillatory behaviors of θ(t) and θ̇ (t). The periodic nature
of θ (t) is one of the reasons why systems similar to the one shown in Figure 9.7 are
often used in timing devices such as metronomes.

9.5 Rolling and Sliding Rigid Bodies

We now return to the rolling and sliding rigid bodies considered in Sections 8.5 and
8.6 of Chapter 8. We start by considering a rigid body B that is in motion atop a
fixed surface S (see Figure 9.8). At the instantaneous point of contact P = XP(t),
the outward unit normal to the surface is n. The velocity vector of the material point
XP(t) that is instantaneously in contact with the surface is denoted by vP. Earlier, we
saw that if the rigid body is rolling on the surface, then one has the rolling condition:

vP = v̄+ω× (rP − x̄) = 0.

If the rigid body is sliding on the surface, then one has the sliding condition:

vP ·n = v̄ ·n+(ω× (rP− x̄)) ·n = 0.

We now turn to the forces that enforce these constraints.

9.5.1 Friction

The force at the instantaneous point of contact P depends on the natures of the outer
surface of the rigid body and the fixed surface. If their contact is smooth, then the
reaction force at P is

FP = Nn.

10 For this example, Izz = mL2/12, x = L/2, y = 0, xs = Lex, and L0 = L. For the simulations
shown in Figure 9.7, the following parameter values were used: m = 1 kilogram, L = 10 meters,
and K = 100 Newtons per meter.
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Fig. 9.8 The geometry of contact.

On the other hand, if the surface is rough with coefficients of friction μs and μd ,
then this force is either of the static type (vP = 0),

FP = FpxEx + FpyEy + FpzEz where ||FP − (FP ·n)n|| ≤ μs |FP ·n| ,

or, if there is relative motion (vP �= 0),

FP = Nn−μd ||Nn|| vP

||vP|| .

Clearly, if the contact is rough, then the rigid body can either roll or slip depending
primarily on the amount of static friction available.

9.5.2 Energy Considerations

If the contact is smooth, then it should be clear that the force FP is workless. Simi-
larly, if the rigid body is rolling, then the mechanical power of FP is FP ·vP = 0. It
is only when the rigid body is sliding and the contact is rough that FP does work:

FP ·vP = Nn ·vP −μd ||Nn|| vP

||vP|| ·vP = −μd ||Nn|| ||vP|| < 0.

Notice that the power of the force in this case is negative, so it will decrease the
kinetic energy T .

The previous results imply that if the only other forces acting on a rolling rigid
body are conservative (such as gravitational and spring forces), then the total energy
of the rigid body will be conserved. A similar comment applies to a sliding rigid
body when the contact is smooth. As a result, in most solved problems in this area,
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Fig. 9.9 A rigid body in motion on an inclined plane.

such as sliding disks and tops, and rolling disks and spheres, this energy conserva-
tion is present.11

9.6 Examples of Rolling and Sliding Rigid Bodies

Let us now turn to a specific example, which is shown in Figure 9.9. We consider a
rigid body of mass m whose outer surface is circular with radius R. We assume that
the rigid body moves on an inclined plane under the influence of gravity. The center
of mass C of the rigid body is assumed to be located at the geometric center of the
circle of radius R. The contact is assumed to be rough with coefficients of friction
μs and μd . It is assumed that μs ≥ μd .

9.6.1 General Considerations

We assume that the center of mass of the rigid body is given an initial velocity v0Ex,
where v0 > 0, at time t = 0, and we seek to determine the motion of the rigid body
for subsequent times.

11 There are few completely solved problems in this area (see, for examples and references, Borisov
and Mamaev [9, 10], Hermans [34], Neimark and Fufaev [51], O’Reilly [55], Papastavridis [58],
Routh [64, 65], and Zenkov et al. [82]).
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9.6.1.1 Kinematics

We assume that the motion is such that the axis of rotation is fixed: ω = θ̇Ez and
α= θ̈Ez. The corotational basis is defined in the usual manner:

ex = cos(θ )Ex + sin(θ )Ey, ey = −sin(θ)Ex + cos(θ )Ey, ez = Ez.

We also recall the relations

ėx = θ̇ey, ėy = −θ̇ex, ėz = 0.

Taking the origin as shown in Figure 9.9, we denote the position vector of the center
of mass of the body by

x̄ = xEx + yEy + z0Ez.

Here, z0 is a constant. We shortly show that y is also a constant. Differentiating the
expression for x̄ we find that

v̄ = ẋEx + ẏEy, ā = ẍEx + ÿEy.

Next, we address the angular momentum of the rigid body. We assume that
{ex,ey,ez} are principal axes of the rigid body in its present configuration. Hence,

H = Izzθ̇Ez, Ḣ = Izzθ̈Ez.

If the contact condition is such that sliding occurs, then, as the normal n = Ey,

vP ·Ey = v̄ ·Ey +(ω× (rP− x̄)) ·Ey = 0.

For the present problem, rP− x̄ =−REy, so the sliding condition implies that ẏ = 0,
as expected. For sliding, one has

vP =
(
ẋ + Rθ̇

)
Ex = vPEx.

The velocity vP is often referred to as the slip velocity. On the other hand, if rolling
occurs, then

vP = v̄+ω× (rP − x̄) = 0.

This implies for the present problem that

v̄ = ẋEx = −Rθ̇Ex.

We discussed these results previously in Section 8.6 of Chapter 8.
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Fig. 9.10 Free-body diagram.

9.6.1.2 Forces and Moments

One of the tasks remaining is to describe F and M. The free-body diagram for the
system is shown in Figure 9.10. In sum,

F = −mgcos(φ)Ey + mgsin(φ)Ex + FP,

M = −REy ×FP.

If the body is rolling, then

FP = FPxEx + FPyEy + FPzEz,

whereas if the body is sliding, then

FP = NEy − μd||NEy|| vP

||vP|| = NEy − μd|N| ẋ + Rθ̇∣∣ẋ + Rθ̇
∣∣Ex.

9.6.1.3 Balance Laws

We are now in a position to examine the balance laws:

FP −mgcos(φ)Ey + mgsin(φ)Ex = mẍEx,

−REy ×FP = Izzθ̈Ez.

These equations are used to determine the force at P and the motion of the rigid
body in what follows.

9.6.2 The Rolling Case

We first find, from the balance of linear momentum, that

FP = mgcos(φ)Ey −mgsin(φ)Ex + mẍEx.
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Substituting this result into the balance of angular momentum and using the condi-
tion ẍ = −Rθ̈ , one obtains a differential equation for x(t):

(
Izz + mR2

R

)
ẍ = mgRsin(φ).

This equation can be easily solved to determine x(t):

x(t) =
(

mgR2 sin(φ)
2(Izz + mR2)

)
t2 + v0t.

In writing this solution, we assumed that x(t = 0) = 0. We have also tacitly assumed,
in order to satisfy the rolling condition, that θ̇ (t = 0) = −v0/R. We can also find
the friction and normal forces as functions of time by substituting for x(t) in the
expression for FP given above:

FP = mgcos(φ)Ey −
(

mgsin(φ)Izz

Izz + mR2

)
Ex.

This is the complete solution to the rolling case.12

9.6.3 The Static Friction Criterion and Rolling

To determine whether there is a transition to sliding, we need to check the magni-
tude of the friction force for the rolling rigid body. Here, we use the standard static
friction criterion:

||FPxEx|| ≤ μs
∣∣∣∣FPyEy

∣∣∣∣ .
Substituting for FP, we find that

∣∣∣∣
∣∣∣∣
(
−mgsin(φ)Izz

Izz + mR2

)
Ex

∣∣∣∣
∣∣∣∣ ≤ μs

∣∣∣∣mgcos(φ)Ey
∣∣∣∣ .

This criterion can be simplified to

β tan(φ) ≤ μs,

where the parameter β is

β =
Izz

Izz + mR2 .

12 It is a good exercise to show that the total energy of this rolling rigid body is conserved. If this
rigid body slips, then you should also be able to show that, because FP · vP < 0, the total energy
will decrease with time.
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If the incline is sufficiently steep, or the inertia is distributed in a certain man-
ner, then β tan(φ) > μs. Now suppose a body is placed at rest on an incline where
β tan(φ)≤ μs. The body will immediately start to roll down the incline and, because
there is sufficient static friction, it will not start to slip.

9.6.4 The Sliding Case

For a sliding rigid body, the balance laws yield

NEy −μd |N| ẋ+ Rθ̇∣∣ẋ+ Rθ̇
∣∣Ex −mgcos(φ)Ey + mgsin(φ)Ex = mẍEx,

−REy ×
(

NEy −μd|N| ẋ+ Rθ̇∣∣ẋ+ Rθ̇
∣∣Ex

)
= Izzθ̈Ez.

From these equations we obtain differential equations for x and θ and an equation
for the normal force NEy.

First, for the normal force, we find that NEy = mgcos(φ)Ey. Next, the differential
equations are

−μdmgcos(φ)sgn(vP)+ mgsin(φ) = mẍ,

−μdmgRcos(φ)sgn(vP) = Izzθ̈ ,

where

sgn(vP) =
ẋ + Rθ̇∣∣ẋ + Rθ̇

∣∣ ,
and vP = ẋ+Rθ̇ is the slip velocity. Solving the differential equations subject to the
initial conditions x(t = 0) = 0, θ (t = 0) = 0, ẋ(t = 0) = v0 > 0, and θ̇ (t = 0) = ω0,
we find that

x(t) =
gcos(φ)

2
(tan(φ)−μdsgn(vP)) t2 + v0t,

θ(t) = −μd

(
mgRcos(φ)

2Izz

)
sgn(vP)t2 + ω0t.

Thus, we have determined the motion of the center of mass and the rotation of the
rigid body.

For problems featuring sliding rigid bodies it is often illuminating to determine
vP(t). To arrive at this expression, we first determine a differential equation for v̇P
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from the earlier differential equations for θ̈ and ẍ:

v̇P = ẍ+ Rθ̈

=
gcos(φ)

β
(β tan(φ)− μdsgn(vP)) .

As shown in Figure 9.11, if vP < 0, then the equation for v̇P implies that vP(t)
will increase linearly in time. On the other hand, when vP > 0, then the behavior of
vP(t) depends on the ratio β tan(φ)/μd where β = Izz/

(
Izz + mR2

)
. Here, we assume

that μd = μs. From our discussion in Section 9.6.3, when β tan(φ) < μs there is
sufficient friction to ensure that rolling can be sustained. Referring to Figure 9.11(a),
we observe that vP → 0 and when vP = 0, rolling starts and persists indefinitely.13 On

13 This type of transition occurs in bowling balls as they approach the pins. To aid this phenomenon,
the bowling lanes are usually waxed to increase the friction between the ball and the lane as the for-
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Fig. 9.12 The imbalanced rotor problem.

the other hand, when β tan(φ) = μd = μs, then, as shown in Figure 9.11(b), sliding
with vP > 0 persists indefinitely, and if vP is initially negative then a transition to
rolling will eventually occur. Finally, if there is insufficient friction to ensure that
rolling can occur, then sliding persists and vP will increase indefinitely (see Figure
9.11(c)). That is, the friction force is unable to overcome the gravitational force and
prevent the center of mass from continually accelerating.

9.7 An Imbalanced Rotor

Many applications can be modeled as a rigid body rotating about a fixed axis. In
particular, driveshafts in automobiles and turbomachinery. If the rigid body is bal-
anced, then the axis of rotation corresponds to a principal axis of the rigid body. For
example, if ω= θ̇Ez, then H = Izzθ̇Ez. However, this is very difficult and expensive
to achieve. An imbalance is said to occur in situations where either or both of Ixz

and/or Iyz are nonzero. In this case, H and ω are not parallel.
The imbalance is a common feature of wheel assemblies on cars, and it is typical

to add weights, which usually range from 0.01 kilograms to 0.15 kilograms, onto
the rims of the wheels to reduce this imbalance. Special machines, known as wheel
balancers, are used which spin the wheels at high speeds so that the imbalance can be
detected and the appropriate location for the added weights determined. As we show
shortly, in rotating systems, such as wheel assemblies or a rotating shaft, imbalance
manifests in bearing forces that are periodic functions of time and are ultimately
destructive to the bearings. Furthermore, the magnitude of these oscillatory bearing
forces grows quadratically with the rotational speed. Thus, and as is also observed
in practice, the effects of the imbalance on the bearings in cars with an imbalanced
wheel become more pronounced and destructive as the car’s speed increases.

To illustrate the above phenomena, we turn to discussing the prototypical exam-
ple of an imbalanced rigid body shown in Figure 9.12. It consists of a homogeneous

mer nears the pins (see Frohlich [29]). Some readers may also have noticed the same phenomenon
in pool, a problem that is discussed in Article 239 of Routh [65].
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disk of mass m, radius R, and thickness h that is welded to a homogeneous shaft of
mass M, length 2L, and radius r. The centers of mass of these rigid bodies are co-
incident, and the disk is inclined at an angle γ to the vertical. The rigid body, which
consists of the shaft and the disk, is supported by bearings at A and B. This rigid
body is often called a rotor. Finally, an applied torque SEz acts on the shaft.

9.7.1 Kinematics

We assume that the motion is such that the axis of rotation is fixed: ω= θ̇Ez = ωEz

and α= θ̈Ez. The corotational basis is defined in the usual manner:

ex = cos(θ)Ex + sin(θ )Ey, ey = −sin(θ)Ex + cos(θ )Ey, ez = Ez.

We also recall the relations

ėx = θ̇ey, ėy = −θ̇ex, ėz = 0.

We denote the position vector of the center of mass of the rigid body by

x̄ = x0Ex + y0Ey + z0Ez.

Here, the bearings at A and B are such that x̄ is a constant:

v̄ = 0, ā = 0.

Next, we address the angular momentum of the rigid body. Here, it is important
to note that

{
ex,ey,ez

}
are not principal axes. For a rigid body rotating about the

ez-axis, we recall from Section 9.1.3 that

H = Ixzωex + Iyzωey + IzzωEz,

Ḣ =
(
Ixzω̇ − Iyzω2)ex +

(
Iyzω̇ + Ixzω2)ey + Izzω̇Ez.
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For the rigid body of interest, a long, but straightforward, calculation shows that the
inertias of interest are

Ixz =
(

mh2

12
− mR2

4

)
sin(γ)cos(γ),

Iyz = 0,

Izz =
Mr2

2
+

(
mR2

4
+

mh2

12

)
sin2(γ)+

mR2

2
cos2(γ).

Notice that if γ = 0◦, 90◦, 180◦, or 270◦, then Ixz vanishes and Ez is a principal axis
of the rigid body.

9.7.2 Forces and Moments

The free-body diagram is shown in Figure 9.13. The reaction forces at the bearings
have the representations

RA = RAxEx + RAyEy + RAzEz, RB = RBxEx + RByEy.

These five forces ensure that the center of mass remains fixed and that the angular
velocity vector has components in the Ez direction only. There is also a gravita-
tional force on the rigid body, −(M + m)gEx, in addition to an applied torque SEz.
Consequently, the resultant force and moment acting on the rigid body are

F = RA + RB − (M + m)gEx, M = LEz × (RB −RA)+ SEz.

9.7.3 Balance Laws

From the balance laws, we find that

RA + RB− (M + m)gEx = 0,

LEz × (RB −RA)+ SEz = Ixzω̇ex + Ixzω2ey + Izzω̇Ez.

As a result, we have six equations for the five unknown components of the reaction
forces and a differential equation for θ .
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9.7.4 Analysis

We turn our attention to the case whereω is a constant:ω= ω0Ez. The six equations
above simplify to

RAx + RBx − (M + m)g = 0, RAy + RBy = 0, RAz = 0,

L
(
RAy −RBy

)
= −Ixzω2

0 sin (ω0t) , L(RBx −RAx) = Ixzω2
0 cos(ω0t) , S = 0.

Notice that from the Ez component of the balance of angular momentum we find
that S = 0. That is, no applied torque is needed to rotate the rigid body at a constant
angular speed. Solving for the bearing forces, we obtain

RA =
(

M + m
2

)
gEx −

(
Ixzω2

0

2L

)
(cos(ω0t)Ex + sin(ω0t)Ey) ,

RB =
(

M + m
2

)
gEx +

(
Ixzω2

0

2L

)
(cos(ω0t)Ex + sin(ω0t)Ey) .

Clearly, these forces are the superposition of constant and periodic terms. Recalling
the expression for Ixz given previously, it is easy to see that the periodic component
of these forces vanishes when γ = 0◦, 90◦, 180◦, or 270◦. The rigid body is then said
to be balanced.

To illustrate the features of bearing forces in imbalanced situations that we men-
tioned earlier in this section, we now consider the component RBx of RB. As shown
in Figure 9.14, when the rotor is stationary, RBx is constant. However, as the speed
ω0 increases, the magnitude of the oscillatory component of RBx grows in magnitude
quadratically in ω0.

9.8 Summary

The first set of important results in this chapter pertained to a system of forces and
a pure moment acting on a rigid body. Specifically, for a system of K forces Fi

(i = 1, . . . ,K) and a moment Mp, which is not due to the moment of an applied
force, acting on the rigid body, the resultant force F and moments are

F =
K

∑
i=1

Fi,

MO = Mp +
K

∑
i=1

xi ×Fi,

M = Mp +
K

∑
i=1

(xi − x̄)×Fi.
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(
M+m

2

)
g

2

0
0 t

ω0 increasing

RBx

Fig. 9.14 The component RBx of the bearing force RB for the imbalanced rotor as a function of the
rotation speed. In this figure, the three cases corresponding to a stationary rotor, a rotor spinning
at 100 RPM, and a rotor spinning at 200 RPM are shown.

Here, MO is the resultant moment relative to a fixed point O and M is the resultant
moment relative to the center of mass C of the rigid body.

The relationship between forces and moments and the motion of the rigid body
is postulated using the balance laws. There are two equivalent sets of balance laws:

F = m ˙̄v, MO = ḢO,

and
F = m ˙̄v, M = Ḣ.

When these balance laws are specialized to the case of a fixed-axis rotation, the
expressions for ḢO and Ḣ simplify. For instance,

F = m ˙̄v,

M =
(
Ixzω̇ − Iyzω2)ex +

(
Iyzω̇ + Ixzω2)ey + Izzω̇Ez.

In most problems,
{

Ex,Ey,Ez
}

are chosen such that Ixz = Iyz = 0.
To establish conservations of energy, two equivalent forms of the work-energy

theorem were developed in Section 9.2. First, however, the Koenig decomposition
for the kinetic energy of a rigid body was established:

T =
1
2

mv̄ · v̄+
1
2

H ·ω.

This was then followed by a development of the work-energy theorem for a rigid
body:

dT
dt

= F · v̄+ M ·ω=
K

∑
i=1

Fi ·vi + Mp ·ω.
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To establish energy conservation results, this theorem is used in a similar manner to
the one employed with particles and systems of particles.

Four sets of applications were then discussed:

1. Purely translational motion of a rigid body where ω = α = 0.
2. A rigid body with a fixed point O.
3. Rolling rigid bodies and sliding rigid bodies.
4. Imbalanced rotors.

It is important to note that for the second set of applications, the balance law MO =
ḢO is more convenient to use than M = Ḣ. The role of Mc in these problems is
to ensure that the axis of rotation remains Ez. Finally, the four steps discussed in
Section 9.1.4 are used as a guide to solving all of the applications.

9.9 Exercises

The following short exercises are intended to assist you in reviewing the present
chapter.

9.1. Starting from the definitions of M and MO, show that MO = ḢO along with
F = m ˙̄v implies that M = Ḣ.

9.2. For the overturning cart discussed in Section 9.3.1, show that if the cart is
tall (i.e., a � b) then the toppling force P is smaller than if the cart were
stout (i.e., a � b).

9.3. Consider a cart with the same dimensions as the one discussed in Section
9.3.1. Suppose that the applied force P = 0, but the front wheels are driven.
The driving force on the respective front wheels is assumed to be

F2 = μN2yEx, F3 = μN3y Ex,

where μ is a constant. Calculate the resulting acceleration vector of the
center of mass of the cart.

9.4. Consider the example of a rigid body rotating about a fixed point O dis-
cussed in Section 9.4. Starting from HO = H+ x̄×mv̄ and using the identity
v̄ = ω× x̄ show that

HO ·ω= H ·ω+ mv̄ · v̄.

Why is this result useful?
9.5. When solving the example discussed in Section 9.4, one person uses the

balance law M = Ḣ instead of MO = ḢO. Why is that approach valid?
9.6. As a special case of the example discussed in Section 9.4, consider a long

slender rod of length L and mass m that is attached at one of its ends to a
pin-joint. Show that

H =
1

12
mL2θ̇Ez, v̄ =

L
2

θ̇ey, HO =
1
3

mL2θ̇Ez.
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9.7. For the problem discussed in Exercise 9.6, show that if the sole applied force
acting on the rod is a gravitational force,−mgEy, the equation governing the
motion of the rod is

mL2

3
θ̈ = −mgL

2
cos(θ).

Furthermore, prove that the total energy of the rod is conserved. Why is this
problem analogous to a planar pendulum problem?

9.8. Consider a rigid body rolling on a fixed surface. Suppose that, apart from
the friction and normal forces at the point of contact P, the applied forces
acting on the body are conservative; then why is the total energy of the rigid
body conserved?

9.9. Using the static friction criterion discussed in Section 9.6.3, show that a
circular disk of mass m and radius R can roll without slipping on a steeper
incline than a circular hoop of the same mass and radius.

9.10. For a rolling disk on a horizontal incline, show that |ẍ| ≤ μsg. Similarly, for
a sliding disk show that |ẍ| = μdg. Using these results explain why rolling
disks decelerate faster than sliding disks. This observation is the reason for
the desirability of anti-lock braking systems (ABS) in automobiles.

9.11. Consider the sliding rigid disk discussed in Section 9.6.4 and suppose that
φ = 0. Determine θ (t) and x(t) for the two cases where initially sgn(vP) > 0
and sgn(vP) < 0.

9.12. Recall the imbalanced rotor discussed in Section 9.7. For various values of
ω0, plot the components RAx , RBx , RAy , and RBy using the numerical values
L = 10 meters, m = 20 kilograms, M = 100 kilograms, γ = −0.01 radians,
h = 0.01 meters, and R = 1 meter.
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Chapter 10
Systems of Particles and Rigid Bodies

TOPICS

This chapter is the culmination of the primer. To start, the linear momentum of a sys-
tem of K particles and N rigid bodies is discussed. Similarly, the angular momenta
and kinetic energy of such a system are developed. We then turn to the balance
laws for such a system. The complete analysis of the resulting differential equations
that these laws provide is usually beyond the scope of an undergraduate engineering
dynamics course, and instead we focus on some particular results. These results in-
volve using conservations of energy, angular momentum, and linear momentum. We
then illustrate how one or more such conservations can be used to obtain solutions
to some problems.

Fig. 10.1 The American inventor Charles F. Taylor (1916–1997) on a prototype of his one-wheeled
vehicle in the early 1960s in Colorado.

O.M. O’Reilly, Engineering Dynamics: A Primer, DOI 10.1007/978-1-4419-6360-4 10, 199
c© Springer Science+Business Media, LLC 2010
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rk

pFk

x̄n

rFn

rMn

Cn

Rigid body of mass rmn

Particle of mass pmk

O

Fig. 10.2 The kth particle and the nth rigid body.

10.1 A System of Particles and Rigid Bodies

The systems of interest feature one or more rigid bodies. An example of such a sys-
tem is shown in Figure 10.1. This one-wheeled vehicle was developed in the 1950s
and 1960s by Charles Taylor. It features a platform-mounted single large wheel
which is driven by a motor. The vehicle is stabilized and steered by gyroscopes. A
simple model for this system, which features two coupled rigid bodies, in discussed
in [44]. Analyzing the dynamics of such a model is dependent on first establishing
expressions for the momenta and kinetic energies of its components. In this sec-
tion, we analyze systems of rigid bodies and particles with the aim of being able
to establish expressions for their energies and momenta. To cover as many cases as
possible, we now discuss a particular system of K particles and N rigid bodies. It is
sufficiently general to cater to all of our subsequent developments and examples.

We use the index k to identify a specific particle (k = 1, . . . ,K). The mass of the
kth particle is denoted by pmk, its position vector relative to a fixed origin O by rk,
and the resultant external force acting on the particle is denoted by pFk (see Figure
10.2).

Similarly, we use the index n to identify a specific rigid body (n = 1, . . . ,N). The
mass of the nth rigid body is denoted by rmn, the position vector of its center of
mass Cn relative to a fixed origin O by x̄n, its angular velocity vector by ωn, and
the resultant external force and moment (relative to its center of mass) acting on the
rigid body are denoted by rFn and rMn, respectively (see Figure 10.2).

The center of mass C of this system has a position vector x̄, which is defined by

x̄ =
1
m

(
K

∑
k=1

pmkrk +
N

∑
n=1

rmnx̄n

)
,



10.1 A System of Particles and Rigid Bodies 201

where m is the total mass of the system:

m =
K

∑
k=1

pmk +
N

∑
n=1

rmn.

You should notice how this definition is an obvious extension to others that you have
seen previously.

10.1.1 Momenta and Kinetic Energy

The linear momentum G of the system is the sum of the linear momenta of the
individual particles and rigid bodies:

G =
K

∑
k=1

pmkṙk +
N

∑
n=1

rmn ˙̄xn.

Notice that the linear momentum of the system can also be expressed in terms of the
velocity vector of the center of mass of the system and the total mass of the system:

G = m ˙̄x.

This result follows from the definition of the center of mass.
The angular momentum HO of the system relative to the fixed point O is the sum

of the individual angular momenta relative to O:

HO =
K

∑
k=1

rk × pmkṙk +
N

∑
n=1

(Hn + x̄n × rmn ˙̄xn) .

Similarly, the angular momentum H of the system relative to its center of mass is

H =
K

∑
k=1

(rk − x̄)× pmk ṙk +
N

∑
n=1

(Hn +(x̄n − x̄)× rmn ˙̄xn) .

In both of the previous equations, Hn is the angular momentum of the nth rigid body
relative to its center of mass. You should notice that we have used the identities

HOn = Hn + x̄n × rmn ˙̄xn,

where HOn is the angular momentum of the nth rigid body relative to O.
Finally, the kinetic energy T of the system is defined to be the sum of the kinetic

energies of its constituents:

T =
K

∑
k=1

1
2 pmkṙk · ṙk +

N

∑
n=1

(
1
2 rmn ˙̄xn · ˙̄xn +

1
2

Hn ·ωn

)
.
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10.1.2 Impulses, Momenta, and Balance Laws

For each rigid body of the system, one has the balance of linear momentum and the
balance of angular momentum:

rFn = rmn ¨̄xn, MOn = ḢOn (n = 1, . . . ,N).

Here, MOn is the resultant moment, relative to the point O, acting on the nth rigid
body. We also have an alternative form of the balance of angular momentum relative
to the center of mass of the nth rigid body: Mn = Ḣn. In addition, for each particle
one has the balance of linear momentum:

pFk = pmkr̈k (k = 1, . . . ,K).

As discussed in Chapter 6, the angular momentum theorem for a particle is derived
from this balance law. Hence, for a particle, the balance of angular momentum is
not a separate postulate as it is with rigid bodies.

Let MO denote the resultant moment acting on the system relative to the point O,
M denote the resultant moment acting on the system relative to its center of mass,
and F denote the resultant force acting on the system. Then, adding the balances of
linear momenta, we find that

F = Ġ,

where

F =
K

∑
k=1

pFk +
N

∑
n=1

rFn.

Similarly, adding the balances of angular momenta relative to the point O,

MO = ḢO,

where

MO =
K

∑
k=1

(prk × pFk)+
N

∑
n=1

MOn .

Hence, we have balances of linear and angular momenta for the system.1

Another form of the balance laws can be obtained by integrating both sides of
F = Ġ, M = Ḣ, and MO = ḢO. These forms are known as the impulse-momentum

1 You should be able to consider special cases of these results: for example, cases where the system
of interest contains either no rigid bodies or no particles. Additionally, we could establish a balance
of angular momentum relative to the center of mass of the system (M = Ḣ), but we leave this as an
exercise. Such an exercise involves using F = Ġ and MO = ḢO. Its proof is similar to that used to
establish the corresponding result for a single rigid body.
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forms or the integral forms of the balance laws:

G(t)−G(t0) =
∫ t

t0
F(τ)dτ,

H(t)−H(t0) =
∫ t

t0
M(τ)dτ,

HO (t)−HO (t0) =
∫ t

t0
MO(τ)dτ.

Here, the integral of the force F is known as the linear impulse (of F), and the in-
tegral of the moment MO is known as the angular impulse (of MO). As you have
already witnessed in Chapter 6, these forms of the balance laws can be extremely
useful in analyzing impact problems, where the impulse of certain forces and mo-
ments dominates contributions from other forces and moments.

Although we did not discuss the impulse-momentum forms of the balance laws
for rigid bodies, it should be obvious that for each rigid body, one has

rmnv̄n (t)− rmnv̄n (t0) =
∫ t

t0
rFn(τ)dτ,

HOn (t)−HOn (t0) =
∫ t

t0
MOn(τ)dτ (n = 1, . . . ,N) .

The corresponding results for a single particle were discussed in Chapter 6.

10.1.3 Conservations

We now address the possibility that in certain problems, a component of the linear
momentum G of the system, a component of the angular momenta HO or H of the
system, and/or the total energy E of the system is conserved. We have developed
these results three times previously: once for a single particle, once for a system of
particles, and once for a single rigid body.

10.1.3.1 Conservation of Linear Momentum

Let us first deal with conservation of linear momentum. Given a vector c = c(t),
then it is easily seen that for G ·c to be constant during the motion of the system, we
must have F · c + G · ċ = 0. Finding the vector c that satisfies F · c + G · ċ = 0 for a
particular system is an art, and we discuss examples shortly. You should notice that
if F = 0, then G is conserved. The conservation of components of G is often used
in impact problems.
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10.1.3.2 Conservation of Angular Momentum

Next, we have conservation of angular momentum. Given a vector c = c(t), we seek
to determine when HO ·c is constant during the motion of the system. To do this, we
calculate

d
dt

(HO · c) = ḢO · c + HO · ċ = MO · c + HO · ċ .

It follows that it is necessary and sufficient for MO · c + HO · ċ = 0 for HO · c to be
conserved during the motion of the system. Again, finding c such that MO ·c+HO ·
ċ = 0 for a given system is an art. You should notice that if MO = 0, then HO is
conserved. The corresponding results for H are easily inferred.

The most common occurrence of conservation of angular momentum is a system
of interconnected rigid bodies in space. There, because one assumes that M = 0, the
angular momentum H is conserved, and astronauts use this conservation to change
their orientation during space walks. Specifically, one can consider an astronaut
as a system of rigid bodies. By changing the relative orientation of these bodies,
they change the angular velocity vectors of parts of their bodies and in this manner
change their overall orientation. A similar principle is behind the falling cat, which
“always” seems to land on its feet.2

10.1.3.3 Conservation of Energy

Finally, we turn to the conservation of energy. We start with the definition of the ki-
netic energy of the system and, by using the work-energy theorems for the individual
particles and rigid bodies, we establish a work-energy theorem for the system. This
work-energy theorem was used, as in the cases of single particles, systems of parti-
cles, and single rigid bodies, to establish whether the total energy of the system is
conserved. We now proceed to establish the work-energy theorem for the system.

Recall that

T =
K

∑
k=1

1
2 pmkṙk · ṙk +

N

∑
n=1

(
1
2 rmn ˙̄xn · ˙̄xn +

1
2

Hn ·ωn

)
.

Taking the derivative of this expression and using the work-energy theorems dis-
cussed previously,

d
dt

(
1
2 pmkṙk · ṙk

)
= pFk · ṙk (k = 1, . . . ,K),

d
dt

(
1
2 rmn ˙̄xn · ˙̄xn +

1
2

Hn ·ωn

)
= rFn · ˙̄xn + Mn ·ωn (n = 1, . . . ,N),

2 See the photos for the falling cat in Crabtree [19] and Kane and Scher [40]. References to modern
approaches to this problem can be found in Fecko [27] and Shapere and Wilczek [70].
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Fig. 10.3 Two coupled rigid bodies.

we find that
dT
dt

=
K

∑
k=1

pFk · ṙk +
N

∑
n=1

(rFn · ˙̄xn + Mn ·ωn) .

This is the work-energy theorem for the system. Starting from this theorem and
substituting for the forces and moments on the individual constituents of the system,
one can ascertain whether the total energy of the system is conserved. Again, this
procedure is identical to the one previously discussed. You should also note that for
each rigid body we have an alternative form of the work-energy theorem that we can
use in place of the terms on the right-hand side of the above equation.3 We do this
in the example below.

10.2 An Example of Two Rigid Bodies

Here, as our first example, we consider two connected rigid bodies (cf. Figure 10.3).
One of the bodies is a slender rod of length L and mass m1 that is pin-jointed at O.
This point is fixed. The other is a circular disk of mass m2 and radius R. They are
connected by a pin-joint at the point A that lies at the outer extremity of the rod and
the edge of the disk. Both bodies rotate about the Ez axis, and this axis is also a
principal axis for both bodies. A gravitational force acts on each of the bodies.

We wish to determine which kinematical quantities are conserved for this system.
At the end of this section we discuss related problems and questions concerning this
system.

3 See Section 9.2.3 of Chapter 9.
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10.2.1 Kinematics

To proceed, we first calculate the linear momentum G, angular momentum HO, and
kinetic energy T of the system. It is convenient to define two corotational bases{

ex1 ,ey1 ,ez1 = Ez
}

and
{

ex2 ,ey2 ,ez2 = Ez
}

. You should notice that these bases are
related by

ex2 = cos(θ2 −θ1)ex1 + sin(θ2 −θ1)ey1 ,

ey2 = cos(θ2 −θ1)ey1 − sin(θ2 −θ1)ex1 .

Because Ez is a principal axis, we can use our results from Section 8.8 of Chapter 8
to write

H1 =
m1L2

12
θ̇1Ez, H2 =

m2R2

2
θ̇2Ez.

You should notice that the angular velocity vectors of the bodies are

ω1 = θ̇1Ez, ω2 = θ̇2Ez.

These velocities were used to calculate the angular momenta of the bodies relative
to their centers of mass.

One also has the following representations:4

x̄1 =
L

2
ex1 , x̄2 = Lex1 + Rex2 , xA = Lex1 .

Differentiating these representations, we find that

v̄1 =
L
2

θ̇1ey1 , v̄2 = Lθ̇1ey1 + Rθ̇2ey2 , vA = Lθ̇1ey1 .

Hence, the linear momentum of the system is

G = (m1 + 2m2)
L
2

θ̇1ey1 + m2Rθ̇2ey2 .

The angular momentum of the system relative to O is, by definition,

HO = H1 + x̄1 ×m1v̄1 + H2 + x̄2 ×m2v̄2.

Substituting for the kinematical quantities on the right-hand side of this equation,
one obtains, after a substantial amount of algebra,

HO =
m1L2

3
θ̇1Ez + m2

(
L2θ̇1 +

3R2

2
θ̇2

)
Ez + m2RL

(
θ̇2 + θ̇1

)
cos(θ2 −θ1)Ez .

4 For ease of notation, we drop the subscripts r and p used in the previous sections.
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Fig. 10.4 Free-body diagrams of the rod and the disk.

Finally, the kinetic energy of the system is

T =
1
2

m1v̄1 · v̄1 +
1
2

H1 ·ω1 +
1
2

m2v̄2 · v̄2 +
1
2

H2 ·ω2.

All of the ingredients are present to write this expression in terms of the kinematical
quantities discussed earlier:

T =
m1L2

6
θ̇ 2

1 +
m2

2

(
L2θ̇ 2

1 +
3R2

2
θ̇ 2

2 + 2RLθ̇1θ̇2 cos(θ2 −θ1)
)

.

10.2.2 Forces and Moments

In order to examine which conserved quantities are present in this system, we first
need to determine the forces and moments acting on each body. These are sum-
marized in the free-body diagrams shown in Figure 10.4. You should notice that
there is a reaction force R1 = R1xEx + R1yEy + R1zEz at O, equal and opposite re-
action forces of the form R2 = R2xEx + R2yEy + R2zEz at A, a reaction moment at
O, Mc1 = Mc1x

Ex + Mc1y
Ey, and equal and opposite reaction moments of the form

Mc2 = Mc2x
Ex + Mc2y

Ey at A. These reactions ensure that the bodies are connected
and their angular velocities are in the Ez direction.
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In summary, the resultant forces are

F1 = R1 + R2 −m1gEy,

F2 = −R2 −m2gEy,

F = R1 − (m1 + m2)gEy.

The resultant moments are

MO1 = x̄1 × (2R2 −m1gEy)+ Mc1 + Mc2 ,

MO2 = −2x̄1 ×R2 − x̄2 ×m2gEy −Mc2 ,

MO = MO1 + MO2 = (x̄1 ×−m1gEy)+ (x̄2 ×−m2gEy)+ Mc1.

10.2.3 Balance Laws and Analysis

Next, we examine conservation results. Clearly, F �= 0, even if gravity were absent,
so G cannot be conserved. Next, we have that

ḢO = MO = (x̄1 ×−m1gEy)+ (x̄2 ×−m2gEy)+ Mc1 .

Because MO has components in the Ex, Ey, and Ez directions, no component of HO

is conserved. If gravity were absent, then ḢO = MO = Mc1 = Mc1x
Ex +Mc1y

Ey, and
HO ·Ez would be conserved.

We now turn to the question of whether energy is conserved. To proceed, we start
with the work-energy theorem for the system:

dT
dt

= F1 · ˙̄x1 + M1 ·ω1 + F2 · ˙̄x2 + M2 ·ω2.

Substituting for the forces and moments listed above, we find with some rearranging
that5

dT
dt

= R1 ·0 + R2 ·vA −m1gEy · v̄1 +(Mc1 + Mc2) ·ω1

−R2 ·vA−m2gEy · v̄2 −Mc2 ·ω2

= −m1gEy · v̄1 −m2gEy · v̄2.

Notice that we used the fact that the reaction moments are normal to the angular
velocities, and, consequently, they do not contribute to the rate of change of kinetic
energy. Manipulating the gravitational terms as usual and performing some obvious
cancellations, we find that the rate of change of the total energy,

E = T + m1gEy · x̄1 + m2gEy · x̄2,

5 Notice that after the rearranging, one has the alternative form of the work-energy theorem. For a
single rigid body, this alternative form was discussed in Section 9.2.3 of Chapter 9.
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is
dE
dt

= 0.

In summary, if gravity is present, then only the total energy is conserved. On the
other hand, if gravity were absent, then, in addition to energy conservation, HO ·Ez

would also be conserved.

10.2.4 A Related Example

A related problem is to assume that the system is in motion. At some time t = t1
the pin-joint at A freezes up so that θ̇1 = θ̇2 for t > t1. Given θ1(t−1 ), θ2(t−1 ), θ̇1(t−1 ),
and θ̇2(t−1 ), where t−1 denotes the instant just before the freeze-up, is it possible to
determine θ̇1(t+1 ) = θ̇2(t+1 ) = ω , where t+1 denotes the instant just after the freeze-
up?

The answer is yes! During the freeze-up, one can ignore the angular impulse due
to gravity.6 Then, from the integral form of the balance of angular momentum for
the system, one has

HO(t−1 ) ·Ez = HO(t+1 ) ·Ez,

and this enables one to determine ω = θ̇1(t+1 ) = θ̇2(t+1 ). Explicitly,

HO(t−1 ) ·Ez =
m1L2

3
θ̇1(t−1 )+ m2

(
L2θ̇1(t−1 )+

3R2

2
θ̇2(t−1 )

)

+m2RL
(
θ̇2(t−1 )+ θ̇1(t−1 )

)
cos

(
θ2(t−1 )− θ1(t−1 )

)
,

HO(t+1 ) ·Ez =
(

m1L2

3
+ m2

(
L2 +

3R2

2

)
+ 2m2RLcos

(
θ2(t+1 )−θ1(t+1 )

))
ω.

Equating these two expressions provides an equation to determine ω . One can also
easily show that the energy is not conserved in this freeze-up, but we leave this as
an exercise.

10.3 Impact of a Particle and a Rigid Body

We outline here some examples involving particles colliding with rigid bodies. As
in collisions of particles with each other, one must be given some additional infor-
mation: the coefficient of restitution for the problem at hand. Often, this is given
implicitly. If the particle sticks to the body after the collision, one has that e = 0. If
one is given the coefficient of restitution for these problems, it is important to note

6 Essentially, one is assuming that the freeze-up occurs instantaneously.
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O

Particle which collides with rigid body
Rigid body which rotates about O

Fig. 10.5 The first type of generic impact problem.

Particle which collides with rigid body

Rigid body

Fig. 10.6 The second type of generic impact problem.

that one of the velocity vectors pertains to the particle, whereas the other pertains to
the velocity vector of the material point of the body that the particle impacts.

Our discussion here is brief, and we provide few analytical details. Indeed, what
adds to the complexity of these problems is the calculation of linear and angular
momenta before and after the impact. There are two types of problems common to
undergraduate engineering courses in dynamics (see Figures 10.5 and 10.6). Nor-
mally, energy is not conserved in these problems.

The first type of problem is where the rigid body is attached by a pin-joint to a
fixed point O (see Figure 10.5). For these problems, one assumes that the collision
is instantaneous, and hence the angular momentum component HO ·Ez is conserved,
where HO is the angular momentum of the system relative to O. That is, one ignores
any gravitational impulses during the collision. The linear momentum G of the sys-
tem is not conserved because one has an impulse due to the reaction force at O. One
then has a single equation: HO ·Ez is conserved. When the impact is such that the
particle coalesces with the rigid body, this equation is usually used to determine the
angular velocity of the particle-rigid body system immediately after the impact.

In the second type of problem, the rigid body is free to move on a plane or in
space (see Figure 10.6). Again, one assumes that the collision is instantaneous, and
hence the angular momentum component H ·Ez is conserved. Here, H is the angular
momentum of the system relative to the center of mass of the system. The linear
momentum G of the system is also conserved for these problems. Hence, one has
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four conservations. When the impact is such that the particle coalesces with the rigid
body, these four conservations are normally used to determine the velocity vector
of the center of mass and angular velocity vector of the particle-rigid body system
immediately after the impact.

10.4 Beyond This Primer

The scope of the present book was influenced by what is expected of a student in an
undergraduate engineering dynamics course. What is beyond its scope are areas of
active research. We now turn to two of these areas.

First, many readers will notice the emphasis on establishing differential equa-
tions for the motion of the system. The nature of the solutions to these equations
contains many of the predictions of the model developed for the system. These so-
lutions are therefore a crucial component of verifying any model. Not surprisingly,
there has been an enormous amount of research on the solutions to differential equa-
tions that arise from the development of models for mechanical systems. Fueled by
recent advances in numerical computations, this is still an active research area (see,
e.g., Strogatz [76]). Based on our own experience, the predictions made by models
of mechanical systems have usually been a source of enlightenment and improved
understanding.

Another active research area is the development of more realistic models for im-
pacting rigid bodies. These models are the basis for numerous simulations of vehi-
cle collisions, and are also important in other applications. Of particular interest are
models that incorporate frictional forces. The difficulties of establishing such theo-
ries was made evident in 1895 by Painlevé’s paradoxical example of a rod sliding
on a rigid horizontal surface [56].7 Ruina [67] has also presented some interesting
examples that illustrate some difficulties associated with the Coulomb friction laws
we discussed in Chapter 4. We refer the interested reader to the review article by
Stewart [74] for recent developments in this area.

10.5 Summary

This chapter has evident similarities to Chapter 7 where corresponding results for
a system of particles were discussed. Rather than summarizing the main results
presented in this chapter, it is probably more useful to give a verbal outline of how
they were established.

First, for a system of particles and rigid bodies, the center of mass is calculated
using the masses of the constituents, the position vectors of the particles, and the
position vectors of the centers of mass of the rigid bodies. The linear momentum

7 Paul Painlevé (1863–1933) was a French mathematician and politician. It is interesting to note
that he is credited as being the first airplane passenger of Wilbur Wright in 1908.
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G is calculated by summing the linear momenta of each of the constituents. This
momentum is equal to the linear momentum of the center of mass of the system.
Similarly, the angular momentum HO is calculated by summing the angular mo-
menta relative to O of the constituents. A similar remark applies for H. Finally, the
kinetic energy T of the system is calculated by summing the kinetic energies of the
constituents. In general, HO is not simply equal to the angular momentum of the
center of mass of the system, and T is not simply equal to the kinetic energy of the
center of mass of the system.

As in systems of particles, one can add the balance laws for the system of parti-
cles and rigid bodies to arrive at the balance laws

F = Ġ, M = Ḣ, MO = ḢO.

These laws are useful when establishing conservations of linear and angular mo-
menta for the system of particles and rigid bodies. In addition, one can formulate
integral forms of the balance laws:

G(t)−G(t0) =
∫ t

t0
F(τ)dτ,

H(t)−H(t0) =
∫ t

t0
M(τ)dτ,

HO (t)−HO (t0) =
∫ t

t0
MO(τ)dτ.

These results are very useful in impact problems.
Finally, the work-energy theorem for the system of particles and rigid bodies is

obtained by adding the corresponding theorems for each of the constituents:

dT
dt

=
K

∑
k=1

pFk · ṙk +
N

∑
n=1

(rFn · ˙̄xn + Mn ·ωn) .

As always, this theorem is useful for establishing conservation of energy results.
The main examples discussed in this chapter were a system of two rigid bodies

and several impact problems. It is crucial to remember that obtaining the correct
solutions to these problems depends on one’s ability to establish expressions for G,
HO, and H.

10.6 Exercises

The following short exercises are intended to assist you in reviewing the present
chapter.

10.1. For the system discussed in Section 10.2, establish expressions for HO

when the disk of mass m2 is replaced by a particle of mass m2 that is at-
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tached at A. Is it possible to replace the system of the rigid rod and particle
by a system consisting of a single rigid body?

10.2. For the system discussed in Exercise 10.1, derive an expression for the
kinetic energy T .

10.3. Consider the system of rigid bodies discussed in Section 10.2. How do the
results for HO and T simplify if the disk were pin-jointed at its center of
mass to A?

10.4. For the system discussed in Section 10.2, derive expressions for HO and T
if the disk were welded at its center of mass to A.

10.5. For the system of two rigid bodies discussed in Section 10.2, derive ex-
pressions for HO and T if the disk were replaced by a rigid rod of length
2R.

10.6. A circular disk of mass m1 and radius R lies at rest on a horizontal plane.
The origin of the coordinate system is taken to coincide with the center of
mass of the disk. At an instant in time t1, a particle of mass m2 which has a
velocity vector v = vxEx +vyEy collides with the disk. The collision occurs
at the point of the disk whose position vector is Rcos(φ)Ex + Rsin(φ)Ey.
After the impact, the particle adheres to the disk. Show that the position
vector of the center of mass of the system during the instant of impact is

x̄ =
m2R

m1 + m2
(cos(φ)Ex + sin(φ)Ey) .

In addition, show that the velocity vector of the center of mass of the sys-
tem immediately following the impact is

v̄
(
t+1

)
=

m2

m1 + m2
(vxEx + vyEy) .

10.7. For the system discussed in Exercise 10.6, show that the angular momen-
tum of the system relative to its center of mass at the instant prior to the
collision is

H(t−1 ) =
m1m2R

m1 + m2
(vy cos(φ)− vx sin(φ))Ez.

In addition, show that the angular momentum of the system relative to its
center of mass immediately after the collision is

H
(
t+1

)
=

(
m2

m1 + m2
+

1
2

)
m1R2ω

(
t+1

)
Ez,

where ω
(
t+1

)
Ez is the angular velocity vector of the system immediately

after the collision.
10.8. Using the results of Exercise 10.7, determine the angular velocity vector of

the system immediately following the impact discussed in Exercise 10.6.
Under which conditions is it possible for this velocity vector to be 0?
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10.9. Determine the kinetic energy lost during the collision discussed in Exercise
10.6.

10.10. Which modifications to the results of Exercises 10.6 to 10.8 are required
to accommodate the situation where the center of mass of the disk was in
motion at the instant prior to impact?

10.11. Repeat Exercises 10.6 through 10.9 for the case where the disk is pinned
at its center to a fixed point O.
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Appendix A
Preliminaries on Vectors and Calculus

CAVEAT LECTOR

In writing this primer, I have assumed that the reader has had courses in linear
algebra and calculus. This being so, I have more often than not found that these
topics have been forgotten. Here, I review some of the basics. But it is a terse review,
and I strongly recommend that readers review their own class notes and other texts
on these topics in order to fill the gaps in their knowledge.

Students who are able to differentiate vectors and are familiar with the chain and
product rules of calculus have a distinct advantage in comprehending the material
in this primer and in other courses. I have never been able to sufficiently emphasize
this point to students at the beginning of an undergraduate dynamics course.

A.1 Vector Notation

A fixed (right-handed) Cartesian basis for Euclidean three-space E
3 is denoted by

the set
{

Ex,Ey,Ez
}

. These three vectors are orthonormal (i.e., they each have a unit
magnitude and are mutually perpendicular).

For any vector b, one has the representation

b = bxEx + byEy + bzEz,

where bx, by, and bz are the Cartesian components of the vector b (cf. Figure A.1).
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Ex

Ey

Ez

bx

by

bz

b

Fig. A.1 A vector b and its three components relative to the basis {Ex,Ey,Ez}.

A.2 The Dot Product and The Cross Product

The two most commonly used vector products are the dot and cross products. The
dot product of any two vectors u and w in E

3 is a scalar defined by

u ·w = uxwx + uywy + uzwz = ||u|| ||w||cos(γ) ,

where γ is the angle subtended by u and w, and ||b|| denotes the norm (or magnitude)
of a vector b:

||b||2 = b ·b = b2
x + b2

y + b2
z .

Clearly, if two vectors are perpendicular to each other, then their dot product is zero.
One can use the dot product to define a unit vector n in the direction of any vector

b:

n =
b
||b|| .

This formula is very useful in establishing expressions for friction forces and normal
forces.

The cross product of any two vectors b and c is defined as

b× c = (bycz −bzcy)Ex +(bzcx −bxcz)Ey +(bxcy −bycx)Ez.

This expression for the cross product can be expressed in another form involving
the determinant of a matrix:

b× c = −c×b = det

⎡
⎣Ex Ey Ez

bx by bz

cx cy cz

⎤
⎦ .

It follows from the definition of the cross product that b×c is a vector that is normal
to the plane formed by b and c. You should also notice that if two vectors are parallel,
then their cross product is the zero vector 0.
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A.3 Differentiation of Vectors

Given a vector u, suppose it is a function of time t: u = u(t). One can evaluate its
derivative using the product rule:

du
dt

=
dux

dt
Ex +

duy

dt
Ey +

duz

dt
Ez + ux

dEx

dt
+ uy

dEy

dt
+ uz

dEz

dt
.

However, Ex, Ey, and Ez are constant vectors (i.e., they have constant magnitude
and direction). Hence, their time derivatives are zero, and the expression for the
time derivative of u simplifies to

du
dt

=
dux

dt
Ex +

duy

dt
Ey +

duz

dt
Ez.

We can also use the product rule of calculus to show that

d
dt

(u ·w) =
du
dt

·w+ u · dw
dt

,
d
dt

(u×w) =
du
dt

×w+ u× dw
dt

.

These results are obtained by representing the vectors u and w with respect to a
Cartesian basis, then evaluating the left- and right-hand sides of both equations and
showing their equality.

To differentiate any vector-valued function c(s(t)) with respect to t, we use the
chain rule:

dc
dt

=
ds
dt

dc
ds

=
ds
dt

(
dcx

ds
Ex +

dcy

ds
Ey +

dcz

ds
Ez

)
.

For example, suppose s = t2 and c = s2Ez. Then, dc/dt = 4t3Ez.

A.4 A Ubiquitous Example of Vector Differentiation

One of the main sets of vectors arising in any course on dynamics is {er,eθ ,ez}:

er = cos(θ )Ex + sin(θ)Ey,

eθ = −sin(θ )Ex + cos(θ)Ey,

ez = Ez.

We also refer the reader to Figure A.2. In the above equations, θ is a function of
time.



220 A Preliminaries on Vectors and Calculus

Ex

Ey

ereθ

θ

θ

Fig. A.2 The unit vectors er and eθ .

Using the previous developments, you should be able to establish that

der

dθ
= −sin(θ )Ex + cos(θ)Ey = eθ ,

deθ
dθ

= −cos(θ )Ex − sin(θ)Ey = −er,

der

dt
=

dθ
dt

eθ ,

deθ
dt

= −dθ
dt

er.

A useful exercise is to evaluate these expressions and graphically represent them for
a given θ(t). For example, θ(t) = 10t2 + 15t.

Finally, you should be able to show that

er × eθ = ez, ez × er = eθ , eθ × ez = er,
er · er = 1, eθ · eθ = 1, ez · ez = 1,
er · eθ = 0, eθ · ez = 0, er · ez = 0.

In other words, {er,eθ ,ez} forms an orthonormal set of vectors. Furthermore, be-
cause ez · (er × eθ) = 1, this set of vectors is also right-handed.

A.5 Ordinary Differential Equations

The main types of differential equations appearing in undergraduate dynamics
courses are of the form ü = f (u), where the superposed double dot indicates the
second derivative of u with respect to t. The general solution of this differential
equation involves two constants: the initial conditions for u(t0) = u0 and its veloc-
ity u̇(t0) = u̇0. Often, one chooses time such that t0 = 0.

The most comprehensive source of mechanics problems that involve differential
equations of the form ü = f (u) is Whittaker’s classical work [81]. It should also be
added that classical works in dynamics placed tremendous emphasis on obtaining
analytical solutions to such equations. Recently, the engineering dynamics commu-
nity has become increasingly aware of possible chaotic solutions. Consequently, the
existence of analytical solutions is generally not anticipated. We refer the reader to
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Moon [49] and Strogatz [76] for further discussions on, and references to, this mat-
ter. Further perspectives can be gained by reading the books by Barrow-Green [3]
and Diacu and Holmes [22] on Henri Poincaré’s seminal work on chaos, and Peter-
son’s book [61] on chaos in the solar system.

For many of the examples discussed in this book, the differential equations of
motion were solved numerically. These examples include the simple pendulum’s
motion shown in Figure 2.1 in Chapter 2 and the motions of the whirling particles
shown in Figure 7.5 in Chapter 7. There are several well-established computation
packages, such as MATLAB and MATHEMATICA, which are capable of performing
the numerical integrations and generating graphics of the resulting solutions. For
further details on how these respective programs can be used, we recommend the
texts of Palm [57] and Hunt et al. [38].

A.5.1 The Projectile Problem

Arguably the easiest set of differential equations in this book makes its appearance
when studying the motion of a particle under the influence of a gravitational force
−mgEy. As shown in Section 1.6 of Chapter 1, the differential equations governing
the motion of the particle are

mẍ = 0, mÿ = −mg, mz̈ = 0.

Clearly, each of these three equations is of the form ü = f (u). The general solution
to the second of these equations is

y(t) = y0 + ẏ0 (t − t0)− g
2

(t − t0)
2 .

Here, y(t0) = y0 and ẏ(t0) = ẏ0 are the initial conditions. You should verify the solu-
tion for y(t) given above by first examining whether it satisfies the initial conditions
and then seeing whether it satisfies the differential equation ÿ =−g. By setting g = 0
and changing variables from y to x and z, the solutions to the other two differential
equations can be obtained.

A.5.2 The Harmonic Oscillator

The most common example of a differential equation in mechanical engineering is
found from the harmonic oscillator. Here, a particle of mass m is attached by a linear
spring of stiffness K to a fixed point. The variable x is chosen to measure both the
displacement of the particle and the displacement of the spring from its unstretched
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state. The governing differential equation is

mẍ = −Kx.

This equation has the general solution

x(t) = x0 cos(ω0 (t − t0))+
ẋ0

ω0
sin(ω0 (t − t0)) ,

where x(t0) = x0 and ẋ(t0) = ẋ0 are the initial conditions, and ω0 =
√

K/m is the
natural frequency of the oscillator.

A.5.3 A Particle in a Whirling Tube

The penultimate example of interest arises in problems featuring a particle of mass
m that is in motion in a smooth frictionless tube. The tube is being rotated in a hor-
izontal plane with a constant angular speed Ω . The differential equation governing
the radial motion of the particle is

mr̈ = mΩ 2r.

This equation has the general solution

r(t) = r0 cosh(Ω (t − t0))+
ṙ0

Ω
sinh(Ω (t − t0)) ,

where r (t0) = r0 and ṙ (t0) = ṙ0 are the initial conditions.

A.5.4 The Planar Pendulum

Our final example of a differential equation of the form ü = f (u) arises in the planar
pendulum discussed in Section 2.4 of Chapter 2. Recall that the equation governing
the motion of the pendulum was

mLθ̈ = −mgcos(θ ) .

This equation is of the form discussed above with u = θ and f (u) = −gcos(u)/L.
Here, f is a nonlinear function of u. Given the initial conditions θ (t0) = θ0 and
θ̇ (t0) = θ̇0, this differential equation can be solved analytically. The resulting so-
lution involves special functions that are known as Jacobi’s elliptic functions.1 An
alternative method of solution is to use numerical integration. For instance, the func-

1 A discussion of these functions, in addition to the analytical solution of the particle’s motion, can
be found in Lawden [43], for instance.
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tion NDSOLVE in MATHEMATICA was used to generate the pendulum motions
shown in Figure 2.1. It was also used to solve the equations of motion of the hang-
ing rod shown in Figure 9.7.

Elliptic functions are beyond the scope of an undergraduate dynamics class, so
instead one is normally asked to use the conservation of the total energy E of the
particle to solve most posed problems involving this pendulum.





Appendix B
Weekly Course Content and Notation in Other
Texts

ABBREVIATIONS

For convenience in this appendix we use the following abbreviations: BF, Bedford
and Fowler [6]; BJ, Beer and Johnston [7]; H, Hibbeler [36]; MK, Meriam and
Kraige [48]; RS, Riley and Sturges [63]; and S, Shames [69].

B.1 Weekly Course Content

The following is an outline for a 15-week (semester-long) course in undergraduate
engineering dynamics. Here, we list the weekly topics along with the corresponding
sections in this primer. We also indicate the corresponding sections in other texts.
This correspondence is, of course, approximate: all of the cited texts have differ-
ences in scope and emphasis.

Normally, the course is divided into three parts: a single particle, systems of
particles, and (planar dynamics of) rigid bodies. The developments in most texts
also cover the material in this order, the exception being Riley and Sturges [63].
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Week Topic Primer Section Other Texts
1 Single Particle: Chapter 1 BF: Ch.1, 2.1–2.3, 3.1–3.4

Cartesian BJ: 11.1–11.11, 12.5
Coordinates H: 12.1–12.6, 13.4

MK: 1/1–1/7, 2/2, 2/4, 3/4
RS: 13.1–13.4, 15.1–15.3

S: 11.1–11.4, 12.1–12.4

2 Single Particle: Chapter 2 BF: 2.3, 3.4
Polar Coordinates BJ: 11.14, 12.8

H: 12.8, 13.6
MK: 2/6, 3/5

RS: 13.5, 13.7, 15.4
S: 11.6, 12.5

3 Single Particle: Chapter 3 BF: 2.3, 3.4
Serret-Frenet BJ: 11.13, 12.5

Triads H: 12.7, 13.5
MK: 2/5, 2/7, 3/5

RS: 13.5, 13.7, 15.4
S: 11.5, 12.9

4 Single Particle: Chapter 4 BF: 3.4
Further Kinetics BJ: 12.5

H: 13.4–13.6
MK: 3/5

RS: 15.3, 15.4
S: 12.4, 12.5, 12.9

5 Single Particle: Chapter 5 BF: Ch. 4
Work and Energy BJ: 13.1–13.9

H: 14.1, 14.2, 14.4–14.6
MK: 3/6, 3/7

RS: 17.1–17.3, 17.5–17.10
S: 13.1–13.5

6 Linear and Angular Chapter 6 BF: 5.1, 5.2, 5.4
Momenta Sects. 1 & 2 BJ: 12.2, 12.7, 12.9,13.11

H: 15.1, 15.5–15.7
MK: 3/9, 3/10
RS: 19.2, 19.5

S: 14.1, 14.3, 14.6
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Week Topic Primer Section Other Texts
7 Collisions of Chapter 6 BF: 5.3

Particles Sects. 3–5 BJ: 13.12–13.14
H: 14.3, 14.6, 15.4

MK: 3/12
RS: 19.4

S: 14.4–14.5

8 Systems of Particles Chapter 7 BF: 7.1, 8.1
BJ: 14.1–14.9

H: 13.3, 14.3, 14.6, 15.3
MK: 4/1–4/5

RS: 17.4–17.8, 19.3, 19.5
S: 12.10, 14.2, 14.7,

13.6–13.9

9 Kinematics Chapter 8 BF: 6.1–6.3
of Rigid BJ: 15.1–15.4
Bodies H: 16.1–16.4

MK: 5/1–5/4
RS: 14.1–14.3

S: 15.1–15.5

10 Kinematics Chapter 8 BF: 6.4–6.6
of Rigid BJ: 15.4–15.8, 15.10–15.15
Bodies H: 16.4–16.8

MK: 5/5–5/7
RS: 14.4–14.6
S: 15.5–15.11

11 Planar Chapter 9 BF: 7.2–7.3, App., 9.2
Dynamics of BJ: Ch. 16

Rigid H: 21.1, 21.2, 17.3
Bodies MK: 6/1–6/3, Apps. A & B

RS: 16.2, 16.3, 20.6
S: 16.1–16.4

12 Planar Chapter 9 BF: 7.4
Dynamics of BJ: Ch. 16

Rigid H: 17.4
Bodies MK: 6/4

RS: 16.4
S: 16.5
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Week Topic Primer Section Other Texts
13 Planar Dynamics Chapter 9 BF: 8.1–8.3

of Rigid Bodies BJ: Ch. 16 & 17.1–17.7
H: 17.5 & Ch. 18

MK: 6/5. 6/6
RS: 16.4 & Ch. 18
S: 16.6, 17.1–17.3

14 Planar Dynamics Chapter 10 BF: 8.4
of Rigid Bodies BJ: 17.8–17.11

H: Ch. 19
MK: 6/8

RS: 20.1–20.5
S: 17.4–17.7

15 Vibrations Not Covered BF: Ch. 10
BJ: Ch. 19
H: Ch. 22

MK: Ch. 8
RS: Ch. 21

S: Ch. 22
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B.2 Notation in Other Texts

Here, we give a brief summary of some of the notational differences between this
primer and those used in other texts. In many of the cited texts only plane curves
are considered. Consequently, the binormal vector eb is not explicitly mentioned.

Primer Notation Other Texts
Cartesian Basis Vectors {Ex,Ey,Ez} BF: {i, j,k}

BJ: {i, j,k}
H: {i, j,k}

MK: {i, j,k}
RS: {i, j,k}

S: {i, j,k}

Serret-Frenet Triad {et ,en,eb} BF: {et ,en,−}
BJ: {et ,en,eb}
H: {ut ,un,ub}

MK: {et ,en,−}
RS: {et ,en,−}

S: {εt ,εn,ε t × εn}

Linear Momentum G = mv BF: mv
of a Particle BJ: L = mv

H: mv
MK: G

RS: L = mv
S: mV

Corotational {ex,ey,ez} BF: {i, j,k}
Basis or Body BJ: {i, j,k}
Fixed Basis H: {i, j,k}

MK: {i, j,k}
RS: {ex,ey,ez}

S: {i, j,k}
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(1968). [E-VERSION] [135, 165]

27. M. Fecko, “Falling cat connections and the momentum map,” Journal of Mathematical
Physics, 36(12), pp. 6709–6719 (1995). [E-VERSION] [204]

28. J.-F. Frenet, “Sur quelques propriétés des courbes à double courbure,”7 Journal de
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