
VIBRATION PROBLEMS
IN ENGINEERING

BY

S. TIMOSHENKO
Professor of Theoretical and Engineering Mechanics

Stanford University

SECOND EDITIONFIFTH PRINTING

NEW YORK
D. VAN NOSTRAND COMPANY, INC.

250 FOURTH AVENUE



COPYRIGHT, 1928, 1937,

BY

D. VAN NOSTRAND COMPANY, INC.

All Rights Reserved

This book or any part thereof may not
be reproduced in any form without
written permission from the publisher,,

First Published . . . October, 1928

Second Edition . . July, 1937
RcpruiUd, AuyuU, 1^41, July, UL'

t J, Auyu^t, t'^44, A/

PRINTED IN THE USA



PREFACE TO THE SECOND EDITION

In the preparation of the manuscript for the second edition of the

book, the author's desire was not only to bring the book up to date by
including some new material but also to make it more suitable for teaching

purposes. With this in view, the first part of the book was entirely re-

written and considerably enlarged. A number of examples and problems
with solutions or with answers were included, and in many places new
material was added.

The principal additions are as follows : In the first chapter a discussion

of forced vibration with damping not proportional to velocity is included,
and an article on self-excited vibration. In the chapter on non-linear sys-

tems an article on the method of successive approximations is added and it

is shown how the method can be used in discussing free and forced vibra-

tions of systems with non-linear characteristics. The third chapter is

made more complete by including in it a general discussion of the equation
of vibratory motion of systems with variable spring characteristics. The
fourth chapter, dealing with systems having several degrees of freedom, is

also Considerably enlarged by adding a general discussion of systems with

viscous damping; an article on stability of motion with an application in

studying vibration of a governor of a steam engine; an article on whirling
of a rotating shaft due to hysteresis; and an article on the theory of damp-
ing vibration absorbers. There are also several additions in the chapter
on torsional and lateral vibrations of shafts.

The author takes this opportunity to thank his friends who assisted in

various ways in the preparation of the manuscript* and particularly
Professor L. S. Jacobsen, who read over the complete manuscript and made
many valuable suggestions, and Dr. J. A. Wojtaszak, who checked prob-
lems of the first chapter.

STEPHEN TIMOSHENKO
STANFORD UNIVERSITY,

May 29, 1937





PREFACE TO THE FIRST EDITION

With the increase of size and velocity in modern machines, the

analysis of vibration problems becomes more and more important in

mechanical engineering design. It is well known that problems of great

practical significance, such as the balancing of machines, the torsional

vibration of shafts and of geared systems, the vibrations of turbine

blades and turbine discs, the whirling of rotating shafts, the vibrations of

railway track and bridges under the action of rolling loads, the vibration

of foundations, can be thoroughly understood only on the basis of the

theory of vibration. Only by using this theory can the most favorable

design proportions be found which will remove the working conditions

of the machine as far as possible from the critical conditions at which

heavy vibrations may occur.

In the present book, the fundamentals of the theory of vibration are

developed, and their application to the solution of technical problems is

illustrated by various examples, taken, in many cases, from actual

experience with vibration of machines and structures in service. In

developing this book, the author has followed the lectures on vibration

given by him to the mechanical engineers of the Westinghouse Electric

and Manufacturing Company during the year 1925, and also certain

chapters of his previously published book on the theory of elasticity.*

The contents of the book in general are as follows:

The first chapter is devoted to the discussion of harmonic vibrations

of systems with one degree of freedom. The general theory of free and
forced vibration is discussed, and the application of this theory to

balancing machines and vibration-recording instruments is shown. The
Rayleigh approximate method of investigating vibrations of more com-

plicated systems is also discussed, and is applied to the calculation of the

whirling speeds of rotating shafts of variable cross-section.

Chapter two contains the theory of the non-harmonic vibration of sys-
tems with one degree of freedom. The approximate methods for investi-

gating the free and forced vibrations of such systems are discussed. A
particular case in which the flexibility of the system varies with the time is

considered in detail, and the results of this theory are applied to the inves-

tigation of vibrations in electric locomotives with side-rod drive.

*
Theory of Elasticity, Vol. II (1916) St. Petersburg, Russia.
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In chapter three, systems with several degrees of freedom are con-

sidered. The general theory of vibration of such systems is developed,
and also its application in the solution of such engineering problems as:

the vibration of vehicles, the torsional vibration of shafts, whirling speeds
of shafts on several supports, and vibration absorbers.

Chapter four contains the theory of vibration of elastic bodies. The

problems considered are : the longitudinal, torsional, and lateral vibrations

of prismatical bars; the vibration of bars of variable cross-section; the

vibrations of bridges, turbine blades, and ship hulls; the theory of vibra-

tion of circular rings, membranes, plates, and turbine discs.

Brief descriptions of the most important vibration-recording instru-

ments which are of use in the experimental investigation of vibration

are given in the appendix.
The author owes a very large debt of gratitude to the management of

the Westinghouse Electric and Manufacturing Company, which company
made it possible for him to spend a considerable amount of time in the

preparation of the manuscript and to use as examples various actual cases

of vibration in machines which were investigated by the company's
engineers. He takes this opportunity to thank, also, the numerous
friends who have assisted him in various ways in the preparation of the

manuscript, particularly Messr. J. M. Lessells, J. Ormondroyd, and J. P.

Den Hartog, who have read over the complete manuscript and have made
many valuable suggestions.

He is indebted, also, to Mr. F. C. Wilharm for the preparation of draw-

ings, and to the Van Nostrand Company for their care in the publication
oi the book.

S. TIMOSHENKO
ANN ARBOR, MICHIGAN,

May 22, 1928.
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CHAPTER I

HARMONIC VIBRATIONS OF SYSTEMS HAVING ONE
DEGREE OF FREEDOM

1. Free Harmonic Vibrations. If an elastic system, such as a loaded

beam, a twisted shaft or a deformed spring, be disturbed from its position
of equilibrium by an impact or by the sudden application and removal of

an additional force, the elastic forces of the member in the disturbed posi-
tion will no longer be in equilibrium with the loading, and vibrations will

ensue. Generally an elastic system can perform vibrations of different

modes. For instance, a string or a beam while vibrating may assume the

different shapes depending on the number of nodes subdividing the length
of the member. In the simplest cases the configuration of the vibrating

system can be determined by one quantity only. Such systems are called

systems having one degree of freedom.
Let us consider the case shown in Fig. 1. If the arrangement be such

that only vertical displacements of the weight W are

possible and the mass of the spring be small in compari-
son with that of the weight W, the system can be

considered as having one degree of freedom. The

configuration will be determined completely by the

vertical displacement of the weight.

By an impulse or a sudden application and removal
of an external force vibrations of the system can be

produced. Such vibrations which are maintained by
the elastic force in the spring alone are called free or

natural vibrations. An analytical expression for these FIG. 1.

vibrations can be found from the differential equation
of motion, which always can be written down if the forces acting on the

moving body are known.
Let k denote the load necessary to produce a unit extension of the

spring. This quantity is called spring constant. If the load is measured in

pounds and extension in inches the spring constant will be obtained in Ibs.

per in. The static deflection of the spring under the action of the weight
W will be
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Denoting a vertical displacement of the vibrating weight from its position

of equilibrium by x and considering this displacement as positive if it is in

a downward direction, the expression for the tensile force in the spring cor-

responding to any position of the weight becomes

F = W + kx. (a)

In deriving the differential equation of motion we will use Newton's prin-

ciple stating that the product of the mass of a particle and its acceleration

is equal to the force acting in the direction of acceleration. In our case the

mass of the vibrating body is W/g, where g is the acceleration due to

gravity; the acceleration of the body W is given by the second derivative

of the displacement x with respect to time and will be denoted by x] the

forces acting on the vibrating body are the gravity force W, acting down-

wards, and the force F of the spring (Eq. a) which, for the position of the

weight indicated in Fig. 1, is acting upwards. Thus the differential equa-
tion of motion in the case under consideration is

x = W-(W + kx). (1)
a

This equation holds for any position of the body W. If, for instance, the

body in its vibrating motion takes a position above the position of equilib-

rium and such that a compressivc force in the spring is produced the expres-
sion (a) becomes negative, and both terms on the right side of eq. (1) have
the same sign. Thus in this case the force in the spring is added to the

gravity force as it should be.

Introducing notation

tf = ^ = 4- MP W .,'
(2)

differential equation (1) can be represented in the following form

x + p
2x = 0. (3)

This equation will be satisfied if we put x = C\ cos pt or x = 2 sin pt,

where C\ and 2 are arbitrary constants. By adding these solutions the

general solution of equation (3) will be obtained:

x = Ci cos pt + 2 sin pt. (4)

It is seen that the vertical motion of the weight W has a vibratory charac-



HARMONIC VIBRATIONS 3

ter, since cos pt and sin pt are periodic functions which repeat themselves

each time after an interval of time r such that

p(r + t)- pt = 2*. (6)

This interval of time is called the period of vibration. Its magnitude,
from eq. (6), is ^

/ \r - - (c)

or, by using notation (2),

(5)
kg * g

It is seen that the period of vibration depends only on the magnitudes of

the weight W and of the spring constant k and is independent of the mag-
nitude of oscillations. We can say also that the period of oscillation of the

suspended weight W is the same as that of a mathematical pendulum, the

length of which is equal to the statical deflection 5^. If the statical deflec-

tion 8st is determined theoretically or experimentally the period r can be

calculated from eq. (5).

The number of cycles per unit time, say per second, is called the fre-

quency of vibration. Denoting it by / we obtain

'-;-*> <6>

or, by substituting g = 386 in. per sec.2 and expressing 8at in inches,

/ = 3.127 -v/ cycles per second. (6')* Qs t

A vibratory motion represented by equation (4) is called a harmonic

motion. In order to determine the constants of integration Ci and C2, the

initial conditions must be considered. Assume, for instance, that at the

initial moment (t
= 0) the weight W has a displacement XQ from its position

of equilibrium and that its initial velocity is XQ. Substituting t = in

equation (4) we obtain

XQ = Ci. (d)

Taking now the derivative of eq. (4) with respect to time and substituting
in this derivative t = 0, we have

io r (\- = C2 (e)
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Substituting in eq. (4) the values of the constants (d) and (e), the following
expression for the vibratory motion of the weight W will be obtained :

, ,
-Ml .

x = xo cos pt -i sin pt.
P

(7)

It is seen that in this case the vibration consists of two parts; a vibration
which is proportional to cos pt and depends on the initial displacement of
the system and another which is proportional to sin pt and depends on the

FIG. 2.

*

initial velocity xo. Each of these parts can be represented graphically, as
shown in Figs. 2a and 2b, by plotting the displacements against the time.
The total displacement x of the oscillating weight W at any instant t is

obtained by adding together the ordinates of the two curves, (Fig. 2a and
Fig. 2b) for that instant.

Another method of representing vibrations is by means of rotating
vectors. Imagine a vector OA, Fig. 3, of magnitude rr() rotating with a
constant angular velocity p around a fixed point, 0. This velocity is called
circular frequency of vibration. If at the initial moment (t

= 0) the vector
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coincides with x axis, the angle which it makes with the same axis at any
instant t is equal to pt. The projection OA\ of the vector on the x axis

is equal to xo cos pt and represents the first term of expression (7). Taking
now another vector OB equal to xo/p
and perpendicular to the vector OA,
its projection on the x axis gives
the second term of expression (7).

The total displacement x of the

oscillating load W is obtained now
by adding the projections on the x

axis of the two perpendicular vectors

~OA and OB, rotating with the angular

velocity p.

The same result will be obtained

if, instead of vectors ()A and OB, we
consider the vector ()C, equal to the

geometrical sum of the previous two

vectors, and take the projection of this vector on the x axis. The magni-
tude of this vector, from Fig. 3, is

oe =

and the angle which it makes with the x axis is

pt
-

a,

where

Fio. 3.

Equating the projection of this vector on the x axis to expression (7) we
obtain

\M*<r + (
:

)
cos (pi a)

* \P /
i cos pt -\ sin pt. (8)

P

It is seen that in this manner we added together the two simple harmonic

motions, one proportional to cos pt and the other proportional to sin pt.

The result of this addition is a simple harmonic motion, proportional to

cos (pt a), which is represented by Fig. 2c. The maximum ordinate of

this curve, equal to V jar + (x^/p)'
2

, represents the maximum displace-
ment of the vibrating body from the position of equilibrium and is called

the amplitude of vibration.
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Due to the angle a between the two rotating vectors OA and OC the

maximum ordinate of the curve, Fig. 2c, is displaced with respect to the

maximum ordinate of the curve, Fig. 2a, by the amount a/p. In such a
case it may be said that the vibration, represented by the curve, Fig. 2c,

is behind the vibration represented by the curve, Fig. 2a, and the angle a
is called the phase difference of these two vibrations.

PROBLEMS

1. The weight W = 30 Ibs. is vertically suspended on a steel wire of length I 50 in.

and of cross-sectional area A 0.00 1 in. 2
. Determine the frequency of free vibrations

of the weight if the modulus for steel is E = 30 -106 Ibs. per sq. in. Determine the

amplitude of this vibration if the initial displacement XQ = 0.01 in. and initial velocity

xo = 1 in. per sec.

Solution. Static elongation of^the wire is 8st = 30-50/(30-106
-0.001) = 0.05 in.

Then, from eq. (6Q, / = 3.13 V'20 = 14.0 sec." 1
. The amplitude of vibration, from

eq. (8), is Vz 2 + (Wp) 2 = V(0.01) 2 + [l/(27r-14)]
2 = .01513 in.

2. Solve the previous problem assuming that instead of a vertical wire a helical

spring is used for suspension of the load W. The diameter of the cylindrical surface

containing the center line of the wire forming the spring is D = 1 in., the diameter of

the wire d = 0.1 in., the number of coils n = 20. Modulus of material of the wire in

shear G = 12 -106 Ibs. per sq. in. In what proportion
will the frequency of vibration be changed if the spring
has 10 coils, the other characteristics of the spring

remaining the same?
3. A load W is supported by a beam of length l

t

Fig. 4. Determine the spring constant and the frequency
FIG. 4. of free vibration of the load in the vertical direction

neglecting the mass of the beam.

Solution. The statical deflection of the beam under load is

-c)2

Here c is the distance of the load from the left end of the beam and El the flexural

rigidity of the beam in the vertical plane. It is assumed that this plane contains one

of the two principal axes of the cross section of the beam, so that vertical loads produce

only vertical deflections. From the definition the spring constant in this case is

ZIEI

Substituting B9t in eq. (6) the required frequency can be calculated. The effect of the

mass of the beam on the frequency of vibration will be discussed later, see Art. 16.

4. A load W is vertically suspended on two springs as shown in Fig. 5a. Determine

the resultant spring constant and the frequency of vertical vibration of the load if the



HARMONIC VIBRATIONS 7

spring constants of the two springs are ki and fa. Determine the frequency of vibration

of the load W if it is suspended on two equal springs as shown in Fig. 56.

Solution: In the case shown in Fig. 5a the statical deflec-

tion of the load W is

_W W
. __^

The resultant spring constant is /Cifa/(fa -f fa). Substituting

dgt in eq. (6), the frequency of vibration becomes

In the case shown in Fig. 56

W
2~k

and

+

= _L /20*.
2*V W FIG. 5.

6. Determine the period of horizontal vibrations of the frame, shown in Fig. 6, sup-

porting a load W applied at the center. The mass of the frame should be neglected in

this calculation.

Solution. We begin with a statical problem and determine the horizontal deflection

6 of the frame which a horizontal force H acting at the point of application of the load W
will produce. Neglecting deformations due to tension and compression in the members

FIG. 6.

and considering only bending, the horizontal bar AB is bent by two equal couples of

magnitude Hh/2. Then the angle a of rotation of the joints A and B is

Hhl

Considering now the vertical members of the frame as cantilevers bent by the horizontal

forces ///2, the horizontal deflection 6 will consist of two parts, one due to bending of the
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cantilevers and the second due to the rotation a of the joints A and B calculated above.

Hence
HhH = ^-Vl 4- - l -\~

QEI
+

12#/i
""

QEI \ '2hlJ
'

The spring constant in such case is

Substituting in eq. (5), we obtain

Wh*[ 1 +
HA
2hlJ

QgEI

If the rigidity of the horizontal member is large in comparison with the rigidity of the

verticals, the term containing the ratio I/I\ is small and can be neglected. Then

IWh*
r==27r

and the frequency is

6. Assuming that the load W in Fig. 1 represents the cage of an elevator moving down
with a constant velocity v and the spring consists of a steel cable, determine the maximum
stress in the cable if during motion the upper end A of the cable is suddenly stopped.
Assume that the weight W = 10,000 Ibs., I 60 ft., the cross-sectional area of the

cable A 2.5 sq. in., modulus of elasticity of the cable E = 15- 106 Ibs. per sq. in., v = 3

ft. per sec. The weight of the cable is to be neglected.

Solution. During the uniform motion of the cage the tensile force in the cable is

equal to W = 10,000 Ibs. and the elongation of the cable at the instant of the accident is

6at
= Wl/AE - .192 in. Due to the velocity v the cage will not stop suddenly and

will vibrate on the cable. Counting time from the instant of the accident, the displace-

ment of the cage from the position of equilibrium at that instant is zero and its velocity

is v. From eq. (7) we conclude that the amplitude of vibration will be equal to v/p, where

p = vg/bst 44.8 sec." 1 and v = 36 in. per sec. Hence the maximum elongation of

the cable is 5d = S8t + v/p = .192 -f- 36/44.8 = .192 -f .803 = .995 in. and the- maxi-

mum stress is (10,000/2.5) (.995/.192) = 20,750 Ibs. per sq. in. It is seen that due to

the sudden stoppage of the upper end of the cable the stress in the cable increased in

this case about five times.

7. Solve the previous problem assuming that a spring having a spring constant

k = 2000 Ibs. per in. is inserted between the lower end of the cable and the cage.

Solution. The statical deflection in this case is 5^ = .192 -f- 5 = 5.192 in. and the

amplitude of vibration, varying as square root of the statical deflection, becomes

.803 A/5.192/.192. The maximum dynamical deflection is 5.192 -f .803 Vs.192/,192

and its ratio to the statical deflection is 1 -f .803 Vl/.192- 5.192 = 1.80. Thus the
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maximum dynamical stress is (10,000/2.5)1.80 = 7,200 Ibs. per sq. in. It is seen that

by introducing the spring a considerable reduction in the maximum stress is obtained.

2. Torsional Vibration. Let us consider a vertical shaft to the lower

end of which a circular horizontal disc is attached, y///////////,

Fig. 7. If a torque is applied in the plane of the disc ]* {

and then suddenly removed, free torsional vibration

of the shaft with the disc will be produced. The

angular position of the disc at any instant can be
defined by the angle <p which a radius of the vibrat-

ing disc makes with the direction of the same radius

when the disc is at rest. As the spring constant in

this case we take the torque k which is necessary to
~ '

produce an angle of twist of the shaft equal to one

radian. In the case of a circular shaft of length I and diameter d we obtain

from the known formula for the angle of twist

For any angle of twist <p during vibration the torque in the shaft is k<p.

The equation of motion in the case of a body rotating with respect to an
immovable axis states that the moment of inertia of the body with respect
to this axis multiplied with the angular acceleration is equal to the moment
of the external forces acting on the body with respect to the axis of rota-

tion. In our case this moment is equal and opposite to the torque k<p

acting on the shaft and the equation of motion becomes

lip
= k<p (a)

where 7 denotes the moment of inertia of the disc with respect to the axis

of rotation, which in this case coincides with the axis of the shaft, and is

the angular acceleration of the disc. Introducing the notation

P
2 = *, (10)

the equation of motion (a) becomes

+ p
2? = 0. (11)

This equation has the same form as eq. (3) of the previous article, hence its

solution has the same form as solution (7) and we obtain

<f>
=

<po cos pt + sin pi, (12)
P
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where w and >o are the angular displacement and angular velocity respec-

tively of the disc at the initial instant t 0. Proceeding as in the previous
article we conclude from eq. (12) that the period of torsional vibration is

T = = 2T J-
p *k (13)
P * K

and its frequency is

/=
T
=
iv/' (U)

In the case of a circular disc of uniform thickness and of diameter D,

where W is the weight of the disc. Substituting this in eqs. (13) and (14),

and using expression (9), we obtain

1WDH

It was assumed in our discussion that the shaft has a constant diam-

eter d. When the shaft consists of parts of different diameters it can be

readily reduced to an equivalent*shaft having a constant diameter. Assume,
for instance, that a shaft consists of two parts of lengths Zi and 1% and of

diameters d\ and dz respectively. If a torque Mt is applied to this shaft

the angle of twist produced is

Ut~WJ- l\, U~J.,M. I .
7

It is seen that the angle of twist of a shaft with two diameters d\ and d%

is the same as that of a shaft of constant diameter d\ and of a reduced length
L given by the equation

The shaft of length L and diameter d\ has the same spring constant as the

given shaft of two different diameters and is an equivalent shaft in this case.

In general if we have a shaft consisting of portions with different diam-
eters we can, without changing the spring constant of the shaft, replace any
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portion of the shaft of length ln and of diameter dn by a portion of a shaft

of diameter d and of length I determined from the equation

(15)

The results obtained for the case shown in Fig. 7 can be used also in the

case of a shaft with two rotating masses at the ends as shown in Fig. 8.

Such a case is of practical importance since an arrangement of this kind

may be encountered very often in machine design. A propeller shaft with
the propeller on one end and the engine on the other is an example of this

kind.* (jf two equal and opposite twisting couples are applied at the ends
of the shaft in Fig. 8 and then suddenly removed, torsional vibrations will

be produced during which the masses at the ends are always rotating in

opposite directions, f From this fact

it can be concluded at once that there

is a certain intermediate cross section

mn of the shaft which remains im-

movable during vibrations. This

cross section is called the nodal cross

section, and its position will be found

from the condition that both por-
tions of the shaft, to the right and
to the left of the nodal cross section,

must have thejsame period of vibra-

tion, since otherwise the condition that the masses at the ends always are

rotating in opposite directions will not be fulfilled.

Applying eq. (13) to each of the two portions of the shaft we obtain

or (c)

where k\ and k% are the spring constants for the left and for the right por-

tions of the shaft respectively. These quantities, as seen from eq. (9), are

* This is the case in which engineers for the first time found it of practical importance
to go into investigation of vibrations, see II. Frahm, V.D.I., 1902, p. 797.

f This follows from the principle of moment of momentum. At the initial instant

the moment of momentum of the two discs with respect to the axis of the shaft is zero

and must remain zero since the moment of external forces with respect to the same
axis is zero (friction forces are neglected). The equality to zero of moment of momen-
tum requires that both masses rotate in opposite directions.
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inversely proportional to the lengths of the corresponding portions of the

shaft and from eq. (c) follows

a /2

and, since a + b = Z, we obtain

, Z/2 ,/, Hi
,

/I + /2 /I + *2

Applying now to the left portion of the shaft eqs. (13) and (14) we obtain

,~
(d)

From these formulae the period and the frequency of torsional vibration can

be calculated provided the dimensions of the shaft, the modulus G and the

moments of inertia of the masses at the ends are known. The mass of the

shaft is neglected in our present discussion and its effect on the period of

vibration will be considered later, see Art. 16.

It can be seen (eq. d) that if one of the rotating masses has a very large

moment of inertia in comparison with the other the nodal cross section can

be taken at the larger mass and the system with two masses (Fig. 8) reduces

to that with one mass (Fig. 7).

PROBLEMS

1. Determine the frequency of torsional vibration of a shaft with two circular discs

of uniform thickness at the ends, Fig. 8, if the weights of the discs are W\ = 1000 Ibs.

and Wz = 2000 Ibs. and their outer diameters are D\ = 50 in. and Dz = 75 in. respec-

tively. The length of the shaft is I = 120 in. and its diameter d = 4 in. Modulus in

shear G 12-10* Ibs. per sq. in.

Solution. From eqs. (d) the distance of the nodal cross section from the larger disc is

120- 1000 -502 120 = 21.8 in.
1000 -502 + 2000 -752 1 + 4.5

Substituting in eq. (6) we obtain

1 7r-386-4<.12-106
.

f = = 9'8 O8Clllatlons *>er sec'



HARMONIC VIBRATIONS 13

2. In what proportion will the frequency of vibration of the shaft considered in the

previous problem increase if along a length of 64 in. the diameter of the shaft will be in-

creased from 4 in. to 8 in.

Solution. The length of 64 in. of 8 in. diameter shaft can be replaced by a 4 in.

length of 4 in. diameter shaft. Thus the length of the equivalent shaft is 4 + 56 = 60

in., which is only one-half of the length of the shaft considered in the previous problem.
Since the frequency of vibration is inversely proportional to the square root of the

length of the shaft (see eq. 17), we conclude that as the result of the reinforcement of

the shaft its frequency increases in the ratio V 2 : 1.

3. A circular bar fixed at the upper end and supporting a circular disc at the lower

end (Fig. 7) has a frequency of torsional vibration equal to / = 10 oscillations per

second. Determine the modulus in shear G if the length of the bar I = 40 in., its diam-

eter d = 0.5 in., the weight of the disc W - 10 Ibs., and its outer diameter D = 12 in.

Solution. From eq. (b), G 12 -106 Ibs. per sq. in.

4. Determine the frequency of vibration of the ring, Fig. 9, about the axis 0, assum-

ing that the center of the ring remains fixed and that rotation of the rim is accompanied

Fia. 9.

by some bending of the spokes indicated in the figure by dotted lines. Assume that the

total mass of the ring is distributed along the center line of the rim and take the length
of the spokes equal to the radius r of this center line. Assume also that the bending
of the rim can be neglected so that the tangents to the deflection curves of the spokes
have radial directions at the rim. The total weight of the ring W and the flexural

rigidity B of spokes are given.
Solution. Considering each spoke as a cantilever of length r, Fig. 96, at the end of

which a shearing force Q and a bending moment M are acting and using the known
formulas for bending of a cantilever, the following expressions for the slope <f> and the
deflection r<p at the end are obtained

Qr2 Mr
9

from which
2B

M = Qr

^Qr*
35

2B<t>

Mr2

2B '

If Mt denotes the torque applied to the rim we have

Mt = 4Qr -
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The torque required to produce an angle of rotation of the rim equal to one radian is

the spring constant and is equal to k = 16B/r. Substituting in eq. (14), we obtain the

required frequency

1 /16B 1 /1 60S

3. Forced Vibrations. In the two previous articles free vibrations of

systems with one degree of freedom have been discussed. Let us consider

now the case when in addition to the force of gravity and to the force in the

spring (Fig. 1) there is acting on the load W a periodical disturbing force

P sin ut. The period of this force is r\ = 2?r/co and its frequency is

/i = w/27T. Proceeding as before (see p. 2) we obtain the following differ-

ential equation
W1L

'i = W - (W + kx) + P sin ut, (a)
g

or, by using eq. (2) and notation

we obtain

x + p
2x = q sin cot. (18)

A particular solution of this equation is obtained by assuming that x is

proportional to sin o^, i.e., by taking

x = A sin wt, (c)

where A is a constant, the magnitude of which must be chosen so as to

satisfy eq. (18). Substituting (c) in that equation we find

A =

Thus the required particular solution is

a sin ut
x = -

p* M*

Adding to this particular solution expression (4), representing the solution

of the eq. (3) for free vibration, we obtain

x = Ci cos pt + C2 sin pt + Q
' 8m

"f- (19)
p* or

This expression contains two constants of integration and represents the

general solution of the eq. (18). It is seen that this solution consists of two
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parts, the first two terms represent free vibrations which were discussed

before and the third term, depending on the disturbing force, represents
the forced vibration of the system. It is seen that this later vibration has

the same period n =
27r/co as the disturbing force has. Its amplitude A,

is equal to the numerical value of the expression

-JL_ . L _J
(20)

p2 - a/2 k 1 - co
2
/7>

2

The factor P/k is the deflection which the maximum disturbing force P
would produce if acting statically and the factor 1/(1 w2

/p
2
) takes care

of the dynamical action of this force. The absolute value of this factor is

usually called the magnification factor. We see that it depends only on the

1.0 1.2 1.4- 1.6 1-8

ratio o)/p which is obtained by dividing the frequency of the disturbing
force by the frequency of free vibration of the system. In Fig. 10 the

values of the magnification factor are plotted against the ratio co/p.

It is seen that for the small values of the ratio /p, i.e., for the case

when the frequency of the disturbing force is small in comparison with

the frequency of free vibration, the magnification factor is approximately

unity, and deflections are about the same as in the case of a statical action

of the force P.

When the ratio co/p approaches unity the magnification factor and the

amplitude of forced vibration rapidly increase and become infinite for

co = p, i.e., for the case when the frequency of the disturbing force exactly
coincides with the frequency of free vibration of the system. This is the

condition of resonance. The infinite value obtained for the amplitude of

forced vibrations indicates that if the pulsating force acts on the vibrating

system always at a proper time and in a proper direction the amplitude of
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vibration increases indefinitely provided there is no damping. In practical

problems we always have damping the effect of which on the amplitude of

forced vibration will be discussed later (see Art. 9).

When the frequency of the disturbing force increases beyond the

frequency of free vibration the magnification factor again becomes finite.

Its absolute value diminishes with the increase of the ratio co/p and

approaches zero when this ratio becomes very large. This means that when
a pulsating force of high frequency (u/p is large) acts on the vibrating

body it produces vibrations of very small amplitude and in many cases

the body may be considered as remaining immovable in space. The prac-
tical significance of this fact will be discussed in the next article.

Considering the sign of the expression 1/(1 w'2/p
2
) it is seen that for

the case w < p this expression is positive and for o> > p it becomes nega-
tive. This indicates that when the fre-

quency of the disturbing force is less

than that of the natural vibration of

the system the forced vibrations and
the disturbing force are always in the

same phase, i.e., the vibrating load

(Fig. 1) reaches its lowest position at

the same moment that the disturbing
force assumes its maximum value in

FIG. 11. a downward direction. When co >p
the difference in phase between the

.forced vibration and the disturbing force becomes equal to IT. This

means that at the moment when the force is a maximum in a downward
direction the vibrating load reaches its upper position. This phenomenon
can be illustrated by the following simple experiment. In the case of a

simple pendulum AB (Fig. 11) forced vibrations can be produced by giving
an oscillating motion in the horizontal direction to the point A. If this

oscillating motion has a frequency lower than that of the pendulum the

extreme positions of the pendulum during such vibrations will be as shown
in Fig. 11-a, the motions of the points A and B will be in the same phase.
If the oscillatory motion of the point A has a higher frequency than that

of the pendulum the extreme positions of the pendulum during vibration

will be as shown in Fig. 11-6. The phase difference of the motions of the

points A and B in this case is equal to TT.

In the above discussion the disturbing force was taken proportional
to sin ut. The same conclusions will be obtained if cos o>, instead of

sin co, be taken in the expression for the disturbing force.
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In the foregoing discussion the third term only of the general solution

(19) has been considered. In applying a disturbing force, however, not

only forced vibrations are produced but also free vibrations given by the

first two terms in expression (19). After a time the latter vibrations will be

damped out due to different kinds of resistance * but at the beginning of

motion they may be of practical importance. The amplitude of the free

vibration can be found from the general solution (19) by taking into

consideration the initial conditions. Let us assume that at the initial

instant (t
= 0) the displacement and the velocity of the vibrating body are

equal to zero. The arbitrary constants of the solution (19) must then be

determined in such a manner that for t =

x = and x = 0.

These conditions will be satisfied by taking

r n rCi =
l), C-2 =

p
2

co
2

Substituting in expression (19), we obtain

(21)
<l ( CO

.
\

x =
;

I sm ut sin pt )

/r co- \ p /

Thus the motion consists of two parts, free vibration proportional to sin pt

and forced vibration proportional to sin ut.

Let us consider the case when the frequency of the disturbing force is

very close to the frequency of free vibrations of the system, i.e., co is close

to p. Using notation

p co = 2A,

whore A is a small quantity, and neglecting a small torm with the factor

2A/p, we represent expression (21) in the following form:

q f . . . A 2? (co + p)t . (co
-

p)t- f ut
_ gm ~n = - cog - - gm - -

p2
co
2

sin A (co + p)t q sin M /f^^
cos - - - ~- cos co*. (22)V '

p2 -
co
2 2 2coA

Since A is a small quantity the function sin A varies slowly and its period,

equal to 27T/A, is large. In such a case expression (22) can be considered as

* Damping was entirely neglected in the derivation of eq. (18).
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representing yibrations of a period 2?r/co and of a variable amplitude equal
to q sin A/2wA. This kind of vibration is called beating and is shown in

Fig. 12. The period of beating, equal to 27T/A, increases as co approaches p,

FIG. 12.

i.e., as we approach the condition of resonance. For limiting condition

co = p we can put in expression (22) A, instead of sin A and we obtain

>

X = COS wt. (23)

The amplitude of vibration in eq. (23) increases indefinitely with the time
as shown in Fig. 13.

FIG. 13.

PROBLEMS
1. A load W suspended vertically on a spring, Fig. 1, produces a statical elongation

of the spring equal to 1 inch. Determine the magnification factor if a vertical disturbing
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force P sin cot, having the frequency 5 cycles per sec. is acting on the load. Determine
the amplitude of forced vibration if W 10 Ibs., P = 2 Ibs.

Solution. From eq. (2), p = 'V
/

~g/88i
= X/386 = 19.6 sec."1

. We have also

w = 27T-5 = 31.4 sec." 1
. Hence the magnification factor is l/(w

2
/P

2
1) = 1/1.56.

Deflection produced by P if acting statically is 0.2 in. and the amplitude of forced

vibration is 0.2/1.56 = 0.128 in.

2. Determine the total displacement of the load W of the previous problem at the

instant t = 1 sec. if at the initial moment (t
= 0) the load is at rest in equilibrium

position.

2 31 4
Answer, x - ~ -

(sin lOx 1- sin 19.6) = + .14 inch.
1.56 19 6

3. Determine the amplitude of forced torsional vibration of a shaft in Fig. 7 pro-
duced by a pulsating torque M sin ut if the free torsional vibration of the same shaft has

the frequency/ = 10 sec." 1
,

co = 10?r sec." 1 and the angle of twist produced by torque Af,

if acting on the shaft statically, is equal to .01 of a radian.

Solution. Equation of motion in this case is (see Art. 2)

where <f> is the angle of twist and p2 = k/I. The forced vibration is

M _ M
<p

== ~ ~ ~ sin cot == " sin cot.

/(p
2

co
2
) /c(l co

2
/p

2
)

Noting that the statical deflection is M/k - 0.01 and p = 2ir - 10 we obtain the required

amplitude equal to

001 = 0.0133 radian.

4. Instruments for Investigating Vibrations. For measuring vertical

vibrations a weight W suspended on a spring can be used (Fig. 14). If the

point of suspension A is immovable and a vibration

in the vertical direction of the weight is produced, the A
\

equation of motion (1) can be applied, in which x

denotes displacement of W from the position of

equilibrium. Assume now that the box, containing
the suspended weight Wy

is attached to a body per-

forming vertical vibration. In such a case the point
of suspension A vibrates also and due to this fact FIG. 14.

forced vibration of the weight will be produced. Let

us assume that vertical vibrations of the box are given by equation

x\ = a sin co, (a)

so that the point of suspension A performs simple harmonic motion of

amplitude a. In such case the elongation of the spring is x x\ and the

=*/
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corresponding force in the spring is k(x xi). The equation of motion of

the weight then becomes

W
x = k(x xi),

or, by substituting for x\ its expression (a) and using notations

we obtain

x + p
2# = q sin co.

This equation coincides with equation (18) for forced vibrations and we can

apply here the conclusions of the previous article. Assuming that the free

vibrations of the load are damped out and considering only forced vibra-

tions, we obtain

q sin cot a sin cot

x = 22 = ~ 22'

It is seen that in the case when co is small in comparison with p, i.e., the

frequency of oscillation of the point of suspension A is small in comparison
with the frequency of free vibration of the system, the displacement x is

approximately equal to x\ and the load W performs practically the same

oscillatory motion as the point of suspension A does. When co approaches p
the denominator in expression (c) approaches zero and we approach reso-

nance condition at which heavy forced vibrations arc produced.

Considering now the case when co is very large in comparison with p, i.e.,

the frequency of vibration of the body to which the instrument is attached

is very high in comparison with frequency of free vibrations of the load W
the amplitude of forced vibrations (c) becomes small and the weight W can

be considered as immovable in space. Taking, for instance, co = lOp we
find that the amplitude of forced vibrations is only a/99, i.e., in this case

vibrations of the point of suspension A will scarcely be transmitted to the

load W.
This fact is utilized in various instruments used for measuring and

recording vibrations. Assume that a dial is attached to the box with its

plunger pressing against the load W as shown in Fig. 209. During vibration

the hand of the dial, moving back and forth, gives the double amplitude
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of relative motion of the weight W with respect to the box. This ampli-
tude is equal to the maximum value of the expression

V 1 Ax x\ = a sin wU 1 1

VI co
2/p2 /

= a sin ut
__ g 2

*
(24)

When p is small in comparison with w this value is very close to the ampli-
tude a of the vibrating body to which the instrument is attached. The
numerical values of the last factor in expression (24) are plotted against
the ratio u/p in Fig. 18.

The instrument described has proved very useful in power plants for

studying vibrations of turbo-generators. Introducing in addition to

vertical also horizontal springs, as shown in Fig. 209, the horizontal vibra-

tions also can be measured by tho same instrument. The springs of the

instrument are usually chosen in such a manner that the frequencies of

free vibrations of tho weight W both in vortical and horizontal directions

are about 200 por minute. If a turbo-generator makes 1800 revolutions

per minute it can be oxpocted that, owing to some unbalance, vibrations of

the foundation and of tho bearings of the same frequency will be produced.
Then the dials of the instrument attached to tho foundation or to a bearing
will give the amplitudes of vertical and horizontal vibrations with suffi-

cient accuracy since in this case co/p = 9 and tho difference between the

motion in which wo are interested and the relative

motion (24) is a small one.

To got a rocord of vibrations a cylindrical

drum rotating with a constant spood can bo used.

If such a drum with vortical axis is attached to

the box, Fig. 14, and a pencil attached to tho

weight presses against the drum, a complete rocord

of the relative motion (24) during vibration will

be recorded. On this principle various vibrographs
are built, for instance, the vibrograph constructed FIG. 15.

by the Cambridge Instrument Company, shown
in Fig. 213 and Geiger's vibrograph, shown in Fig. 214. A simple

arrangement for recording vibrations in ship hulls is shown in Fig. 15. A
weight W is attached at point A to a beam by a rubber band AC. During
vertical vibrations of the hull this weight remains practically immovable

provided the period of free vibrations of the weight is sufficiently large.
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Then the pencil attached to it will record the vibrations of the hull on a

rotating drum B. To get a satisfactory result the frequency of free vibra-

tions of the weight must be small in comparison with that of the hull of

the ship. This requires that the statical elongation of the string AC must
be large. For instance, to get a frequency of J^ of an oscillation per second

the elongation of the string under the statical action of the weight W must

be nearly 3 ft. The requirement of large extensions is a defect in this type
of instrument.

A device analogous to that shown in Fig. 14 can be applied also for

measuring accelerations. In such a case a rigid spring must be used and the

frequency of natural vibrations of the weight W must be made very large

in comparison with the frequency of the vibrating body to which the

instrument is attached. Then p is large in comparison with co in expression

.(24) and the relative motion of the load W is approximately equal to

oo?2 sin ut/p
2 and proportional to the acceleration x\ of the body to which

the instrument is attached. Due to the rigidity of the spring the relative

displacements of the load W are usually small and require special devices

for recording them. An electrical method for such recording, used in inves-

tigating accelerations of vibrating parts in electric locomotives, is dis-

cussed later (see page 459).

PROBLEMS

1. A wheel is rolling along a wavy surface with a constant horizontal speed v, Fig. 16.

Determine the amplitude of the forced vertical vibrations of the load W attached to

FIG. 16

the axle of the wheel by a spring if the statical deflection of the spring under the action

of the load W is 5^ = 3.86 ins., v = 60 ft. per sec. and the wavy surface is given by the
irX

equation y = a sin - in which a = 1 in. and I = 36 in.

Solution. Considering vertical vibrations of the load W on the spring we find, from

eq. 2, that the square of the circular frequency of these vibrations is p
z = g/det

= 100.
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Due to the wavy surface the center o of the rolling wheel makes vertical oscillations.

Assuming that at the initial moment t = the point of contact of the wheel is at a; =0
TTVi

and putting x =
vt, these vertical oscillations are given by the equation y - a sin

The forced vibration of the load W is now obtained from equation (c) substituting in it

a = 1 in., <o = = 20*-, p2 = 100. Then the amplitude of forced vibration is

l/(47r
2

1) = .026 in. At the given speed v the vertical oscillations of the wheel are

transmitted to the load W only in a very small proportion. If we take the speed v of

the wheel l/ as great we get o> = 5ir and the amplitude of forced vibration becomes

l/(7r
2/4 1) = 0.68 in. By further decrease in speed v we finally come to the condition

of resonance when vv/l p at which condition heavy vibration of the load W will be

produced.
2. For measuring vertical vibrations of a foundation the instrument shown in Fig.

14 is used. What is the amplitude of these vibrations if their frequency is" 1800 per

minute, the hand of the dial fluctuates between readings giving deflections .100 in. and
.120 in. and the springs are chosen so that the statical deflection of the weight W is

equal to 1 in.?

Solution. From the dial reading we conclude that the amplitude of relative motion,
see eq. 24, is .01 in. The frequency of free vibrations of the weight W, from eq. (6), is

/ = 3.14 per sec. Hence o>/p = 30/3.14. The amplitude of vibration of the foundation,
from eq. 24, is

(30/3.14)* -1
(30/3.14)

2

3. A device such as shown in Fig. 14 is used for measuring vertical acceleration of a

cab of a locomotive which makes, by moving up and down, 3 vertical oscillations per
second. The spring of the instrument is so rigid that the frequency of free vibrations

of the weight W is 60 per second. What is the maximum acceleration of the cab if the

vibrations recorded by the instrument representing the relative motion of the weight W
with respect to the box have an amplitude ai = 0.001 in.? What is the amplitude a of

vibration of the cab?

Solution. From eq. 24 we have

Hence the maximum vertical acceleration of the cab is

Noting that p = 27T-60 and w = 2?r-3, we obtain

aco2 = .001-4ir2 (602 - 32
) = 142 in. see.-

and

142
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5. Spring Mounting of Machines. Rotating machines with some
unbalance produce on their foundations periodic disturbing forces as a
result of which undesirable vibrations of foundations and noise may occur.

To reduce these bad effects a spring mounting of machines is sometimes
used. Let a block of weight W in Fig. 17 represent the machine and P
denote the cent 'fugal force due to unbalance when the angular velocity
of the machine one radian per second. Then at any angular velocity o>

the centrifugal force is Pco2 and, measuring the angle of rotation as shown
in the figure, we obtain the vertical and the horizontal components of the

disturbing force equal to Pco2 sin co and Pco2 cos co respectively. If the
machine is rigidly attached to a rigid foundation, as shown in Fig. 17a,
there will be no motion of the block W and the total centrifugal force will

)(>(/

FIG. 17.

be transmitted to the foundation. To diminish the force acting on the

foundation, let us introduce a spring mounting, as shown in Fig. 176, and
assume that there is a constraint preventing lateral movements of the
machine. In this way a vibrating system consisting of the block W on
vertical springs, analogous to the system shown in Fig. 1, is obtained.
To determine the pulsating vertical force transmitted through the springs
to the foundation the vertical vibration of the block under the action of
the disturbing force Pco2 sin co must be investigated.

*
Using the expression

for forced vibrations given in article 3 and substituting Pco2 for P, we find
that the amplitude of forced vibration is equal to the numerical value of
the expression

k 1 - co
2/p2 (a)

Where k is the spring constant, i.e., the force required to produce vertical
deflection of the block equal to unity, and p2

is defined by eq. 2. A similar

* It is assumed here that vibrations are small and do not effect appreciably the mag-
nitude of the disturbing force calculated on the assumption that the unbalanced weight j>

rotating about fixed axis.
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expression has been obtained before in discussing the theory of vibrographs,
see eq. 24. It is seen that for a given value of the ratio Pp2

/k the amplitude
of forced vibration depends only on the value of the ratio a/p. The abso-

lute values of the second factor in expression (a) are plotted against the

values of w/p in Fig. 18. It is seen that for large values of u/p these

quantities approach unity and the absolute value of expression (a)

approaches Pp2
/k. Having the amplitude of forced vibration of the block

W and multiplying it by the spring constant k, we obtain the maximum
pulsating force in the spring which will be transmitted to the foundation.

Keeping in mind that Pco2 is the maximum vertical disturbing force when
the machine is rigidly attached to the foundation, Fig. 17a, it can be

concluded from (a) that the spring mounting reduces the disturbing force

8 10 12

FIG. 18.

1.6 2.0

only if 1 co
2
/p

2 is numerically larger than one, i.e., when o> > p V 2.

When co is very large in comparison with p y i.e., when the machine is

mounted on soft springs, expression (a) approaches numerically the value

Pp2
/k and we have, due to spring mounting, a reduction of the vertical

disturbing force in the ratio p2
/or. From this discussion we see that to

reduce disturbing forces transmitted to foundation the machine must be

mounted on soft springs such that the frequency of free vibration of the

block W is small in comparison with the number of revolutions per second

of the machine. The effect of damping in supporting springs will be dis-

cussed later (see Art. 10). To simplify the problem we have discussed here

only vertical vibrations of the block. To reduce the horizontal disturbing

force horizontal springs must be introduced and horizontal vibrations

must be investigated. We will again come to the conclusion that the fre-

quency of vibration must be small in comparison with the number of rcvo
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lutions per second of the machine in order to reduce horizontal disturbing

forces.

PROBLEMS
1. A machine of weight W = 1000 Ibs. and making 1800 revolutions per minute is

supported by four helical springs (Fig. 176) made of steel wire of diameter d = H in.

The diameter corresponding to the center line of the helix is D = 4 in. and the number
of coils n = 10. Determine the maximum vertical disturbing force transmitted to the

foundation if the centrifugal force of unbalance for the angular speed equal to 1 radian

per sec. is P = I pound.
Solution. The statical deflection of the springs under the action of the load W is

2nDW _ 2.lO-4 3 -1000 _ .

5" "
~^G~

~
7jT) 4 -12-10*

" m"

from which the spring constant k = 1000/1.71 = 585 Ibs. per in. and the square of the

circular frequency of free vibration p2
g/8Kt

= 225 are obtained. By using equation
(a) we obtain the maximum force transmitted to foundation

2. In what proportion will the vertical disturbing force of the previous problem in-

crease if instead of 4 there will be taken 8 supporting springs, the other conditions re-

maining unchanged?
3. What magnitude must the spring constant in problem 1 have in order to have

the maximum disturbing force transmitted to the foundation equal to one-tenth of the

centrifugal force Poo 2?

6. Other Technical Applications. Oscillator. For determining the

frequency of free vibrations of structures a special device called the

Oscillator *
is sometimes used. It

consists of two discs rotating in a

vertical plane with constant speed
in opposite directions, as shown in

Fig. 19. The bearings of the discs are

housed in a rigid frame which must
be rigidly attached to the structure,
the vibrations of which are studied.

By attaching to the discs the unbal-

anced weights symmetrically situated

with respect to vertical axis mn, the centrifugal forces Po>2 which are pro-
duced during rotation of .the discs have a resultant 2Pcu2 sin u>t acting along
the axis ran.f Such a pulsating force produces forced vibrations of the

* Such an oscillator is described in a paper by W. Spath, see V.D.I, vol. 73, 1929.

f It is assumed that the effect of vibrations on the inertia forces of the unbalanced
v/eights can be neglected.
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structure which can be recorded by a vibrograph. By gradually changing
the speed of the discs the number of revolutions per second at which the

amplitude of forced vibrations of the structure becomes a maximum can be

established. Assuming that this occurs at resonance,* the frequency of

free vibration of the structure is equal to the above found number of

revolutions per second of the discs.

Frahm's Vibration Tachometer.^ An instrument widely used for mea-

suring the frequency of vibrations is known as Frahm's tachometer.

This consists of a system of steel strips built in at their lower ends as shown
in Fig. 20. To the upper ends of the strips small masses are attached,

the magnitudes of which are adjusted in such a manner that the system

(a)

FIG. 20

of strips represents a definite series of frequencies. The difference between
the frequencies of any two consecutive strips is usually equal to half a

vibration per second.

In figuring the frequency a strip can be considered as a cantilever

beam (Fig. 20-r). In order to take into consideration the effect of the

mass of the strip on the vibration it is necessary to imagine that one

quarter of the weight Wi of the strip is added f to the weight W, the latter

being concentrated at the end. Then,

(W + 11

ZEI

This statical deflection must be substituted in eq. 6 in order to obtain

the period of natural vibration of the strip. In service the instrument

is attached to the machine, the frequency vibrations of which is to be

* For a more accurate discussion of this question the effect of damping must be
considered (see Art. 9).

t This instrument is described by F. Lux, E. T. Z., 1905, pp. 264-387.

% A more detailed consideration of the effect of the mass of the beam on the period
of vibration is given in article 16.
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measured. The strip whose period of natural vibration is nearest to the

period of one revolution of the machine will be in a condition near reso-

nance and a heavy vibration of this strip will be built up. From the

frequency of the strip, which is known, the speed of the machine can be

obtained.

Instead of a series of strips of different lengths and having different

masses at the ends, one strip can be used having an adjustable length.

The frequency of vibration of the machine can then be found by adjusting
the length of the strip in this instrument so as to obtain resonance. On
this latter principle the well known Fullarton vibrometer is built (see p. 443).

Indicator of Steam Engines. Steam engine indicators are used for

measuring the variation of steam pressure in the engine cylinder. The

accuracy of the records of such indicators will depend on the ability of

the indicator system, consisting of piston, spring and pencil, to follow

exactly the variation of the steam pressure. From the general discussion

of the article 3 it is known that this condition will be satisfied if the fre-

quency of free vibrations of the indicator system is very high in comparison
with that of the steam pressure variation in the cylinder.

Let A = .20 sq. in. is area of the indicator piston,

W = .133 Ib. is weight of the piston, piston rod and reduced weight
of other parts connected with the piston,

s = .1 in. displacement of the pencil produced by the pressure of one

atmosphere (15 Ibs. per sq. in.),

n = 4 is the ratio of the displacement of the pencil to that of the

piston.

From the condition that the pressure on the piston equal to 15 X .2

= 3.00 Ibs. produces a compression of the spring equal to % X .1 = .025

in., we find that the spring constant is:

k = 3.00 : .025 = 120 Ibs. in-1
.

The frequency of the free vibrations of the indicator is (see eq. (6))

= 94 per sec.

This frequency can be considered as sufficiently high in comparison with
the usual frequency of steam engines and the indicator's record of steam

pressure will bo si ffciontly accurate. In the case of high speed engines,
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FIG. 21.

however, such an instrument may give completely unreliable records *

under certain conditions.

Locomotive Wheel Pressure on the Rail. It is well known that inertia

forces of counter weights in locomotive wheels pro-
duce additional

r pressure on the track. This effect

of counterweights can easily be obtained by using
the theory of forced vibrations. Let W is the weight
of the wheel and of all parts rigidly connected to

the wheel, Q is spring borne weight, P is centrifugal

force due to unbalance, co is angular velocity of

the wheel. Considering then the problem as one

of statics, the vertical pressure of the wheel on the

rail, Fig. 21, will be equal to

Q+ TF + Pcosco*. (a)

At slow speed this expression represents a good approximation for the

wheel pressure. In order to get this pressure with greater accuracy, forced

vibrations of the wheel on the rail produced by the periodical vertical

force P cos cot must be considered. Let k denote the vertical load on the

rail necessary to produce the deflection of the rail equal to unity directly

under the load and 5i0 the deflection produced by the weight W, then,

_ TF
*" ~

k
'

The period of free vibrations of the wheel on the rail is given by the equa-
tion f (see eq. (5)).

fw
T 2ir \/ (6)

The period of one revolution of the wheel, i.e., the period of the disturbing
force P cos w, is

2

* The description of an indicator for high frequency engines (Collins Micro-Indi-

cator) is given in Engineering, Vol. 113, p. 716 (1922). Symposium of Papers on Indi-

cators, see Proc. Meetings of the Inst. Mech., Eng., London, Jan. (1923).

t In this calculation the mass of the rail is neglected and the compressive force Q
in the spring is considered as constant. This latter assumption is justified by the fact

that the period of vibration of the engine cab on its spring is usually very large in

comparison with the period of vibration of the wheel on the rail, therefore vibrations

ot tne wheel will not be transmitted to the cab and variations in the compression of

the spring will be very small (see Art. 4).
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Now, by using eq. (20), it can be concluded that the dynamical deflection

of the rail produced by the force P will be larger than the corresponding
statical deflection in the ratio,

CO
I T \*>

I -

The pressure on the rail produced by the centrifugal force P will also

increase in the same ratio and the maximum wheel pressure will be given by

For a 100 Ib. rail, a modulus of the elastic foundation equal to 1500 Ibs.

per sq. in. and W = 6000 Ibs. we will have *

T = .068 sec.

Assuming that the wheel performs five revolutions per sec. we obtain

TI = .2 soc.

Substituting the values of r and TI in the expression (c) it can be concluded

that the dynamical effect of the counterbalance will be about 11% larger

than that calculated statically.

7. Damping. In the previous discussion of free and forced vibrations

it was assumed that there are no resisting forces acting on the vibrating

9 body. As a result of this assumption it was found that in the case of free

vibrations the amplitude of vibrations remains constant, while experience
shows that the amplitude diminishes with the time, and vibrations are

gradually damped out. In the case of forced vibrations at resonance it

was found that the amplitude of vibration can be indefinitely built up, but,

as we know, due to damping, there is always a certain upper limit below

which the amplitude always remains. To bring an analytical discussion of

vibration problems in better agreement with actual conditions damping
forces must be taken into consideration. These damping forces may arise

from several different sources such as friction between the dry sliding

surfaces of the bodies, friction between lubricated surfaces, air or fluid

resistance, electric damping, internal friction due to imperfect elasticity of

vibrating bodies, etc.

* See S. Timoshenko and J. M. Lessells, "Applied Elasticity," p. 334 (1925).
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B

In the case of friction between dry surfaces the Coulomb-Morin law is

usually applied.* It is assumed that in the case of dry surfaces the friction

force F is proportional to the normal component N of the pressure acting

between the surfaces, so that

F = N, (a)

where /x is the coefficient of friction the magnitude of which depends on the

materials of the bodies in contact and on the roughness of their surfaces.

Experiments show that the force F required to overcome friction and
start a motion is larger than the force necessary to maintain a uniform

motion. Thus usually larger values are assumed for the coefficients of

friction at rest than for the coefficients of friction during motion. It is

usually assumed also that the coeffi-

cient of friction during motion is

independent of the velocity so that

Coulomb's law can be represented by
a line BC, parallel to abscissa axis, as

shown in Fig. 22. By the position of

the point A in the same figure the

coefficient of friction at rest is given.

This law agrees satisfactorily with ex-

periments in the case of smooth sur-

faces. When the surfaces are rough
the coefficient of friction depends on velocity and diminishes with the

increase of the velocity as shown in Fig. 22 by the curve AD.]
In the case of friction between lubricated surfaces the friction force does

not depend on materials of the bodies in contact but on the viscosity of

lubricant and on the velocity of motion. In the case of perfectly lubricated

surfaces in which there exists a continuous lubricating film between the

sliding surfaces it can be assumed that friction forces are proportional both
to the viscosity of the lubricant and to the velocity. The coefficient of

friction, as a function of velocity, is represented for this case, in Fig. 22, by
the straight line OE.

* C. A. Coulomb, M('moires de Math, et de Phys., Paris 1785; see also his "Theorie
des machines simples," Paris, 1821. A. Morin, Mlmoires pn's. p. div. sav., vol. 4, Paris

1833 and vol. 6, Paris, 1935. For a review of the literature on friction, see R. v. Mises,

Encyklopadie d Math. Wissenschaften, vol. 4, p. 153. For references to new literature

on the same subject see G. Sachs, Z. f. angew. Math, und Mech., Vol. 4, p. 1, 1924; H.

Fromm, Z. f. angew. Math, und Mech. Vol. 7, p. 27, 1927 and Handbuch d. Physik. u.

Techn. Mech. Vol. 1, p. 751, 1929.

t The coefficient of friction between the locomotive wheel and the rail were inves-

'igated by Douglas Galton, See "
Engineering," vol. 25 and 26, 1878 and vol. 27, 1879.

FIG. 22.
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We obtain also resisting forces proportional to the velocity if a body
is moving in a viscous fluid with a small velocity or if a moving body
causes fluid to be forced through narrow passages as in the case of dash

pots.* In further discussion of all cases in which friction forces are pro-

portional to velocity we will call these forces viscous damping.
In the case of motion of bodies in air or in liquid with larger velocities

a resistance proportional to the square of velocity can be assumed with
sufficient accuracy.

The problems of vibration in which damping forces are not proportional
to the velocity can be discussed in many cases with sufficient accuracy by
replacing actual resisting forces by an equivalent viscous damping which is

determined in such a manner as to produce same dissipation of energy per
cycle as that produced by the actual resisting forces. In this manner, the

damping due to internal friction can be treated. For this purpose it is

necessary to know for the material of a vibrating body the amount of

energy dissipated per cycle as a function of the maximum stress. This can
be determined by measuring the hysteresis loop obtained during deforma-
tion, f Several simple examples of vibrations with damping will now be
considered.

8. Free Vibration with Viscous Damping. Consider again the vibra-
tion of the system shown in Fig. 1 and assume that the vibrating body W
encounters in its motion a resistance proportional to the velocity. In
such case, instead of equation of motion (1), we obtain

W
z = w - (W + fee)

- ex. (a)
ff

The last term on the right side of this equation represents the damping
force, proportional to velocity x. The minus sign shows that the force is

acting in the direction opposite to the velocity. The coefficient c is a con-
stant depending on the kind of the damping device and numerically is

equal to the magnitude of the damping force when the velocity is equal to

unity. Dividing equation (a) by W/g and using notations

p2 = kg/W and cg/W = 2n, (25)

* See experiments by A. Stodola, Schweiz. Banzeitung, vol. 23, p. 113, 1893.

t Internal friction is a very important factor in the case of torsional vibrations ol

shafts and a considerable amount of experimental data on this subject have been obtained
during recent years. See O. Foppl, V.D.I, vol. 74, p. 1391, 1930; Dr. Dorey's papei
read before Institution of Mechanical Engineers, November, 1932; I. Geiger, V.D.I, vol.

78, p. 1353, 1934.
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we obtain for free vibrations with viscous damping the following equation

x + 2nx + p
2x = 0. (26)

In discussing this equation we apply the usual method of solving linear

differential equations with constant coefficients, and assume a solution of

it in the form
x = e

n
, (b)

in which e is the base of natural logarithms, t is time and r is a constant

which must be determined from the condition that expression (6) satisfies

equation (26). Substituting (b) in eq. (26) we obtain

r2 + 2nr + p2 =
0,

from which

r = n V n2
p2

. (c)

Let us consider first the case when the quantity n2
, depending on

damping, is smaller than the quantity p
2

. In such case the quantity

pi
2 = p2 - n2

(27)

is positive and we get for r two complex roots:

n = n -)- pii and 7*2
= n p\i.

Substituting these roots in expression (b) we obtain two particular solu-

tions of the equation (26). The sum or the difference of these two solu-

tions multiplied by any constant will be also a solution. In this manner
we get solutions

*i = 7T (^ + O = Cie"" cos Pl t,
&

x-2 = ~ (e
r>t - er2')

= Cue-" sin pit.
2t1

Adding them together the general solution of eq. 26 is obtained in the

following form
x = e

~ nt
(Ci cos p^ + Cz sin pit), (28)

in which C\ and 2 are constants which in each particular case must be
determined from the initial conditions.

The expression in parenthesis of solution (28) is of the same form as we
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had before for vibrations without damping (see expression 4). It represents
a periodic function with the period

(29)

Comparing this with the period 2?r/p, obtained before for vibrations with-

out damping, we see that due to damping the period of vibration increases,

but if n is small in comparison with p, this increase is a small quantity of

second order. Therefore, in practical problems, it can be assumed with

sufficient accuracy that a small viscous damping does not affect the period
of vibration.

The factor e~ nt
in solution (28) gradually decreases with the time and

the vibrations, originally generated, will be gradually damped out.

To determine the constants C\ and 2 in solution (28) lot us assume
that at the initial instant t = the vibrating body is displaced from its

position of equilibrium by the amount XQ and has an initial velocity XQ.

Substituting t = in expression (28) we then obtain

XQ = Ci. (d)

Differentiating the same expression with respect to time and equating it to

io, for t = 0, we obtain

2 = (XQ + UXQ)/PI. (e)

Substituting (d) and (e) into solution (28) we obtain

x e~~
nt

[ XQ cos pit H sin pit ) (30)
\ pi /

The first term in this expression proportional to cos pit, depends only on
the initial displacement XQ and the second term, proportional to sin pit

depends on both, initial displacement XQ and initial velocity XQ. Each term
can be readily represented by a curve. The wavy curve in Fig. 23

represents the first term. This curve is tangent to the curve x = XQe""*

at the points mi, W2, ma, where t = 0, t = r, t = 2r, . . .; and to the curve

x= zoe~
w<

at the points mi', m^ ,
. . . where t = r/2, t = 3r/2, . . . These

points do not coincide with the points of extreme displacements of the

body from the position of equilibrium and it is easy to see that due to

damping, the time interval necessary for displacement of the body from a
middle position to the subsequent extreme position is less than that neces-

sary to return from an extreme position to the subsequent middle position.
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The rate of damping depends on the magnitude of the constant n

(see eq. (25)). It is seen from the general solution (30) that the amplitude
of the vibration diminishes after every cycle in the ratio

e~~
nr

1 (ftV
1 \J )

i.e., it decreases following the law of geometrical progression. Equation

(/) can be used for an experimental determination of the coefficient of

damping n. It is only necessary to determine by experiment in what

FIG. 23.

proportion the amplitude of vibration is diminished after a given number
of cycles.

The quantity
27T 71

nr =
P Vl -ri2/p2

' (31)

on which the rate of damping depends, is usually called the logarithmic
decrement. It is equal to the difference between the logarithms of the two
consecutive amplitudes measured at the instants t and t + T.

In discussing vibrations without damping the use of a rotating vector

for representing motion was shown. Such vector can be used also in the

case of vibrations with damping. Imagine a vector OA, Fig. 24, of variable

magnitude XQB"^ rotating with a constant angular velocity p\. Measuring
the angle of rotation in the counter clockwise direction from the z-axis, the

projection OA\ of the vector is equal to x^e~^ cos pit and represents the

first term of the expression (30). In the same manner, by taking a vector

OZ? equal to e~ nt

(io + nxo)/p\ and perpendicular to OZ and projecting it
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on the axis, we get the second term of solution (30). The total expression

(30) will be obtained by projecting on the o>axis the vector OC which is the

geometrical sum of the vectors OA and OB. The magnitude of this vector is

OC = VOA2 + OB2 = e~ nt
xo2 + (x +

and the angle which it makes with z-axis is pit a where

io + nxo
a = arc tan (h)

From this discussion it follows that expression (30) can be put in the

following form

x = e
m
Varo2 + (io + nxo)

2
/pi

2 cos (pit a). (30')

During rotation of the vector OC, in Fig. 24, thejxrint C describes a

logarithmic spiral the tangent to which makes a constant angle equal to

FIG. 24.

arc tan (n/pi) with the perpendicular to the radius vector OC. The
extreme positions of the vibrating body correspond to the points at which
the spiral has vertical tangents. These points are defined by the intersec-

tions of the spiral with the straight line MN, Fig. 24. The points of inter-

section of the spiral with the vertical axis define the instants when the

vibrating body is passing through the equilibrium position. It is clearly

seen that the time interval required for the displacement of the body from
the equilibrium position to the extreme position, say the time given by
the angle SON, in Fig. 24, is less than that necessary to return from the

extreme position to the subsequent equilibrium position, as given by the
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angle NOS\. But the time between the two consecutive extreme positions

of the body, such as given by the points M and N in Fig. 24 is always the

same and equal to half of th6 period r.

In the foregoing discussion of equation (26) we assumed that p
2 > n2.

If p2 < n2 both roots (c) become real and are negative. Substituting them
in expression (6) we obtain the two particular solutions of equation (26) and
the general solution of the same equation becomes

x = CV1' + C2e
r
*. (ft)

The solution does not contain any longer a periodical factor and does not

represent a vibratory motion. The viscous resistance is so large that the

body, displaced from its equilibrium position does not vibrate and only

creeps gradually back to that position.

j

The critical value of damping at which the motion loses its vibratory
I character is given by the condition n = p, and by using notations (25) we
[obtain for this case:

(0

PROBLEMS

1. A body vibrating with viscous damping (Fig. 1) makes ten complete oscillations

per second. Determine n in eq. (26) if after an elapse of 10 seconds the amplitude of

vibration is reduced to 0.9 of the initial. Determine in what proportion the period of

vibration decreases if damping is removed. Calculate the logarithmic decrement.

Solution. Assuming that motion is given by equation

x = Xi~ nt
cos pit

and substituting in this equation x 0.9#o, t = 10, pi = 20r we obtain

e
l = ~ 1.111,

. y

from which n = .01054.

The effect of damping on the period of vibration is given, in eq. (29), by factor

1/Vl n2
/7>

2 = p/Vp2 n2 = p/pi. Substituting p = V^2
-f n2 = pi Vl -f- n2

/Pi
2

we see that by removing damping the period of vibration decreases in the ratio

1 n2

I/ VI -f n2/i2 1 ----
,
in which n and i have the values calculated above. The

2pi2

logarithmical decrement is nr - .01054-0.1 = .001054.

2. To the body weighing 10 Ib. and suspended on the spring, Fig. 1, a dash pot
mechanism is attached which produces a resistance of .01 Ib. at a velocity 1 in. per sec.

In what ratio is the amplitude of vibration reduced after ten cycles if the spring constant

is 10 Ib. per in.
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Solution. After 10 cycles the amplitude of oscillation reduces in the ratio l/e
10nr

.

Substituting, from (25) and (29),

Vl ~ cW4W ** -0617'

the ratio becomes 1/e'
617 = .539.

9. Forced Vibrations with Viscous Damping. In discussing forced

vibration with viscous damping we assume that in addition to forces con-

sidered in the previous article a disturbing force P sin ut is acting on the

vibrating body, Fig. I. Then instead of equation (a) of the previous article,

we obtain

W

By using notations (25) this equation becomes

x + 2nx + p
2x = ~ sin . (32)

The general solution of this equation is obtained by adding to the solution

of the corresponding homogeneous equation (26), p. 33, a particular solution

of equation (32). This later solution will have the form

x\ = M sin wt + N cos co^, (a)

in which M and N are constants. Substituting this expression into equa-
tion (32) we find that it is satisfied if the constants M and N satisfy the

following linear equations

+ 2Mwn + Np2 =
0,

- 2 JVcon + Mp2 = ~
,

from which

Pg p*-g>* m Pg
W '

(p
2 - co

2
)
2 + 4n2o>2 ' W (p

2- co
2
)
2
-f 4nV V '

Substituting these expressions in (a) we obtain the required particular

solution. Adding it to the general solution (28) of the homogeneous equa-
tion the general solution of equation (32) becomes

x = e~~
M
(C\ cos pit + 2 sin p\t} + M sin ut + N cos ut. (c)
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wt

The first member on the right side, having the factor e
nt

, represents the

free damped vibration discussed in the previous article. The two other

terms, having the same frequency as the disturbing force, represent forced
vibration.

The expression for the forced vibration can be simplified by using rotat-

ing vectors as before, see p. 35. Take a vector OD of magnitude M rotating
with a constant angular velocity co in the

counter clockwise direction. Then measur-

ing angles as shown in Fig. 25, the projec-
tion of this vector on the x-axis gives us the

first term of expression (a) for the forced

vibration. The second term of the same

expression is obtained by taking the projec-
tion on the x-axis of the vector OB perpen-
dicular to OD the magnitude of which is equal
to the absolute value of N and which is

directed so as to take care of the negative

sign of N in the second of expressions (b).

The algebraical sum of the projections of the

two vectors OD and OB can be replaced by
the projection of their geometrical sum rep- FIG. 25.

resented by the vector OC. The magnitude
of this vector, which we denote by A, is obtained from the triangle ODC
and, by using expressions (&), is

A = -

W

from which, by taking p
2 out of the radical and substituting for it its value

from (25), we obtain

"-fk
1 1

, (33)

in which dsi denotes the deflection of the spring, in Fig. 1, when a vertical

force P is acting statically. The angle a between the vectors OD and OC
is determined from the equation

-A;
M p*

-
co
z

tan a = - =
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Projecting now vector OC on the x-axis we obtain the following expression
for the forced vibration

xi =
., ,

, ov
===== sin (at

-
a). (35)

It is seen that the amplitude of the forced vibration is obtained by multi-

plying the statical deflection &s , by the absolute value of the factor

which is called the magnification factor. The magnitude of it depends on
the ratio <a/p of the circular frequencies of the disturbing force and of the

free vibration without damping, and also on the ratio n/p which, in most

practical cases, is a small quantity. By taking this later ratio equal to zero

we obtain for the amplitude of forced vibration the value found before in

discussing vibrations without damping, see eq. (20) p. 15.

In Fig. 26 the values of the magnification factor for various values of

the ratio 2n/p are plotted against the values of co/p. From this figure it is

seen that in the cases when the frequency of the disturbing force is small in

comparison with that of free vibration of the system, the magnification
factor approaches the value of unity, hence the amplitude of forced vibra-

tion is approximately equal to dst . This means that in such cases the de-

flection of the spring at any instant can be calculated with sufficient accu-

racy by assuming that the disturbing force P sin ut is acting statically.

We have another extreme case when co is large in comparison with p, i.e.,

when the frequency of the disturbing force is large in comparison with the

frequency of free vibration of the system. In such a case the magnifica-
tion factor becomes very small and the amplitude of forced vibration is

small also.

The curves shown in Fig. 26 are very close togetncr for both extreme
cases mentioned above. This indicates that for these cases the effect of

damping is of no practical importance in calculating the amplitudes of

forced vibrations and the amplitude calculated before by neglecting damp-
ing, see Art. (3), can be used with sufficient accuracy.

When the frequency of the disturbing force approaches the frequency of

the free vibration of the system the magnification factor increases rapidly

and, as we see from the figure, its value is very sensitive to changes in the

magnitude of damping especially when this damping is small. It is seen

also that the maximum values of the magnification factor occur at values
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of the ratio co/p which are somewhat smaller than unity. By equating to

zero the derivative of the magnification factor with respect to w/p it can
be shown that this maximum occurs when

co
2 2n2

p
2

p
2

Since n is usually very small in comparison with p the values of the fre-

quency w at which the amplitude of forced vibration becomes a maximum
differ only very little from the frequency p of the free vibration of the

system without damping and it is usual practice to take, in calculating
maximum amplitudes, w =

p, in which case, from eq. (33),

A^ = ^. (36)
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We have discussed thus far the magnitude of the amplitude of forced

vibration given in Fig. 25 by the magnitude of the vector OC. Let us

consider now the significance of the angle a defining the direction of the

vector OC. For this purpose we use a rotating vector for representation

of the disturbing force. Since this force is proportional to sin cot the vector

OP, representing the force, coincides in Fig. 25 with the direction of the

vector OD, and its projection on the x-axis gives at any instant the magni-
tude of the disturbing force. Due to the angle a between the vectors

OP and OC the forced vibration always lags behind the disturbing force.

FIG. 27.

When the vector OP coincides with the x-axis and the disturbing force is

maximum the displacement of the body, given by the projection of OC on
the x-axis, has not yet reached its maximum value and becomes a maximum
only after an interval of time equal to a/<a when OC coincides with the

x-axis. The angle a. represents the phase difference between the disturbing
force and the forced vibration. From equation (34) we see that when

co<p, i.e., when the frequency of the disturbing force is less than the fre-

quency of the natural undamped vibration, tan a is positive and a is less

than 7T/2. For oo > p, tan a is negative and a > ir/2. When co = p, tan a
becomes infinite and the difference in phase a becomes equal to 7r/2. This

means that during such motion the vibrating body passes through the

middle position at the instant when the disturbing force attains its maxi-

mum value. In Fig. 27 the values of a are plotted against the values of the
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ratio u/p for various values of damping. It is seen that in the region of

resonance (o>
= p) a very sharp variation in the phase difference a takes

place when damping is small. Under the limiting condition when n =
an abrupt change in the phase difference from a = to a = w occurs at

resonance and instead of a curve we obtain in Fig. 27 a broken line 0113.

This later condition corresponds to the case of undamped forced vibration

discussed before, see p. 16.

When the expression (35) for the forced vibration, is obtained the force

in the spring, the damping force and the inertia force of the vibrating body,

Fig. 1, can be readily calculated for any instant. Taking, from (33) and

(35),

xi = A sin (wt a), (e)

we obtain the force in the spring, due to the displacement from the equilib-

rium position, equal to

kxi = kA sin (cot a). (/)

The damping force, proportional to velocity, is

cii = cAco cos (cot a), g)

and the inertia force of the vibrating body is

W W
x\ = Au2 sin (cot a). (h)

9 9

All these forces together with the disturbing force P sin cot can be obtained

by projecting on the :r-axis the four vectors the magnitudes and directions of

which are shown in Fig. 28. From d'Alembert's principle it follows that

the sum of all these forces is zero, hence

WP sin cot kxi cxi x\ = 0, (k)
Q

which is the same equation as equation (32). This equation holds for any
value of the angle cot, hence the geometrical sum of the four vectors, shown
in Fig. 28, is zero and the sum of their projections on any axis must be zero.

Making projections on the directions Om and On we obtain

W
Au2 + P cos a kA =

0,
g

cAco + Psin a = 0.
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From these equations A and a. can be readily calculated and the formulae

(33) and (34) for the amplitude of forced vibration and for the phase differ-

ence can be obtained.

Figure 28 can be used in discussing how the* phase angle a and the

amplitude A vary with the frequency co of the disturbing force. When co is

small the damping force is also small. The direction of the force P must
be very close to the direction Om and since the inertia force proportional
to co

2 in this case is very small the force P must be approximately equal to

FIG. 28.

the spring force kA ;
thus the amplitude of vibration must be close to the

statical deflection 58t . With a growing value of co the damping force in-

creases and the phase angle a increases to the magnitude at which the com-

ponent of the force P in the direction On balances the damping forces.

At the same time the inertia force increases as co
2 and to balance this force

together with the component of P in the Om direction a larger spring force,

i.e., a larger amplitude A is required. At resonance (co
= p) the inertia

force balances the spring force and the force P acting in the direction On,
balances the damping force. Thus the phase angle becomes equal to ir/2.

With further growing of co the angle a becomes larger than ?r/2 and the

component of the force P is added to the force kA of the spring so that the

inertia force can be balanced at a smaller value of the amplitude. Finally,
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at very large values of o>, the angle a. approaches TT, the force P acts approxi-

mately in the direction of the spring force kA. The amplitude A, the

damping force and the spring force become small and the force P balances

the inertia force.

Let us consider now the work per cycle produced by the disturbing force

during steady forced vibration. * The force acting at any instant is P sin a>t

and the velocity of its point of application is ii = Aco cos (cot a), hence

the work produced in an infinitely small interval of time is

P sin cotAco cos (cot oi)dt,

and the work per cycle will be

/
AuP Cr

P sin coLlco cos (cot a)dt = / [sin (2ut a) + sin a]dt
2 */o

AcoPr sin a A ^= ------ = TrAP sin a. (37)

This work must be equal to the energy dissipated during one cycle due to

damping force. The magnitude of this force is given by expression (g).

Multiplying it by x\dt and integrating in the interval from to r we get for

the energy dissipated per cycle the expression

/'Jo
-

<*)dt
=-- = 7rcA2co. (38)

Thus the energy dissipated per cycle increases as the square of the ampli-
tude.

Expressions (37) and (38) can be used for calculating the maximum
amplitude which a given disturbing force may produce when damping is

known. It may be assumed with sufficient accuracy that this amplitude
occurs at resonance, when o> = p and a =

ir/2. Substituting sin a = 1

in eq. (37) and equating the work done by the disturbing force to the

energy dissipated we obtain

TrAP = 7rcA 2u,

from which
P

^max = (39)
CO)

* Due to presence of the factor e~nt
in the first term on the right side of eq. (c) (see

p. 38) the free vibrations will be gradually damped out and steady forced vibrations

will be established.
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This expression can be easily brought in coincidence with the expression

(36) by using notations (25).

From Fig. 25 it is seen that the quantity A sin a is equal to the absolute

value of N given by expression (b). Substituting this value into formula

(37) we obtain for the work per cycle of the disturbing force the following

expression

2n/p
"" W 2p[(p/co

-
w/p)

2 + (2n/p)
2

]

Using notations

2n/p = 7 P/co = 1 + z (1)

we represent this work in the following form

and since 2?r/a) is the period of vibration the average work per second is

P2
g y

~w~

Assuming that all quantities in this expression, except 2, are given we
conclude that the average work per second becomes maximum at resonance

(p = co) when z is zero.

In studying the variation of the average work per second near the point
of resonance the quantity z can be considered as small and expression (ra)

can be replaced by the following approximate expression

2pW 4z2 + y2

The second factor of this expression is plotted against z in Fig. 29 for three

different values of 7. It may be seen that with diminishing of damping the

curves in the figure acquire a more and more pronounced peak at the reso-

nance (z 0) and also that only near the resonance point the dissipated

energy increases with decreasing damping. For points at a distance from
resonance (z = 0) the dissipated energy decreases with the decrease of

damping.
In studying forced vibration with damping a geometrical representation

in which the quantities 2no? and p2
o>
2

, entering in formulas (33) and (34),
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are considered as rectangular coordinates, is sometimes very useful. Taking

p2
co
2 = x and 2mo = y (n)

and eliminating w from these two equations we obtain the equation of a

parabola:

(o)

which is represented in Fig. 30. For cu = 0, we have y = and obtain the

vertex of the parabola. For a; = p, x = and we obtain the intersection

of the parabola with 7/-axis. For any given value of the frequency we

readily obtain the corresponding point C on the parabola. Then, as seen

from equations (33) and (34), the magnitude of the vector OC is inversely

proportional to the amplitude of forced vibrations and the angle which it

makes with o>axis is the phase angle a. For small damping n is small in

comparison with p. Thus we obtain a very slender parabola and the
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shortest distance OD from the origin to the parabola is very close to the

distance OE measured along ?/-axis, which indicates that the amplitude of

forced vibrations for a; = p is very close to the maximum amplitude. For
co larger than p the amplitude of forced vibrations decreases indefinitely

as the phase angle a increases and approaches the value ?r.*

FIG. 30.

We have discussed thus far only the second part of the general expres-
sion (c) for motion of the body in Fig. 1, which represents the steady forced

vibrations and which will be established only after the interval of time

required to damp out the free vibration, produced at the beginning of the

action of the disturbing force. If we are interested in motion which the

body performs at the beginning of the action of the disturbing force the

general expression for motion,

x = e~ nt

(Ci cos pit + 2 sin p\t) + A sin (ut a), (p)

must be used and the constants of integration Ci and 2 must be determined
from the initial conditions. Assume, for instance, that for t = 0, x =
and x = 0, i.e., the body is at rest at the instant when the disturbing force

P sin wt begins to act. Then by using expression (p) and its derivative

with respect to time we obtain

nA sin a uA cos a.

Ci = A sin a. C2 =
Pi

by substituting which in eq. (p) the general expression for the motion of

* This graphical representation of forced vibrations is due to C. Runge, see"paper
by v. Sanden Ingenieur Archiv, vol. I, p. 645, 1930.
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the body is obtained. For the case of a small damping and far from reso-

nance the phase-angle a is small and we can take C\ =
0, 2 = uA/p\.

The motion (p) is represented then by the following approximate expression

uAe~ nt
.

x = sin pit + A sin cot. (a)
Pi

Thus on steady forced vibrations of amplitude A and with a circular fre-

quency co free vibrations, sometimes called transient, with a frequency p\
and with a gradually damped out amplitude are superposed.

If the frequencies co and pi are close together the phenomena of beating,
discussed in article 3, will appear, but due to damping this beating will

gradually die out and only steady forced vibrations will remain.

PROBLEMS

1. Determine the amplitude of forced vibrations produced by an oscillator, fixed at

the middle of a beam, Fig. 19, at a speed 600 r.p.m. if P = 1 Ib. the weight concentrated

at the middle of the beam is W 1000 Ib. and produces statical deflection of the beam
equal to 88 t .01 in. Neglect the weight of the beam and assume that damping is equiv-
alent to a force acting at the middle of the beam, proportional to the velocity and equal to

100 Ib. at a velocity of 1 in. per sec. Determine also the amplitude of forced vibration at

resonance (co
= p).

Solution, o>
2 = 4007T2

;
c = 100

p2 = 38600,

J9L = 10Q x 386 = 19 3U 2W 2 X 1000

Poo2 = 1-co2 = 4007rMbs.,

W ^(P2 -~w2
)
2

400;r 2 X 386

1000 V (38600 - 400;r 2
)
2 + 4 X 19.32 X 4007r2

38600 X 386

.0439 in.,

,A = =W '2np 10oo x 2 X 19.3 X V 38600

2. For the previous problem plot the curves representing the amplitude of forced

vibration and the maximum velocity of the vibrating body W as functions of the ratio

co/p.

3. Investigate the effect of damping on the readings of the instrument shown in

Fig. 14.
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Assuming that the vibratory motion of the point of suspension A is given by
x\ = a sin &>, the equation of motion of the suspended weight, by using notations (25), is

akg
x -h 2nj -f p2x = sm wt.

Substituting ak for P in expression (33), the forced vibration becomes

a
x =

4nV
: sin (ut a) aft sin (a> a), (r)

where /9 is the magnification factor.

The instrument measures the difference of the displacements x\ and x and we obtain

Xi ~~ x = a sin co< fta sin (a> a).

The two terms on the right side of this equation can be added together by using rotating
vectors OC of magnitude a and OD of magnitude fta as shown in Fig. 31. The geo-

FIG. 31.

metrical sum OE of these two vectors gives us the amplitude of the relative motion

x\ x. From the triangle OCE this amplitude is

A = a V02 -
2/3 cos a + 1. (s)

It depends not only on the magnification factor ft but also on the phase angle a.

In the case of instruments used for measuring amplitudes of vibrations (see Art. 4)

the frequency w is large in comparison with p, /3 is small, a approaches the value IT and
the amplitude, given by expression (s), is approximately equal to a(l -f ft). Substituting
for ft its value from eq. (r) and neglecting damping we find

A = a/1 +-
1

which is approximately equal to a.

In the case of instruments used for measuring accelerations w is small in comparison
with p, a is small also and expression (s) approaches the value a(ft 1). Substituting
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again for ft its value and neglecting damping,
* we get in this case

A / 1 -\ fl

A = a /

which is approximately equal to aco 2/p2 and proportional to the maximum acceleration.

4. Solve the problem 1 in Art. 4, see p. 22, assuming that there is damping in the

spring. The damping force is proportional to vertical velocity of the body W and is

equal to 1 Ib. per unit mass of the body at the velocity 1 in. per sec. Calculate the

amplitude of forced vibration at resonance (p co). At what position of the wheel on

the wave is the body in its highest position.

10. Spring Mounting of Machines with Damping Considered. In our

previous discussion of spring mounting of machines, Art. 5, it was assumed
that there is no damping and the supporting springs are perfectly elastic.

Such conditions are approximately realized in the case of helical steel

springs, but if leaf springs or rubber and cork padding are used damping is

considerable and cannot any longer be neglected. In the case of such im-

perfect springs it can be assumed that the spring force consists of two

parts, one, proportional to the spring elongation, is

an elastic force and the other, proportional to the

velocity is a damping force. This condition can
be realized, for instance, by taking a combination
of perfect springs and a dash pot as shown in Fig.

32. Considering the case discussed in article 5

and calculating what portion of the disturbing pIG 32
force is transmitted to the foundation we have now
to take into account not only the elastic force but also the force of damp-
ing. From Fig. 28 we see that these two forces act with a phase difference

of 90 degrees and that the maximum of their resultant is

A Vk2 + c2co2 = Ak<\]l+ ~, (a)

where A is the amplitude of forced vibration, k is the spring constant and
c = 2nW/g is the damping force when the velocity is equal to unity.

Substituting for A its value from formula (33) and taking, as in Art. 5, the

* Since the impressed motion is often not a simple sine motion and may contain

higher harmonics with frequencies in the vicinity of the resonance of the instrument it is

usual practice to have in accelerometers a considerable viscous damping, say taking
.5 < n/p < 1.
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disturbing force Po>2 sin cot, we find that the maximum force transmitted to

the foundation is

4n2
to
2

(6)

Assuming that o> is large in comparison with p and at the same time the ratio

n/p is small we find that the result (6) differs from what was found in

Art. 5 principally by the presence of the term 4n2
co
2
/p

4 under the radical of

the numerator.

Taking, as in problem 1, p. 26, co = 60?r, p2 = 225, P = 1 Ib. and assum-

ing 2n =
1, we find

Vl + 4n2
o>
2
/p

4 = 1.305, J( 1 - ~
; j + ~ = 156.9,\ \ p~/ p4

and the force transmitted to the foundation is

(6Qeo)
2 1.305

156.9
296 Ib.

which is about 30 per cent larger than we obtained before by neglecting

damping.
The ratio of the force transmitted to the foundation (6) to the dis-

turbing force Pco2 determines the transmissibility , It is equal to

Vl + 4n2
o>
2
/p

4
: V(l - w2

/p
2
)
2 + 4w2 2

/p
4

, (c)

and its magnitude depends not only on the ratio co/p but also on the ratio

n/p.
As a second example let us consider a single-phase electric generator.

In this case the electric forces acting between the rotor and stator produce
on the stator a pulsating torque which is represented by the equation

Mt
= MQ + Mi sin co, (d)

where co is the double angular velocity of the rotor and MQ and Mi are

constants.

If the stator is rigidly attached to the foundation the variable reactions

due to pulsating torque may produce very undesirable vibrations. To
reduce these reactions the stator is supported by springs as shown in Fig.
33.* The constant portion MQ of the torque is directly transmitted to the

* See C. R. Soderberg, Electric Journal, vol. 21, p. 160, 1924.
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foundation and produces constant reactions which can be readily obtained

from the equations of statics. We have to consider only the variable por-

tion Mi sin oo. Under the action of this variable moment the stator is

subjected to rotatory vibrations with respect to the torque axis, If <p de-

notes the angle of rotation during these vibrations and k the spring constant

which in this case represents the torque which, if applied statically, pro-
duces an angle of rotation of the stator equal to one radian, the moment
of the reactions acting on the stator during vibration will be k<p and the

equation of motion is

I'<p + c> + k<p = Mi sin ut, (e)

in which 7 is moment of inertia of the stator with respect to the torque axis

and c is the magnitude of the damping couple for an angular velocity equal
to unity. Using notations

c _ k

''////////////////*

FIG. 33. FIG. 34.

we bring equation (e) to the form of equation 32 and we can use the general

expression (33) for the amplitude of forced vibration, it being only neces-

sary to substitute in this expression Mi instead of P. Multiplying this

amplitude with the spring constant k we obtain the maximum value of

the variable torque due to deformation of the springs. To this torque we
must add the variable torque due to damping. Using the same reasoning
as in the previous problem we finally obtain the maximum variable torque
transmitted to foundation from expression (6) by substituting in it Mi

instead of Pw2
.

The use of elastic supports in the case of single phase electric motors and

generators has proved very successful. In the case of large machines the

springs usually consist of steel beams. In small motors such as used in

domestic appliances the required elasticity of supports is obtained by plac-

ing rubber rings between the rigid supports and the rotor bearings which
are in this case rigidly built into the stator as shown in Fig. 34. The rubber
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ring firmly resists any lateral movement of the bearing since any radial

compression of the rubber ring requires a circumferential expansion which is

prevented by friction forces between the ring and the rigid support.
At the same time any rotation of the stator produces in the rubber ring

only shearing deformations which do not require a change in volume and
the rubber in such case is very flexible; and has on the transmission of the

pulsating torque the same effect as the springs shown in Fig. 33.

We have another example of the use of elastic supports in the case of

automobile internal combustion engines. Here again we deal with a pul-

sating torque which in the case of a rigidly mounted engine will be trans-

mitted to the car. By introducing an elastic mounting, such that the engine

may have low frequency rotary vibrations about the torque axis, a con-

siderable improvement can be obtained.

11. Free Vibrations with Coulomb Damping. As an example of vibra-

tions with constant damping let us consider the case shown in Fig. 35. A

n
:VWWWWV\M/V

FIG. 35.

body W attached by a spring to a fixed point A slides along the horizontal

dry surface with a vibratory motion. To write the equation of motion let

us assume that the body is brought to its extreme right position and re-

leased. Then under the; action of the tensile force in the spring it begins to

move towards the left as shown. The forces which it is necessary to con-

sider are: (1) the force in the spring, and (2) the friction force. Denoting
by x the displacement of the body from the position at which the spring is

unstretched and taking the positive direction of the z-axis, as shown in the

figure, the spring force is kx. The friction force in the case of a dry sur-

face is constant. It acts in the direction opposite to the motion, i.e., in this

case, in the positive direction of the x-axis. Denoting this force by F,
the equation of motion becomes

W ..

x = kx + F, (a)
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or, by introducing notations

* - * i
-

.

we obtain

x + p'
2
(x
-

a) =
0, (c)

when; a has a simple physical meaning, namely, it represents the statical

elongation of the spring which would be produced by the friction force F.

Equation (c) can be brought in complete agreement with the eq. (3) (p. 2)

for free vibrations without damping by introducing a new variable

xi = JT a, (d)

which means that the distances will now be measured not from the position
when the spring is unstretched but from the position when it has an elonga-
tion equal to a. Then, substituting jc from (d) into eq. (c) we obtain

in + jr'j-i
= 0. (e)

The solution of this equation, satisfying the initial conditions, is

*i = Oo a) cos pt, (/)

where TO denotes the initial displacement of the body from the unstressed

position. This solution is applicable as long as the body is moving to the

left as assumed in the derivation of equation (a). The extreme left position

will be reached after an interval of time equal to ir/p, when x\ = (JG a)

and the distance of the body from the unstressed position is xo 2a. From
this discussion it is seen that the time required for half a cycle of vibration

is the same as in the case of free vibration without damping, thus the

frequency of vibration is not effected by a constant damping. At the same

time, considering the two extreme positions of the body defined by dis-

tances a*o and 0*0 2a, it can be concluded that during half a cycle the

amplitude of vibrations is diminished by 2a.

Considering now the motion of the body from the extreme left position
to the right, and applying the same reasoning, it can be shown that during
the second half of the cycle a further diminishing of the amplitude by the

quantity 2a will occur. Thus the decrease of the amplitude follows the law

of arithmetical progression. Finally, the load W will remain in one of its

extreme positions as soon as the amplitude becomes less than a, since at

such a position the friction force will be sufficient to balance

force of the spring.
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FIG. 36

This vibratory motion again can be visualized by using rotating vectors.

To obtain the motion corresponding to the first half of a cycle, eq. (/), we
use vector Oifii, Fig. 36, of mag-
nitude XQ a rotating with a constant

angular velocity p about the center Oi,

which is displaced to the right with

respect to the unstressed position by
the amount a. For the second half of

magnitude zo 3a and rotating with

constant speed p around the center 02,

which is displaced from to the left

by the amount a, and so on. In this

way we get a kind of a spiral, and the intersection point of this spiral with

the z-axis in the interval 0\0z gives the final position of the body.

PROBLEMS

1. The body in Fig. 35 is displaced from the unstressed position by the amount
Xo = 10 in., with the tensile force in the spring at this displacement, equal to 5W 10 lb.,

and then released without initial velocity. How long will the body vibrate and at what
distance from the unstressed position will it stop if the coefficient of friction is J^.

Solution. The friction force in this case is F = W/4 = .5 lb., spring constant

k = 1 lb. per in., a =
}/% in. Hence the amplitude diminishes by 1 in. per each half a

cycle and the body will stop after 5 cycles at the unstressed position. The period of

one oscillation is r = 2ir Vd^/gr = 2*-V 2/386 and the total time of oscillation is

107rV2/386 = 2.26 sec.

2. What must be the relation between the spring constant k, the friction force F
and the initial displacement XQ to have the body stop at the unstressed position.

Xok
Answer. must be an even number.

3. Determine the coefficient of friction for the case shown in Fig. 35 if a tensile

force equal to W produces an elongation of the spring equal to % in. and the initial

amplitude x = 25 in. is reduced to .90 of its value after 10 complete cycles.

Solution. The amplitude of vibration due to friction is reduced after each cycle by
4F

4o =* and since after 10 cycles it is reduced by 2.5 in. we have
K

rt
4F 10F

ft p .

10 T =
-F

= 2-5m'

Hence F = %W and the coefficient of friction is equal to }^.

4. For determining the coefficient of dry friction the device shown in Fig. 37 is used. *

* Such a device has been used about 30 years ago in the Friction Laboratory of the

Polytechnical Institute in S. Petersburg.
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A prismatical bar rests on two equal discs rotating with equal speeds in opposite direc-

tions. If the bar is displaced from the position of equilibrium and released, it begins to

perform harmonic oscillations by moving back and forth along its axis. Prove that the

coefficient of Coulomb friction between the materials of the bar and of the discs is given

by formula

in which a is half the distance between the centers of the discs and r is the period of

oscillations of the bar.

Solution. If the bar is displaced from the middle position by the amount x the

pressures on the discs are W(a -f- x)/2a and IF(a z)/2a, the corresponding difference

nW
in friction forces is FI Ft - x and is directed toward the axis of symmetry. It

a
is the same as the force in a spring with elongation x and having a spring constant equal
to nW/a. Hence the period of oscillation, from eq. 5 is

T = 2irx /-r = 2*\~\kg \M0

from which the formula given above for the coefficient of friction follows.

12. Forced Vibrations with Coulomb's Damping and Other Kinds of

Damping. From the discussion of the previous article it is seen that to

take care of the change in direction of the constant friction force F it is

necessary to consider each half cycle separately. This fact complicates
a rigorous treatment of the problem of forced vibration, but an approxi-

mate solution can be obtained without much difficulty.* In practical

applications we are principally interested in the magnitude of steady

* This approximate method has been developed by L. S. Jacobsen, Trans. Am. Soc.

Mech. Engrs., Vol. 52, p. 162, 1930. See also A. L. Kimball, Trans. Am. Soc. Mech.

Engrs., Vol. 51, p. 227, 1930. The rigorous solution of the problem has been given by
J. P. Den Hartog, Trans. Am. Soc. Mech. Engrs., Vol. 53, p. 107, 1931. See also Phil.

Mag., Vol. 9, p. 801, 1930.
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forced vibrations and this magnitude can be obtained with sufficient

accuracy by assuming that the forced vibration in the case of a constant

damping force F is a simple harmonic motion, as in the case of viscous

damping, and by replacing the constant damping force by an equivalent

viscous damping, such that the amount of energy dissipated per cycle will

be the same for both kinds of damping.
Let P sin cot be the disturbing force and assume that the steady forced

vibration is given by the equation

x = A sin (at a). (a)

Between two consecutive extreme positions the vibrating body travels a

distance 2A, thus the work done per cycle against the constant friction

force, representing the dissipated energy, is

4AF. (b)

If instead of constant friction we have a viscous damping the corresponding
value of the dissipated energy is given by formula (38), p. 45, and the

magnitude of the equivalent viscous damping is determined from the

equation
7rc4 2

co = 4AF (c)

from which

Thus the magnitude of the equivalent viscous damping depends not only
on F but also on the amplitude A and the frequency o> of the vibration.

Using notations (25), p. 32 and substituting in expression (33)

2n
__

c _ jLF_
p2 k TrAfcw

'

we obtain for the amplitude of the forced vibration with equivalent viscous

damping the following expression

P 1
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This expression represents the amplitude A in eq. (a), hence the equation
for determining A is

p * _,
)L / / ^v\. <- / . ~ \ <v '

from which
p rAk

A - -
k 1 - (40)

The first factor on the right side represents static deflection and the second

is the magnification factor. We see that this factor has a real value only if

F/P < 7T/4. (e)

.6 -8 to /-Z I.+ I-Q 2-0

FIG. 38

In practical applications, where we are usually dealing with small fric-

tional force, this condition is satisfied and we find that the magnification

factor depends on the value of the ratio co/p. Values of this factor, for

various values of the ratio F/P9
are plotted against co/p in Fig. 38 * It

* This figure and the two following are taken from the above mentioned Den Hartog's
exact solution By the dotted line the limit is indicated above which a non-stop oscil-

latory motion occurs. Below that limit the motion is more complicated and the curves

shown m the figure can be obtained only by using the exact solution



60 VIBRATION PROBLEMS IN ENGINEERING

is seen that in all cases in which condition (e) is satisfied the magnification
factor becomes infinity at resonance (p = o>), which means that in this

case even with considerable friction the amplitude at resonance tends to

infinity. This fact can be explained if we consider the dissipation of

energy and the work produced by the disturbing force. In the case of

viscous damping the energy dissipated per cycle, eq. (38), increases as the

square of the amplitude. At the same time the

work produced per cycle by the disturbing force

(eq. 37) increases in proportion to the amplitude.
Thus the finite amplitude is obtained by inter-

section of the parabola with a straight line as

shown in Fig. 39. In the case of constant fric-

tion the dissipated energy is proportional to A,
eq. (6), and in Fig. 39 it will be represented by a

straight line the slope of which is smaller than

the slope of the line OE, if condition (e) is satis-

fied, hence there will always be an excess of

input and the amplitude increases indefinitely.

By substituting the value of the equivalent damping (eq. d) into eq. (34)

and using eq. (40) we obtain the equation

Amplitude

1
tan a = db

from which the phase angle a can be calculated. The angle does not vary
with the ratio w/p and only at resonance (o>

= p) it changes its value

abruptly The exact solution shows that the phase angle varies somewhat
with the ratio co/p as shown in Fig 40

The described approximate method of investigating forced vibrations

can be used also in general, when the friction force is any function of the

velocity In each particular case it is only necessary to calculate the

corresponding equivalent damping by using an equation similar to eq. (c),

Assuming for example that the fr^ct on force is represented by a function

f(x), this equation becomes

7TCA2-= I
/o

f(x\xdt (g)

Substituting for x its expression from eq (a) the value of c can be always
calculated.
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Take, as an example, a combination of Coulomb's friction and viscous

friction. Then
S(x) = F + cix.

Substituting in eq. (g) we find

from which

ISO
9
.

0(
ISO

loS

%*>

45"

30'

18

4F

TT-AcO

1.6 t-4 f-2 I -2

FIG. 40.

Proceeding with this value of c as before we obtain for determining the

amplitude A the equation

K^21 -^
When ci = this equation gives for A expression (40). When F = we

get for A expression (33). For any given values of F and ci, the amplitude
of forced vibrations can be readily obtained from equation (h).

PROBLEMS
1. For the case considered in problem 1 of the previous article find the amplitude of

forced steady vibration if the frequency of the disturbing force P sin w(is \Y^ per sec.

and its maximum value is equal to W. Answer. 3.60 inches.
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2. Develop an approximate equation for the amplitude of steady forced vibration

if the damping force is proportional to the square of velocity.*

Solution. Assuming that the damping force is given by the expression Ci(x)
2 and

taking one quarter of a cycle, starting, from the middle position, the dissipated energy is

cos3 at dt =
JQ

and eq. (g) becomes

r *
3

/
JQ

= 8$ CiC0
2A 3

from which
8

~~

3r
Cl

and equation for calculating A becomes

/ o>2\ 2 P4

^4 _J_ y^2 .
\ V ' _ __^__^-. -s Q

fi--V
\ P2

/ P2

4 /^\
2

2 /^\
2

Cl2(

(tor)
WCl W

13. Balancing of Rotating Machines. One of the most important

applications of the theory of vibrations is in the solution of balancing

problems. It is known that a rotating body does not exert any variable

disturbing action on the supports when the axis of rotation coincides with

one of the principal axes of inertia of the body. It is difficult to satisfy

this condition exactly in the process of manufacturing because due to

errors in geometrical dimensions and non-homogeneity of the material

some irregularities in the mass distribution are always present. As a

result of this variable disturbing forces occur which produce vibrations.

In order to remove these vibrations in machines and establish quiet

running conditions, balancing becomes necessary. The importance of

balancing becomes especially great in the case of high speed machines.

In such cases the slightest unbalance may produce a very large disturbing
force. For instance, at 1800 r.p.m. an unbalance equal to one pound
at a radius of 30 inches produces a disturbing force equal to 2760 Ibs.

* Free vibrations with damping proportional to the square of velocity was studied

by W. E. Milne, University of Oregon Publications, No. 1 (1923) and No. 2 (1929).

The tables attached to these papers will be useful in studying such vibrations. For
forced vibrations we have the approximate solution given by L. S. Jacobsen developed
in the previously mentioned paper.
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In order to explain the various conditions of unbalance a rotor shown
in Fig. 41, a will now be considered.* Imagine the rotating body divided

into two parts by any cross section mn. The three following typical cases

of unbalance may arise:

1. The centers of gravity of both parts may be in the same axial

plane and on the same side of the axis of rotation as shown in Fig. 41, 6.

The center of gravity C of the whole body will consequently be in the same

plane at a certain distance from the axis of rotation. This is called "static

unbalance" because it can be detected by a statical test. A statical bal-

ancing test consists of putting the rotor with the two ends of its shaft on

absolutely horizontal, parallel rails. If the center of gravity of the whole

ffi>-
*

*
<d>

FIG. 41.

rotor is in the axis (Fig. 41, c) the rotor will be in static equilibrium in any
position; if the center is slightly off the shaft, as in Fig. 40, 6, it will roll on
the rails till the center of gravity reaches its lowest position.

2. The centers of gravity of both parts may be in the same axial

plane but on opposite sides of the axis of rotation as shown in Fig. 41, c,

and at such radial distances that the center of gravity C of the whole

body will be exactly on the axis of rotation. In this case the body will

be in balance under static conditions, but during rotation a disturbing

couple of centrifugal forces P will act on the rotor. This couple rotates

with the body and produces vibrations in the foundation. Such a case is

called "dynamic unbalance"

3. In the most general case the centers of gravity, C\ and Co, may
lie in different axial sections and during rotation a system of two forces

formed by the centrifugal forces P and Q will act on the body (see Fig. 41,

d). This system of forces can always be reduced to a couple acting in an
axial section and a radial force, i.e., static and dynamic unbalance will

occur together.

It can be shown that in all cases complete balancing can be obtained

by attaching to the rotor a weight in each of two cross sectional planes
* The rotor is considered as an absolutely rigid body and vibrations due to elastic

deflections of it are neglected.
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arbitrarily chosen. Consider, for instance, the case shown in Fig. 42.

Due to unbalance two centrifugal forces P and Q act on the rotor during

motion. Assume now that the weights necessary for balance must be

located in the cross sectional planes I and II. The centrifugal force P
can be balanced by two forces Pi and P^ lying with P in the same axial

section. The magnitude of these forces will be determined from the

following equations of statics

Pi + P2 = P,
pia = P2b.

FIG. 42.

In the same manner the force Q can be balanced by the forces Qi and

$2. The resultant of PI and Q\ in plane I, and the resultant of P^ and

$2 in plane II will then determine the magnitudes and the positions of

the correction weights necessary for complete balancing of the rotor.

It is seen from this discussion that balancing can be made without any
difficulty if the position and magnitude of the unbalance is known. For

determining this unbalance various types of balancing machines are used
and the fundamentals of these machines will now be discussed.

14. Machines for Balancing. A balancing machine represents usually
an arrangement in which the effects of any unbalance in the rotor which
is under test may be magnified by resonance. There are three principal

types of balancing machines: first, machines where the rotor rests on two

independent pedestals such as the machines of Lawaczeck-Heymann,
or the Westinghouse machine; second, machines in which the rotor rests

on a vibrating table with an immovable fulcrum; third, balancing machines
with a movable fulcrum.

fhe machine of Lawaczeck-Heymann consists mainly of two independent
pedestals. The two bearings supporting the rotor are attached to springs,
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which allow vibrations of the ends of the rotor in a horizontal axial plane.
One of the bearings is locked with the balancing being performed on the

other end (see Fig. 43). Any unbalance will produce vibration of the

rotor about the locked bearing as a fulcrum. In order to magnify these

vibrations all records are taken at resonance condition. By a special

motor the rotor is brought to a speed above the critical and then the motor

power is shut off. Due to friction the speed of the rotor gradually decreases

and as it passes through its critical value pronounced forced vibrations

of the unlocked bearing of the rotor will be produced by any unbal-

ance. The process of balancing then consists of removing these vibra-

tions by attaching suitable correction weights. The most suitable planes
for placing these weights are the ends of the rotor body, where usually

special holes for such weights are provided along the circumference.

By such an arrangement the largest distance between the correction

weights is obtained; therefore the magnitude of these weights is brought
to a minimum. When the plane for such correction weight has been

chosen there still remain two questions to be answered, (1) the location

of the correction weight and (2) its magnitude. Both these questions can

be solved by trial. In order to determine the location, some arbitrary

correction weight should be put in the plane of balancing and several runs

should be made with the weight in different positions along the circumfer-

ence of the rotor. A curve representing the variation in amplitude of

vibrations, with the angle of location of the weight, can be so obtained.

The minimum amplitude will then indicate the true location for the

correction weight. In the same manner, by gradual changing the magni-
tude of the weight, the true magnitude of the correction weight can be

established. -
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In order to simplify the process of determining the location of the

correction weight, marking the shaft or recording the vibrations of the

shaft end may be very useful. For marking the shaft a special indicator,

shown in Fig. 44, is used in the Lawaczeck machine. During vibration

the shaft presses against a pencil ab suitably arranged and displaces it

into a position corresponding to the maximum deflection of the shaft

end so that the end of the marking line on the surface of the shaft deter-

_ _ mines the angular position at the moment
; j

of maximum deflection. Assuming that

at resonance the lag of the forced vibra-

tions is equal to 7r/2, the location of the

disturbing force will be 90 from the point
where the marking ceases in the direction

I

I

jrfi {viv rysx of rotation of the shaft. Now the true

J location for the correction weight can

ip easily be obtained. Due to the fact that
'" near the resonance condition the lag

changes very sharply with the speed and
also depends on the damping (see Fig. 27, p. 42) two tests are usually

necessary for an accurate determination of the location of unbalance. By
running the shaft alternately in opposite directions and marking the shaft

as explained above the bisector between the two marks determines the

axial plane in which the correction weights must be placed.
For obtaining the location of unbalance, by recording the vibrations

of the face of the shaft end of the rotor, a special vibration recorder is

used in the Lawaczeck machine. The recording paper is attached to the

face of the shaft and revolves with the rotor. The pencil of the indicator

pressing against the paper performs displacements which are the magnified
lateral displacements of the shaft end with respect to the immovable

pedestal of the machine. In this manner a kind of a polar diagram of

lateral vibrations of the shaft will be obtained on the rotating paper
attached to the shaft end. By running the shaft twice, in two opposite

directions, two diagrams on the rotating paper will be obtained. The
axis of symmetry for these two diagrams determines the plane in which
the correction weight must be placed.*

* A more detailed description of methods of balancing by using the Lawaczeck-

Heymann machine can be found in the paper by Ernst Lehre: "Der heutige Stand der

Auswuchttechmk," Maschinenbau, Vol. 16 (1922-1923), p. 62. See also the paper by
E. v. Brauchisch, "Zur Theorie und experimentellen Priifung des Auswuchtens,"
Zeitschr. f. Angw. Math, und Mech., Vol. 3 (1923), p. 61, and the paper by J. G. Baker
and F. C. Rushing, The Journal of the Franklin Institute, Vol. 222, p. 183, 1936.
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The procedure for balancing a rotor AR (see Fig. 43) will now be

described. Assume first that the bearing B is locked and the end A
of the rotor is free to vibrate in a horizontal axial plane. It has been

shown (see p. 63) that in the most general case the unbalance can be

represented by two centrifugal forces acting in two arbitrarily chosen planes

perpendicular to the axis of the shaft. Let the force P in the plane I

(see Fig. 43, a) and the force Q in the plane II through the center of the

locked bearing B represent the unbalance in the rotor. In the case under

consideration the force P only will produce vibrations. Proceeding as

described above the force P can be determined and the vibrations can be

annihilated by a suitable choice of correction weights. In order to bal-

ance the force Q, the bearing A must be locked and the bearing B made
free to vibrate (see Fig. 43, 6). Taking the plane III, for placing the

correction weight and proceeding as before, the magnitude and the location

of this weight can be determined. Let G denote the centrifugal force

corresponding to this weight. Then from the equation of statics,

G-c = Q-l

and

It is easy to see that by putting the correction weight in the plane III,

we annihilate vibrations produced by Q only under the condition that

the bearing A is locked. Otherwise there will be vibrations due to the

fact that the force Q and the force G are acting in two different planes II

and III. In order to obtain complete balance one correction weight
must be placed in each of the two planes I and III, such that the corre-

sponding centrifugal forces G\ and G% will have as their resultant the

force Q equal and opposite to the force Q (Fig. 45). Then, from statics,

we have,

Gi - G-> = Q,
G2 .b = Q-a,

from which, by using eq. (a)

Qa Gac
G* - T =

IT' (6)

Ol = Q + G, = .

(c)
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It is seen from this that by balancing at the end B and determining in

this manner the quantity (7, the true correction weight for the plane III

and the additional correction weight for the plane I can be found from

equations (b) and (c) and complete balancing of the rotor will be ob-

tained.

The large Westinghouse machine* having a capacity of rotors weighing

up to 300,000 pounds consists essentially of two pedestals mounted on a

rigid bedplate, together with a driving motor and special magnetic clutch

for rotating the rotor. A cross section of the pedestal consists of a solid

part bolted to the rails of the bedplate and a pendulum part held in place

by strong springs. .The vertical load of the rotor is carried by a flexible

FIG. 45.

thin vertical plate, making a frictionless hinge. The rotor is brought to a

speed above the critical speed of the bearing which can be controlled by
changing the springs according to the weight of the rotor, and the magnetic
clutch is disengaged. The rotor drifts slowly through this critical speed
when observations of the oscillations produced by magnified effect of the

unbalance are made.
The balancing is done by locking first one bearing and balancing the

opposite end, and then locking the second end and balancing the corre-

sponding opposite end. The balancing is done by a cut-and-try method,
the time of balancing proper of large rotors being small when compared
with the time of setting up and preparations for balancing. The addi-

tional correction weights are put into the balancing rings, the same as

described with the Lawaczeck-Heymann machine.

Akimoffs Balancing Machine,} consists of a rigid table on which the

rotor and the compensating device are mounted. The table is secured

to the pedestals in such a way that it is free to vibrate, either* about an
* L. C. Fletcher, "Balancing Large Rotating Apparatus/' Electrical Journal, Vol.

XXI, p. 5.

t Trans. A. S. M. E., Vol. 38 (1916).
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axis parallel to the axis of the rotor or about an axis perpendicular to the

axis of the rotor. In the first case static unbalance alone produces vibra-

tions; in the second, both static and dynamic unbalance will cause vibration.

Beginning with checking for static unbalance, the table must be supported
in such a way as to obtain vibration about the axis parallel to the axis of

rotation of the rotor. The method for determining the location and

magnitude of unbalance consists in creating an artificial unbalance in

some moving part of the machine to counteract the unbalance of the

body to be tested. When this artificial unbalance becomes the exact

counterpart of the unbalance in the body being tested, the whole unit

ceases to vibrate and the magnitude and the angular plane of unbalance

are indicated on the machine.

After removing the static unbalance of the rotor testing for dynamic
unbalance can be made by re-arranging the supports of the table in such

a manner as to have the axis of vibration perpendicular to the axis of

rotation. The magnitude and the angular plane of dynamic unbalance

will then be easily found in the same manner as explained above by intro-

ducing an artificial couple of imbalance in the moving part of the machine.

It is important to note that all the static unbalance must be removed
before checking for dynamic unbalance.

The Soderberg-Trumplcr machine is an example of the third type.
When mass production balancing of small units is performed, the time

per unit necessary for balancing is of great importance. The additional

correction weights necessary with the previously described types (see p. 67)
cause a loss of time. In order to eliminate these corrections, the fulcrum

of the balancing table is movable in this machine. The body to be bal-

anced is mounted in bearing blocks on a vibrating table supported by two

spring members and a movable fulcrum. By placing the fulcrum axis in

the plane of one of the balancing rings, say BB, the action of the theoretical

unbalance weight in this plane is eliminated as far as its effect upon the

motion of the vibrating table is concerned. This will now be produced
by the unbalance in the other plane only. Then the force at AA is bal-

anced, after which the fulcrum is moved to the position in the plane AA]
then BB is balanced. It is evident that this balancing is final and does

not require any correction. These machines are used mostly when small

rotors are balanced.

On this principle, an automatic machine is built by the Westinghouse
Company for their small motor works.* In order to eliminate harmful

* W. E. Trumpler, "The Dynamic Balance of Small High Speed Armatures/* Electric

Journal, Vol. 22, 1925, p. 34.
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damping in friction joints, knife edges were replaced by flexible spring
members. The table oscillates horizontally, being carried on a vertical

stem presenting a torsionally flexible axis. The table proper is moved in

guides in such a way that one weight correction plane can be brought for

balancing in line with the axis of the vertical stem.

For "automatic" balancing, the table is supplied with an unbalance

compensating head coupled to the rotor. The counter-balancing is done

by two electrically operated small clutches. The movable weights in the

head produce a counter balancing couple. One clutch shifts the weights

apart, increasing the magnitude of this couple; another clutch changes
the angular position of the counter-balancing couple with respect to the

rotor. Two switches mounted in front of the machine actuate the clutches.

It is easy in a very short time, a fraction of a minute, to adjust the counter-

balancing weights in a way that the vibration of the table is brought to

zero. Indicators on the balancing head show then the amount and
location of unbalance, and the necessary correction weights are inserted

into the armature.*

Balancing in the Field. Experience with large high speed units shows
that while balancing carried out on the balancing machine in the shop

may show good results, nevertheless this testing is usually done at

comparatively low speed and in service where the operating speeds are

high, unbalance may still be apparent due to slight changes in mass

distribution.! It is therefore necessary also to check the balancing
condition for normal operating speed. This test is carried out, either in

the shop where the rotor is placed for this purpose on rigid bearings or

in the field after it is assembled in the machine. The procedure of bal-

ancing in such conditions can be about the same as described above in

considering the Lawaczeck balancing machine. This consists in con-

secutive balancing of both ends of the rotor. In correcting the unbalance

at one end, it is assumed that vibrations of the corresponding pedestal
are produced only by the unbalance at this end.f The magnitude and
the location of the correction weight can then be found from measure-

ments of the amplitudes of vibrations of the pedestal, which are recorded

*
Recently several new types of balancing machines have been developed which

reduce considerably the time required for balancing. It should be mentioned here the

Leblanc-Thearle balancing machine described in Trans. Am. Soc. Mech. Engrs., Vol. 54,

p. 131, 1932; the Automatic Balancing Machine of Spaeth-Losenhausen and the method
of balancing rotors by means of electrical networks recently developed by J. G. Baker
and F. C. Rushing, Journal of the Franklin Institute, Vol. 222, p. 183, 1936.

fSee Art, 50.

t This assumption is accurate enor.gh in cases of rotors of considerable length
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by a suitable instrument. Four measurements are necessary for four

different conditions of the rotor in order to have sufficient data for a

complete solution of the problem. The first measurement must be made
for the rotor in its initial condition and the three others for the rotor with

some arbitrary weights placed consecutively in three different holes

of the balancing ring of the rotor end at which the balancing is being

performed. A rough approximation of the location of the correction

weight can be found by marking the shaft of the rotor in its initial condi-

tion as explained before (p. 66). The three trial holes must be taken

near the location found in this manner (Fig. 46, a).

On the basis of these four measurements the determination of the un-

balance can now be made on the assumption that the amplitudes of

vibration of the pedestal are proportional to the unbalance. Let AO (Fig.

46, 6) be the vector representing the unknown original imbalance and
let 01, 02, 03 be the vectors corresponding to the trial corrections I, II

and III put into the balancing ring of the rotor end during the second,
third and fourth runs, respectively. Then vectors Al, A2, A3 (Fig. 46, b)

represent the resultant unbalances for these three runs. These vectors,

according to the assumption made are proportional to the amplitudes of

vibration of the pedestal measured during the respective runs.

When balancing a rotor, the magnitudes and directions of 01, 02, 03

(Fig. 46, b) are known and a network as shown in Fig. 46, c by dotted

lines can be constructed. Taking now three lengths A'l', A '2', and A'y
proportional to the amplitudes observed during the trial runs and using
the network, a diagram geometrically similar to that given in Fig. 46, b,

can be constructed (Fig. 46, c). The direction OA' gives then the location

of the true correction and the length OA' represents the weight of it to

the same scale as 01', 02' and 03' represent the trial weights I, II and III,

respectively. It should be noted that the length OA' if measured to the

same scale as the amplitudes A' I', A/2', A'3', must give the amplitude of

the initial vibration of the pedestal, this being a check of the solution ob-

tained. In the photograph 46, d a simple device for the solution of this

problem, consisting of four straps connected together by a hinge Oi, is

shown.* Taking now three lengths ai, a<z and as on the straps proportional
to the amplitudes observed during the trial runs and moving the ends of

these straps along the radii of the correction weights such as radii 01',

02', 03' in Fig. 46, c it will make no difficulty to find a position of the

system where all these three ends will be situated on the same broken line

* This device has been developed by G. B. Karelitz and proved very useful in field

balancing. See "Power," Feb. 7 and 14, 1928.
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(a)

FIG 46.
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of the net work such as line 1'2'3'. The corresponding vector OOi will

then determine the position and the magnitude of the true correction

weight.
The second method of balancing is based on measurement of amplitude

and angle of lag of vibration produced by unbalance. It is assumed

that an angle of lag of vibration behind the disturbing unbalance force is

constant, while the unbalance is changed when the correction weights are

placed into the balancing ring of the high-speed rotor. This angle of lag

may be measured in a rough way by simply marking or scribing the shaft.

Correction^ ,. _
.

_

2 /V5 *z-_l4 &^Tr/ol Wt. 20 oz.

/s?A

FIG. 47.

A rough estimate of the unbalance can be obtained by the Single-Direct

Method.* The amplitude of vibration of a rotor bearing is observed

first without any correction weights in the balancing ring, and the shaft is

scribed. (This is done by painting the shaft with chalk and touching it as

lightly as possible with a sharp tool while rotating at full speed.) After

the rotor is stopped, the location of the "high spot" of this scribe mark is

noted with respect to the balancing holes of the rotor. A correction weight
is then placed in the balancing ring (preferably about 60 to 90 behind

* This method, suggested by B. Anoshenko, is described in the paper by T. C.

Rathbonc, Turbine Vibration and Balancing, Trans. A.S.M.E. 1929, paper APM-51-23.
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this high spot). With the rotor brought up again to full speed, the ampli-

tude is recorded and the shaft scribed again, the location of the new high

spot being later noted. The method of determination of the unbalance

will be demonstrated in an example. Assume twenty-four balancing

holes in the rotor with no correction weights (Fig. 47). The amplitude is

.004" and the high spot is found to be in line with hole No. 17. After

placing 20 ounces in hole No. 23, the amplitude changes to .0025", and the

high spot is found to be in line with hole No. 19. The diagram of Fig. 47

shows the construction for the location and determination of the correction

weight. Vector OA to hole No. 17 represents the amplitude of .004" to

a certain scale. Vector OB to hole No. 19 to the same scale represents

the amplitude .0025". Vector AB shows then the variation in the vibra-

tion to the same scale. This variation was produced by the weight C
placed in hole No. 23. Making OB' parallel to AB the angle COB' is then

the angle of lag. The original disturbing unbalance force is evidently

located at an angle AOX = COB' ahead of the original high spot. The
correction weight has to be placed in the direction OD opposite to OX.
The magnitude of the necessary correction weight is 20 ounces times the

ratio of OA to AB, or 36 \ ounces.

The scribing of the shaft is a very crude and unreliable operation and
the method should be considered as satisfactory only for an approximate
commercial determination of the unbalance. A more accurate result can

be obtained by using a phasometer in measuring the angle of lag.*

16. Application of Equation of Energy in Vibration Problems. In

investigating vibrations the equation of energy can sometimes be used

advantageously. Consider the system shown in Fig. 1. Neglecting the

mass of the spring and considering only the mass of the suspended body,
the kinetic energy of the system during vibration is

W

The potential energy of the system in this case consists of two parts:

(1) the potential energy of deformation of the spring and (2) the potential

energy of the load W by virtue of its position. Considering the energy
of deformation, the tensile force in the spring corresponding to any dis-

placement x from the position of equilibrium, is k(d8t + x) and the corre-

sponding strain energy is k(5at + x)
2
/2. At the position of equilibrium

* This method is developed by T. C. Rathbone, see paper mentioned above, p. 73.
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(x = 0) this energy is A:628t/2. Hence the energy stored in the spring

during the displacement x is

The energy due to position of the load diminishes during the displacement
x by the amount Wx. Hence the total change of the potential energy of

the system is

kx*

Due to the fact that the load W is always in balance with the initial tension

in the spring produced by the static elongation d3t ,
the total change in

potential energy is the same as in the case shown in Fig. 35, in which,
if we neglect friction, the static deflection of the spring is zero.

Having expressions (a) and (c) and neglecting damping the equation of

energy becomes
W kx2

x2 + = const. (d)
20 2

The magnitude of the constant on the right side of this equation is de-

termined by the initial conditions. Assuming that at the initial instant,

t = 0, the displacement of the body is #0 and the initial velocity is zero,

the initial total energy of the system is kx 2
/2 and equation (c?) becomes

W .
kx2

fcro
2

It is seen that during vibration the sum of the kinetic and potential energy
remains always equal to the initial strain energy. When in the oscillatory
motion x becomes equal to xo the velocity x becomes equal to zero and
the energy of the system consists of the potential energy only. When x

becomes equal to zero, i.e., the vibrating load is passing through its middle

position, the velocity has its maximum value and we obtain, from eq. (e) t

Thus the maximum kinetic energy is equal to the strain energy stored in

the system during its displacement to the extreme position, x = #0.
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In all cases in which it can be assumed that the motion of a vibrating

body is a simple harmonic motion, which is usually correct for small vi-

brations,* we can use equation (/) for the calculation of the frequency of

vibration. We assume that the motion is given by the equation x =
XQ sin pt. Then (i)max = xop- Substituting in eq. (/) we obtain

r
J7

VJ"

This coincides with eq. (2), previously obtained, p. 2.

The use of eq. (/) in calculating frequencies is especially advantageous
if instead of a simple problem, as in Fig. 1, we have a more complicated

system. As an example let us consider the

frequency of free vibrations of the weight W
of an amplitude meter shown in Fig. 48.

The weight is supported by a soft spring k\

so that its natural frequency of vibration is

low in comparison with the frequency of vibra-

tions which are measured by the instrument.

When the amplitude meter is attached to a

body performing high frequency vertical vi-

brations the weight W, as explained before,
see art. 4, remains practically immovable in

space and the pointer A connected with W
,

indicates on the scale the magnified amplitude
of the vibration. In order to obtain the fre-

quency of the free vibrations of the instrument with greater accuracy,
not only the weight W and the spring fci, but also the arm AOB and the

spring 2 must be taken into consideration. Let x denote a small vertical

displacement of the weight W from the position of equilibrium. Then
the potential energy of the two springs with the spring constants ki and
2 will be

kix2 fc2/c\2
n

1T+2-U*
2

- W

FIG. 48.

The kinetic energy of the weight W will be, as before,

W
20

x. (K)

* Some exceptional cases are discussed in Chapter II*
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The angular velocity of the arm AOB rotating about the point is

x

b

and the kinetic energy of the same arm is

2b2
' (0

Now the equation of motion, corresponding to eq. (d) above, will be

from (fc), (fc) and (I),

-2 ,
I

,

* c
2+

2
x = const-

We see that this equation has the same form as the equation (d); only
instead of the mass W/g we have now the reduced mass

W I

and instead of the spring constant k we have the reduced spring constant

ki + *2 (cVb
2
).

As another example let us consider torsional vibrations of a shaft one

end of which is fixed and to the other end is attached a disc connected

FIG. 49;

with a piston as shown in Fig. 49. We consider only small rotatory
oscillations about its middle position given by the angle a. If <p is the

angle of twist of the shaft at any instant, the potential energy of the system,
which in this case is the strain energy of torsion of the shaft, is equal
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to k<f>
2
/2, where k is the spring constant of the shaft. In calculating the

kinetic energy of the system we have to consider the kinetic energy of the

rotating parts, equal to I<p
2
/2 and also the kinetic energy of the recipro-

cating masses.* In calculating the kinetic energy of the reciprocating

masses, the total weight of which we call by W, it is necessary to have the

expression for the velocity of these masses during torsional vibration.

The angular velocity of the connecting rod AB with respect to the

instantaneous center C, Fig. 49, can be obtained from the consideration

of the velocity of the point A. Considering this point as belonging to

the disc its velocity during vibration is r^ The velocity of the same point,
as belonging to the connecting rod, is ZC and we obtain

- . I cos ft A
rj>

= AC = d
COS a

where I is the length of the connecting rod and $ its angle of inclination to

the horizontal. From this equation

.

__ rip cos a

Zcos/3

and the velocity of the reciprocating masses is

x = 6 BC =
(I cos 6 + r cos a) tan a =

r<p sin a[ 1 H ) (m)
\ Icosf}/

We obtain also from the figure

r sin a = I sin /?.

Hence

r r2 lr2
sin = - sin a; cos ft

= -i/ 1 -- sin2 a 1 - sin2 a- (ri)
L I & I

If the ratio r/l is small we can assume with sufficient accuracy that

cos j8 1. Then the velocity of the reciprocating masses is

/ r \
x r ip sin a I 1 + ~

7
cos a. ] (o)

* The mass of the connecting rod can be replaced by two masses, mi = /i/Z
2 at the

crankpin and m* = m twi at the crosshead, where m is the total mass of the con-

necting rod and /i its moment of inertia about the center of the crosshead. This is the
usual- way of replacing the connecting rod, see Max Tolle, "Regelung der Kraft-

maschinen," 3d Ed., p. 116, 192h
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and the total kinetic energy of the system is

la2 W ( r V- + r2y>
2 sin2 a. ( 1 + i cos a ) .

2t 2tQ \ i /

The energy equation in this case becomes

W _ . 2
/ r ysin2 a I 1 + - cos a ) =

79

r & sm^

The effect of the reciprocating masses on the frequency of torsional vibra-

tions is the same as the increase in the moment of inertia of the disc ob-

tained By adding to the circumference of the disc of a reduced mass equal to

W ( r \ 2

sin2 a
[
1 + - cos a }

\ I /

It is seen that the frequency depends on the magnitude of the angle a.

When a is zero or ?r, the reciprocating masses do not effect the frequency
and the effect becomes maximum when a is approximately equal to 7r/2.

PROBLEMS

1. Calculate the frequencies of small vibrations of the pendulums shown in Fig.

50a, 6, c, by using the equation of energy. Neglect the mass of the bars and assume
that in each case the mass of the weight W is concentrated in its center.

Solution. If <p is the angle of inclination of the pendulum, Fig. 50a, and I its length,
the kinetic energy of the pendulum is W^>2

l
z
/2g. The change in potential energy of

the pendulum is due to vertical displacement 1(1 cos <p) l<p*/2 of the weight W
and equation of energy becomes

20
const.
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Assuming motion <?
= w sin pt and writing an equation, similar to eq. (/) we obtain

the circular frequency

In the case shown in Fig. 506 the strain energy of the springs must be added to the

potential energy of the weight W in writing the equation of energy. If k is the spring

constant, by taking into consideration both springs, the strain energy of springs is

k(a<f>)
2/2 and, instead of eq. (r), we obtain

(Wl+ const.

and the frequency of vibrations becomes

In the case shown in Fig. 50c, the potential energy of the weight W, at any lateral

displacement of the pendulum from vertical position, decreases and by using t^e same
reasoning as before we obtain

Iff M 2

ka*

T"

It is seen that we obtain a real value for p only if

and W <

If this condition is not satisfied the vertical position of equilibrium of the pendulum is

not stable.

FIG. 51.

2. For recording of ship vibrations a device shown in Fig. 51 is used.* Determine
the frequency of vertical vibrations of the weight W if the moment of inertia 7 of this

weight, together with the bar BD about the fulcrum B is known.
Solution. Let <p be the angular displacement of the bar BD from its horizontal

position of equilibrium and k the constant of the spring, then the energy stored during

*This is O. Schlick's pallograph, see Trans. Inst. Nav. Arch., Vol. 34, p. 167, 1893.
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this displacement is fcaV2/2 and the kinetic energy of the system is 7>2
/2. The energy

equation becomes

const.

Proceeding as in the case of eq. (d) we get for circular frequency the expression

p =

If we neglect the mass of the bar BD and assume the mass of the weight W concentrated

in its center / = Wl2
/g and the frequency becomes

\ka-g la g=
\W'

~
\/

'

Comparing this with eq. (2)where 8st - Wl/ak is statical elongation of the spring,

it can be concluded that for the same elongation of

the spring the horizontal pendulum has a much lower

frequency than the device shown in Fig 1 provided
that the ratio a/I is sufficiently small. A low frequency
of the vibration recorder is required in this case since

the frequency of natural vibration of a large ship may
be comparatively low, and the frequency of the instru-

ment must be several times smaller than the fre-

quency of vibrations which we are studying (see art. 4).

3. Figure 52 represents a heavy pendulum the axis

of rotation of which makes a small angle a. with the

vertical. Determine the frequency of small vibration

considering only the weight W which is assumed to be

concentrated at its mass center C.

Solution. If <f> denotes a small angle of rotation of

the pendulum about the inclined axis measured from

the position of equilibrium the corresponding elevation of the center C is

1(1 cos v?) sin a.
~ a

2t

FIG. 52.

const.

and the equation of energy becomes

w_ iv + __.

and the circular frequency of the pendulum is

p =

It is seen that by choosing a small angle a the frequency of the pendulum may be made

very low. This kind of pendulum is used sometimes in recording earthquake vibra-

tions. To get two components of horizontal vibrations two instruments such as shown

in Fig. 52 are used, one for the N.-S. component and the other for the E.-W. component.
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4* For recording vertical vibrations the instrument shown in Fig. 53 is used, in

which a rigid frame AOB carrying the weight W can rotate about an axis through

perpendicular to the plane of the figure. Determine the frequency of small vertical

vibrations of the weight if the moment of inertia / of the frame together with the weight

FIG. 53. FIG. 54.

about the axis through and the spring constant k are known and all the dimensions

are given.

Answer, p \/~7~*

5. A prismatical bar AB suspended on two equal vertical wires, Fig 54, performs
small rotatory oscillations in the horizontal plane about the axis oo. Determine the

frequency of these vibrations.

Solution. If ?> is the angle of rotation of the bar from the position of equilibrium,
the corresponding elevation of the bar is aV2

/2J and the energy equation becomes

,+ =const.

Taking 7 = TF&V30 we obtain the frequency
"

6. What frequency will be produced if the wires in the previous problem will be placed
at an angle to the axis oo.

Answer, p - Vcos ft

<J-jjj-f

*

7. The journals of a rotor are supported by rails curved to a radius R, Fig. 55.

Determine the frequency of small oscillations which the rotor performs when rolling
without sliding on the rails.

Solution. If (p is the angle defining the position of the journals during oscillations

and r is the radius of the journals, the angular velocity of the rotor during vibrations is
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<?(R r)/r, the velocity of its center of gravity is (R r) and the vertical elevation

of this center is (R r)<p
z
/2. Then equation of energy is

-
r)

2
,
W(R -

2r2

,

1

W(R -

FIG. 55.

where 7 is the moment of inertia of the rotor with respect to its longitudinal axis.

the frequency of vibration we obtain

For

-r)

8. A semi-circular segment of a cylinder vibrates by rolling without sliding on a
horizontal plane, Fig. 56. Determine the frequency of small

vibrations.

Answer. Circular frequency is

"Vt* + (r-.

where r is the radius of the cylinder, c = OC is the distance

of center of gravity and i2 = Ig/W the square of the radius

of gyration about centroidal axis. FIG. 56.

16. Rayleigh Method. In all the previously considered cases, such as

shown in Figs. 1, 4, and 7, by using certain simplifications the problem
was reduced to the simplest case of vibration of a system with one degree
of freedom. For instance, in the arrangement shown in Fig. 1, the mass
of the spring was neglected in comparison with the mass of the weight W,
while in the arrangement shown in Fig. 4 the mass of the beam was

neglected and again in the case shown in Fig. 7 the moment of inertia

of the shaft was neglected in comparison with the moment of inertia of

the disc. Although these simplifications are accurate enough in many
practical cases, there are technical problems in which a more detailed

consideration of the accuracy of such approximations becomes necessary.
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In order to determine the effect of such simplifications on the fre-

quency of vibration an approximate method developed by Lord Rayleigh*
will now be discussed. In applying this method some assumption regarding
the configuration of the system during vibration has to be made. The

frequency of vibration will then be found from a consideration of the

energy of the system. As a simple example of the application of Ray-
leigh's method we take the case shown in Fig. 1 and discussed in Art. 15.

Assuming that the mass of the spring is small in comparison with the

mass of the load W, the type of vibration will not be substantially affected

by the mass of the spring and with a sufficient accuracy it can be assumed
that the displacement of any cross section of the spring at a distance c

from the fixed end is the same as in the case of a massless spring, i.e.,

equal to

xc

7' (a)

where I is the length of the spring.
If the displacements, as assumed above, are not affected by the mass

of the spring, the expression for the potential energy of the system will be

the same as in the case of a massless spring, (see eq. (c), p. 75) and only
the kinetic energy of the system has to be reconsidered. Let w denote

the weight of the spring per unit length. Then the mass of an element

of the spring of length dc will be wdc/g and the corresponding kinetic

energy, by using eq. (a), becomes

w

The complete kinetic energy of the spring will be

w C /xc\2
, x 2 wl

I I -~- I fa = .

2g JQ \l / 2g 3

This must be added to the kinetic energy of the weight W] so that the

equation of energy becomes

- ? = ~-
(&)

Comparing this with eq. (e) of the previous article it can be con-

cluded that in order to estimate the effect of the mass of the spring on

* See Lord Rayleigh's book "Theory of Sound," 2d Ed., Vol. I, pp. Ill and 287.
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the period of natural vibration it is only necessary to add one-third of

the weight of the spring to the weight W.
This conclusion, obtained on the assumption that the weight of the

spring is very small in comparison with that of the load, can be used with

sufficient accuracy even in cases where the weight of the spring is of the

same order as W. For instance, for wl = .5TF, the error of the approxi-
mate solution is about l/z%. For wl W, the error is about %%. For
wl = 2W, the error is about 3%.*

As a second example consider the case of vibration of a beam of uniform

cross section loaded at the middle (see Fig.

57). If the weight wl of the beam is small

in comparison with the load W, it can be

assumed with sufficient accuracy that the ^ f/

deflection curve of the beam during vibration *
2

has the same shape as the statical deflection FlG 57
curve. Then, denoting by x the displacement
of the load W during vibration, the displacement of any element wdc of

the beam, distant c from the support, will be,

3d2 - 4c3

The kinetic energy of the beam itself will be,

17
7
i2

= wl--' (41)v '

20 \ Z
J / 35 20

This kinetic energy of the vibrating beam must be added to the energy
Wx2

/2g of the load concentrated at the middle in order to estimate the

effect of the weight of the beam on the period of vibration, i.e., the period
of vibration will be the same as for a massless beam loaded at the middle

by the load

IK + (17/35)ti?Z.

It must be noted that eq. (41) obtained on the assumption that the

weight of the beam is small in comparison with that of the load TK, can

be used in all practical cases. Even in the extreme case where W =
and where the assumption is made that (l7/3S)wl is concentrated at the

middle of the beam, the accuracy of the approximate method is sufficiently

* A more detailed consideration of this problem is given in Art. 52.
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close. The deflection of the beam under the action of the load (17/35)wZ

applied at the middle is,

p

Substituting this in eq. (5) (see p. 3) the period of the natural vibration is

g

The exact solution for this case * is

2

It is seen that the error of the approximate solution for this limiting case

is less than 1%.
The same method can be applied also in the case shown in Fig. 58.

Assuming that during the vibration the shape
dc of the deflection curve of the beam is the same

i"n * as the one produced by a load statically applied
at the end and denoting by x the vertical dis-

placement of the load W the kinetic energy
of the cantilever beam of uniform cross section

Fia58'

will be,

f
J

33

The period of vibration will be the same as for a massless cantilever beam
loaded at the end by the weight,

W + (33/140)trf.

This result was obtained on the assumption that the weight wl of the

beam is small in comparison with W, but it is also accurate enough for

cases where wl is not small. Applying the result to the extreme case

where W = we obtain

_ 33 I
3

5" "
140

W
3EI

'

* See Art. 56.
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The corresponding period of vibration will be

27T Wl*

(d)

r-2^/-^-^^^
-

The exact solution for the same case is *

27T
T "

3.515

It is seen that the error of the approximate solution is about
For the case W = a better approximation can be obtained. It is only

necessary to assume that during the vibration the shape of the deflection

curve of the beam is the same as the one produced by a uniformly distrib-

uted load. The deflection yo at any cross section distant c from the built-

in section will then be given by the following equation,

2/o
= *o - 1/3 + (4/3) + 1/3 l -

, (e)

in which

represents the deflection of the end of the cantilever.

The potential energy of bending will be

/i
8 EIxo2

yodc = -
5 P

The kinetic energy of the vibrating beam is

T = - / r/
2drj. i y uc.

2 JQ 9

Taking (see p. 75)

y = yocospt and (?/)max.
= yop.

The equation for determining p will be (see eq. (/), p. 75)

8EIx<>2

5 /
~ (ywYdc =

* */o y 5

* See Art. 57
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Substituting (e) for yo and performing the integration, we obtain

p = 3.530

The corresponding period of vibration is

3.530

Comparing this result with the exact solution (d) it can be conclude*

that in this case the error of the approximate solution is only about %%
It must be noted that an elastic beam represents a system with a:

infinitely large number of degrees of freedom. It can, like a string

perform vibrations of various types. The choosing of a definite shap
for the deflection curve in using Rayleigh's method is equivalent to intro

ducing some additional constraints which reduce the system to one havin:

one degree of freedom. Such additional constraints can only increas

the rigidity of the system, i.e., increase the frequency of vibration. I]

all cases considered above the approximate values of the frequencie
as obtained by Rayleigh's method are somewhat higher than their exac

values.*

In the case of torsional vibrations (see Fig. 7) the same approximat
method can be used in order to calculate the effect of the inertia of th

shaft on the frequency of the torsional vibrations. Let i denote th

moment of inertia of the shaft per unit length. Then assuming that th

type of vibration is the same as m the case of a massless shaft the angl
of rotation of a cross section at a distance c from the fixed end of th

shaft is c<p/l and the kinetic energy of one element of the shaft will be

idc

The kinetic energy of the entire shaft will be

!/(?)'*-?!
This kinetic energy must be added to the kinetic energy of the disc ii

order to estimate the effect of the mass of the shaft on the frequency c

vibration, i.e., the period of vibration will be the same as for a massles

* A complete discussion of Rayleigh's method can be found in the book by G
Temple and W. G. Bickley, "Rayleigh's Principle," Oxford University Press, 1933.
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shaft having at the end a disc, the moment of inertia of which is equal to

/ + fl/3.

The application of Rayleigh's method for calculating the critical speed
of a rotating shaft will be shown in the following article.

PROBLEMS

1. Determine the frequency of natural vibrations of the load W supported by a beam
AB, Fig. 59, of constant cross section (1)

b

Hi i

4- 8

assuming that the weight of the beam can

be neglected; (2) taking the weight of the

beam into consideration and using Ray- /

leigh's method.
r~J~3/rf"~4ft/

Solution. If a and 6 are the distances ^* *

of the load from the ends of the beam the

static deflection of the beam under the load X
is 5 = Wa*b2

/3lEI. Taking for the spring F1G. 59.

constant the expression k = 3lEI/a*b* and

neglecting the mass of the beam the circular frequency of vibration is obtained from
the equation of energy (see p. 75)

in which imax = Xop. Hence

W kxo*-*w = (a)

To take the mass of the beam into account we consider the deflection curve of the beam
under static action of the load W. The deflection at any point of the left portion of

the beam at the distance from the support A is

For the deflection at any point to the right of the load W and at a distance 77 from the

support B we have

Applying Rayleigh's method and assuming that during vibration the maximum velocity
of any point of the left portion of the beam at a distance from the support A is given

by the equation

(ii)max = imax ~ = Xmax r~7 [a(l + 6)

in which imax is the maximum velocity of the load TF, we find that to take into account
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the mass of the left portion of the beam we must add to the left side of the equation (g)

the quantity

6)
-

wifl P 23 a* Serf]-'
In the same manner considering the right portion of the beam we find that we must add
to the left side of eq. (g) the expression

20

1 (I + o) 1 6 _ 1 6(1 + o)1

1^ 2 28 a2 10 a2
J

0)

The equation of energy becomes

(W + awa -f

where a and denote the quantities in the brackets of expressions (k) and (I) and we
obtain for the frequency of vibration the following formula

P = WEIg
(W -f aaw + Pbw)a2b*

(m)

2. Determine the frequency of the natural vertical vibrations of the load W sup-

ported by a frame hinged at A and B, Fig. 60a, assuming that the three bars of the

frame have the same length and the same
cross section and the load is applied at the

middle of the bar CD. In the calculation

(1) neglect the mass of the frame; (2)

consider the mass of the frame by using

Rayleigh's method.
Solution. By using the known for-

mulas for deflections of beams we find

that the bending moments at the joints C
and D are equal to 3TF//40. The deflec-

'//?//'.

FIG. 60.
tions of vertical bars at a distance from
the bottom is

= arm/ _p\Xl
240^7 \ /V*

(n)

The deflections of the horizontal bar to the left of the load is

(o)

The deflection under the load W is

5 = (x2

11 WV
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By neglecting the mass of the frame we find the frequency

- I
9 - t- V 8

- V
In calculating the effect of this mass on the frequency let us denote by xmta. the maxi-

mum velocity of the vibrating body W. Then the maximum velocity of any point of

the vertical bars at a distance from the bottom is

(ii)max = Xrnax ~T imax "7 ~
I 1 ~

I (T)
1 1 I \ I* f

and the maximum velocity at any point of the left portion of the horizontal bar CD

2(Wo 4"2\ 36 "A "

HI V
3 ~ TJ

- H I V
-

7

The kinetic energy of the frame which must be added to the kinetic energy of the load

W is

2g

,^>
Jo 2g \6/

Substituting for the ratios xi/d and X2/5 their expressions from (r) and () and inte-

grating, the additional kinetic energy can be represented in the following form

WCil /.NO
~T"~ (Zrmax
2flT

where a is a constant factor.

The equation for frequency of vibration now becomes

-f

3. Determine the frequency of lateral vibrations of the frame shown in Fig. 606.

Solution. The frequency of these vibrations, if the mass of the frame is neglected, can

be calculated by using the formulas of problem 5, see p. 7. To take into account the

mass of the frame, the bending of the frame must be considered. If x is the lateral dis-

placement of the load W together with the horizontal bar CD, the horizontal displace-

ment of any point of the vertical bars at a distance from the bottom, from consideration

of the bending of the frame, is

The kinetic energy of the vertical bars is

2

where a is a constant factor which is obtained after substituting for x\ its expression

/i
. , 1wx\* ctwl

dt = i2
,

20 g
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from (u) and integrating. In considering the kinetic energy of the horizontal bar we
take into consideration only the horizontal component x of the velocities of the particles

of the bar. Then the total kinetic energy of the load together with the frame is

2(7 2g
'

and the frequency is obtained from the equation (see prob. 5, p. 7).

1 /H
2 \ITP-

17. Critical Speed of a Rotating Shaft. It is well known that rotating

shafts at certain speeds become dynamically unstable and large vibrations

are likely to develop. This phenomenon is due to resonance effects and

a simple example will show that the critical speed for a shaft is that speed
at which the number of revolutions per second of the shaft is equal to the

frequency of its natural lateral vibration.*

Shaft with One Disc. In order to exclude

from our consideration the effect of the weight
of the shaft and so make the problem as

simple as possible, a vertical shaft with one
circular disc will be taken (Fig. 61, a). Let C
be the center of gravity of the disc and e a

small eccentricity, i.e., the distance of C from
the axis of the shaft. During rotation, due
to the eccentricity e, a centrifugal force will

act on the shaft, and will produce deflection.

The magnitude of the deflection x can easily
be obtained from the condition of equilibrium
of the centrifugal force and the reactive force

P of the deflected shaft. This latter force is proportional to the deflec-

tion
,
and can be represented in the following form,

P = kx.

The magnitude of the factor k can be calculated provided the dimensions
of the shaft and the conditions at the supports be known. Assuming,
for instance, that the shaft has a uniform section and the disc is in the

middle between the supports, we have

FIG. 61.

* A more detailed discussion of lateral vibrations of a shaft is given in Articles 39
and 49.
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Now from the condition of equilibrium the following equation for deter-

mining x will be obtained

W
(x + e)o)

2 = kx, (a)
g

in which W/g is the mass of the disc, w is angular velocity of the shaft.

From eq. (a) we have,

Remembering (see eq. (2), p. 2) that

kg_ = 2

W P '

it can be concluded from (6) that the deflection x tends to increase rapidly
as w approaches p, i.e., when the number of revolutions per second of the

shaft approaches the frequency of the lateral vibrations of the shaft and
disc. The critical value of the speed will be

At this speed the denominator of (b) becomes zero and large lateral

vibrations in the shaft occur. It is interesting to note that at speeds

higher than the critical quiet running conditions will again prevail.

The experiments show that in this case the center of gravity C will be
situated between the line joining the supports and the deflected axis of

the shaft as shown in Fig. 61, b. The equation for determining the deflec-

tion will be

W
(x e)co

2 =
kx,

from which

It is seen that now with increasing o; the deflection x decreases and

approaches the limit e, i.e., at very high speeds the center of gravity
of the disc approaches the line joining the supports and the deflected

shaft rotates about the center of gravity C.
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Shaft Loaded with Several Discs. It has been shown above in a simple

example that the critical number of revolutions per second of a shaft is

equal to the frequency of the natural lateral vibration of this shaft. De-

termining this frequency by using Rayleigh's method the critical speed
for a shaft with many discs (Fig. 62) can easily be established. Let Wi,

W2, Ws denote the loads and xi, 22, 0:3 denote the corresponding statical

deflections. Then the potential energy of deformation stored in the beam

during bending will be

W2X2 .+ -- +

In calculating the period of the slowest type of vibration the static

deflection curve shown in Fig. 62 can be taken as a good approximation
for the deflection curve of the beam during vibration. The vertical

displacements of the loads Wi, Wz and W% during vibration can be written

as:

X\ COS pt} X2 COS pt, X3 COS pt. (e)

Then the maximum deflections of the shaft from the position of equi-

librium are the same as those given in Fig. 62; therefore, the increase in

the potential energy of the vibrating
shaft during its deflection from the

position of equilibrium to the extremew
7 fKK2

" "*
position will be given by equation

FIG. 62. (d). On the other hand the kinetic

energy of the system becomes maxi-

mum at the moment when the shaft, during vibration, passes through its

middle position. It will be noted, from eq. (e), that the velocities of the

loads corresponding to this position are:

px2 ,

and the kinetic energy of the system becomes

~
(TFizi

2 + W2X2
2

Equating (d) and (/), the following expression for p2 will be obtained:

2 = + W2x2 +
P 2 2 2

'

( *
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The period of vibration is

7" = = 2iir \ "
(4t))

In general, when n loads are acting on the shaft the period of the lowest

type of vibration will be

few^*
(47)

It is seen that for calculating r the statical deflections 0*1, X2 of

the shaft alone are necessary. These quantities can easily be obtained

by the usual methods. If the shaft has a variable cross section a graphical
method for obtaining the deflections has to be used. The effect of the

weight of the shaft itself also can be taken into account. It is necessary
for this purpose to divide the shaft into several parts, the weights of which,

applied to their respective centers of gravity, must be considered as

concentrated loads.

Take, for instance, the shaft shown in Fig. 63, a, the diameters of

which and the loads acting on it are shown in the figure. By constructing
the polygon of forces (Fig. 63, 6) and the corresponding funicular polygon

(Fig. 63, c) the bending moment diagram will be obtained. In order

to calculate the numerical value of the bending moment at any cross

section of the shaft it is only necessary to measure the corresponding
ordinate e of the moment diagram to the same scale as used for the length
of the shaft and multiply it with the pole distance h measured to the

scale of forces in the polygon of forces (in our case h = 80,000 Ibs.).

In order to obtain the deflection curve a construction of the second funic-

ular polygon is necessary in which construction the bending moment
diagram obtained above must be considered as an imaginary loading

diagram. In order to take into account the variation in cross section of

the shaft, the intensity of this imaginary loading at every section should

be multiplied by Jo// where /o = moment of inertia of the largest cross

section of the shaft and / = moment of inertia of the portion of the shaft

under consideration. In this manner the final imaginary loading repre-

sented by the shaded area (Fig. 63, c) is obtained. Subdividing this area

into several parts, measuring the areas of these parts in square inches and

multiplying them with the pole distance h measured in pounds, the imagi-

nary loads measured in pounds-inches
2 will be obtained. For these loads,
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25" 50
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the second polygon of forces (Fig. 63, d) is constructed by taking a pole
distance hi equal to Elo/n where EIo is the largest flexural rigidity of the

shaft and n is an integer (in our case n = 800). It should be noted that

the imaginary loads and the pole distances El/n have the same dimension,

i.e., in.2-lbs., and should be represented in the polygon of forces to the

same scale. By using the second polygon of forces the second funicular

polygon (Fig. 63, e) and the deflection curve of the shaft tangent to this

polygon can easily be constructed. In order to get the numerical values of

the deflections it is only necessary to measure them to the same scale to

which the length of the shaft is drawn and divide them by the number n
used above in the construction of the second polygon. All numerical

results obtained from the drawing and necessary in using eq. (47) are

given in the table below.

1570 33.09

The critical number of revolutions per minute will be obtained now
as follows:

30 J386 X 1570

TT > 33.09
1290 R.P.M.

It should be noted that the hubs of spiders or flywheels shrunk on the

shaft increase the stiffness of the shaft and may raise its critical speed

considerably. In considering this phenomenon it can be assumed that

the stresses due to vibration are small and the shrink fit pressure between
the hub and the shaft is sufficient to prevent any relative motion between
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these two parts, so that the hub can be considered as a portion of shaft

of an enlarged diameter. Therefore the effect of the hub on the critical

speed will be obtained by introducing this enlarged diameter in the graph-
ical construction developed above.*

In the case of a grooved rotor (Fig. 64) if the distances between the

grooves are of the same order as the depth of the groove, the material

between two grooves does not take any bending stresses and the flexibility

mn

FIG. 64.

of such a rotor is near to one of the diameter d measured at the bottom
of the grooves, f

It must be noted also that in Fig. 62 rigid supports were assumed.

In certain cases the rigidity of the supports is small enough so as to

produce a substantial effect on the magnitude of the critical speed. If

the additional flexibility, due to deformation of the supports, is the same
in a vertical and in a horizontal direction the effect of this flexibility can

be easily taken into account. It is only necessary to add to the deflections

xi, X2 and 0*3 of the previous calculations the vertical displacement due
to the deformation of the supports under the action of the loads Wi, W2
and TFa. Such additional deflections will lower the critical speed of the

shaft. |

18.
rGeneral Case of Disturbing Force. In the previous discussion

of forced vibrations (see articles 4 and 9) a particular case of a disturbing
force proportional to sin ut was considered. In general case a periodical

disturbing force is a function of time f(t) which can be represented in the

form of a trigonometrical series such as

f(f)
= ao + ai cos ut + 0,2 cos 2a> + . . . 61 sin ut + 62 sin 2ooJ + . . .

, (a)

* Prof. A. Stodola in his book "Dampf- und Gas Turbinen," 6th ed. (1924), p. 383,

gives an example where such a consideration of the stiffening effect of shrunk on parts

gave a satisfactory result and the calculated critical speed was in good agreement with

the experiment. See also paper by B. Eck, Versteifender Einfluss der Turbinen-

scheiben, V. D. I., Bd. 72, 1928, S. 51.

t B. Eck, loc. cit.

J The case when the rigidities of the supports in two perpendicular directions are

different is discussed on p. 296.
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in which

- co

jfi
= is the frequency of the disturbing force,

27T

27T
TI = is the period of the disturbing force.

CO

In order to calculate any one of the coefficients of eq. (a) provided

f(t) be known the following procedure must be followed. Assume that

any coefficient a l is desired, then both sides of the equation must be

multiplied by cos iut dt and integrated from = 0to = ri. It can be
shown that

/T\
S*T\

GO cos iut dt =
;

/ ak cos kut cos iui dt =
;

/o

/n
rr\

bk sin fcco cos iut dt = 0; / a l cos
2 iut dt = TI,

*/D 2

where i and k denote integer numbers 1, 2, 3, . By using these form-

ulas we obtain, from eq. (a),

2 r
ai
=

/ /(O COS ^ ^- (&)
^1^

In the same manner, by multiplying eq. (a) by sin iut dt, we obtain

2 ri

b {
= -~ /

f(t) sin icof d^. (c)
TI-/D

Finally, multiplying eq. (a) by c/^ and integrating from t = to < = TI,

we have

flo = - / /(<) d. (d)
n^o

It is seen that by using formulas (6), (c) and (d), the coefficients of

eq. (a) can be calculated if f(t) be known analytically. If f(f) be given

graphically, while no analytical expression is available, some approxi-
mate numerical method for calculating the integrals (6), (c) and (d)

must be used or they can be obtained mechanically by using one of

the instruments for analyzing curves in a trigonometrical series.*

* A discussion of various methods of analyzing curves in a trigonometrical series

and a description of the instruments for harmonical analysis can be found in the book:
" Practical Analysis," by H. von Sanden.
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Assuming that the disturbing force is represented in the form of a

trigonometrical series, the equation for forced vibrations will be (see

eq. (32), p. 38).

x + 2nx + p2x = ao + ai cos ut + 02 cos 2w +
+61 sin ut + 62 sin 2<o + . (e)

The general solution of this equation will consist of two parts, one of

free vibrations (see eq. (26), p. 33) and one of forced vibrations. The
free vibrations will be gradually damped due to friction. In considering
the forced vibration it must be noted that in the case of a linear equation,
such as eq. (e), the forced vibrations will be obtained by superimposing
the forced vibrations produced by every term of the series (a). These
latter vibrations can be found in the same manner as explained in article

(9) and on the basis of solution (35) (see p. 40) it can be concluded that

large forced vibrations may occur when the period of one of the terms

of series (a) coincides with the period r of the natural vibrations of the

system, i.e., if the period r\ of the disturbing force is equal to or a mul-

tiple of the period r.

As an example consider vibrations produced in the frame ABCD by
the inertia forces of a horizontal engine (Fig. 65) rotating with constant

angular velocity co. Assume that the horizontal beam BC is very rigid

and that horizontal vibrations due to bending of the columns alone should

be considered. The natural period of these vibrations can easily be

obtained. It is only necessary to calculate the statical deflection d8t of

the top of the frame under the action of a horizontal force Q equal to the

weight of the engine together with the weight of horizontal platform
BC. (The mass of the vertical columns is neglected in this calculation.)

Assuming that the beam BC is absolutely rigid and rests on two columns,
we have

= Q_
o 1?7 V O J
oJtLl \^/

Substituting this in the equation,

the period of natural vibration will be found.

In the case under consideration, forced vibrations will be produced

by the inertia forces of the rotating and reciprocating masses of the engine.
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In considering these forces the mass of the connecting rod can be replaced
with sufficient accuracy by two masses, one at the crank pin and the
second at the cross-head. To the same two points all other unbalanced
masses in motion readily can be reduced, so that finally only two masses
MI and M have to be taken into consideration (Fig. 65, 6). The hori-

zontal component of the inertia force of the mass MI is

Mito2
rcostot, (/)

in which co is angular velocity of the engine,
r is the radius of the crank,

tot is the angle of the crank to the horizontal axis.

y^^^///////////////^//7y////////////////

M

FIG. 65.

The motion of the reciprocating mass M is more complicated. Let
x denote the displacement of M from the dead position and /3, the angle
between the connecting rod and the x axis. From the figure we have,

and

From (ti),

x =
1(1 cos /3) + r(l cos tot)

r sin tot = I sin /3.

(9)

(h)

sin j8
= - sin

L
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The length I is usually several times larger than r so that with sufficient

accuracy it can be assumed that

/
?'
2

= A/ 1 -;^ i

Substituting in eq. (

,
cos = A/ 1 -; sin2 wJ 1 sin2 ut,

i do

x = r(l cos o;0 + -- sin2 otf. (fc)
2/

From this equation the velocity of the reciprocating masses will be

r2co
x = no sin o> + sin 2co

^

and the corresponding inertia forces will be

Mx = Afo/2r ( cos ut + cos 2o>/
j. (I)

Combining this with (/) the complete expression for the disturbing

force will be obtained. It will be noted that this expression consists of two

terms, one having a frequency equal to the number of revolutions of the

machine and another having twice as high a frequency. From this it can

be concluded that in the case under consideration we have two critical

speeds of the engine: the first when the number of revolutions of the

machine per second is equal to the frequency 1/r of the natural vibrations

of the system and the second when the number of revolutions of the

machine is half of the above value. By a suitable choice of the rigidity of

the columns AB and CD it is always possible to ascertain conditions

sufficiently far away from such critical speeds and to remove in this manner
the possibility of large vibrations. It must be noted that the expression

(1) for the inertia force of the reciprocating masses was obtained by making
several approximations. A more accurate solution will also contain har-

monics of a higher order. This means that there will be critical speeds of

an order lower than those considered above, but usually these are of no

practical importance because the corresponding forces are too small to

produce substantial vibrations of the system.
In the above consideration the transient condition was excluded. It

was assumed that the free vibrations of the system, usually generated at

the beginning of the motion, have been damped out by friction and forced

vibrations alone are being considered. When the displacement of a system
at the beginning of the motion is to be investigated or when the actirg
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force cannot be accurately represented by few terms of series (a) another

way of calculating displacements of a vibrating system, based on solution

(7) (see p. 4) of the equation of free harmonic vibration, has certain

advantages. To explain the method let us consider the system shown in

Fig. 1. We assume that at the initial instant (t
= 0) the body is at rest

in its position of statical equilibrium. A vertical disturbing force of the

magnitude q per unit mass of the body W is applied at the initial instant

and it is required to find the displacement of the body at any instant

t = ti. The variation of the force with time is represented by the curve

MN in Fig. 66. To calculate the required

displacement we imagine the continuous action

of the force divided into small intervals dt.*

The impulse qdt of the force during one of

these elemental intervals is shown in Fig. 66

by the shaded strip. Let us now calculate

the displacement of the body at the instant

ti produced by this elemental impulse. As a

result of this impulse an increase in the velocity

of the body will be generated at the instant t.

velocity increase is found from the equation

dx

FIG. 66.

The magnitude of the

from which

dx qdt. (a)

The displacement of the body at the instant t\ corresponding to the velocity

dx which was communicated to it at the instant t may be calculated

by the use of solution (7). It is seen from this solution that by reason

of the initial velocity XQ the displacement at any instant t is (xo sin pf)/p.

Hence the velocity dx communicated at the instant t to the body produces
a displacement of the body at the instant ti given by

qdt
dx sin p(ti t). (o)

P

This is the displacement due to one elemental impulse only. In order to

* This method has been used by Lord Rayleigh, see "Theory of Sound," Vol. 1, p.

74, 1894. See also the book by G. Duffing, "Erzwungene Schwingungen," 1918, p. 14,

and the book "Theoretical Mechanics," by L. Loiziansky and A. Lurje, vol. 3, p. 338,

1934, Moscow.



104 VIBRATION PROBLEMS IN ENGINEERING

obtain the total displacement of the body produced by the continuous

action of the force q, it is necessary to make a summation of all the ele-

mental displacements given by expression (6). The summation yields:

i r= -
/ q si

P JQ
sin p(ti

-
t)dt. (48)

This expression represents the complete displacement produced by the

force q acting during the interval from t = to t = ti. It includes both

forced and free vibrations and may become useful in studying the motion
of the system at starting. It can be used also in cases where an analytical

expression for the disturbing force is not known and where the force q

is given graphically or numerically. It is only necessary in such a case to

determine the magnitude of the integral (48) by using one of the approxi-
mate methods of integration.*

As an example of the application of this method, vibration under the

action of a disturbing force q = u sin coZ will now be considered. Substi-

tuting this expression of q in eq. (48) and observing that

sin ut sin p(t ti)
= J^lcos (ut + pi pti) cos (orf pt + pt\)}

we obtain

CO

(sin uti sin pt\)
p2

co
2

p

which coincides with solution (21) for t = t\.

Equation (48) can be used also in cases where it ia necessary to find

the displacement of the load W (see Fig. 1) resulting from several impulses.

Assume, for instance, that due to impulses obtained by the load W at the

moments <', t", t"',
- - increments of the speed Aii, A2i, A3i, be pro-

duced. Then from equations (6) and (48) the displacement at any moment
h will be,

x = -
[Aii sin p(t\ t') + &2% sin p(t\ t") + Aai sin p(t\ '")+ ]

P

This displacement can be obtained very easily graphically by considering

Aii, A2i, as vectors inclined to the horizontal axis at angles p(ti t'),

p(t\ t"), Fig. (67). The vertical projection OCi of the geometrical
sum OC of these vectors, divided by p, will then represent the displacement
x given by the above equation.

* See von Sanden,
" Practical Analysis," London, 1924.
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In cases where a constant force q is applied at the moment t = to the

load W (Fig. 1) the displacement of the load at any moment ti becomes
from eq. (48) :

/t. ~

sin p(ti i)dt
= (1 cos pti), (d)

where q/p
2

is statical deflection due to the force q (see p. 14). It is seen,
from (d), that the maximum deflection

during vibrations produced by a suddenly

applied force is equal to twice the statical

deflection corresponding to the same
force.

It was assumed that the suddenly

applied, constant force q is acting all time

from t to t = t\. If the force q acts

only during a certain interval A of that

time and then is suddenly removed, the

motion of the body, after removal of the

force, can also be obtained from eq. 48.

We write this equation in the following form

1 rX =
/pJo

q sin p(t\ f)dt + ' sin p(ti f) dt.

Observing that q is zero for A < t < t\, the second integral on the right
side vanishes and we obtain

cos p(t\ t)

1 /*
A

x = -
/ q sin p(t\ t)dt =pJ p2

q [ 1 20 pA / A\=
I cos p(ti

-
A)

- cos pti I
= sin sin p (ti - -

) (e)

Thus a constant force acting during an interval of time A produces a simple
sinusoidal motion of the amplitude which depends on the ratio of the

interval A to the period r = 2ir/p of the free vibration of the system.

Taking, for instance, A/r = J^ we find sin (pA/2) = 1 and the amplitude
of vibration (e) is twice as large as the statical deflection q/p

2
,.

If we take

A =
r, sin (pA/2) = and there will be no vibration at all after removal

of the force. Considering the system in Fig. 1 we have in the first case the

force q removed when the weight W is in its lowest position. In the second
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case the force is removed when the body is in its highest position, which
is its position of static equilibrium.

If the loading and unloading of the system is repeated several times

and TI is the constant interval of time between two consecutive applica-
tions of the force, the resulting motion is

x 2q . pA A\- ^ - v
+ sin p Iti 2n -

J
+

We see that by taking TI = 2ir/p the phenomenon of resonance takes

place and the amplitude of vibration will be gradually built up.
It was assumed in the derivation of eq. (48) that the system is at rest

initially. If there is some initial displacement XQ and an initial velocity io,

the total displacement at an instant t\ will be obtained by superposing
on the displacement given by expression (48) the displacement due to the

initial conditions. In this case we obtain

i r .- qsu
pJo

cos pt H sin pt + ~
I q sin p(ti t)dt. (49)

If there is a viscous damping a similar method can be used in study-

ing forced vibrations. From solution (30) we see that an initial velocity

XQ produces a displacement of the body (Fig. 1) at an instant t which is

given by

~
iQ e-*tinpit. (e)

Pi

The quantity n defines the damping and p\ = V p2 n2
. From this we

conclude that a velocity dx = q dt communicated at an instant t produces
a displacement at the instant t\ equal to

l (h - t)dt. (/)
Pi

The complete displacement of the body resulting from the action of the

force q from t = to t = t\, will be obtained by a summation of expressions

(/). Thus we have

/ qe-
n(tl - l)

sin pifa - t)dt.
i'o

(50)
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This formula is useful in calculating displacements when the force q is

given graphically or if it cannot be represented accurately by a few terms

of the series (a).

19. Effect of Low Spots on Deflection of Rails. As an example of an application
of eq. (48) of the previous article let us consider the effect of low spots on deflection of

rails. Due to the presence of a low spot on the rail some vertical displacement of a

rolling wheel occurs which results in an additional vertical pressure on the rail. This

additional pressure depends on the velocity of rolling and on the profile of the low spot.

Taking the coordinate axis as shown in Fig. 68 we denote by I the length of the low

FIG. 68.

spot and by rj the variable depth of the spot. The rail we consider as a beam on a

uniform elastic foundation and we denote by k the concentrated vertical pressure which
is required to produce a vertical deflection of the rail equal to one inch. If W denotes

the weight of the wheel together with the weights of other parts rigidly connected with
the wheel, the static deflection of the rail under the action of this weight is

W
k

' (a)

If the rail be considered an elastic spring, period of the free vibration of the wheel sup-

ported by the rail will be

9

For a 100 Ib. rail, with El = 44 X 30 X 106 Ib.in. 2
, and with W = 3000 lb., we will

find, for a usual rigidity of the track, that the wheel performs about 20 oscillations per
second. Since this frequency is large in comparison with the frequency of oscillation of a

locomotive cab on its springs, we can assume that the vibrations of the wheel are not

transmitted to the cab and that the vertical pressure of the springs on the axle remains

constant and equal to the spring borne weight. Let us now consider the forced vibra-

tions of the wheel due to the low spot. We denote the dynamic deflection of the rail

under the wheel by y during this vibration.* Then the vertical displacement of the

* This deflection is measured from the position of static equilibrium which the

wheel has under the action of the weight W and of the spring borne weight.
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wheel traveling along the spot of variable depth t\ is y + 77 and the vertical inertia force

of the wheel will be

W
g dp

The reaction of the rail is ky and the equation of motion of the wheel in the vertical

direction becomes:

W d*(y + )
, 7

h ky = 0,
(7 a/ 2

from which

5 5?j? _ !? ^5
7 di2

" + y ~~~7 <^'

If the shape of the low spot and the speed of the locomotive are known, the depth 17

and consequently the right side of eq. (c) can be expressed as functions of time. Thus
we obtain the equation of forced vibration of the wheel produced by the low spot.

Let us consider a case when the shape of the low spot (Fig. 68) is given by the equation

X A 27rz\
17
=

2 V
cos ~~7~) > W

in which X denotes the depth of the low spot at the middle of its length.

If we begin to reckon time from the instant when the point of contact of the wheel

and the rail coincides with the beginning of the low spot, Fig. 68, and if we denote the

speed of the locomotive by t;, we have x =
vt, and we find, from eq. (d), that

X /=
2 \

Substituting this into eq. (c) we obtain

W d*y W X

Dividing by W/g, and using our previous notations this becomes:

If the right side of this equation be substituted into equation (48) of the previous article

we find that the additional deflection of the rail caused by the dynamical effect of the

low spot is

27r2Xt;
2 r'i

^~ /
pi

2 Jo

.
~ sm v ti

"~

Performing the integration and denoting by n the time l/v required for the wheel to pass
over the low spot, we obtain

2irti

It is seen that the additional deflection of the rail, produced by the low spot, is pro-

portional to the depth X of the spot and depends also on the ratio TI/T. As the wheel is
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traveling along the low spot, the variation of the additional deflection is represented for

several values of the ratio n/r by the curves in Fig. 69. The abscissas give the position

of the wheel along the low spot, and the ordinates give the additional deflection ex-

pressed in terms of X. As soon as the wheel enters the low spot the pressure on the rail

and consequently the deflection of the rail begin to diminish (y is negative) while the

wheel begins to accelerate in a downward direction. Then follows a retardation of this

movement with corresponding increases in pressure and in deflection. From the figure

we see that for n < r the maximum pressure occurs when the wheel is approaching the

-06*

-04\

-0.2*

0.0

O.2

0.4*

08

10

n

I -.Length" "

r= Period of free Vi^

\
\

oration of wheel Oft rail

me tt takes lo cross flat spot

\

X.\ZV
y\
\
\

7^

\

FIG. 69.

other end of the low spot. The ratios of the maximum additional deflection to the depth
X of the low spot calculated from formula (h) arc given in the table below.

n/r =23/2 1 4/5 2/3 3/5 1/2

2/maxA = .33 .65 1.21 1.41 1.47 1.45 1.33.

It is seen that the maximum value is about equal to 1.47. This ratio occurs when the

speed of the locomotive is such that (TI/T) 2/3.
Similar calculations can be readily made if some other expression than eq. (e) is taken

for the shape of the low spot provided that the assumed curve is tangent to the rail sur-

face at the ends of the spot. If this condition is not fulfilled an impact at the ends of

the low spot must be considered.*

* See author's papers in Transactions of the Institute of Engineers of Ways of Com-
munication, 1915, S. Petersburg and in "Le Genie Civil," 1921, p. 551. See also Doctor
Dissertation by B. K. Hovey, Gottingen, 1933.
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In the discussion given above the mass of the vibrating part of the rail was neglected
in comparison with the mass of the wheel. The error involved in this simplification of

the problem is small if the time TI required for the wheel to pass over the spot is long

enough in comparison with the period of vibration of the rail on its elastic foundation.

If it be assumed that the deflection of the rail under the action of its own weight is .002

in., the period of natural vibration of the rail moving in a vertical direction is 2ir/\^5QQg
.0144 sec. This means that the solution (h) will give satisfactory results if n > .03 sec.*

20. Self-Excited Vibration. In discussing various problems of forced

vibration we always assumed that the force producing vibration is inde-

pendent of the vibratory motion. There are cases, however, in which
a steady forced vibration is sustained by forces created by the vibratory
motion itself and disappearing when the motion stops. Such vibrations

are called self-excited or self-induced vibrations. In most musical instru-

ments vibrations producing sound are of this kind. There are cases

in engineering where self-excited vibrations are causing troubles, f

Vibration caused by friction. Vibration of a violin string under the

action of the bow is a familiar case of self-excited vibration. The ability

of the bow to maintain a steady vibration of the string depends on the

fact that the coefficient of solid friction is not constant and diminishes

as the velocity increases (Fig. 22, p. 31). During the vibration of the

string acted upon by the bow the fFictional force at the surface of contact

does not remain constant. It is greater when the vibratory motion of the

string is in the same direction as the motion of the bow, since the relative

velocity of the string and bow is smaller under such condition than when
the motion of the string is reversed. If one cycle of the string vibration

be considered it may be seenj that during the half cycle in which the

directions of motion of the string and of the bow coincide the friction

force produces positive work on the string. During the second half of the

cycle the work produced is negative. Observing that during the first

half cycle the acting force is larger than during the second half, we may
conclude that during a whole cycle positive work is produced with the

result that forced vibration of the string will be built up. This forced

vibration has the same frequency as the frequency of the natural vibration

of the string.

* Recent experiments produced on Pennsylvania R. R. are in a satisfactory agree-
ment with the figures given above for the ratio ?/max/A.

t Several cases of such vibrations are described and explained in a paper by J. G.

Baker, Trans. Am. Soc. Mech. Kngrs., vol. 55, 1933, and also in J. P. Den Hartog's
paper, Proc. Fourth Intern. Congress Applied Mechanics, p. 36, 1934.

t It is assumed that the velocity of the bow is always greater than the velocity of

the vibrating string.
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The same type of vibration can be demonstrated by using the device

shown in Fig. 36. In our previous discussion (see p. 57) it was assumed
that the Coulomb friction remains constant, and it was found that in such

a case the bar of the device will perform a simple harmonic motion. The

experiments show, however, that the amplitude of vibration does not

remain constant but grows with time. The explanation of this phe-
nomenon is the same as in the previous case. Owing to a difference in

relative velocity of the bar with respect to two discs the corresponding
coefficients of friction are also different with the result that during each

cycle positive work is produced on the bar. This work manifests itself in a

gradual building up of the amplitude of vibration.

One of the earliest experiments with self-excited mechanical vibration

was made by W. Fronde,* who found that the vibrations of a pendulum
swinging from a shaft, Fig. 70, might be maintained or even _
increased by rotating the shaft. Again the cause of this

phenomenon is the solid friction acting upon the pendulum.
If the direction of rotation of the shaft is as shown in the

figure, the friction force is larger when the pendulum is moving
to the right than for the reversed motion. Hence during
each complete cycle positive work on the pendulum will be

produced. It is obvious that the devices of Fig. 36 and Fig. pIG 70
70 will demonstrate self-excited vibrations only as long as we
have solid friction. In the case of viscous friction, the friction force

increases with the velocity so that instead of exciting vibrations, it will

gradually damp them out.

An example of self excited vibration has been experienced with a

vertical machine, Fig. 71, consisting of a mass A driven by a motor B.

There is considerable clearance between the shaft and the guide (7, and the

shaft can be considered a cantilever built in at the bottom and loaded at

the top. The frequency of the natural lateral vibration of the shaft,

which is also its critical or whirling speed, can be readily calculated in the

usual way (see Art. 17). Experience shows that the machine is running

smoothly as long as the shaft remains straight and does not touch the

guide, but if for one reason or another the shaft strikes the guide, a violent

whirling starts and is maintained indefinitely. This type of whirling may
occur at any speed of the shaft, and it has the same frequency as the

critical speed or frequency of the shaft mentioned above. In order to

explain this type of whirling, let us consider the horizontal cross sections

* Lord Rayleigh, Theory of Sound, vol. 1, p. 212, 1894.

o
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of the shaft and of the guide represented in Fig. 71, b. As soon as the

shaft touches the guide a solid friction force F will be exerted on the shaft

which tends to displace the shaft and thereby produces the whirl in the

direction opposite to the rotation of the shaft. The pressure necessary
for the existence of a friction force is pro-

vided by the centrifugal force of the mass
A acting through the shaft against the

guide.

Vibration of Electric Transmission Lines.

A wire stretched between two towers at a

considerable distance apart, say about 300

ft., may, under certain conditions, vibrate

violently at a low frequency, say 1 cycle

per second. It happens usually when a

rather strong transverse wind is blowing
and the temperature is around 32 F., i.e.,

when the weather is favorable for formation

of sleet on the wire. This phenomenon
FIG. 71. can be considered as a self-excited vibra-

tion. * If a transverse wind is blowing on a
wire of a circular cross section (Fig. 72, a), the force exerted on the wire

has the same direction as the wind. But in the case of an elongated
cross section resulting from sleet formation (Fig. 72, 6), the condition is

different and the force acting on the wire has usually a direction different

from that of the wind. A familiar example of this occurs on an aeroplane
wing on which not only a drag in the direction of the wind but also a lift

Wind

C

FIG. 72. FIG. 73.

in a perpendicular direction are exerted. Let us now assume a vibration

of the wire and consider the half cycle when the wire is moving down-
wards. In the case of a circular wire we shall have, owing to this motion,
some air pressure in an upward direction. This force together with the

horizontal wind pressure give an inclined force F (Fig. 73, a), which has an
*

J. P. Den Hartog, Trans. Am. Inst. El. Engrs., 1932, p. 1074.
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upward component opposing the motion of the wire. Thus we have a

damping action which will arrest the vibration. In the case of an elon-

gated cross section (Fig. 73, 6) it may happen, as it was explained above,
that due to the action of horizontal wind together with downward motion
of the wire a force F having a component in a downward direction may be
exerted on the wire so that it produces positive work during the down-
ward motion of the wire. During the second half of the cycle, when the

wire is moving upwards, the direction of the air pressure due to wire motion

changes sign so that the combined effect of this pressure and the hori-

zontal wind may produce a force with vertical component directed up-
wards. Thus again we have positive work produced during the motion
of the wire resulting in a building up of vibrations.

FIG. 74.

The above type of vibration can be demonstrated by using a device

shown in Fig. 74. A light wooden bar suspended on flexible springs and

with its flat side turned perpendicular to the wind of a fan, may be brought
into violent vibrations in a vertical plane. The explanation of this vibra-

tion follows from the fact that a semicircular cross section satisfied the

condition discussed above, so that the combined effect of the wind and of

the vertical motion of the bar results in a force on the bar having always a

vertical component in the direction of the vertical motion. Thus positive

work is produced during the vibration.



CHAPTER II

VIBRATION OF SYSTEMS WITH NON-LINEAR CHARACTERISTICS

21. Examples of Non-Linear Systems. In discussing vibration prob-
lems of the previous chapter it was always assumed that the deformation

of a spring follows Hooke's law, i.e., the force in a spring is proportional
to the deformation. It was assumed also that in the case of damping the

resisting force is a linear function of the velocity of motion. As a result

of these assumptions we always had vibrations of a system represented

by a linear differential equation with constant coefficients. There are

many practical problems in which these assumptions represent satisfactory
actual conditions, however there are also systems in which a linear differ-

ential equation with constant coefficients is no longer sufficient to describe

the actual motion so that a general investigation of vibrations requires
a discussion of non-linear differential equations. Such systems are called

systems with non-linear characteristics. One kind of such systems we have
when the restoring force of a spring is not proportional to the displace-
ment of the system from its position of equilibrium.

Sometimes, for instance, an organic material such as rubber or leather

is used in couplings and vibrations absorbers. The tensile test diagram for

these materials has the shape shown in Fig. 75; thus the modulus of elas-

ticity increases with the elongation. For small amplitudes of vibration

this variation in modulus may be negligible but with increasing amplitude
the increase in modulus may result in a substantial increase in the fre-

quency of vibration.

Another example of variable flexibility is met with in the case of

structures made of such materials as cast iron or concrete. In both

cases the tensile test diagram has the shape, shown in Fig. 76, i.e., the

modulus of elasticity decreases with the deformation. Therefore some
decrease in the frequency with increase of amplitude of vibration must
be expected.

Sometimes special types of steel springs are used, such that their

elastic characteristics vary with the displacement. The natural fre-

quency of systems involving such springs depends on the magnitude of

114
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amplitude. By using such types of springs the unfavorable effect of

resonance can be diminished. If, due to resonance, the amplitude of

vibration begins to increase the frequency of the vibration changes, i.e.,

the resonance condition disappears. A simple example of such a spring is

shown in Fig. 77. The flat spring, supporting the weight W, is built in

Fia. 75. FIG. 76.

at the end A. During vibration the spring is partially in contact with
one of two cylindrical surfaces AB or AC. Due to this fact the free

length of the cantilever varies with the amplitude so that the rigidity

of the spring increases with increasing deflection. The conditions are

the same as in the case represented in Fig. 75, i.e.,

the frequency of vibration increases with an in-

crease in amplitude.
If the dimensions of the spring and the shape

of the curves AB and AC are known, a curve

representing the restoring force as a function of

the deflection of the end of the spring can easily

be obtained.

As another example of non-linear system is

the vibration along the x axis of a mass m
attached to a stretched wire AB (Fig. 78). Assume

S is initial tensile force in the wire,

x is small displacement of the mass m in a

horizontal direction,

A is cross sectional area of the wire, FIG. 78.

E is modulus of elasticity of the wire.

The unit elongation of the wire, due to a displacement x, is

<a>

2P
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The corresponding tensile force in the wire is

and the restoring force acting on the mass m (Fig. 78, fc) will be

AE Y , AVu AE

The differential equation of motion of the mass m thus becomes

(a)

It is seen that in the case of very small displacements and when the

initial tensile force S is sufficiently large the last term on the left side of

eq. (a) can be neglected and a simple harmonic vibration

of the mass m in a horizontal direction will be obtained.

Otherwise, all three terms of eq. (a) must be taken into

consideration. In such a case the restoring force will

increase in greater proportion than the displacement and
the frequency of vibration will increase with the ampli-
tude.

In the case of a simple mathematical pendulum (Fig.

79) by applying d'Alembert's principle and by projecting

the weight W and the inertia force on the direction of the

tangent mn the following equation of motion will be obtained :

8 + W sin =
9

or
.. fg+ -

7
sin 6 = 0, (6)

I

in which I is length of the pendulum, and 6 is angle between the pendulum
and the vertical.

It is seen that only in the case of small amplitudes, when sin 8 8, the

oscillations of such a pendulum can be considered as simple harmonic.

If the amplitudes are not small a more complicated motion takes place
and the period of oscillation will depend on the magnitude of the ampli-
tude. It is clear that the restoring force is not proportional to the dis-

placement but increases at a lesser rate so that the frequency will decrease
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with an increase in amplitude of vibration. Expanding sin 6 in a power
series and taking only the two first terms of the series, the following

equation, instead of eq. (6), will be obtained

- = 0.

Comparing this equation with eq. (a) it is easy to see that the non-linear

terms have opposite signs. Hence by combining
the pendulum with a horizontal stretched string

(Fig. 80) attached to the bar of the pendulum at

B and perpendicular to the plane of oscillation, a

better approximation to isochronic oscillations may
be obtained.

In Fig. 81 another example is given of a

system in which the period of vibration depends
on the amplitude. A mass m performs vibrations

between two springs by sliding without friction

along the bar AB. Measuring the displacements
from the middle position of the mass m the

variation of the restoring force with the displacement can be repre-
sented graphically as shown in Fig. 82. The frequency of the vibrations

will depend not only on the spring constant but also on the magnitude of

the clearance a and on the initial conditions. Assume, for instance, that

FIG. 80.

a a

FIG. 81.

*..ff*l

FIG. 82.

at the initial moment (t
= 0) the mass m is in its middle position and has

an initial velocity v in the x direction. . Then the time necessary to cross

the clearance a will be

a
*i = -

w>

After crossing the clearance, the mass m comes in contact with the spring
and the further motion in the x direction will be simple harmonic. The
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time during which the velocity of the mass is changing from v to (quarter

period of the simple harmonic motion) will be (see eq, (5), p. 3)

where k is spring constant. The complete period of vibration of the mass
m is

4/7

For a given magnitude of clearance, a given mass m and a given spring
constant k the period of vibration

depends only on the initial velocity
v. The period becomes very large

for small values of v and decreases

with increase of v, approaching the

limit TO = 27r \/w/fc (^e Fig. 83)

when v = oo . Such conditions always
are obtained if there are clearances

f

F g3
in the system between the vibrat-

ing mass and the spring.

If the clearances are very small, the period r remains practically con-

stant for the larger part of the range of the speed ^, as shown in Fig. 83

by curve 1. With increase in clearance for a considerable part of the

range of speed v a pronounced variation in period of vibration takes

place (curve II in Fig. 83). The period of vibration of such a system

may have any value between T = oo and r = TO. If a periodic disturbing

force, having a period larger than TO, is acting, it will always be possible
to give to the mass m such an impulse that the corresponding period of

vibration will become equal to r and in such manner resonance conditions

will be established. Some heavy vibrations in electric locomotives have
been explained in this manner.*

Another kind of non-linear systems we have when the damping forces

are not represented by a linear function of the velocity. For instance,

the resistance of air or of liquid, at considerable speed, can be taken

proportional to the square of the velocity and the equation for the vibra-

tory motion of a body in such a resisting medium will no longer be a linear

one, although the spring of the system may follow Hooke's law.

* See A, Wichert,"SchtUtelerscheinungen in elektrischen Lokomotiven," Forschungs-
arbeiten, No. 277, 1924, Berlin.
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22. Vibrations of Systems with Non-linear Restoring Force. If

damping be neglected the general equation of motion in this case has the

form

W..

or
Q

x + p*f(x) =
0,

(a)

(51)

in which p2
f(x) represents the restoring force per unit mass as a function

of the displacement x. In order to get the first integral of eq. (51) we
multiply it by dx/dt, then it can be represented in the following form :

or

from which, by integration we obtain

0.

If f(x) and the initial conditions are known,
the velocity of motion for any position of

the system can be calculated from eq. (6).

Assume, for instance, that the variation in

the restoring force with the displacement is

given by curve Om (see Fig. 84) and that in

the initial moment t = 0, the system has a

displacement equal to TO and an initial veloc-

ity equal to zero. Then, from eq. (6), for

any position of the system we have

m

FIG. 84.

1/2
( (c)

which means that at any position of the system the kinetic energy is equal
to the difference of the potential energy which was stored in the spring
in the initial moment, due to deflection xo and the potential energy at the
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moment under consideration. In Fig. 84 this decrease in potential energy
is shown by the shaded area. From eq. (c) we have*

dt

-\V / !(x)dx

By integration of this equation, the time t as a function of the displace

ment is obtained,
dx/

Take, for instance, as an example, the case of simple harmonic vibra-

tion. Then

From eq. (e), we obtain

. r ^__ = r...

d^
I -nA/r 2 T2 / 2

,o/
or

1 x
t = arc cos ,

p XQ

from which,
= XQ COS p.

This result coincides with what we had before for simple harmonic motion.

As a second example, assume,

/(*) = z2"-'.

Substituting this in eq. (e), we obtain

dx
t =

1 The minus sign is taken because in our case with increase in time x decreases.
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The period of vibration will be

The magnitude of the integral in this equation depends on the value of n
and it can be concluded from eq. (52) that only for n =

1, i.e., for simple
harmonic motion the period does not depend on the initial displacement
XQ. For n =

2, we have

dl- , ^ ,

dU = - 1.31.r w -_ r
j rrT-v ^o

A/2

1-

Substituting in eq. (52)

r = 5.24
p xo

i.e., the period of vibration is inversely proportional to the amplitude.
Such vibrations we have, for instance, in the case represented in Fig. 78,

if the initial tension S in the wire be equal to zero.

In a more general case when

f(x) ax + bx2 + ex3

a solution of eq. 51 can be obtained by using elliptic functions.* But
these solutions are complicated and not suitable for technical applications.

Therefore now some graphical and numerical methods for solving eq. (51)

will be discussed.

23. Graphical Solution. In the solution of the general equation (51)

two integrations, shown in eq. \b) and (e) of the previous article must be

performed. It is only in the simplest cases that an exact integration of

* Some examples of this kind are discussed in the book "Erzwungene Schwing-
ungen bei veranderlicher Kigenfrequenz," by G. Duffing, Braunschweig, 1918. A
general solution of this problem by the use of elliptic functions was given by K. Weier-

strass, Monatsberichte der Berliner Akademie, 1866. See also, Gesammelte Werke,
Vol. 2, 1895. The application of Bessel's functions in solving the same problem is given
in the book by M. J. Akimoff, "Sur les Functions de Bessel a plusieurs variables et leura

applications en mecanique," S. Petersburg, 1929. An approximate solution by using
Simpson's formula was discussed by K. Klotter. See Ingenieur-Archiv., Vol. 7, p. 87,
1936.
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these is possible, but an approximate graphical solution can always be
obtained on the basis of which the period of free vibration for any ampli-
tude can be calculated with a sufficient accuracy.

Let the curve om (Fig. 85) represent to a certain scale the restoring
force as a function of the displacement x of the system from its middle

position. From eq. (6) (p. 119) it is seen that by plotting the integral
curve to the curve om the magnitude of x2 as a function of the displace-
ment of x will be obtained. This graphical integration can be performed
as follows: The continuous curve om is replaced by a step curve abdfhlno
in such a manner as to make A abc = A cde, A efg = Aghk and A klm =

FIG. 85.

A mno so that the area included between the abdfhln line and the x axis

becomes equal to that between the om curve and the x axis.

A pole distance Pai is now chosen such that it represents unity on the
same scale as the ordinates of the om curve and the rays Pa, Pr, Ps are
drawn. Making now ai&i || Pa, bifi \\ Pr, fill \\

Ps and hoi \\ Pai, the

polygon ai&ifihoi will be obtained, the slopes of whose sides are equal to
the corresponding values of the function represented by abdfhln. This
means that the a\bifil\oi line is the integral curve for the abdfhln line.

Due to the equality of triangles (see Fig. 85) mentioned above, the sides
of the polygon aibifihoi must be tangent to the integral curve of om;
the points of tangency being at a\, ei, ki and o\. Therefore the curve
aieikioi tangent to the polygon aibifihoi at 01, e\ 9 ki and o\ represents
the integral curve for the curve om and gives to a certain scale the variation
of the kinetic energy of the system during the motion from the extreme
position (x = zo) to the middle position (x = 0). If the ordinates of the
curve om are equal to a certain scale, to 2p

2
f(x) (see eq. (6), p. 119) and the

pole distance Pai is equal to unity to the same scale then the ordinates of
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the a\eikio\ curve, if measured to the same scale as the displacement 0:0, give
the magnitudes of x2

. From this the velocity x and the inverse quantity

1/i can readily be calculated and the curve pn representing 1/i as a
function of x can be plotted (see Fig. 86). The time which will be taken

by the system to reach its middle position (x = 0) from its extreme posi-

tion (x = XQ) will be represented by the following integral (see eq. (e),

p. 120)

t = r - .

Jx* X

FIG. 80.

This moans that t can be obtained by plotting the integral curve of the

curve pn (see Fig. 86) exactly in the same manner as explained above.

The final ordinate Of, measured to the same scale as TO, gives the time t.

In the case of a system symmetrical about its middle position the time t

will represent a quarter of the period of free vibration for the amplitude

a:o. It must be noted that for x =
0*0, x =

0, i.e., 1/i becomes infinitely

large at this point. In order to remove this difficulty the plotting of the

integral curve can be commenced from a certain point 6, the small co-

ordinates A x and A t of which will be determined on the assumption that

at the beginning along a small distance A x the system moves with a con-

stant acceleration equal to p2
f(x), (see eq. (51), p. 119). Then

and

tf
A*---;

2Ax
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Another graphical method, developed by Lord Kelvin,* also can be

used in discussing the differential equation of non-harmonic vibration.

For the general case the differential equation of motion can be presented
in the following form

x~f(x,t,x). (53)

The solution of this equation will represent the displacement 2 as a function

of the time t. This function can be repre-

sented graphically by time-displacement curve

(Fig. 87). In order to obtain a definite solu-

tion the initial conditions, i.e., the initial dis-

r'\
\

il placement and initial Velocity of the system
V

X.
'

\ il must be known.

"v \ 11/5

Let x = XQ and x = io for t = 0.

X
FIG. 87.

Then the initial ordinate and initial slope of the

time-displacement curve are known. Substitut-

ing the initial values of x and x in eq. (53),

the initial value of x can be calculated. Now
from the known equation,

(a)

the radius of curvature po at the beginning of the time-displacement curve

can be found. By using this radius a small element aoi of the time-

displacement curve can be traced as an arc of a circle (Fig. 87) and the

values of the ordinate x = x\ and of the slope x = x\ at the new point

a\ can be taken from the drawing and the corresponding value of x calcu-

lated from eq. (53). Now from eq. (a) the magnitude of p = pi will be

*
See, Lord Kelvin, On Graphic Solution of Dynamical Problems, Phil. Mag.,

Vol. 34 (1892). The description of this and several other graphical methods of inte-

grating differential equations can be found in the book "Die Differentialgleichungen
des Ingenieurs," by W. Hort (2d ed., 1925), Berlin, which contains applications of

these methods to the solution of technical problems. See also H. von Sanden, Practical

Mathematical Analysis, New York, 1926. Further development of graphical methods
of integration of differential equations with applications to the solution of vibration

problems is due to Dr. E. Meissner. See his papers, "Graphische Analysis vermittelst

des Linienbildes einer Function," Kommissions verlag Rascher & Co., Zurich, 1932;
Schweizerische Bauzeitung, Vol. 104, 1934; Zeitschr. f. angew. Math. u. Mech. Vol. 15,

1935, p. 62.
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obtained by the use of which the next element a\a^ of the curve can be

traced. Continuing this construction, as described, the time-displacement
curve will be graphically obtained. The calculations involved can be

somewhat simplified by using the angle of inclination of a tangent to

the time-displacement curve. Let 6 denote this angle, then

x = tan 6 and x = f(x, t, tan 6).

Substituting in eq. (a)

V(l + tan2
0)

3 1

/(x, t, tan 6) cos3 Of(x, t, tan 6)
(6)

In this calculation the square root is taken with the positive sign so

that the sign of p is the same as the sign of x. If x is negative the center

of curvature must be taken in such a manner as to obtain the curve convex

up (see Fig. 87).

In the case of free vibration and by neglecting damping, eq. (53)

assumes the form given in (51) and the graphical integration described

above becomes very simple, because the function /
depends in this case only on the magnitude of dis-

placement x. Taking for the initial conditions

x = XQ and x = for t = 0, the time-displacement
curve will have the general form shown in Fig. 88.

In the case of a system symmetrical about the

middle position the intersection of this curve with

the t axis will determine the period r of the free
'

FIG.

vibration of the system. The magnitude of r can

always be determined in this manner with an accuracy sufficient for

practical applications. In Fig. 88 for instance, the case of a simple
harmonic vibration was taken for which the differential equation is

x + p
2x =

and the exact solution gives

=
P

Equation (6) for this case becomes

P = 57-7-
'

(c)
cos6 6 p*x

The initial displacement XQ in Fig. 88 is taken equal to 20 units of
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length and po equal to 100 units of length. Then from eq. (c) for =
0,

we obtain

- = V20-100 = 44.7 units. (d)
P

The quantity l/p has the dimension of time and the length given by eq.

(d) should be used in determining the period from Fig. 88. By measuring

- to the scale used for xo and p, we obtain from this figure
4

7 = 69.5 units
4

or by using (d)

4 X 69.5 6.22

In this graphical solution only 7 intervals have been taken in drawing
the quarter of the period of the time-displacement curve and the result

obtained is accurate within 1%.

24. Numerical Solution. Nonharmonic vibrations as given by equa-
tions (51) and (53) can also be solved in a numerical way. Consider as

an example free vibration without damping. The corresponding differ-

ential equation is

x + P
2
f(x) = 0. (a)

Let the initial conditions be

x = XQ; x = 0, for t = 0. (6)

By substituting zo for x in eq. (a) the magnitude of XQ can be calculated.

By using the value o of the acceleration at t = the magnitude of x\ and

xi, i.e., the velocity and displacement at any moment t\ chosen very
close to the time t = can be calculated. Let AZ denote the small interval

of time between the instant t = and the instant t = t\. The approxi-
mate value of x\ and x\ will then be obtained from the following equations,

xi = io + ioAJ; Xi = XQ + ~- - AJ. (c)

Substituting the value x\ for x in eq. (a), the value of x\ will be obtained.
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By using this latter value better approximations for x\ and xi can be

calculated from the following equations,

. . io + xi , . XQ + xi
xi = XQ H--- A and x\ = XQ H---- Ac. (a)

2 2

A still better approximation for xi will now be obtained by substituting
the second approximation of x\ (eq. (d) in eq. (a). Now, taking the

second step, by using x\, xi and x\ the magnitude of 22, X2, X2 for the time
t = t2 = 2AZ can be calculated exactly in the same manner as explained
above. By taking the intervals At small enough and making the calcula-

tions for every value of t twice as explained above in order to obtain

the second approximation, this method of numerical integration can

always be made sufficiently accurate for practical applications.
In order to show this procedure of calculation and to give some idea

of the accuracy of the method we will consider the case of simple har-

monic vibration, for which the equation of motion is:

x + P
2x = 0.

The exact solution of this equation for the initial conditions (6) is

x = XQ cos pt ;
i = XQP sin pt. (e)

The results of the numerical integration are given in the table below.

The length of the time intervals was taken equal to A = l/4p. Re-

membering that the period of vibration in this case is r = 2w/p it is seen

that A, the interval chosen, is equal approximately to 1/6 of a quarter
of the period T. The second line of the table expresses the initial condi-

tions. Now, for obtaining first approximations for x\ and x\, at the time

t = A = l/4p, equations (c) were used. The results obtained are given
in the third line of the table. For getting better approximations for x\

and x\j equations (d) were used and the results are put in the fourth line of

the table. Proceeding in this manner the complete table was calculated.

In the last two columns the corresponding values of sin pt and cos pt

proportional to the exact solutions (e) are given, so that the accuracy of

the numerical integration can be seen directly from the table. We see

that the velocities obtained by calculation have always a high accuracy.
The largest error in the displacement is seen from the last line of the table

and amounts to about 1% of the initial displacement XQ.

These results were obtained by taking only 6 intervals in a quarter of

a period. By increasing the number of intervals the accuracy can be
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increased, but at the same time the number of necessary calculations

becomes larger.
TABLE I

NUMERICAL INTEGRATION

By using the table the period of vibration also can be calculated.

It is seen from the first and second columns that for t = 6A the time-

displacement curve has a positive ordinate equal to .0794.ro. For t = 7At

the ordinate of the same curve is negative and equal to .1680:ro. The

point of intersection of the time-displacement curve with the t axis de-

termines the time equal to a quarter of the period of vibration. By
using linear interpolation this time will be found from the equation

7 r
4

6AZ
0794

.0794 + .1680

6.32

4p p

The exact value of the quarter of a period of vibration is ir/2p 1.57'/p.
It is seen that by the calculation indicated the period of vibration is

obtained with an error less than 1%. From this example it is easy to

see that the numerical method described can be very useful for calculating
the period of vibration of systems having a flexibility which varies with

the displacement.*

* A discussion of more elaborate methods of numerical integration of differential

equations can be found in the previously mentioned books by W. Hort and by H.
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25. Method of Successive Approximations Applied to Free Vibrations. We begin
with the problems in which the non-linearity of the equation of motion is due to the

non-linear characteristic of the spring. If the deviation of the spring deformation from
Hooke's law is comparatively small, the differential equation of the motion can be

represented in the following form:

x + p*x + af(x) = (54)

in which a is a small factor and f(x) is a polynomial of x with the lowest power of x
not smaller than 2. In the cases when the arrangement of the system is symmetrical
with respect to the configuration of static equilibrium, i.e., for x = 0, the numerical

value of f(x) must remain unchanged when x is replaced by x, in such cases f(x)
must contain odd powers of x only. The simplest equation of this kind is obtained by
keeping only the first term in the expression for f(x). Then the equation of motion
becomes:

x + P2x + a x3 = 0. (55)

A system of this kind is shown in Fig. 78. Since there are important problems in

astronomy which require studies of eqs. (54) and (55), several methods of handling them
have been developed.! In the following a general method is discussed for obtaining

periodical solutions of eq. (55) by calculating successive approximations.
We begin with the calculation of the second approximation of the solution of eq. (55). t

Since a is small it is logical to assume, as a first approximation, for x a simple harmonic
motion with a circular frequency p\ t

which differs only little from the frequency p. We
then put

p* = Pl + (p
-

Pl ), (a)

where p2
pi

2 is a small quantity. Substituting (a) in eq. (55) we obtain:

x + pi
2* + (p*

-
Pi

2
) x + ax* = 0. (b)

Assuming that at the initial instant, t 0, we have x = a, x = 0, the harmonic motion

satisfying these initial conditions is given by

x = a cos pit. (c)

von Sanden (p. 124). See also books by Runge-Konig, "Vorlesungen liber numerisches

Rechnen," Berlin, 1924, and A. N. Kriloff, Approximate Numerical Integration of

Ordinary Differential Equations, Berlin, 1923 (Russian).

f These methods are discussed in the paper by A. N. Kriloff, Bulletin of the Russian

Academy of Sciences, 1933, No. 1, p. 1. The method which is described in the following
discussion is developed principally by A. Lindsted, Mc*moires de 1* Acad. des Sciences

de St. Petersbourg, VII serie, Vol. 31, 1883, and by A. M. Liapounoff in his doctor thesis

dealing with the general problem on stability of motion, Charkow, 1892 (Russian).

J Such an approximation was obtained first by M. V. Ostrogradsky, see Me*moires de
1'Acad. des Sciences de St. Petersbourg, VI serie, Vol. 3, 1840. A similar solution was

given also by Lord Rayleigh in his Theory of Sound, Vol. 1, 1894, p. 77. The incom-

pleteness of both these solutions is discussed in the above mentioned paper by A. N.

Kriloff.
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This represents the first approximation to the solution of the eq. (55) for the given initial

conditions.

Substituting this expression for x into the last two terms of eq. (6), which are small,
we obtain:

x + pi
2x = a(p

2
pi

2
) cos p\t a3 cos3

pit

or, by using the relation

4 cos3
pit = cos 3 pit -f- 3 cos pit

we find

[3<*a
3l aa3

a(p
2

pi
2
) H - cos pit

--
4 J 4

cos

Thus we obtain apparently an equation of forced vibration for the case of harmonic
motion without damping. The first term on the right side of the equation represents
a disturbing element which has the same frequency as the frequency of the natural

vibrations of the system. To eliminate the possibility of resonance we employ an
artifice that consists in choosing a value of pi that will make:*

From this equation we obtain:

- pi
2
) + ~ - 0.

(e)

Combining eqs. (d) and (e) we find the following general solution for X

art 3

x = Ci cos pit + C2 sin pit -f
~ - cos 3pif.

To satisfy the assumed initial conditions we must put

and
C2 -0

in this solution. From this it follows that the second approximation for x is

cos pit -f
- - cos 3 pit. (56)

62pi*

It is seen that due to presence in eq, (55) of the term involving x3 the solution is no

longer a simple harmonic motion proportional to cos pit. A higher harmonic, propor-
tional to cosSpit appears, so that the actual time-displacement curve is not a cosine

curve. The magnitude of the deviation from the simple harmonic curve depends on
the magnitude of the factor a. Moreover, the fundamental frequency of the vibration,

* This manner of calculation pi represents an essential feature of the method of suc-

cessive approximation. If the factor before cos pit in eq. (d) is not eliminated a term
in the expresssion for x will be obtained which increases indefinitely with the time t.
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is we see from eq. (e), is no longer constant. It depends on the amplitude of vibrations

i, and it increases with the amplitude in the case when a is positive. Such conditions

prevail in the case represented by Fig. 78.

Expressions (e) and (56) can be put into the following forms

X =
<f>o + oupi

;vhere

3a*Ci- , v?

a3

<pi = (cos 3 pit
- cos pit).

Thus the approximate expressions (/) for the frequency and for the displacement con-

tain the small quantity a to the first power. If we wish to get further approximations
ive take, instead of expressions (/), the series:

-f- aVs +
(?)

p2 = pl
2
-f dot -f C2a2

-f C3
5 +

which contain higher powers of the small quantity a. In these series <PQ, ^i, ^2,

ire unknown functions of time t, p\ is the frequency, which will be determined later,

and ci, C2, are constants which will be chosen so as to eliminate condition of reso-

nance as was explained above in the calculation of the second approximation. By
increasing the number of terms in expressions (g) we can calculate as many successive

approximations as we desire. In the following discussion we limit our calculations by
omitting all the terms containing a in a power higher than the third. Substituting

expressions (g) into eq. (55) we obtain:

o -f <x'<pi -f oc
2
y?2 + a 3

v?3 4- (?i
2 + ci + Czaz -f C3

3
)(^o + <x<f>i + a2

^2 -f as
<f>z)

+ ct(<f>Q + a<f>i + a*<f>z + aVa) 3 = 0. (h)

After making the indicated algebraic operations and neglecting all the terms containing
a to a power higher than the third, we can represent eq. (h) in the following form:

^o3
) + 2

(v?2 4- PiVa + C2 ^o + Ci

+ as
(^s -f piVs "f Cs^>o -f Ca^i ~h Ci?2 + 3^>

2^2 + 3^>otf>i
2
)
= 0. (t)

This equation must hold for any value of the small quantity a which means that each

Factor for each of the tree powers of a must be zero. Thus eq. (i) will split in the

following system of equations:

-f piVo = 0,

4- piVi =

0")
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Taking the same initial conditions as before, i.e., for t = 0,

x = a and x

and substituting for x from eq. (0), we obtain:

WO) -f- WO) -f a2WO) + a8WO) = a

WO) + aWO) -f a2WO) + 3WO) - 0.

Again, since these equations must hold for any magnitude of a, we have:

WO) = a WO) =
WO) = WO) -

(k)

WO) = WO) =
WO) - WO) = 0.

Considering the first of eqs. (j) and the corresponding initial conditions represented by
the first row of the system (A;) we find as before

<f>o a cos p\t. (I)

Substituting this first approximation into the right side of the second of eqs. (j) we
obtain

1 + PIVi = ci a cos pit a3 cos3
p\t = (cia -f %a3

) cos p\t %az cos 3pi(.

To eliminate the condition of resonance we will choose the constant ci so as to make the

first term on the right side of the equation equal to zero. Then

=
and we find

ci = % a2
. (m)

The general solution for <p\ then becomes

1 a3

vi = Ci cos pit -h C2 sin pit + - - cos 3p^.2

To satisfy the initial conditions given by the second row of the system (k), we put

C2 =0.
Thus

a8

<f>i
-

2
(cos 3pi* - cos pit). (n)

If we limit our calculations to the second approximation and substitute expressions (I),

(m) and (n) into expressions (0), we obtain

aa3

x = a cos pit + (cos 3 pit cos pit) (o)
o2pi2

where

pi
2 - p2 -f 54a2

. (p)
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These results coincide entirely with expressions (f) which were previously obtained

(see p. 131).

To obtain the third approximation we substitute the expressions (I), (m) and (n)

into the right side of the third of equations (j) and obtain

a3

2 4- piVa = C20 cos pit 4- %a2 ' (cos 3pit cos pit)
32pi2

a 3

3a2 cos2
pit

-
(cos 3pi cos piO-

By using formulae for trigonometric functions of multiple angles we can write this

equation in the following form:

/ 3 a4 \ 3 a
,

*2 + PlV. - - a ^ -f
-

j
cos pit

- -
(cos 3p!< + cos 5Pit).

Again, to eliminate the condition of resonance, we put

3 a4

Then the general solution for ^>2 becomes
3 a5 la8

w = Ci cos pit 4- C2 sin pit 4- Trr: : cos 3p^ 4- TTTT ;
cos opit.

1024 pi
4 1024 pi

4

By using the third row of the system (&), the constants of integration are

1
=
~256pT4

'

C2 = 0.

Thus we obtain
^ fl6

w = (cos Spit 4- 3 cos 3pii 4 cos pit).
'

(s)

If we limit the series (g) to terms containing a and a2
, we obtain the third approximation

by using the above results for <f> Q , ^i, v? 2 , Ci and c2 :

4- rr : (cos3pii cospiO -f rrr;;
-
(cos5pi< -f 3 cos3pi 4cos PiO (0

62pi* 1024pi
4

where pi is now determined by the equation

3 3 a4*2

p1
'= P'+

i
a a + - - ()

Substituting the expressions for ^> , <f>i, w, Ci and 02 in the last of eqs. ( j), and proceeding
as before, we finally obtain the fourth approximation

a a
x - a cos pi* -f rr -

(cos 3pi*
- cos pit) -f

-
(cos 5pit + 3 cos 3pi 4 cos poZ 2 1024 pi*

3 cos 5P* " 3 cos 3P* "" cos P 1*)' (

pi
2 1024 pi*

3 a7
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in which
3 3 a4 3 a8

,.-. +
jo.'

+ .--_.,-. (.)

Since in all our calculations we have omitted terms containing a to a power higher
than the third, we simplify eq. (w) by substituting in the third term on the right side

the second approximation (p) for p\ and in the last term of the same side substituting

p for pi. Thus we obtain

3 3 a 4 3 a*
._,. + -., + -_* _____,

p2 + - <*a 2

4

from which ,3 3 a4 21 a6

p l
.. p.+ ia

a. + .-- -.

We see that the frequency pi depends on the amplitude a of the vibration. The time

displacement curve is not a simple cosine curve; it contains, according to expression (v),

higher harmonics, the amplitudes of which, for small values of a, are rapidly diminishing
as the order of the harmonic increases.

Let us apply the method to the case of vibration of a theoretical pendulum. Equa-
tion of motion in this case is Fig. 79 (see p. 116)

+
^sin0

= 0.

Developing sin 6 in the series and using only the two first terms of this series we obtain

Taking for the frequency the second approximation (e) and denoting by the angular

amplitude, we find

Thus the period of oscillation is

This formula is a very satisfactory one for angles of swing smaller than one radian.

The method of successive approximations, applied to solutions of eq. (55), can be
used also in the more general case of eq. (54).

The same method can be employed also in studying non-harmonic vibrations in which
the non-linearity of the equation of motion is due to a non-linear expression for the

damping force. As an example let us consider the case when the damping force is pro-

portional to the square of the velocity. The equation of motion is then:

x + p*x =F ax* = 0.

The minus sign must be taken when the velocity is in the direction of the negative x axis
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and the plus sign for the velocity in the direction of the positive x axis. Taking x = a
and x at the initial instant (t

= 0), we have for the first half of the oscillation the

equation
x 4- p*x

- ax 2 = 0. (a)
f

Limiting our calculations to terms containing a2
,
we put, as before,

x <PQ + ^i 4- V2 (6)'

Substituting in eq. (a)' and neglecting all terms containing a to powers higher than
the second, we obtain the equation

<f>Q 4- ?>lVo H- <*(#! + PlVl ~
>0

2
) 4"

2
(i?2 + Pl

2
^2 4~ Cl?l 4" C2^>0

~ 2v?ol) =

from which it follows that:

o 4- piVo =
<PI 4- piVi =

o
2

(c)'

^2 4- Pi
2
^>2

= civ?i cz<f>o 4- 2v?o^>i-

The initial conditions give

^o(O) = a (0) =
*i(0) = ^i(O) =

(<*)'

^2 (0) =
v>2 (0) = 0.

From the first of equations (c)' and by using the first row of conditions (d)', we obtain

the first approximation
<f>0

= d COS pit.

Substituting this into the right side of the second of equations (c)', we obtain:

v>i 4- piVi = <*
2
Pi

2 sin 2
pt =

}/% a2
pi

2
(l cos 2pit).

The solution of this equation, satisfying the initial conditions is then:

<P\
= K a2 % a2 cos pi< 4- H a2 cos 2p^.

Substituting ^ and ^>i in the right side of the third of eqs. (c)' we obtain

$2 4- PiV2 = - c2a cos pi< Ci(K a2 - %a2 cos pi< 4- K 2 cos 2piO
2a 3

pi
2 sin pi<(% sin pit ]4 sin 2pit). (e)

r

We have on the right side of this equation two constants Ci and c2 and since there will

be only one condition for the elimination of the possibility resonance, one of these con-

stants can be taken arbitrarily. The simplest assumption is that Ci = 0. Then eq. (e)'

can be represented in the following form:

2 4- piV2 = (- C2d 4- 1A Pi
2a 3

) cos pit
- % a3

pi
2

4- % aW cos 2pit - y$ a'pi
2 cos 3pi*. (/)'

To eliminate the resonance condition we put

- c2a 4- 1A Pi
2a3 =
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Then the general solution of eq. (/)' is

^2 = Ci cos pit -f- 2 sin pit % a3 % a3 cos 2pi + ^ a3 cos 3pif.

To satisfy the initial conditions, represented by the third row of the system (d)
f we must

put

Ci=fia3
,

C2 =0,
and finally we obtain

a3

^2
= _ % a3 + (61 cos pit

- 16 cos 2pit + 3 cos 3piO-
72

Substituting <p > vi, <pt, c\ and c2 in expressions (6)' we obtain

a2

x = a cos pit + (3 4 cos p^ -f cos 2pit)
o

and

from which

(48
- 61 cos pit + 16 cos 2pit

- 3 cos 3piO

PI = p

1 + Jso2 2

The time required for half a cycle is

H 2a2 -
(1 + H 2 2

) OT
2 pi p p

and the displacement of the system at the end of the half cycle is obtained from expres-
sion (h)' by substituting pit

= TT into it. Then

(A:)'

Beginning now with the initial conditions x = a,, x =0 and using formulae (jT

(A;)', we will find that the time required for the second half of the cycle is

i

2 p

and the displacement of the system at the end of the cycle is

at = - ai -h ^ ai 2 -
-V

1 2
i
3
.

Thus we obtain oscillations with gradually decreasing amplitudes.*

* Another method of solving the problem on vibrations with damping proportional
to the square of velocity is given by Burkhard, Zeitechr. f. Math. u. Phys., Vol. 68,

p. 303, 1915. Tables for handling vibration problems with non-linear damping con-

taining a term proportional to the square of velocity have been calculated by W. K.

Milne in Univ. of Oregon Publications, Mathematical Series, Vol. 1, No. 1, and Vol. 2,

No. 2.
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26. Forced Non-Linear Vibrations. Neglecting damping and assuming
that the spring of a vibrating system has a non-linear characteristic, we
may represent the differential equation of motion for forced vibrations

in the following form:

x + p2x + af(x) = F(t) (a)

in which F(f) is the disturbing force per unit mass of the vibrating body
and f(x) is a polynomial determined by the spring characteristic. We
assume that the vibrating system is symmetrical with respect to the

position of equilibrium, i.e., f(x) contains only terms with odd powers of

x. Limiting our discussion to the case when f(x) = r3 and assuming that

the disturbing force is proportional to cos o:, eq. (a) reduces to the following:

x + p2x + (xx3 = q cos cot. (b)

This is a non-linear equation, the general solution of which is unknown.
In our investigation we will use approximate methods. From the non-

linearity of the equation we conclude that the method of superposition
of vibrations which was always applicable in problems discussed in the

first chapter does not longer hold, and that if the free vibrations of the

system as well as its forced vibrations can be found, the sum of these two
motions does not give the resultant vibration. Again, if there are several

disturbing forces the resultant forced vibration cannot be obtained by
summing up vibrations produced by each individual force as it does in the

case of a spring with linear characteristics (see Art. 18).

To simplify the problem we will discuss here only the steady forced

vibrations and we will disregard the free vibrations that depend on the

initial conditions. We will assume also that a is small, i.e., that the spring

approximately follows Hooke's law in the case of small amplitudes. Re-

garding the vibrations we assume that under the action of a disturbing

force, q cos W/, a steady forced vibration of the same frequency as the

disturbing force will be established, moreover that the motion will be in

phase with the disturbing force or with a phase difference equal to IT.

Let this forced vibration be

x = a cos o>. (c)

To determine the amplitude a of this vibration we use eq. (6) and take for

a such a magnitude as to satisfy this equation when the vibrating system
is in an extreme position, i.e. when cos ut =db 1. Substituting (c) into

eq. (6) we obtain in this way the following equation for determining a.

P2a + aa3 = q + aa?2 .

'

(d)
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The left side of the equation represents the force exerted by the spring
for an extreme position of the vibrating system, and the right side is the

sum of the disturbing force and the inertia force for the same position.

All these forces are taken per unit mass of the vibrating body. Proceeding
in this way we satisfy eq. (6) for the instants when the system is in extreme

positions. The equation will be satisfied also when the system is passing

through the middle position since for such a position cos cot and all

terms of eq. (6) vanish. For other positions of the vibrating system eq. (b)

usually will not be satisfied and the actual motion will not be the simple
harmonic motion represented by eq. (c). To find an approximate ex-

pression for the actual .motion we substitute expression (c) for x in eq. (b).

Thus we obtain

x = q cos ut p2a cos wt aa3 cos3 co

or by using the formula

cos3 ut = J4 (cos 3co + 3 cos co)

we find
/ o ~3\ _3

cos 3coZ.x = ( q p2a
J
cos wt

Integrating this equation we have

x =
( q -f p2a + % aa3

) cos wt H--- cos 3eo. (e)
or Soar

It is seen that the vibration is no longer a simple harmonic motion. It

contains a term proportional to cos 3co2 representing a higher harmonic.

The amplitude of this vibration is

=
2 (-9

~
For small values of a this amplitude differs only by a small quantity from
the value a as obtained from eq. (d). Sometimes eq. (/) is used for

determining the maximum amplitude.* Then, by neglecting the last

term on the right side of this equation, we obtain

a = ^ (-J + P
2
<* + H <*a3)> (0)

* See the book by G. Duffing, "Erzwungene Schwingungen bei ver&nderlicher Eigen-

frequenz," p. 40, Braunschweig, 1918. The justification of such an assumption will

be seen from the discussion of successive approximations to the solution of eq. (6),

see p. 147.
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which differs from eq. (d) only in the small term containing a as a

factor.

For determining the amplitude a of forced vibrations a graphical
solution of eq. (d) can be used. Taking amplitudes a as abscissas and
forces per unit mass as ordinates, the left side of eq. (d) will be represented

by curves OAiAzAz and OB^BC^j which give the spring's character-

istic, Fig. 89. The right side of the same equation can be represented by a

FIG. 89.

straight line with a slope w'2 and intersecting the ordinate axis at a point A
tuch that OA represents the magnitude q of the disturbing force per unit

mass. The straight lines AA i, AA^ and AA% in the figure are such lines

constructed for three different values of the frequency w. The abscissas

of the intersection points A i, A2, A% give the solutions of the equation (d)

and represent the amplitudes of forced vibrations for various frequencies
of the disturbing force. It is seen that for smaller values of w there is

only one intersection point, such as point A\ in the figure, and we obtain
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only one value for the amplitude of the forced vibration. For the value of

co corresponding to the line AA2 we have intersection point at A2 and a

point of tangency at B. For higher values of w we find three points of

intersection such as points As, B% and 3 in the figure. Thus there are

three different values of the amplitude a satisfying eq. (d).

Before we go into a discussion of the physical significance of these

different solutions, let us introduce another way of graphical representation

FIG. 90.

of the relation between the amplitude of forced vibrations and the fre-

quency of the disturbing force. We take frequencies w as abscissas and
the corresponding amplitudes a, obtained from Fig. 89, as ordinates. In

such way the curves in Fig. 90 have been drawn. The upper curve

AoAiAzAs corresponds to the intersection points AO, AI, A^ AS in Fig.

89 and the lower curve CsBBs corresponds to the intersection points such

as Ca, B, #3 in the same figure. It is seen that the upper curve AoAiA2As
in Fig. 89 corresponds to positive values of a, and we have vibrations in

phase with the acting force q cos ut. For the lower curve B\ y B$ the

amplitudes a are negative and the motion is therefore TT radians out of

phase with respect to the acting force. In general the curves in Fig. 90

correspond to the non-linear forced vibrations in the same way that the

curves in Fig. 10 correspond to the case of simple harmonic motion. By
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using these curves the amplitude of forced vibrations for any frequency
co of the disturbing force can be obtained. In the case of simple harmonic
motion for each value of a; there is only one value of the amplitude, but in

the case of non-linear vibrations the problem is more complicated. For

frequencies smaller than 002 there is again only one value of the amplitude

corresponding to a vibration in phase with the disturbing force as for

simple harmonic motion. However, for frequencies larger than co2 there

are three possible solutions; the one with the largest amplitude, is in phase
with the force, while the two others are TT radians out of phase with the

disturbing force. The experiments show* that when we increase the

frequency co of the disturbing force very slowly we obtain first vibrations

in phase with the force as given by the curve AuAiAzAz in Fig. 90. At a
certain value of co, say 003, which is larger than o>2, the motion changes
rather abruptly so that instead of having vibrations of comparatively large

amplitude A;jco3 and in phase with the force, we have a much smaller vibra-

tion of an amplitude to3/?s and with a phase difference TT. Vibrations with

amplitudes given by the branch CCa of the curve, indicated in the Fig. 90

by the dotted line, do not occur at all in the experiments with non-linear

forced vibrations. The theoretical explanation of this may be found in the

fact that vibrations represented by curves A0^3 and BB% are stable vibra-

tions^ thus if an accidental force produces a small disturbance from these

vibrations, the system will always have a tendency to come back to its

original vibration. Vibration given by the dotted line CCz is unstable,
which means that if a small deviation from this motion is produced by a

slight external disturbance, the tendency of the deviations will be to

increase so that finally a vibration corresponding in amplitudes to the

branch BBz or to the branch A2^3 of the curve will be built up.
In our discussion it was always assumed that

<?, the maximum of the

pulsating disturbing force remains constant. By using the construction

explained in Fig. 89, the amplitude of a forced vibration for any value of q
can be determined and the curves similar to .those given in Fig. 90 can be

plotted. Several curves of this kind are shown in Fig. 91. If, finally,

* The first experiments of this kind which cleared up the significance of the three

different possible solutions, discussed above, were made by working with electric cur-

rent vibrations by O. Martienssen, Phys. Zeitschr., Vol. 11, p. 448, 1910. The same
kind of mechanical vibrations were studied by G. Duffing, loc. dt. t p. 138.

t A theoretical discussion of the stability of the above mentioned three different

types of vibrations was given by E. V. Appleton in his study of "The Motion of a Vibra-

tion Galvanometer," see Phil. Mag., ser. 6, Vol. 47, p. 609, 1924. A general discussion

on stability of non-linear systems will be found in paper by E. Trefftz, Math. Ann
v. 95, p. 307, 1925.
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q is taken equal to zero, we obtain the free vibrations of the non-linear

system, discussed in the previous article. The frequencies of the free

vibrations for various amplitudes are obtained, as stated before, by draw-

ing inclined lines through the point in Fig. 89 and by determining the

abscissas of their points of intersection with the curve OAiA2A3 . It is

seen that there is a limiting value coo of the frequency which is determined

by the slope of the tangent at to the curve OAs, Fig. 89. This limiting
value is the frequency of the free vibrations of an infinitely small ampli-
tude. For such vibrations the term ax3 in eq. (6) can be neglected as an

m

FIG. 91.

infinitely small quantity of a higher order from which we conclude that

coo = p. With an increase in amplitudes the frequencies also increase and
the relation between a and w for free vibrations is given in Fig. 91 by the

heavy line. From the curves of Fig. 91 some additional information

regarding stable and unstable vibrations can be obtained. Focusing our

attention upon a constant frequency, corresponding to a vertical line, say

mn, that intersects all the curves, and considering the intersection points

1, 2, of this vertical with the stable vibration curves lying above the heavy
line, we may conclude that if the maximum of the pulsating force be in-

creased the amplitude of the forced vibration will also increase. The same
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conclusion can be made regarding the points of intersection 1', 2', on the

lower portions of the curves below the heavy line which also correspond
to the htable conditions of vibrations. However, when we consider

points 1", 2", on those portions of the curves corresponding to the unstable

condition of motion, it is seen from the figure that an increase in the

disturbing force produces a decrease in the amplitude of vibration. We
know from the previously mentioned experiments that this kind of motion

actually does not occur and what really happens is that at certain frequen-
cies the amplitudes given by points 1, 2, are abruptly changed to ampli-
tudes given by points 1', 2'. The frequencies at which this change of

type of motion takes place depend on the amount of damping in the

system as well as on the degree of steadiness of the disturbing force.

To simplify our discussion damping was neglected in the derivation of

eq. (6). If we take damping into consideration and assume that it is

proportional to the velocity of motion, we can again determine the ampli-
tude of vibrations by an approximate method similar to the one used

above.* Due to damping the curves of Fig. 90 will be rounded as shown in

Fig. 92. It is seen that the question of instability arises only in the cases

when the frequency of the disturbing force is in the region o>2 < w < 023.

Starting with some frequency co, smaller than 002, and gradually in-

creasing this frequency we will find that the amplitudes of the forced

vibrations are such as are given by the ordinates of the curve A^A^As.
This holds up to the point A 3 where an abrupt change in motion occurs.

With a further increase in frequency the change in phase by 180 degrees
takes place and the amplitudes are then obtained from the lower curve

BzB. If, after going along the curve from #3 to #4, we reverse the

procedure and start to decrease the frequency of the disturbing force

gradually, the amplitudes of the forced vibrations will be determined by
the ordinates of the curve B^B^B. At point B an abrupt change in motion

occurs, so that during a further decrease in the frequency of the disturbing
force the amplitude of vibration is obtained from the curve A^A^. Thus a

hysteresis loop A^A^B^B in Fig. 92 is obtained due to the instability of

motion at ^3 and at B.

The curve A^A^A^BB^B^ for non-linear forced motion replaces the

curve in Fig. 26 relating to the case of a spring following Hooke's law.

Comparing these two curves we see that instead of a vertical line of Fig. 26

corresponding to a constant critical frequency, o>/p = 1, we have in Fig.

92 a curve coo^a, giving frequencies of free vibrations varying with the

* Such calculations with damping can be found in the previously mentioned paper

by E. V. Appleton, loc. cit.
t p. 141.
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amplitude. Also, instead of a smooth transition from oscillations in phase
with the force to oscillations with 180 degrees phase difference, we have
here a rather abrupt change from one motion to another at such points
as AS and B.

In all the previous discussions it was assumed that the factor a in

eq. (6) is positive, i.e., that the spring becomes stiffer as the displacement
from the middle position increases. An example of such a spring is given
in Fig. 75 and Fig. 77. If with the increase of the displacement the

stiffness of the spring decreases as shown in Fig. 76 the factor a in eq. (6)

FIG. 92.

becomes negative and the frequency of the free vibrations decreases with

an increase in amplitude. Proceeding as before we obtain for determining
the amplitudes of the corresponding forced vibration a curve of such type
as shown in Fig. 93. Starting with a small frequency of the disturbing
force and gradually increasing this frequency we will find that the ampli-
tudes of the motion are given by the ordinates of the curve A^AiA^. At
A 2 a sharp change in motion occurs. The phase of the motion changes by
TT and the amplitude changes from 0*2^2 to a>2#2 . With a further increase in

to, the amplitudes will be given by the curve B%B. If we now reverse the

procedure and decrease co gradually, the amplitudes are obtained from the

curve BB2Bz, and an abrupt change in motion occurs at 83.
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It was assumed in our discussion that the spring characteristic can be

represented by a smooth curve. Sometimes an abrupt change in the

%wA
m

FIG. 93.

rwwv
HVW\r

FIG. 94.

stiffness of the spring occurs during the oscillation of a system. An
example of such a spring is shown in Fig. 94, a. When the amplitudes of
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vibration of the mass w are smaller than d only two springs are in action

and the spring characteristic can be represented by an inclined straight

line, as the line nn\ in Fig. 94, b. For displacements larger than 6, four

more springs will be brought into action. The system becomes stiffer

and its spring characteristic will now be represented by steeper lines such

as lines n\U2 and nns in Fig. 94, b. In calculating amplitudes of the steady
forced vibrations of such a system we replace the broken line On\n<z by a

cubic parabola* y = p2x + ax3 and determine the parameters p2 and a of

m 0.0664 tbsse fn.

Krl5.8

8,= 0.50 in.

82=0.50 in.

lbs/fn.

I 0.6

0.4

0.2

100 120 140 160 on 180 20

Frequency of Ground Motion,~~co , cycles per minute
200

FIG. 95.

this parabola in such a manner that for x = a the ordinate of the parabola
is the same as the ordinate nyr of the broken line, and that the area between
the parabola and the abscissa is the same as the shaded area shown in the

figure. This means that we replace the actual spring system by a fictitious

spring such that the force in the spring and its potential energy at the

maximum displacement a is the same as in the actual spring system.
With expressions for p

2 and a, obtained in this way, we substitute in the

* This method was successfully used by L. S. Jacobsen and H. J. Jespersen, see their

paper in the Journal of the Franklin Institute, Vol. 220, p. 467, 1935. The results

given in our further discussion are taken from that paper.
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previous eq. (d) and, after neglecting some small terms, a very simple

equation for determining the amplitude a is obtained. Experiments show
that the approximate values of the amplitude of the forced vibrations

calculated in this way are in a very satisfactory agreement with experi-
mental data. In Fig. 95 the amplitudes of the forced vibrations are

plotted against the frequencies given in number of cycles per minute.

Full lines give the amplitudes calculated for three different values of the

disturbing force. Each set of these curves corresponds to the full line

curves in Fig. 92. It may be seen that the experimental points are always

very close to these lines.

The method of successive approximations, described in the previous article, can also

be used for calculating amplitudes of steady forced vibration. Considering again

eq. (b) we assume that a is small and take the solution of the equation in the following
form :

x <po -f a<f>i -f V2 -f- (h)

We take also

p2 = pi
2 + cia + C2a2 + -... (i)

Substituting expressions (h) and (i) into eq. (6) and proceeding as explained in the

previous article, we obtain for determining the functions v'o, <f>i, w the following

system of equations

<PQ H- PIVo = q cos ou

'<P\ 4- piVi = Civ?o Y?o
3

(j)

V'l + Pl
2
<?2

= C-2VO C\<p\ 3tf>oVl.

Assuming that a steady forced vibration is built up of an amplitude a and in phase
with the disturbing force we obtain the following initial conditions

v>o(0) = a, WO) =

*i(0) = o, wo) = o (k)

0, WO) =

The general solution of the first of equations ( j) is

v?o
= Ci cos pit -f- Cz sin pit +- cos wt.

2 - 2

To satisfy the initial conditions given by the first row of the system (k) we take

Ci - a -? -
, C, = 0.

Pi
2

Thus

cos pit H cos wt.
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In order that we may have a vibration of the frequency w, we put

- q --a (0

Then
<PO a cos w$. (jn)

Substituting ^o into the second of equations (j) we obtain

a 3

<f>i -f- piVi Cia cos co (cos 3w -f 3 cos <ai).
4

The general solution of this equation is then:

From eq. (i) we have

p2 = pi
2 + Cia.

Substituting for ci its value from eq. (n), and using eq. (0, we obtain

, q
,

' 3 aa2 1

p2 = -
-f a>2 a 2a

a 4 41-
or

- aa3
( 1 ^4 \ 1 8

p 2a -f a 3 = ? -f- a

The left side of this equation represents the force in the spring for the extreme position
of the system. On the right side we have, as it can be readily shown by double differen-

tiation of expression (p), the sum of the disturbing force and of the inertia force for the
same position. Since the factor a is small, we may neglect the last term in eq. (q) and we
obtain eq. (d) which was used before for approximate calculations of the amplitudes.
If we keep in mind that for large vibrations the inertia force w2o is usually large in com-

parison with the disturbing force q and neglect the second term in parenthesis of eq. (q)
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as being small in comparison with unity, we find that eq. (q) coincides with eq. (g)

derived before.

Substituting expressions for ^>o, <f>\, and c\ into the third of equations (J) and pro-

ceeding as before, we can nnd a third approximation for x and a more accurate equation
for calculating the amplitude.

Sometimes for an approximate calculation of amplitudes of forced vibrations the

Ritz' method was used,* but in the case of non-linear equations the calculations of

higher approximations become very complicated and the method does not represent such

advantages as in the case of linear equations. Another way of calculating closer approxi-
mations for the amplitudes of forced vibrations was suggested by J. P. Den Hartog.f
The approximate equation (rf) was obtained by assuming a simple harmonic motion and

determining its amplitude so as to satisfy equation of motion (b) for extreme positions of

the vibrating system. If, instead of a simple harmonic motion, an expression containing
several trigonometric terms is taken, we can determine the coefficients of these terms so

as to satisfy eq. (b) not only for the extreme positions of the system but also for one or

several intermediate positions, J

In the discussion of forced vibrations we assumed that the frequency
of this vibration is the same as the frequency of the disturbing force.

In the case of non-linear spring characteristics, however, a harmonic
force q cos ut may sometimes produce large vibrations of lower frequencies
such as %*), J/aco. This phenomenon is called sub-harmonic resonance.

The theoretical investigation of this phenomenon is a complicated one

and we limit our discussion here to an elementary consideration which gives
some explanation of the phenomena. Let us take, as an example, the

case of eq. (55) discussed in the previous article. It was shown that the

free vibrations in this case do not represent a simple harmonic motion and
that their approximate expression contains also a higher harmonic of the

third order so that for the displacement x we can take the expression

x = a cos co + b cos 3co. (r)

* See G. Buffing's book, p. 130, loc. cit. p. 138. A similar method was recently

suggested by I. K. Silverman, Journal of the Franklin Institute, Vol. 217, p. 743, 1934.

f J. P. Den Hartog, The Journal of the Franklin Institute, Vol. 216, p. 459, 1933.

J An exact solution of the problem for the case when the spring characteristic

is represented by such a broken line as in Fig. 94, b was obtained by J. P. Den Hartog
and S. J. Mikina, Trans. Am. Soc. Mech. Engrs., Vol. 54, p. 153, 1932. See also paper

by J. P. Den Hartog and R. M. Heiles presented at the National Meeting of the Applied
Mechanics Division, A.S.M.E., June 1936.

The theory of non-linear vibrations has been considerably developed in recent

years, principally in connection with radio engineering. We will mention here impor-
tant publications by Dr. B. van der Pol, see Phil. Mag., ser. 7, V. 3, p. 65, 1927. See

also A. Andronow, Comptes Rendues, V. 189, p. 559, 1929; A. Andronow and A. Witt,
C. R., v. 190, p. 256, 1930; L. Mandelstam and N. Papalexi, Zeitschr. f. Phys. Vol. 73,

p. 233, 1931; N. Kryloff and N. Bogoliuboff, Schweizerische Bauzeitung, V. 103, 1934.
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If there is no exciting force, this vibration, owing to unavoidable friction,

will be gradually damped out. Assume now that a pulsating force

q cos (3 co + ft) is acting on the system. On the displacements (r) it will

produce the following work per cycle r = 2?r/co :

r r
I q cos (3&t + ft) x dt = acog / sin u>t cos (3a> + ft) dt

JQ JQ

r
3&w<7 / si

JQ
sin 3co cos (3co + ft) dt.

The first term on the right side of this expression vanishes while the second

term gives 3w b q sin ft. Thus, due to the presence of the higher harmonic
in expression (r), the assumed pulsating force produces work depending
on the phase difference ft. By a proper choice of the phase angle we may
get an amount of work compensating for the energy dissipated due to

damping. Thus the assumed pulsating force of frequency 3co may main-
tain vibrations (r) having frequency co and we obtain the phenomenon
of subharmonic resonance.*

* The possibility of such a phenomenon in mechanical systems was indicated first

by J. G. Baker, Trans. Am. Soc. Mech. Engrs., vol. 54, p. 162, 1932.



CHAPTER III

SYSTEMS WITH VARIABLE SPRING CHARACTERISTICS

27. Examples of Variable Spring Characteristics. In the previous

chapters problems were considered in which the stiffness of springs was
changing with displacement. Here we will discuss cases in which the

spring characteristic is varying with time.

As a first example let us consider a string AB of a length 21 stretched

vertically and carrying at the middle a particle of mass m, Fig. 96. If

x is a small displacement of the particle from its middle position, the

tensile force in the string corresponding to this displacement is (see p. 116).

S' = S + AE~2 , (a)

IF
*

where S is the tensile force in the string for static equilibrium position
of the particle, A is the cross sec-

tional area of the string and E is

the modulus of elasticity of the

string. Let us assume that S is

very large in comparison with the

change in the tensile force repre-
sented by the second term in ex-

pression (a). In such a case this

second term can be neglected, S' = S,
and the equation for motion of the

particle m is:

2Sx
mx H = 0. (o)

I

The spring characteristic in this case is defined by the quantity 2S/1
and as long as S remains constant, equation (b) gives a simple harmonic

motion of a frequency p = V 28/ltn and of an amplitude which depends
on the initial conditions. If the initial displacement as well as the initial

151

FIG. 96.
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velocity of the particle are both zero, the particle remains in its middle

position which is its position of stable static equilibrium.
Assume now that by some device a small steady periodic fluctuation of

the tensile force S is produced such that

S = So + Si sin co, (c)

since S always remains large enough, eq. (fr) continues to hold also in this

case and we obtain a system in which the spring characteristic 28/1 is a

periodic function of time. Without going at present into a discussion

of the differential eq. (b\ it can be seen that by a proper choice of the

frequency w of the fluctuating tension, large vibrations of the particle m
can be built up. Such a condition is represented in Fig. 96, b and Fig.

96, c. The first of these curves represents displacements of the particle m
when it vibrates freely under the action of a constant tension S = So, so

that a complete cycle requires the time r = 2ir/p = 2irvlm/2So. The sec-

ond curve represents the fluctuating tension of the string which is assumed
to have a circular frequency co = 2p. It is seen that during the first

quarter of the cycle, when the particle m is moving from the extreme

position to its middle position arid the resultant of the forces 8 produces

positive work, the average value of S is larger than So. During the

second quarter of the cycle, when the forces S oppose the motion of the

particle, their average value is smaller than So. Thus during each half a

cycle there is a surplus of positive work produced by the tensile forces S.

The result of this work is a gradual building up of the amplitude of vibra-

tion. This conclusion can be readily verified by experiment.* Further-

more, an experiment will also show that the middle position of the particle

is no longer a position of stable equilibrium if a fluctuation in tensile force

S of a frequency co = 2p is maintained. A small accidental force, pro-

ducing an initial displacement or an initial velocity may start vibrations

which will be gradually built up as explained above.

In Fig. 96, d a case is represented in which the tensile force in the string
is changing abruptly so that

S = So Si. (d)

* An example of such vibrations we have in Melde's experiment, see Phil. Mag.,
April, 1883. In this experiment a fine string is maintained in transverse vibrations by
attaching one of its ends to the vibrating tuning-fork, the motion of the point of attach-

ment being in the direction of the string. The period of these vibrations is double that

of the fork.
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FIG. 97.

By using the same reasoning as in the previous case it can be shown that

changing tension S as indicated in the Fig. 96, d, will result in the pro-
duction of a large vibration of the particle.

In Fig. 97 another case of the same kind is represented. On a vertical

shaft is mounted a circular disc AB. Rotation of the shaft is free but its

bending is confined, by the use of guiding bars rm, to the plane xy of the

figure. Along most of its length the shaft has non-cir-

cular cross-section, as shown in the figure, so that its

flexural rigidity in the xy plane depends on the angle of

rotation. Assume first that the shaft does not rotate and
in some manner its lateral vibrations in the xy plane are

produced. The disc will perform a simple harmonic

motion, the frequency of which depends on the flexural

rigidity of the shaft. For the position of the shaft shown
in the figure, flexural rigidity is a minimum and the

lateral vibrations will therefore have the smallest fre-

quency. Rotating the shaft by 90 degrees we will obtain

vibrations of the highest frequency in the plane of

maximum flexural rigidity. In our further discussion

we will assume that the difference between the two

principal rigidities is small, say not larger than ten per
cent. Thus the difference between the maximum and minimum frequency
of the lateral vibrations will be also small, not larger than say five

per cent.

Assume now that the shaft rotates during its lateral vibrations. In

such a case we obtain a vibrating system of which the spring characteristic

is changing with the time, making one complete cycle during half a revo-

lution of the shaft. By using the same kind of reasoning as in the pre-
vious case it can be shown that for a certain relation between the angular

velocity co of the shaft and the mean value p of the circular frequency of

its lateral vibrations, positive work will be done on the vibrating system,
and this work will result in a gradual building up of the amplitude of the

lateral vibrations. Such a condition is shown by the two curves in Fig.

98. The upper curve represents the displacement-time curve for the

lateral vibration of the shaft with a mean frequency p. The lower curve

represents the fluctuating flexural rigidity of the shaft assuming that

the shaft makes one complete revolution during one cycle of its lateral

oscillations so that co = p. At the bottom of the figure the corresponding

positions of rotating cross-sections of the shaft with the neutral axis n are

shown. It is seen that during the first quarter of a cycle when the disc is
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moving from the extreme position towards the middle position and the

reaction of the shaft on the disc produces positive work the flexural rigidity

is larger than its average value, while during the second quarter of a cycle,

when the reaction of the shaft opposes the motion of the disc, the flexural

rigidity is smaller than its average value. Observing that at any instant

the reaction is proportional to the corresponding flexural rigidity, it can
be concluded that the positive work done during the first quarter of the

cycle is numerically larger than the negative work during the second

quarter. This results in a surplus of positive work during one revolution

of the shaft which produces a gradual increase in the amplitude of the

lateral vibrations of the shaft.

If the shaft shown in Fig. 97 is placed horizontally the action of gravity
force must be taken into consideration. Assuming that the deflections

due to vibrations are smaller than the statical deflection of the shaft

produced by the gravity force of the disc, the displacements of the disc

from the unbent axis of the shaft will always be down and can be repre-
sented during one cycle by the ordinates of the upper curve measured
from the ot axis in Fig. 99 a. There are two forces acting on the disc, (1 )

the constant gravity force and (2) the variable reaction of the shaft on the

disc which in our case has always an upward direction. The work of the

gravity force during one cycle is zero, thus only the work of the reaction

of the shaft should be considered. During the first half of the cycle in

which the disc is mowing down the reaction opposes the motion and nega-
tive work is produced. During the second half of the cycle the reaction

is acting in the direction of motion and produces positive work. If we
aesume, as in the previous case, that the time of one revolution of the
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shaft is equal to the period of the lateral vibrations and take the same
curve as in Fig. 98, 6 for the fluctuating flexural rigidity, it can be seen

that the total work per cycle is zero. A different conclusion will be

reached if we take the angular velocity co of the shaft two times smaller

than the frequency of the lateral vibrations, so that the variation of the

flexural rigidity can be represented by the lower curve in Fig. 99. It is

seen that during the first half of the cycle, when the reaction is opposing
the motion the flexural rigidity is smaller than its average value, and

during the second half of the cycle, when the reaction is acting in the

FIG. 100.

direction of motion, the flexural rigidity is larger than its average value.

Thus a positive work during a cycle will be produced which will result in a

building up of the amplitude of vibrations. We see that, owing to a

combination of the gravity force and of the variable flexural rigidity, a

large lateral vibration can be produced when the number of revolutions

of the shaft per minute is only half of the number of lateral free oscillations

of the shaft per minute. Such types of vibration may occur hi a rotor

having a variable flexural rigidity, for instance, in a two

pole rotor (Fig. 100) of a turbo generator. The deflec-

tion of such a rotor under the action of its own weight
varies during rotation and at a certain speed heavy

vibration, due to this variable flexibility, may take place.

The same kind of vibration may occur also when the

non-uniformity of flexural rigidity of a rotor is due to

a keyway cut in the shaft. By cutting two additional

keyways, 120 degrees apart from the first, a cross-

section with constant moment of inertia in all the

directions will be obtained and in this way the cause

of vibrations will be removed.

As another example let us consider a simple pendulum of variable

length I (Fig. 101). By pulling the string OA with a force S, a variation

in the length I of the pendulum can be produced. In order to obtain the

differential equation of motion the principle of angular momentum will be
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applied. The momentum of the moving mass W/g can be resolved into

two components, one in the direction of the string OA and another in the

direction perpendicular to OA. In calculating the angular momentum
about the point only the second component equal to (W/g)lO, must be

taken into consideration. The derivative of this angular momentum with

respect to the time t should be equal to the moment of the acting forces

about the point 0. Hence the equation

*(Ei
?t\g

cr

+ ^'d +
9
,sme = Q. (57)

t at I

In the case of vibrations of small amplitude, 6 can be substituted for

sin 6 in eq. (57) and we obtain

j +-0 = 0. (58)
I dt I

v '

When I is constant the second term on the left side of this equation van-

ishes and we obtain a simple harmonic motion in which g/l takes the place
of the spring constant divided by the mass in eq. (6), p. 151. The varia-

tion of the length Z, owing to which the second term in eq. (58) appears,

may have the same effect on the vibration as the fluctuating spring stiff-

ness discussed in the previous examples. Comparing eq. (58) with eq.

(26) (see p. 33) for damped vibration, we see that the term containing
the derivative dl/dt takes the place of the term representing damping in

eq. (26). By an appropriate variation of the length I with time the same
effect can be produced as with "negative damping." In such a case a

progressive accumulation of energy in the system instead of a dissipation

of energy takes place and the amplitude of the oscillation of the pendu-
lum increases with the time. It is easy to see that such an accumulation

of energy results from the work done by the tensile force S during the

variation in the length I of the pendulum. Various methods of varying
the length I can be imagined which will result in the accumulation of

energy of the vibrating system.
As an example consider the case represented in Fig. 102 in which the

angular velocity d0/dt of the pendulum and the velocity dl/dt of variation

in length of the pendulum are represented as functions of the time. The

period of variation of the length of the pendulum is taken half that of the
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vibration of the pendulum and the dB/dt line is placed in such a manner
with respect to the dl/dt line that the maximum negative damping effect

coincides with the maximum speed. This means that a decrease in the

length I has to be produced while the velocity dd/dt is large and an increase

Fir,. 102.

in length I while the velocity is comparatively small. Remembering that

the tensile force H is working against the radial component of the weight
W together with the centrifugal force, it is easy to see that in the case

represented in Fig. 102 the work done by the force ti during any decrease

in length / will be larger than that returned during the increase in length
I. The surplus of this work results in

an increase in energy of vibration of

the pendulum.
The calculation of the increase in

energy of the oscillating pendulum
becomes especially simple in the case

shown in Fig. 103. It is assumed in

this case that the length of the pen-
dulum is suddenly decreased by the

quantity Al when the pendulum is in

its middle position and is suddenly
increased to the same amount when
the pendulum is in its extreme posi-
tions. The trajectory of the mass W/g is shown in the figure by the

full line. The mass performs two complete cycles during one oscillation

of the pendulum. The work produced during the shortening of the length
I of the pendulum will be

FIG. 103.

(\
w +

* In this calculation the variation in centrifugal force during the shortening of the

pendulum is neglected.
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Here v denotes the velocity of the mass W/g of the pendulum when in its

middle position. The work returned at the extreme positions of the

pendulum is

cos a. (/)

The gain in energy during one complete oscillation of the pendulum
will be

IY Wv2\ }= 2 TF + -1AZ- TFAZcos*
,

(\ g I/ Jg

or by putting
v2 2gl(l cos a),

we have
AE = 6TTAZ(1 - cos a). (g)

Due to this increase in energy a progressive increase in amplitude of

oscillation of the pendulum takes place.

In our discussion a variation of the length I of the pendulum was
considered. But a similar result can be obtained if, instead of a variable

length, a variable acceleration g is introduced. This can be accom-

plished by placing an electromagnet under the bob of the pendulum. If

two cycles of the magnetic force per complete oscillation of the pendulum
are produced, the surplus of energy will be put into the vibrating system
during each oscillation and in this way large oscillations will be built up.

It is seen from the discussion that a vertically hanging pendulum at

rest may become unstable under the action of a pulsating vertical magnetic
force and vibrations, described above, can be produced if a proper timing
of the magnetic action is used.* A similar effect can be produced also if a

vibratory motion along the vertical axis is communicated to the sus-

pension point of a hanging pendulum. The inertia forces of such a verti-

cal motion are equivalent to the pulsating magnetic forces mentioned above.

If, instead of a variable spring characteristic, we have a variable

oscillating mass or a variable moment of inertia of a body making tor-

sional vibrations, the same phenomena of instability and of a gradual

building up of vibrations may occur under certain conditions. Take,
for example, a vertical shaft with a flywheel attached to its end (Fig.

104). The free torsional vibrations of this system will be represented by
the equation

w-o, (*)

* Peo Lord Rayleigh, Theory of Sound, 2nd ed., Vol. T, p. 82, 1894.
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in which I is the moment of inertia of the flywheel and k is the spring con-

stant. Let us assume now that the moment of inertia / does not remain
constant and varies periodically with the time due to the harmonic motion
of two symmetrically situated masses m sliding along the spokes of the

wheel (Fig. 104, 6). In such a case the moment of inertia can be repre-
sented by a formula

/ = 7o(l + OL sin cof), (i)

in which w is the circular frequency of the oscillating masses m and a is a

factor which we assume small in comparison with unity, so that there is

only a slight fluctuation in the magnitude of the moment of inertia /.

Substituting expression (i) into eq. (/*), we can write this equation in the

following form :

/o<*a> cos ut . k
he + . o + :

- e = o,
1 + a sin (jot 1 + a sin ut

or, observing that a is a small quantity, we obtain

+ cos wt + fc(l a sin wt)0 = 0. 0)

It is seen that on account of the fluctuation in the mag- '/////////////.

nitude of the moment of inertia we obtain an equation

(j) similar to those which we had before for the case

of systems with variable spring stiffnesses. From this

it can be concluded that by a proper choice of the

frequency o> of the oscillating masses m large torsional

vibrations of the system shown in Fig. 104 can be

built up. The necessary energy for these vibrations

is supplied by forces producing radial motion of the

masses m. When the masses are moving toward the

axis of the shaft a positive work against their cen-

trifugal forces is produced. For a reversed motion

the work is negative. If the masses be pulled towards

the axis when the angular velocity of the torsional FIG. 104.

vibration and the consequent centrifugal forces are

large and the motion be reversed when the centrifugal forces are small

a surplus of positive work, required for building up the torsional vibra-

tions, will be provided. Such a condition is shown in Fig. 105 in which
the upper curve represents angular velocity of the vibrating wheel and
the lower curve represents radial displacements r of the masses m. The
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frequency of oscillation of the masses m is twice as great as the fre-

quency of the torsional vibrations of the shaft.

If the wheel of the shaft is connected to a reciprocating mass as shown
in Fig. 106 conditions similar to those just described may take place.

If the upper end of the shaft is fixed and the flywheel performs small

torsional vibrations such that the configuration of the system changes

only little, all the masses of the system can be replaced by an equi-
valent disc of a constant moment of inertia (see p. 77). But if the shaft

is rotating the configuration of the system is changing periodically and
the equivalent disc must assume periodically varying moment of inertia.

FIG. 105. FIG. 106.

On the basis of the previous example it can be concluded that at certain

angular velocities of the shaft heavy torsional vibrations in the system
can be built up. These vibrations are of considerable practical impor-
tance in the case of engines with reciprocating masses.*

28. Discussion of the Equation of Vibratory Motion with Variable Spring Charac-
teristic. Vibrations Without Damping. The differential equation of motion in the
case of a variable spring characteristic can be represented in the following form if

damping is neglected:

x + [p
2 + af(t)]x = 0, (a)

in which the term af(t) is a periodical function of time defining the fluctuation of the

* This problem is discussed in the following papers. E. Trefftz, Aachener Vortnige
aus dem Gebiete der Aerodynamik und verwandter Gebiete, Berlin, 1930; F. Kluge,
Ingenieur-Archiv, V. 2, p. 119, 1931; T. K. Schunk, Ingenieur-Archiv, V. 2, p. 591,

1932; R. Grammel, Ingenieur-Archiv, V. 6, p. 59, 1935; R. Grammel, Zeitschr. f.

angew. Math. Mech. V. 15, p. 47, 1935; N. Kotschin, Applied Mathematics and

Mechanics, Vol. 2, p. 3, 1934 (Russian).
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spring stiffness. In mechanical vibration problems \\e usually have small fluctuations
of the stiffness arid this term can be considered as small m comparison with p2

. When
this term vanishes, eq. (a) coincides with that for free harmonic vibrations. In some
of the examples discussed in the previous article, the fluctuation of the spring stiffness

follows a sinusoidal law and the equation of motion becomes: *

x + IP
2 + OL sin <at]x = 0. (6)

These conditions we have, for instance, in the case of lateral vibrations of a string sub-

jected to the action of a variable tension as shown in Fig. 96c.

The simplest case of a variable spring stiffness is obtained in the case repre-
sented in Fig. 90^/, in which a ripple is superposed on the spring constant of the system.
We will now discuss this later case and will show in this example how general conclu-

sions regarding type of motion can be made from the consideration of the equation (a).f

The general solution of eq. (a) can be represented in the form J

where Ci and (72 are constants of integration, <p ftnd $ are periodic functions of time

having the same period r = 2ir/u as the period of fluctuation of the spring character-

istic and M is a coefficient independent of t. Owing to the periodicity of the functions

<p and ^ it can be seen from (c) that, if j* = F(t) is a displacement of the system at any
instant t, the displacement after the elapse of an interval of time equal to the period T

will be

\ w /

where s is a number depending on the magnitude of the coefficient M- Thus if we know
the motion during one cycle, the displacement at any instant of the second cycle is

obtained by multiplying the corresponding displacement of the first cycle by 5. In

the same way the displacements of the third cycle will be obtained by using the multi-

plier ,s
2 and so on. It is seen that the type of motion depends on the magnitude of the

factor s. If the absolute value of this factor is less than unity, the displacements, given

by expression (r), will gradually die out. If the absolute value of s is larger than unity,
the tendency of displacements will be to grow with time, i.e., if some initial motion to

the system is given, large vibrations will be gradually built up. Thus, in this case, the

motion is unstable.

* This is Mathieu's differential equation which was discussed by Mathieu in his

study of vibrations of elliptical membranes, see E. Mathieu, Cours de Physique Mathe-

matique, p. 122, Paris, 1873.

t This problem has been discussed by B. van der Pol, see Phil. Mag. Ser. 7, V. 5,

p. 18, 1928. See also the paper by E. Schwerin, Zeitschr. f. Techn. Phys., V. 12, p. 104,

1931. A complete bibliography of this subject can be found in the paper by L. Mandel-

stam, N. Papalexi, A. Andronov, S. Chaikin and A. Witt, Expose* des recherches

r6centes sur les oscillations non lineaires, Technical Physics of the U.S.S.R., Vol. 2,

p. 81, 1935.

J Floquet, Annales de 1'Ecole Normale, Vol. 1883/84.
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In practical applications it is very important to know the regions in which instability
takes place and a building up of large vibrations may occur. If the fluctuation of the

spring stiffness consists only in a ripple superposed on the spring constant, the deter-

mination of the regions of instability can be made without much difficulty since for each

half cycle the spring characteristic remains constant and the equation of simple har-

monic motion can be used. Let A be the quantity defining the magnitude of the ripple,

so that the equation of motion for the first half of a cycle, i.e., for < t < TT/CO, is:

x + (p
2 + A) x =

0, (e)

and for the second half of the cycle when TT/CO < t < 27r/co, it is

x + (P
2 - A)* = 0. (/)

Using the following notations

PI = v p2
-h A and p2 = v p2 A. (g)

the solutions of eqs. (e) and (/) are:

xi = Ci sin pit -f Cz cos pit (h)

Xz Ca sin pd + 4 cos P^i W
where Ci d are the constants of integration which must be determined from the

following conditions:

(1) At the end of the first half cycle (t
= TT/CO) solutions (h) and (i) must agree,

i.e., at this instant both solutions must give the same value for the displacement
and for the velocity.

(2) At the end of a full cycle (t
= 2x/co) the displacement and the velocity, by

virtue of (d), must be s times as large as at the beginning. Thus the equations for

determining the four constants are

Substituting for x\ and xz from (h) and (i) the first of eqs. (j) becomes

. Trpi irpi 7rp 2
,, Tf/92 _

Ci sm h C'2 cos Cs sin 6 4 cos = 0.
CO CO CO CO

The remaining three equations of the system (j) will have a similar form so that we
obtain altogether four linear homogeneous equations for determining Ci Ci.

These equations can give solutions for the C's different from zeros only if their deter-

minant is zero. Evaluating this determinant and equating it to zero we finally obtain

the following quadratic equation for s:

, o / ""Pi ^P2 P I
* + P** *P l rP 2\ i 1 n /i \

s* 2s I cos cos sin sin
J + 1 ==

(/j)

\ CO CO 2pl^2 CO CO /
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or using the notation
2 2 m

(I)
(4) CO plp2 CO W

we obtain

from which

It is seen that the magnitude of the factor 5 depends on the quantity N. If N > 1

one of the roots of eq. (m) is larger than unity and the vibrations will gradually build

up. Hence the motion is unstable.

When N lies between +1 and 1 the roots of eq. (m) are complex with their moduli

equal to unity. This means that there will be no tendency for the vibrations to grow
so that the motion is stable.

When AT < 1 one of the roots of eq. (m) again becomes numerically larger than

unity; consequently the motion becomes unstable.

Let us now consider the physical significance of the fact that multiplier s is positive
when N > 1, and negative when N < 1. Considering the displacements of the

vibrating system at the ends of several consecutive cycles of the spring fluctuations, we
find, from eq. (d), that in the case of positive value of 5 these displacements will increase

and will always have the same sign. This indicates that the vibrations have the same

frequency as the spring fluctuation frequency co or they are a multiple of it. If we denote

the frequency of vibrations by coo we conclude that for N > 1 we shall have co = co or

coo = 2co, 3co, etc. If s is negative the displacement at the ends of the consecutive

cycles of the spring fluctuations have alternating signs, which indicates that co = co/2,

3co/2, etc.

The quantity N, given by expression (J), is a function of the ratios pi/co and p2/w.

By using eqs. (g) we can also represent it as a function of the ratios A/p2 and p/co.

The first of these ratios gives the relative fluctuation of the spring constant and the

second is the ratio of the vibration frequency of a ripple-free spring system, to the

frequency of the stiffness fluctuation. If we take (p/co)
2 as abscissas and (A/p2

)(p
2
/co

2
)

as ordinates a point in a plane for each set of values of the ratios A/p2 and p/co may be

plotted and the corresponding value of N may be calculated. If such calculations have
been made for a sufficient number of points, curves can be drawn that will define the

transition from stable to unstable states of motion. Several curves of this kind are

shown in Fig. 107,* in which the shaded areas represent the regions in which
1 < N < 1 (stability) and the blank area, the regions where N > I or N < 1

(instability). The full lines correspond to N +1 and dotted lines to N 1.

The numbers in the regions indicate the number of oscillations of the system during
one cycle, T 27r/co, of the stiffness fluctuation.

For a given ratio A/p2
, i.e., for a known value of the relative fluctuation of the

stiffness of the spring, the ordinates are in a constant ratio to the abscissas in Fig. 107

and we obtain an inclined line, say OA. Moving along this line we are crossing regions
of stable and of unstable motions indicating that the stability of motion varies as the

frequency co of the stiffness fluctuation is changed. When co is small we get points on
the line OA far away from the origin 0. As co is gradually increased, the system passes

* See paper by B. van der Pol, loc. cit., p. 161,
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through an infinite number of instability regions. Finally, as p/co approaches the

origin, the last two regions of instability are crossed, one in which the ratio p/w is

approximately unity and the other, in which p/w is approximately one half. Experiences

with such cases as discussed in the previous article indicate that these two instability

regions are the most important and that large vibrations can be expected if the fre-

quency of the stiffness fluctuation coincides with that of the free vibration * or is twice

as large as that frequency. It is seen from the figure that the extents of the regions of

instability such as are given by the distances aa or bb can be reduced by diminishing the

slope of the line OA, i.e., by reducing the relative fluctuation of the spring stiffness.

Practically such a reduction can be accomplished in the case of torsional vibrations by

FIG. 107.

introducing flexible couplings. In this way the general flexibility of the system is

increased and the relative spring fluctuation becomes smaller.

Damping is, of course, another important factor. In all our discussions damping
has been neglected, thus theoretically we do not get an upper limit for the amplitude
of the gradually built up vibrations. Practically this limit depends on the amount
of damping, therefore, by introducing some additional friction into the flexible couplings

considerable reduction in the vibrations can be effected.

Figure 107 which we used in the above discussion corresponds to the case of a rec-

tangular ripple, but more elaborate investigations show that similar results are obtained

also in the case of the sinusoidal ripple that was assumed in eq. (b).t In more general

cases when the ripple superposed on the constant spring stiffness is of a more compli-

* Calculated by assuming the average value per cycle for the stiffness of the spring.

|See paper by B. van der Pol, loc. cit., p. 161.
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cated form, a method of successive approximations can be used for calculating ihe extent

of the instability regions. Taking one of the instability regions for a given stiffness

fluctuation, say region aa in Fig. 107, we know that for any point in that region the

numerical value of the factor s in eq. (d) is larger than unity and that the amplitude
of vibration is growing. If we now consider the limiting points a, we know that at

these points the numerical value of s becomes equal to unity and there is a possibility

of having a steady vibratory motion. Thus the limiting points of an instability region
are characterized by the fact that at these points steady vibrations of the system are

possible. For the purpose of calculating the position of such points we may assume
some motion of the system and investigate for what values of the frequency o> this

motion becomes a steady periodic motion. These values then define the limits of the

instability regions. The application of this method in studying electric locomotive

vibrations will be shown in the next article.

The points to the left from the origin in Fig. 107 correspond to negative values of p2
,

i.e., to negative spring constants. Such spring characteristic we may have,
for instance, in the case of a pendulum. For a hanging pendulum the

spring characteristic is defined by the quantity f///, where / is the equiva-
lent length of the pendulum. In the case of the inverted pendulum, Fig.

108, the spring characteristic is given by g/l. We know that this posi-

tion of equilibrium is unstable. By giving a vertical vibratory motion to

the point of support A a fluctuation in the spring stiffness can be

introduced (see p. 158). In such a case, as shown in Fig. 107, stability inmiff.
conditions can be obtained for certain frequencies of this fluctuation.

Thus the pendulum will remain stable in the inverted position.

Vibrations irith Damping. As an example we take the case when
clamping is proportional to the velocity and the spring stiffness has a sinusoidal fluctu-

ation of a period TT/CO. The equation of motion in this case is

x + 2nx + (p
2 - 2a sin 2wQa? = 0. (a)

When a vanishes, this equation coincides with eq. (26), p. 33 for free vibrations with

linear damping. From the discussion of the previous article we know that a steady
vibration of a period twice as large as the period of the stiffness fluctuation can be

expected in this case. We will now investigate under what conditions such a steady
motion is possible. This motion will not be a simple harmonic vibration but we may
represent it by a series of the period 27r/co:

x = A i sin wt -f- BI cos ut -f- A 3 sin 3co -f B 3 cos 3co -f- At sin 5ut -{- (6)

and use a method of successive approximations.*
Substituting the series in eq. (a) and equating the coefficients of sin co, cos cot, etc.,

to zero, we obtain:

Ai(p* -
co-)

- 2nwBi - aB l + 3 =0
Bi(p~ co'-) -f- 2ttco.li aAi a/ls =

Az(p'
2 9 co

2
) 6r?to/?3 <*B[ -j- /?6 =0

Bs (p*
-

9co-') + Cmco/ls + .li - A B
= ^

A b(p-
- 25<o2

)
- lOnwfls - aB s + aB7

=
B b (p*

- 25co2
) + lOnco/U -f aA 3

- A 7
=

* Such a method of investigation was used by Lord Rayleigh, see Theory of Sound,
2ided., Vol. l,p. S2, 1S94.
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These equations show that the coefficients A 3 ,
B s are of the order a with respect to A\

t

B\\ that A 6, Bg are of order a with respect to A$, B^ and so on. Thus if a is small

the series (6) is a rapidly converging series. The first approximation is obtained by
keeping only the first two terms of the series. Omitting A 3 and Bz in the first two of

eqs. (c), we find that

Ai(p2 - to
2
)
- (2nw 4- a)Bi =

4i(2nco - a) + (p
2 - "2)#i = 0. (d)

These equations will give solutions different from zero for Ai and B\ only if their deter-

minant vanishes, whence

Thus, if the quantity a, denning the spring stiffness fluctuation, is known, the magnitude
of the frequency co, at which a steady motion is possible, can be found from eq. (c)

which gives

\/(p2 _

From eqs. (d) we also have

Ai 2n*> + a p2

p2
co

2 a 2nu
(9)

Then the first two terms of the series, representing the first approximation of the motion,
can be given in the following form:

where

C =

xi = C sin (ut

-f and arctan (/i)

The amplitude of the vibration remains indefinite while the phase angle ft can be calcu-

lated by using expression (/i). If there is no damping, 2?i = and we obtain

(i)co = p x / 1 =t p I 1 d= 1V 7) 2 \ 7r) 2 /

These two values of co correspond to the two limits of the first region of instability, such
as points aa in Fig. 107. Equation (c)

requires that a. be not less than 2nco.

For a. < 2nco sufficient energy cannot be

supplied to maintain the motion. For
= 2fi we have co = p, i.e., the fre-

quency of the stiffness fluctuation is

exactly two times larger than the free

vibration frequency of the system without

damping and with the assumed constant

spring stiffness defined by the quantity p.

The phase angle ,
as may be seen from

(g) and (/i), is zero in this case and the

relation between the motion and the spring
fluctuation is such as is shown by curves (a) and (b) in Fig. 109. When a > 2naj, two

solutions for co are obtained from (/) and the corresponding phase angles from (h).

FIG. 109.
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When is much greater than 2nco the ratio A\/R\ in eq. (g) approaches unity and the

phase angle is approximately equal to d= ir/4. For this case we therefore conclude that

the curve (6) in Fig. 109 must be displaced along the horizontal axis so as to make
its maximum or its minimum correspond to the zero points of the curve (a), i.e., the

spring stiffness is a maximum or a minimum when the system passes through its posi-

tion of equilibrium.
If a second approximation is desired we use the third and fourth of eqs. (c), from

which, for small damping, we have approximately

Thus the second approximation for the motion is

aC
x = C sin (ut -f ft) -f -7

;

~ cos (3coJ 4- /*). (&)

Substituting expressions (J) in the first two of eqs. (c) we find the following more
accurate equation for deterunning the values of co, at which a steady motion is possible:

,

= a 2 4tt 2p 2
(I)

p 2 - 9co 2
/

and for the phase angle

/ a2 \
tan ft

= I p 2 - co
2 - -r (a + 2n).

\ p 2 9o> 2
/

Thus, by using the (lescril)ed method of successive approximations, we can establish

the limits of the regions of instability, investigate how these limits depend on the

amount of damping and determine the phase angle ft. All this information is of prac-
tical interest in investigating vibrations due to fluctuation of spring stiffness.

29. Vibrations in the Side Rod Drive System of Electric Locomotives.

General. One of the most important technical examples of systems
with fluctuating stiffness is to be found in the case of electric loco-

motives with side rod drive. The flexibility of the system between

the motor shaft and the driving axles depends on the position of the

cranks and during uniform motion of the locomotive this is usually
a complicated function of time, the period of which corresponds to one

revolution of the driving axles. We have seen in the previous article that

such systems of variable flexibility under certain conditions may be

brought into heavy vibrations. Due to the fact that such vibrations are

accompanied by a fluctuation in the angular velocity of the heavy rotating
masses of the motors, large additional dynamical forces will be produced
in the driving system of the locomotive. Many failures especially in the
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early period of electric locomotive building must be attributed to this

dynamical cause.*

Variable Flexibility of Side Rod Drive. In order to show how the

flexibility of a side rod drive changes during rotation of the motor a simple

example shown in Fig. 110 will now be considered. A torque Mt, acting
on the rotor, is transmitted to the driving axle OiOi through the motor
shaft 00, cranks 01 and 02 and side rods 11 and 22. Consider now the

angle of rotation of the rotor with respect to the driving axle OiOi due to

twist of the shaft 00 and due to deformation of the side rods. Let M' t

Driver

and M" t be the moments transmitted to the driving axle through the side

rods 11 and 22, respectively, then:

Mt
= M' t + M"t (a)

and if fci is spring characteristic for the end OA of the shaft, then the

angle of rotation of the motor due to twist of the shaft will be given by

-
(b)

ki

Consider now the angle of rotation &%<? due to compression of the side

rod 11. Let,

* The most important papers dealing with vibrations in electric locomotives are:

1. "Ueber Schuttelerscheinungen in Systemen mit periodisch verunderlicher Elas-

tizitat," by Prof. E. Meissner, Schweizensche Bauzeitung, Vol. 72 (1918), p. 95.

2. "Ueber die Schiittelschwingungen des Kuppelstangantriebes/' by K. E. Miiller,
Schweizerische Bauzeitung, Vol. 74 (1919), p. 141.

3.
"
Eigenschwingungen von Systemen mit periodisch veninderlicher Elastizitat," by

L. Dreyfus. "A. Foppl zum siebzigsten Gcburtstag" (1924), p. 89.

4. A Wichert, Sehuttelerscheiriungcn, Forschungsarbeiten, Heft 2GG (1924).
5. E. E. Seefehlner, Elektrische Zugforderung, 1924.

6. A. C. Couwenhoven, Forschungsarbeiten, Heft 218, Berlin, 1919.
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Si be compressive force in this side rod,

S /

d = is the corresponding compression of the side rod,Ahi

r is the radius of the crank.

Then we have
M1

t Sir sin <p,

and from a geometrical consideration (see Fig. Ill),

d = rA2<psin <p.

FIG. 111.

Remembering that

we have from eqs. (c) and

or, by letting

we have

,

AEr2 sin2 <p
'

AEr2

I
2 '

M' t

k>2 sin2

(c)

(d)

The complete angle of rotation of the motor with respect to the driving
axle will be *

= M' t

* The deformation of the side rods and of the shaft 00 only are taken into con-

sideration in this analysis.
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The same angle should be obtained from a consideration of the twist of the

end OB of the shaft and of compression of the side rod 22. Assuming
that the arrangement is symmetrical about the longitudinal axis of the

locomotive and repeating the same reasoning as above we obtain,

V
p/

(9)

From equations (a), (/) and (0), we have

2 1
r- sin2

<p cos
2

<p +

2,8 2
+ --- - cos 4<p

A fel &2 fci_T7~r71 r~T'
7-^ + 7 7

- + 7-7, , cos 4v?2 2

Putting

A . _A. . J_

we have
a 6 cos 4oj

M< = A<p (57)
c a cos 4w

It is seen that the flexibility of the system is a function with a period

four times smaller than the period of one revolution of the shaft. In Fig.

112 the variation of the flexibility with the angle is represented graphically.

For a given value of torque the angle of twist becomes maximum and equal

to Mt I
- h T~ ) when

7T- = (),-,...
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It becomes minimum and equal to Mt [ 1 ) when
\2ki /C2/

% % *

FIG. 112.

It is easy to see that the fluctuation in the flexibility of the system
decreases when the rigidity of the shaft, i.e., the quantity fci, increases.

P'or an absolutely rigid shaft the

flexibility of the system remains con-

stant during rotation.

In our above consideration equa-
tions (a), (/) and (g) were solved ana-

lytically. The same equations can,

however, be easily solved graphically.*

Let AB represent to a certain scale

the magnitude of the torque Mt (see

Fig. 113); then by taking the end

ordinates AF and BD equal to

FIG. 113.

Mt

respectively the vertical OC through the point of intersection of the lines

BF and AD will determine AC and CB, the magnitudes of the moments M'
t

andM/'.
From the figure we have also,

OC = M' t . + T- =
ki K2 Sill" (p/

* This method was used by A. Wiechert, loc. cit., p. 168.
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i.e., OC is equal to the angle of rotation of the motor due to deformation

of the side rod drive produced by the torque Mt .

This graphical method is especially useful for cases in which clearances,

as well as elastic, deformations are considered. Consider, for instance,

the effect of the clearance between side rod and crankpin. Let a denote

the magnitude of this clearance,* then the displacement (see Fig. Ill) will

be equal to the compression of the side rod together with the clearance a

and we have,

or, by using eq. (c) and (d)

<
.

sin <p
=

:

--
.

- + a,
r sin <pAE

~
: ^ I- r sin

The complete angle of rotation will be

In the same manner, by considering the other crank, we obtain

M"t M" t a
A<? = ----h --

o
----

K\ K2 COS^ <p T COS (p

From equations (fc), (T) and (a) the moments M't and M" t and the

angle A<^> can be calculated. A graphical solution of these equations is

shown in Fig. 114. AB represents, as before, the complete torque Mt .

The straight lines DF and LK represent the right sides of equations (fc)

and (Z) as linear functions of Mf

t and M" t , respectively. The point
of intersection O of these two lines gives us the solution of the problem.
It is easy to see that the ordinate OC is equal to the angle A<p and that

the distances AC and CB are equal to the torque M' t and M"t9 respec-

tively.

It is seen from Fig. 114 that for the position of the cranks when

(m)
r cos (p r sin <p \/ci #2 smz

<p/

* a denotes the difference between the radius of the bore and the radius of the pin.
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M" t becomes equal to 0. For smaller values of v* than those given

by eq. (m) the side rod 1-1 takes the complete torque and M' t
= Mt . In

the same manner for angles larger than those obtained from the equation,

r sin r cos <p

,

h
,+

l \
)

cos- <p/

*,Mt . (n)

M' t 0, and the complete torque is taken by the side rod 2-2. By using
the graphical solution (Fig. 114) within the limits determined by equations

FIG. 114.

(m) and (n), and using equations (k) and (I) beyond these limits, the

complete picture of the variation of the angle A<p can be obtained for

7T/2 < <p < TT. In a similar manner other crank positions can be con-

sidered and a curve representing the variable spring characteristic Mt/A<p
as a function of a?Z, similar to that shown in Fig. 112, can be plotted.

Vibrations in the Side Rod Drive System. Considering the motion of

the system shown in Fig. 110,

/i is moment of inertia of the mass rotating about the axis 0-0,
12 is moment of inertia of the mass rotating about the axis Oi-Oi,

(p\y <P2 are corresponding angles of rotation about 0-0 and Oi-Oi re-

spectively,

A<p = <pi v<2 is the angular displacement of the motor with respect
to the driving axle due to deformation in the shafts and side rods,

^ is the variable flexibility of the side rod drive, i.e., the torque necessary

* The configuration shown in Fig. Ill, in which the cranks are situated in the first

and second quadrants is considered here.
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to produce an angular displacement A<p equal to one radian. In the par-
ticular case considered above (eq. 57, p. 170) we have

Mt a b cos 4co

^ _ _ -
(57)

1

A<p c a cos 4co

Mt,
Mr are moments of the external forces acting on the masses I\ and

/2, respectively. When motion of the locomotive takes place a constant

torque Mt acts on the mass having a moment of inertia I\ (Fig. 110) and
in opposition to this a moment \[s(<pi ^2) is brought into play which

represents the reaction of the elastic forces of the twisted shaft 0-0. The
differential equation of motion will be

_ 7
<*V + M ,

( o) =0
dt2

t 9l

In the same manner the differential equation of motion for the second

mass will be

d~<p2
12 ~ Mr ~\~ ^/\<P\ ^2) == 0. (6)

In actual cases 7i and /2 represent usually the equivalent moments of

inertia, the magnitude of which can be calculated from the consideration

of the constitution of the system.
From equations (a) and (6) we have

TT 1 Tr2/
~~

-f I -r

dt*
T IJ2

Letting
1 1 + J2 = e

the following equation will be obtained :

Mt Mr

x + Ox = - + , (c)
/I 12

in which 6 is a certain periodical function of the time. In the case shown
in Fig. 109, we have from eq. 57, p. 170.

Ii + /2 /i + /2 a 6 cos *

/1/2 /1/2 C d COS 4co

If the rigidity of the shaft is very large in comparison with that of
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the side rods, the quantities b and d in eq. 59 can be neglected (see p. 170)

and we obtain

e = k !lh.
/1/2

We arrive at a system having a constant flexibility, the circular frequency
of free vibration of which can be easily found from the following equation

(see p. 12)

Under the action of a variable torque M t large vibrations in the system

may arise if the period of Mt is equal to or a multiple
* of the period of the

free vibrations of the system. In this manner a series of critical speeds for

the system will be established.

In the case of a variable flexibility the problem becomes more compli-
cated. Instead of definite critical speeds, there exist definite regions of

speeds within which large vibrations may be built up. In order to de-

termine the limits of these critical regions an investigation of the equation

x + dx = 0, (61)

representing the free vibrations of the system becomes necessary. The
factor 6 in this equation is a periodic function of the time depending on

the variable flexibility of the system and is determined by eq. (58). Let

r denote the period of this function and x(t) a solution of eq. (61).

Then, as was shown in the previous article the values of r corresponding to

the limits of the critical regions are those values at which one of the two

following conditions is fulfilled:

x(t + T) = x(t), (d)

x(t + r) =-x(t). (e)

In the further discussion we will call the case (d) a periodic solution of

the first kind and the case (e) a periodic solution of the second kind. It

means that values r determining the limits of the critical regions are those

values at which eq. (61) has periodic solutions either of the first 01 of the

second kind.

* It is assumed that Mt is represented by a trigonometrical series (see article

18); then resonance occurs if the period of one of the terms of this series becomes

equal to r.
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Calculation of Regions of Critical Speeds.*

In the case of an electric locomotive, the fluctuation in the flexibility of the system
is usually small and the regions of critical speed can be calculated by successive approxi-
mation. The procedure of these calculations will now be shown in a particular case

where the function in the general equation,

x + fa = (62)
has the following form,

a + b cos 2a>t + c cos 4w /i + /2= L_I_f . (63)
p + q cos 2wt 4- r cos 4o> /i/2

In the case of a symmetrical arrangement, discussed above, 6 = q = and we
arrive at the form shown in eq. (59), p. 174.

Assuming only small fluctuations in 6 during motion of the locomotive, the quantities

6, c, g, and r in eq. (63) become small in comparison with a and p and, by performing
the division, this equation can be represented in the following form,

fa 6 c } \ la r \
Q = J _

_j_
_ cog 2ut + - cos 4a>/, M 1 - - cos 2wt + cos 4co

(P P P J I \P P I

-f
-

Let,

a/i-f/2 6/1+/2 c/i+/2 </ r--
T~r

= --
T~T

= ^l
--

7~r
~ ^2

~
36 >

~ =
S'46

P /1/2 P /1/2 P /1/2 P P

where g\ t g^ Qz and g\ are quantities of the same order as </ and c denotes a small quan-
tity. Then by using the identity,

2 cos 2mt cos 2nt = cos 2(m + n)^ + cos 2(m n)tt (b)

eq. (a) can be represented in the following form,

= ir
2
{ao + e(ai cos 2w< + a2 cos 4a>0 + e2 (a 3 cos 2co< -f- a 4 cos 4a>Z

+ a 6 cos 6coJ + ac cos 8wO + 3
(a7 cos 2^ +)+}, (c)

in which the constants ao, 01, 012, can be expressed by the quantities , g\ t given
above.

It is seen now that the function 0, depending on the variable flexibility of the system,
has a period

i.e., two complete periods of 9 correspond to one revolution of the crank.

In the following discussion of the differential equation (62) the angle <p, a new
independent variable, instead of the time t will be introduced. This variable will be
determined by the equation,

<f>
=

orf, (e)

* See Karl E. Mtiller, "Ueber die Schiittelschwingungen dcs Kuppelstangenan-
triebes," Dissertation der Eidgen. Techn. Hochschule in Zurich.
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and will represent the angle of rotation of the crank,

. _dx __
dx _ d*x _ d2x

X==
di

==

"d^>'
a/= ^ = a;2

^'
Substituting in eq. 62 and using eq. (d), we have

dzx r2

+ - Ox =
0, (64)

d<f>
2

TT
2

in which, from eq. (c)

= 7r
2
{ao -f e(i cos 2<p 4- 2 cos 4<p) 4~

2(3 cos 2<p + a4 cos 4^

+ 6 cos 6<? + a6 cos 8<p) + e*(aj cos 2<? -f )}> (/)

i.e., the period of function d is now equal to TT.

According to the previous discussion the limits of the critical regions of the motion
of the system correspond to those values of the period r at which eq. (64) has periodic
solutions of the first or second kind, i.e.,

x(v 4- TT)
=

x(<p), (g)

or

X(<P 4- x) = - X(v). (g)'

For calculating these particular values of r assume that r and x(v) are developed in the

following series,

in which e denotes the same small quantity as in eq. (/) above.

Substituting the series (/) and (h) in eq. (64) we have

. . .
-f. (ao 4. ai 4- 2

2
4. .

X {ao 4- efai cos 2^> 4- ^2 cos 4v>) 4- c2 (as cos 2y> 4- )} X
X {XO(<P) 4- Si(*>) 4- c2x2 (v) 4- }

=0.

Rearranging the left side of this equation in ascending powers of and equating the

coefficients of every power of to zero, the following system of equations will be obtained

= 0, (/c)
a<p

--l ^-
4- ao2

aoXi(<f>) 4- XoM {2aoaoai 4- aoH^i cos 2^> 4- ^2 cos 4^)} = 0. (I)
d<p

2

Equation (&) represents a simple harmonic motion, the solution of which can be

written in the form:

XQ = C cos (n<? 6 ). (m)
In which

n
and C and 5 are arbitrary constants.
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In order to satisfy the conditions (g) and (g)
f

it is necessary to take n = 2, 4, 6,

... for periodic solutions of the first kind and, n =
1, 3, 5, ... for periodic solutions of

the second kind. Substituting this in eq. (n) and taking into account that from eq. (h)

ao is the first approximation for the period r, and ir
2ao represents some average

value of 0, we have,

rn = j= = ~= , (65)V ao V 0o

in which n = 1,2,3,

Comparing this result with the period 2ir/\/J~ of the natural vibrations of a system
having constant flexibility 6 =

, it can be concluded that as a first approximation
definite critical speeds are obtained instead of critical regions of speeds. At this critical

speed the period 2r of one revolution of the crank is equal to or a multiple of the period
of the natural vibration of the system with a constant rigidity corresponding to the

average value 0o of the function 0.

The second approximation for the solution of eq. (62) will now be obtained by
substituting the first approximation (m) in equation (I). This gives

- 2aoaoaiC cos (n<p
- 6 )

d<f>
2

a 2C cos (n<p 6o)(<Ji cos 2^? + 02 cos

or by using eq. (6)

iC cos (n<p 5 )

- C {cos [(n + 2)<p
- dQ] + cos [(n

-
2)<p

- 5 ]}
-

--2

C {cos [(n + 4)v>
-

] + cos [(n
- 4)? - 6 ]}. (o)

The general solution of this equation consists of two parts: first the free vibration

represented by
Ci cos (n<p 5i),

in which d and 61 represent two arbitrary constants while n = v a a()

2
,
and another

part, a forced vibration. In calculating these latter vibrations the method described

on p. 103 will be used. Denoting by R(<f>) the right side of eq. (o) the forced vibration

can be represented in the following form,

1 C*-
/ R(Q sin n(<p

- QdS. (p)
n JQ

The terms on the right side of eq. (o) have the general form

N cos [(n m)<p 5].

Substituting this in (p) we have

ft r

/n Jo
cos [(n db ra) 6] sin n(<f> )d = -

{cos [(n m)<f> d]
o 2n =t m

N 1- cos (n<f> 5)} -f
- --

{cos [(n db m)<f>
-

5)
- cos (n^> + 5) j

. (q)
JLn 2n m
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There are two exceptional cases m = and 2n rt m = 0. In the first exceptional
case (m = 0) the first term on the right side of eq. (q) becomes,

<p sin (n<> 5).
2n

In the second exceptional case [(2n m) = 0] the second term on the right side of

equation (q) becomes
N

-
<(> sin (n<p + 5).

2n

After this preliminary discussion the general solution of eq. (o) can be represented
in the following form,

1
Xi Ci cos (n<f> 5i) 2aoaoiC <p sin (n<p 60)

2n
OA* _. _. n

-

[cos (n<p 60) cos (n<p -\- 6 )]

(2n)

2-2n

cos (,,-)

cos (n<p

cos I :
- r-^ :

)+ 4 2n 4/

It is seen that all the terms of the obtained solution, except the term,

2a aoaiC' ^> sin (n^> 8),
2n

are periodical of the first or second kind; therefore the conditions (g) and (gV will be

satisfied by putting,

ai = 0.
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In this manner the second approximation for r will be obtained from the first of the

equations (h) which approximation coincides with the first approximation. Exceptional
cases only occur if n 1 and n = 2.

In the case n =
1, the terms

a Ol
-\ cos [(n

-
2)*>

-
5o]

- - cos (n<p + 5 )
-

12n 2n - 2J2 I

lv /ir J

2n 2n-2

in the general solution (r) assume the form ~ e\ and must be replaced by the term

o
2ai(7 1

.-- ~ ~ '

o
' ^ sm (p -f 5 ).

J z

In order to make solution (r) periodical of the first or second kind it is necessary
to put in this case

C -
<p sin (<p do)

---
<p sin (<f> + 5 ) =0

or

* .

sm y> cos 5o ( a oai ---- I + cos <f> sm
.

/m 6 I aoaoai
\

There are two possibilities to satisfy this equation:

/-.x ^ a 2ai r
(1) d =

0, a c*otti
--

7 =0, ai
4

or

TT a 2ai _

(2) 5 = -
, aoaoai --7" =0, a t

2 4 4a

Substituting the obtained values of a\ in the first of the eqs. (h) and taking into

account that, from eq. (n) for n =
1, ao =

7=^ ,
we have as the second approximationVa

for TI, corresponding to the boundaries of the first critical region,

1 1 !

1 1 ai
rimax = -7- + * -7= (66)

It is seen that instead of a critical speed, given for n = 1 by eq. 65, we obtain a

critical region between the limits (ri)min and (ri)max. The extension of this region

depends on the magnitude of the small quantity c and it diminishes with the diminishing
of the fluctuation in the flexibility of the system. It is interesting to note also that the

difference in phase 5o between the function 6 and the free vibration of the system has

two definite values for the two limiting conditions, 6 = and 6 = v/2. It should

be noted also that the critical region considered above (n 1) corresponds to the

highest speed of rotation and is practically the most dangerous region.
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For the case n = 2, i.e., for the next lower critical region, by using the same method
as above, we will obtain,

r1 '
<67>

4a

In order to obtain the critical regions corresponding to n 3 and n 4 the third

approximation and the equation for x<t must be considered. This equation can be

obtained from the general eq. (o) in the same manner as the equations (k) and (I),

used above for calculating the first and the second approximations.

By using the described method the critical regions for the equation (61) representing
free vibrations in a locomotive can be established. These regions are exactly those

in which heavy vibrations under the action of external forces (see eq. c, p. 174) may
occur.* The investigation of actual cases shows f that the extensions of the critical

regions are small and that the first approximation in which the variable rigidity is

replaced by some average constant rigidity and in which the critical speeds are given

by eq. 65, gives a good approximation to the actual distribution of critical speeds.
In our investigation only displacements due to elastic deformations in the system

were considered. In actual conditions the problem of locomotive vibrations is much
more complicated due to various kinds of clearances which always are present in the

actual structure and the effect of which on the flexibility of the system have already
been discussed. When the speed of a moving locomotive attains a critical region,

heavy vibrations of the system may begin in which the moving masses will cross the

clearances twice during every cycle, t The conditions will then become analogous to

those shown in Fig. 81, p. 117. Such a kind of motion is accompanied with impact
and is very detrimental in service. Many troublesome cases, especially in the earlier

period of the building of electric locomotives, must be attributed to these vibrations.

For excluding this type of vibrations a flexibility of the system must be so chosen that

the operating speed of the locomotive is removed as far as possible from the critical

regions. Experience shows that the detrimental effect of these vibrations can be mini-

mized by the introduction into the system of flexible members such as, for instance,
flexible gears. In this manner the fluctuation in flexibility of the system will be reduced
and the extension of the critical regions of speed will be diminished. The introduction

in the system of an additional damping can also be useful because it will remove the

possibility of a progressive increase in the amplitude of vibrations.

* See the paper by Prof. E. Meissner, mentioned above, p. 168.

f See the paper by K. E. Muller, mentioned above, p. 168.

J The possibility of the occurrence of this type of vibration can be removed to a

great extent by introducing a flexible gear system.
Various methods of damping are discussed in the book by A. Wichert mentioned

above, p. 168.



CHAPTER IV

SYSTEMS HAVING SEVERAL DEGREES OF FREEDOM

30. d'Alembert's Principle and the Principle of Virtual Displacements.
In the previous discussion of the vibration of systems having one degree

of freedom d'Alembert's principle has been sometimes used. The same

principle can also be applied to systems with several degrees of

freedom.

As a first example the motion of a particle free in space will be con-

sidered. For determining the position of this particle three coordinates

are necessary. By taking Cartesian coordinates and denoting by X, Y
and Z the components of the resultant of all the forces acting on the

point, the equations of equilibrium of the particle will be,

X = 0, Y =
0, Z = 0. (68)

If the particle is in motion and using d'Alembert's principle the differential

equations of motion can be written in the same manner as the equations
of statics. It is only necessary to add the inertia force to the given external

forces. The components of this force in the x
y y and z directions are

mx, my, rriz, respectively, and the equations of motion will be

X mi =
0, Y - my =

0, Z mz = 0. (69)

If a system of several particles free in space is considered, the equations

(69) should be written for every particle of the system.
Consider now systems in which the displacements of the particles

constituting the system are not entirely independent but are subjected
to certain constraints, which can be expressed in the form of equations
between the coordinates of these points. In Fig. 115, several simple
cases of such systems are represented. In the case of a spherical pendu-
lum (Fig. 115, a) the distance of the particle m from the origin should

remain constant during motion and equal to the length I of the pendulum.
182
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Therefore, the coordinates x, y and z of this point are no longer inde-

pendent: they have to satisfy the equation*

x2 + y
2 + z2 = P. (a)

In the case of a double pendulum (Fig. 115, 6) the conditions of con-

straint will be represented by the following equations,

xi
2 + yi

2 =

(x2
- xiY + (2/2

- k*. (c)

In the case of a connecting rod system (Fig. 115, c) the point A is

moving along a circle of radius r and the point B is moving along the x

FIG. 115.

axis. The position of the system can be specified by one coordinate only,

i.e., the system has only one degree of freedom.

In considering the conditions of equilibrium of such systems the

principle of virtual displacements will be applied. This principle states

that, if a system is in equilibrium, the work done by the forces on every
virtual displacement (small possible displacement, i.e., displacement which

can be performed without violating the constraints of the system) of

the system must be equal to zero. For instance, in the case of a spherical

pendulum denoting by X, Y and Z, the components of the resultant of

* The cases when the equations of constraint include not only the coordinates

but also the velocities of the particles and the time will not be considered here. We
do not consider, for instance, the oscillation of a pendulum, the length of which has to

vary during the motion by a special device, i.e., the case where I is a certain function of t.
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all the forces acting on the mass ra, the equation of virtual displacements
will be

Xdx + Ydy + Zdz =
0, (d)

in which f>x, 8y, dz, are the components of the virtual displacement of

the point m, i.e., small changes of the coordinates x, ?/, z of m satisfying

the condition of constraint (a). Then,

(x + So-)
2 + (y+ dy)* +(z + dz)

2 = P,

or neglecting small quantities of higher order,

xdx + ydy + zdz = 0.

This equation shows that a virtual displacement is perpendicular to the

bar I of the pendulum and that any small displacement of the point m on
the surface of the sphere can be considered as a virtual displacement.

Eq. (d) will be satisfied if the resultant of all forces acting on m be normal
to the spherical surface, because only in such a case the work done by these

forces on every virtual displacement will be equal to zero.

Combining now the principle of virtual displacements with d'AIem-

bert's principle the differential equations of motion of a system with con-

straints can be easily obtained. For instance, in the case of a spherical

pendulum, by adding the inertia force to the external forces acting on
the particle m, the following general equation of motion will be obtained,

(X - mx)dx + (Y - my)dy + (Z - mz)dz =
0, (70)

in which dx, dy, dz are components of a virtual displacement, i.e., small

displacement satisfying the condition of constraint (a). In the same
manner for a system consisting of n particles mi, mi, ma, and sub-

jected to the action of the forces Xi, FI, Zi, ^2, ^2, ^2, the general

equation of motion

will be obtained, in which dx ly dy T ,
dz it are components of virtual

displacement, i.e., small displacements satisfying the conditions of con-

straint of the system. For instance, in the case of a double pendulum (Fig.

115, 6) the virtual displacements should satisfy the conditions (see eq. 6, c)

(xi + dxi)
2 + (T/I + fyO =

Zi
2

,

(x2 + dx2 - xi - dxi)
2 + (y<2 + dy*

-
yi
-

dyi)'
2 = /2

2
.
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It should be noted that Xt , Yi and Zt denote the components of the

resultant of all the forces acting on the particle wt-, but there are several

kinds of forces which do not do work on the virtual displacements ; among
these for instance are the reactions of connecting rods of invariable length,

the reactions of fixed pins, the reactions of smooth surfaces or curves

with which the moving particles are constrained to remain in contact. In

the following it is assumed that in Xly Yl and Zt only forces which produce
work on the virtual displacements are included.

If there are no constraints and the particles of the system are com-

pletely free, the small quantities bx T , 5y t ,
dz t in eq. (71) are entirely inde-

pendent and eq. (71) will be satisfied for every value of the virtual dis-

placements only in the case that for every particle of the system the

equations
Xi mxl

=
0, Yi my,. = 0, Zt raz =

are satisfied. These are the equations (69) previously obtained for the

motion of a free particle.

Eq. (71) is a general equation of motion for a system of particles

from which the necessary number of equations of motion, equal to the

number of degrees of freedom of the system, can be derived. The deriva-

tion of these equations will be shown in Art. 32.

31. Generalized Coordinates and Generalized Forces. In the pre-

vious article where Cartesian coordinates were used it was shown that

these coordinates, as applied for describing the configuration of a system,
are usually not independent. Moreover, they must satisfy certain equa-
tions of constraint, for instance, the equations (a), (6) and (c) of the

previous article depending on the arrangement of the system. It is usually
more convenient to describe the configuration of a system by means of

quantities which are completely independent of each other. It is not

necessary that these quantities have the dimension of a length. They may
have other dimensions; for instance, it is sometimes useful to take for

coordinates the angles between certain directions or the magnitudes of

certain areas or certain volumes. Such independent quantities chosen for

describing the configuration of a system are usually called generalized

coordinates. *

Take, for instance, the previously discussed case of a spherical pen-
dulum (Fig. 115, a). The position of the pendulum will be completely
determined by the two angles <p and 6 shown in the figure. These two

* The terminology of "generalized coordinates," "velocities," "forces" was intro-

duced by Thomson and Tait, Natural Philosophy, 1st edition, Oxford, 1867.
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independent quantities can be taken as generalized coordinates for this

case. The Cartesian coordinates of the point m can easily be expressed

by the new coordinates and 6. Projecting the length of the pendulum
Om on the coordinate axes, we have

x = I sin 6 cos

y = I sin sin <

z = I cos 6.

(a)

In the case of a double pendulum (Fig. 115, 6) the angles <p and 6,

shown in the figure, can be used as generalized coordinates and the Car-

tesian coordinates will be expressed by these new coordinates as follows:

xi = h sin <p,

l\ sin <p + h sin 6,

= h cos <p,

= h cos <p +
(b)

cos 6.

If a solid body of a homogeneous and isotropic material be subjected
to a uniform external pressure p all its dimensions will be diminished in

the same proportion and the new
configuration will be completely de-

termined by the change v of the

volume V of the body. The quan-
tity v can be taken as the general-
ized coordinate for this case.

Consider now the bending of a

beam supported at the ends (Fig.

116). In order to describe the con-

figuration of this elastic system an infinitely large number of coordinates

is necessary. The deflection curve can be defined by giving the deflec-

tion at every point of the beam, or we can proceed otherwise and rep-
resent the deflection curve in the form of a trigonometrical series:

FIG

y
. KX

,

L sin + 0,2 sin
6 i

\- a% sin
i

The deflection curve will be completely determined if the coefficients

01, 02, 03,
* * * are given. These quantities may be taken for generalized

coordinates in the case of the bending of a beam with supported ends.

If generalized coordinates are used for describing the configuration of

a system, all the independent types of virtual displacements of the system
can be obtained by giving small increases consecutively to everyone
of these coordinates. By giving, for instance, a small increase d<p to the
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angle tp in the case of the spherical pendulum a small displacement mm\ =
I sin 68<p along the parallel circle will be obtained. An increase of the

coordinate 6 by a small quantity 60 corresponds to a small displacement
mm<2 = IdO in the meridianal direction. Any other small displacement
of the point m can always be resolved into two components such as mm\
and mm,2.

In the case of bending of a beam with supported ends (Fig. 116) a

small increase dan of any generalized coordinate an (see eq. c) involves a

virtual deflection 5an sin (mrx/l) represented in the figure by the dotted

line and having n half waves. Any departure of the beam from the

position of equilibrium can be obtained by superimposing such sinusoidal

displacements.

Using generalized coordinates in our discussion we arrive at the notion

of generalized force. There is a certain relation between a generalized

coordinate and the corresponding generalized force, which we will explain
first on simple examples. Returning again to the case of the spherical

pendulum let P, Q and R represent the components of a force acting
on the particle in the directions of the tangents to the meridian and to the

parallel circle and in radial direction, respectively. If a small increase

d<p be given to the coordinate <p the point m will perform a small dis-

placement mm\ = I sin Od<p and the force acting on this point will do work

equal to

Qmmi = Qlsin

The factor Ql sin 0, which must be multiplied by the increase 8<p of the

generalized coordinate <p in order to obtain the work done during the

displacement 5</?, is called the generalized force corresponding to the,

coordinate <p. In this manner we get the complete analogy with the expres-
sion Xdx of the work of the force X on the displacement &r, in the direc-

tion of the force. In the case under consideration this "force" has a

simple physical meaning. It represents the moment of the forces acting
on the point m about the vertical axis z. In the same manner it can

be shown that the generalized force corresponding to the coordinate 6

of the spherical pendulum will be represented by the moment of forces

acting on the point m about the diameter perpendicular to the plane man.
In the case of a body subjected to the action of a uniform hydrostatic

pressure p by taking the decrease of the volume v as the generalized co-

ordinate the corresponding generalized force will be the pressure p, because

the quantity pv represents the work done by the external forces during
the "displacement" v.
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Let us consider now a more complicated case, namely, a beam under
the action of the bending forces Pi, P2, (see Fig. 116). By taking the

generalized expression (c) for the deflection curve and considering 01, a2,

as, as the generalized coordinates, the generalized force corresponding
to one of these coordinates, such as an ,

will be found from a consideration

of the work done by all the forces on the displacement 5an . This dis-

placement is represented in the figure by the dotted line.

In calculating the work produced during this displacement not only
the external loads PI, P2 and PS but also internal forces of elasticity of

the beam must be taken into consideration. The vertical displacements
of the points of application of the loads PI, P2, PS, corresponding to the

increase 8a n of the coordinate a n ,
will be da n sin (mrci/l), da n sin (mrCz/V)

and da n sin (nTrCs/O, respectively. The work done by PI, P2 and Pa

during this displacement is

fi ( V HirCl
. O HWC2

I 7)
n?rCA /7N8a n I Pi sin h P2 sin h Pa sm -

1 (d)

In order to find the work done by the forces of elasticity the expression
for the potential energy of bending will be used. In the case of a beam
of uniform cross section this energy is

EI

in which EI denotes iheflexural rigidity of the beam.

Substituting in this equation the series (c) for y and taking into con-

sideration that

,
mirx , I

T/I

X7
*

.
mirx

. rnrx I
,

'

sm sin - ax =
;

I smz

^ I JQ

where m and n denote different integer numbers, we obtain,

Elfafr*v - --- +

The increase of the potential energy of bending due to the increase da n of

the coordinate a n will be, from eq. (/),

dV
^5a n =

-^p-
n n5an.

gr

This increase in potential energy is due to the work of the forces of elas-
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ticity. The work done by these forces is equal to (g) but with the opposite

sign. Now, from (d) and (g) the generalized force corresponding to the

coordinate an of the system shown in Fig. 116 will be

r> . r , r> 4 /IAPi sm - + P<2 sm --h ^3 sin --- n*an. (h)

Proceeding in the same manner we can find the generalized forces in

any other case. Denoting by gi, #2, qs
- - - the generalized coordinates of a

system in the general case, the corresponding generalized forces Qi, $2,

$3,
- will be found from the conditions that Qidqi represents the work

produced by all the forces during the displacement dq\ ;
in the same manner

Q2<5#2 represents the work done during the displacement 8q2 and so on.

32. Lagrange's Equations. In deriving the general equation of mo-
tion (71) by using d'Alembert's principle it was pointed out that the

components dxi, dyly dz l of the virtual displacements are not independent
of each other and that they must satisfy certain conditions of constraint

depending on the particular arrangement of the system. A great simplifi-

cation in the derivation of the equations of motion of a system may be

obtained by using independent generalized coordinates and generalized
forces. Let q\ y q?, #3, </A be the generalized coordinates of a system of

n particles, with A; degrees of freedom and let equations such as

a\ = <f>,(qi t q>2- &); 2/
=

^(<Zi> 02- &); z = 0(gi, 52- -qd (a)

represent the relations between the Cartesian and the generalized co-

ordinates. It is assumed that these equations do not contain explicitly

the time t and the velocities qi, q<>, 7*.

In order to transform the general equation (71) to these new coordinates

let us write it down in the following form,

i=n i~n

X] mt (i t5ar l + yjy* + zjzj = ^ (XjXi + Y&ji + Z.Szt) (b)
i=i i-i

and consider a virtual displacement corresponding to an increase Bq8 of

some one generalized coordinate q8 only. Then it follows at once from
the definition of generalized coordinate and generalized force (see Art. 31)

that the right side of eq. (6) representing the work done on the virtual

displacement, is equal to

Qs8qs , (c)

where Q8 represents the generalized force corresponding to the coordinate
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In order to transform the left side of eq. (6) to the new coordinates it

should be noted that in the case under consideration when the coordinate

q9 alone varies, the changes of the coordinates #, y+, Zi will be

*
=

* < 8,

dqa dqa dqa

in which the symbol d/ dq8 denotes the partial derivative with respect to

q, and x, ?/, 2 are given by eqs. (a).

Then,

Y) mi(x%dXi + yjyi + z i8zl)
=

]>] mt (
xt

* + 2/f

* + *

) fy*- (d)
jTi Jrl \ dqa dqa dqj

Lagrange showed that this expression can be identified with certain dif-

ferential operation on the expression for the kinetic energy. For this

purpose we rewrite expression (d) in the following form:

d^ ( . dx% dyi .
dz\

T.2-/ mi \ Xi IT + 2/ T~ + z * T~ I
5^

dtf^i \ dqa dqa dqj

This equation can be simplified by using the expression

1=1

for the kinetic energy of the system.

Remembering that from eqs. (a) the velocities, it-, y ly Zi can be repre-
sented as functions of the generalized coordinates qa and the generalized
velocities qaj we obtain the following expressions for the partial derivatives

dT/dqa and dT/dqa

dT &}

dT t^{
/ dXi . dyi . dz\

dqa i="i

l

\
*

dqa

*

dqa

*

dqa/

Taking into consideration that

dx dx . dx
. dx , .

x = = -
qi + q2 + qk, (g)

dt dqi dqz dqh
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we have
dx dx dx dx dx dx

dqi dqi dq% dq<2 dqk dqk

Now eq. (e) can be written as follows

dT ^ ( dx% dyi dz\
r =

2-j m* \

'

x* f" Z/i + Zi I. (h)

In transforming eq. (/) we note that

I t . - -
*- % .

<7i + ~
r~ <12 + ' + ~

qk,
g. dqidq.

or, by using (gr),

d toi d dxi dx

dtdqa dqa dt dq8

In the same manner we have,

d cfa/t dy d dZi dzi

dtdqa dq8

y

dtdq8 dq8

Substituting this into eq. (/) we obtain

!!_ v ( -^'4- d ^-L.- d ^\
dqa

~ h^ \
{

dt dq.
+ lJl

dtdqa

+ Zl
dt dqj

'

Now by using eq. (h) and (k) the expression (d) representing the left

side of eq. (6) can be written as follows

d/dT\ dTl

dt\dqj dqa \
q*'

dqa

By using for the right side of the same equation the expression (c) we

finally obtain,
d SdT\ dT _-

1 1 = O.. (72)

This is the Lagrangian form of the differential equations of motion. Such
an equation can be written down for every generalized coordinate of the

system so that finally the number of equations will be equal to the number
of generalized coordinates, that is, the number of degrees of freedom of

the system.
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So far the generalized forces Qi, Q2 ,
have not been subject to any

restriction. They may be constant forces or functions of either time,

position or velocity. Consider now the particular case of forces having
a potential and let V denote the potential energy of the system. Then
from the condition that the work done on a virtual displacement is equal
to the decrease in potential energy we have

dV dV dV

or by taking into account that the small displacements dqi, <5go, are

independent we obtain,

dV ^ dV r, W
Qi = -

; Q2 = -
; Q3 =- ;

dqi dq>2 aqs

and the Lagrangian equation (72) takes the form

' (73)
d fdT\ dT 0V

SW./ a?."
1"^

If there are acting on the system two kinds of forces: (1) forces having
a potential and (2) other forces, for which we will retain the previous
notations Qi, $2, Qa Lagrange's equations become

d fdT\ dT dV
TA^)-T- + T- =Q- (74)
at \dq8/ dq8 dqs

It was assumed in our previous discussion that the equations (a) repre-

senting the geometrical relations between the Cartesian arid the generalized

coordinates do not contain the time t explicitly. It can be shown, how-

ever, that Lagrange's equations retain their form also in the case when the

expressions (a) vary continuously with the time, being of the type

An example of such a system will be obtained, if, for instance, we assume
that the length I of a spherical pendulum shown in Fig. 115 does not

remain constant but by some special arrangement is continuously varied

with time.

33. Spherical Pendulum. As an example of the application of La-

grange's equation to the solution of dynamical problems the case of the

spherical pendulum (Fig. 115, a) will now be considered. By using the
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angles <p and 6 as generalized coordinates of the particle m the velocity of

m will be

V =

and the kinetic energy of the system is

2

Assuming that the weight mg is the only force acting on the mass m and

proceeding as explained in article 31, we find that the generalized force

corresponding to the coordinate <p is equal to zero and the force, corre-

sponding to the coordinate 6 is

= mgl sin 6. (6)

Using (a) and (&) the following two equations of motion will be obtained

from the general equation (72)

g sin 6 , N

6 cos 6 sin 8$ =
, (c)

l

sin2 9# = const. =
h, say. (d)

Several particular cases of motion will now be considered.

If the initial velocity of the particle m is in the direction of a tangent
to a meridian, the path of the point will coincide with this meridian, i.e.,

v?
=

0, and the equation (c) reduces to the known equation,

+ -- sin =
0,

l

for a simple pendulum.
The case of a conical pendulum will be obtained by assuming that the

angle d remains constant during motion, then
<j?
must also be a constant,

according to eq. (d).

Let
6 = a] tp

=
o>,

Then, from eq. (c) and (d)

^~ , (e)
I cos a sin4 a

from which the angular velocity co and the constant h corresponding to a

given angle a of a conical pendulum can be calculated.

Consider now a more complicated case where the steady motion of
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the mass m of the conical pendulum along a horizontal circle is slightly

disturbed so that small oscillations of this mass about the horizontal

circle take place. Let
* = +*, (/)

where denotes a small fluctuation in the angle 6 during this motion.

Retaining in all further calculations only the first power of the small

quantity we obtain

sin 6 = sin a + cos a; cos 6 = cos a sin a.

Substituting this in eq. (c) and using eq. (d)

h2
,

r-T-l cos
sin-5 a (3

cos2 a \\ g
: h sin a I f

=
T (sin a + cos a).

sin a / J I

Assuming that the constant a. is adjusted so that eq. (e) is satisfied, we
obtain

+ (1 + 3 cos2 a)o>
2 =

0,

from which it can be concluded that the oscillation in the value of

has the period
27T

When a is small this period approaches the value TT/W, i.e., approximately
two oscillations occur for each revolution of the conical pendulum.

34. Free Vibrations. General Discussion. If a system is disturbed

from its position of stable equilibrium by an impact or by the application
and sudden removal of force, the forces in the disturbed position will no

longer be in equilibrium and vibrations will ensue. We consider first the

case in which variable external forces are absent and free tibrations take

place. Assuming that during vibration the system performs only small

displacements, let qi, qz qn be the generalized coordinates chosen in

such a manner that they vanish when the system is in the position of

equilibrium. Assuming now that the forces acting on the parts of the sys-
tem are of the nature of elastic forces, their magnitudes will be homogeneous
linear functions of the small displacements of the system, i.e., linear func-

tions of the coordinates qi, q% qn . The potential energy of the sys-
tem will then be a homogeneous function of the second degree of the same

coordinates,

2V = cnqi
2 + C22g2

2 + + 2c^qiq2 + - (75)



SYSTEMS HAVING SEVERAL DEGREES OF FREEDOM 195

The formula for the kinetic energy of the system is

2T = 2mt(i t
2 + y? + z?}

or substituting here for the Cartesian coordinates their expressions in

terms of the generalized coordinates (see eq. (a), article 32)

2T = anqi2 + a22?2
2 + + 2ai 2gi?2 + -. (76)

In the general case the coefficients an, a22 ,
will be functions of the

coordinates qi, #2 ,
but in the case of small displacements they can be

considered as constant and equal to their value at the position of equi-
librium. Substituting now (75) and (76) in Lagrange's equation:

d fdT\ dT dV-T\
(a)

the general equations of motion will be obtained.

Consider first the case of a system with two degrees of freedom only.

Then,
27 = cnqi

2 + c22^2 + 2ci 2^ig2 , (b)

2T =
aii<?i

2 + CL22Q2
2 + 2ai2tfi02. (c)

Since the potential energy of the system forlany displacement from the

position of a stable equilibrium must be positive the coefficients of the

quadratic function (6) must satisfy certain conditions. Assuming <?2
=

we conclude at once that en > 0. In a similar manner we find that c22 > 0.

Assuming now that c22 is different from zero we can represent expression

(6) in the following form

27 =
[(Cl2gi + c22?2)

2 + (ciic22
- ci2

2
)gi

2
]. (&)'

C22

To satisfy the condition that this expression is always positive we must
have

ci 2
2 > 0,

since, otherwise, the expression changes the sign by passing through zero

value at _
Cl2qi + C22<?2

= qi v (cnC22 CJ2
2
).

Thus we have /

Cil > 0, C22 > 0, CnC22 Ci 2
2 > 0. (d)

In a similar way we obtain for expression (c)

an > 0, a22 > 0, ana22 ai 2
2 > 0. (e)
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Substituting expressions for V and T in eq. (a) we obtain

angi + 0i2tf2 + cnqi + Ci2g2 = 0, (/)

022^2 + <*>l2qi + C22Q2 + Ci^Ql
= 0.

The solutions of these two linear equations with constant coefficients can

be taken in the following form,

qi
= Xi cos (pt + a); q2 = X2 cos (pt + a). (0)

in which Xi, X2, p and a denote constants which must be chosen so as to

satisfy eqs. (/) and initial conditions.

Substituting (g) in eqs. (/) we obtain

Xi(anp2 - en) + X2 (ai 2p
2 -

ci2)
=

0, (h)

X2 (a22p
2 ~ c22) = 0.

Eliminating now Xi and X2 we get

(anp2 Cn)(a22p
2 c22) (ai2p2

ci 2)
2 = 0. (z)

This equation is a quadratic in p2 and it can be shown that it has two
real positive roots.

Substituting in eq. (z) p2 = or p2 = + and using (d) and (e) it can

be concluded that the left side of this equation has a positive value. On
the other hand, by taking p2 = (en/an) or p2 =

(c22/a22) the left side

of eq. (i) becomes negative. This means that between p
2 = and

p2
-

_j_
^ the curve representing the left side of eq. (i) crosses the abscissa

axis in two points, representing two positive roots for p2
. Let pi

2 be one
of these two roots. Substituting it in the first of eqs. (h) we have

Xi X2 =
fjLi y say. (j)

ai2pi
2

12 en -

It is seen that for this particular root p\
2 there is a definite ratio between

the amplitudes Xi and X2 which determines the mode of vibration and the

solution (g) becomes

qi
= Mi(i2pi

2 -
ci 2) cos (pit + i); (fc)

q2
= MI(CH ~ anpi2

) cos (pit + ai).

Only the positive value for p\ should be taken in this solution because

the solution does not change when p\ and a\ change signs. The second

root p2
2 of eq. (i) gives an analogous solution with the constants ju2 and

2 . Combining these two solutions the general solution of the eqs. (/)

will be obtained.
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Cl2) COS (pit + Oil) + 2(ai2p2
2

Cl2) COS (P2t + #2), (0
cos (pit + ai) + ^2(011

- anp2
2
) cos (p*t + OB),

containing four arbitrary constants MI> M2, ai and 2 which can be calcu-

lated when the initial values of the coordinates qi and 52 and of the cor-

responding velocities q\ and 72 are given.

It is seen that in the case of a system with two degrees of freedom
two modes of vibration are possible, corresponding to two different roots

of the eq. (i) called the frequency equation. In each of these modes of

vibration the generalized coordinates qi and q<z are simple harmonic func-

tions of the same period and the same phase. Each of these modes is

called a normal mode of vibration. Its period is determined by the con-

stants of the system and also its type, since the ratio between the ampli-
tudes Xi and \2 is determined. When a system oscillates in one of the

normal modes of vibration every point performs a simple harmonic motion
of the same period and the same phase; all parts of the system passing

simultaneously through their respective equilibrium positions.

The generalized coordinates qi and #2 determining the configuration of

a system can be chosen in various ways; one particular choice is especially

advantageous for analytical discussion. Assume that the coordinates are

chosen in such a manner that the terms containing products of the coordi-

nates and the corresponding velocities in the expressions (6) and (c) vanish,

then,
2V = cngi

2 +
2T = anqi2 +

The corresponding equations of motion are

'qi + cnqi = 0; a^qz + 022^2 = 0;

we obtain two independent differential equations so that in each normal
mode of vibration only one coordinate is varying. Such coordinates are

called normal or principal coordinates of the system.
In the general case of a system with n degrees of freedom substituting

the expressions (75) and (76) for the potential and kinetic energies in

Lagrange's equation (a) we obtain differential equations of motion such as

= 0,

= 0.

These simultaneous differential equations are linear and of the second
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order with constant coefficients. Particular solutions of these equatio
can be obtained by taking

qi
= Xi cos (pt + a) , qn = Xn cos (pt + a).

Substituting in (m) we have

en) + X2(ai2p
2

ci2) + Xn (ai np2
ci n) = 0,

Xl(anlp
2

Cnl) + X2 (a n2p2 Cn2) + * ' + Xn(annp2 ~ Cnn) = 0.

Proceeding as in the case of a system with two degrees of freedom a]

eliminating Xi, Xn from the equations (n) we arrive at the frequen

equation

A(P
2
)
= 0, (7

where A(p2
) is the determinant of eqs. (n) :

(aup2
en), (ai 2p2

Ci 2), (ainp
2

ci n)

dnlp
2 C nl ), (an2p2 Cn2),

-

(a nnp2
Cnn

Equation (77) is of the nth degree in p2 and it can be shown * that ;

/the n roots of this equation are real and positive provided we have vibi

;tion about a position of stable equilibrium of the system. Let p 2 be o

of these roots. Substituting it in the eqs. (n) the n 1 ratios

Xi : X2 : Xa : : X n

will be obtained and all amplitudes can be determined as functions

one arbitrary constant, say ju- The corresponding solution of the eqs. (m)

q = Xi cos (pat + .), qn = Xn cos (pat + a.). (

It contains two arbitrary constants pta and a8 and represents one of t

principal modes of vibration. The frequency of this vibration, dependi
on the magnitude of p8 , and the type of vibration, depending on the rati

Xi : Xa : ,
are completely determined by the constitution of the sj

tern. During this vibration all particles of the system perform simp
harmonic motions of the same period 2?r/p8 and of the same phase <

passing simultaneously through their respective equilibrium positions.

The general solution of eqs. (m) will be obtained by superimposing

principal modes of vibration, such as (o), corresponding to n different roc

of the frequency equation (77).

*
See, for example, H. Lamb, Higher Mechanics, p. 222.
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For illustrating this general theory a simple example of vibrations of a

vertically stretched string with three equal and equidistant particles m
will now be considered (Fig. 117, a). Assuming that lateral deflections y
of the string during vibration are very small and neglecting the correspond-

FIG. 117.

ing small fluctuations in the tensile force P, the potential energy of ten-

sion will be obtained by multiplying P with the elongation of the string.

cr

= ~
(2/i

2 + 2/2
2 + 2/3

2 -
a

The kinetic energy of the system is

T-JV + W +

Substituting in Lagrange's eq. (73) we obtain:

-
!--(
a

2 a2

-
2/2)

=
0,

^2/2 + -
(2?/2 2/1 2/3)

=
0,

a

P
a

Assuming,

2/i
= Xi cos (pt a); 2/2

= Xo cos (pt a) ; 7/3
= Xs cos

(r)

a),
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and substituting in eqs. (r) we find :

Xi(p
2 -

2/3) + X2/3
= 0,

Xi|8 + Mp~ ~
2/3) + X3/3

= 0, (a)

X2/3 + X3 (p
2 -

2/5)
=

0,

where,

*--ma
By calculating the determinant of the eqs. (s) and equating it to zero we
obtain the following frequency equation

(p
2 -

2/3) (p
4 - 4p

2 + 202
)
= 0. (0

Substituting the root p
2 = 2/3 of this equation in eqs. (s) we have,

\2 = and Xi = \3i

the corresponding type of vibration is represented in Fig. 117, b. The

two other roots, p
2 = (2dz V 2)0, of the same eq. (t), substituted in eqs.

(5) give us

Xi = Xa = d= 7- X2.
' V 2

The corresponding types of vibration are shown in Fig. 117, c and d.

The configuration (c), where all the particles are moving simultaneously
in the same direction, represents the lowest or fundamental type of vibra-

tion, its period being the largest. The type (d) is the highest type of

vibration to which corresponds the highest frequency.

PROBLEMS

1. Investigate small vibrations of a system, Fig. 118, a, consisting of two pendula of

equal masses m and length / connected by a spring at a distance h from the suspension

points A and B. Masses of the spring and of the bars of the pendula can be neglected.

Solution. As generalized coordinates of the system we take the angles <pi and <p* of

the pendula measured from the vertical, in a counter-clockwise direction. Then the

kinetic energy of the system is:

T

The potential energy of the system consists of two parts, (1) energy due to gravity
force and (2) strain energy of the spring. Considering the angles v>i and ^2 as small

quantities, the energy due to gravity is:

Vi = mgl(l cos ^i) -f tngl(l cos <^) ~ 1A wglfoi
2
-f v>2

2
).
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The spring CD for small oscillations can be assumed horizontal always. Then its elonga-
tion is h (sin <p 2 sin <p\) ^ h(<f>t <pi). Denoting the spring constant by k, the strain

energy of the spring is

Thus the total potential energy of the system is

V = 1

Comparing (M) and (v) with the general expressions (6) and (c) for potential and kinetic

energy, we find that in the case under consideration

(i\\ 22 = w 2
,

Cn = C2 2
= rngl

an = 0,

Ci 2
= A;/i

2
. (w)

Substituting these values in the frequency equation (i) we obtain

(mZ2
/>

2 - mgl - A;/i
2
)
2 - A:

2
/i

4 = 0.

From this equation we find the two roots for p2

g g 2kh*
2 2 -

The ratios of the amplitudes for the corresponding two modes of vibrations, from eq. (j),

are:

(<PI\

_ ai2??i
2

12

<f>2/ i Cn anpi2

(\
2_ I _ _ _

-f A:/i
2 - mgl

=
1,

mgl 2kh2

- 1.

These two modes of vibration are shown in Fig. 118, 6 and c. In the first mode of vibra-

tion the pendula have the same amplitude and their vibrations are in phase. There
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is no force in the spring so that the frequency of vibration is the same as for a simple

pendulum. In the second mode of vibration, Fig. 118, c, there is a phase difference of

180 degrees in the oscillation of the two pendula and the spring comes into play which
means that a higher frequency is obtained. This later frequency can be found in an

elementary way, without using Lagrange's equations, if we observe that the configura-
tion of the system is symmetrical with respect to the vertical axis 0-0. Considering the

motion of one of the two pendula and noting that the force in the spring is 2k<f>h, the

principle of moment of momentum with respect to the suspension point of the pendulum
gives

d- (mvlz
)
= - (mgl<p + 2k<f>h

2
),

at

from which the frequency p 2, calculated above, results. Having found the principal
modes of vibration, we may write the general solution by superposing these two vibra-

tions taking each mode of vibration with its proper amplitude and its proper phase angle.
Thus we obtain the following general expressions for each coordinate

= ai sin (pit + i) + a2 sin (p-2t -f 2),

= ai sin (pit -f on) a2 sin (pd -f- 2),

in which the constants a\ y
a 2 , a\ and 2 are to be determined from the initial conditions.

Assume, for instance, that at the initial instant (t
= 0) the pendulum to the left has

the angle of inclination <PQ while the pendulum to the right is vertical; moreover the

initial velocities of both pendula are zero. Then

These conditions are satisfied in the general solution by taking

ai = e&2 = /^ <f>Q and i
= 2 = M T-

Then
Vo ,

. PI PZ PI
<f>\ (cos pit + cos pzt)

= ^o cos -
t cos

. ^ . 32 PI Pi
it cos pzt) =

<PO sin
~-

t cos

If the two frequencies pi and p% are close to one another, each coordinate contains a

product of two trigonometric functions, one of low frequency (pi p2)/2 and the other

of high frequency (p\ -f- p 2)/2. Thus a phenomenon of beating (see p. 17) takes place.

At the beginning we have vibrations of the pendulum to the left. Gradually its ampli-
tude decreases, while the amplitude of the pendulum to the right increases and after an
interval of time ir/(pi p2) only the second pendulum will be in motion. Immediately
thereupon the vibration of the first pendulum begins to increase and so on.

2. Investigate the small vibrations of a double pendulum consisting of two rigid

bodies suspended at A and hinged at B, Fig. 119.

Solution. Taking, for coordinates, the angles of inclination v?i and ^2, which the

bodies are making with their vertical positions of equilibrium, and using notations Wi
and Wz for the weights of the bodies, applied at the centers of gravity Ci and C2, and A
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and 1 2 for the moments of inertia of the upper body with respect to A and of the lower

body with respect to 2 respectively, the kinetic energy
of the upper body is

The kinetic energy of the lower body consists of two

parts, (1) owing to the rotation of the body with respect
to its center of gravity Cz, and (2) owing to the linear

velocity v of this center, which is equal to the geometrical
sum of the velocity lip\ of the hinge B plus the rotational

velocity h^ with respect to the hinge. Thus, from Fig.

119 we find

-f /i 2
2
v?2

2
4-

and

FIG. 119.

Assuming that the angles <?i and ^2 are small and taking cos (^i ^2) ~ 1, we obtain

the following expression for the total kinetic energy

T =} . 2W IL^1 (

Q I/ \

The potential energy of the system is entirely due to gravity forces. Observing that

the vertical displacements of the centers Ci and C2 are

, /. N ^l2

and 1(1
- cos <pi) -f- h 2 (l

- cos v?2) +

the expression for V becomes

V = 4-

4-

Comparing the expressions for V and T with expressions (6) and (c) we find for our

problem

an = 7i -f- a22 == h H----

en = Wihi -f WJL, c22

The frequency equation (i) becomes

012 = h2l
-

,

g

en = 0.

! 4-
~

l p2 - (IFi/u + 1
I

( / + 2
- Wf8

( j
P 4 =

To simplify the writing we introduce the following notations:

en

au 022
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and the frequency equation will be

(1 w3
2
)p

4 -
(wi

2 + n2
2
)p

2 + ni2n2
2 = 0. (a)

It should be noted that the quantities n\ and ni have simple physical meanings, thus, n\

represents the frequency of oscillation of the upper body if the mass of the lower body is

thought of as being concentrated at the hinge B. n% is the frequency of oscillation of the

lower body if the hinge B is at rest. In discussing the frequency equation (i) it was

pointed out that the left side of the equation is positive for p2 = 0, and for p2 oo
,
but

it is negative for p2 = on/on and for p2 = 022/022. Hence the smaller root of the equa-
tion (a)' must be smaller than n\ and n^ and the larger root must be larger than n\ and U<L.

The expressions for these roots are

pi
2

2(1 -:

2(1 - ns

The ratios of the amplitudes of the corresponding modes of vibration are, from eq. (j)

'

<pi\ aupi 2
012

(-} =
\*>i/i en -p,2

'

en p2
2

Assuming that pi< p2 we find that for the mode with lower frequency the ratio of the

amplitudes is positive and for the higher frequency it is negative. These two modes of

FIG. 121.

vibration are shown diagramatically in Fig. 120. Having found the principal modes
of vibration we obtain the general solution by superposing the two modes of vibra-

tion with proper amplitudes and with proper phase angles so as to satisfy the initial

conditions. If the system is to vibrate in one of its principal modes the ratio between the

angles *>i and ^2, given by eq. (6)' or eq. (c)', must be established initially before the

3ystem is relieved without initial velocities.

3. Investigate the small vibration in the horizontal plane xy of a plate BC, Fig. 121,
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attached to a prismatical bar AB. Assume that the xy plane is a principal plane of the

bar, and that the center of gravity of the plate C is on the prolongation of the axis of

the bar; moreover, let us neglect the mass of the bar.*

Solution. The position of the plate in xy plane is completely defined by the deflection

y of the end B of the bar and by the angle <p of the tangent to the deflection curve.

We take these two quantities as generalized coordinates of the moving plate. The
positive directions of these coordinates are indicated in the figure. The corresponding

generalized forces are the transverse force Q and the couple M. The directions of the

force and of the couple shown in the figure are the positive directions when we are con-

sidering the action on the plate, but when we are dealing with the action on the bar the

directions must be reversed. From the elementary formulae of strength of material

and by noting the above mentioned agreement in regard to signs we have the following

expressions for the deflection y and for the angle <?:

_ (L Ml~

y ~~~
\3EI

+
2EI

(d)
f

QV
,

Ml\

in which El is flexural rigidity of the bar in the xy plane. The kinetic energy of the

system consists of energy of rotation of the plate about its center of gravity C, and of

translatory energy of the plate center. Thus

7-=^ + = <*+*)', (eY

where i is the radius of gyration of the plate with respect to the axis normal to the plate

through C and e is the distance EC. Substituting T in Lagrange's equations (72) we
obtain

m(y -f e$) = Q,

m[cy + (c* + z
2
)^] = M,

with these expressions for the generalized forces Q and M the equations (d)' become

J
3

I
2

y = ~
Wl m( '*J

+ * ~
2EI

"t[CV + (6
' 2 + * 2) ^'

r- i

* = ~ ^7 rn(-y + e'^ ~ ^7 w[^ + (c2 + l
'

2)^-
ICjl til

Taking the solution of these equations in the form

y = Xi cos (pt + a), <f>
= X 2 cos (pt -f a),

and proceeding as before we obtain a quadratic frequency equation for p2 the roots of

which are

GEI 1

* See M. Rossiger, Annalen d. Physic, 5 series, v. 15> p. 735, 1932.
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In a particular case when the mass is concentrated at the end of the cantilever we have
e = i and (/)' reduces to

3EI
Pl -

, ^=00.

The first of these solutions can be easily obtained by considering the system in Fig. 121 a

one degree of freedom system and by neglecting the rotatory inertia of the plate at the

end. The second of these solutions states that if the rotatory inertia

approaches zero the corresponding frequency becomes infinitely large.

4. Determine the two natural frequencies of the vertical vibrations of

the system shown in Fig. 122, if the weights Wi and W are 20 Ib. and 10 Ib.

respectively; and' if the spring constants k\ and ki are 200 and 100 Ib. per
inch. Find the ratio di/a2 of the amplitudes of Wi and W2 for the two prin-

cipal modes of vibration.

Solution. The squares of the circular frequencies are pi
2 = 1930 and

p2
2 = 7720. The corresponding ratios of the amplitudes are a\/a J

and ai/a2
= 1.

FIG. 122. 35. Particular Cases. In the previous discussion vibrations about a

position of stable equilibrium of a system were considered. The expressions
for the potential energy were always positive and conditions given by (d) (see p. 195)
were satisfied. Let us now consider a particular case when the last of the three

requirements (d) is not fulfilled, moreover let us assume that

cuc22 Ci2
2 = 0. (a)

In such a case it is possible to have displacements that do not produce any change in the

potential energy of the system;* thus the system is in a position of indifferent equilibrium
with respect to such displacements. It is also seen that the

frequency equation (i) (see p. 196) has a root p2 = 0. In dis-

cussing the physical significance of this solution, let us con-

sider an example shown in Fig. 123. The shaft with two discs

at the ends represents a system with two degrees of freedom lf f2

so that two coordinates, say two angles of rotation <?i and <?2 , FIG. 123.

are needed to specify the configuration of the system. The
potential energy of the system depends only on the angle of twist of the shaft, equal
to <f>2 <f>i, and a rotation of the system as a rigid body does not contribute to the

potential energy; thus we have the particular case discussed above. Using the notations:

7i and 72 moments of inertia of the discs,

Jp polar moment of inertia of the shaft,

G modulus of elasticity in shear,

the expressions for potential and kinetic energy become

T = H(v>i 2/i + ^2/2). (6)

* It is only necessary to have Ci 2?i -f- c22#2 = in expression (&)' (see page. 195).
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Comparing the expression for V with expression (b) of the previous article, p. 195, it is

seen that in the case under consideration ci\ c-n Ci2. Thus condition (a) is sat-

isfied and one of the roots of the frequency equation will be equal to zero.

In our further discussion we introduce as one of the coordinates the angle of twist ^
and as the second coordinate, the angle of rotation ^2 . Then <pi

=
<f>2 \// t and our

expressions (b) become

Substituting in Lagrange's equations, we obtain

(/i + W2
- 7i = 0,
f^1 T

/i& - M +
-y-

* = 0. (c)

Eliminating <p 2 ,
we find that

/!/2 ..
,

GJp

JTT7/+ *- a

From this equation we see that the frequency of torsional vibration p is identical with
the one given by formula 17 (p. 12) and that the angle of twist can be represented by the

following formula

\f/ a sin (pt -f a),

in which the amplitude a and the phase angle a are to be determined from initial condi-

tions. Substituting ^ in the first equations (c) we find

rt sin (P* + <*) + Cd + ^2.
1\

It is seen that the coordinate ^, relating to the stable equilibrium position of the system
is varying during the motion within the limits a, while the coordinate <pi relating

to the indifferent equilibrium position of the system may grow indefinitely with time.

Thus the motion of the system consists of a simple torsional vibration on which a

uniform rotation with a constant angular velocity Ci is superposed. Analogous conclu-

sions will always be obtained when one of the roots of the frequency equation is zero.

As a second particular case let us consider problems in which the frequency equation

(i) of the previous article has two equal roots. It was shown (see p. 196) that if we plot

the values of the left side of eq. (i) against p2 a curve is obtained which has negative
ordinutes for p2 = c\\/a\\ as well as for p2 = 022/022 and that there are two intersection

points with the abscissa axis that define the two different roots of the equation. How-
ever, in the particular case, when

Cn _ C22
__

l2

an 022 ^12

the two intersection points coincide and we have two equal roots

. Cn C22 Ci2 /JX
p2 = = = -- (d)

an a22 ^12
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The expressions (6) and (c) of the previous article for the potential and for the kinetic

energy can then be written as follows:

V =
}

T7 = i

Substituting these expressions in Lagrange's eq. 73, we obtain

and since ana22 a is
2 ^ 0, we must have

I n f\

qi + P 2
qi U,

I 2 f\

From these equations we conclude that

q\ cii sin (pt -f- i),

#2
=

2 sin (pt + 2).

Thus in the case of equal roots both coordinates are represented by harmonic vibrations

of the same frequency. The amplitudes and phase angles of these vibrations should be

determined from initial conditions. As an example
of such a system we have the case represented in

Fig. 124.* Two equal masses m, joined by a hori-

zontal bar AB, are suspended on two springs of

.;-*. J_J -- equal rigidity having spring constants k. It is re-
-*

quired to investigate the small vertical vibrations of
FIG. 124. the masses m, neglecting the mass of the bar. The

position of the system can be completely defined by
the vertical displacement y of the mid-point C and by the angle of rotation ^. The
displacements of the masses in such cases are

and we obtain for the potential and for the kinetic energy of the system, the following

expressions
V = k(y* + oV),
T = m(y 2 -f a z

<f>
2
).

It is seen that conditions (d) are satisfied and we have a system with two equal frequen-
cies for the two modes of vibration.

36. Forced Vibrations. In those cases where periodical disturbing
forces are acting on the system forced vibrations will take place. By
using Lagrange's equations in their general form (74) and substituting
for T and V their general expressions (76) and (75) the equations of motion
will be,

* A more general case is discussed in Art. 40.

3
(L)
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= Qi,

flnltfl + an2#2 + 0n3</3 + * ' ' + Cnl<?l + Cn2#2 + <^3#3 + = Qn.

We proceed to consider now the most important case where the general-
ized forces are of the simple harmonic type having the same period and
the same phase so that every one of these forces can be represented in the

form Q8 ba cos (ut + 0), to and /3 being constant.

A particular solution of eqs. (a) can be taken in the form :

q\
= Xi cos (<ut + 0); q>2

= X2 cos (wt + /3); q n = \ n cos (ut + 0).

Substituting in eqs. (a) we obtain

(en anw2
)\i + (ci2 ai2w2

)X2 + + (cin inW
2
)X n = 61,.....

?

........ ' ' '

(6)

(Cnl
~ OnlC0

2
)Xl + (Cn2 an2W2

)X2 + ' ' ' + (^nn annO)
2
)Xn = 6n .

From these equations the amplitudes Xi, X2, X n of the vibrations can

be found.

It should be noted that the left sides of eqs. (6) are of the same form
as in eqs. (n) of Art. 34 and it is seen that when the determinant of the

eqs. (6) approaches zero, i.e., when the period of the disturbing force

approaches one of the natural periods of vibration, the amplitudes of vibra-

tion become very great. This is the phenomenon of resonance which was
discussed before for the case of systems with one degree of freedom.

If the generalized coordinates q\, q, (?n arc normal or principal
coordinates of the system, the expressions for the kinetic and potential

energies become
2T = anr/i

2 + fl22<?2
2 + + annqn

2
, (c)

2V = cntfr + c22<?2
2 + + cnnqn

2
.

Substituting in Lagrange's equation (74) we obtain

an'qi + c\\q\
= Qi,

'.'.'.'.'.'.
annqn + cnnqn = Qn .

These differential equations, each containing one coordinate only, are

of the same kind as we had in the case of systems with one degree of free-
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dom. Thus there is no difficulty in obtaining a general solution of these

equations for any kind of disturbing forces. Assuming as before,

Q, =
fc, cos (w* + /3),

qi
= Xi cos (co + 0), .

Xn COS (o^ + /3),

we have, from eqs. (78),

* o 2 x '-~"~
-1-"?

Here b8/cta represents the statical deflection produced by the force Q8 at

the point of its application and o>
2
/p

2 the square of the ratio between the

frequency of the force and the frequency of natural vibration. An analo-

gous result has been previously obtained for systems with one degree of

freedom (see eq. 20) and it can be concluded that if a simple harmonic force

corresponding to one of the principal coordinates of a system be assumed,
the maximum displacement may be obtained by multiplying the static

deflection by the magnification factor. The magnification factor has the

same form as in the case of systems with one degree of freedom.

As an example of an application of the general theory of forced vibration, let us

consider the vibration of a uniformly rotating disc on a flexible shaft AB, taking also into

account the lateral flexibility of the columns supporting the bed plate, Fig. 125. We
assume that the middle plane xy of the disc is the plane of symmetry of the structure and
consider the motion of the disc in this plane. Let the origin of the coordinates, Fig. 125, c,

coincide with the unstrained position of the axis of the shaft.* Moreover, let OD =
denote the horizontal displacements of the bed plate due to bending of the columns, f

DE denotes the deflection of the shaft during vibration and E is the intersection point
of the deflected axis of the shaft with the xy plane. EC = e is the small eccentricity,

and C is the center of gravity of the disc. The position of the disc in the xy plane is

completely defined by the coordinates x and y of the center of gravity C and by the angle
of rotation <p. The position of the bed plate is defined by the horizontal deflection .

Denoting by m and by mi the masses of the bed plate and of the disc respectively and

by 7 the moment of inertia of the disc about the axis of the shaft, we may write an

expression for the kinetic energy of the vibrating system as follows:

1.1 <?*

* The effect of a gravity force is neglected in this discussion. This effect is considered

in another Article.

f Compression of columns is neglected in this discussion.
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Tn calculating the potential energy of the system we denote by k the spring constant

corresponding to the deflection of the bed plate, and by k\ the spring constant relating
to the deflection / of the shaft. Then

This expression may be written in a final form by considering the geometry of Fig. 125, e:

=
(x _ _ e C08 ^)

2
_j_ (y

Then
k\

(e)

M

8

(a)

FIG. 125.

Substituting expressions (/) and (e) in Lagrange's equations and assuming that a torque

Mt is the only generalized force acting on the system, the equations of motion become

w + & k\(x e cos <p)
=

0,

m\x -f k\(x e cos <p)
= 0,

m\y -\r k\(y e sin <p)
= 0,

I<f> H- eki[(x e cos <p) sin y (y e sin <p) cos tp]
= Mt. (g)

It was tacitly assumed that the torque applied is such as to maintain a uniform rotation.

Denoting the speed of this rotation by o>, we have <f>
= ut.
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Substituting this into the first three of equations (gr), we find

w -f (k -f- fci) kix = eki cos <o,

Tfti?/ -f- k\y = &i0 sin co^. (h)

These are the equations of the forced vibrations of the system. It is seen that the third

equation contains only the coordinate y. Thus the vertical vibrations of the shaft are

not effected by the flexibility of the columns, and the corresponding critical speed is

(0

In other words it is the same as for a shaft in rigid bearings. The first two of equations

(h) give us the horizontal vibrations of the disc and of the bed plate. We take the solu-

tions of these equations in the form

x = \\ cos w = \2 cos wf.

Substituting in the equations, we obtain

( wiw2
-j- ki)\i ki\z =

ek\j

-fciXi + (-mco2 + k + fci)X 2
= -efci, (j)

from which the amplitudes Xi and X2 can be calculated. The corresponding critical

speeds are obtained by equating the determinant of these equations to zero. Thus we
find

(-wico2 + fci)(-w<o
2 + A; + &i)

-
fci

2 = 0,

or

(-?wiw2 -f fci)(-wo>2 + k) - fciwico
2 = 0. (k)

FIG. 126.

Taking o>2 as abscissas and the magnitudes of the first term on the left side of eq. (k) as
ordinates a parabola is obtained (Fig. 126) intersecting the horizontal axis at w2 = ki/mi
and w2 = k/m. The critical speeds o>2 and co 3 are determined by the intersection points
of the parabola with the inclined straight line y = fciWico 2 as shown in the figure. It is

seen that one of these speeds is less and the other is larger than the critical speed (i) for

the vertical vibrations.
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If the angular velocity o> is different from the above determined critical values, the

determinant of equations (j), represented by the left side of (fc), is different from zero.

Denoting its value by A, we find from (j)

eki(mu2
-f k -f &i) ek\ 2 ek\(m\u2 -f k\) + ek\*

X2 =9 ,A A

which determine the amplitudes of the horizontal forced vibrations.*

37. Vibration with Viscous Damping. In a general discussion of the

effect of damping on vibrations it is advantageous to introduce the notion

of the rate at which energy is dissipated. Considering first a particle

moving rectilinearly along an x-axis, we may take the resisting force of a

viscous damping equal to f ci, where the minus sign indicates that

the force acts in the direction opposite to the velocity, and the constant

coefficient c is the magnitude of the friction force when the velocity is

unity. The work done by the friction force during a small displacement
dx is then cxdx and the amount of energy dissipated is

cxdx = cx2 dt

so that the time rate at which energy is dissipated in this case is ex2 . In

the further discussion we introduce the dissipation function F which repre-
sents half the rate at which energy is dissipated. Then

F = y2 ex2
(a)

and the friction force can be obtained by differentiation;

/ = - ci =-_. (6)
ax

In the general case of motion of a particle the velocity can be resolved into

three orthogonal components so that the dissipation function becomes

F =Y2 (dx2 + c2i/
2 + fas

2
). (c)

The factors ci, C2, Ca being the constants defining the viscous friction in the

X, y and z directions.

In the case of a system of particles the dissipation function can be

obtained by a summation of expressions (c) for all particles involved.

F = K (cii
2 + c2y

2 + c32
2
). (d)

* Vibration of rotors in flexible bearings has been discussed by V. Blaess, Maschinen-

bau-Betrieb, 1923, p. 281. See also D. M. Smith, Proc. Roy. Soc. A, V. 142, p. 22, 1933.
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If x, y and z be expressed by the generalized coordinates (see cqs. (a), p.

189) the dissipation function can be represented as a function of the second

degree of the generalized velocities qi, </ 2 and we obtain *

F = Hbnqi2 + &12<M2 + ^&22?22 + ' '

(e)

Here the coefficients 6n, 612, generally depend on the configuration
of the system. But in the case of small vibrations in the neighborhood of

a configuration of stable equilibrium these coefficients can be treated as

being constants. The friction force / corresponding to any generalized
coordinate q\ may now be obtained by differentiation of expression (e)

Introducing this expression into the Lagrangian eqs. (74) we obtain the

following equations that will take care of viscous friction.

I" _ + 21 + _,. (79)
at oq % dql oq% oqi

Let us apply these equations to systems with two degrees of freedom

vibrating in the neighborhood of a configuration of stable equilibrium and
in doing so let us assume that the coordinates q\ and #2 are the principal

coordinates of the system. Then the expression for the kinetic energy
contains only terms with squares of the velocities </i, <y 2 and the expression
for the potential energy contains only the squares of the coordinates q\ y q%

so that we have
T = \i (anqi

2 + a22 r) 2
2
)

V = 1

F = 1

From the fact that the kinetic as well as the potential energy is always

positive, it follows that :

an > 0, a22 > 0, en > 0, c22 > 0. (0)

Regarding the dissipation function F it can also be stated that it must

always be positive since we have friction forces resisting the motion what-

ever be the possible displacement. Hence (see p. 195)

611 > 0, 622 > 0, 611622 - 6i2
2 > 0. (h)

* The Dissipation Function was introduced for the first time by Lord Rayleigh, Proc.

of the Mathematical Society, 1873. See also his Theory of Sound, 2nd ed. v. 1, p. 103.
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Substituting expressions (/) into Lagrange's equation and considering only
the free vibrations of the system, i.e., Qi = Qz =

0, we obtain the follow-

ing equations of motion

=

22<72 + b22(j2 + bl2(]l + C22Q2
= 0. (l)

Thus we have a system of linear equations with constant coefficients.

The general method of solving these equations is to assume a solution in

the following form for q\ and #2

91
= CV', 52

= C2c". CO

Substituting these expressions in eqs. (i) we find the following equations
for determining Ci, 2 and s

cn ) + C2&i2* =
Ci6i2 + C2 (fl22S

2 + &22* + C22 )
= 0. (*)

These two linear, homogeneous equations may give for C\ and 2 solutions

different from zero only if their determinant is zero. Equating this deter-

minant to zero we obtain the following equation for calculating s

(ans
2 + bus + Cn)(a22,s

2 + 622$ + 022)
- &i2

2$2 = 0. (I)
1

This is an equation of the fourth degree in s and we shall have four roots

which give four particular solutions of eqs. (i) when substituted in (j).

By combining these four solutions, the general solution of eqs. (i) is obtained.

If conditions (g) and (h) are satisfied, all four roots of eq. (/) are com-

plex with negative real parts
* and we shall have

si = m + ipi

82 = n\ ipi

83 = 712 + IP2

84 = tt2 IP2 (1)

where n\ and n% are positive numbers. Substituting each of these roots in

eqs. (fc) the ratios such as Ci/Co for each root will be obtained. Thus we
find four particular solutions of the type (j) with four constants of integra-
tion which can be determined from four initial conditions, namely from the

initial values of the coordinates q\, q<> and their derivatives q\ and q2.

* The general proof of this statement was given by A. Hurwitz, Math. Ann. v. 46,

p. 273, 1895. The proof can be found in Riemann-Webers " Differentialgleichungen der

Physik," v. 1, p. 125, 1925
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It is advantageous to proceed as in the case of systems with one degree
of freedom (see Art. 8) and introduce trigonometric functions instead of

exponential functions (/). Taking the first two roots (I)' and observing that

j-m + w + e
(- ni - I,* = 2e-i' cos pit

e(-n,
+ w __ e(-n,

- tPl)t = 2ie
-nit gin pj

we can represent the combination of the first two particular solutions (J) in

the following form

qi
= e~ nit

.(Ci' cos pit + CV sin pit)

q2 = e
~ nit

(Ci" cos pit + C2
"
sin pit).

Thus each coordinate represents a vibration with damping similar to what
we had in the case of systems with one degree of freedom. The real part

ni of the roots defines the rate at which the amplitudes of vibration are

damped out and the imaginary part p\ defines the frequency of vibrations.

In the same manner the last two roots (Z)' can be treated and finally we
obtain the general solution of eqs. (i) in the following form

qi
= e

~
Hlt

(Ci' cos pit + 2 sin pit) + e~~
H2t

(Di' cos p2t + D2
'

sin p2t)

(ra)

q2 = e~ nit
(Ci" cos pit + C2

"
sin pit) + e~ n

*(Di" cos p2t + D2
"
sin p2f).

Owing to the fact that the ratio between the constants Ci, C2 is determined

from eqs. (fc) for each particular solution (j) t
there will be only four inde-

pendent constants in expressions (m) to be determined from the initial

conditions of the system.
In the case of small damping the numbers n\ and n2 in roots (Z) are

small and the effects of damping on the frequencies of vibrations are negli-

gibly small quantities of the second order. Thus the frequencies pi and

p2 can be taken equal to the frequencies of vibrations without damping.
If we have a system with very large damping it is possible that two

or all four roots (Z)' become real and negative. Assuming, for instance, that

the last two roots are real, we shall find, as in the case of systems with

one degree of freedom (p. 37), that the corresponding motion is aperiodic
and that the complete expression for the motion will consist of damped
vibrations superposed on aperiodic motion.

Some examples of vibrations with damping are discussed in Art. 41.

38. Stability of Motion. In our previous discussion we had several

examples of instability of motion. One example of this kind occurred when
we considered a vertically hanging pendulum of which the point of suspen-
sion oscillated vertically. We have found (see p. 158) that at a certain
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frequency of these oscillations the vertical position of the pendulum
becomes unstable and lateral vibrations are being built up gradually.
Another example of the same kind we had in the case of a rotating shaft

(p. 159). Sometimes it is desirable to investigate a certain steady motion
of a system and to decide if this motion is stable or unstable. The general
method used in such cases is: (1) to assume that a small deviation or

displacement from the steady form of motion is produced, (2) to investigate

the resulting vibrations of the system with respect to the steady motion

caused by the small deviation or displacement; (3) if these vibrations, as

in the case of vibrations with viscous damping of the previous article, have
the tendency to die out, we conclude that the steady motion is stable.

Otherwise this motion is unstable. Thus the question of stability of

motion requires an investigation of the small vibrations with respect to

the steady motion of the system resulting from arbitrarily assumed devia-

tions or displacements from the steady form of motion. Mathematically,
such an investigation results in a system of linear differential equations
similar to eqs. (i) of the previous article, and the question of stability or

of instability of the steady motion depends on the roots of an algebraic

equation similar to eq. (1) (p. 215). If all the roots have negative real

parts, as was the case in the previous article, the vibration caused by the

arbitrary deviation will be damped out, which means that the steady
motion under consideration is stable. Otherwise the steady motion will

be unstable.

Certain requirements regarding the coefficients of the algebraic equa-

tion, resulting from the differential equations similar to eqs. (i), have been

established so that we can decide about the sign of real parts of the roots

without solving the equations.
* If we have, for instance, a cubic equation :

oos
3 + ens

2 + ao + #3 =
0,

all the roots will have a negative real part and, consequently, the motion
will be stable if all the coefficients of the equation are positive and if

a\a,2 ao^s > 0. (a)

Tn the case of an equation of the fourth degree

fl2$
2 + #3$ + 04 =

0,

* Such rules were established by E. J. Routh, ''On the Stability of a Given Motion,"
London, 1877; see also his "Rigid Dynamics," vol. 2 and the paper by A. Hurwitz,
loc. cit, p. 215.
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for stability of motion it is again necessary to have all the coefficients

positive and also that:
" ai

2
04 > 0. (6)

Let us apply this general consideration of stability problems to par-
ticular cases. As a first example we will consider the stability of rotation

of a pendulum with respect to its vertical axis 0-0, Fig. 127. The experi-
ments show that if the angular velocity of rotation co is

below a certain limiting value, the rotation is stable and
if by ati arbitrary lateral impulse lateral oscillations of

the pendulum about the horizontal pin A are produced,
these oscillations gradually die out. If the angular

velocity o> is above the limiting value, the vertical posi-

tion of the pendulum is unstable and the slightest lateral

force will produce a large deflection of the pendulum from
its vertical position. In our discussion let us assume
that the angular velocity of rotation about the vertical

axis is constant and that the mass m of the pendulum
can be assumed concentrated at the center C of the bob.

If a lateral motion of the pendulum, defined by a small

angle a, takes place, the velocity of the center C consists

of two components: (1) a velocity of lateral motion la,

and (2) a velocity of rotation about the axis 0-0, equal to ul sin a ~
The kinetic energy of the system is then

Fia. 127.

mT = ml2
a.
2

The potential energy of the system, due to the gravity force, is

T/ 7/1 \ mgla
2

V = mgl(l cos a)
-
2

Substituting V and T in Lagrange's equation we obtain

ml2a mu2
l
2a + mgla =

or

If

0.

- co
2 > 0, (<*)



SYSTEMS HAVING SEVERAL DEGREES OF FREEDOM 219

eq. (c) defines a simple harmonic oscillation, which, due to unavoidable

friction, will gradually die out. Thus the steady rotation of the pendulum
in this case is stable. If

|
- o>

2 < 0, (e)

eq. (c) will have the same form as for an inverted pendulum so that, instead

of oscillating, the angle a will grow continuously. Thus the rotation of

the pendulum in this case is unstable. The limiting value of the angular

velocity is

In other words, the limiting angular speed is that speed at which the

number of revolutions per second of the pendulum about the vertical axis

is equal to the frequency of its free lateral oscillations.

If we assume that there is viscous friction in the pendulum we shall

have the following equation instead of eq. (c) :

a + 2na + ( - - or
J
a = 0. (g)

If condition (d) is fulfilled, we obtain damped vibrations. If condition

(e) exists, we can put eq. (g) into the following form:

a + 2na p
2a =

0,

where p
2 = w2

Taking the solution of this equation in the form a = e
st

,
we find that

s2 + 2ns - p2 =
0,

from which

s = - n =fcVn2 + p'
2

.

It is seen that one of the roots is positive. Thus the angle a has a ten-

dency to grow and the rotation is unstable.

Vibration of a Steam Engine Governor. As a second example let us consider the sta-

bility of a steady rotation of a steam engine governor, shown in Fig. 128. Due to the

centrifugal forces of the flyballs a compression of the governor's spring is produced by
the sleeve B which is in direct mechanical connection with the steam supply throttle

valve. If, for some reason, the speed of the engine increases, the rotational speed of the

governor, directly connected to the engine's shaft, increases also. The flyballs then
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rise higher and thereby lift the sleeve so that the opening of the steam valve C is reduced

which means that the engine is throttled down. On the other hand, if the engine speed
decreases below normal, the flyballs move downward and thereby increase the opening
of the valve and the amount of steam admitted to the engine. To simplify our discus-

sion, let us assume that the masses of the flyballs are each equal to W2/2 and the mass
of the sleeve is mi, moreover that all masses are concentrated at the centers of gravity
and that the masses of the inclined bars and of the spring can be neglected. As coordi-

nates of the system we take the angle of rotation <p of the governor about its vertical axis

and the angle of inclination which the bars of the governor are making with the ver-

tical axis. The velocity of the centers of the flyballs consists of two components, (1) the

Steam

/:

Axle ofEngine

FIG. 128.

velocity of rotation (a + I sin a), and (2) the velocity of lateral motion la. The ver-

tical displacement of the sleeve from the lowest position when a. = is 21(1 cos a),

and the corresponding velocity is 2la sin . The kinetic energy of the system is:

T = l sin (h)

where 7 is the reduced moment of intertia of the engine. The potential energy of the

system consists, (1) of the energy due to gravity force

m\g2l(\ cos a) + m*gl(\ cos a),

and (2) of the strain energy of the spring.
*

- cos a) 2

* It is assumed that for a = there is no stress in the spring.
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where k is the spring constant. Thus the total potential energy is

V - gl(l
- cos a)(2mi + w2) -f 2M2

(1
- cos a)

2
. (t)

We assume that there is a viscous damping opposing the vertical motion of the sleeve

proportional to the sleeve velocity, 2la sin a. If the factor of proportionality be denoted

by c, the rate at which energy is dissipated is c(2l& sin a)
2

,
and we obtain for the dissi-

pation function the expression
F = Y2c(2la sin a)

2
. (j)

Substituting expressions (h), (i) and (j) in Lagrange's equation (79), p. 214, we obtain

the following two equations:

aZ2(m2 -f- 4m i sin2
a) m2J cos a(a -f I sin a)

2 4raiJ2 sin a cos aa2

=
gl sin a(2wi -f ?n 2) 4H2 sin a(l cos a) 4J2ca sin2

a, (&)

[/ -f m2(a -f ^ sin a)
2
)v?

= M,

where 3f denotes the reduced torque acting on the engine shaft.

Let us consider first steady motion when M = 0. Then <p
=

, <f>
= 0, a = a

,

a = 0, a = and we obtain from the first equation

mil cos a(a + / sin a)w2 = ^ sin a(2wi + m2) -f 4fcJ2 sin ct(\ cos a). (/)

This equation can be readily deduced from statical consideration by applying fictitious

centrifugal forces to the flyballs.

Let us now consider small vibrations about the steady motion discussed above. In

such a case

<P
= coo 4* w and a = ao + ij t (m)

where co denotes a small fluctuation in the angular velocity of rotation, and rj a small

fluctuation in the angle of inclination a. Substituting expressions (m) into equations (&)

and keeping only small quantities of the first order we can put

V?
2 = coo

2
-j- 2wow, sin a = sin (ao -f- *)) sin ao ~h *l cos ao

COS (ao "h 17)
== cos ao 17 sin ao.

Then equations (&), with the use of eq. (J), become

WTJ -|- br) -f di? 6co = 0,

/oci = - A, (n)

where
m = Z

2(m 2 + 4mi sin 2a ),

6 = 4d2 sin2 a
,

d = m2a;o
2
[/ sin afl (a -J- I sin ao) I

2 cos2
ao] -f 0J cos a (2mi 4- w2)

-f- 4fci2[cos a COS2 a -f sin2 a ],

e = 2w i( H- ^ sin a )m2,

/o = / -h w2(a -f I sin a )
2

.

/ denotes the characteristic torque change factor of the engine, defined as or as -1

da rj

or, in other words, as the factor which, multiplied by the angular change 17, gives the

change in torque acting on the shaft of the engine. Thus the vibration of the governor



222 VIBRATION PROBLEMS IN ENGINEERING

with respect to the steady motion is defined by the system of linear equations (n).

Assuming solutions of these equations in the form

and substituting these expressions in (n), we obtain

C,(ms2 + bs + d) - e 2 = 0,

CJ + 7 sC2 = 0.

Equating the determinant of these equations to zero we find

7 s(ms2 + bs + d) + ef = 0,

All constants entering into this equation are positive,* so that by using condition (a)

(p. 217) we can state that the motion of the governor will be stable if

L JL
m2 mlo

From this it follows that for a stable state of motion the quantity 6, depending on vis-

cous damping in the governor, must satisfy the condition

mef

If this condition is not satisfied, vibrations of the governor produced by a sudden

change in load of the engine, will not be damped out gradually and the well-known

phenomenon of hunting of a governor occurs, f

The method used above in discussing the stability of a governor has been applied

successfully in several other problems of practical importance as, for instance, airplane-

flutter, J automobile "
shimmy", and axial oscillations of steam turbines. 1f

39. Whirling of a Rotating Shaft Caused by Hysteresis. In our pre-

vious discussion of instability of motion of a rotating disc (see p. 92) it

* We assume that for any increase in angular velocity the corresponding angle a, as

defined by eq. (Q, increases also. In such a case expression (d), containing negative

terms, is positive.

t In the case when the engine is rigidly coupled to an electric generator an additional

term proportional to <p will enter into the second of equations (k) so that instead of

equations (n) we obtain two equations of the second order. The stability discussion

requires then an investigation of the roots of an equation of the 4th degree. Such an

investigation was made by M. Stone. Trans. A.I.E.E., 1933, p. 332.

J W. Birnbaum, Zeitschr. f. angew. Math. Mech. v. 4, p. 277, 1924.

G. Becker, H. Fromm and H. Maruhn,
"
Schwingungen in Automobillenkungen,"

Berlin, 1931.

H J. G. Baker, paper before A.S.M.E. meeting, December, 1934, New York.
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was assumed that the material of the shaft is perfectly elastic and any kind
of damping has been neglected. On the basis of this assumption two forms
of whirling of the shaft due to some eccentricity have been discussed,

namely, (1) below the critical speed cofr and, (2) above the critical speed.
It was found that in both cases the plane containing the bent axis of the

shaft rotates with the same speed as the shaft itself. Both these forms of

motion are theoretically stable * so that if a small deviation from the

circular path of the center of gravity of the disc is produced by impact,
for example, the result is that small vibrations in a radial and in a tan-

gential direction are superposed on the circular motion of the center of

gravity. The existence of such motion can be demonstrated by the use

of a suitable stroboscope.f In this way it can also be shown that due to

unavoidable damping the vibrations gradually die out if the speed of the

shaft is below cocr . However, if it is above corr a peculiar phenomenon some-
times can be observed, namely, that the plane of the bent shaft rotates at

the speed cocr while the shaft itself is

rotating at a higher speed co. Sometimes
this motion has a steady character and
the deflection of the shaft remains

constant. At other times the deflection

tends to grow with time up to the in-

stant when the disc strikes the guard.
To explain this phenomenon the im-

perfection in the elastic properties of

the shaft must be considered.

Experiments with tension-compres-
sion show that all materials exhibit

some hysteresis characteristic so that instead of a straight line AA, Fig.

129, representing Hooke's law, we usually obtain a loop of which the width

depends on the limiting values of stresses applied in the experiment. If

the loading and unloading is repeated several hundred times, the shape of

the loop is finally stabilized J and the area of the loop gives the amount of

energy dissipated per cycle due to hysteresis. We will now investigate

* The first investigation of this stability problem was made by A. Foppl, Der
Civilingenieur, v. 41, p. 333, 1895.

t Experiments of this kind were recently made by D. Robertson, The Engineer,
v. 156, p. 152, 1933, and v. 158, p. 216, 1934. See also his papers in Phil. Mag. ser. 7,

v. 20, p. 793, 1935; and "The Institute of Mechanical Engrs.," October, 1935. In the

last two papers a bibliography on the subject is given.

I We assume that the limits of loading are below the endurance limit of the material.

+Strain

FIG. 129.
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the effect of the hysteresis on bending of the shaft by first considering the

case of static bending. We eliminate the effect of a gravity force by choos-

ing a vertical shaft; moreover, we assume that it is deflected by a statically

applied lateral force P in the plane of the figure (Fig. 130). The deflection

6 may be taken proportional to the force

d = kP, (a)

k being the spring constant of the shaft. In our further discussion we
assume that the middle plane of the disc is the plane of symmetry of the

shaft so that during bending the disc is moving parallel to itself. In

Fig. 1306, the cross-section of the shaft is shown to a larger scale and the

FIG. 130.

line n-n perpendicular to the plane of bending indicates the neutral line,

so that the fibers of the shaft to the right of this line are in tension and to

the left, in compression.
Let us now assume that a torque is applied in the plane of the disc so

that the shaft is brought into rotation in a counter-clockwise direction,

while the plane of bending of the shaft is stationary, i.e., the plane of the

deflection curve of the axis of the shaft continues to remain in the xz

plane. In this way the longitudinal fibers of the shaft will undergo
reversal of stresses. For instance, a fiber A\ at the convex side of the

bent shaft is in tension, but after half a revolution of the shaft the fiber

will be in compression at A2 on the concave side. In the case of an ideal

material, following Hooke's law, the relation between stress and strain is

given by the straight line A-A in Fig. 129 and the distribution of bending
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stresses over the cross-section of the shaft will not be affected by the rota-

tion. But the condition is different if the material exhibits hysteresis
characteristics. From the loop in Fig. 129 we see that for the same strain

we have two different values of stress corresponding to the upper (loading)
and the lower (unloading) branch of the loop, respectively. Returning to

the consideration of the cross-section of the rotating shaft in Fig. 130 6,

we see that during the motion of the fiber from position A% to position A\
the stress is varying from compression to tension, consequently we must
use the upper branch of the loop. In the same way we conclude that

during the motion from A\ to AI the lower branch of the loop must be

used. From this it follows that we may take the hysteresis effect into

account by superposing on the statical stresses, determined from Hooke's

law, additional positive stresses on the fibers below the horizontal diameter

AiA2, and additional negative stresses on the fibers above A\A2. This

system of stresses corresponds to bending of the shaft in yz plane. Physi-

cally these stresses represent bending stresses produced by a force Q which
must be applied to the shaft if rotation of the plane of the deflection curve

is to be prevented when the shaft is rotating.
From this discussion follows that while the shaft is bent in the xz plane

the bending stresses do not produce a bending moment in the same plane
but in a plane inclined to the xz plane. In other words, the neutral axis

with respect to stresses does not coincide with the neutral axis n-n for

strains, but assumes a position mni slightly inclined to nn. The same
conclusion can be drawn in another way. If we consider a fiber at A<i

moving toward position A\ the stress will be changing from compression
to tension so that the upper portion of the loop in Fig. 130 must be used

;

from this we see that for zero strain, corresponding to the position of the

fiber at A-^ there is a tension stress. In the same way considering the

lower branch of the loop, we find that at A t there is a compressive stress,

thus the vertical diameter ^3^4, corresponding to points with zero strains,

does not any longer represent the neutral axis with respect to stress and
the latter must have an inclined position as, for instance, n\n\.

In order to get an idea of the magnitude of the force Q we observe that

some energy is dissipated during the rotation of the shaft due to hysteresis.

Hence a constant torque must act to maintain the constant speed of rota-

tion of the disc. This torque is balanced by the couple represented by the

force Q and the corresponding reactions Q
f

at the bearings, Fig. 1306.

In this case the work done by the torque during one revolution of the

shaft is

(6)
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This work must be equal to the energy dissipated per cycle due to

hysteresis. Unfortunately there is not sufficient information in regard to

the area of the hysteresis loop, but it is usually assumed that it does not

depend on the frequency. It is also sometimes assumed that it is propor-
tional to the square of the limiting strain,* i.e., in our case, that the dissi-

pation per cycle can be taken in the form

E = 27rZ)62
,

where D is a constant depending on the hysteresis characteristic of the

material of the shaft.

Comparing (6) and (c) we find

Q - D8, (d)

i.e., the force required to prevent rotation of the deflection curve is pro-

portional to the deflection 6, produced by a static load.

If the shaft is horizontal, it will deflect in a vertical plane due to the

gravity force W of the disc, Fig. 131. By applying torque to the disc we
can bring the shaft into rotation and we shall find that, owing to hysteresis,

the plane of bending takes a slightly inclined position defined by the angle

(p. The gravity force W together with the vertical reactions at the bearings
form a couple with an arm c balancing the torque applied to the disc.

This torque supplies the energy dissipated owing to hysteresis, f

After this preliminary discussion let us derive the differential equations
of motion of the center of gravity of the disc on the vertical rotating shaft,

assuming: (1) that the speed co of the rotating shaft is greater than wcr

(2) that the plane of the deflection curve of the shaft is free to rotate with

respect to the axis z, Fig. 132; (3) that there is a torque acting on the disc

so as to maintain the constant angular velocity w of the shaft, and (4) that

the disc is perfectly balanced and its center of gravity is on the axis of the

shaft. Taking, as before, the xy plane as the middle plane of the disc

and letting the z axis coincide with the unbent axis of the shaft, we assume,

Fig. 132, that the center of the cross-section of the bent shaft coinciding
with the center of gravity of the disc is at C, so that OC = 5 represents

* See papers by A. L. Kimoall and D. E. Lovell, Trans. Am. Soc. Mech. Engrs., v.

48, p. 479, 1926.

f The phenomenon of lateral deflection of a loaded rotating shaft due to hysteresis
has been investigated and fully explained by W. Mason see Engineering, v. 115, p. 698,
1923.
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the deflection of the shaft. The angle a between OC and the x axis defines

the instantaneous position of the rotating plane of the deflection curve of

the shaft. We take also some fixed radius CB of the shaft and define its

angular position during uniform rotation in counter-clockwise direction by
the angle cot measured from the x axis. In writing the differential equations
of motion* of the center C we must consider the reaction kd of the deflected

shaft in the radial direction towards the axis 0, and also the addition reac-

tion Q in tangential direction due to hysteresis. This later reaction is

evidently equal and opposite to the force Q in Fig. 1306, which was required
to prevent the plane of the shaft deflection from rotating. We assume
here that o> > a, so that the radius EC rotates with respect to 0(7 in a

counter-clockwise direction. Only on this assumption the force Q has

the direction shown in Fig. 132 and tends to maintain the rotation of the

OC plane in a counter-clockwise direction. Denoting by m the mass of

the disc, and resolving the forces along the x and the y axes we obtain the

following two equations :

mx = kd cos a Q sin a. (e)

Substituting for Q its expression (d) the equations can be written in the

following form:

mx + kx + Dy =
my + ky Dx = 0.

(/)

* The discussion of this problem is given in J. G. Baker's paper, loc. cit., p. 110. The
consideration of the hysteresis effect in the problem of shaft whirling is introduced first

by A. L. Kimball see Phys. Rev., June, 1923, and Phil. Mag., ser. 6, v. 40, p. 724, 1925.
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In solving these equations we assume that:

x = Cest

, y - C'e",

and we find in the usual way a biquadratic equation of which the roots are

- k db Di
Sl,2,3,4

:

* m
Introducing the notation

m
from which

- k + Di = n + pit,

J-n =+ v

we can represent the general solution of eqs. (/) in the following form:

x = e
m

( Ci sin p\t + 2 cos pit) + ^"^(Ca sin pit C* cos pit)

y = e
m
(Ci cos pit + C2 sin pit) + e~

m
(Ca cos pi + 4 sin pi2).

,, .

^ '

In discussing this solution we must keep in mind that for a material such

as steel the tangential force Q is very small in comparison with the radial

force kd. Hence the quantity D is small in comparison with k and we

find, from eqs. (g), that n is a small quantity approximately equal to

D/2\/km, while

Pi J- - cocr .

* m

Neglecting the second terms in expressions (h) which will be gradually

damped out, and representing the trigonometrical parts of the first terms

by projections on the x and the y axes of vectors Ci and 2 rotating with

the speed cocr, Fig. 133, we conclude that the shaft is whirling with con-

stant speed o)cr in a counter-clockwise direction while its deflection, equal

to 5 = v x2 + y
2 = d* v Ci2 + C22

,
is Increasing indefinitely.

It should be noted, however, that in the derivation of eqs. (e) damping
forces such as air resistance were entirely neglected. The effect of these

forces may increase with the deflection of the shaft so that we may finally



SYSTEMS HAVING SEVERAL DEGREES OF FREEDOM 229

obtain a steady whirling of the shaft with the speed approximately equal
to o>cr .

In the case of a built-up rotor any friction between the parts of the

rotor during bending may have exactly the same effect on the whirling of

the rotor as the hysteresis of the shaft material in our previous discussion.

If a sleeve or a hub is fixed to a shaft, Fig. 134a, and subjected to reversal

of bending, the surface fibers of the shaft must slip inside the hub as they
elongate and shorten during bending so that some energy of dissipation
due to friction is produced. Sometimes the amount of energy dissipated

Fia. 133. FIG. 134.

owing to such friction is much larger than that due to hysteresis of the

material and may cause whirling of rotors running above their critical

speeds.* To reduce the effect of friction the dimension of the hub in the

axial direction of the shaft must be as short as possible, the construction,
in Fig. 1346, with bearing surfaces at the ends only, should be avoided.

An improvement is obtained by mounting the hub on a boss solid with the

shaft, Fig. 134c, having large fillets in the corners.

40. Vibrations of Vehicles. General Equations. The problem of the

vibration of a four wheel vehicle as a system
with many degrees of freedom is a very com-

plicated one. In the following pages this

problem is simplified and only the pitching
motion in one plane f (Fig. 135) will be con-

sidered. In such a case the system has only
two degrees of freedom and its position during
the vibration can be specified by two co-

ordinates: the vertical displacement z of the

center of gravity C and the angle of rotation 6

as shown in Fig. 1356. Both of these coordinates will be measured from
the position of equilibrium.

* B. L. Newkirk, General Electric Review, vol. 27, p. 169, 1924.

f Rolling motion of the car is excluded from the following discussion.

Fia. -135.
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Let

W be the spring-borne weight of the vehicle.

/ = (W/g)i
2 be the moment of inertia of the sprung mass about the

axis through the center of gravity C.

i be the radius of gyration.

fci, 2 are spring constants for the axies A and B, respectively.

Zi, h are distances of the center of gravity from the same axes.*

Then the kinetic energy'of motion will be

1 W IWr^fJL^+iJL
2 g 2 g

In calculating the potential energy, let 5rt , 5& denote the initial deflec-

tions of the springs at the axles A and B, respectively, then,

Wk Wh

The increase in the potential energy of deformation of the springs during
motion will be

r/ ^f/ i M i * (2 i

*2 f/ i ? M i *l2 ^l5"2

Vi = --
{ (z

- he) + sa }

2 + ~{(z + he) + 56 }

2 -

or by using (6)

Vi = ^ (2
- he)

2 + ^(z + I2e)
2 + Wz.

JL 4

The decrease in the potential energy of the system due to the lowering of

the center of gravity will be

V2 = Wz.

The complete expression for the potential energy of the system during
motion is therefore

v = YI - v2 = (z
- hey + (z + hey. (c)A

Substituting (a) and (c) in Lagrange's eqs. (73) the following equations
for the free vibrations of the vehicle will be obtained

* These distances are considered as constant in the further discussion.
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W
z = ki(z liti) &2 (z

TF ..

i2 d = Zi/bi(2
fir

Letting

(fcl + fc2)g (~ Ml + fe2k)g" ~ = a;
-

JF
- =

;

we have
2 + az + 60 =

These two simultaneous differential equations show that in general the

coordinates z and are not independent of each other and if, for instance,
in order to produce vibrations, the frame of the car be displaced parallel

to itself in the z direction and then suddenly released, not only a vertical

displacement z but also a rotation 6 will take place during the subsequent
vibration. The coordinates z and 6 become independent only in the case

when b = in eqs. (<r). This occurs when

kill =
fefe, (/)

i.e., when the spring constants are inversely proportional to the spring
distances from the center of gravity. In such cases a load applied at the

center of gravity will only produce vertical displacement of the frame with-

out rotation. Such conditions exist in the case of railway carriages where

usually h = Z2 and k\ = &2 .

Returning now to the general case we take the solution of the eqs. (e)

in the following form

z = A cos (pt + a) ;
= B cos (pt + a).

Substituting in eqs. (e) we obtain

A(a - p
2
) + bB =

0, (g)
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Eliminating A and B from eqs. (g) the following frequency equation will

be obtained,

= 0. (h)
1

The two roots of eq. (h) considered as an equation in p2 are

Noting that from eq. (d),

ac - V2 = ^ kik2 (h + fe)
2

,

it can be concluded that both roots of eq. (h) are real and positive.

Principal Modes of Vibration. Substituting (k) in the first of the

eqs. (g) the following values for the ratio A/B between the amplitudes will

be obtained.

B P
2 ~a i/c \ h7c V V

The + sign, as is seen from (k), corresponds to the mode of vibration

having the higher frequency while the sign corresponds to vibrations of

lower frequency.
In the further discussion it will be assumed that

b > or fc2 Z2 > kil\.

This means that under the action of its own weight the displacement of

the car is such as shown in Fig. 136; the displacement in downward direc-

tion is associated with a rotation in the direction of the negative 6. Under
this assumption the amplitudes A and B will have opposite signs if the

negative sign be taken before the radical in the denominator of (I) and

they will have the same signs when the positive sign be taken. The cor-

responding two types of vibration are shown in Fig. 137. The type (a)
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has a lower frequency and can be considered as a rotation about a certain

point Q to the right of the center of gravity C. The type (b) having a

higher frequency, consists of a rotation about a certain point P to the

left of C. The distances m and n of the points Q and P from the center of

gravity are given by the absolute values of the right side of eq. (I) and we
obtain a very wimple relation,

b

/i/c I3%T?'
*2

, (m)

Ic

In the particular case, when b =
0, i.e., A'i/i = 2/2 the distance n

becomes equal to zero and m becomes infinitely large. This means that

in this case one of the principal modes of vibration consists of a rotation

about the center of gravity and the other consists of a translatory move-
ment without rotation. A vertical load applied at the center of gravity
in this case will produce only a vertical displacement and both springs
will get equal compressions.

If, in addition to 6, (c/z
2
) a becomes equal to zero, both frequencies,

as given by eq. (&), become equal and the two types of vibration will have

the same period.
Numerical Example. A numerical example of the above theory will

now be considered.* Taking a case with the following data: W = 966 Ibs.;

* See the paper by II. S. Rowell, Proc. Inst. Automobile Engineers, London, Vol.

XVII, Part II, p. 455 (1923).
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i
2 = 13 ft.

2
; Hi

= 4 ft.; 12 = 5 ft.; fci
= 1600 lbs./ft.; fe = 2400 lb./ft.,

the corresponding static deflections (see eq. (ft)) are

da = 4.0 in., db
= 2.15 in.

From eqs. (d)

a = 133.3, 6 = 186.7, c = 2853.

Substituting in (k) we obtain the following two roots pi
2 = 109, p^

2 = 244.

The corresponding frequencies are

pi = 10.5 radians per second and p2 = 15.6 radians per second, respec-

tively, or

NI = 100 and Nz = 150 complete oscillations per minute.

From eq. (I) we have

-- = - 7.71 ft. and n = 1.69ft.
B B

This means that in the slower mode of vibration the sprung weight oscil-

lates 7.71 ft. per radian of pitching motion or 1.62 inches per degree.
In the higher mode of vibration the sprung weight oscillates 1.69 ft.

for every radian of pitching motion or .355 inch per degree.

Roughly speaking in the slower mode of vibration the car is bouncing,
the deflections of two springs being of the same sign and in the ratio

$7
=
T^TT+l

=
'23 '

In the quicker mode of vibration the car is mostly pitching.
It is interesting to note that a good approximation for the frequencies

of the principal modes of vibration can be obtained by using the theory
of a system with one degree of freedom. Assuming first that the spring
at B (see Fig. 135) is removed so that the car can bounce on the spring A
about the axis B as a hinge. Then the equation of motion is

+ ^i
9

so that the " constrained "
frequency is
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or substituting the numerical data of the above example

This is in good agreement with the frequency 10.5 obtained above for the

lower type of vibration of the car. In the same manner considering the

bouncing of the car on the spring B about the axis A as a hinge, we obtain

p2 = 15.0 as compared with p2 = 15.6 given above for the quicker mode
of vibration.

On the basis of this a practical method for obtaining the frequencies of

the principal modes of vibration by test is to lock the front springs and
bounce the car; then lock the roar springs and again bounce the car. The

frequencies obtained by those tosts will represent a good approximation.

Beating Phenomena. Returning now to the general solution of the

eqs. (e) and denoting by 7)1 arid p2 ,
the two roots obtained from (fc) we have

z = A i cos (pit + ai) + A2 cos (p2 t + <*2),

= BI cos (pit + ai) + B2 cos (p2t + a2), (r)

in which (see eq. (I))

Ai b A 2 b

BI pi
2 a

1

B'2 p2
2 a

The general solution (r) contains four arbitrary constants AI, A2 , on,

and c*2> which must be determined for every particular case so as to satisfy

the initial conditions. Assume, for instance, that in the initial moment a

displacement X exists in a downward direction without rotation and that

the car is then suddenly released. In such a case the initial conditions are

COi-o = X; (z)r _ = 0; (0)|B.
= 0; (0),_

= 0.

These conditions will be satisfied by taking in eqs. (r)

ai = a2 = 0,

a p2
2

p\
2 a

Ai = X
;

A2 = X
;

Pl
2

P2
2

Pi
2

P2
2

B _ ^4 . # A 2 (t)
b b

w

We see that under the assumed conditions both modes of vibration will
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be produced which at the beginning will be in the same phase but with

elapse of time, due to the difference in frequencies, they will become dis-

placed with respect to each other and a complicated combined motion will

take place. If the difference of frequencies is a very small one the charac-

teristic
"
beating phenomenon," i.e., vibrations with periodically varying

amplitude, will take place. In considering this particular case, assume in

eq. (fc) that

c
,

b
a = and - =

6,
-jj 4

*

if (/

where d is a small quantity. Then

pi
2 = a 5; p2

2 = a + 5,

and from (f) we obtain,

Solution (n) becomes

^
/ ^ . * x P\ + P2 2 pi P2 .

z = (cos pit + cos pzt) = X cos ---------
t cos ------ t

}

2i 22
=

---.( cos pi + cos p20 = ~. sin ----
t sin- t. (u)

2ti % 2 2

Owing to the fact that pi p>2 is a small quantity the functions

cos{ (pi + P2)/2J t and sin
{ (pi + p2)/2 }

< will be quickly varying functions

so that they will perform several cycles before the slowly varying func-

tion sin {(pi p<2)/2\t or cos
{ (p\ p<2)/2}t can undergo considerable

change. As a result, oscillations with periodically varying amplitudes
will be obtained (see Fig. 12).

Forced Vibrations. The disturbing forces producing forced oscillations

of a car are transmitted by the springs. In the general discussion above
it was shown that the two principal modes of vibration are oscillations

about two definite points P and Q (Fig. 137). The corresponding gener-

alized forces in such a case are the moments of the spring forces about the

points P and Q. From this it can be concluded that any fluctuation in a

spring force, produced by some kind of unevenness of the road, will pro-
duce simultaneously both types of vibrations provided that this spring
force does not pass through one of the points P or Q. Assume, for instance,

that the front wheels of a moving car encounter an obstacle on the road,
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the corresponding compression of the front springs will produce vibrations

of the car. Now when the rear wheels reach the same obstacle, an addi-

tional impulse will be given to the oscillating car. The oscillations pro-
duced by this new impulse will be superimposed on the previous oscilla-

tions and the resulting motion will depend on the value A of the interval

of time between the two impulses, or, denoting by v the velocity of the

car, on the magnitude of l/v. It is easy to see that at a certain value of v

the effects of the two impulses will be added and we will get very unfavor-

able conditions for these critical speeds. Let r\ and r2 denote the periods
of the two principal modes of vibration and assume the interval A =

(l/v)

be a multiple of these periods, so that

where m\ and m>2 are integer numbers. Then the impulses will repeat
after an integer number of oscillations and resonance conditions will take

place.* Under such conditions large oscillations may be produced if there

is not enough friction in the springs.

From this discussion it is clear that an arrangement where an impulse

produced by one spring does not affect the other spring may be of practical
interest. This condition will be satisfied when the body of the car can

be replaced by a dynamical model with two masses W\ and Wz (Fig. 138)
concentrated at the springs A and B. In this case we have

2 + TW = Wi2
,

from which

lih = *
2

- (80)

Comparing with eq. (ra) it can be concluded that the points P and Q
(see Fig. 137) coincide in this case with the points A and B so that the

fluctuations in the spring forces will be independent of each other and the

condition of resonance will be excluded. It should be noted that when
li = h condition (80) coincides with the rule given by Prof. H. Reissner

that the radius of gyration of the sprung mass should be half the wheel

* See P. Lemaire, La Technique Moderne, January 1921. See also the paper by
H. S. Rowell, p. 481, mentioned above.
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In most of the modern cars the wheel base is larger than that

given by eq. (80). This discrepancy should be attributed to steering and

skidding conditions which necessitate an increase in wheel base.

Pressure on the Road. Due to dynamical causes the pressure of a

wheel on the road during motion will be usually different from what we
would have in the statical condition. Assuming the simple case illus-

trated in Fig. 138, the pressure of the wheel can be found from a consider-

ation of the motion of the system, shown in Fig. 139, in which W\ is weight

FIG. 138. Fia. 139.

directly transmitted on the road,* Wz is spring borne weight, v is con-

stant velocity of the motion of the wheel along the horizontal axis, xi 9

X2 are displacements in an upward direction of the weights W\ and W2
from their position of equilibrium shown in Fig. 139. If there is no
unevenness of the road, no vibration will take place during motion and
the pressure on the road will be equal to the statical. Assume now that

the road contour is rigid and can be represented by the equation :

h
x = -

where is measured along the horizontal axis and X is the wave length.

During rolling with a constant velocity v along these waves the vertical

displacements of the wheel considered as rigid will be represented by the

equation
h ( ^ 27rt'^

The corresponding acceleration in a vertical direction is

2wvt*"

Spring effect of the tire is neglected in this discussion.
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Adding the inertia force to the weight the pressure on the road due to the

unsprung mass alone will be

The maximum pressure occurs when the wheel occupies the lowest position
on the contour and is equal to

w -.
g 2 \*

It is seen that the dynamical effect due to the inertia force increases as the

square of the speed.
In order to obtain the complete pressure on the road, the pressure due

to the spring force must be added to pressure (6) calculated above. This

force will be given by the expression

W>2 k(x2 *i), (c)

in which the second term represents the change in the force of the spring
due to the relative displacement X2 x\ of the masses W\ and W^ This

displacement can be obtained from the differential equation

Wz
X2 + k(xo - xi) = 0, (d)

g

representing the equation of motion of the sprung weight W2.

Substituting (a) for xi we have

X2 + kx2 =
I 1 - cos ) (e)

O A,t \ A /

This equation represents vibration of the sprung weight produced by the

wavy contour of the road. Assuming that at the beginning of the motion

xi = X2 = and xi = X2 = 0, the solution of eq. (e) will be

T2
2

27TI

T2
2

Tl
2

T2

in which

n = 27T v (W2/kg) natural period of vibration of the sprung weight,

T2 = (X/y) time necessary to cross the wave length X.
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The force in the spring, from eqs. (a) and (c), is

kh ri
2 / 2irt 27rt\

,
.W2

-~ -
7, (

cos~ - - cos 1- (g)
2 72" Tl" \ Tl T2 /

Now, from (6) and (gr), the pressure on the road in addition to the statical

pressure will be

kh ri
2 / 2irt 27rt\

---- - -
o COS ---

;

--
I COS ---- COS ---

) (K)~ 2 T2~ TI
Z \ n 7*2 /

2wt
o

g 2 TO~

The importance of the first term increases with the speed while the

second term becomes important under conditions of resonance. On this

basis it can be concluded that with a good road surface and high speed
the unsprung mass decides the road pressure and in the case of a rough
road the sprung mass becomes important.

41. Dynamic Vibration Absorber. In discussing forced vibration of

systems with one degree of freedom it was shown how the amplitude of

this vibration can be reduced by a proper choice of the spring constant so

that the system will be far away from resonance,
or by a proper balancing which minimizes the

magnitude of the disturbing force. Sometimes
these methods are impractical and a special

device for reducing vibrations, called the dynamic
vibration absorber, must be used. An example
of such a device is illustrated in Fig. 140. A
machine or a machine part under considera-

FIG. 140. tion is represented by a weight TVi, Fig. 140a,

suspended on a spring having the spring con-

stant ki. The natural frequency of vibration of this system is

= Jkig f x

(a)

If a pulsating force P cos cot is acting vertically on the weight Wi, forced

vibration will be produced of a magnitude

P 1
Xl = y-

. COS U>. (b)
fcl 1 o>

2
/p

2

This vibration may become very large when the ratio p/co approaches unity.

To reduce the vibration, let us attach a small weight W2 to the machine
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Wi by a spring having a spring constant /c2 , Fig. 1406. It will be shown
in our further discussion that by a proper choice of the weight Wz and of
the spring constant kz a substantial reduction in vibration of the main
system, Fig. 140a, can be accomplished. The attached system consisting
of weight W>2 and spring fa is a dynamical vibration absorber.

The Absorber without Damping.* To simplify the discussion let us
assume first that there is no damping in the system. By attaching the

FIG. 141.

vibration absorber to the main system we obtain a system with two degrees
of freedom. As coordinates of the system we take vertical displacements
a-i and 2-2 of the weights W\ and W2 from their positions of static equi-
librium. The downward directions of these displacements are taken
positive. If the mass of the springs be neglected, the kinetic energy of
the system is

T = ~ (WiJi
2 + TF2J22

). (c)

* See paper by J. Ormondroyd and J. P. Den Hartog, Trans. Amer. Soc. Mech.
Engrs., v. 50, no. 7, p. 9, 1928. See also II. Holzer, Stodola's Festschrift, p. 234, 1929,
Zurich.
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Observing that x\ and X2-x\ are the elongations of the upper and of the

lower springs respectively, the potential energy of the system, calculated

from the position of equilibrium, is

i' + to-zi)2
] (d)

Substituting in Lagrange's equation, we obtain

Wi ..

xi + k\x\ k-2(x2 xi) = P cos cot

g

W2
X2 + k2(x2 - xi) = 0. (e)

The same equations can be readily obtained by writing the equation of mo-
tion for each mass considering it a particle and observing that on the lower

mass the force 2(22 x\) and on the upper mass the forces fcu*i,

2(22
~~ ^0 and P cos ut are acting.

The steady state of the forced vibration will be obtained by taking
solutions of equations (e) in the following form :

X\ = Xi COS cu, X2 = X2 COS (jot. (/)

Substituting these expressions in (e) we obtain the following expressions
for the quantities Xi and X2, the absolute values of which are the ampli-
tudes of the forced vibrations of masses Wi and W%.

P(k2
-

Xi
(/c

2

To simplify our further discussion we bring these expressions into dimen-
sionless form. For this purpose we introduce the following notations:

\8t
= P/ki is the static deflection of the main system produced by the

force P.

pi = v k2g/W2 is the natural frequency of the absorber.
= Wz/Wi is the ratio of the weights of the absorber and of the main

system.
5 = pi/p is the ratio of the natural frequencies of the absorber and

of the main system.

7 = co/p is the ratio of the frequency of the disturbing force to the

natural frequency of the main system.
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Then, from expressions (g), we obtain

1 - C0
2
/P1

2

The first of these expressions we represent also in the following form

2 $2

05V - W ~ D(72 -
')

It is seen from the first of expressions (h) that the motion of the main
mass vanishes if we take

* -
>
- & w

i.e., if we select the proportions of the absorber so as to make its natural

frequency equal to the frequency of the pulsating force. Then from the

second eq. (h) we find

and the vibrations of the two masses, from (/), are

P
X\ =

0, X2
~ COS ut. (f)

k<2

We see that the weight W% of the absorber moves in such a way that the

spring force 2x2 = ~~ P cos w^ acting on the machine Wi, is always equal
and opposite to the impressed force, thus the motion of W\ is eliminated

completely.
In designing an absorber we must satisfy the condition (i) from which

the ratio ko/Wz is obtained provided that the constant frequency of the

pulsating force is known. The absolute values of the quantities 2 and W%
are also of practical importance. We see from the second of eqs. (/) that

if &2 is taken too small, X2 becomes large and the stress in the spring may
become excessive. Thus equations (i) and (j) must both be considered

in the practical design of an absorber and the smallest possible values of

&2 and W2 will depend on the maximum value of the pulsating force P
and on the allowable travel of the weight W%.

So far the action of the absorber has been discussed for one frequency
of the pulsating force only, namely for that satisfying eq. (i). For any
other frequency both masses, Wi and W^, will vibrate and the amplitudes
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of these vibrations are obtained from eqs. (h). We therefore have a system
with two degrees of freedom and with two critical values of co, corresponding
to the two conditions of resonance. These critical values are obtained by
equating the denominator of expressions (h) to zero. In this way we find

= 0. (*)

From this quadratic equation in co
2

,
the two critical frequencies can be

calculated in each particular case. The amplitudes of vibration of the

weight Wi will be calculated from eq. (h) for any value of the ratio co/p

and can be represented graphically. For a particular case when p = p\
and W2/Wi = fc2/&i =

.05, the amplitudes are shown in Fig. 141 by
the dotted line curves (resonance curves)
marked ju

= 0. In this particular case

zero amplitude of the main mass W\ is

obtained when co = p\ =
p. The ampli-

tudes increase indefinitely when the ratio

co/p approaches its critical values coi/p =
.895 and co2/p = 1.12.

From this it is seen that the applica-

bility of the absorber without damping is

restricted to machines with constant speed
such as for instance electric synchronous
or induction machines. One application
of the absorber is shown in Fig. 142,

which represents the outboard generator

bearing pedestal of a 30,000 KW. turbo-

generator. This pedestal vibrated con-

siderably at 1800 R.P.M. in the direction

of the generator axis. By bolting to the

pedestal two vibration absorbers consisting
of two cantilevers 20 in. long and % in.

X 2^ in. in cross section, weighted at the end with 25 Ibs., the ampli-
tude was reduced to about one third of its previous magnitude.

The described method of eliminating vibration may be used also in

the case of torsional systems shown in Fig. 143. A system consisting of

two masses with the moments of inertia /i, 12 and a shaft with a spring
constant fc, has a period of natural vibration equal to, see eq. (16),

Fia. 142.

(16)
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If a pulsating torque Mt cos ut is acting on the mass I\ the forced torsional

vibration of both discs I\ and /2 produced by this torque can be eliminated

by attaching to I\ a small vibrating system consisting of a disc with a

moment of inertia i and a shaft with a spring constant ki (Fig. 143, 6).

It is only necessary to take for k\ and i such

proportions as to make the frequency of the M .

k*

\\r
attached system equal to the frequency of ; LJ /^> U 2

the pulsating torque. , ,

Damped Vibration Absorber.* In order ^ pj_r~|Mto make the absorber effective over an ex-

tended range of frequencies it is necessary to Engine
^ Generator

introduce damping in the vibrating system. plc, 143
Assume that a damping device is located be-

tween the masses Wi and Hr

2, Fig. 1406, and that the magnitude of the

damping is proportional to the relative velocity .n x>2. Introducing
the friction force into eqs. (c) by adding it to the right side, we obtain

the equations:

- ^i + fciJi kz(x2 .ri)
= P cos w + c(x2 xi)

9

Wo--- *2 + k-2 (x-2 xi) = r(.h
- >2), (0

9

in which factor c denotes the magnitude of the damping force when the

relative velocity between the two masses is equal to unity.

Observing that due to damping there must be a phase difference between
the pulsating force and the vibration, we represent the steady forced vibra-

tion of the system in the form

x\ = C\ cos ut + (?2 sin ut

X'> = Ca cos ut + Ci sin ut. (m)

Substituting these expressions into equations (?), we obtain four algebraic
linear equations for determining the constants Ci 4. In our further

* See paper by J. Ormomlroyd and J. P. Den ITartog, loc. oil., p. 241, also papers by
K. Hahnknmm, Annalen d. Physik, 5 I

r
olgc, v. 14, p. 683, 1932; Zeitsrhr. f. angew. Math.

and Mech., Vol. 13, p. 183, 1933; Tngemeur-Arehiv, v. 4, p. 192, 1933. The effect of

internal friction on damping was discussed by O. Foppl, Ing. Archiv, v. 1, p. 223, 1930.

See also his book,
u
Aufschaukelung und Dampfung von Schwingurigen," Berlin, 1936,

and the paper by G. Bock, Zeitschr. f. angew. Math. u. Mech., V. 12, p. 261, 1932.
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discussion we will be interested in the amplitude of forced vibration of

the mass Wi which is equal to

(*i)
= X, = VCi2 + C2

2
.

Omitting all intervening calculations of the constants Ci and C2, and

using our previous notations (see p. 242) we obtain:

X2/X2 V72 + (T
2 - a2)

2

1 ' "
4M272

(7
2 -" 1 + 072

)
2 + [05V -

(7
2 - D(72

in which the damping is defined by n = eg
"

From this expression the amplitude of the forced vibration of the weight
Wi can be calculated for any value of 7 = co/p if the quantities 5 and /3,

denning the frequency and the weight of the absorber, and the quantity n
are known.

By taking /*
= we obtain from (ri) expression (h)' already found

before for an absorber without damping. The resonance curves (n = 0)

giving the amplitude of vibration for ft
= 1/20, 6=1, and for various

values of 7 = co/p are shown in Fig. 141 by dotted lines. It should be

noted that the absolute values of expression (h)
f
are plotted in the figure,

while (h)' is changing sign at 7 = .895, 7 = 1 and 7 = 1.12.

Another extreme case is defined by taking p.
= oo . If damping is

infinitely large there will be no relative motion between W\ and W%. We
obtain then a system with one degree of freedom of the weight W\ + W*
and with the spring constant ki. For determining the amplitude of the

forced vibration for this system we have, from (ri)

The critical frequency for this system is obtained by equating the denom-
inator of expression (o) to zero. Thus

72 - 1 + 072 -
(p)

and
i

1

Tcr

The resonance curves for ^ = are also shown in Fig. 141 by dotted

lines. These curves are similar to those in Fig. 10 (p. 15) obtained before

for systems with one degree of freedom. For any other value of (/*) the

resonance curves can be plotted by using expression (ri). In Fig. 141 the
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curves for n = 0.10 and for \L
= 0.32 are shown. It is interesting to note

that all these curves are intersecting at points S and T. This means that

for the two corresponding values of 7 the amplitudes of the forced vibra-

tion of the weight W\ are independent of the amount of damping. These
values of 7 can be found by equating the absolute values of Xi/>,, as

obtained from (o) and from (/*)'. Thus we have *

r3 - 52 1

2 ~-
(7

2 -
1)(T

The same equation can be deduced from expression (n). The points of

intersection & and T define those values of 7 for which the magnitude of

the expression (n) does not depend on damping, i.e., are independent of p.

The expression (n) has the form

/V + Q

so that it will be independent of \r only if we have M/P = N/Q] this brings
us again to eq. (</). This equation can be put into the form

_
52)

or

4 2
1 + 52 + /35

2 262
A , N

74 272 -------------h- = 0. (r)
2 + /3 ^2 + /3

W
From this equation two roots yi

2 and 72
2 can be found which deter-

mine the abscissas of the points 8 and T. The corresponding values of

the amplitudes of the forced vibration are obtained by substituting y\
2 and

72
2 in eq. (n) or in eq. (o). Using the latter as a simpler one, we obtain

for the ordinates of points S and T the expressions f

and
7i

2 - 1 + 071
2

72 -

respectively. The magnitudes of these ordinates depend on the quantities
and 6 defining the weight and the spring of the absorber. By a proper

choice of these characteristics we can improve the efficiency of the absorber.

Since all such curves as are shown in Fig. 141 must pass through the points

* For the point of intersection 8 both sides of this equation are negative and for the

point T-positive as can be seen from the roots of equations (k) and (p).

t It is assumed that 7i2 is the smaller root of eq. (r) and the minus sign must be taken

before the square root from (o) to get a positive value for the amplitude.
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S and T, the maximum ordinates of these curves giving the maximum
amplitudes of the forced vibration will depend on the ordinates of points

S and T, and it is reasonable to expect that the most favorable condition

will be obtained by making the ordinates of S and T equal.
* This requires

that:

Tl
2 - 1 + 071

2 72
2 - 1 +

or

Remembering that yi
2 and y<2

2 are the two roots of the quadratic equa-
tion (r) and that for such an equation the sum of the two roots is equal to

the coefficient of the middle term with a negative sign, we obtain:

=
2 + /3

from which

. - ^- (8D

This simple formula gives the proper way of
"
tuning

" the absorber. If

the weight W% of the absorber is chosen, the value of is known and we

determine, from eq. (81), the proper value of
<5, which defines the frequency

and the spring constant of the absorber.

To determine the amplitude of forced vibrations corresponding to points
S and T we substitute in (s) the value of one of the roots of eq. (r). For
a properly tuned absorber, eq. (81) holds, and this later equation becomes

from which

Then, from (s)
\f\

|
n

(82)
P

* This question is discussed with much detail in the above-mentioned paper by
Hahnkamm, loc. cit- , p. 245,



SYSTEMS HAVING SEVERAL DEGREES OF FREEDOM 249

So far the quantity p. defining the amount of damping in the absorber
did not enter into our discussion since the position of the points S and T
is independent of /*. But the maximum ordinates of the resonance curves

passing through the points S and T depend, as we see from Fig. 141, on
the magnitude of /i. We shall get the most favorable condition by selecting

JJL
in such a way as to make the resonance curves have a horizontal tangent

at S or at T. Two curves of this kind, one having a maximum at S and

the other having a maximum at T are shown in Fig. 144. They are cal-

culated for the case when /3
= W>2/Wi = ^4- It is seen that the maximum

ordinates of these curves differ only very little from the ordinate of the

points N and T so that we can state that eq. (82) gives the amplitude of the

forced vibration of Wi with a fair accuracy
*
provided /z is chosen in the

way explained above. It remains now to show how the damping must be

selected to make the resonance curves a maximum at S or at T. We
begin with expression (n) by putting it into the form

+ N
'M / *tt r> > , n >

"n~ + y

* From calculations by Hahnkamm, see "Schiffbautechnische Gesellschaft, Ver-

Bammlung," Nov. 1935, Berlin, it follows that the error increases with the increase in the

weight of the absorber, i.e., with the increase of (3. For (3
= 0.06 the error is 0.1 of one

per cent, for /3
= 0.7 the error is about 1 per cent.
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where M, N, P and Q are functions of y, 6 and /3. Solving for /*
2 we obtain

"2 =
P(x7/x J^JV (I>)
* \**1/ >^&t) "*

As soon as the weight T^2 of the absorber has been chosen, ft will be known
and we obtain d from eq. (81), 7i

2
, 72

2
corresponding to the points S and

T, from eq. (u), and Xi/X* from eq. (82). If all these quantities are sub-

stituted into (v) we obtain an indeterminate expression 0/0 for ju
2

,
since

the position of the points S and T are independent of /i. Let us take now
a point very close to S on the resonance curve. If we have a maximum
at S the value of Xi/X8< will not be changed by a slight shifting of the point,

ft and 5 will also remain the same as before, and only instead of 7i
2 we

04O

031

0.2*

0.16

0.08

must take a slightly different quantity. With this change we shall find

that the expression (v) has a definite value which is the required value of

/z
2 making the tangent to the resonance curve horizontal at S. In the

same manner we can get ju
2 which makes the tangent horizontal at T.

The successive steps in designing an absorber will therefore be as fol-

lows: For a given weight of the machine T^i and its natural frequency of

vibration p we choose a certain absorber weight W2. The spring constant

for the absorber is now found by the use of eq. (81) ;
then the value of the

damping follows from eq. (v). Finally the amplitude of the forced vibra-

tion is given by eq. (82). To simplify these calculations the curves in

Fig. 145 can be used. As abscissas the ratios Wi/W2 =
I/ft are taken.

The ordinates of the curve 1 give the ratios \\/\8t defining the amplitudes
of vibration of the weight W\. The curve 2 gives the amount of damping
which must be used.
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It remains now to design the spring of the absorber. The spring con-

stant is determined from eq. (81). The maximum stress in the spring due
to vibration may be found if we know the maximum relative displacement
\ = (x2 i)max- An exact calculation of this quantity requires a com-

plicated investigation of the motion of T^2. A satisfactory approximation
can be obtained by assuming that the vibration of the system is 90 degrees
behind the pulsating load P cos ut acting on the weight W\. In such a
case the work done per cycle is (see p. 45)

The dissipation of energy per cycle due to damping forces proportional to

the relative velocity is (see p. 45)

TracoX2 .

Equating the energy dissipated to the work produced per cycle we
obtain

7rP\i = TracoX2

from which

or, by introducing our previous notations

M = ag/2Wap, P/kj. = X. ( ,
W

we obtain

f\\* X, 1

u~J
= r^~- (83)\A8 (/ A8 f ^MTP

Since /i and /5 are usually small quantities the relative displacements X, as
obtained from this equation, will be several times larger than the displace-
ment Xi of the weight W\. The values of the ratio X/ X* are shown in

Fig. 145 by the curve 3. Large displacements produce large stresses in

the absorber spring and since these stresses are changing sign during vibra-

tion, the question of sufficient safety against future failure is of a great

practical importance. The theory of the vibration absorber which has
been discussed can be applied also in the case of torsional vibrations. The
principal field of application of absorbers is in internal-combustion engines.
The application of an absorber with Couloumb friction in the case of

torsional vibrations is discussed in Art. 46.
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The same principle governs also the Schlingertarik proposed by H.
Frahm in 1911* for stabilizing ships. It consists of two tanks partially
filled with water, connected by two pipes (Fig. 146). The upper pipe
contains an air throttle. The ship rolling in the water corresponds to the

main system in Fig. 140, the impulses of the waves take the place of the

disturbing force, and the water surging between the two tanks is the vibra-

tion absorber. The damping in the system is regulated by means of the

air throttle. The arrangement has proved to be successful on large pas-

senger steamers, f Another type of vibration absorber has been used by
H. Frahm for eliminating vibra-

tions in the hull of a ship. A
vibratory system analogous to

that of a pallograph (see Fig. 51)
was attached at the stern of the

ship and violent vibrations of the

mass of this vibrator produced by
vibration of the hull were damped

out by a special hydraulic damping arrangement. It was possible in this

manner to reduce to a very great extent the vibrations in the hull of the

ship produced by unbalanced parts of the engine.

* H. Frahm, "Neuartige Schlingertanks zur Abdampfung von Schiffsrollbeweg-

ungen," Jb. d. Schiffbautechn. Ges., Vol. 12, 1911, p. 283.

t The theory of this absorber has been discussed by M. Schuler, Proc. 2nd Interna-

tional Congress for Applied Mechanics, p. 219, 1926, Zurich and "Werft, Reederei,

Hafen," v. 9, 1928. See also E. Hahnkamm, "
Werft, Reederei, Hafen," v. 13, 1932; and

Ingenieur-Archiv, v. 3, p. 251, 1932; O. Foppl, Ingenieur-Archiv, v. 5, p. 35, 1934, and

Mitteilungen des Wohler-Instituts, Heft 25, 1935; N. Minorsky, Journal of the Ameri-
can Society of Naval Engineers, v. 47, p. 87, 1935.

FIG. 146.



CHAPTER V

TORSIONAL AND LATERAL VIBRATION OF SHAFTS

42. Free Torsional Vibrations of Shafts. In the previous discussion of

torsional vibrations (see Art. 2) a simple problem of a shaft with two

rotating masses at the ends was considered. In the following the general
case of vibration of a shaft with several rotating masses will be discussed,

Fig. 147. Many problems on torsional vibrations in electric machinery,
Diesel engines and propeller shafts can be reduced to such a system.*

Let /i, /2, /s, be moments of inertia of the rotating masses about
the axis of the shaft, <pi, ^2, <P3, angles of rotation of these masses

during vibration, and k\ 9 k%, 3,

spring constants of the shaft for the

length db, 6c, and cd, respectively. Then

ki(<?i (2), &2(<P2 ^3)*
* represent

torsional moments for the above lengths.
If we proceed as in Art. 2 and observe

that on the first disc a torque fci(<pi

(pz) acts during vibration, while on the second disc the torque is k\(<p\

92) &2(<p2
~~ ^s) and so on

>
tne differential equations of motion for con-

secutive discs become

Fia. 147.

w) =
=
=

-l <f>n)
= 0. (a)

* The bibliography of this subject can be found in the very complete investigation
of torsional vibration in the Diesel engine made by F. M. Lewis; see Trans. Soc. of

Naval Architects and Marine Engineers, Vol. 33, 1925, p. 109, New York. A number of

practical examples are calculated in the books: W. K. Wilson, "Practical Solution of

Torsional Vibration Problems," New York, 1935. W. A. Tuplin, "Torsional Vibration,"
New York, 1934.

253
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Adding these equations together we get

n<f>n
=

0, (tt

which means that the moment of momentum of the system about the

axis of the shaft remains constant during the free vibration. In the fol-

lowing this moiftent of momentum will be taken equal to zero. In this

manner any rotation of the shaft as a rigid body will be excluded and only

vibratory motion due to twist of the shaft will be considered. To find the

frequencies of the natural vibrations of this system we proceed as before

and take the solutions of equations (a) in the form

<?1
= Xi COS pt, <P2

= X2 COS ptj

Substituting in equations (a) we obtain

= Xa cos

- X2)
=

- X2)
-

A;2 (X2
- X3)

=

fcn_l(X n -l ~ Xw)
= 0. (c)

Eliminating Xi, X2 ,
from

these equations, we obtain an equation
of the nth degree in p

2 called the fre-

quency equation. The n roots of this

equation give us the n frequencies cor-

VM4

^mjj]j| j
x3 responding to the n principal modes of

vibration of the system.
The System of Three Discs. Let

us apply the above given general dis-

cussion to the problem of three discs,

Fig. 148. The system of equations (c)

in this case becomes:

-
fci(Xi

- X2)
=

+ fci(Xi
- X2)

-
/b2 (X2

- X3)
=

/3X3p
2 + fc2 (X2

-
Xs) = 0.

From the. first and the third of these equations we find that :

FIG. 148.

X3 =-
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Substituting these expressions into equation

(/iXi + 72X2 + /3X3)p
2 =

0,

which is obtained by adding together equations (d), we find

=0.

This is a cubic equation in p2 of which one of the roots is p2 = 0. This

root corresponds to the possibility of having the shaft rotate as a rigid

body without any torsion (see Art. 35). The two other roots can be readily
found from the quadratic equation

=0. (84)

Let pi
2 and p>2

2 be these two roots. Substituting pi
2 instead of p2 in equa-

tions (e) we find that:

\i ki \3 k<2

X2 hpi2
ki

'

\2 /spi
2 fe

If pi
2

is the smaller root we shall find that one of these two ratios is posi-

tive while the other is negative; this means that during vibrations two

adjacent discs will rotate in one direction while the third disc rotates in an

opposite direction giving the mode of vibration shown in Fig. I486.*

For the larger root p2
2 both ratios become negative and the mode of vibra-

tion, corresponding to the higher frequency is shown in Fig. 148c. During
this vibration the middle disc rotates in the direction opposite to the rota-

tion of the two other discs.

The Case of Many Discs. In the case of four discs we shall have four

equations in the system (c), and proceeding as in the previous case we get

a frequency equation of fourth degree in p2
. One of the roots is again

zero so that for calculating the remaining three roots we obtain a cubic

equation. To simplify the writing of this equation, let us introduce the

notations

fci fci 2 ^2 fc* fo

7-
=

l,
=

CX2,
=

3, 7-
=

4, y =
6, 7-

= 6
/I 12 /2^ /3 h ^4

Then the frequency equation is

2 + ai3 + 0203 ~ a2a3 ~

= 0. (85)

* It is assumed that Is/k* > I\/ki.
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In solving this equation one of the approximate methods for calcu-

lating the roots of algebraic equations of higher degree must be used.*

When the number of discs is larger than four the derivation of the

frequency equation and its solution become too complicated and the calcu-

lation of frequencies is usually made by one of the approximate methods.

Geared Systems. Sometimes we have to deal with geared systems as

shown in Fig. 149a, instead of with a single shaft. The general equations

k'

I,

fr

FIG. 149tt. FIG. 1496.

of vibration of such systems can be readily derived. Considering the

system in Fig. 149a, let

lit ^3 be moments of inertia of rotating masses.

V?i, <p3 are the corresponding angles of rotation.

^2', iz" are moments of inertia of gears.

n is gear ratio.

^2, n<p2 are angles of rotation of gears.

kit &2 are spring constants of shafts.

Then the kinetic energy of the system will be

79
, _ _ji_1 ~ ~

12

The potential energy of the system is

V =

Letting

(a)

(K)

* Such methods are discussed in v. Sanden's book, "Practical Analysis."
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The equations (/) and (g) become

v =

These expressions have the same form as the expressions for T and V
which can be written for a single shaft. It can be concluded from this

that the differential equations of vibration of the geared system shown in

Fig. 149 will be the same as those of a single shaft with discs provided the

notations shown in eqs. (h) are used. This conclusion can be expanded
also to the case of a geared system with more than two shafts.*

Another arrangement of a geared system is shown in Fig. 1496, in

which /o, /i, /2, are the moments of inertia of the rotating masses;

fci, A?2, torsional rigidities of the shafts. Let, n be gear ratio, ^>o, <f>i,

<P2,
- - angles of rotation of discs /o, /i, /2 If /o is very large

in comparison with the other moments of inertia we can take <po
=

0, then

the kinetic and the potential energy of the system will be

+ W +W + W),
2 + k'2(<p2

-
<pi)

2

=
0,

=
0,

<>)
=

0,
=

0,

and Lagrange's differential equations of motion become

from which the frequency equation .can be obtained in the same manner
as before and the frequencies will then be represented by the roots of

this equation.

PROBLEMS

Determine the natural frequencies of a steel shaft with three discs, Fig. 148, if the

weights of the discs are 3000 11)., 2000 Ib. and 1000 lb., the diameters of the discs are 40

in., the distances between the discs are l\ h = 30 in., the diameter of the shaft is 5 in.

and the modulus of elasticity in shear is G = 11.5-106 lb. per sq. in. Determine the

ratios between the angular deflections Xi : \2, X2 : Xa for the two principal modes of

vibration.

* Such systems are considered in the paper by T. H. Smith, "Nodal Arrangements
of Geared Drives," Engineering, 1922, pp. 438 and 467.
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Solution. Making our calculations in inches and in pounds, we find that:

11
= 1553, 7 2 = 1035, 78 = 517.7, fci = kz = 23.5 -108

.

Eq. (84) becomes

p4 - 106000 p2 + 2060. 10 = 0,

from which

Pi
2 = 25600, p 2

2 = 80400.

The corresponding frequencies are:

PI PI
/i = - =v 25.5 per sec. /a = = 45.2 per sec.

2w 2ir

The ratios of amplitudes for the fundamental mode of vibration are:

X!/X, = _ 1.44, X3/X2 = 2.29.

For the higher mode of vibration

Xi/X2 = -0.232, X3/X2
= - 1.30.

43. Approximate Methods of Calculating Frequencies of Natural

Vibrations. In practical applications it is usually the lowest frequency or

the two lowest frequencies of vibration of a shaft with several discs that

are important and in many cases these can be approximately calculated by
using the results obtained in the case of two and three discs. Take
as a first example a shaft with four discs of which the moments of

inertia are /i = 302 Ib. in. sec.2
,
72 = 87,500 Ib. in. sec.2

, h = 1200

Ib. in. sec.2
, /4 = 0.373 Ib. in. sec. 2

. The spring constants of the three

portions of the shaft are k\ = 316 -106 Ib. in. per radian, 2 = 114.5-106

Ib. in. per radian, k% = 1.09 -106 Ib. in. per radian. Since I\ and /4 are

very small we can neglect them entirely in calculating the lowest fre-

quency and consider only the two discs 12 and 13. Applying equation

(17) for this system, we obtain

1 /(

^r \̂
_
49-6 P61

" sec-

In dealing with the vibration of the disc /i we can consider the disc 12 as

being infinitely large and assume that it does not vibrate, then the fre-

quency of the disc /i, from eq. (14), is

163 per sec.
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Noting again that the disc /4 is very small in comparison with Is and

neglecting the motion of the latter disc we find

\T* 14
272 Per sec-

A more elaborate calculation for this case by using the cubic equation (84)

gives /i = 49.5, /2 = 163, /s = 272, so that for the given proportions of the

discs it is not necessary to go into a refined calculation.

As a second example let us consider the system shown in Fig. 150,
where the moments of inertia of the generator, flywheel, of six cylinders
and two air purnps, and also the distances between these masses are given.*

3000

2200

FIG. 150.

The shaft is replaced by an equivalent shaft of uniform section (see p. 271)
with a torsional rigidity C = 10H)

kg. X cm.2 Due to the fact that the

masses of the generator and of the flywheel are much larger than the remain-

ing masses a good approximation for the frequency of the lowest type of

vibration can be obtained by replacing all the small masses by one mass

having a moment of inertia, /a = 93 X 6 + 7 + 6.5 572 and located

at the distance 57.5 + 2.5 X 48.5 179 centimeters from the flywheel.

Reducing in this manner the given system to three masses only the fre-

quencies can be easily calculated from eq. (84) and we obtain pi
2 = 49,000

and p2
2 = 123,000. The exact solution for the same problem gives pi

2 =

* This example is discussed in the book by Holzer mentioned below (see p. 263).

Kilogram and centimeter are taken as units.
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49,840 and p2
2 = 141,000. It is seen that a good approximation is obtained

for the fundamental type of vibration. In order to get a still better

approximation Rayleigh's method can be used (see Art. 16).

Rayleigh's Method. Let a and b denote the distances of the flywheel from the ends
of the shaft and assume that the shapes of the two principal modes of vibrations are

such as shown in Fig. 150 (6) and (c) and that the part 6 of the deflection curve can
be replaced by a parabola so that the angle of twist <? for any section distant x from the

flywheel is given by the equation

,
(vio v>2)(26 x)x

v =
v>2 H (a)

It is easy to see that for x = and x = 6 the angle <p in the above equation assumes
the values <f>% and <f> i0 respectively. By eq. (a) and the first of eqs. (c) Art. 42 we have:

<f>2

The angles of rotation of all other, masses can be represented as functions of <f>i and v'lo

and these latter two angles can be considered as the generalized coordinates of the

given system.
Then the potential energy of the system is

(yi - 2)'C
,

1 /-VM 2
. C

V =
2a

+
2
CJo(TX)

dX=
2

in which

V , and C is torsional rigidity of the shaft. (d)

The kinetic energy of the system will be

T - V^ *-~-
2 2

'

or by using the eqs. (a) and (6) and letting Xk = the distance from the flywheel to any

rotating mass k and ak =

T = 7 * 2

Substituting (e) and (c) in Lagrange's equations (73) and putting, as before,

<f>i
= Xj cos (pt -f- /3); <f>\o Xio cos (pt -f- /3),
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the following two equations will be obtained:

7d - 7) ^4f 4a
1 T

-
5 7 (1

-LOO
u S

By equating the determinant of these equations to zero the frequency equation will

be obtained, the two roots of which will give us the frequencies of the two modes of

vibration shown in Fig. 150. All necessary calculations are given in the table on p. 262.

Then from the frequency equation the smaller root will be

7 = 1.563,

and from (d) we obtain

p2 = 50000.

The error of this approximate solution as compared with the exact solution given above
is only K%-

The second root of the frequency equation gives the frequency of the second mode
of vibration with an accuracy of 4.5%. It should be noted that in using this approxi-
mate method the effect of the mass of the shaft on the frequency of the system can

easily be calculated.*

As soon as we have an approximate value of a frequency, we can improve
the accuracy of the solution by the method of successive approximations.
For this purpose the equations (c) (p. 254), must be written in the form:

X3 = X2 - (/lXl + J2X2), (0
K2

X4 = X3 - f
:
(/iXi + 72X2 + /sXs), (h)

Making now a rough estimate of the value p
2 and taking an arbitrary

value for Xi, the angular deflection of the first disc, the corresponding
value of X2 will be found from eq. (/). Then, from eq. (g) Xs will be

* See writer's paper in the Bulletin of the Polytechnical Institute in S. Petersburg

(1905).
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found; \4 from eq. (h) and so on. If the magnitude of p2 had been
chosen correctly, the equation

/iXlp
2 + 72X2P

2 + /nXn??
2 =

0,

representing the sum of the eqs. (c) (p. 254), would be satisfied. Other-
wise the angles \2, Xs, would have to be calculated again with a new
estimate for p-.* It is convenient to put the results of these calculations

in tabular form. As an example, the calculations for a Diesel installation,
shown in Fig. 151, are given in the tables on p. 264. f

FIG. 151.

Column 1 of the tables gives the moments of inertia of the masses, inch,

pound and second being taken as units. Column 3 begins with an arbi-

trary value of the angle of rotation of the first mass. This angle is taken

equal to 1. Column 4 gives the moments of the inertia forces of the

consecutive masses and column 5 the total torque of the inertia forces of

all masses to the left of the cross section considered. Dividing the torque

by the spring constants given in column 6, we obtain the angles of twist

for consecutive portions of the shaft. These are given in column 7. The
last number in column 5 represents the sum of the moments of the inertia

forces of all the masses. This sum must be equal to zero in the case of

free vibration. By taking p = 96.2 in the first table, the last value in

column 5 becomes positive. For p = 96.8, taken in the second table,

the corresponding value is negative. This shows that the exact value of

* Several examples of this calculation may he found in the book by H. Holzer,

"Die Berechnung der Drehsehwingungen," 1921, Berlin, J. Springer. See also F. M.,

Lewis, loc. cit., and Max Tolle, "Regelung der Kraftmaschinen," 3d Ed., 1921.

| These calculations were taken from the paper of F. M. Lewis, mentioned above.
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Table for p = 96,S; p2 = 9250

Table for p = 96,8; p- = 9380

p lies between the above two values and the correct values in columns 3

and 5 will be obtained by interpolation. By using the values in column 3,

the elastic curve representingthe mode of vibration can be constructed as

shown in Fig. 151. Column 5 gives the corresponding torque for each

portion of the shaft when the amplitude of the first mass is 1 radian.

If this amplitude has any other value Xi, the amplitudes and the torque
of the other masses may be obtained by multiplying the values in columns
3 and 5 by Xi.
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44. Forced Torsional Vibration of a Shaft with Several Discs. If a

torque M t sin ut is applied to one of the discs forced vibrations of the

period r =
2?r/co will be produced; moreover the vibration of each disc

will be of the form X sin w. The procedure of calculating the amplitudes
of forced vibration will now be illustrated by an example.

Let us take a shaft (Fig. 152) with four discs of which the moments of

inertia are I\ = 777, /2 = 518, 7s = h = 130, and the spring constants

are k\ = 24.6 -106
, &2 = 3 = 36.8-10, inches, pounds and seconds being

(*)

FIG. 152.

taken as units. Assume that a pulsating torque Mt sin ut is acting on the

first disc and that it is required to find the amplitudes of the forced vibra-

tion of all the discs for the given frequency co = V 31,150. The equations
of motion in this case are

II<PI 4~ ki(<pi <p<2)
== Mt sin cot

-
^3) =

-
<*4)

=
(a)

= 0.

Substituting in these equations

<pi
= \i sin co

we obtain

\2 sn

74X4co2

*i(Xi
- X2) =- Mt

fci(Xi
- X2)

-
fc2 (X2

- X3) =
A;2 (X2

-
Xs)

-
fc3 (X3

- X4) =
fc3 (X3

- X4) = 0. <W
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By adding these equations we find that

or(7iXi + 7^X2 + 73X3 + 74X4) = Mf. (c)

If Xi is the amplitude of the first disc the amplitude of the second disc is

found from the first of equations (6).

JiXi , Af,= Xl -
CO (d)

Substituting this expression into the second of equations (6) we find Xa and
from the third of equations (6) we find X4. Thus all the amplitudes will

be expressed by XL Substituting them in equation (c), we obtain a

linear equation in XL
It is advantageous to make all the calculations in tabular form as shown

in the table below :

We begin with the first row of the table. By using the given numerical

values of 7i, o>
2 and fci we calculate /iw2 and /ico

2
/fci. Starting with the

second row we calculate X2 by using eq. (d) and the figures from the first

row. In this way the expression in the second column and the second row
is obtained. Multiplying it with o>

2
/2 the expression in the third column

and the second row is obtained. Adding it to the expression in the fourth

column of the first row and dividing afterwards by 2 the last two terms
of the second row are obtained. Having these quantities, we start with the

third row by using the second of equations (6) for calculating Xa and then
continue our calculations as before. Finally we obtain the expression in

the fourth row and the fourth column which represents the left side of

equation (c). Substituting this expression into equation (c), we find the

equation for calculating Xi

16.9-10% - 1.077Mt
=- Mt.
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This gives

=
1

""

16.9-10

If this value of Xi be substituted into the expressions of the second column,
the amplitudes of the forced vibration of all the discs may be calculated.

Having these amplitudes we may calculate the angles of twist of the shaft

between the consecutive discs since they are equal to \i \2, X2 Xs

and \3 X4. With these values of the angles of twist and with the known
dimensions of the shaft the shearing stresses produced by the forced vibra-

tion may be found by applying the known formula of strength of material.

Effect of Damping on Torsional Vibrations at Resonance. If the period
of the external harmonic torque coincides with the period of one of the

natural modes of vibration of the system, a condition of resonance takes

place. This mode of vibration becomes very pronounced and the damping
forces must be taken into consideration in order to obtain the actual value

of the amplitude of vibration.* Assuming that the damping force is pro-

portional to the velocity and neglecting the effect of this force on the mode

of vibration, i.e., assuming that the ratios between the amplitudes of the

steady forced vibration of the rotating masses are the same as for the cor-

responding type of free vibration, the approximate values of the amplitudes
of forced vibration may be calculated as follows: Let <p m = X m sin pt be

the angle of rotation of the mth
disc during vibration on which damping

is acting. Then the resisting moment of the damping forces will be

d<?m .

c -- - = cX mp cos pt,
at

where c is a constant depending upon the damping condition. The phase
difference between the torque which produces the forced vibration and the

displacement must be 90 degrees for resonance. Hence we take this mo-
ment in the form Mt cos pt. Assuming </?

= Xn sin pt for the angle of

rotation of the n
th mass on which the torque is acting, the amplitude of the

forced vibration will be found from the condition that in the steady state

of forced vibration the work done by the harmonic torque during one

* The approximate method of calculating forced vibration with damping has been

developed by H. Wydler in the book: "
Drehschwingungen in Kolbenmaschinenanlagen."

Berlin, 1922. See also F. M. Lewis, loc. cit., p. 253; John F. Fox, Some Experiences
with Torsional Vibration Problems in Diesel Engine Installations, Journal Amer. Soc.

of Naval Engineers 1926, and G. G. Eichelbcrg, "Torsionsschwingungauschlag,"
Stodola Festschrift, Zurich, 1929, p. 122.
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oscillation must be equal to the energy absorbed at the damping point.

In this manner we obtain

2* 2r

/P
d<f>m d<pm f

'

,*,.
C ~~^T ~^7 * = / Mt cos pt~dt,

at at J$ at

or substituting

<Pm = Xm Sin pt] <p n
= Xn SU1 pt,

we obtain

M Xn
Xm =

, (e)
cp X m

and the amplitude of vibration for the first mass will be

Knowing the damping constant c and taking the ratios Xn/Xm and Xi/X m
from the normal elastic curve (see Fig. 151) the amplitudes of forced vibra-

tion may be calculated for the case of a simple harmonic torque with damp-
ing applied at a certain section of the shaft.

Consider again the example of the four discs shown in Fig. 152. By
using the method of successive approximation we shall find with sufficient

accuracy that the circular frequency of the lowest mode of vibration is

approximately p = 235 radians per second, and that the ratios of the

amplitudes for this mode of vibration are X2/Xi = 0.752, Xs/Xi = 1.33,

X4/Xi = 1.66. The corresponding normal elastic curve is shown in

Fig. 1526. Assume now that the periodic torque M cos pt is applied at

the first disc and that the damping is applied at the fourth disc.* Then
from equation (/)

x = ^

Cp X4 X4

Substituting the value from the normal elastic curve for the ratio

Xi/X4 we find

Xi-0.38
'

cp

From this equation the amplitude Xi can be calculated for any given torque
Mt and any given value of damping factor c.

* The same reasoning holds if damping is applied to any other disc.
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If several simple harmonic torques are acting on the shaft, the resul-

tant amplitude Xi, of the first mass, may be obtained from the equation (/)

above by the principle of superposition. It will be equal to

where the summation sign indicates the vector sum, each torque being
taken with the corresponding phase.

In actual cases the external torque is usually of a more complicated
nature. In the case of a Diesel engine, for instance, the turning effort

produced by a single cylinder depends on the position of the crank, on the

gas pressure and on inertia forces. The turning effort curve of each cylinder

may be constructed from the corresponding gas pressure diagram, taking
into account the inertia forces of the reciprocating masses. In analyzing
forced vibrations this curve must be represented by a trigonometrical
series *

f(<p)
= OQ + fli cos <p + 02 cos 2<p +

+ 61 sin <p + 62 sin 2<p + , (d)

in which <p
= 2?r represents the period of the curve. This period is equal

to one revolution of the crankshaft in a two-cycle engine and to two revo-

lutions in a four-cycle engine. The condition of resonance occurs and a

critical speed will be obtained each time when the frequency of one of the

terms of the series (d) coincides with the frequency of one of the natural

modes of vibration of the shaft. For a single cylinder in a two-cycle engine
there will be obtained in this manner critical speeds of the order 1, 2, 3, . . .,

where the index indicates the number of vibration cycles per revolution of

the crankshaft. In the case of a four-cycle engine, we may have critical

speeds of the order J^, 1, 1J^, . . .; i.e., of every integral order and half

order. There will be a succession of such critical speeds for each mode
of natural vibration. The amplitude of a forced vibration of a given type

produced by a single cylinder may be calculated as has been explained
before. In order to obtain the summarized effect of all cylinders, it will be

necessary to use the principle of superposition, taking the turning effort of

each cylinder at the corresponding phase. In particular cases, when the

number of vibrations per revolution is equal to, or a multiple of the number
of firing impulses (a major critical speed) the phase difference is zero and

*
Examples of such an analysis may be found in the papers by H. Wydler, loc. cit.,

p. 152, and F. M. Lewis, loc. cit., p. 253.



270 VIBRATION PROBLEMS IN ENGINEERING

the vibrations produced by the separate cylinders will be simply added

together. Several examples of the calculation of amplitudes of forced

vibration are to be found in the papers by H. Wydler and F. M. Lewis

mentioned above. They contain also data on the amount of damping in

such parts as the marine propeller, the generator, and the cylinders as well

as data on the losses due to internal friction. * The application in particular

cases of the described approximate method gives satisfactory accuracy in

qomputing the amplitude of forced vibration and the corresponding maxi-

mum stress.

45. Torsional Vibration of Diesel Engine Crankshafts. We have been

dealing so far with a uniform shaft having rigid discs mounted on it.

There are, however, cases in which the problem of torsional vibration is

more complicated. An example of such a problem we have in the torsional

vibrations of Diesel-Engine crankshafts. Instead of a cylindrical shaft

we have here a crankshaft of a complicated form and instead of rotating
circular dies we have rotating cranks connected to reciprocating masses of

the engine. If the crankshaft be replaced by an equivalent cylindrical shaft

the torsional rigidity of one crank (Fig. 153) must be considered first. This

rigidity depends on the conditions of constraint at the bearings. Assuming
that the clearances in the bearings are such that free displacements of the

cross sections m-n and m-n during twist are possible, the angle of twist

produced by a torque Mt can be easily obtained. This angle consists of

three parts: (a) twist of the journals, (6) twist of the crankpin and (c)

bending of the web.

*
Bibliography on this subject and some new data on internal friction may be

found in the book by E. Lehr, "Die Abkurzungsverfahren zur Ermittelung der Schwing-
ungsfestigkeit," Stuttgart, dissertation, 1925. See also E. Jaquet, "Stodola's Fest-

schrift/' p. 308; S. F. Dorey, Proc. I. Mech. E. v. 123, p. 479, 1932; O. Foppl, The Iron
and Steel Institute, October, 1936.
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Let Ci = --- be the torsional rigidity of the journal,
32

2 = ----- be the torsional rigidity of the crankpin,

B = E be the flexural rigidity of the web.
\2t

In order to take into account local deformations of the web in the

regions shaded in the figure, due to twist, the lengths of the journal and
of the pin are taken equal to 2&i = 26 + .9/1 and a\ a -\- .9A, respec-

tively.* The angle of twist 6 of the crank produced by a torque M will

then be

2biMt aiMt 2rMt

In calculating the torsional vibrations of a crankshaft every crank must be

replaced by an equivalent shaft of uniform cross section of a torsional

rigidity C. The length of the equivalent shaft will be found from

in which 6 is the angle of twist calculated above.

Then the length of equivalent shaft will be,

Another extreme case will be obtained on the assumption that the con-

straint at the bearings is complete, corresponding to no clearances. In

this case the length I of the equivalent shaft will be found from the equation,!

* Such an assumption is in good agreement with experiments made; see a paper
by Dr. Seelmann, V.D.I. Vol. 69 (1925), p. 601, and F. Sass, Maschinenbau, Vol. 4,

1925, p. 1223. See also F. M. Lewis, loc. cit., p. 253.

t A detailed consideration of the twist of a crankshaft is given by the writer in

Trans. Am. Soc. Mech. Eng., Vol. 44 (1922), p. 653. See also "Applied Elasticity,"

p. 188. Further discussion of this subject and also the bibliography can be found in the

paper by R. Grammel, Ingenieur-Archiv, v. 4, p. 287, 1933, and in the doctor thesis

by A. Kimmel, Stuttgart, 1935. There are also empirical formulae for the calculation of

the equivalent length. See the paper by B. C. Carter, Engineering, v. 126, p. 36, 1928,
and the paper by C. A. Norman and K. W. Stinson, S.A.E. journal, v. 23, p. 83, 1928.
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I =

in which

4C3 2C2

-
B\ 2k V

l l^fjL +

C3

(87)

(88)

is the torsional rigidity of the web as a bar of rectangular

ar r-

3.6(c
2 + h2

)

cross section with sides h and c,

_xJ_4Z?

is the flexural rigidity of the crankpin,
64

F, FI are the cross sectional areas of the pin and of the web, respectively.

By taking a\ = 26 1 and Ci = 2 the complete

,^__^ constraint as it is seen from eqs. (86) and (87)

| I reduces the equivalent length of shaft in the ratio

1 :
{
1 (r/2fc) }

. In actual conditions the length of

the equivalent shaft will have an intermediate value

between the two extreme cases considered above.

Another question to be decided in considering
torsional vibration of crankshafts is the calculation

of the inertia of the moving masses. Let us assume
that the mass m of the connecting rod is replaced in

the usual way * by two masses mi = (I/I
2
) at the

crankpin and wo = m (I/I
2
) at the cross head,

where / denotes the moment of inertia of the

,
_

x connecting rod about the center of cross head. All

I '

''^V?
j

other moving masses also can be replaced by masses
v / concentrated in the same two points so that finally
\x / only two masses M and M\ must be taken into
x ^ -"' consideration (Fig. 154). Let co be constant angular
FIG. 154. velocity, cot be the angle of the crank measured from

the dead position as shown in Fig. 154. Then the

velocity of the mass Mi is equal to o>r and the velocity of the mass M,
as shown in Art. 15 (see p. 78), is equal to

r2co
tor sin ut + sin 2to.

21

*
See, for instance, "Regelung der Kraftmaschinen," by Max Tolle, 3d Ed. (1921)

p. 116.

\
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The kinetic energy of the moving masses of one crank will be

T = HMico2r2 + Y2Mu2r2 ( sin ut + -- sin 2coH

The average value of T during one revolution is

By using this average value, the inertia of the moving parts connected with

one crank can be replaced by the inertia of an equivalent disc having a

moment of inertia

/ =

By replacing all cranks by equivalent lengths of shaft and all moving masses

by equivalent discs the problem on the vibration of crankshafts will be

reduced to that of the torsional vibration of a cylindrical shaft and the

critical speeds can be calculated as has been shown before.* It should be

noted that such a method of investigating the vibration must be considered

only as a rough approximation. The actual problem is much more compli-
cated and in the simplest case of only one crank with a flywheel it reduces

to a problem in torsional vibrations of a shaft with two discs, one of which
has a variable moment of inertia. More detailed investigations show f that

in such a system
" forced vibrations

" do not arise only from the pres-

sure of the expanding gases on the piston. They are also produced by the

incomplete balance of the reciprocating parts. Practically all the phe-
nomena associated with dangerous critical speeds would appear if the fuel

were cut off and the engine made to run without resistance at the requisite

speed.
The positions of the critical speeds in such systems are approximately

those found by the usual method, i.e., by replacing the moving masses by
equivalent discs. J

* Very often we obtain in this way a shaft with a comparatively large number of

equal and equally spaced discs that replace the masses corresponding to individual

cylinders, together with one or two larger discs replacing flywheels, generators, etc. For

calculating critical speeds of such systems there exist numerical tables which simplify
the work immensely. See R. Grammel, Ingenieur-Archiv, v. 2, p. 228, 1931 and v. 5,

p. 83, 1934.

f See paper by G. R. Goldsbrough,
" Torsional Vibration in Reciprocating Engine

Shafts/' Proc. of the Royal Society, Vol. 109 (1925), p. 99 and Vol. 113, 1927, p. 259.

J The bibliography on torsional vibration of discs of a variable moment of inertia

is given on p. 160.
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46. Damper with Solid Friction. In order to reduce the amplitudes of torsional

vibrations of crankshafts a damper with solid friction,* commonly known as the Lan-

chester damper, is very often used in gas and Diesel engines. The damper, Fig. 155,

consists of two flywheels a free to rotate on bushings 6, and driven by the crankshaft

through friction rings c. . The flywheels are pressed against these

rings by means of loading springs and adjustable nuts d. If, due
to resonance, large vibrations of the shaftend e and of the damper
hub occur, the inertia of the flywheel prevents it from following
the motion; the resultant relative motion between the hub and
the flywheel gives rise to rubbing on the friction surfaces and a

certain amount of energy will be dissipated.

It was shown in the discussion of Art. 44 (see p. 268) that the

amplitude of torsional vibration at resonance can be readily calcu-

FIG. 155. lated if the amount of energy dissipated in the damper per cycle
is known. To calculate this energy in the case of Lanchcster

damper, the motion of the damper flywheels must be considered. Under steady condi-

tions the flywheels are rotating with an average angular velocity equal to the average

angular velocity of the crankshaft. On this motion a motion relative to the oscillating

FIG. 156.

hub will be superimposed. It will be periodic motion and its frequency will be the

same as that of the oscillating shaft. The three possible types of the superimposed
motion are illustrated by the velocity diagrams in Fig. 156. The sinusoidal curves rep-

* The theory of this damper has been developed by J. P. Den Hartog and J. Ormon-
droyd, Trans. Amer. Soc. Mech. Engrs. v. 52, No. 22, p. 133, 1930.
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resent the angular velocity co& of the oscillating hub. During slipping, the flywheel is

acted upon by a constant friction torque Mf, therefore its angular velocity is a linear

function of time, which is represented in the diagrams by straight lines. If the flywheel
is slipping continuously we have the condition shown in Fig. 156a. The velocity co/* of

the flywheel is represented by the broken line which shows that the flywheel has a

periodically symmetrical motion. The velocity of this motion increases when the hub

velocity co^ is greater and decreases when the hub velocity is less than the flywheel

velocity co/. The slopes of the straight lines are equal to the angular accelerations of

the flywheel, i.e., equal to M//I where 7 is the total moment of inertia of the damper
flywheels. As the damper loading springs are tightened up, the friction torque increases

and the straight lines of the flywheel velocity diagram become steeper. Finally we
arrive at the limiting condition shown in Fig. 1566 when the straight line becomes

tangent to the sine curve. This represents the limit of the friction torque below which

slipping of the flywheel is continuous. If the friction is increased further, the flywheel

clings to the hub until the acceleration of the hub is large enough to overcome the

friction and we obtain the condition shown in Fig. 156c.

In our further discussion we assume that the damper flywheel is always sliding and we
use the diagram in Fig. 156a. Noting that the relative angular velocity of the flywheel
with respect to the hub is co/ co^, we see that the energy dissipated during an interval

of time dt will be M/(co^ <o/)(ft so that the energy dissipated per cycle may be obtained

by an integration:

i

-
<f)dt, (a)= f

*A)

where r 2ir/co is the period of the torsional vibration of the shaft. In Fig. 156a this

integral is represented to certain scale by the shaded area. In order to simplify the cal-

culation of this area we take the time as being zero at the instant the superimposed

velocity co/ of the flywheel is zero and about to become positive, and we denote by tQ

the time corresponding to the maximum of the superimposed velocity co& of the hub. In

this case the oscillatory motion of the hub is

X sin u(t Jo),

and by differentiation we obtain

cofc
= X co COS co( to). (b)

The velocity of the flywheel for the interval of time r/4 < t < r/4 will be

/
= MS/I. (c)

The time t Q may be found from the condition that when t = r/4 (see Fig. 156a)

(l)j
= uh> Then by using (b) and (c) we obtain

1 = Xco cos ( co/o )
= Xco sin <

2co

and

*
co/ and wh denote the velocities of the flywheel and of the hub superimposed on the

uniform average velocity of rotation of the crankshaft.
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In calculating the amount of energy dissipated per cycle we note that the two shaded

areas in Fig. 156a are equal. Hence

^r
/
JQ

E = M/(wh -
<*f)dt

= 2
Q

or, substituting from (6) and (c),

# = 2M/
~+/2r jj/Y]
/ Xo> cos w(* *o)

--~ dt.
J-*/*<* L l J

Performing the integration we obtain

E = 4A//X cos wto,

or by using (d) we find the final expression for the amount of energy dissipated per cycle:

By a change in the adjustable nuts d the friction torque M/ can be properly chosen.

If the force exerted by the loading springs is very small the friction force is also small and
its damping effect on the torsional vibrations of the crankshaft will be negligible. By
tightening up the nuts we can get another extreme case when the friction torque is so

large that the flywheel does not slide at all and no dissipation of energy takes place.

The most effective damping action is obtained when the friction torque has the magni-
tude at which expression (e) becomes a maximum. Taking the derivative of this expres-
sion with respect to M/ and equating it to zero we find the most favorable value for the

torque

A/2
Mf = -* A 2/. (/)

With this value substituted in (e) the energy dissipated per cycle becomes

Having this expression we may calculate the amplitude of the forced vibration at

resonance in the same manner as in the case of a viscous damping acting on one of the

vibrating discs (see p. 268). If a pulsating torque M cos a>(t to) is acting on a disc of

which the amplitude of torsional vibration is Xm, the work done by this torque per

cycle is (see p. 45) MXm7r. Equating this work to the energy dissipated (g) we find

The ratio Xn/X can be taken from the normal elastic curve of the vibrating shaft so

that if M and I are given the amplitude X can be calculated from equation (h). Usually

equation (h) may be applied for determining the necessary moment of inertia / of the

damper. In such a case the amplitude X should be taken of such a magnitude as to have
the maximum torsional stress in the shaft below the allowable stress for the material of

the shaft. Then the corresponding value of / may be calculated from equation (h).
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47. Lateral Vibrations of Shafts on Many Supports. General In
our previous discussion (Art. 17) the simplest case of a shaft on two sup-
ports was considered and it was then shown that the critical speed of rota-

tion of a shaft is that speed at which the number of revolutions per second
is equal to the frequency of its natural lateral vibrations. In practice,

however, cases of shafts on many supports are encountered and considera-
tion will now be given to the various methods which may be employed for

calculating the frequencies of the natural modes of lateral vibration of such
shafts. *

Analytical Method. This method can be applied without difficulty
in the case of a shaft of uniform cross section carrying several discs.

FIG. 157.

Let us consider first the simple example of a shaft on three supports
carrying two discs (Fig. 157) the weights of which are W\ and WV The
statical deflections of the shaft under these loads can be represented by
the equations,

81 = anWi + ai 2W<2 , (a)

62 = aziWi + a22W72, (6)

the constants an, ai2, #21 and a22 of which can be calculated in the following
manner. Remove the intermediate support C and consider the deflections

produced by load M72 alone (Fig. 1576); then the equation of the deflection

curve for the left part of the shaft will be

y
QlEI

* This subject is discussed in detail by A. Stodola, "Dampf- und Gasturbinen," 6th

Ed., Berlin, 1924.
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and the deflection at the point C becomes:

= TF2c2 _
yc

61EI
( r *

Now determine the reaction 7?2 in such a manner as to reduce this deflection

to zero (Fig. 157c). Applying eq. (c) for calculating the deflection under

7?2 and putting this deflection equal to yc) obtained above, we have,

from which
W2c2 (l

2 - h2 - c2
2
)R2 = _

In the same manner the reaction Ri produced by the load W\ can be

calculated and the complete reaction R = R\ + #2 at the middle support
will be obtained. Now, by using eq. (c) the deflection y\ produced by
the loads Wi , W% and the reaction R can be represented in the form (a) in

which

011 =

(d)

Interchanging Z2 and l\ and c2 and c\ in the above equations, the

constants a2 i and a22 of eq. (6) will be obtained and it will be seen that

012 == 021, i.e., that a load put at the location D produces at F the

same deflection as a load of the same magnitude at F produces at D.

Such a result should be expected on the basis of the reciprocal theorem.

Consider now the vibration of the loads W\ and TF2 about their position

of equilibrium, found above, and in the plane of the figure. Let y\ and

y2 now denote the variable displacements of W\ and W<2 from their positions
of equilibrium during vibration. Then, neglecting the mass of the shaft,

the kinetic energy of the system will be

Wi W<>
T =

2,
^ + ^ ("2)2' (e)

In calculating the increase in potential energy of the system due to

displacement from the position of equilibrium equations (a) and (6) for
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static deflections will be used. Letting, for simplicity, aii,= a, ai2 = 0,21

=
b, 0,22 = c,* we obtain from the above equations (a) and (6) the following

forces necessary to produce the deflections y\ and 7/2.

-r i = cyi
-

fo/2- "
i =-TT" ;

r2
-rr- ;

ac b2 ac b2

and

Substituting (e) and (/) in Lagrange's equations (73) we obtain the

following differential equations for the free lateral vibration of the shaft

Wl " c b
n

yi H--TT; y*
--

r> y* =
>

g ac b" ac b~

W2 . t b
.

a . . .---
2/2
--

-, 2/i +-^ 2/2
= 0. (gr)

g ac bz ac o~

Assuming that the shaft performs one of the natural modes of vibration

and substituting in eqs. (g):

7/1
= Xi cosp; 7/2

= X2 cos pt,

we obtain

^ ( c Wl A b
^ nXi I

-~ -- p- 1
--

rr, X2 = 0,
Vac 62 g / ac b2

b fa W^ \--
77, Xi + X2 (

---- ---- p
2

)
= 0. (A)

ac b2 Vac b2 g /

By putting the determinant of these equations equal to zero the fol-

lowing frequcncy equation will be obtained

c Wl AC a W* 2\ b* n m
V -~g

P') V^=T^
~ '

g
P
)
~

lac -W=
' (fc)

from which

c
,

a V 4(ac - 62)1 /o x

p =
2(^^)fe + ^ V^+-F-j --wFr^-r (89)

In this manner two positive roots for p2
, corresponding to the two principal

modes of vibration of the shaft are obtained. Substituting these two roots

* The constants a, b and c can be calculated for any particular case by using eqs. (d).
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in one of the eq. (h) two different values for the ratio Xi/\2 will be obtained.

For the larger value of p2 the ratio Xi/\2 becomes positive, i.e., both discs

during the vibration move simultaneously in the same direction and the

mode of vibration is as shown in Fig. 158a. If the smaller root of p'
2 be

substituted in eq. (h) the ratio Xi/\2 becomes negative and the correspond-

ing mode of vibration will be as shown in Fig. 1586. Take, for instance,

the particular case when (see Fig. 157) Wi
= W2', h = h = (Z/2) and

FIG. 158.

^ = 02 = (I/*). Substituting in eqs. (d) and using the conditions of

symmetry, we obtain:

23 P , r 9 Z
3

a = c = -
; and o =

48 X 256 El

Substituting in eq. (89), we have

P!
2 = 9

48X256 7

(a-V)W W(l/2Y
'

7W(l/2)3

These two frequencies can also be easily derived by substituting in

eq. 5 (see p. 3) the statical deflections

*'.<-
W(l/2)

3

and tit
o <c

= 7W(l/2)3

7Q8EI48EI

for the cases shown in Fig. 159.

Another method of solution of the problem on the lateral vibrations

of shafts consists in the application of D'Alembert's principle. In using
this principle the equations of vibration will be written in the same manner
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as the equations of statics. It is only necessary to add to the loads acting
on the shaft the inertia forces. Denoting as before, by y\ and t/2 the deflec-

tions of the shaft from the position of equilibrium under the loads W\
and W2, respectively, the inertia forces will be (W\/g)yi and (WVfiOife.
'These inertia forces must be in equilibrium with the elastic forces due to

the additional deflection and two equations equivalent to (a) and (6) can
be written down as follows.

Wi .. . W* ..= - a
9

, Wi .. W2 ..

2/2
= ~ o -

?/i
- c 2/2-

9 Q

Assuming, as before,

2/i
= Xi cos pt] 7/2

= ^2 cos pty

and substituting in eqs. (I) we obtain,

9

(0

Wi
9

On)

Putting the determinant of these two equations equal to zero, the fre-

quency equation (A-), which we had before, will be obtained.

Hf
Fia. 160.

The methods developed above for calculating the frequencies of the

lateral vibrations can be used also in cases where the number of discs or

the number of spans is greater than two. Take, for instance, the case

shown in Fig. 160. By using a method analogous to the one employed
in the previous example, the statical deflections of the shaft under the

discs can be represented in the following form :

63 =
+ CL22W2 + 023TF3,

+ 032^2 +
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in which an, 012, . - are constants depending on the distances between

the supports, the distances of the discs from the supports and on the

flexural rigidity of the shaft. From the reciprocal theorem it can be

concluded at once that ai2 =
021, ais = asi and am = 032. Applying

now D'Alembert's principle and denoting by yi, y2 and ys the displace-

ments of the discs during vibration from the position of equilibrium, the

following equations of vibration will be derived from the statical equa-
tions (n).

Wi .. W2 .. W3 ..

2/1
= an 2/1 ai2 2/2 ais 2/3,

9 9 9

Wi .. W2 .. Wz ..

i/2
= a2i i/i 022 2/2 #23 2/3,999

Wi .. W2 .. W3 ..

2/3
= #31 2/1 #32 2/2 33 2/3,999

from which the frequency equation, a cubic in p2
, can be gotten in the

usual manner. The three roots of this equation will give the frequencies
of the three principal modes of vibration of the system under considera-

tion.*

It should be noted that the frequency equations for the lateral vibra-

tions of shafts can be used also for calculating critical speeds of rotation.

A critical speed of rotation is a speed at which the centrifugal forces of the

rotating masses are sufficiently large to keep the shaft in a bent condition

(see Art. 17). Take again the case of two discs (Fig. 155a) and assume

that 2/1 and y2 are the deflections, produced by the centrifugal forces |

(Wi/g)<*>
2
yi and (W2/g)u'

2
y2 of the rotating discs. Such deflections can

exist only if the centrifugal forces satisfy the following conditions of equi-
librium [see eqs. (a) and (6)],

Wi 2 ,

W2 2
2/i

= an CO^T/I + a!2 u2
y%,

9 9

Wi W2
^

2/2
= 2i w2

2/i + 022 a>
2
i/2.

9 9

These equations can give for y\ and 2/2 solutions different from zero only
in the case when their determinant vanishes. Observing that the equa-

* A graphical method of solution of frequency equations has been developed by
C. R. Soderberg, Phil. Mag., Vol. 5, 1928, p. 47.

f The effect of the weight of the shaft on the critical speeds will be considered later.
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tions (o) are identical with the equations (m) above and equating their

determinant to zero, an equation identical with eq. (fc) will be obtained for

calculating the critical speeds of rotation.

Graphical Method. In the case of shafts of variable cross section or

those having many discs the analytical method of calculating the critical

speeds, described above, becomes very complicated and recourse should

be made to graphical methods. As a simple example, a shaft supported
at the ends will now be considered (Fig. 62). Assume some initial deflection

of the rotating shaft satisfying the end conditions where t/i, 3/2, . . . are

the deflections at the discs W\, W2, ... If be the angular velocity then

the corresponding centrifugal forces will be (Wi/g)u
2
yi, (W2/g)u

2
y2, . .

Considering these forces as statically applied to the shaft, the corre-

sponding deflection curve can be obtained graphically as was explained in

Art. 17. If our assumption about the shape of the initial deflection curve

was correct, the deflections y\ ', 7/2', ., as obtained graphically, should be

proportional to the deflections 2/1, 2/2, ... initially assumed, and the critical

speed will be found from the equation

(90)

This can be explained in the following manner.

By taking ucr as given by (90) instead of w, in calculating the cen-

trifugal forces as above, all these forces will increase in the ratio y\/yi]
the deflections graphically derived will now also increase in the same

proportion and the deflection curve, as obtained graphically, will 'now

coincide with the initially assumed deflection curve. This means that

at a speed given by eq. (90), the centrifugal forces are sufficient to keep the

rotating shaft in a deflected form. Such a speed is called a critical speed

(see p. 282).

It was assumed in the previous discussion that the deflection curve, as

obtained graphically, had deflections proportional to those of the curve

initially taken. If there is a considerable difference in the shape of these

two curves and a closer approximation for wcr is desired, the construction

described above should be repeated by taking the deflection curve, obtained

graphically, as the initial deflection curve.*

The case of a shaft on three supports and having one disc on each span

(Fig. 157) will now be considered. In the solution of this problem we may
* It was pointed out in considering Rayleigh's method (see Art. 16), that a con-

siderable error in the shape of the assumed deflection curve produces only a small effect

on the magnitude of wcr provided the conditions at the ends are satisfied.
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proceed exactly in the same manner as before in the analytical solution and
establish first the equations,

+

62 = d2lWi + CL22W2,

(a)'

w,

B

between the acting forces and the resultant deflections.

In order to obtain the values of the constants an, 012, . . . graphically
we assume first that the load Wi is acting alone and that the middle sup-

port is removed (Fig. 161a); then

the deflections yi ', 7/2' and ye
f can

easily be obtained by using the graph-
(a) ical method, described before (see p.

95). Now, by using the same method,
the deflection curve produced by a

vertical force R' applied at C and

acting in an upward direction should

be constructed and the deflections

y\ ", y" and 2/2" measured. Taking
into consideration that the deflection at the support C should be equal to

zero the reaction R of this support will now be found from the equation,

\y'

/?'

FIG. 161.

. fb)

and the actual deflections at D and E, produced by load Wi, will be

2/ii
=

yi'
- yi" ~, , (q)

2/21
= yj - yJ'r,-

y

Comparing these equations with the eqs. (a)' and (&)' we obtain

/ // MC

yi y\ ,

Absolute values of the deflections are taken in this equation;
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from which the constants an and 021 can be calculated. In the same

manner, considering the load Wz> the constants ai2 and a22 can be found.

All constants of eqs. (a)' and (by being determined, the two critical speeds
of the shaft can be calculated by using formula (89), in which a = an;
b = ai2 = 2i; c = a22.

In the previous calculations, the reaction R at the middle support has
been taken as the statically indeterminate quantity. In case there are

many supports, it is simpler to take as statically indeterminate quantities
the bending moments at the intermediate supports. To illustrate this

method of calculation, let us consider a motor generator set consisting
of an induction motor and a D.C. generator supported on three bearings.*
The dimensions of the shaft of variable cross section are given in figure
162 (a). We assume that the masses of the induction motor armature,
D.C. armature and also D.C. commutator are concentrated at their

centers of gravity (Fig. 162a). In order to take into account the mass
of the shaft, one-half of the mass of the left span of the shaft has been
added to the mass of the induction motor and one-half of the mass of the

right span of the shaft has been equally distributed between the D.C.
armature and D.C. commutator. In this manner the problem is reduced

to one of three degrees of freedom and the deflections y\ } 3/2, 2/3 of the

masses Wi, TF2, and Wz during vibration will be taken as coordinates.

The statical deflections under the action of loads Wi, Wz, Wz can be

represented by eqs. (n) and the constants an, ai2, ... of these eqs. will

now be determined by taking the bending moment at the intermediate

support as the statically indeterminate quantity. In order to obtain an,
let us assume that the shaft is cut into two parts at the intermediate

support and that the right span is loaded by a 1 Ib. load at the cross

section where T^i is applied (Fig. 1626). By using the graphical

method, explained in Art. 17, we obtain the deflection under the load

an = 2.45 X 10~ inch and the slope at the left support 71 = 5.95 X 10~8

radian. By applying now a bending moment of 1 inch pound at the

intermediate support and using the same graphical method, we obtain

the slopes 72 = 4.23 X 10~9
(Fig. 162c) and 73 = 3.5 X 10~9 (Fig.

162d). From the reciprocity theorem it follows that the deflection at

the point W\ for this case is numerically equal to the slope 71, in the case

shown in Fig. 1626. Combining these results it can now be concluded

that the bending moment at the intermediate support produced by a

* These numerical data represent an actual case calculated by J. P. DenHartog,
Research Engineer, Westinghouse Electric and Manufacturing Company, East Pitts-

burgh, Pennsylvania.
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load of 1 Ib. at the point Wi is

M = 71

72 + 73

and that the deflection under this load is

<v,2

Ibs. X inch,

FIG. 162.

Proceeding in the same manner with the other constants of eqs. (n) the

following numerical values have been obtained :

d22 = 19.6 X IO-7
; 033 = 7.6 X 10~7

; 012 = a2 i
= 18.1 X 10~7

;

a13 = fl31 = ~ 3.5 x 10~7
;

a23 = a32 = - 4.6 X 10~7 .

Now substituting in eqs. (n) the centrifugal forces Wiu2
y\/g,

and Ww2
y3/g instead of the loads Wi, W2, Wz, the following equations

will be found.

1 - an-
1C

^j2/i
~

n /
-a 13
-

2/3
=

0,
Q
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021 3/1+11 022 *

J 2/2 23 3/3
= U,

\ / 9

31
^

2/1
- 32 2/2 +( 1 - 033 ) 2/3

= 0.
\

flr /ff

If the determinant of this system of equations be equated to zero, and
the quantities calculated above be used for the constants an, ai2, the

following frequency equation for calculating the critical speeds is arrived at :

(o>
2 10-7)3 - 3.76(o>

210-7
)
2 + 1.93(

210-7
)
- .175 =

0,

from which the three critical speeds in R.P.M. are:

= 5620.
ZTT 2ir 2?r

In addition to the above method, the direct method of graphical solu-

tion previously described for a shaft with one span, can also be applied to

the present case of two spans. In this case an initial deflection curve

satisfying the conditions at the supports (Fig. 158, a, b) should be taken

and a certain angular velocity o> assumed. The centrifugal forces acting
on the shaft will then be

^1 2 A W* 2
ori/i and 0/2/2.

9 9

By using the graphical method the deflection curve produced by these

two forces can be constructed and if the initial curve was chosen correctly

the constructed deflection curve will be geometrically similar to the initial

curve and the critical speed will be obtained from an equation analogous
to eq. (90). If there is a considerable difference in the shape of these two
curves the construction should be repeated by considering the obtained

deflection curve as the initial curve.*

This method can be applied also to the case of many discs and to cases

where the mass of the shaft should be taken into consideration. We begin

again by taking an initial deflection curve (Fig. 163) and by assuming a

certain angular velocity co. Then the centrifugal forces Pi, P<i, acting
on the discs and on portions of the shaft can easily be calculated, and the

* It can be shown that this process is convergent when calculating the slowest

critical speed and by repeating the construction described above we approach the

true critical speed. See the book by A. Stodola, "Dampf- und Gasturbinen," 6th Ed.

1924. Berlin.
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corresponding deflection curve can be constructed as follows: Consider

first the forces acting on the left span of the shaft and, removing the middle

support C, construct the deflection curve shown in Fig. 1636. In the

same manner the deflection curve produced by the vertical load Rr

applied
at C and acting in an upward direction can be obtained (Fig. 163c) and
reaction R at the middle support produced by the loading of the left span
of the shaft can be calculated by using eq. (p) above. The deflection

produced at any point by the loading of the left side of the shaft can then

be found by using equations, similar to equations (q).

(0

Taking, for instance, the cross sections in which the initial curve has

the largest deflections t/i and 2/2 (Fig. 163a) the deflections produced at

these cross sections by the loading acting on the left side of the shaft will be

y\a = yi
- yi"-~,

ye

In the same manner the deflections yn and 2/25 produced in these cross sec-

tions by the loading of the right side of the shaft can be obtained and the

complete deflections y\a + y\b and t/2a + 2/26 can be calculated.* If the

initial deflection curve was chosen correctly, the following equation should

be fulfilled:

2/ia + yu yi

y2a + 2/26 2/2

* Deflections in a downward direction are taken as positive.

(r)
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and the critical speed will be calculated from the equation

Jfl (91)
a + 2/16

If there is a considerable deviation from condition (r) the calculation

of a second approximation becomes necessary for which purpose the

following procedure can be adopted.* It is easy to see that the deflections

yia and 2/2a, found above, should be proportional to co
2 and to the initial

deflection 2/1, so that we can write the equations

yia = a\y\u>
2

,

2/2a
=

022/1C0
2

,

from which the constants a\ and a<i can be calculated. In the same man-
ner from the equations

2/26
= &22/2^

2
,

the constants bi and 62 can be found.

Now, if the initial deflection curve had been chosen correctly and if

o; = cocr ,
the following equations should be satisfied

2/i
= yia + yib = ait/ia>

2 +
2/2

=
2/2a + 2/26

= a22/ico
2 + &22/2W

2
,

which can be written as follows:

(1
-

aio)
2
)?/! bico

2
2/2
=

0,

(1
- 62u2

)2/2
= 0.

The equation for calculating the critical speed will now be obtained by
equating to zero the determinant of these equations, and we obtain,

(ai&2 2?>i)co
4

(ai + &2)w
2 + 1 = 0.

The root of this equation which makes the ratio 2/1/2/2 of eqs. (s) negative,

corresponds to the assumed shape of the curve (Fig. 163a) and gives the

lowest critical speed. For obtaining a closer approximation the ratio 2/1/2/2,

as obtained from eqs. (s), should be used in tracing the new shape of the

* This method was developed by Mr. Borowicz in his thesis "Beitrage zur Berech-

nung krit. Geschwindigkeiten zwei und mehrfach gelagerter Wellen," Miinchen, 1915.

See also E. Rausch, Ingenieur-Archiv, Vol. I, 1930, p. 203., and the book by K. Karas,
"Die Kritische Drehzahlen Wichtiger Rotorformen," 1935, Berlin.
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initial curve and with this new curve the graphical solution should be

repeated. In actual cases this further approximation is usually unnecessary.

48. Gyroscopic Effects on the Critical Speeds of Rotating Shafts.

General. In our previous discussion on the critical speeds of rotating

shafts only the centrifugal forces of the rotating masses were taken into

consideration. Under certain conditions not only these forces, but also

the moments of the inertia forces due to angular movements of the axes of

the rotating masses are of importance and should be taken into account

in calculating the critical speeds. In the following the simplest case of a

single circular disc on d shaft will be considered (Fig. 164).

FIG. 164 FIG. 165.

Assuming that the deflections y and z of the shaft during vibration are

very small and that the center of gravity of the disc coincides with the

axis of the shaft, the position of the disc will be completely determined

by the coordinates y and z of its center and by the angles /3 and y which
the axis 0-0 perpendicular to the plane of the disc and tangent to the

deflection curve of the shaft makes with the fixed planes xz and xy, per-

pendicular to each other and drawn through the x axis joining the centers

of the bearings. Letting W equal the weight of the disc and taking into

consideration the elastic reactions of the shaft *
only, the equations of

motion of the center of gravity of the disc will be

W w
z = Z, (a)

* The conditions assumed here correspond to the case of a vertical shaft when the

weight of the disc does not affect the deflections of the shaft. The effect of this weight
will be considered later (see p. 299).
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in which Y and Z are the components of the reaction of the shaft in the

y and z directions. These reactions are linear functions of the coordinates

y, z and of the angles 0, 7 which can be determined from the consideration

of the bending shaft.

Take, for instance, the bending of a shaft with simply supported ends,
in the xy plane (Fig. 165) under the action of a force P and of a couple M.
Considering in the usual way the deflection curve of the shaft we obtain

the deflection at equal to *

Pa2b2 Mab(a -
b)

and the slope at the same point equal to

where B is the flexural rigidity of the shaft.

From eqs. (b) and (c) we obtain

By using eq. (d) the eqs. (a) of motion of the center of gravity of the disc

become
W W

y + my + np = Q; z + mz + ny =
0, (92)

9

in which

In considering the relative motion of the disc about its center of gravity
it will be assumed that the moment of the external forces acting on the

disc with respect to the 0-0 axis is always equal to zero, then the angular

velocity co with respect to this axis remains constant. The moments Mv

and M , taken about the y\ and z\ axes parallel to the y and z axes (see

* See "Applied Elasticity" p. 89.
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Fig. 164), and representing the action of the elastic forces of the shaft on
the disc can be written in the following form,

My = m'z + n'7,

Mt
= m'y rip, (g)

in which mr and nf
are constants which can be obtained from the deflection

curve of the shaft.* The positive directions for the angles and 7 and
for the moments Mv and Mz are indicated in the figure.

In the case considered above (see eq. e), we have

b - a
,

3ZB
;

ri = -
(fc)

ab

The equations of relative motion of the disc with respect to its center of

gravity will now be obtained by using the principle of angular momentum
which states that the rate of increase of the total moment of momentum
of any moving system about any fixed axis is equal to the total moment of

the external forces about this axis. In calculating the rate of change of the

angular momentum about a fixed axis drawn through the instantaneous

position of center of gravity we may take into consideration only the

relative motion, f

In calculating the components of the angular momentum the principal
axis of inertia of the disc will be taken. The axis of rotation 00 is one of

these axes. The two other axes will be two perpendicular diameters of the

disc. One of these diameters Oa we taken in the plane 00z\ (see Fig.

164). It will make a small angle 7 with the axis Ozi. Another diameter

Ob will make the angle with the axis Oy\.

Let I = moment of inertia of the disc about the 0-0 axis,

/i = 1/2 = moment of inertia of the disc about a diameter.

Then the component of angular momentum about the 00 axis will be /co,

and the components about the diameters Oa and 06 will be /i/3 and 7i7,

respectively.! Positive directions of these components of the angular
momentum are shown in Fig. 164. Projecting these components on the

fixed axes Oy\ and Oz\ through the instantaneous position of the center of

* It is assumed that the flexibility of the shaft including the flexibility of its supports
is the same in both directions.

t See, for instance, H. Lamb, "Higher Mechanics," 1920, p. 94.

t It is assumed, as before, that and 7 are small. Then and y will be approxi-
mate values of the angular velocities about the diameters Oa and Ob.
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gravity we obtain lup /ry and Iwy + Itf, respectively. Then from
the principle of angular momentum we have

= My

or, by using eqs.

and ~

= mz
(93)

Four eqs. (92) and (93) describing the motion of the disc, will be satisfied

by substituting

y = A sin pt ;
z = cos pt; (i

= C sin pt; y = D cos (m)

In this manner four linear homogeneous equations in A, B, C, D will be
obtained. Putting the determinant of these equations equal to zero, the

equation for calculating the frequencies p of the natural vibrations will be
determined.* Several particular cases will now be considered.

As a first example consider the

case in which the principal axis 00
perpendicular to the plane of the disc

remains always in a plane containing
the x axis and rotating with the con-

stant angular velocity w, with which

the disc rotates. Putting r equal to

the deflection of the shaft and v? equal to the angle between 00 and x axes

(see Fig. 164) we obtain for this particular case,

FIG. 166.

y = r cos to; z = r sin = # cos y =
<p sin wt. (n)

Considering r and <p as constants and considering the instantaneous posi-

tion when the plane of the deflected line of the shaft coincides with the

xy plane (Fig. 166) we obtain from eqs. (n)

* See the paper by A. Stodola in Zeitschrift, f. d. gesamte Turbinenwesen, 1918, p.

253, and 1920, p. 1.
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Substituting in eqs. (92) and (93) we obtain,

W ..

y + my + up =
0,

g

(I
-

7i)/3co
2 = m'y - rift. (o)

It is seen that the shaft is bent not only by centrifugal force but also by
the moment M = (7 /i)/3co

2 which represents the gyroscopic effect of the

rotating disc in this case and makes the shaft stiffer. Substituting

y = r cos co, ft
=

<p cos co,

in eqs. (p) we obtain,

m 6o
2

) r + nv =
0,

- ro'r + {n' + (/
-

/i)co
2

j p = 0. (p)

The deflection of the shaft, assumed above, becomes possible if eqs. (p)

may have for r and <p roots other than zero, i.e., when the angular velocity
co is such that the determinant of these equations becomes equal to zero.

In this manner the following equation for calculating the critical speeds
will be found: IOTIT\

m--
J {n

1 + (7-/i)co2
} +nm' =

0, (r)(

or letting

mg

and noting that, from (h) and (fc),

u <
~ 6>

2

nm = emu t where c = ~r-----
,

a2 ab + b2

we obtain

(p
2 - to

2
)(g

2 + co
2
)
- CpV =

or
- c) = 0.

It is easy to see that (for c < 1) eq. (s) has only one positive root for

co
2

, namely, __
-

g
2
)
2 + (i

- c)pV- (0
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When the gyroscopic effect can be neglected, I Ji = should be
substituted in (r) and we obtain,

co
2TF _ mn' + nm' 31B

from which

where

represents the statical deflection of the shaft under the load W. This
result coincides completely with that found before (see Art. 17) consider-

ing the disc on the shaft as a system with one degree of freedom.
In the above discussion it was assumed that the angular velocity of the

plane of the deflected shaft is the same as that of the rotating disc. It is

possible also that these two velocities are different. Assuming, for instance,
that the angular velocity of the plane of the deflected shaft is coi ano!

substituting,

y = rcoso>i; z = rsncoiJ; 13
= ^coscoiJ; y =

in eqs. (/) and (I) we obtain,

W ..

y + my + n(3 = 0,
9 (o)i

(7wa>i 7io>i
2
)/3
= mf

y n'0,

instead of eqs. (o).

By putting on = co the previous result will be obtained. If coi = o>

we obtain from the second of eqs. (o)
1

-
(7 + 7i)a>

2
/3
= m'y - n'p. (u)

This shows that when the plane of the bent shaft rotates with the velocity

co in the direction opposite to that of the rotation of the disc, the gyro-

scopic effect will be represented by the moment

M = - (7 + 7i)o>
2
0.

The minus sign indicates that under such conditions the gyroscopic
moment is acting in the direction of increasing the deflection of the shaft

and hence lowers the critical speed of the shaft. If the shaft with the
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disc is brought up to the speed o> from the condition of rest, the condition

wi = o) usually takes place. But if there are disturbing forces of the

same frequency as the critical speed for the condition on =
co, then

rotation of the bent shaft in a direction opposite to that of the rotating
disc may take place.*

Vibration of a Rigid Rotor with Flexible Bearings. Equations (92) and

(93) can be used also in the study of vibrations of a rigid rotor, having

bearings in flexible pedestals (Fig. 167). Let j/i, 21 and 2/2, 22 be small

displacements of the bearings during vibration. Taking these displace-

ments as coordinates of the oscillating rotor, the displacements of the

center of gravity and the angular displace-

ments of the axis of the rotor will be (see

Fig. 167).

,+ 2/2 ,

h
y

zo =

RP =

FIG. 167. 7 =

12
,

h
7
+ ft y

*/2
-

y\

I
'

22 2i

I

Let ci, C2, di and d? be constants depending on the flexibility of the pedestals
in the horizontal and vertical directions, such that c\y\, c^yz are hori-

zontal and dizi, d2z2 are the vertical reactions of the bearings due to

the small displacements y\, yz, z\ and 22 in the y and z directions. Then
the equations of motion of the center of gravity (92) become

W
~r (kyi + I\y2) + c\y\ + 023/2

=
0,

w = 0.

The eqs. (93) representing the rotations of the rotor about the y and z

axis will be in this case

3/2
-- - 21

I

22- . T
h I\

.+
j

I i

* See A. Stodola, "Dampf- und Gasturbinen" (1924), p. 367.
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The four equations (v) and (w) completely describe the free vibrations

of a rigid rotor on flexible pedestals. Substituting in these equations

i/i
= A sin pt\ 1/2

= B sin pi; z\ = C cos pi] z<2
= D cos pt,

four homogeneous linear equations in A, B, C, and D will be obtained.

Equating the determinant of these equations to zero, we get the frequency

equation from which the frequencies of the four natural modes of vibra-

tion of the rotor can be calculated.

Consider now a forced vibration of the rotor produced by some eccen-

trically attached mass. The effect of such an unbalance will be equivalent
to the action of a disturbing force with the components

Y = A cos co; Z = B sin ut,

applied to the center of gravity and to a couple with the components,

My = C sin cot
;
Mz

= D cos w.

Instead of the eqs. (v) and (w) we obtain

W
ky\ + 1^2) + ciyi + c2?/2 =A cos at,

gi

w
~T ('221 + h'z2) + dizi + d<2Z2 = B sin wt,
gi

(a')
~~ 21 , 7 j i t n j

zidih + C sin at,
I

1J2 yi 7 , i , rk j
h 11
-

;
=

yzczlz + yicih + D cos ut.
I i

The particular solution of these equations representing the forced

vibration of the rotor will be of the form

y\ = A' cos ut; y<2
= B1

cos ut
; z\ = C' sin co; 22 = -D' sin ut.

Substituting in eqs. (a)', tiie amplitude of the forced vibration will be

found. During this vibration the axis of the rotor describes a surface

given by the equations

y = (a + bx) cos ut,

z = (c + dx) sin ut,
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in which a, b, c and d are constants. We see that every point of the axis

describes an ellipse given by the equation,

(a + bx)
2 c + dx)

2

For two points of the axis, namely, for

1.

a

b
and

the ellipses reduce to straight lines and the general shape of the surface

described by the axis of the rotor will be as shown in Fig. 168. It is seen

FIG. 168.

that the displacements of a point on the axis of the rotor depend not only

upon the magnitude of the disturbing force (amount of unbalance) but

also upon the position of the point along the axis and on the direction in

which the displacement is measured.

In the general case the unbalance can be represented by two eccen-

trically attached masses (see Art. 13) and the forced vibrations of the rotor

can be obtained by superimposing two vibrations of such kind as con-

sidered above and having a certain difference in phase.
* From the linearity

of the equations (a') it can also be concluded that by putting correction

* This question is discussed in detail in the paper by V. Blaess, "Uber den Mas-
senausgleich raschumlaufender Korper," Z. f. angewandte Mathematik und Mechanik,
Vol. 6 (1926), p. 429. See also paper by D, M. Smith, 1. c. page 213.
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weights in two planes the unbalance always can be removed; it is only

necessary to determine the correction weights in such a manner that the

corresponding centrifugal forces will be in equilibrium with the disturbing
forces due to unbalance. *

49. Effect of Weight of Shaft and Discs on the Critical Speed. In

our previous discussion the effect of the weight of the rotating discs was
excluded by assuming that the axis of the shaft is vertical. In the case of

horizontal shafts the weights of the discs must be considered as disturbing
forces which at a certain speed produce considerable vibration in the shaft.

This speed is usually called
"

critical speed of the second order, "f For

determining this speed a more detailed study of the motion of discs is

necessary. In the following the simplest case of a single disc will be

considered and it will be assumed that the disc is attached to the shaft at

the cross section in which the tangent to the

deflection curve of the shaft remains parallel to

the center line of the bearings. In this manner
the "

gyroscopic effect/' discussed in the previous

article, will be excluded and only the motion of

the discs in its own plane needs to be considered.

Let us begin with the case when the shaft is

vertical. Then xy represents the horizontal plane
of the disc and the center of the vertical

shaft in its undeflected position (see Fig. 169). FIG. 169.

During the vibration let S be the instantaneous

position of the center of the shaft and C, the instantaneous position of

the center of gravity of the disc so that CS = e represents the eccentricity

with which the disc is attached to the shaft. Other notations will be as

follows :

m = the mass of the disc.

mi2 = moment of inertia of the disc about the axis through C and perpen-
dicular to the disc.

k = spring constant of the shaft equal to the force in the xy plane neces-

sary to produce unit deflection in this plane.

cocr
= V k/m = the critical speed of the first order (see article 17).

x, y = coordinates of the center of gravity C of the disc during motion.

* The effect of flexibility of the shaft will be considered later (see Art. 50).

f A. Stodola was the first to discuss this problem. The literature on the subject

can be found in his book, 6th Ed., p. 929. See also the paper by T. Poschl in Zeitschr.

f. angew. Mathem. u. Mech., Vol. 3 (1923), p. 297.
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<p
= the angle of rotation of the disc equal to the angle between the radius

SC and x axis.

= the angle of rotation of the vertical plane OC.

\l/
= the angle of rotation of the disc with respect to the plane OC.

Then <p
= ^ + 6. The coordinates x and y of the center of gravity C

and the angle of rotation <p will be taken as coordinates determining the

position of the disc in the plane xy.

The differential equations of motion of the center of gravity C can

easily be written in the usual way if we note that only one force, the

elastic reaction of the shaft, is acting on the disc in the xy plane. This

force is proportional to the deflection OS of the shaft and its components
in the x and y directions, proportional to the coordinates of the point S, will

be k(x e cos <p) and k(y e sin <p) respectively. Then the differ-

ential equations of motion of the center C will be

mx = k(x e cos <p) ; my = k(y e sin <p)

or

mx + kx = ke cos <p,

(a)

my + ky = ke sin <p.

The third equation will be obtained by using the principle of angular
momentum. The angular momentum of the disc about the axis con-

sists (1) of the angular momentum mi2# of the disc rotating with the

angular velocity about its center of gravity and (2) of the angular
momentum m(xy yx) of the mass m of the disc concentrated at its

center of gravity. Then the principle of angular momentum gives the

equation

-
\mi

2
v + m(xy y%) }

= M,
at

or

mi2
'<p + m(xy yx) = M, (6)

in which M is the torque transmitted to the disc by the shaft.

The equations (a) and (6) completely describe the motion of the disc.

When M = a particular solution of the equations (a) and (6) will be
obtained by assuming that the center of gravity C of the disc remains in

the plane OS of the deflection curve of the shaft and describes while rotating
at constant angular velocity = w, a circle of radius r. Then substituting
in equations (a) x = r cos ut] y = r sin ut and taking <p

= ut for the case
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represented in Fig. 170a, and <p
= ut + TT for the case represented in Fig.

1706, we obtain

ke 6o)cr
2

k raw2
cocr

2 w2

ke ewcr
2

for

2
for > cocr.

-X

FIG. 170.

These results coincide with those obtained before from elementary con-

siderations (see Art. 17).

Let us now consider the case when the torque M is different from zero

and such that *

M = m(xy - y'x). (c)

Then from eq. (6) we conclude that

^ = Q, = const.,

and by integrating we obtain

<p ut + <po, (d)

in which <po is an arbitrary constant determining the initial magnitude
of the angle <p.

Substituting (d) in eqs. (a) and using the notation cocr
2 = fc/m, we

obtain

x + cocr
2x = cocr

2e cos (o> + <po)>

y sn (e)

* This case is discussed in detail in the dissertation "Die kritischen Zustande zweiter

Art rasch umlaufender Wellen," by P. Schroder, Stuttgart, 1924. This paper contains

very complete references to the new literature on the subject.
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It is easy to show by substitution that

MI ewCr
2

X = COS (Vert + 71 + <Po) H 2 2
C S ^ ~^~ '

MI e<*)cr

y __ . gjjj (<j)CTt -j- 71 -{- (po) -f- sin (co -f- ^o)>
efc cocr

2
co
2

represent a solution of the eqs. (e).

Substituting (/) in eq. (c) we obtain

M = Mi sin
{ (cocr

-
o>) + 71 }

. (0)

It can be concluded that under the action of the pulsating moment (g) the

disc is rotating with a constant angular velocity and at the same time its

center of gravity performs a combined oscillatory motion represented by
the eqs. (/).

In the same manner it can be shown that under the action of a pulsating

torque M = M2 sin
{ (ucr + co)< + 72 } ,

the disc also rotates with a constant speed co and its center performs

oscillatory motions given by the equations
_ _ f>

j/v/2 corr

X = COS (cOcr^ 4~ 72 ^o) H ^ o COS (co -f- <po) y

ek UCT co

M eo,
2 (*>

y = sin (<j) Crt ~}~ 72 <po) H ^ ^ sin (co -f- <po).
Ck Ucr ~ <J~

Combining the solutions (/) and (h) the complete solution of the eqs. (e),

containing four arbitrary constants M\, M^ 71
and 72 will be obtained. This result can now
be used for explaining the vibrations produced by
the weight of the disc itself.

Assume that the shaft is in a horizontal posi-
r tion and the y axis is upwards, then by adding

j~
the weight of the disc we will obtain Fig. 171,

"~ig
x instead of Fig. 169. The equations (a) and (6)

FIG. 171. will be replaced in this case by the following

system of equations:

m'x + kx = ke cos <p,

my + ky = ke sin (? mg, (&)
mi2

'<p + m(xy yx) = M mgx.
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Let us displace the origin of coordinates from to Oi as shown in the

figure; then by letting

,

mO
yi = y T '

eqs. (k) can be represented in the following form :

mx + kx = ke cos <p,

my i + kyi = ke sin <p, (J)

mi2
1}> + m(xy\ y\x) = M mge cos <p.

This system of equations coincides with the system of eqs. (a) and (6)

and the effect of the disc's weight is represented by the pulsating torque
mge cos <p. Imagine now that M = and that the shaft is rotating

with a constant angular velocity cu = J^wcr . Then the effect of the weight
of the disc can be represented in the following form

mge cos <p
= mge cos (cotf)

= mge sin (ut -rr/2)

= mge sin
{ (cocr co) ir/2}. (m)

This disturbing moment has exactly the same form as the pulsating
moment given by eq. (g) and it can be concluded that at the speed w = Hc*)cr,

the pulsating moment due to the weight of the disc will produce vibrations

of the shaft given by the equations (/). This is the so-called critical speed

Of the second order, which in many actual cases has been observed.* It

should be noted, however, that vibrations of the same frequency can be

produced also by variable flexibility of the shaft (see p. 154) and it is quite

possible that in some cases where a critical speed of the second order has

been observed the vibrations were produced by this latter cause.

50. Effect of Flexibility of Shafts on the Balancing of Machines. In

our previous discussion on the balancing of machines (see Art. 13) it was
assumed that the rotor was an absolutely rigid body. In such a case

complete balancing may be accomplished by putting correction weights
in two arbitrarily chosen planes. The assumption neglecting the flexibility

of the shaft is accurate enough at low speeds but for high speed machines

and especially in the cases of machines working above the critical speed the

deflection of the shaft may have a considerable effect and as a result of this,

the rotor can be balanced only for one definite speed or at certain con-

ditions cannot be balanced at all and will always give vibration troubles.

*
See, O. Foppl, V.D.I., Vol. 63 (1919), p. 867.
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The effect of the flexibility of the shaft will now be explained on a

simple example of a shaft supported at the
* 2

\ \ ends and carrying two discs (see Fig. 172).

[
- .* y The deflection of the shaft y\ under a load W\*

*

tity J^ j

will depend not only on the magnitude of this-/-
| load, but also on the magnitude of the load

W2> The same conclusion holds also for the

FIG. 172. deflection y2 under the load W2 . By using the

equations of the deflection curve of a shaft on
two supports, the following expressions for the deflections can be obtained:

y\ =

2/2
= a2iWi + a22W2, (a)

in which an, ai 2,
a2 i and a22 remain constant for a given shaft and a given

position of loads. These equations can be used now in calculating the

deflections produced in the shaft by the centrifugal forces due to eccen-

tricities of the discs.

Let mij m2 = masses of discs I and II,

co = angular velocity,

2/i, 2/2
= deflections at the discs I and II, respectively,

ci, c2 = distances from the left support to the discs I and II,

Yij Y2 = centrifugal forces acting on the shaft.

Assuming that only disc / has a certain eccentricity e\ and taking the de-

flection in the plane of this eccentricity, the centrifugal forces acting on
the shaft will be

YI =
(e\ + 7/i)mico

2
;

Y2 =

or, by using equations similiar to eqs. (a), we obtain

YI =
Y2

from which

__

(1

ŷ 2 =
(1

It is seen that instead of a centrifugal force eimico
2
,
which we have in the
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case of a rigid shaft, two forces YI and Y2 are acting on the flexible shaft.

The unbalance will be the same as in the case of a rigid shaft on which a
force RI = Yi + Y% is acting at the distance from the left support equal to

Y2c2

Jr i + r 2

It may be seen from eqs. (&) that h does not depend on the amount of

eccentricity e\ 9 but only on the elastic properties of the shaft, the position
and magnitude of the masses m\ and W2 and on the speed w of the machine.

In the same manner as above the effect of eccentricity in disc II can
be discussed and the result of eccentricities in both discs can be obtained

by the principle of superposition. From this it can be concluded that at
a given speed the unbalance in two discs on a flexible shaft is dynamically
equivalent to unbalances in two definite planes of a rigid shaft. The
position of these planes can be determined by using eq. (c) for one of the

planes and an analogous equation for the second plane.
Similar conclusions can be made for a flexible shaft with any number n

of discs * and it can be shown that the unbalance in these discs is equiva-
lent to the unbalance in n definite planes of a rigid shaft. These planes

remaining fixed at a given speed of the shaft, the balancing can be accom-

plished by putting correction weights in two planes arbitrarily chosen.

At any other speed the planes of unbalance in the equivalent rigid shaft

change their position and the rotor goes out of balance. This gives us an

explanation why a rotor perfectly balanced in a balancing machine at a

comparatively low speed may become out of balance at service speed. Thus
balancing in the field under actual conditions becomes necessary. The dis-

placements of the planes of unbalance with variation in speed is shown
below for two particular cases. In Fig. 173 a shaft carrying three discs is

represented. The changes with the speed in the distances Zi, k, h of the

planes of unbalance in the equivalent rigid shaft are shown in the figure by
the curves Zi, fa, k* It is seen that with an increase in speed these curves

first approach each other, then go through a common point of intersection

at the critical speed and above it diverge again. Excluding the region near

the critical speed, the rotor can be balanced at any other speed, by putting
correction weights in any two of the three discs. More difficult conditions

are shown in Fig. 174. It is seen that at a speed equal to about 2150 r.p.m.

* A general investigation of the effect of flexibility of the shaft on the balancing
can be found in the paper by V. Blaess, mentioned before (see p. 298). From this

paper the figures 173 and 174 have been taken.
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i

the curves h and 3 go through the same point A. The two planes of the

equivalent rigid shaft coincide and it becomes impossible to balance the

machine by putting correction weights in the discs 1 and 3. Practically

FIG. 173.

2000-
6
Q_

^3000-

FIG. 174.

in a considerable region near the point A the conditions will be such that

it will be difficult to obtain satisfactory balancing and heavy vibration

troubles should be expected.



CHAPTER VI

VIBRATIONS OF ELASTIC BODIES

In considering the vibrations of elastic bodies it will be assumed that

the material of the body is homogeneous, isotropic and that it follows

Hooke's law. The differential equations of motion established in the

previous chapter for a system of particles will also be used here.

In the case of elastic bodies, however, instead of several concentrated

masses, we have a system consisting of an infinitely large number of

particles between which elastic forces are acting. This system requires
an infinitely large number of coordinates for specifying its position and it

therefore has an infinite number of degrees of freedom because any small

displacement satisfying the condition of continuity, i.e., a displacement
which will not produce cracks in the body, can be taken as a possible or

virtual displacement. On this basis it is seen that any elastic body can
have an infinite number of natural modes of vibration.

In the case of thin bars and plates the problem of vibration can be

considerably simplified. These problems, which are of great importance
in many engineering applications, will be discussed in more detail * in

the following chapter.
51. Longitudinal Vibrations of Prismatical Bars. Differential Equa-

tion of Longitudinal Vibrations. The following consideration is based on
the assumption that during longitudinal vibration of a prismatical bar

the cross sections of the bar remain plane and the particles in these cross

sections perform only motion in an axial direction of the bar. The longi-

tudinal extensions and compressions which take place during such a

vibration of the bar will certainly be accompanied by some lateral deform-

ation, but in the following only those cases will be considered where the

length of the longitudinal waves is large in comparison with the cross sec-

* The most complete discussion of the vibration problems of elastic systems can be
found in the famous book by Lord Rayleigh "Theory of Sound." See also H. Lamb,
"The Dynamical Theory of Sound." A. E. H. Love, "Mathematical Theory of Elas-

ticity," 4 ed. (1927), Handbuch der Physik, Vol. VI (1928), and Barr6 de Saint-Venant,
Theorie de I'61asticit6 des corps solides. Paris, 1883.

307
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tional dimensions of the bar. In these cases the lateral displacements dur-

ing longitudinal vibration can be neglected without substantial errors.*

Under these conditions the differential equation of motion of an element
of the bar between two adjacent cross sections mn and m\n\ (see Fig. 175)

may be written in the same manner as for a particle.

Let u = the longitudinal displacement
of any cross section mn of

the bar during vibration,
e = unit elongation,
E = modulus of elasticity,

A = cross sectional area,

S = AEe = longitudinal tensile

force,

7 = weight of the material of the

bar per unit volume,
I = the length of the bar.

FIG. 175.

Then the unit elongation and the tensile force at any cross section mn of

the bar will be

&u
A r?

du

dx
;

dx

For an adjacent cross section the tensile force will be

Taking into consideration that the inertia force of the element mnm\n\ of

the bar is

Aydx d2u

and using the D'Alembert's principle, the following differential equation
of motion of the element mnm\n\ will be obtained

* A complete solution of the problem on longitudinal vibrations of a cyclindrical
bar of circular cross section, in which the lateral displacements are also taken into

consideration, was given by L. Pochhammer, Jr. f. Mathem., Vol. 81 (1876), p. 324.
See also E. Giebe u. E. Blechschmidt, Annalen d. Phys. 5 Folge, Vol. 18, p. 457, 1933.
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Ay d2u AT^- + AE ~ =

or

O= a2 -, (94)
dx2 ' v }

in which *

a2 = (95)
7

Solution by Trigonometric Series. The displacement u
t depending on

the coordinate x and on the time
,
should be such a function of x and t

as to satisfy the partial differential eq. (94). Particular solutions of this

equation can easily be found by taking into consideration 1, that in

the general case any vibration of a system can be resolved into the natural

modes of vibration and 2, when a system performs one of its natural

modes of vibration all points of the system execute a simple harmonic
vibration and keep step with one another so that they pass simultaneously

through their equilibrium positions. Assume now that the bar performs
a natural mode of vibration, the frequency of which is p/27r, then the solu-

tion of eq. (94) should be taken in the following form :

u = X(A cos pt + B sin pt), (a)

in which A and B are arbitrary constants and X a certain function of x

alone, determining the shape of the normal mode of vibration under

consideration, and called "normal function." This function should be

determined in every particular case so as to satisfy the conditions at the

ends of the bar. As an example consider now the longitudinal vibrations

of a bar with free ends. In this case the tensile force at the ends during
vibration should be equal to zero and we obtain the following end con-

ditions (see Fig. 175)

00
\ ojc/ x - 1

Substituting (a) in eq. (94) we obtain

'
2

"dr2 '

from which

X = Coos + D sin (c)
a a

1 It can be shown that a is the velocity of propagation of waves along the bar.
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In order to satisfy the first of the conditions (6) it is necessary to put D = 0.

The second of the conditions (6) will be satisfied when

sin = 0. (96)
a

This is the "frequency equation" for the case under consideration from

which the frequencies of the natural modes of the longitudinal vibrations

of a bar with free ends, can be calculated. This equation will be satisfied

by putting

= IT, (d)

where i is an integer. Taking i = 1, 2, 3, ,
the frequencies of the

various modes of vibration will be obtained. The frequency of the funda-

mental type of vibration will be found by putting i = 1, then

air =
-y

The corresponding period of vibration will be

The shape of this mode of vibration, obtained from eq. (c), is represented
in Fig. 1756, by the curve fcfc, the ordinates of which are equal to

v n nXi = Ci COS - = Ci COS
a I

In Fig. 175c, the second mode of vibration is represented in which

=
27r; and X?> = 2 cos

a I

The general form of a particular solution (a) of eq. (94) will be

iirx ( iwat . tVaA
u = cos I Ai cos -

(- Bi sin I (e)
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By superimposing such particular solutions any longitudinal vibration

of the bar * can be represented in the following form :

i= ~ / J-
' A\Eiwx f iirdt nro,t\

cos ~T \
A * cos ~T + fi sin ~7~ I

'

(99)
i=l,2,3,... t \ ^ I /

The arbitrary constants A t , B, always can be chosen in such a manner as

to satisfy any initial conditions.

Take, for instance, that at the intial moment t 0, the displacements
u are given by the equation (?/)<= o

= f(x) and the initial velocities by the

equation (u)t =o = /i(z). Substituting t = in eq. (99), we obtain

By substituting t = in the derivative with respect to t of eq. (99), we
obtain

/i 0*0 = X) ~7~ ^i cos ~
7

~*
(0)

i^ i i l

The coefficients A^ and B l in eqs. (/) and (g) can now be calculated, as

explained before (see Art. 18) by using the formulae:

'-?/I/ *S Q

f*s

(h)

Bi = -
/ /i(x) cos - dx. (k)

lira JQ I

As an example, consider now the case when a prismatical bar com-

pressed by forces applied at the ends, is suddenly released of this com-

pression at the initial moment t = 0. By taking f

04.0 = f(x) = - ~
ex; /i Or)

=
0,

where e denotes the unit compression at the moment t = 0, we obtain

from eqs. (h) and (k)

Ai =
-y^ for i = odd; Ai = for i = even; Bi =

0,

*
Displacement of the bar as a rigid body is not considered here. An example

where this displacement must be taken into consideration will be discussed on p. 316.

t It is assumed that the middle of the bar is stationary.
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and the general solution (99) becomes
iirx iirat

Id
cos T cos

Only odd integers i = 1, 3, 5, enter in this solution and the vibration

is symmetrical about the middle cross section of the bar.

On the general solution 99 representing the vibration of the bar any
longitudinal displacement of the bar as a rigid body can be superimposed.

Solution by using Generalized Coordinates. Taking as generalized

coordinates in this case the expressions in the brackets in eq. (e) and

using the symbols # for these coordinates, we obtain

H^ iwx mu = LJ fficos (0
<=i *

The potential energy of the system consisting in this case of the

energy of tension and compression will be,

AE
x =-w- \i iqism ~i)

x=

AE^ 1^ .2-
2_j i

2
q*

2
. (m)

4* i-1

In calculating the integral

J (

only the terms containing the squares of the coordinates g* give integrals

different from zero (see Art. 18).

The kinetic energy at the same time will be,

Substituting T and V in Lagrange's eqs. (73) we obtain for each coordi-

nate q> the following differential equation

from which

A , r -

i
= Ai cos h Bi sin
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This result coincides completely with what was obtained before (see eq. e).

We see that the equations (p) contain each only one coordinate #. The
chosen coordinates are independent of each other and the corresponding
vibrations are "principal" modes of vibration of the bar (see p. 197).

The application of generalized coordinates is especially useful in the dis-

cussion of forced vibrations. As an example, let us consider here the case of

a bar with one end built in and another end free. The solution for this

case can be obtained at once from expression (99). It is only necessary to

assume in the previous case that the bar with free ends performs vibrations

symmetrical about the middle of the bar. This condition will be satisfied

by taking i = 1, 3, 5 in solution (99). Then the middle section can
be considered as fixed and each half of the bar will be exactly in the same
condition as a bar with one end fixed and another free. Denoting by /

the length of such a bar and putting the origin of coordinates at the fixed

end, the solution for this case will be obtained by substituting 21 for I and
sin iirx/21 for cos iirx/l in eq. (99). In this manner we obtain

. . n . ,+ *^u = 2^ sm l^cos + B,sin ] (100)
<- 1,3,5,.-. Al \ M Ll /

Now, if we consider the expressions in the brackets of the above solu-

tion as generalized coordinates and use the symbols <? for them, we obtain,

*" / j f "*" 07 W/
4-1,3,5,... ^

Substituting this in the expressions for the potential and kinetic energy
we obtain :

AE

E it. (102)
1,3,5,..-

Lagrange's equation for free vibration corresponding to any coordinate

ji will be as follows:

from which
iwat

,
_ . iirat

Aicos- - + Bism -

This coincides with what we had before (see eq. (100)).
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Farced Vibrations. If disturbing forces are acting on the bar, Lagrange's

eqs. (74) will be

Ayl .. w

or

in which Q denotes the generalized force corresponding to the generalized
coordinate g,-.

In determining this force the general method explained
before (see p. 187) will be used. We give an increase dq% to the coordinate

#i. The corresponding displacement in the bar, as determined from

<> is

5u =
dqi sin

JLit

The work done by the disturbing forces on this displacement should

now be calculated. This work divided by 6g t represents the generalized

force Qi. Substituting this in eq. (r), the general solution of this equation
can easily be obtained, by adding to the free vibrations, obtained above,
the vibrations produced by the disturbing force Q t . This latter vibration

is taken usually in the form of a definite integral.* Then,

C lira
. / Q sin -

ijQ 21

iwat iirat 4g
i cos - + B% sin

- + --
. / Q sin -

(t ti)dti. (s)
21 21

The first ^wo terms in this solution represent a free vibra-

tion due to the initial displacement and initial impulse.
The third represents the vibration produced by the disturb-

ing force. Substituting solution (s) in eq. (q) the general

expression for the vibrations of the bar will be obtained.

As an example, the vibration produced by a force S = /()

acting on the free end of the bar (see Fig. 176) will now
be considered. Giving an increase dqi to the coordinate g<;

the corresponding displacement (see eq. q) will be

.

du =
dqi sin -

2il

The work produced by the disturbing force on this displacement is

. iv
% sin

&

Seeeq. (48), p. 104.
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and we obtain

i - 1

where i = 1, 3, 5, . . ..

Substituting in (s) and taking into consideration only that part of the

vibration, produced by the disturbing force, we obtain,

i - I

Ayairi JQ

Substituting in (q) and considering the motion of the lower end of the

bar (x = /) we have

!!),_,
= -p~ f S sin
Ayaw^ 1,375,... tc/o 2

(ii)

In any particular case it is only necessary to substitute S = f(h) in (u)

and perform the integration indicated. Let us take, for instance, the

particular case of the vibrations produced in the bar by a constant force

suddenly applied at the initial moment (t
=

0). Then, from (u) y
we

obtain

SglS ^ 1 / iirat\

j-V^ Z -^ ( 1 - cos -~ )
-

Aya~ir-i ^ l^...i2 \ 21 I
(103)

It is seen that all modes of vibration will be produced in this manner, the

periods and frequencies of which are

4Z . 1 ai
T*
= ~^ J / = = TV

ai ri 4t

The maximum deflection will occur when cos (iwat/21) = 1. Then

or by taking into consideration that

we obtain

=w-i -
AE

-
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We arrive in this manner at the well known conclusion that a suddenly

applied force produces twice as great a deflection as one gradually

applied.*
As another example let us consider the longitudinal vibration of a

bar with free ends (Fig. 175) produced by a longitudinal force S suddenly

applied at the end x = I. Superposing on the vibration of the bar given

by eq. (I) a displacement qo of the bar as a rigid body the displacement u
can be represented in the following form :

TTX 2irx
u = go + q\ cos + qz cos + #3 cos +. (v)

The expressions for potential and kinetic energy, from (ra) and (ri) will be

. Ayl .

and the equations of motion become

Ayl ..-
qo = yo

9

(w)

Ayl .. AEw2i2

By using the same method as before (see p. 314) it can be shown that in

this case

Qo = S and Q> = (- 1)'S.

Then assuming that the initial velocities and the initial displacements are

equal to zero, we obtain, from eqs. (w) :

N _? Tc - iwa
,< .wi (~ l)*2gtS^ iirat\

y --
. / S sin -

(t
- ti)dh =

( 1 - cos )

AirayiJ I Aw2i2ya2 \ I /

* For a more detailed discussion of this subject see the next article, p. 323.
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Substituting in eq. (v), the following solution for the displacements pro-
duced by a suddenly applied force AS will be obtained

gSP
,

2glS V^(-l)
1

i*xf iwat\
u = + ~r~--- V -2

cos ( 1 - cos r- )

2Ayl ATT2a2ytt i
2

I \ I /

The first term on the right side represents the displacement calculated

as for a rigid body. To this displacement, vibrations of a bar with free

ends are added. Using the notations 5 = (Sl/AE) for the elongation of the

bar uniformly stretched by the force S, and r = (2l/a) for the period of

the fundamental vibration, the displacement of the end x = I of the bar
will be

- ~ cos
< , 1 t \ T

The maximum displacement, due to vibration, will be obtained when
t = (r/2). Then

An analogous problem is encountered in investigating the vibrations pro-
duced during the lifting of a long drill stem as used in deep oil wells.

62. Vibration of a Bar with a Load at the End. Natural Vibrations. The problem
of the vibration of a bar with a load at the end (Fig. 177) may have a

///////////
practical application not only in the case of prismatical bars but also ray <vyryft
when the load is supported by a helical spring as in the case of an
indicator spring (see p. 28). If the mass of the bar or of the spring be i

small in comparison with the mass of the load at the end it can be m
neglected and the problem will be reduced to that of a system with one

degree of freedom (see Fig. 1). In the following the effect of the

mass of the bar will be considered in detail.* Denoting the longi-

tudinal displacements from the position of equilibrium by u and using
the differential equation (94) of the longitudinal vibrations developed
in the previous paragraph, we obtain

d2w d*u
=**

;, (94')
dt~ dx

where

2
Eg

a2 =
7

* See author's paper, Bull. Polyt. Inst. Kiev, 1910, and Zeitschr. f. Math. u. Phys.
V. 59, 1911. See also A. N. Kryloff, "Differential Eq. of Math. Phys.," p. 308, 1913,
S. Petersburg.
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for a prismatical bar, and

for a helical spring. In this latter case k is the spring constant, this being the load

necessary to produce a total elongation of the spring equal to unity. I is the length
of the spring and w is the weight of the spring per unit length. The end conditions

will be as follows.

At the built-in end the displacement should be zero during vibration and we obtain

(u)x- o = 0. (a)

At the lower end, at which the load is attached, the tensile force in the bar must be

equal to the inertia force of the oscillating load W and we have*

/au\ __W/**\ .

\dxjx-i Q \fl
2
/*-i

Assuming that the system performs one of the principal modes of vibration we obtain

u = X(A cos pt + B sin pt), (c)

in which X is a normalfunction of x alone, determining the shape of the mode of vibration.

Substituting (c) in eq. (94') we obtain

a2
-f- pzX 0,

from which

X = C cos + D sin
, (d)

a a

where C and D are constants of integration.

In order to satisfy condition (a) we have to take C = in solution (d). From
condition (6) we obtain

p pi W piAE - cos - = p2 sin - (6)
1

a a g a

Let a = Ayl/W is ratio of the weight of the bar to the weight of the load W and ft
= pi/a.

Then eq. (6)
1 becomes

a =
ft tan 0. (104)

This is the frequency equation for the case under consideration, the roots of which
can be easily obtained graphically, provided the ratio a be known. The fundamental

type of vibration is usually the most important in practical applications and the values

0! of the smallest root of eq. (104) for various values of a are given in the table below.

= .01 .10 .30 .50 .70 .90 1.00 1.50 2.00 3.00 4.00 5.00 10.0 20.0 100.0 oo

0i = .10 .32 .52 .65 .75 .82 .86 .98 1.08 1.20 1.27 1.32 1.42 1.52 1.568 7r/2

* The constant load W, being in equilibrium with the uniform tension of the bar
in its position of equilibrium, will not affect the end condition.
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If the weight of the bar is small in comparison with the load TF, the quantity ot

and the root 0i will be small and equation (104) can be simplified by putting tan 0=0,
then

^ " a "
~W '

and we obtain

P1

W ff
~

! \/T W
\ 5

where &st
= Wl/AE represents the statical elongation of the bar under the action of

the load W.
This result coincides with the one obtained before for a system with one degree of

freedom (see eq. 6, p. 3). A better approximation will be obtained by substituting
tan 0=0 + 3/3 in eq. (104). Then

0(0 + 0V3) = a,

or

Substituting the first approximation (e) for in the right side of this equation,
we obtain

(*
" A/ and p% '

\*.i( /o+ or/3

Comparing (ft) with (/) it can be concluded that the better approximation is obtained

by adding one third of the weight of the bar to the weight W of the load. This is the

well-known approximate solution obtained before by using Rayleigh's method (see

p. 85).

Comparing the approximate solution (h) with the data of the table above it can

be concluded that for a = 1 the error arising from the use of the approximate formula

is less than 1% and in all cases when the weight of the bar is less than the weight of

the load it is satisfactory for practical applications.

Assuming that for a given a the consecutive roots 0i, 2 , 03, ... of the frequency

equation (104) are calculated, and substituting ta/Z for p in solution (c) we obtain,

Ui = sin 1 A i cos h ^i sin

This solution represents a principal mode of vibration of the order i of our system.

By superimposing such vibrations any vibration of the bar with a load at the end can
be obtained in the form of a series,

*V? . fa/ A ^at . toA
u / J sin i A t cos --h # sin -

J,
<=i I \ I * /

(Ac)

the constants At and Bt
- of which should be determined from the initial conditions.
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Assume, for instance, that the bar is at rest under the action of a tensile force S
applied at the lower end and that at the initial moment t = this force is suddenly
removed. For this case all the coefficients Bl in eq. (k) should be taken equal to zero

because the initial velocities are zero. The coefficients Ai should be determined in

such a manner as to represent the initial configuration of the system. From the uni-

form extension of the bar at the initial moment we obtain

=

Equation (k), for t = 0, yields

The coefficients At should be determined in such a manner as to satisfy the equation

In determining these coefficients we proceed exactly as was explained in Art. 18. In

order to obtain any coefficient A l both sides of the above equation should be multiplied
with sin (ptx/l)dx and integrated from x = to x = I. By simple calculations we obtain

rl fax I I sin 20A
I sin 2 dx = -

1 1 ---- I

Jo I 2\ 2ft /

S rl fax SI2 I cos fa sin fa

and also, by taking into consideration eq. (104) for every integer m 7* i

r l
. fax . pn* W

. . I
.

/ sin - sin - dx sin fa sin ftn -- sin fa sin /3

JQ I I Ay a

Then, from eq. (I)

l
. fax'^-Z . fax S rl

, fax
sin > Aj, sin - - dx - I x sin axt

o L t~[ I AE JQ I

or

I / sin 2ft\ __ | . "y-T . _ SJ^
I cosft sin ft\

Remembering that, from eq. (k),

*\S A , ^ *
SI

/ j Am sm ftn = (u)z~i Ai sin ft = -7^ Ai sm ft,
1 = 1,2,3,... (1-1), <

we obtain

If sin2&\ I
.

/iSZ
.

\ ,Sf/
2
/ cos ft sin ft-
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from which, by taking into consideration that (from eq. 104)

I I cos Q{- sin ft = ,

ot ft

we obtain

4SZ sin ft

fa + sin 2ft)
'

the initial displacement will be

AE AE fci 0(2ft + sin 2ft)

and the vibration of the bar will be represented in this case by the following series:

. . PiX Pi*w
i = CNJ sm ft sin cos 7-

(106)AE ~ ft(2/3, + sin 2/3,)

Forced Vibrations. In the following the forced vibrations of the system will be
considered by taking the expressions in the brackets of eq. (k) for generalized coordinates.

Then

The potential energy of the system will be,

AE
g cos

2

It can be shown by simple calculations that, in virtue of eq. (104),

/I
PnX PmX

cos cos - dx when m ?^ n,
*

I I

and

Substituting in the above expression for V we obtain,

ia-
The kinetic energy of the system will consist of two parts, the kinetic energy of

the vibrating rod and the kinetic energy of the load at the end of the rod, and we obtain

* The same can be concluded also from the fact that the coordinates #1, 92, ... are

principal coordinates, hence the potential and kinetic energies should contain only

squares of these coordinates.
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Substituting (m) for the displacement u and performing the integrations:

/'
pmX finX W

sin - sin dx = sin /3m sin /3n, where m 7* n.
I I AyfQ I i Ay

We obtain

Now, from eq. (104), we have

.-^-Atanft,
or

A ^lW =
t tan pi

Substituting in the above expression for the kinetic energy we obtain,

It is seen that the expressions (n) and (o) for the potential and kinetic energy contain

only squares of </t and Qi. The products of these quantities disappear because the terms of

the series (k) and (I) are the principal or natural modes of vibration of the system under

consideration and the coordinates qi are the principal coordinates (see p. 197). Substi-

tuting (n) and (o) in Lagrange's equation (74) the following equation for any coordinate

qi will be obtained.

AE f sin

in which Qi denotes the generalized force corresponding to the generalized coordinate qt
.

Considering only vibrations produced by a disturbing force and neglecting the

free vibrations due to initial displacements and initial impulses, the solution of eq. (p)

will be *

2(7 I _% rl
. afc

q
*=Ay~l

where, as before,

Substituting this into (m) the following general solution of the problem will be
o Jtained:

sin

t

'

* See eq. 48, p. 104.
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In any particular case the corresponding value of Qt should be substituted in this

solution. By putting x = I the displacements of the load W during vibration will be

obtained.

Force Suddenly Applied. Consider, as an example, the vibration produced by a

constant force S suddenly applied at the lower end of the bar. The generalized force

Qi corresponding to any coordinate qt in this case (see p. 314) will be

Qi = S sin fa.

Substituting in eq. (107) we obtain for the displacements of the load W the following

expression:
*

*

/1AQ.

(108)

Consider now the particular case when the load W at the end of the bar diminishes

to zero and the conditions approach those considered in the previous article. In such a
case a in eq. (104) becomes infinitely large and the roots of that transcendental equation
will be

Substituting in eq. (108) the same result as in the previous article (see eq. 103,

p. 315) will be obtained.

A second extreme case is when the load W is very large in comparison with the

weight of the rod and a in eq. (104) approaches zero. The roots of this equation then

approach the values:

All terms in the series (108) except the first term, tend towards zero and the system

approaches the case of one degree of freedom. The displacement of the lower end of

the rod will be given in this case by the first term of (108) and will be

sin 2
, ,

1 cos

or by putting sin pi = Pi and sin 2pi = 2/3 1 we obtain

g$l I (*Pit\
x = i

= 71 l ~ cos-- I-

Aa-y \ I /
W

This becomes a maximum when

then

This show that the maximum displacement produced by a suddenly applied force is

twice as great as the static elongation produced by the same force.

This conclusion also holds for the case when W = (see p. 316) but it will not

be true in the general case given by eq. 108. To prove this it is necessary to observe
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that in the two particular cases mentioned above, the system at the end of a half period
of the fundamental mode of vibration will be in a condition of instantaneous rest.

At this moment the kinetic energy becomes equal to zero and the work done by the

suddenly applied constant force is completely transformed into potential energy of

deformation and it can be concluded from a statical consideration that the displacement
of the point of application of the force should be twice as great as in the equilibrium

configuration.

In the general case represented by eq. (108) the roots of eq. (104) are incommensura-
ble and the system never passes into a configuration in which the energy is purely

potential. Part of the energy always remains in the form of kinetic energy and the

displacement of the point of application of the force will be less than twice that in the

equilibrium configuration.

Comparison with Static Deflection. The method of generalized coordinates, applied

above, is especially useful for comparing the displacements of a system during vibration

and the statical displacements which would be produced in the system if the disturbing
forces vary very slowly. Such comparisons are necessary, for instance, in the study
of steam and gas engine indicator diagrams, and of various devices used in recording

gas pressures during explosions. The case of an indicator is represented by the scheme
shown in Fig. 177. Assume that a pulsating force sin ut is applied to the load W,
representing the reduced mass of the piston (see p. 28). In order to find the generalized
force in this case, the expression (m) for the displacements will be used. Giving to a

coordinate g an increase 6g the corresponding displacement in the bar will be

dqi sin -7- ,

I

and the work done by the pulsating load S sin u>t during this displacement will be

S sin o>2 sin &$#t .

Hence the generalized force

Qi = S sin o}t sin ft.

Substituting this in solution (107) and performing the integration we obtain

(7sin ut sin
&

') (7-')'
It is seen that the vibration consists of two parts: (1) forced vibrations proportional

to sin ut having the same period as the disturbing force and (2) free vibrations pro-

portional to sin (aft\t/I). When the frequency of the disturbing force approaches one of

the natural frequencies of vibration o> approaches the value aft/7 for this mode of

vibration and a condition of resonance takes place. The amplitude of vibration of the

corresponding term in the series (q) will then increase indefinitely, as was explained
before (see pp. 15 and 209). In order to approach the static condition the quantity w
should be considered as small in comparison with oft/J in the series (q). Neglecting
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then the terms having wl/afii as a factor, we obtain, for a very slow variation of the

pulsating load,

\ sin 2
ft

Z - AE 0,(2fl, + 8in2ft)
'

which represents the static elongation of the bar (see eq. 105). By comparing the

series (r) and (q) the difference between static and dynamic deflections can be estab-

lished.* It is seen that a satisfactory record of steam or gas pressure can be obtained

only if the frequency of the fundamental mode of vibration of the indicator is high
in comparison with the frequency of the pulsating force.

63. Torsional Vibration of Circular Shafts. Free Vibration. In our

previous discussions (see pp. 9 and 253) the mass of the shaft was either

neglected or considered small in comparison with the rotating masses
attached to the shaft. In the following a more complete theory of the

torsional vibrations of a circular shaft with two discs at the ends is given f

on the basis of which the accuracy of our previous solution is discussed.

It is assumed in the following discussion that the circular cross sections

of the shaft during torsional vibration remain plane and the radii of these

cross sections remain straight. J Let

GIP
= C be torsional rigidity of shaft,

7 be weight per unit of volume of shaft,

6 be angle of twist at any arbitrary cross section mn (see Fig. 175)

during torsional vibration,

/i, 12 are moments of inertia of the discs at the ends of the shaft about the

shaft axis.

Considering an element of the shaft between two adjacent cross sections

mn and /ftini the twisting moments at these cross sections will be

30
GIP and G

dx

The differential equation of rotatory motion of the elemental disc

(see Fig. 175) during torsional vibration will be

u* ^ P n 2
g dt2 dx2

* "Oamping effect is neglected in this consideration.

t See writer's paper in the Bulletin of the Polytechnical Institute in S. Petersburg,

1005, and also his paper "Ueber die Erzwungenen Schwingungen von Prismatischen

Stiiben," Z. f. Math. u. Phys., Vol. 50 (1011).

J A more complete theory can be found in L. Pochhammer's paper, mentioned

before fr>. 308).
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or by using the notation

^ = a2 (109)
7

we obtain

S-'0' (UO)

This equation is identical with the eq. (94) obtained above for the

jt
longitudinal vibration and the previous results

can be used in various particular cases. For

LJ-x instance, in the case of a shaft with free ends the

/ >|J frequency equation will be identical with eq. (96)

FIG. 178. and the general solution will be (see eq. 99).

f

^-^ ITTX ( iirat iirat\
6 = > J cos I A v cos -

, + B % sin
-

) (HI)
,tY Z \ / I /

v 7

In the case of a shaft with discs at the ends the problem becomes more

complicated and the end conditions must be considered. From the con-

dition that the twisting of the shaft at the ends is produced by the inertia

forces of the discs we obtain (see Fig. 178).

A
(a)

(6)

Assume that the shaft performs one of the normal modes of vibration,
then it can be written :

6 = X(A cos pt + B sin pt), (c)

where X is a function of x alone, determining the shape of the mode of

vibration under consideration.

Substituting (c) in eq. (110) we obtain

dx2

from which

X = C cos + D sin
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The constants C and D should be determined in such a manner as to

satisfy the end conditions. Substituting (d) in eqs. (a) and (6) we obtain

p* (ccos
Pl + D sin ?l

] I2 = P GIP (- Csin^ + Dcos^Y (e)
\ a a / a \ a a I

Eliminating the constants C and D the following frequency equation
will be obtained,

/ pi pali . pl\ p / pi pali pl\ ...
p
2 lcos - -sin- 1/2=-' G/p (sm-+ cos~J- (/)
\ a GIP a/ a \ a GIP a/

Letting

pl a Iig II /2
/ \- = 0;

- = - = m; T = n
> (d

a ytlp /o /o

where 7o = (yU r/g) is the moment of inertia of the shaft about its axis,

we obtain, from eq. (/) the frequency equation in the following form:

pn(l - m/3 tan jS)
= (tan ft + m$)

or

tan^ = ^-^. (112)
mn@2 1

Let

01, 02, 03,
'

be the consecutive roots of this transcendental equation, then the corre-

sponding normal functions, from (d) and (e) will be

v n ( &x o ^\A = C I cos -- mpi sin I

and we obtain for the general solution in this case

* ^f ^ a ^V^ ^^_LP
o = 2_j \

cos
~7

m^ sm ~T / 1
cos T" "^ * sm

If the moments of inertia /i and /2 of the discs are small in comparison
with the moment of inertia /o of the shaft, the quantities m and n in eq.

112 become small, the consecutive roots of this equation will approach
the values TT, 2?r, and the general solution (113) approaches the solution

(111) given above for a shaft with free ends.
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Consider now another extreme case, more interesting from a practical

standpoint, when I\ and 12 are large in comparison with Io; the quantities

m and n will then be large numbers. In this case unity can be neglected
in comparison with mnp2 in the denominator on the right side of eq. 112

and, instead of eq. (112), we obtain

tan = (1/ra + 1/n). (114)

This equation is of the same form as eq. (104) (see p. 318) for longitudinal

vibrations. The right side of this equation is a small quantity and an

approximate solution for the first root will be obtained by substituting
tan 0i = 0i. Then

0i = Vl/ro + 1/n. (h)

The period of the corresponding mode of vibration, from eq. 113, will be

0ia 2?rZ

T1 = 2?r :
- =

/ 0ia

or, by using eqs. 109, (g) and (h), we obtain

T n^j,' (H5)
t pUi T" J-2)

This result coincides with eq. 16 (see p. 12) obtained by considering the

system as having one degree of freedom and neglecting the mass of the

shaft.

The approximate values of the consecutive roots of eq. (114) will be,

02 = TT + l/7r(l/m + 1/n); 03 = 2ir + l/27r(l/m + 1/n);

It is seen that all these roots are large in comparison with 0i, and the

frequencies of the corresponding modes of vibration will be very high in

comparison with the frequency of fundamental type of vibration.

In order to get a closer approximation for the first root of eq. (112), we
substitute tan 0i = 0i + l/30i

3
,
then

or

m + n

(
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Substituting in the right side of this equation the value of 0i from eq. (h)

and neglecting small quantities of higher order, we obtain

n 3

and the corresponding frequency of the fundamental vibration will be

3

The same result will be obtained if in the first approximation for the

frequency

g),
1 /<?/(/, + 7,

/-5I\ irrZTT ^ ti 1 1 2

as obtained from eq. (115) we substitute

Ii+-Io 7 "7- and 1-2 + ~Io 7 TT~for ^1 and ^2-

O ll + 12 O 11 H- 12

This means that the second approximation (116) coincides with the

result which would have been obtained by the Rayleigh method (see

Art. 16, p. 88). According to this method one third of the moment
of inertia of the part of the shaft between the disc and the nodal cross

section should be added to the moment of inertia of each disc. This

approximation is always sufficient in practical applications for calculating

the frequency of the fundamental mode of vibration.*

Forced Vibration. In studying forced torsional vibrations generalized

coordinates again are very useful. Considering the brackets containing t

in the general solution (113) as such coordinates, we obtain

e = * (cos ^r
-

ii \ l

in which pi are consecutive roots of eq. (112).

* A. graphical method for determining the natural frequencies of toreional vibration

of shafts with discs has been developed by F. M. Lewis, see papers: "Torsional Vibra-

tions of Irregular Shafts," Journal Am. Soc. of Naval Engs. Nov. 1919, p. 857 and
"Critical Speeds of Torsional Vibration," Journal Soc, Automotive Engs., Nov. 1920,

p. 413.

sn
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The potential energy of the system will be

, GI, fl

, a 008

(118)
o i = i

where

Ai = 2ft(l + m2
ft

2
)
- sin 2ft + m2

ft
2 sin 2ft + 2ftm(l - cos 2ft). (A)

The terms containing products of the coordinates in expression (118)

disappear in the process of integration in virtue of eq. (112). Such a

result should be expected if we remember that our generalized coordinates

are principal or normal coordinates of the system.
The kinetic energy of the system consists of the energy of the vibrating

shaft and of the energies of the two oscillating discs:

T = IT r^ + 1***-* + 1 1*?*-'zg J & &

or, substituting (117) for 6 we obtain

r = xUT? a
> (119)O <-l Pt

in which Ai is given by eq. (fc).

By using eqs. (118) and (119) Lagrange's equations will become:

or

*^-a*
in which Q is the symbol for the generalized force corresponding to the

generalized coordinate g.

Considering only the vibration produced by the disturbing force, we
obtain from eq. (I)

/ Qi sin ^ (t
-

ti)dti.
JQ I
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Substituting in eq. (117), the general expression for the vibrations pro-
duced by the disturbing forces, we will find:

^ j / Q, sin (t
-

ti)dtL (120)
v

In every particular case it remains only to substitute for Q t the corre-

sponding expression and to perform the indicated integration in order to

obtain forced vibrations. These forced vibrations have the tendency to

increase indefinitely* when the period
of the disturbing force coincides with

the period of one of the natural vibra-

tions.

64. Lateral Vibration of Prismatical

Bars. Differential Equation of Lateral

Vibration. Assuming that vibration

occurs in one of the principal planes of
*

FlG 179
flexure of the bar and that cross sec-

tional dimensions are small in comparison with the length of the bar,

the well known differential equation of the deflection curve

m m,M

TUU

w<&
I

EI-*= -
dx2 (121)

will now be used, in which

El is flexural rigidity and,
M is bending moment at any cross section. The direction of the axes

and the positive directions of bending moments and shearing forces

are as shown in Fig. 179.

Differentiating eq. (121) twice we obtain

dx

dM

El dV\ _ dQ
dx2/ dx

dQ- = w.
dx

(a)

This last equation representing the differential equation of a bar subjected
to a continuous load of intensity w can be used also for obtaining the

equation of lateral vibration. It is only necessary to apply D'Alembert's

1

Damping is neglected in our calculations.



332 VIBRATION PROBLEMS IN ENGINEERING

principle and to imagine that the vibrating bar is loaded by inertia forces,

the intensity of which varies along the length of the bar and is given by

where 7 is the weight of material of the bar per unit volume, and

A is cross-sectional area.

Substituting (b) for w in eq. (a) the general equation for the lateral

vibration of the bar becomes *

2d!. (122)
g dt*

(122)

In the particular case of a prismatical bar the flexural rigidity El
remains constant along the length of the bar and we obtain from eq. (122)

El ^ = - ~~ ^
d^ g dt2

or

in which

a* = E'9
-

(124)
A-y

We begin with studying the normal modes of vibration. When a bar

performs a normal mode of vibration the deflection at any location varies

harmonically with the time and can be represented as follows:

y X(A cos pt + B sin p(), (c)

where X is a function of the coordinate x determining the shape of the

normal mode of vibration under consideration. Such functions are called

"normal functions." Substituting (c) in eq. (123), we obtain,

* The differential equation in which damping is taken into consideration has been
discussed by H. Holzer, Zeitschr. f. angew. Math. u. Mech., V. 8, p. 272, 1928. See also

K. Sezawa, Zeitschr f. angew. Math. u. Mech., V. 12, p. 275, 1932.
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from which the normal functions for any particular case can be obtained.

By using the notation

p2 p2Ay
I*

~
-Elg

" A (126)

it can be easily verified that sin kx, cos kx, sinh kx and cosh kx will be

particular solutions of eq. (125) and the general solution of this equation
will be obtained in the form,

X = Ci sin kx + Cz cos kx + 3 sinh kx + C cosh kx, (127)

in which Ci, C are constants which should be determined in every
particular case from the conditions at the ends of the bar. At an end
which is simply supported, i.e., where the deflection and bending moment
are equal to zero, we have

(PXX = 0; ^ 2
= 0. (d)

At a built-in end, i.e., where the deflection and slope of the deflection

curve are equal to zero,

X = 0;
~ = 0. (e)

At a free end the bending moment and the shearing force both are equal to

zero and we obtain,

-* -*

For the two ends of a vibrating bar we always will have four end con-

ditions from which the ratios between the arbitrary constants of the

general solution (127) and the frequency equation can be obtained. In

this manner the modes of natural vibration and their frequencies will

be established. By superimposing all possible normal vibrations (c)

the general expression for the free lateral vibrations becomes:

i
J=

00

y = XI X^AiCos plt + B, sin pj) . (128)
<-i

Applications of this general theory to particular cases will be considered

later.

Forced Vibration. In considering forced lateral vibrations of bars

generalized coordinates are very useful and, in the following, the expressions
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in the brackets of eq. (128) will be taken as such coordinates. Denoting
them by the symbol, g we obtain

V = 2^ ffjr* (129)

In order to derive Lagrange's equations it is necessary to find expressions
for the potential and kinetic energy.

The potential energy of the system is the energy of bending and can

be calculated as follows :

2 JQ \dx2
/ 2 t4"i

*

*/o V dx2 /

The kinetic energy of the vibrating bar will be

A rl
A <= ~ cl

T = J- / y*dx = ~ Y\ q
2

/ X 2dx. (131)
2gf /o 20 i = i /o

The terms containing products of the coordinates disappear from the

expressions (130) and (131) in virtue of the fundamental property of

normal functions (see p. 209). This can also be proven by direct inte-

gration.

Let Xm and Xn be two normal functions corresponding to normal
modes of vibration of the order ra and n, having frequencies p m/27r and

pn/2w. Substituting in eq. (125) we obtain

Xn.

dx* a*

Multiplying the first of these equations with Xn and the second with Xm,

subtracting one from another and integrating we have

P2
n
- P2 m f' v , __ /^/V d*X V ^Aj
a2 4 XmX ndX-

J^ \Xm-dxt
"A n

4)**,

from which, by integration by parts, follows

Pn
2 ~ P.2

f"
a2 A Y ** ^ n

-y
** ^ m

"A- m ,o ^*-n ,o

Y l

(132)

XmXndx =
'o

tl,S\ ~ IM.~ S\ ~. I1.S\ 1 1.~ S\ _

+
dx dx2 dx dx'2
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From the end conditions (d), (e) and (/) it can be concluded that in all

cases the right side of the above equation is equal to zero, hence,

c
l

IJ
= when ra n

and the terms containing the products of the coordinates disappear from

eq. (131). By using an analogous method is can be shown also that the

products of the coordinates disappear from eq. (130).

Equation (132) can be used also for the calculation of integrals such as

r i r i /fny \2

f XJdx and f (

L
*:)dX (g)

JO JO \ dx2
/

entering into the expressions (130) and (131) of the potential and the kinetic energy of

a vibrating bar.

It is easy to see that by directly substituting m = n into this equation, the necessary
results cannot be obtained because both sides of the equation become equal to zero.

Therefore the following procedure should be adopted for calculating the integrals (g).

Substitute for Xn in eq. (132) a function which is very near to the function Xm and
which will be obtained from eqs. (125) and (126) by giving to the quantity k an infinitely

small increase 6k, so that Xn approaches Xm when dk approaches zero. Then

? = (k -f 6/c)
4 = fc

4 + Wdk,
a2

,

a2

Y - Y 4-
dXm MA n Am -f-
"- OK.
dk

Substituting in eq. (132) and neglecting small quantities of higher order we obtain

,
4/c3

/ X m dx
dd*Xm dXm d*Xm

,

d fdXm\d*Xm dXm d
- ~~~ ~ ~ ~ ~ ~~~ ~~"- ~r~~ ~

~r^ r ~ ~
~~r~:> ~~", rr , ,dk dx3 dk dx* dk \ dx / dx- dx dk\dx*

In the following we denote by X', X",- -consecutive derivatives of X with respect to

kxj then

- m > 11dx dk

With these notations eq. (125) becomes

X"" = X,

and eq. (h) will have the following form:
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'/"X'md*:
^0

4k* - k*xXm'Xm'"

or

4k 3XmXmr" - 2kxXm'Xm'" -

,")
- kXm'(2kXm" + k*xXm'")

I" + kx(Xm")* (k)

From the end conditions (d), (e) and (/) it is easy to see that the terms in eq. (k) con-

taining the products XmXm'" and Xm'Xm" are equal to zero for any manner of fastening

the ends, hence

f X*
Jo

dx x{X*m - 2Xm'Xm'"

= -
{X'm - 2Xm'Xm'" + (*,"

4
(133)

From this equation the first of the integrals (g) easily can be calculated for any kind of

fastening of the ends of the bar. If the right end (x = I) of the bar is free,

and we obtain, from (133)

If the same end is built in, we obtain

f X*mdx
JQ

For the hinged end we obtain

f X*mdx
^0

(134)

(135)

(136)

In calculating the second of the integrals (g) equation (125) should be used. Multi-

plying this equation by X and integrating along the length of the bar:

p 2 rl r l d4x
I X*dx = I Xdx.

a*J JQ dx*

Integrating the right side of this equation by parts we obtain,

(137)

This result together with eq. (133) gives us the second of the integrals (g) and now the

expressions (130) and (131) for V and T can be calculated. Eqs. (133) and (137) are

very useful in investigating forced vibrations of bars with other end conditions than
hinged ones.
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56. The Effect of Shearing Force and Rotatory Inertia. In the previous discus-

sion the cross sectional dimensions of the bar were considered to be very small in

comparison with the length and the simple equation (121) was used for the deflection

curve. Corrections will now be given, taking into account the effect of the cross sectional

dimensions on the frequency. These corrections may be of considerable importance in

studying the modes of vibration of higher frequencies when a vibrating bar is subdivided

by nodal cross sections into comparatively short portions.

Rotatory Inertia.* It is easy to see that during vibration the elements of the bar
such as mnm\n\ (see Fig. 179) perform not only a translatory motion but also rotate.

The variable angle of rotation which is equal to the slope of the deflection curve will be

expressed by dy/dx and the corresponding angular velocity and angular acceleration

will be given by
d*y d*y

and
dxdt dxdt*

Therefore the moment of the inertia forces of the element mnm\n\ about the axis through
its center of gravity and perpendicular to the xy plane will be t

Iy d*y
dx.

g dxdt2

This moment should be taken into account in considering the variation in bending
moment along the axis of the bar. Then, instead of the first of the equations (a) p. 331,
we will have,

dx g

Substituting this value of dM/dx in the equation for the deflection curve

and using (6) p. 332, we obtain

m^^^Jy^LL^L. (138)
dx4

g dP g dx*dt*

This is the differential equation for the lateral vibration of prismatical bars in which the

second term on the right side represents the effect of rotatory inertia.

Effect of Shearing Force. I A still more accurate differential equation is obtained

if not only the rotatory inertia, but also the deflection due to shear will be taken into

account. The slope of the deflection curve depends not only on the rotation of cross

sections of the bar but also on the shear. Let ^ denote the slope of the deflection curve

when the shearing force is neglected and /3 the angle of shear at the neutral axis in the

same cross section, then we find for the total slope

7-* + *
dx

* See Lord Rayleigh, "Theory of Sound/' paragraph 186.

t The moment is taken positive when it is a clockwise direction.

t See writer's paper in Philosophical Magazine (Ser. 6) Vol. 41, p. 744 and Vol. 43,

p. 125.
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From the elementary theory of bending we have for bending moment and shearing force

the following equations,

M = - El
; Q = k'pAG = k' ( - * ) AG,dx \dx I

In which kf
is a numerical factor depending on the shape of the cross section; A is the

cross sectional area and G is modulus of elasticity in shear. The differential equation
of rotation of an element mnm\n\ (Fig. 179) will be

dM j ,
^ d * 7dx + Qdx = dx.

dx g dt2

Substituting (6) we obtain

dx'2 \dx I g dt'2

The differential equation for the translatory motion of the same element in a vertical

direction will be

dQ yA Vy
dx = dx,

dx g dt'2

or

.. .
- - }AG = 0. (d)

g dt* \dx'
2

dx/
'

Eliminating fy from equations (c) and (d) the following more complete differential

equation for the lateral vibration of prismatical bars will be obtained

_ ..-
.

dx* g dt'2 \g
^

gk'G] dx'W g gk'G dt*

The application of this equation in calculating the frequencies will be shown in the

following article.

66. Free Vibration of a Bar with Hinged Ends. General Solution.

In considering particular cases of vibration it is useful to present the

general solution (127) in the following form

X = Ci(cos kx + cosh kx) + 2 (cos kx cosh kx)

+ Ca(sin kx + sinh kx) + C^sin kx sinh kx) -
. (140)

In the case of hinged ends the end conditions are

(1) (X),. = 0; (2) (ff) =0;
\rfx2 / z _

(3) (Z),.,-0; (4) =0. (a)
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From the first two conditions (a) it can be concluded that the constants

Ci and 2 in solution (140) should be taken equal to zero. From con-

ditions (3) and (4) we obtain 3 = 4 and

sin kl = 0, (141)

which is the frequency equation for the case under consideration. The
consecutive roots of this equation are

kl = 7T, 27T, 37T . (142)

The circular frequencies of the consecutive modes of vibration will be
obtained from eq. (126) :

i o /t , ox
Pi = aki- = ---

; p2 =
~-p-

; pa =
--^ ; , (143)

and the frequency fn of any mode of vibration will be found from the

equation

p. _ n'or _ xn* /A7g
; "

27T 2P 2P>A7
U }

The corresponding period of vibration will be

(145)

It is seen that the period of vibration is proportional to the square of the

length and inversely proportional to the radius of gyration of the cross

section. For geometrically similar bars the periods of vibration increase

in the same proportion as the linear dimensions.

In the case of rotating circular shafts of uniform cross section the

frequencies calculated by eq. 144 represent the critical numbers of revo-

lutions per second. When the speed of rotation of the shaft approaches
one of the frequencies (144) a considerable lateral vibration of the shaft

should be expected.
The shape of the deflection curve for the various modes of vibration

is determined by the normal function (140). It was shown that in the

case we are considering, Ci = C2 = and Ca = C4, hence the normal

function has a form
X = D sin kx. (6)

Substituting for k its values, from eq. (142), we obtain

_ . ,r _. .= D% sin ;
X3 = DS sin

;

l i
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It is seen that the deflection curve during vibration is a sine curve, the

number of half waves in the consecutive modes of vibration being equal
to 1, 2, 3 . By superimposing such sinusoidal vibrations any kind of

free vibration due to any initial conditions can be represented. Substi-

tuting (6) in the general solution (128) we obtain
"

fax
y =

2^i sin (d cos pd + D< sin pd). (146)
I i

The constants d, D, of this solution should be determined in every

particular case so as to satisfy the initial conditions. Assume, for instance,

that the initial deflections and initial velocities along the bar are given by
the equations

(y) t-o = S(%) and (y) tmQ = fi(x).

Substituting t = in expression (146) and in the derivative of this ex-

pression with respect to t, we obtain,

/ \ f/ \ \r^ sv tiffi / \

(y) *-o = f(x) =
2*1 Ci sm ~7~ > w
<-i ^

f\ f f \ ^ n iirx
tA\

(y) i-o = /iw =
2^1 P*D* sm "T"

' w
<Ii *

Now the constants d and D; can be calculated in the usual way by multi-

plying (c) and (d) by sin (iirx/l)dx and by integrating both sides of these

equations from x = to x = I. In this manner we obtain

x\."f **x
i f *.

dx, (e)

Assume, for instance, that in the initial moment the axis of the bar is

straight and that due to impact an initial velocity v is given to a short

portion 6 of the bar at the distance c from the left support. Then,
f(x) = and/i(rr) also is equal to zero in all points except the point x = c

for which /i (c)
= v. Substituting this in the eqs. (e) and (/) we obtain,

C, ==0; Di = v8 sin - -

Ipi I

Substituting in (146)

2vd^ 1 . lire iirx
y = r 2^ sm T" sin ~T~ sin P*- (147)

* i-iP\ i *
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If c = (Z/2), i.e., the impact is produced at the middle of the span,

2vd/l . TTX 1 3wx 1 fax \
y = I sm sin pit

-- sin sin prf H-- sin sin p&t ---- )
I \pi I pz I P5 I /
2vdl/l= s\T sm T sn Plt

""
Q sin ~T~ sin P3* + o^ sin ~T~ sin PS*

Q/7T \L I \j I o I

It is seen that in this case only modes of vibration symmetrical about the
middle of the span will be produced and the amplitudes of consecutive
modes of vibration entering in eq. (g) decrease as l/i

2
.

The Effect of Rotatory Inertia and of Shear. In order to find the values of the fre-

quencies more accurately equation (139) instead of equation (123) should be taken.

Dividing eq. (139) by Ay/g and using the notation,

'

A'
we obtain

This equation and the end conditions will be satisfied by taking

y = C sin - cos pmt. (k)

Substituting in eq. (148) we obtain the following equation for calculating the frequencies

E r27

I*
'm rm

I*
rm

/ k'G

Considering only the first two terms in this equation we have

W2
7T

2
<Z7T

2

in which

X = (l/m) is the length of the half waves in which the bar is subdivided during vibration.

This coincides with the result (143) obtained before. By taking the three first

terms in eq. (149) and considering 7r
2r 2/X2 as a small quantity we obtain

Pm "
~X?

' l ~ ~
V9 '

"

(w)

In this manner the effect of rotatory inertia is taken into account and we see that this

correction becomes more and more important with a decrease of X, i.e., with an increase

in the frequency of vibration.

In order to obtain the effect of shear all terms of eq. (149) should be taken into con-

sideration. Substituting the first approximation (1) for pm in the last term of this
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equation it can be shown that this term is a small quantity of the second order as com-

pared with the small quantity 7rV2/X2
. Neglecting this term we obtain,

*

Assuming E = 8/3(7 and taking a bar of rectangular cross section for which k' 2/3,

we have

A. 4.
k'G

The correction due to shear is four times larger than the correction due to rotatory
inertia.

Assuming that the wave length X is ten times larger than the depth of the beam, we
obtain

1 TrV2 _ 1 7T
2 1

2* X2
~

2'l2*100
~

'
'

and the correction for rotatory inertia and shear together will be about 2 per cent.

57. Other End Fastenings. Bar with Free Ends. In this case we
have the following end conditions:

(!) -0; (2)- () -0;Va^/x-o

In order to satisfy the conditions (1) and (2) we have to take in the general
solution (140)

C2 = C4 =
so that

X = Ci(cos kx + cosh kx) + Ca(sin kx + sinh kx). (b)

From the conditions (3) and (4) we obtain

Ci( cos kl + cosh kl) + C3 (
- sin kl + sinh kl)

=
0,

Ci(sin kl + sinh kl) + C3 (
- cos kl + cosh kl)

= 0. (c)

A solution for the constants Ci and Ca, different from zero, can be obtained

only in the case when the determinant of equations (c) is equal to zero.

In this manner the following frequency equation is obtained :

(
- cos kl + cosh kl)

2 -
(sinh

2 kl - sin2 kl) =

* This result is in a very satisfactory agreement with experiments. See paper by
E. Goens, Annalen dcr Physik 5 series, Vol. 11, p. 649, 1931.
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or, remembering that

cosh2 kl sinh2 kl = 1,

cos2 kl + sin2 kl = 1,

we have
cos kl cosh kl = 1. (151)

The first six consecutive roots of this equation are given in the table

below :

k\l k%l k$l kjl_k$l k&l

~0 4.730 7.853 10.996 14JL37 17.279

Now the frequencies can be calculated by using eq. (126)

Substituting the consecutive roots of eq. (151) in eq. (c) the ratios

for the corresponding modes of vibration can be calculated and the

shape of the deflection curve during ^__
vibration will then be obtained from ^*^ ~~7 ^^
eq. (b). In the Fig. 180 below the first

W
three modes of natural vibration are

shown. On these vibrations a displace- s
ment of the bar as a rigid body can be

superposed. This displacement corre-

sponds to the frequency k\l = 0. Then
the right side of eq. (125) becomes zero

and by taking into consideration the

end conditions (a), we obtain X = a + bx. The corresponding motion

can be investigated in the same manner as was shown in the case of

longitudinal vibration (see p. 316).

Bar with Built-in ??ids. The end conditions in this case are:

(1) (X).. -0; (2)

(3) (Z)..,-0; (4)

The first two conditions will be satisfied if in the general solution (140) we
take

d = C3 = 0.
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From the two other conditions the following equations will be obtained

C2(cos kl cosh kl) + 4 (sin kl sinh kl)
= 0,

C2(sin kl + sinh kl) + C( cos kl + cosh kl)
=

0,

from which the same frequency equation as above (see eq. (151)) can be

deduced. This means that the consecutive frequencies of vibration of a

bar with built-in ends are the same as for the same bar with free ends.*

Bar with One End Built in, Other End Free. Assuming that the left

end (x = 0) is built in, the following end conditions will be obtained :

(1) OT.-.-O; (2) (f),_-<>;

(3) () .0; (4) () ,0.
\dx*/x=i \dx6 /x=i

From the first two conditions we conclude that Ci = Cs = in the general
solution (140). The remaining two conditions give us the following

frequency equation:
cos kl cosh kl = 1.

The consecutive roots of this equation are given in the table below:

k\l kj, k%l kl k&l kol

1.875 4.694 7.855 Io7996 14.137 17.279

It is seen that with increasing frequency these roots approach the roots

obtained above for a bar with free ends. The frequency of vibration of

any mode will be

- J^ _ ^ *
2

fi
~

2;
"
"aT

Taking, for instance, the fundamental mode of vibration, we obtain

a /1.875V

The corresponding period of vibration will be :

~/i
~

a 1.8752
~

3.515

* From eq. (125), it can be concluded that in this case there is no motion corre-

sponding to kil = a
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This differs by less than 1.5 per cent from the approximate solution

obtained by using Rayleigh's method (see p. 86).

Bar with One End Built in, Other End Supported. In this case the

frequency equation will be

tan kl = tanh kl.

The consecutive roots of this equation are:

k\l k2l k$l kl ksl

3.927 7.069 10.210 13.352 16.493

Beam on Many Supports.* Consider the case of a continuous beam
with n spans simply supported at the ends and at (n 1) intermediate

supports. Let l\, fc, ,
ln the lengths of consecutive spans, the flexural

rigidity of the beam being the same for all spans. Taking the origin of

coordinates at the left end of each span, solution (127) p. 333 will be used
for the shape of the deflection curve of each span during vibration. Tak-

ing into consideration that the deflection at the left end (x = 0) is equal
to zero the normal function for the span r will be

Xr
= ar(cos kx cosh kx) + cr sin kx + df sinh fcx, (e)

in which ar,
cr and dr are arbitrary constants. The consecutive deriva-

tives of (e) will be

Xr
f = arfc(sin kx + sinh kx) + crk cos kx + drk cosh kx, (/)

Xr
" == ~~ ark2

(cos kx + cosh kx) crk2 sin kx + drk
2 sinh kx. (g)

Substituting x = in eqs. (/ ) and (g) we obtain

It is seen that cr + dr is proportional to the slope of the deflection curve,

and ar is proportional to the bending moment at the support r. From
the conditions of simply supported ends it can now be concluded that

11 = OH+I = 0.

Considering the conditions at the right end of the span r we have,

r),.!,
= 0; (X'r)x _ lf

= (X'r+l),_ ; (Xr"),-!,
= (X"r+l),- 0>

* See E. R. Darnley, Phil. Mag., Vol. 41 (1921), p. 81. See also D. M. Smith, Engi-

neering, Vol. 120 (1925), p. 808; K. Hohenemser and W. Prager, "Dynamik der Stab-

werke," p. 127. Berlin 1933; K. Federhofer, Bautechn., Vol. 11, p. 647, 1933; F. Stiissi,

Schweiz. Bauztg., Vol. 104, p. 189, 1934> and W. Mudrak, Ingenieur-Archiv, Vol. 7, p. 51,

1936.
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or by using (e), (/) and (g),

ar(cos klr cosh klr) + cr sin fcZr + dr sinh klr
=

0, (ft)

ar (sin Mr + sinh klr) + cr cos fcZr + dr cosh fcZr = cr+i + dr +i, (k)

ar(cos klr + cosh klr) + cr sin fcZr dr sinh klr = 2ar+i. (Z)

Adding and subtracting (h) and (I) we obtain

ar cos klr + cr sin fcZr
= ar ;

cosh &Zr dr sinh fcZr = ar+i

from which, provided sin klr is not zero,

ar +i ar cos klr , ar +i + ar cosh fcZr , .

Cr =- -,
-

J
dr
=-

TT-T^
- (m)

sin klr sinh /ar

and

cr + dr
= ar (coth klr cot fc r) ar +i(cosech klr cosec fcZr). (ri)

Using the notations:

coth klr cot Mr
=

(pry (o)

cosech klr cosec klr
=

i/v,

we obtain

Cr + dr = 0>r<Pr
~ ar+l^r.

In the same manner for the span r + 1

cr+ i + dr+i
= ar +i<pr +i

~ ar -h2^r-j-i. (p)

Substituting (m) and (p) in eq. (ft), we obtain

<^r+l) + ar+2^r + l
= 0. (#)

Writing an analogous equation for each intermediate support the

following system of (n 1) equations will be obtained:

=
0,

=
y.......... (r)

an_l^n _l an (<f>n-l + <Pn)
= 0.

Proceeding in the usual manner and putting equal to zero the de-

terminant of these equations the frequency equation for the vibration of

continuous beams will be obtained.
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Take, for instance, a bar on three supports, then only one equation of

the system (r) remains and the frequency equation will be

<P\ -f <P2
=

or

The frequencies of the consecutive modes of vibration will be obtained
from the condition,

In the solution of this transcen-

dental equation it is convenient to

draw a graph of the functions <p

and p. In Fig. 181 <p and y
are given as functions of the argu-
ment kl expressed in degrees. The
problem then reduces to finding

by trial and error a line parallel to

the x axis which cuts the graphs
of <p and <p in points whose
abscissae are in the ratio of the

lengths of the spans.

Taking, for instance, l\ : Z2 =
6 : 4.5, we obtain for the smallest

root

kli = 3.416,

from which the frequency of the

fundamental mode of vibration be-

comes

7

v i
45 90 135 180

FIG. 181.

__ ki
2a _ 3.4162

fi ~
27T~

"
27T/X

2 \ Ay

For the next higher frequency we obtain

kk - 4.787.

The third frequency is given approximately by kh = 6.690 so that the
consecutive frequencies are in the ratio 1 : 1.96 : 3.82. If the lengths of

the spans tend to become equal it is seen from Fig. 181 that the smallest

root tends to kli = kh = TT. In the case of the fundamental type of
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vibration each span will be in the condition of a bar with hinged ends.

Another type of vibration will be obtained by assuming the tangent at the

intermediate support to be horizontal, then each span will be in the con-

dition of a bar with one end built in and another simply supported.
In the case of three spans we obtain, from (r),

0,

#3(^2 + ^3) =
0,

and the frequency equation becomes

2 = o. (0

Having tables of the functions v> and \l/

* the frequency of the funda-

mental mode can be found, from (0, by a process of trial and error.

58. Forced Vibration of a Beam with Supported Ends. General In

the case of a beam with supported ends the general expression for flexural

vibration is given by eq. (146). By using the symbols q% for the generalized
coordinates we obtain from the above equation

^ .
iirx

y = z^ sm ~r* (a)

1=1 *

The expressions for the potential and kinetic energy will now be found
from eqs. (130) and (131) by substituting sin iirx/l for X:

. 2 ., 2T * T sin2 dx = *** (152)

ow
(=1

If disturbing forces are acting on the beam, Lagrange's eq. (74) for any
coordinate g will be

Ayl..

~^ q

or

* Such tables are given in the paper by E. R. Darnley; loc. cit, p. 345. Another
method by using nomographic solution is given in the paper by D. M. Smith, loc. cit.,

p. 345, in which the application of this problem to the vibration of condenser tubes is

shown.
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in which Qi denotes the generalized force corresponding to the coordinate

qi and a2
is given by eq. (124). The general solution of eq. (6) is

cos h i sn

/<
The first two terms in this solution represent the free vibration determined

by the initial conditions while the third
j

term represents the vibration produced by j*"~

the disturbing forces.

Pulsating Force.

consider now the case of a pulsating force

Pulsating Force. As an example let us r
^

F
P = PO sin coJi applied at a distance c from

the left support (see Fig. 182). In order to obtain a generalized force Q
assume that a small increase 6g t is given to a coordinate qi. The corre-

sponding deflection of the beam, from eq. (a), will be

.

by = dq, sin
I

and the work done by the external force P on this displacement is

Then,

r* llrc

Poq, sin

lirC ITTC

P sin = PO sin sin uti. (d)
(l V

Substituting in eq. (c) and considering only that part of the vibrations

produced by the pulsating force we obtain

/ P

""TVivsnr
20 .

O sin I 4 2 ^r sin
2 2j,,-

A(y
, u

^ y<Mo2 -*'

.o 2 .-.4 4 2 2M\ Sil1
T2 )' (g)
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Substituting in eq. (a), we have

i-rrc iirx

lire ITTX

T SmT
. Wat

It is seen that the first series in this solution is proportional to sin cot.

It has the same period as the disturbing force and represents forced
vibrations of the beam. The second series represents free vibrations of the

beam produced by application of the force. These latter vibrations

due to various kinds of resistance will be gradually damped out and only
the forced vibrations, given by equation

. lire iirx

are of practical importance.
If the pulsating force P is varying very slowly, co is a very small quan-

tity and w2
/
4 can be neglected in the denominator of the series (/), then

2gPP *^-? 1 inc iirx

^ = Z^S^ sin T sin T
or, by using eq. (124),

i
i inc

. iirx

^n TSmT .

(g)

This expression represents the statical deflection of the beam produced

by the load P.* In the particular case, when the force P is applied at

the middle, c = 1/2 and we obtain

2PP ( .
TTX 1 . 3-jrx 1

. 5<jrx

The series converges rapidly and a satisfactory approximation for the

* See "Applied Elasticity," p. 131; "Strength of Materials," Vol. 2, p. 417.
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deflections will be obtained by taking the first term only. In this manner
we find for the deflection at the middle :

2P13 PP
v* /z "2 El*** 48.7EI

The error of this approximation is about 1.5 per cent.

Denoting by a the ratio of the frequency of the disturbing force to the

frequency of the fundamental type of free vibration, we obtain

and the series (/), representing forced vibrations, becomes

lire
. iir

sm T Sln T

If the pulsating force is applied at the middle, we obtain

sm sm_I

I -a2

For small a the first term of this series represents the deflection with good
accuracy and comparing (k) with (h) it can be concluded that the ratio

of the dynamical deflection to the statical deflection is approximately

equal to

y* I - a

If, for instance, the frequency of the disturbing force is four times as

small as the frequency of the fundamental mode of vibration, the dy-
namical deflection will be about 6 per cent greater than the statical deflec-

tion.

Due to the fact that the problems on vibration of bars are represented

by linear differential equations, the principle of superposition holds and
if there are several pulsating forces acting on the beam, the resulting

vibration will be obtained by superimposing the vibrations produced

by the individual forces. The case of continuously distributed pulsating
forces also can be solved in the same manner; the summation only has
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to be replaced by an integration along the length of the beam. Assume,
for instance, that the beam is loaded by a uniformly distributed load of

the intensity:

w = WQ sin ut.

Such a load condition exists, for instance, in a locomotive side rod under

the action of lateral inertia forces. In order to determine the vibrations

WQ dc should be substituted for P in eq. (/) and afterwards this equation
should be integrated with respect to c within the limits c = and c = I.

In this manner we obtain

smT
If the frequency of the load is very small in comparison with the fre-

quency of the fundamental mode of vibration of the bar the term co
2
Z
4

in the denominators of the series (m) can be neglected and we obtain,

/ TTX STTX STTX \
A IA I

s*n ~T sin ~T~ sin ~7~ \
4ti>Z

4
I

.
I

.
I

.

This very rapidly converging series represents the statical deflection of the

beam produced by a uniformly distributed load w. By taking x = 1/2 we
obtain for the deflection at the middle

1 -

(P)

If only the first term of this series be taken, the error in the deflection

at the middle will be about 1/4 per cent. If the frequency of the pulsating
load is not small enough to warrant application of the statical equation,
the same method can be used as was shown in the case of a single force

and we will arrive at the same conclusion as represented by eq. (I).

Moving Constant Force. If a constant vertical force P is moving
along the length of a beam it produces vibrations which can be calculated

without any difficulty by using the general eq. (c). Let v denote the

constant *
velocity of the moving force and let the force be at the left

support at the initial moment (t
= 0), then at any other moment t = t\

the distance of this force from this left support will be vti. In order to

* The case when the velocity is not constant has been discussed by A. N. Lowan,
Phil. Mag. Ser. 7, Vol. 19, p. 708, 1935.
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determine the generalized force Q< for this case assume that the coordinate

QI in the general expression (a) of the deflection curve obtains an infinitely
small increase &?. The work done by the force P due to this displacement
will be

Hence the generalized force

Q* = P sin
I

Substituting this in the third term of equation (c) the following expression
will be found for the vibrations produced by the moving load.*

ITTX

2gPP *j
Sm T

.
irvt

sin. (155)

wx

AyIT*a fa i*(i
2
TT
2d2 - v2l

2
) I

2

The first series in this solution represents forced vibrations and the second
series free vibrations of the beam.

If the velocity v of the moving force be very small, we can put v =
and vt = c in the solution above; then

2gPl3 t^ 1 lire iwx= ^ - sin sin -
i-i * I* <>

This is the statical deflection of the beam produced by the load P applied
at the distance c from the left support (see eq. (j)). By using the nota-

tion,

V2l
2

* This problem is of practical interest in connection with the study of bridge vibra-

tions. The first solution of this problem was given by A. N. Kryloff ; see Mathematische

Annalen, Vol. 61 (1905). See also writer's paper in the "Bulletin of the Polytechnical
Institute in Kiev" (1908). (German translation in Zeitschr. f. Math. u. Phys., Vol. 59

(1911)). Prof. C. E. Inglis in the Proc. of The Inst. of Civil Engineers, Vol. 218 (1924),

London, came to the same results. If instead of moving force a moving weight is acting
on the beam, the problem becomes more complicated. See H. H. Jeffcott, Phil. Mag.
7 ser., Vol. 8, p. 66, 1929, and H. Steuding, Ingenieur-Archiv, Vol. 5, p. 275, 1934.
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the forced vibrations in the general solution (155) can be presented in

the following form
iirx iirvt

i *2 (t
2 - a2

)

It is interesting to note that this deflection completely coincides with the

statical deflection of a beam* on which in addition to the lateral load P
applied at a distance c = vt from the left support a longitudinal compressive
force S is acting, such that

S - Sl"
- 2 ^" ~ ~

Here Scr denotes the known critical or column load for the beam.
From the eqs. (s) and (q) we obtain

SI2

or

s,'^.

The effect of this force on the statical deflection of the beam loaded

by P is equivalent to the effect of the velocity of a moving force P on

the deflection (r) representing forced vibrations.

By increasing the velocity v, a condition can be reached where one

of the denominators in the series (155) becomes equal to zero and resonance

takes place. Assume, for instance, that

V = v2l2. (u)

In this case the period of the fundamental vibration of the beam, equal
to 2Z2/W> becomes equal to 2l/v and is twice as great as the time required
for the force P to pass over the beam. The denominators in the first

terms of both series in eq. (155) become, under the condition (u), equal to

* See "Applied Elasticity," p. 163. By using the known expression for the statical

deflection curve the finite form of the function, from which the series (r) has its origin,

can be obtained.
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jro and the sum of these two terms will be

TTVt IV TT
2at

-- sin
I 7r

2a2 - v2l2

his has the form 0/0 and can be presented in the usual way as follows

iee p. 17) :

Pg wvt
, TTX Pgl . wvt . TTX--- t cos sm + - sm sin- (v)

yAirv I I yAw2v2 II
This expression has its maximum value when

I

id is then equal to

Pgl ( TTVt TTVt lTVt\ TTX PP 7TX
--I sin -cos 1 sin = sin--- (w)

yAir
2v2 \ I I I /t-i/v I ElIT* I

Taking into consideration that the expression (v) represents a satis-

tctory approximation for the dynamical deflection given by equation
155) it can be concluded that the maximum dynamical deflection at the

jsonance condition (u) is about 50 per cent greater than the maximum
,atical deflection which is equal to

PZ3

It is interesting to note that the maximum dynamical deflection occurs
rhen the force P is leaving the beam. At this moment the deflection under
le force P is equal to zero, hence the work
one by this force during the passing of the

earn is also equal to zero. In order to explain
le source of the energy accumulated in the

ibrating beam during the passing over of the

)rce P we should assume that there is no fric-

on and the beam produces a reaction R in the FIG. 183.

irection of the normal (Fig. 183). In this case,

om the condition of equilibrium it follows that there should exist a
orizontal force, equal to P(dy/dx). The work done by this force during
s passage along the beam will be

-
/ P(?)

*/o \dx/x~
vdt.
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Substituting expression (v) for y we obtain

P2
g C

V

f Kit TTVt TTVt\ TTVt
,E = I I sin cos -

I cos vat =
yAirv

2JQ \ I I I / I

or, by taking into consideration eqs. (u) and (124) we obtain

"*
This amount of work is very close* to the amount of the potential energy
of bending in the beam at the moment i l/v.

In the case of bridges, the time it takes to cross the bridge is usually

large in comparison with the period of the fundamental type of vibration

and the quantity a2
, given by eq. (<?), is small. Then by taking only

the first term in each series of eq. (155) and assuming that in the most
unfavorable case the amplitudes of the forced and free vibrations are

added to one another, we obtain for the maximum deflection,

,

* i N
air TTV - V2l2/T^TT

2
\7r

2a2 -
t;
2P

2PP 1 + a (156)

This is a somewhat exaggerated value of the maximum dynamical deflec-

tion, because damping was completely neglected in the above discussion.

By using the principle of superposition the solution of the problem
in the case of a system of concentrated moving forces and in the case of

moving distributed forces can be also solved without difficulty.!

Moving Pulsating Force. J Consider now the case when a pulsating force

is moving along the beam with a constant velocity v. Such a condition

may occur, for instance, when an imperfectly balanced locomotive passes
over a bridge (Fig. 184). The vertical component of the centrifugal force

* The potential energy of the beam bent by the force P at the middle is

P2/3 E

This ratio is very close to the square of the ratio of the maximum deflections for the

dynamical and statical conditions which is equal to (48/x3
)
2 = 2.38. The discrepancy

should be attributed to the higher harmonics in the deflection curve.

f See writer's paper mentioned above.

t See writer's paper in Phil. Mag., Vol. 43 (1922), p. 1018.
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P*, due to the unbalance, is P cos eoi, where o> is the angular velocity of the

driving wheel. By using the same
manner of reasoning as before, the p ^

-^.

following expression for the generalized ! _
force, corresponding to the generalized T ^\^ j

i

coordinate g t will be obtained. L "*1 , _ '

Qi = P cos co^i sin - FIG. 184.
I

Substituting this in the third term of the general solution (c), we obtain

*V?;
. \ . . fiirv

y = W ^ m

'

>
,
sin

i4 - (/3+ia)
2

z
4 -

(/S
-

ia)
2

sin~
12 '

(157)

where a = vl/ira is the ratio of the period r 2P/7ra of the fundamental

type of vibration of the beam to twice the time, TI =
l/v,

it takes the force P to pass over the beam,
ft T/T2 is the ratio of the period of the fundamental type of

vibration of the beam to the period 72 = 2?r/co of the pulsat-

ing force.

When the period TL> of the pulsating force is equal to the period T of the

fundamental type of vibration of the beam (3
= 1 and we obtain the

condition of resonance. The amplitude of the vibration during motion

of the pulsating force will be gradually built up and attains its maximum
at the moment t = l/v when the first term (for i = 1) in the series on the

right of (157), which is the most important part of ?/, may be reduced

to the form
1 2PP . TTX .- -~-

i sin sin ut
a Eln* I

and the maximum deflection is given by the formula

1 2JPP 2n
^max ^ VT~I

* ~~~
a hlit* r

* It is assumed that at the initial moment t {
= the centrifugal force is acting in

downwards direction.
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Due to the fact that in actual cases the time interval TI = l/v is large in

comparison with the period r of the natural vibration, the maximum
dynamical deflection produced by the pulsating force P will be many
times greater than the deflection 2Pl3/EIir*, which would be produced

by the same force if applied statically at the middle of the beam. Some
applications of eq. (158) for calculating the impact effect on bridges will

be given in the next article.

59. Vibration of Bridges. It is well known that a rolling load produces
in a bridge or in a girder a greater deflection and greater stresses than the

same load acting statically. Such an "impact effect" of live loads on

bridges is of great practical importance and many engineers have worked
on the solution of this problem.* There are various causes producing

impact effect on bridges of which the following will be discussed: (1) Live-

load effect of a smoothly-running load; (2) Impact effect of the balance-

weights of the locomotive driving wheels and (3) Impact effect due to

irregularities of the track and flat spots on the wheels.

Live-load Effect of a Smoothly Running Mass. In discussing this

problem two extreme cases will be considered: (1) when the mass of the

moving load is large in comparison with

i~ i x the mass of the beam, i.e., girder or rail

f^
*"""""" T bearer, and (2) when the mass of the

moving load is small in comparison with

the mass of the bridge. In the first case

FIG. 185. ^e mass f the beam can be neglected.
Then the deflection of the beam under

the load at any position of this load v/ill be proportional to the pressure

R, which the rolling load P produces on the beam (Fig. 185) and can be

calculated from the known equation of statical deflection :

_ Rx2
(l
-

x)
2

y ~
31EI

"

(a)

In order to obtain the pressure R the inertia force (P/g) (d
2
y/dt

2
) should

be added to the rolling load P. Assuming that the load is moving along
the beam with a constant velocity v, we obtain

dy _ dy __

dt
~~ V

dx' dt*
~ V

~dx2

* The history of the subject is extensively discussed in the famous book by Clebsch'
Theorie der Elastizitat fester Korper, traduite p. S. Venant (Paris 1883), see Note du
par. 61, p. 597.
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and the pressure on the beam will be

)

Substituting in eq. (a) we obtain

gggyg-*)'. ftw)
gdx2) mi (159)

This equation determines the path of the point of contact of the rolling
load with the beam.* An approximation of the solution of eq. (159)
will be obtained by assuming that the path is the same as at zero speed
(v
= 0) and by substituting

Px2
(l
-

a:)
2

31EI

for y in the right side of this equation. Then by simple calculations it

can be shown that y becomes maximum when the load is at the middle
of the span and the maximum pressure will be

The maximum deflection in the center of the beam increases in the same
rate as the pressure on it, so that :

(v
2 PI \

l + - (160)

This approximate solution as compared with the result of an exact solution

of the eq. (159) f is accurate enough for practical applications. The
additional term in the brackets is usually very small and it can be con-

* This equation was established by Willis: Appendix to the Report of the Com-
missioners ... to inquire into the Application of Iron to Railway Structures (1849),
London. This report was reprinted in the "Treatise on the Strength of Timber, Cast
and Malleable Iron," by P. Barlow, 1851, London.

t The exact solution of eq. (159) was obtained by G. G. Stokes, see Math, and

Phys. Papers, Vol. 2, p. 179. The same problem has been discussed also by H. Zim-

mermann, see "Die Schwingungen eines Traegers mit bewegter Last." Berlin, 1896.

It should be noted that the integration of eq. (159) can be made also numerically by
using the method explained before, see p. 126. In this manner solutions for a beam on
elastic supports and for continuous beams were obtained by Prof. N. P. Petroff, see, the

Memoirs of The Russian Imperial Technical Society (1903).
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eluded that the "live-load effect" in the case of small girders has no prac-

tical importance.
In the second case when the mass of the load is small in comparison

with the mass of the bridge the moving load -can be replaced, with sufficient

accuracy, by a moving force and then the results given in article 58 can be

used. Assuming, for instance, that for three single track railway bridges
with spans of 60 feet, 120 feet and 360 feet, the natural frequencies are as

shown in the table below,*

().-120ft.per.eo.

and taking the velocity v = 120 feet per sec., the quantity , repre-

senting the ratio of the period of the fundamental type of vibration

to twice the time l/v for the load to pass over the bridge will be as shown
in the third line of the table. Now on the basis of solution (156) it can

be concluded f that for a span of 60 feet and with a very high velocity,

the increase in deflection due to the live load effect is about 12 per cent and
this is still diminished with a decrease of velocity and with an increase of

span. If several moving loads are acting on the bridge the oscillations

associated with these should be superimposed. Only in the exceptional
case of synchronism of these vibrations the resultant live-load effect on the

system will be equal to the sum of the effects of the separate loads and the

increase in deflection due to this effect will be in the same proportion as

for a single load. From these examples it can be concluded that the live-

load effect of a smooth-running load is not an important factor and in the

most unfavorable cases it will hardly exceed 10 per cent. Much more
serious effects may be produced, as we will see, by pulsating forces due to

rotating balance weights of steam locomotives.

Impact Effect of Unbalanced Weights. The most unfavorable condition

* Some experimental data on vibrations of bridges can be found in the following

papers: A. Buhler, Stosswirkungen bei eisernen Eisenbahnbrueken, Druckschrift zum
Intern. Kongress fur Briickenbau, Zurich, 1920; W. Hort, Stossbeanspruchungen
und Schwingungen . . . Die Bautechnik, 1928, Berlin, and in books N. Streletzky,

"Ergebnisse der experimentellen Bruckeminterj3uchungen" Berlin, 1928, and C. -K

Inglis,
" A Mathematical Treatise on Vibrations in Railway Bridges," Cambridge, 1934.

t The bridge is considered here as a simple beam of a constant cross section. Vibra-

tion of trusses has been discussed by H. Reissner, Zeitschr. f. Bant., Vol. 53 (1903),

p. 135, E. Pohlhausen, Zeitschr. f. Angew. Math. u. Mech., Vol. 1 (1921), p. 28, and
K. Federhofer, "Der Stahlbau." 1934, Heft 1.
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occurs in the case of resonance when the number of revolutions per second
of the driving wheels is equal to the frequency of natural vibration of the

bridge. For a short span bridge the frequency of natural vibration is

usually so high that synchronism of the pulsating load and the natural

vibration is impossible at any practical velocity. By taking, for instance,
six revolutions per second of the driving wheels as the highest limit and

taking the frequencies of natural vibration from the table above it can
be concluded that the resonance condition is hardly possible for spans
less than 100 ft. For larger spans resonance conditions should be taken
into consideration and the impact effect should be calculated from eq.

(158).

Let PI bo the maximum resultant pressure on the rail due to the counter-

weights when the driving wheels are revolving once per second.

n is the total number of revolutions of the driving wheels during

passage along the bridge.

Then, from eq. (158), we obtain the following additional deflection due
to the impact effect,

(161)

We see that in calculating the impact effect due to unbalanced weights
we have to take consideration of: (1) the statical deflection produced by
the force Pi, (2) the period r of the natural vibration of the bridge and

(3) the number of revolutions n. All these quantities are usually disre-

garded in impact formulas as applied in bridge design.

In order to obtain some idea about the amount of this impact effect let

us apply eq. (161) to a numerical example* of a locomotive crossing a

bridge of 120 feet span. Assuming that the locomotive load is equivalent
to a uniform load of 14,700 Ibs. per linear foot distributed over a length of

15 feet, and that the train load following and preceding the locomotive is

equivalent to a uniformly distributed load of 5,500 Ibs. per linear foot, the

maximum central deflection of each girder is (2P/EIw4) (275,000) approxi-

mately. The same deflection when the locomotive approaches the sup-

port and the train completely covers the bridge is (2P/EI7T
4
) (206,000)

approximately. Taking the number of revolutions n 8 (the diameter

of the wheels equal to 4 feet and 9 inches) and the maximum pulsating

pressure on each girder at the resonance condition equal to Pi/r
2 = 18,750

* The figures below are taken from the paper by C. E. Inglis, previously mentioned

(see p. 353).
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Ibs., the additional deflection, calculated from eq. (161), will be

(2i
3
/EIir

4
) (300,000). Adding this to the statical deflection, calculated

above for the case of the locomotive approaching the end of the bridge, we
obtain for the complete deflection at the center (2P/EIw*) (506,000).

Comparing this with the maximum statical central deflection (ZP/EIir
4
)

X (275,000), given above, it can be concluded that the increase in deflec-

tion due to impact is in this case about 84 per cent. Assuming the number
of revolutions n equal to 6 (the diameter of driving wheels equal to 6J^

feet) and assuming again a condition of resonance, we will obtain for the

same numerical example an increase in deflection equal to 56 per cent.

In the case of bridges of shorter spans, when the frequency of natural

vibration is considerably larger than the number of revolutions per second

of the driving wheels, a satisfactory approximation can be obtained by
taking only the first term in the series (157) and assuming the most un-

favorable condition, namely, that sin ([irv/l] + co) and sin ([wv/l] o>)

become equal to 1 and sin ir'
2
at/l

2
equal to 1 at the moment t = l/2v

when the pulsating force arrives at the middle of the spun. Then the

additional deflection, from (157), will be

1
.

*
,

<*
,

l-(/3+a) 2 l-(/3-a) 2 (l-0)
2 -a2 "*

2PP 1 - a (162)

Consider, for instance, a 60-foot span bridge and assume the same
kind of loading as in the previous example, then the maximum statical

deflection is (2l
3/EIw4) (173,000) approximately. If the driving wheels

have a circumference of 20 feet and make 6 revolutions per second, the

maximum downwards force on the girder will be 18,750(6/5)
2 = 27,000

Ibs. Assuming the natural frequency of the bridge equal to 9, we obtain

from eq. (153)
2/3 9Z3

5 = (27>
000 x 2'5?)

Hence,

dynamical deflection 173 + 69.4 ^ ^--_. --- _.. i 4Qt

statical deflection 173

The impact effect of the balancing weights in this case amounts to 40

per cent.
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In general it will be seen from the theory developed above that the

most severe impact effects will be obtained in the shortest spans for which
a resonance condition may occur (about 100 feet spans for the assumption
made above) because in this case the resonance occurs when the pulsating

disturbing force has its greatest magnitude. With increase in the span
the critical speed decreases and also the magnitude of the pulsating load,

consequently the impact effect decreases. For very large spans, when
the frequency of the fundamental type of vibration is low, synchronism
of the pulsating force with the second mode of vibration having a node
at the middle of the span becomes theoretically possible and due to this

cause an increase in the impact effect may occur at a velocity of about
four times as great as the first critical speed.

It should be noted that all our calculations were based on the assump-
tion of a pulsating force moving along the bridge. In actual conditions

we have rolling masses, which will cause a variation in the natural frequency
of the bridge in accordance with the varying position of the loads. This

variability of the natural frequency which is especially pronounced in

short spans is very beneficial because the pulsating load will no longer
be in resonance all the time during passing over the bridge and its cumu-
lative effect will not be as pronounced as is given by the above theory.
From experiments made by the Indian Railway Bridge Committee,*
it is apparent that on the average the maximum deflection occurs when the

engine has traversed about two-thirds of the span and that the maximum
impact effect amounts to only about one-thrid of that given by eq. (161).

It should be noted also that the impact effect is proportional to the force

PI and depends therefore on the type of engine and on the manner of

balancing. While in a badly balanced two cylinder engine the force PI

may amount to more than 1000 lbs.,f in electric locomotives, perfect

balancing can be obtained without introducing a fluctuating rail pressure.

This absence of impact effect may compensate for the increase in axle

load in modern heavy electric locomotives.

In the case of short girders and rail bearers whose natural frequencies
are very high, the effect of counter-weights on the deflection and stresses

can be calculated with sufficient accuracy by neglecting vibrations and

using the statical formula in which the centrifugal forces of the counter-

* See Bridge Sub-Committee Reports, 1925; Calcutta: Government of India

Central Publication Branch, Technical Paper No. 247 (1920). Similar conclusions were

obtained also by C. E. Inglis, see his book, "Vibrations in Bridges," 1934.

f Some data on the values of Pi for various types of engines are given in the Bridge
Sub-Committee Report, mentioned above.
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weights should be added to the statical rail pressures. The effect of

these centrifugal forces may be especially pronounced in the case of short

spans when only a small number of wheels can be on the girder si-

multaneously.

Impact Effects Due to Irregularities of Track and Flats on Wheels.

Irregularities like low spots on the rails, rail joints, flats on the wheels,

etc., may be responsible for considerable impact effect which may become

especially pronounced in the case of short spans. If the shape of the

low spots in the track or of the flats on the wheels is given by a smooth

curve, the methods used before in considering the effect of road unevenness
on the vibrations of vehicles (see p. 238) and the effect of low spots on

deflection of rails (see p. 107) can also bo applied here for calculating the

additional pressure of the wheel on the rail. This additional pressure
will be proportional to the unsprung mass of the wheel and to the square
of the velocity of the train. It may attain a considerable magnitude and
has practical importance in the case of short bridges and rail bearers.

This additional dynamical effect produced by irregularities in the track and
flats on the wheels justifies the high impact factor usually applied in the

design of short bridges. By removing rail joints from the bridges and by
using ballasted spans or those provided with heavy timber floors, the effect

of these irregularities can be dimin-

ished and the strength condition

considerably improved.
60. Effect of Axial Forces on

FIG. 186. Lateral Vibrations. Bar with Hinged
Ends. As a first example of this kind

of problems let us consider the case of a bar compressed by two forces S
(see Fig. 186). The general expression for the lateral vibration will be the

same as before (see eq. (146)).

i=i I

The difference will be only in the expression for the potential energy of

the system. It will be appreciated that during lateral deflection in this

case not only the energy of bending but also the change in the energy of

compression should be considered. Due to lateral deflection the initially

compressed center line of the bar expands somewhat* and the potential

energy of compression diminishes. The increase in length of the center

* The hinges are assumed immovable during vibration.
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line will be (see Fig. 186),

The corresponding diminishing of the energy of compression is
*

S
(
d*\j S

2 J w dx -
2 .

* T cos

If the ends of the bar are free to slide in an axial direction eq. (6) will

represent the work of forces S. For the energy of bending the equation
(152) previously obtained will be used. Hence the complete potential

energy becomes

The kinetic energy of the bar, from eq. (153) is

and Lagrange's equation for any coordinate g* will be

. RP

By using the notations,

a2 = ^ ,
a2 = ^~ , (165)

we obtain

from which,

* - C

Substituting this in (a) the complete expression for free vibrations

will be obtained.

Comparing this solution (166) with (143) it can be concluded that,

* Only those deflections are considered here which are sq small that any change in

longitudinal force can be neglected.
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due to the compressive force S, the frequencies of natural vibration are

diminished in the proportion

If a2
approaches 1, the frequency of the fundamental type of vibration

approaches zero, because at this value of a2 the compressive force S
attains its critical value EIir'2/l

2 at which the straight form of equilibrium
becomes unstable and the bar buckles sidewise.

If instead of a compressive a tensile force S is acting on the bar the

frequency of vibration increases. In order to obtain the free vibrations

in this case it is only necessary to change the sign of a2 in eq. (166). Then

C COS

When a2 is a very large number (such conditions can be obtained with

thin wires or strings) 1 can be neglected in comparison with a'2/i
2 and we

obtain from (167)

in I (jS . . _ . iir I gS

Substituting in (a)

^V ""
I Q& T^ /llr

C cos \/
~

t + D sin -

I * Ay I

n
(168)

<C>

FIG. 187.

This is the general solution for the lateral

vibrations of a stretched string where the

rigidity of bending is neglected.
Cantilever Beam. In this case only an

approximate solution, by using the Ray-
leigh method, will be given. As a basis

of this calculation the deflection curve

3 12

of a cantilever under the action of its weight w per unit length will be
taken. The potential energy of bending in this case is

W2l*

40J5/' (d)
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If the deflection during vibration is given by y cos pt, the maximum
kinetic energy of vibration will be

urVP 13

Putting (d) equal to (e) the following expression for the frequency and
the period of vibration of a cantilever (Fig. 187a) will be obtained

T - -
"VwlTo Vjj^

=
3^30 Vista'

(1?0)
1 / 65 /Wf* 2rr wl*
- = 27T'\ ' \ -- - = \ -- -

f ^90X9>//(7 3.530 V Elg

The error of this approximate solution is less than }/% per cent (see p. 344).
In order to calculate the frequency when a tensile force S is acting

at the end of the cantilever, Fig. 1876, the quantity

8 r(d̂

2./o
i

which is equal and opposite in sign to the work done by the tensile force

8 during bending, should be added to the potential energy of bending,
calculated above (eq. (d)). Then

5 S12

Due to this increase in potential energy the frequency of vibration will

be found by multiplying the value (169) by

(171)

It is interesting to note that the term 5/14 SP/EI differs only about
10 per cent from the quantity or = 4Sl2/EIir

2
, representing the ratio of

the longitudinal force <S to the critical column force for a cantilever.

If tensile forces s are uniformly distributed along the length of the

cantilever (Fig. 187c), the term to be added to the energy of bending
will be

rl /J\2 277 7SJ

=; (172>
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Comparing with eq. (/) it can be concluded that the effect on the

frequency of uniformly distributed tensile forces is the same as if 7/20
of the sum of these forces be applied at the end of the cantilever.

This result may be of some practical interest in discussing the effect

of the centrifugal force on the frequency of vibration of turbine blades

(see p. 382).

61. Vibration of Beams on Elastic Foundation. Assume that a beam
with hinged ends is supported along its length by a continuous elastic

foundation, the rigidity of which is given by the magnitude k of the modulus

of foundation, k is the load per unit length of the beam necessary to pro-
duce a compression in the foundation equal to unity. If the mass of the

foundation can be neglected the vibrations of such a beam can easily

be studied by using the same methods as before. It is only necessary in

calculating the potential energy of the system to add to the energy of

bending of the beam, the energy of deformation of the elastic foundation.

Taking, as before, for hinged ends,

lirX

2lSin T'
we obtain

The first series in this expression represents the energy of bending of

the beam (see eq. 152) and the second series the energy of deformation of

the foundation.

The kinetic energy of vibration is, from eq. (153),

The differential equation of motion for any coordinate <? is

or

g i + ~(i4 + ft)qi
= -Qi. (b)
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in which Qt denotes the external disturbing force corresponding to the

coordinate >

Elg

yA' (174)

By taking /3
=

0, the equation for a hinged bar unsupported by any elastic

foundation will be obtained (see p. 348). Denoting,

2 _ ^ -4

z
4

a general solution of equation (fe) will be

/iQ t sin ,(

, . u
(d)

The two first terms of this solution represent free vibrations of the beam,
depending on the initial conditions. The third term represents vibrations

produced by the disturbing force Q t .

The frequencies of the natural vibrations depend, as seen from (c), not

only on the rigidity of the beam but also on the rigidity of the foundation.

As an example consider the case when a pulsating force P = PQ sin ut\

is acting on the beam at a distance c from the left support (Fig. 182).

The generalized force corresponding to the coordinate g will be in this

case

Q t
= PO sin - sin

i
(e)

Substituting in cq. (d) and considering only vibrations produced by
the disturbing force we obtain

_ i,
<
- Po sm

-y
- sin cot -sin

Substituting in (a)

tTTC iTTT
sin sin - - sinII .

?7TC
.

tTTX
.

co sin sin --- sin p>tll
The first term in this expression represents the forced vibration and the
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second, the free vibration of the beam. By taking co = and P = P sin co

the deflection of the beam by a constant force P will be obtained:

. iwc . iirx
Sm T Sm T. (175)

*
Elir* ti i* + ft

By taking c = 1/2 the deflection by the force P at the middle will be

obtained as below :

Comparing this with eq. (h), p. 350, it can be concluded that the additional

term in the denominators represents the effect on the deflection of the

beam of the elastic foundation.

By comparing the forced vibrations

iirC iirx lire iirx
sin y sin T 2PP

Bin - sin

with the statical deflection (175) it can be concluded that the dynamical
deflections can be obtained from the statical formula. It is only necessary
to replace by -

(w
2
l
4
/w

4a2
).

By using the notations (174), we obtain

This means that the dynamical deflection can be obtained from the

statical formula by replacing in it the actual modulus of foundation by a

diminished value k (y^A/g) of the same modulus. This conclusion

remains true also in the case of an infinitely long bar on an elastic founda-

tion. By using it the deflection of a rail produced by a pulsating load

can be calculated.*

62. Ritz Method.t It has already been shown in several cases in

previous chapters (see article 16) that in calculating the frequency of the

* See writer's paper, Statical and Dynamical Stresses in Rails, Intern. Congress for

Applied Mechanics, Proceedings, Zurich, 1926, p. 407.

t See Walther Ritz, Gesammelte Werke, p. 265 (1911), Paris.
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fundamental type of vibration of a complicated system the approximate
method of Rayleigh can be applied. In using this method it is necessary

to make some assumption as to the shape of the deflection curve of a vibrat-

ing beam or vibrating shaft. The corresponding frequency will then be

found from the consideration of the energy of the system. The choosing
of a definite shape for the deflection curve in this method is equivalent

to introducing some additional constraints which reduces the system to

one having a single degree of freedom. Such additional constraints can

only increase the rigidity of the system and make the frequency of vibra-

tion, as obtained by Rayleigh's method, usually somewhat higher than its

exact value. Better approximations in calculating the fundamental fre-

quency and also the frequencies of

higher modes of vibration can be

obtained by Ritz's method which is

a further development of Rayleigh's

method.* In using this method the

deflection curve representing the mode
of vibration is to be taken with

several parameters, the magnitudes
of which should be chosen in such a

manner as to reduce to a minimum
the frequency of vibration. The man-
ner of choosing the shape of the deflec-

tion curve and the procedure of cal-

culating consecutive frequencies will now be shown for the simple case of

the vibration of a uniform string (Fig. 188). Assume that

S is tensile force in the string,

w is the weight of the string per unit length,

21 is the length of the string.

If the string performs one of the normal modes of vibration, the deflection

can be represented as follows:

y = X cos pt, (a)

where X is a function of x determining the shape of the vibrating string,

and p determines the frequency of vibration. Assuming that the deflec-

* Lord Rayleigh used the method only for an approximate calculation of frequency

of the gravest mode of vibration of complicated systems, and was doubtful (see his

papers in Phil. Mag;., Vol. 47, p. 566; 1899, and Vol. 22, p. 225; 1911) regarding its

application to the investigation of higher modes of vibration.

FIG. 188.
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tions are very small, the change in the tensile force S during vibration can

be neglected and the increase in potential energy of deformation due to

the deflection will be obtained by multiplying S with the increase in length
of the string. In this manner the following expression for the potential

energy is found, the energy in the position of equilibrium being taken as

zero,

JQ \dx/

The maximum potential energy occurs when the vibrating string occupies
its extreme position. In this position cos pt = 1 and

dx. (b)

The kinetic energy of the vibrating string is

w iT = - / (y)
2dx.

Its maximum occurs when the vibrating string is in its middle position,

i.e., when cos pt 0, then

Assuming that there are no losses in energy, we may equate (6) and
(c), thus obtaining

/ X*dx

Knowing the shapes of various modes of vibration and substituting in

(d) the corresponding expressions for X, the frequencies of these modes of

vibration can easily be calculated. In the case of a uniform string, the
deflection curves during vibration are sinusoidal curves and for the first

three modes of vibration, shown in Fig. 188, we have

v . _rA i
= ai cos

;
A 2 = a2 sin

; Zs = as cosM I 2fc
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Substituting in (d) we obtain (See eq. 168)

P!
'

A jo ) P2 ==
"To j P3 =

"7 To > \^v
4Z2 w J

2 w 4 Z
2 w

and the corresponding frequencies will be

Pi 1

Let us now apply Ritz's method in calculating from eq. (d) the

frequency /i of the fundamental type of vibration. The first step in the

application of this method is the choosing of a suitable expression for the

deflection curve. Let <pi(:r), ^2(2),
' ' ^e a series of functions satisfying

the end conditions and suitable for representation of X. Then, by taking

X = ai<p\(x) + 02^2(0;) + aa^sCr) H , (0)

we can obtain a suitable deflection curve of the vibrating string.

We know that by taking a finite number of terms in the expression (g)

we superimpose certain limitations on the possible shapes of the deflection

curve of the string and due to this fact the frequency, as calculated from

(d), will usually be higher than the exact value of this frequency. In

order to obtain the approximation as close as possible, Ritz proposed to

choose the coefficients ai, 02, #3, in the expression (g) so as to make the

expression (d) a minimum. In this manner a system of equations such

as

rl A/YV
dx
- =

(h)

X-dx

will be obtained.

Performing the differentiation indicated v\e have,

r .
d r/rfxy r/^vv a

/ X2dx- I ( 1 dx / \- lax-
o da n JQ \dx / JQ \dx/ da

or noting from (d), that

f (*
JQ \(ix )'*

-e
/ gb
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we obtain, from (k)

dx\ ifw \ m
)
--- --X 2 (dx = Q. (I)

dx/ gS J

In this way a system of equations homogeneous and linear in ai, 2,

as, will be obtained, the number of which will be equal to the number
of coefficients ai, a2, 03, in the expression (g). Such a system of equa-
tions can yield for ai, 02, as solutions different from zero only if the

determinant of these equations is equal to zero. This condition brings

us to the frequency equation from which the frequencies of the various

modes of vibrations can be calculated.

Let us consider the modes of vibration of a taut string symmetrical
with respect to the middle plane. It is easy to see that a function like

as I2 x2
, representing a symmetrical parabolic curve and satisfying end

conditions {(y) x=i =
0} is a suitable function in this case. By multi-

plying this function with x2
,
T4

,
a series of curves symmetrical and

satisfying the end conditions will be obtained. In this mariner we arrive

at the following expression for the deflection curve of the vibrating string

X = ai(l
2 - x2

} + a<2x2
(l

2 - x2
) + a^(l2 - x2

} + . (m)

In order to show how quickly the accuracy of our calculations increases

with an increase in the number of terms of the expression (ra) we begin
with one term only and put

Ar

i
= ai(/

2 - x2
).

Then,

Substituting in eq. (d) we obtain

, 5 gS""'
Comparing this with the exact solution (e) it is seen that 5/2 instead of

7r
2
/4 is obtained, and the error in frequency is only .66%.
It should be noted that by taking only one term in the expression (m)

the shape of the curve is completely determined and the system is reduced
to one with a single degree of freedom, as is done in Rayleigh's approximate
method.

In order to get a further approximation let us take two terms in the
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expression (w). Then we will have two parameters a\ and a2 and by
changing the ratio of these two quantities we can change also, to a certain

extent, the shape of the curve. The best approximation will be obtained
when this ratio is such that the expression (d) becomes a minimum, which
is accomplished when the conditions (I) are satisfied.

By taking
X2 = ai(l

2 - x2
) + a2x2

(l
2 - x2

)

we obtain
^.i

8 ,_ 16 __ 8

,

44
H a22l7 .

Substituting in eq. (/) and taking the derivatives with respect to a\

and a2 we obtain

ai(l
- 2/5k2

l
2
) + a2Z

2
(l/5

-
2/35fc

2
J
2
)
=

0,

ai(l
-

2/7/c
2
/
2
) + a2l

2
(ll/7 - 2/2lk2

l
2
)
=

0, (n)

in which

fc2 =
^JT

)

The determinant of the equations (n) will vanish when

fc
4
/
4 - 2Sk2

l
2 + 63 = 0.

The two roots of this equation are

ki
2
l
2 = 2.46744, k22l2 = 25.6.

Remembering that we are considering only modes of vibration sym-
metrical about the middle and using eq. (p) we obtain for the first and third

modes of vibration,

9 2.46744 gS 2 25.6 gS
I
2 w I

2 w

Comparing this with the exact solutions (e) :

2 = Z!^ = 2.467401^ 2 ^STT^ = 22.207 gS
Pi ""

4i2 w
"

I
2 w ; P3 "

4 P w I
2 w 9

it can be concluded that the accuracy with which the fundamental fre-

quency is obtained is very high (the error is less than .001%). The
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error in the frequency of the third mode of vibration is about 6.5%. By
taking three terms in the expression (ra) the frequency of the third mode of

vibration will be obtained with an error less than J^%.*
It is seen that by using the Ritz method not only the fundamental

frequency but also frequencies of higher modes of vibration can be

obtained with good accuracy by taking a sufficient number of terms in

the expression for the deflection curve. In the next article an application
of this method to the study of the vibrations of bars of variable cross section

will be shown.

63. Vibration of Bars of Variable Cross Section. General. In our

previous discussion various problems involving the vibration of prismat-
ical bars were considered. There exist, however, several important

engineering problems such as the vibration of turbine blades, of hulls

of ships, of beams of variable depth, etc., in which recourse has to be

taken to the theory of vibration of a bar of variable section. The differ-

ential equation of vibration of such a bar has been previously discussed

(see p. 332) and has the following form,

in which I and A are certain functions of x. Only in some special cases

which will be considered later, the exact forms of the normal functions

can be determined in terms of known functions and usually in the solution

of such problems approximate methods like the Rayleigh-Ritz method
are used for calculating the natural frequencies of vibration. By taking
the deflection of the rod, while vibrating, in the form

y = X cos ptj (a)

in which X determines the mode of vibration, we obtain the following

expressions for the maximum potential and the maximum kinetic energy,

dx, (&)
\lLJt~ /

T = p? f'A X2dx
^ 2g JQ

'

* See W. Ritz, mentioned above, p. 370.
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from which

&
/'

AX*dx

The exact solution for the frequency of the fundamental mode of vibration

will be the one which makes the left side of (d) a minimum. In order to

obtain an approximate solution we proceed as in the previous article and
take the shape of the deflection curve in the form of a series,

X = anpi(x) + a2 <p2(x) + asps CO + -, (e)

in which every one of the functions <p satisfies the conditions at the ends
of the rod. Substituting (e) in eq. (d) the conditions of minimum will be

d2X\2
,

, T ) dx

(/)

or

From (g) and (d) we obtain

d Cl

\ fd
2X\2

p
2Ay 1

T" /
' Ul -J V )

~ S X \dx
= Q. (178)dan J I \dx2 / Eg J

The problem reduces to finding such values for the constants

a>i> <*>2, 03,* -in eq. (e) as to make the integral

a minimum.
The equations (178) are homogeneous and linear in ai, 02, as, and

their number is equal to the number of terms in the expression (e).

Equating to zero the determinant of these equations, the frequency equation
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will be obtained from which the frequencies of the various modes can be

calculated.

Vibration of a Wedge. In the case of a wedge of constant unit thickness

with one end free, and the other one built in (Fig.

189) we have

_2bxA- ,

F,G. 189. J-JL^Y
12 \ I /

'

where I is the length of the cantilever,

26 is the depth of the cantilever at the built-in end.

The end conditions are :

x . dx
=0,

(3) (X),., - 0,
= 0.

In order to satisfy the conditions at the ends we take the deflection

curve in the form of the series

It is easy to see that each term as well as its derivative with respect to z,

becomes equal to zero when x = I. Consequently the end conditions

(3) and (4) above will be satisfied. Conditions (1) and (2) are also satisfied

since I and dl/dx are zero for x = 0.

Taking as a first approximation

and substituting in (d) we obtain

~>2 = i n _J? __ .

In order to get a closer approximation we take two terms in (fc), then
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Substituting in (h)

2 b3 / 24
82 =

3 P

Now from the conditions

we obtain

2Mp2 /V
% \30

20,02 _02

105 280

/Eg 6* _ p2\

(K -, Q/4 IAP:
t_| n^ ot AUc)

=
0|

60,2

p*

105 \5 3 2

Equating to zero the determinant of these equations we get

?n*L- p?V2 ^ - p~\ - (
2E b" - p2 Y = o

7 3i4 307 \5 7 3i4 280/ \5 7 3/4 1057
'

From this equation p2 can be calculated. The smallest of the two roots

gives

, P _ 5.319 6 lEg

It is interesting to note that for the case under consideration an exact

solution exists in which the forms of the normal functions are determined

in terms of Bessel's functions.* From this exact solution we have

Comparing with (I) and (n) it can be concluded that the accuracy of

the first approximation is about 3%, while the error of the second ap-

proximation is less than .1% and a further increase in the number of terms

in expression (e) is necessary only if the frequencies of the higher modes of

vibration are also to be calculated.

For comparison it is important to note that in the case of a prismatical

* See G. Kirchhoff, Berlin, Monatsberichte, p. 815 (1879), or Ges. Ahhandlungen,
p. 339. See also Todhunter and Pearson, A History of the Theory of Elasticity, Vol. 2,

part 2, p. 92.
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cantilever bar having the same section as the wedge at the thick end, the

following result was obtained (see p. 344)

p al.8752 3.5156 IEg"
27r~ 27ri

2
~"

2irl2

The method developed above can be applied also in cases when A and
/ are not represented by continuous functions of x. These functions may
have several points of discontinuity or may be represented by different

mathematical expressions in different intervals along the length /. In

such cases the integrals (h) should be subdivided into intervals such that

/ and A may be represented by continuous functions in each of these

intervals. If the functions A and / are obtained either graphically or

from numerical tables this method can also be used, it being only neces-

sary to apply one of the approximate methods in calculating the integrals

(h). This makes Ritz's method especially suitable in studying the vibra-

tion of turbine blades and such structures as bridges and hulls of ships.

Vibration of a Conical Bar. The problem of the vibrations of a conical

bar which has its tip free and the base built in was first treated by Kirch-

hoff. * For the fundamental mode he obtained in this case

p _ 4.359 r Eg

where r is radius of the base,
I is the length of the bar.

For comparison it should be remembered here that a cylindrical bar
of the same length and area of base has the frequency (see above)

f _ P_ _ J^.1^752 _ L758 r
* ""

27T

~
27T Z

2
~ "

27T

Thus the frequencies of the fundamental modes of a conical and a cylin-
drical bars are in the ratio 4.359 : 1.758. The frequencies of the higher
modes of vibration of a conical bar can be calculated from the equation

p a r

in which a has the values given below, f

4.359 10.573 19.225 30.339 43.921 59.956

*Loc. cit., p. 379.

t See Dorothy Wrinch, Proc. Roy. Soc. London, Vol. 101 (1922), p. 493.



VIBRATIONS OF ELASTIC BODIES 381

Other Cases of Vibration of a Cantilever of Variable Cross Section. In
the general case the frequency of the lateral vibrations of a cantilever can
be represented by the equation

in which i is radius of gyration of the built-in section,
I is length of the cantilever,
a is constant depending on the shape of the bar and on the mode

of vibration.

In the following the values of this constant a for certain particular
cases of practical importance are given.

1. If the variations of the cross sectional area and of the moment of

inertia, along the axis a-, can be expressed in the form,

A = axm
]

I = bxm
, (183)

x being measured from the free end, i remains constant along the length
of the cantilever and the constant a, in eq. (182) can be represented for

the fundamental mode with sufficient accuracy by the equation
*

a = 3.47(1 + 1.05ra).

2. If the variation of the cross sectional area and of the moment of

inertia along the axis x can be expressed in the form

(184)

x being measured from the built-in end, then i remains constant along the

length of the rod and the quantity a, in eq. (182), will be as given in the

table below. f

c = .4 .6 .8 1.0

a =3. 515 4.098 4.585 5.398 7.16

Bar of Variable, Cross Section with Free Ends. Let us consider now the

case of a laterally vibrating free-free bar consisting of two equal halves

* See Akimasa Ono, Journal of the Society of Mechanical Engineers, Tokyo, Vol.

27 (1924), p. 467.

t Akimasa Ono, Journal of the Society of Mechanical Engineers, Vol. 28 (1925), p.

429.
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joined together at their thick ends (Fig. 190), the left half being generated

by revolving the curve

y = axn (o)

about the x axis. The exact solution in terms of Bessel functions has

been obtained in this case for certain values of n* and the frequency of

the fundamental mode can be represented in the form

(185)

in which r is radius of the thickest cross section,

2,1 is length of the bar,
a. is constant, depending on the shape of the curve (o), the values

of which are given in the table below :

n= _1/4 1/2 3/4_1_
a = 5. 593 6.957 8.203 9.300 10.173

The application of integral equations in investigating lateral vibrations

of bars of variable cross section has been discussed by E. Schwerin.f

Fia. 191.

64. Vibration of Turbine Blades. General. It is well known that

under certain conditions dangerous vibrations in turbine blades may occur

and to this fact the majority of fractures in such blades may be attributed.

The disturbing force producing the vibrations in this case is the steam

pressure. This pressure always can be resolved into two components;
a tangential component P and an axial one Q (Fig. 191) which produce

bending of blades in the tangential and axial directions, respectively.
These components do not remain constant, but vary with the time because

they depend on the relative position of the moving blades with respect to

the fixed guide blades. Such pulsating forces, if in resonance with one

* See J. W. Nicholson; Proc. Roy. Soc. of London, Vol. 93 (1917), p. 506.

t E. Schwerin, tlber Transversalschwingungen von Staben veraenderlichen Quer-
schnitts. Zeitschr. f. techn. Physik, Vol. 8, 1927, p. 264.
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of the natural modes of vibration of the blades, may produce large forced

vibrations with consequent high stresses, which may result finally in the

production of progressive fatigue cracks at points of sharp variation in

cross section, where high stress concentration takes place. From this it

can be seen that the study of vibration of turbine blades and the determina-

tion of the various frequencies corresponding to the natural modes of

vibration may assist the designer in choosing such proportions for the

blades that the possibility of resonance will be eliminated. In making
such investigations, Rayleigh's method usually gives a satisfactory

approximation. It is therefore unnecessary to go further in the refine-

ment of the calculations, especially
if we take into consideration that in

actual cases variations in the condition

at the built-in end of the blade may
affect considerably the frequencies of

the natural modes of vibration.*

Due to the fact that the two prin- Fia 192.

cipal moments of inertia of a cross

section of a blade are different, natural modes of vibration in two principal

planes should be studied separately.

Application of Rayleigh's Method. Let xy be one of these two principal

planes (Fig. 192).

I is length of the blade.

a is the radius of the rotor at the built-in end of the blade.

c is constant defined by eq. (184).

A is cross sectional area of the blade varying along the x axis.

o) is angular velocity of the turbine rotor.

7 is weight of material per unit volume.

X is function of x representing the deflection curve of the blade under
the action of its weight.

Taking the curve represented by the function X as a basis for the

calculation of the fundamental mode of vibration, the deflection curve

of the blade during vibration will be,

y = X cos pt. (a)

The maximum potential energy will be obtained when the blade is in its

extreme position and the deflection curve is represented by the equation

y = x. (b)

* See W. Hort, V. D. I., Vol. 70 (1926), p. 1420.
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This energy consists of two parts: (1) the energy V\ due to lateral bending
and (2) the energy 2 due to the action of the centrifugal forces. The
energy V\ is equal to the work done by the lateral loading during the

deflection, given by eq. (6), and is represented by the equation:

<v rl

Vl= lJ AXdX
' (C)

in which X, the function of x representing the deflection curve of the

blade produced by its weight, can always be obtained by analytical or

graphical methods. In the latter case the integral (c) can be calculated

by one of the approximate methods.
In calculating V% it should be noted that the centrifugal force acting

on an element of the length dx of the blade (see Fig. 192) is

co
2
(a + x). (d)

9

The radial displacement of this element towards the center due to bending
of the blade is

J/(?r)V ()Z i/o \ /

and the work of the centrifugal force (d) will be

The potential energy F2 will now be obtained by the summation of

the elements of work (/), along the length of the blade and by changing
the sign of the sum. Then

<,,

The maximum kinetic energy will be obtained when the vibrating blade is

in its middle position and the velocities, calculated from equation (a) have
the values:

Then
* /' A <> rl_ 1 / A*V _ 'VTT /

(*)

. /*l .

I I Ay
2*/
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Now, from the equation
T = Fi + 72

we obtain

91 AXdx + a,* I A (a + x)dx

AX*dx

This is the equation for calculating the frequency of the first natural mode
of vibration of a blade.

The second term in the numerator of the right-hand member represents
the effect of centrifugal force. Denoting by

/ AXdx 9 I A(a + x)dx f (
d

V J
. /2 _ w 2? J ^ a~' n*m
> /2 ~

TnTVs ^i V 187)

AX2dx I AX2dx

we find, from eq. (186), that the frequency of vibration of the blade can be

represented in the following form :

/ = A//12+/22, (188)

in which /i denotes the frequency of the blade when the rotor is stationary,

and /2 represents the frequency of the blade when the elastic forces are

neglected and only the restitutive force due to centrifugal action is taken

into consideration.

Vibration in the Axial Direction. In calculating the frequency of

vibration in an axial direction a good approximation can be obtained by
assuming that the variation of the cross sectional area and of the moment
of inertia along the axis of the blade is given by the equations (184). In

this case the frequency f\ will be obtained by using the corresponding
table (see p. 381).

The frequency /2 for the same case, can be easily calculated from eq.

(187) and can be represented in the following form

h - ^ , (189)

in which ft is a number depending on the proportions of the blade. Several



386 VIBRATION PROBLEMS IN ENGINEERING

values of /J are given in the table below.* Knowing /i and/2 the frequency

/ will now be obtained from eq. (188).

in which

FIG. 193.

Vibration in the Tangential Direc-

tion. In the tangential direction the

blades have usually a variable ra-

dius of gyration. Consequently the

equations (184) cannot be directly

applied. In such a case an approxi-
mation can be obtained by assuming
that the variation of / and A along
the x axis (Fig. 193) can be represented

by the equations :f

(190)

r 7 ( *
x

/ - vx\/ = /o I 1 m- ra sin )
,

A A ( ^
X

i -
WX\A = Aoll nj n sin

J,

m = n =
/o

'

7m and Am are the values of I and A at the middle of a blade, and

n =

* The table is taken from the paper by Akimasa Ono, mentioned before, p. 381.

t W. Hort: Proceedings of the First International Congress for Applied Mechanics,
Delft (1925), p. 282. The numerical results, given below, are obtained on the assump-
tion that the mode of vibration of a bar of variable cross section is the same as that of a

prismatical bar.
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The frequencies will then be calculated from the general eq. (182) in

which the constant a for the fundamental and higher modes of vibration

is given by the equation
*

/I
- m0j - m'M

aoi ^1 .

* 1 ~ ny %
- n'7

(191)

Here, #o are values of the constant a for a cantilever of uniform section

(see table on p. 344). f The constants fr, 0/, 7, and 7,' for the various

modes of vibration are given in the table below.

If one end of the blade is built in while the other is simply supported,
the same equation (191) can be used in calculating . In this case ot

should be taken from the table on p. 345. The constants &, 0/, 7; and 7/
are given in the table below.

In this manner f\ in eq. (188) can be calculated. For calculating /2

for the fundamental mode, eq. (189) and the above table can be used and
the frequency / will then be obtained from eq. (188) as before.

* If the values of w, m', n, and n' are not greater than .5, formula (191) according to

Hort, is correct to within 2%. To get an idea of the error made in case m and n were

unity, the exact solutions for the natural frequencies of a conical shaped blade and a

wedge shaped blade were compared with the values obtained by the above method.

It was found that in these extreme cases the error was 17% and 18.5%, respectively, for

the conical shaped blade and the wedge shaped blade.

t kfl* of this table is equal to ao in eq. (191).
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It should be noted that the blades are usually connected in groups by
means of shrouding wires. These wires do not always substantially

affect the frequencies of the axial vibrations but they may change the

frequencies of the tangential vibrations considerably.*
65. Vibration of Hulls of Ships. As another example of the application

of the theory of vibration of bars of variable section, the problem of the

vibration of the hull of a ship will now be considered. The disturbing
force in this case is usually due to unbalance in the engine or to the action

of propellersf and, if the frequency of the disturbing force coincides with

the frequency of one of the natural modes of vibration of the hull, large

forced vibrations may be produced. If the hull of the ship be taken as a

bar of variable section with free ends and Ritz's method (see Art. 62) be

applied, the frequencies of the various modes can always be calculated with

sufficient accuracy from the eqs. (178).

To simplify the problem let us assume that the bar is symmetrical
with respect to the middle cross section and that, by putting the origin of

coordinates in this section, the cross sectional area and moment of inertia

for any cross section can be represented, respectively, by the equations

A = Ao(l - ex2
)] I = J (l

- 6z2
), (a)

in which AQ and 7o denote the cross sectional area and the moment of

inertia of the middle cross section, respectively. It is understood that x

may vary from x = I to x = +1,21 being the length of the ship.

We will further assume that the deflection during vibration may be

represented by
y = X cos pt,

in which X is taken in the form of the series,

X =
ai<pi(x) + a<2,<p2(x) + d3<f>z(x) + . (6)

We must choose for <pi, <p2 , suitable functions, satisfying the end
conditions. The ratios between the coefficients a\ 9 #2, 03 and the

frequencies will be then obtained from the equations (178).

* See Stodola's book, loc. cit. p. 277. See also W. Hort, V. D. I. Vol. 70 (1926),
p. 1422, E. Schwerin, Uber die Eigenfrequenzen der Schaufelgruppen von Dampftur-
binen, Zeitschr. f. techn. Physik, Vol. 8, 1927, p. 312, and R. P. Kroon, Trans. Am. Soc.
Mech. Engrs., V. 56, p. 109, 1934.

f Propeller Vibration is discussed in the paper by F. M. Lewis presented before the
"
Society of Naval Architects and Marine Engineers," November, 1935, New York.
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A satisfactory approximation for the frequency of the fundamental
mode of vibration can be obtained * by taking for the functions <p(x) the

normal functions for a prismatical bar with free ends. The general
solution (140) for symmetrical modes of vibration should be taken in the

form
X = Ci(cos kx + cosh kx) + 2 (cos kx cosh kx). (c)

Now from the conditions at the free ends we have

Substituting (c) in (d), we obtain

Ci( cos kl + cosh kl) 2 (cos kl + cosh kl) = 0, (e)

Ci(sin kl + sinh kl) Cz( sin kl + sinh kl) = 0.

Putting the determinant of these equations equal to zero the frequency

equation
tan kl + tanhfrZ = 0, (/)

will be obtained, the consecutive roots of which are

kj = 0; k2l = 2,3650 .

Substituting from (e) the ratio C\/Ci into eq. (c) the normal functions

corresponding to the fundamental and higher modes of vibration will be

X t
= C,(cos k& cosh ktl + cosh kvx cos k tl).

The arbitrary constant, for simplification, will be taken in the form

1

v cos2
kj, + cosh2

kj,

The normal function, corresponding to the first root, k\l = 0, will be a
constant and the corresponding motion will be a displacement of the bar

as a rigid body in the y direction. This constant will be taken equal to

*Sec author's book, "Theory of Elasticity," Vol. 2 (1916), S. Petersburg. See
also N. Akimoff, Trans, of the Soc. of Naval Arch. (New York), Vol. 26 (1918). Further
discussion of the problem is given in the papers by J. Lockwood Taylor, Trans. North
East Coast Inst. of Eng. and Shipbuild., 1928 and Trans, of the Instit. of Naval Archi-

tects, 1930.
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Taking the normal functions, obtained in this manner, as suitable

functions <p(x) in the series (6) we obtain

~, 1 cos k%x cosh k%l + cosh k2X cos k%l , .X = ai TT-- + a2 , 1 . (0)V 2 V cos2 fc2Z + cosh2 k2l

Substituting the above in eq. (178), we obtain

a f f +l ^ ^ ,fJ

1 /o / (1 bx2
) / J / j a la] (pi <f>j ax

dan [ J-i 1=1.2.3^-1.2.3

!(i,_J2) ^.^efai.o
<-l. 2. 3, ... >1. 2. 3. ... J

and denoting

/ /

J
i

* *; '

</_ ^

* ; t;

we obtain, from (A),

I] a%(ain
- X^in)

= 0, (0
<-l,2,3,...

in which

x - W' w
For determining the fundamental mode of vibration two terms of

the series (g) are practically sufficient. The equations (I) in this case

become

\ftn) + &2(<*21 X/32 i)
=

0,

i(ai2 X/3i 2) + 02(0:22 Xfe) = 0. (n)
In our case,

.. _ cos k2X cosh kzl + cosh fc2x cos fc2t

^>i
= 0; ^2

" = fc2
2

/V cos2 k%l + cosh2 k%l

Substituting this in (fc) and performing the integration, we obtain

<*ii = 0; ai2 = 0; 2i = 0,

/
+l

^1 98
(1
- 6z2)(v>2")

2^ =^ (1
- .0876Z2), (p)

*

^u = 1(1
- .333cZ2); /312 = /321 = .297d3

; /322 = 1(1
- .481cZ2). (g)
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Substituting in eqs. (n) and equating the determinant of these equations
to zero, the frequency equation becomes:

x2-0. (r)
022

The first root of this equation (X = 0) corresponds to a displacement
of the bar as a rigid body. The second root

\ a22 *
f ^X =

fl

--
P22

1

determines the frequency of the fundamental type of vibration. This

frequency is

p V\ IEI^I
fi = = - v -T (0

2?r 2;r * ^.

Numerical Example. Let 21 = 100 meters; Jo 20 (meter)
4

;

= 7 X 9.81 ton per meter;* b = c = .0003 per meter square. Then
the weight of the ship

Q = 2^07 / (1
- cx2

)dx = 5150 ton.
*/o

From eqs. (p) and (g) we obtain

a22 = 23.40 X 10-5
; 0n = 37.50; J2 = 11.14; 22 = 31.95;

then, from eq. (s) we get
X = .817 X 10~5

.

Assuming E = 2.107 ton per meter square, we obtain

p = x 2 X 107 X .817 X 10-5 = 21.6.

The number of oscillations per minute

N = - 206.
27T

* To take into account the pulsating current flow in the water due to vibration,
certain mass of water must be added to the mass of the hull. This question is discussed

in the papers by F. E. Lewis, Proc. Soc. Nav. Archit. and Marine Engrs., New York,
November, 1929; E. B. Moulin and A. D. Brown, Proc. Cambridge Phil. Soc., V. 24,

pp. 400 and 531, 1928; A. D. Brown, E. B. Moulin and A. J. Perkins, Proc. Cambridge
Phil. Soc., V. 26, p. 258, 1930, and J. J. Koch, Ingenieur-Archiv., V. 4, p. 103, 1933.
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The functions <f>(x), taken above, can be used also when the laws of

variation of / and A are different from those given by eqs. (a) and also

when / and A are given graphically. In each case it is only necessary
to calculate the integrals (fc) which calculation can always be carried

out by means of some approximate method.

66. Lateral Impact of Bars. Approximate Solution. The problem of

stresses and deflections produced in a beam by a falling body is of great

practical importance. The exact solution of this problem involves the

study of the lateral vibration of the beam. In cases where the mass of

the beam is negligible in comparison with the mass of the falling body an

approximate solution can easily be obtained by assuming that the de-

flection curve of the beam during impact has the same shape as the corre-

sponding statical deflection curve. Then the maximum deflection and the

maximum stress will be found from a consideration of the energy of the

system. Let us take, for example, a beam supported at the ends and
struck midway between the supports by a falling weight W. If 6 denotes

the deflection at the middle of the beam the following relation between the

deflection and the force P acting on the beam holds:

s = - 3
-

48A7

and the potential energy of deformation will be

If the weight W falls through a height h, the work done by this load during

falling will be

W(h + 5d) (b)

and the dynamical deflection dd will be found from the equation,

from which

id = . + V> + 2h8, t , (d)

where

WP
5" ~

A&EI

represents the statical deflection of the beam under the action of the load W.
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In the above discussion the mass of the beam was neglected and it was
assumed that the kinetic energy of the falling weight W was completely
transformed into potential energy of deformation of the beam. In actual

conditions a part of the kinetic energy will be lost during the impact.

Consequently calculations made as above will give an upper limit for the

dynamical deflection and the dynamical stresses. In order to obtain a
more accurate solution the mass of a beam subjected to impact must be

taken into consideration.

If a moving body, having a mass W\/g and a velocity v() strikes centrally
a stationary body of mass Wi/g, and, if the deformation at the point of

contact is perfectly inelastic, the final velocity v, after the impact (equal for

both bodies), may be determined from the equation

W W + Wi
TO = --- v,

9 9
from which

w

It should be noted that for a beam at the instance of impact, it is only
at the point of contact that the velocity v of the body W and of the beam
will be the same. Other points of the beam may have velocities different

from v, and at the supports of the beam these velocities will be equal to zero.

Therefore, not the actual mass of the beam, but some reduced mass must be

used in eq. (e) for calculating the velocity v. The magnitude of this reduced

mass will depend on the shape of the deflection curve and can be approxi-

mately determined in the same manner as was done in Rayleigh's method

(see eq. 41, p. 85), i.e., by assuming that the deflection curve is the same
as the one obtained statically. Then

W
-+--,

in which 17/35JFi is the reduced weight of the beam. The kinetic energy of

the system will be

20 2
t ,i!!Kl

"*"
35 W
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This quantity should be substituted for (Wvo
2
/2g) = Wh in the previous

equation (c) in order to take into account the effect of the mass of the

beam. The dynamical deflection then becomes

(192)

The same method can be used in all other cases of impact in which the

displacement of the structure at the point of impact is proportional to the

force.*

Impact and Vibrations. The method described above gives sufficiently

accurate results for the cases of thin rods and beams if the mass of the

falling weight is large in comparison to the mass of the beam. Otherwise

the consideration of vibrations of the beam and of local deformations at

the point of impact becomes necessary.
Lateral vibrations of a beam struck by a body moving with a given

velocity were considered by S. Venant.j Assuming that after impact
the striking body becomes attached to the beam, the vibrations can

be investigated by expressing the deflection as the sum of a series of

normal functions. The constant coefficients of this series should be

determined in such a manner as to satisfy the given initial conditions. In

this manner, S. Venant was able to show that the approximate solution

given above has an accuracy sufficient for practical applications.

The assumption that after impact the striking body becomes attached

to the beam is an aribitrary one and in order to get a more accurate picture
of the phenomena of impact, the local deformations of the beam and
of the striking body at the point of contact should be investigated. Some
results of such an investigation in which a ball strikes the flat surface of a

rectangular beam will now be given. J The local deformation will be

given in this case by the known solution of Herz. Let a denote the

displacement of the striking ball with respect to the axis of the beam due
to this deformation and P, the corresponding pressure of the ball on the

beam; then

* This method was developed by H. Cox, Cambridge Phil. Soc. Trans., Vol. 9

(1850), p. 73. See also Todhunter and Pearson, History, Vol. 1, p. 895.

t Loc. cit, p. 307, note finale du paragraphe 61, p. 490.

t See author's paper, Zeitschr. f. Math. u. Phys., Vol. 62 (1913), p. 198.

H. Herz: J. f. Math. (Crelle), Vol. 92 (1881). A. E. H. Love, Math. Theory of

Elasticity (1927), p. 198.
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where k is a constant depending on the elastic properties of the bodies and
on the magnitude of the radius of the ball. The pressure P, during impact,
will vary with the time and will produce a deflection of the beam which

'

can be expressed by the general solution (c) of Art. 58. If the beam is

struck at the middle, the expression for the generalized forces will be

iw
Q l

= P sin -

and the deflection at the middle produced by the pressure P becomes

v-> 1 I
2 20 i ^ i2Tr2a(t t\)dt\

y = 2^ -; -o--i, / Psin n to)
< = i, 3^5. ...i" Tr~a yA I JQ I

The complete displacement of the ball from the beginning of the impact
(t
= 0) will be equal to

d = a + y. (K)

The same displacement can be found now from a consideration of the

motion of the ball. If TO is the velocity of the ball at the beginning of

the impact (t
= 0) the velocity v at any moment t = t\ will be equal to*

Pdti, (k)

in which m is the mass of the ball and P is the reaction of the beam on
the ball varying with the time. The displacement of the ball in the

direction of impact will be,

r dt \ rti

d = v t - I I Pdti. (I)

Equating (h) and (I) the following equation is obtained,

VQ t- I I Pdti = kP2/

J rn JQ

+
f

g _IJ!_J^ r rsm
i2"2a(

(- 1, aTs, ... i'
2

?T
2a yAl J

This equation can be solved numerically by sub-dividing the interval

of time from to t into small elements and calculating, step by step, the

* It is assumed that no forces other than P are acting on the ball.

2/3
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displacements of the ball. In the following the results of such calculations

for two numerical examples are given.

Examples. In the first example a steel bar of a square cross section

1 X 1 cm. and of length = 15.35 cm. is taken. A steel ball of the radius

r = 1 cm. strikes the bar with a velocity v = 1 cm. per sec. Assuming
E = 2.2 X 10 kilograms per sq. cm. and 7 = 7.96 grams per cu. cm.
the period of the fundamental mode of vibration will be r = .001 sec.

In the numerical solution of eq. (m) this period was sub-divided into 180

equal parts so that 6r = (l/180)r. The pressure P calculated for each

step is given in Fig. 194 by the curve 7. For comparison in the same
figure the variation of pressure with time, for the case when the ball strikes

an infinitely large body having a plane boundary surface is shown by the

IO$T 10 30 40

FIG. 194.

SO 606t

dotted lines. It is seen that the ball remains in contact with the bar only
during an interval of time equal to 28 (6r), i.e., about 1/6 of r. The dis-

placements of the ball are represented by curve // and the deflection of the
bar at the middle by curve 777.

A more complicated case is represented in Fig. 195. In this case the

length of the bar and the radius of the ball are taken twice as great as in

the previous example. The period T of the fundamental mode of vibra-
tion of the bar is four times as large as in the previous case while the
variation of the pressure P is represented by a more complicated curve
/. It is seen that the ball remains in contact with the bar from t =
to t = 19.5(5r). Then it strikes the bar again at the moment t = 60(5r)
and remains in contact till t = 80(6r). The deflection of the bar is given
by curve 77.



VIBRATIONS OF ELASTIC BODIES 397

It will be noted from these examples that the phenomenon of elastic

impact is much more complicated than that of inelastic impact considered

by S. Venant.*

67. Longitudinal Impact of Prismatical Bars. General. For the

approximate calculation of the stresses and deflections produced in a

prismatical bar, struck longitudinally by a moving body, the approxi-

mate method developed in the previous article can be used, but for a

more accurate solution of the problem a consideration of the longitudinal

vibrations of the bar is necessary.

Young was the first f to point out the necessity of a more detailed

consideration of the effect of the mass of the bar on the
x

longitudinal impact. He showed also that any small per-

fectly rigid body will produce a permanent set in the bar

during impact, provided the ratio of the velocit}' v i of motion

of the striking body to the velocity v of the propagation of

sound waves in the bar is larger than the strain corresponding

to the elastic limit in compression of the material. In order

to prove this statement he assumed that at the moment of

impact (Fig. 196) a local compression will be produced J

at the surface of contact of the moving body and the bar

\w

^//////7///^

FIG. 196.

* For experimental verification of the above theory see in the paper by H. L. Mason,
Trans. Am. Soc. Mech. Engrs., Journal of Applied Mechanics, V. 3, p. 55, 1936.

t See his Lectures on Natural Philosophy, Vol. I, p. 144. The history of the longi-

tudinal impact problem is discussed in detail in the book of Clebsch, translated by
S. Venant, loc. cit. p. 307, see note finale du par. 60, p. 480, a.

t It is assumed that the surfaces of contact are two parallel smooth planes.
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which compression is propagated along the bar with the velocity of sound.

Let us take a very small interval of time equal to t, such that during this

interval the velocity of the striking body can be considered as unchanged.
Then the displacement of the body will be v\t and the length of the com-

pressed portion of the bar will be vt. Consequently the unit compression
becomes equal to v\/v. (Hence the statement mentioned above.)

The longitudinal vibrations of a prismatical bar during impact were
considered by Navier.* He based his analysis on the assumption that

after impact the moving body becomes attached to the bar at least during
a half period of the fundamental type of vibration. In this manner
the problem of impact becomes equivalent to that of the vibrations of

a load attached to a prismatical bar and having at the initial moment a

given velocity (see Art. 52). The solution of this problem, in the form
of an infinite series given before, is not suitable for the calculation of the

maximum stresses during impact and in the following a more compre-
hensive solution, developed by S. Venantf and J. Boussineq,J will be

discussed.

Bar Fixed at One End and Struck at the Other. Considering first the

bar fixed at one end and struck longitudinally at the other, Fig. 196,
recourse will be taken to the already known equation for longitudinal
vibrations (see p. 309). This equation is

d2u
.

2u

in which u denotes the longitudinal displacements from the position of

equilibrium during vibration and

* - -*
(6)

The condition at the fixed end is

(w)x-o = 0. (c)

The condition at the free end, at which the force in the bar must be equal
to the inertia force of the striking body, will be

W
r- 7

*
Rapport et Memoire sur les Fonts Suspendus, Ed. (1823).

t Loc. cit, p. 307.

J Applications des Potentials, p. 508.

See Love, "Theory of Elasticity," 4th ed., p. 431 (1927).
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Denoting by m the ratio of the weight W of the striking body to the weight
Ayl of the bar, we obtain, from (d)

The conditions at the initial moment t = 0, when the body strikes the

bar, are

du
" = - = o (/)

for all values of x between x and x = I while at the end x =
I, since

at the instant of impact the velocity of the struck end of the bar becomes

equal to that of the striking body, we have:

The problem consists now in rinding such a solution of the equation

(a) which satisfies the terminal conditions (c) and (c) and the initial

conditions (/) and (g).

The general solution of this equation can be taken in the form

u = f(ai
- x) + fl (at + ?), (h)

in which / and f\ are arbitrary functions.

In order to satisfy the terminal condition (c) we must have,

/(0+/i(0 =0
or

/i(aO = -f(at) 0)

for any value of the argument at. Hence the solution (h) may be written

in the form
u = f(at

-
x)
-

f(at + x). (&)

If accents indicate differentiation with respect to the arguments

(a a*) or (at + x) and (i) holds we may put

from which it is seen that the expression (k) satisfies eq. (a).
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The solution (fc) has a very simple physical meaning which can be easily

explained in the following manner. Let us take the first term f(at x)
on the right side of eq. (k) and consider a certain instant t. The function/
can be represented for this instant by some curve nsr (Fig. 197), the shape of

which will depend on the kind of the function /. It is easy to see that after

the lapse of an element of time A the argument at x of the function / will

remain unchanged provided only that the

abscissae are increased during the same interval

of time by an element Ar equal to aAt. Geo-

metrically this means that during the interval

FIG. 107. of time A the curve nsr moves without distor-

tion to a new position shown in the figure by
the dotted line. It can be appreciated from this consideration that the
first term on the right side of eq. (k) represents a wave traveling along
the x axis with a constant velocity equal to

Eq
' (193)

which is also the velocity of propagation of sound waves along the bar.
In the same manner it can be shown that the second term on the right
side of eq. (k) represents a wave traveling with the velocity a in the

negative direction of the x axis. The general solution (k) is obtained
by the superposition of two such waves of the same shape traveling with
the same velocity in two opposite directions. The striking body produces
during impact a continuous series of such waves, which travel towards
the fixed end and are reflected there. The shape of these consecutive
waves can now be established by using the initial conditions and the
terminal condition at the end x = I.

For the initial moment (t
= 0) we have, from eq. (fc),

(")c-o =/(-*) -/(+*),

Now by using the initial conditions (/) we obtain,

-/' (-^r) - f(+x) = for < x < I,

/'(-r) -/'(+*) = for 0<x<l.
(I)
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Considering / as a function of an argument z, which can be put equal
to + x or x, it can be concluded, from (7), that when I < z < I, /' (z)

is equal to zero, since only under this condition both equations (I) can be

satisfied simultaneously and hence /(z) is a constant which can be taken

equal to zero and we get,

/(z)
= when -

I < z < I (m)

Now the values of the function /(z) can be determined for the values of

z outside the interval I < z < I by using the end condition (e).

Substituting (k) in eq. (c) we obtain

ml{f"(at -I) -
f"(at + I) }

= + f'(at
-

1) + f'(at + I)

or by putting at + I = z,

/"CO + J'CO = /"(* ~ 20 -
--, /'(*

~ 2;). (")
r/jt ml

By using this equation the function /(z) can be constructed step by
step as follows:

From (m) we know that in the interval I < z < 31 the right-hand
member of equation (n) is zero. By integrating this equation the function

/(z) in the interval I < z < 31 will be obtained. The right-hand member
of equation (/?) will then become known for the interval 31 < z < 51.

Consequently the integration of this equation will give the function /(z)

for the interval 31 < z < 5/. By proceeding in this way the function

/(z) can be determined for all values of z greater than 1.

Considering eq. (n) as an equation to determine / '(z) the general

solution of this linear equation of the first order will be

/'(z)
= Ce-'/Ml + c-'

"ll

fe*
" l

(f"(z
- 20 - ~f'(z -

20)
dz, (p)

in which C is a constant of integration.

For the interval I < z < 3/, the right-hand member of eq. (n) vanishes

and we obtain

/'(z)
= Ce-/ml

.

Now, by using the condition ((7), we have

or

-l/m V

a
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and we obtain for the interval I < z < 3Z

d

When 3J < z < 5Z, we have, from eq. (q)

and

f'(z-2t) =-e- (2

a

f"(z - 21)
- -J'(z - 20 = - --e-"

ml ml a

Now the solution (p) can be represented in the following form,

- 2 - 3')/m
'. (r)

The constant of integration C will be determined from the condition

of continuity of the velocity at the end x = I at the moment t = (21/a).

This condition is

(dv\ = (du\
\dt/t-2l/a-Q \dt/* =

or by using eq. (fc)

f'(l
-

0)
-

/'(3Z
-

0) =
/'(Z + 0)

-
/'(3Z + 0).

Using now eqs. (m) (g) and (r) we obtain

from which
41

a

and we have for the interval 31 < z < 51

v _,.

/'(z)
CD d \ TTlt-

Knowing /'(z) when 3Z < z < 51 and using eq. (n), the expression for

/'(z) when 5Z < z < 71 can be obtained and so on.

The function /(z) can be determined by integration if the function

/'(z) be known, the constant of integration being determined from the
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condition that there is no abrupt change in the displacement u at x = I.

In this manner the following results are obtained when I < z < 3Z.

f(z)
= mlv/a{l

-
when 3Z < z < 51

2.
(,
-

30)mt /

Knowing /(z) the displacements and the stresses at any cross section

of the bar can be calculated by substituting in eq. (k) the corresponding
values for the functions f(at x) and f(at + x). When < t < (I/a)
the term f(at x) in eq. (A:) is equal to zero, by virtue of (ra) and hence
we have only the wave f(at + x) advancing in the negative direction of

the x axis. The shape of this wave will be obtained from (t) by substi-

tuting at + x for z. At t (I/a) this wave will be reflected from the

fixed end and in the interval (I/a) < t < (2l/a) we will have two waves,
the wave f(at x) traveling in the positive direction along the x axis and
the wave f(at + x) traveling in the negative direction. Both waves can

be obtained from (t) by substituting, for z, the arguments (at x) and

(at + x), respectively. Continuing in this way the complete picture of

the phenomenon of longitudinal impact can be secured.

The above solution represents the actual conditions only as long as

there exists a positive pressure between the striking body and the bar,

i.e., as long as the unit elongation

-) = -f(at-l)-f(at + T) (w)

remains negative. When < at < 21, the right-hand member of the eq.

(w) is represented by the function (q) with the negative sign and remains

negative. When 21 < at < 41 the right side of the eq. (it?) becomes

_ Va</mi
{i

a ( ml

This vanishes when

1 +
ml

or
-2/m

2at/ml = 4/m + 2 + <T
2m

. (x)
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This equation can have a root in the interval, 21 < at < 4Z only if

2 + e~ 2/m < 4/m,

which happens for m = 1.73.

Hence, if the ratio of the weight of the striking body to the weight of

the bar is less than 1.73 the impact ceases at an instant in the interval

21 < at < 41 and this instant can be calculated from equation (x). For

larger values of the ratio w, an investigation of whether or not the impact
ceases at some instant in the interval 4Z < at < 6Z should be made, and
so on.

The maximum compressive stresses during impact occur at the fixed

end and for large values of m (m > 24) can be calculated with sufficient

accuracy from the following approximate formula:

+l). (194)
a

For comparison it is interesting to note that by using the approximate
method of the previous article and neglecting dtt in comparison with h in

eq. (d) (see p. 392) we arrive at the equation

cr^x = E- Vm. (195)
a

When 5 < m < 24 the equation

<rmax
= E

V (Vm +1.1) (196)
a

should be used instead of eq. (194). When m < 5, S. Venant derived the

following formula,

<r* = 2E
V

(l + e- 2/m
). (197)

a

By using the above method the oase of a rod free at one end and struck

longitudinally at the other and the case of longitudinal impact of two

prismatical bars can be considered.* It should be noted that the investi-

gation of the longitudinal impact given above is based on the assumption
that the surfaces of contact between the striking body and the bar are two
ideal smooth parallel planes. In actual conditions, there will always be
some surface irregularities and a certain interval of time is required to

* See A. E. H. Love, p. 435, loc. cit.
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flatten down the high spots. If this interval is of the same order as the time

taken for a sound wave to pass along the bar, a satisfactory agreement
between the theory and experiment cannot be expected.* Much better

results will be obtained if the arrangement is such that the time Ifa is com-

paratively long. For example, by replacing the solid bar by a helical

spring C. Ramsauer obtained f a very good agreement between theory and

experiment. For this reason we may also expect satisfactory results in

applying the theory to the investigation of the propagation of impact waves
in long uniformly loaded railway trains. Such a problem may be of prac-
tical importance in studying the forces acting in couplings between cars.J

Another method of obtaining better agreement between theory and

experiment is to make the contact conditions more definite. By taking,
for instance, a bar with a rounded end and combining the Ilerz theory
for the local deformation at the point of contact with S. Venant's theory
of the waves traveling along the bar, J. E. Sears secured a very good
coincidence between theoretical and experimental results.

68. Vibration of a Circular Ring. The problem of the vibration of a

circular ring is encountered in the investi-

gation of the frequencies of vibration of

various kinds of circular frames for rotating
electrical machinery as is necessary in a study
of the causes of noise produced by such ma-

chinery. In the following, several simple

problems on the vibration of a circular ring of

constant cross section aro considered, under

the assumptions that the cross sectional dimen- FKJ. IDS.

sions of the ring are small in comparison with

the radius of its center lino mid that one of the principal axes of the

cross section is situated in the plane of the ring.

Pure Radial Vibration. In this case the center line of the ring forms

a circle of periodically varying radius and all the cross sections move
radially without rotation.

* Such experiments with solid steel bars were made by W. Voigt, Wied. Ann., Vol.

19, p. 43 (1883).

f Ann. d. Phys., Vol. 30 (1909).

J This question has been studied in the recent paper by O. R. Wikander, Trans. Am.
Soc, Mech. Engns., V. 57, p. 317, 1935.

Trans. Cambridge Phil. Soc., Vol. 21 (1908), p. 49. Further experiments are

described by J. K. P. Wagstaff, London, Royal Soo. Proc. (ser. A), Vol. 105, p. 5-14

(1924). See also W. A. Prowse, Phil. Mag., ser. 7, V. 22, p. 209, 1936.
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Assume that r is radius of the center line of the ring,

u is the radial displacement, the same for all cross sections.

A is the cross sectional area of the ring.

The unit elongation of the ring in the circumferential direction is then

u/r. The potential energy of deformation, consisting in this case of

the energy of simple tension will be given by the equation:

while the kinetic energy of vibration will be

T = U22TTT. (6)

From (a) and (6) we obtain

7 r2

from which
u = Ci cos pi + C2 sin pt,

where

fis

The frequency of pure radial vibration is therefore *

(198,

A circular ring possesses also modes of vibration analogous to the longi-

tudinal vibrations of prismatical bars. If i denotes the number of wave

lengths to the circumference, the frequencies of the higher modes of

extensional vibration of the ring will be determined from the equation, f

(199)

* If there is any additional load, which can be considered as uniformly distributed

along the center line of the ring, it is only necessary in the above calculation (eq. b) to

replace Ay by Ay + w, where w denotes the additional weight per unit length of the
center line of the ring.

t See A. E. H. Love, p. 454, loc. cit.



VIBRATIONS OF ELASTIC BODIES 407

Torsional Vibration. Consideration will now be given to the simplest
mode of torsional vibration, i.e., that in which the center line of the ring
remains undeformed and all the cross sec-

tions of the ring rotate during vibration

through the same angle (Fig. 199). Due to

this rotation a point M, distant y from the

middle plane of the ring, will have a radial

displacement equal to T/V? and the correspond-

ing circumferential elongation can be taken FIG. 199.

approximately equal to y<p/r. The potent!
al energy of deformation of the ring can now be calculated as follows:

.

A 2 \ r / r

where Ix is moment of inertia of the cross section about the x axis.

The kinetic energy of vibration will be

T = 2*r ^ ?, (d)

where I p is the polar moment of inertia of the cross section.

From (c) and (d) we obtain

Eg L..i i7 * n
9 + o Y 9 =

0,
7'~ IP

from which

<p
= Ci cos pt + C-2 sin pt,

where

\Eghp = \j-'> Tr- I p

The frequency of torsional vibration will then be given by

Comparing this result with formula (198) it can be concluded that the

frequencies of the torsional and pure radial vibrations are in the ratio

\/Ix/fp . The frequencies of the higher modes of torsional vibration are

given,* in the case of a circular cross section of the ring, by the equation,

(201)

* Sec A. E. II. Love, p. 453, loc. cit.
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Remembering that

Eg a

r

where a is the velocity of propagation of sound along the bar, it can be

concluded that the extensional and torsional vibrations considered above
have usually high frequencies. Much lower frequencies will be obtained

if flexural vibrations of the ring are considered.

Flexural Vibrations of a Circular Ring. Flexural vibrations of a

circular ring fall into two classes, i.e., flexural vibrations in the plane of

the ring and flexural vibrations involving both displacements at right

angles to the plane of the ring and twist.* In considering the flexural

vibrations in the plane of the ring (Fig. 198) assume that

6 is the angle determining the position of a point on the center line.

u is radial displacement, positive in the direction towards the center.

v is tangential displacement, positive in the direction of the increase in

the angle 6.

I is moment of inertia of the cross section with respect to a principal
axis at right angles to the plane of the ring.

The unit elongation of the center line at any point, due to the displace-
ments u and v is,

u dv

and the change in curvature can be represented by the equation f

r+Ar r r2dd2 r*

In the most general case of flexural vibration the radial displacement u

can be represented in the form of a trigonometrical series t

u = a\ cos + a% cos 26 + - - + 61 sin 6 + 62 sin 20 + (ti)

in which the coefficients ai, 02, 61, 62, , varying with the time,

represent the generalized coordinates.

* A. E. H. Love, loc. cit., p. 451.

t This equation was established by J. Boussinesq: Comptes Rendus., Vol. 97, p. 843
(1883).

J The constant term of the series, corresponding to pure radial vibration, is omitted.
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Considering flexural vibrations without extension,* we have, from (e),

dv
, ^u = ~, 07)

from which, f

v = a\ sin 6 + Y^a^ sin 20 + bi cos 6 ^62 cos 20 . (&)

The bending moment at any cross section of the ring will be

and hence we obtain for the potential energy of bending

El

or, by substituting the series (h) for u and by using the formulae,

r2* r2'

I cos mQ cos n6dO =
0, / sin m6 sin nOdd =

0, when m 5^ n,
*^o *^o

/2r

/^2T
^27r

cos me sin m0d^ =
0, / cos2 mddd = / sin2 ra0d0 =

TT,

*^0 *M)

we get

V-fTEd-t^a^ + b.
2
). (0

*r <-l

The kinetic energy of the vibrating ring is

A C2*

T = ~t (# + p)rdem
2>9 */o

By substituting (h) and (Jfc) for w and t>, this becomes

+ M). ()

It is seen that the expressions (I) and (m) contain only the squares of

* Discussion of flexural vibrations by taking into account also extension see in the

papers by F. W. Waltking, Ingenieur-Archiv., V. 5, p. 429, 1934, and K. Federhofer,

Sitzungsberichten der Acad. der Wiss. Wien, Abteilung Ila, V. 145, p. 29, 1936.

t The constant of integration representing a rotation of the ring in its plane as a

rigid body, is omitted in the expression (&).
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the generalized coordinates and of the corresponding velocities; hence

these coordinates are the principal or normal coordinates and the corre-

sponding vibrations are the principal modes of flexural vibration of the

ring. The differential equation for any mode of vibration, from (I) and

(w), will be

g
or

Eg I i2 (l
- i2)

2
fta .

_j
-- - - a = 0.

7 Ar4 1 + t
2

Hence the frequency of any mode of vibration is determined by the

equation :

*(T^W2-
<202>

When i = 1, we obtain f\ = 0. In this case u = a\ cos 0; v = a\ sin 6

and the ring moves as a rigid body, a\ being the displacement in the

negative direction of the x axis Fig. 198. When i = 2 the ring performs the

fundamental mode of flexural vibration. The extreme positions of the

ring during this vibration are shown in Fig. 198 by dotted lines.

In the case of flexural vibrations of a ring of circular cross section

involving both displacements at right angles to the plane of the ring and
twist the frequencies of the principal modes of vibration can be calculated

from the equation*

.

in which v denotes Poisson's ratio.

Comparing (203) and (202) it can be concluded that even in the lowest

mode (i
= 2) the frequencies of the two classes of flexural vibrations

differ but very slightly, f

Incomplete Ring. When the ring has the form of an incomplete
circular arc, the problem of the calculation of the natural frequencies of

vibration becomes very complicated. | The results so far obtained can

* A. E. H. Love, Mathematical Theory of Elasticity, 4th Ed., Cambridge, 1927,

p. 453.

t An experimental investigation of ring vibrations in connection with study of gear
noise see in the paper by R. E. Peterson, Trans. Am. Soc. Mech. Engrs., V. 52, p. 1, 1930.

J This problem has been discussed by H. Lamb, London Math. Soc. Proc., Vol. 19,

p. 365 (1888). See also the paper by F. W. Waltking, loc. cit., p. 409.
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be interpreted only for the case where the length of the arc is small in

comparison to the radius of curvature. In such cases, these results

show that natural frequencies are slightly lower than those of a straight
bar of the same material, length, and cross section. Since, in the general

case, the exact solution of the problem is extremely complicated, at this

date only some approximate values for the lowest natural frequency are

available, the Rayleigh-Ritz method *
being used in their calculation.

69. Vibration of Membranes. General. In the following discussion

it is assumed that the membrane is a perfectly flexible and infinitely thin

lamina of uniform material and thickness. It is further assumed that it

is uniformly stretched in all directions by a tension so large that the

fluctuation in this tension due to the small deflections during vibration

can be neglected. Taking the plane of the membrane coinciding with

the xy plane, assume that

v is the displacement of any point of the membrane at right angles to

the xy plane during vibration.

S is uniform tension per unit length of the boundary.
w is weight of the membrane per unit area.

The increase in the potential energy of the membrane during deflection

will be found in the usual way by multiplying the uniform tension S byi
the increase in surface area of the membrane. The area of the surface

of the membrane in a deflected position will be

or, observing that the deflections during vibration are very small,

Then the increase in potential energy will be

* See J. P. DenHartog, The Lowest Natural Frequency of Circular Arcs, Phil. Mag.,
Vol. 5 (1928), p. 400; also: Vibration of Frames of Electrical Machines, Trans. A.S.M.E.

Applied Mech. Div. 1928. Further discussion of the problem see in the papers by
K. Federhofer, Ingenieur-Archiv., V. 4, p. 110, and p. 276, 1933. See also the above

mentioned paper by F. W. Waltking.
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The kinetic energy of the membrane during vibration is

T = / / v2dxdy.
**Q / */

(6)

FIG. 200.

By using (a) and (6) the frequencies of the normal
x modes of vibration can be calculated as will now be

shown for some particular cases.

Vibration of a Recta?igular Membrane. Let a and b

denote the lengths of the sides of the membrane and
let the axes be taken as shown in Fig. 200. Whatever
function of the coordinates v may be, it always can

be represented within the limits of the rectangle by
the double series

ZV-*
nnrx

2^ qmn sin sin ^
,

m=l n=l a b
(c)

the coefficients qmn of which are taken as the generalized coordinates for

this case. It is easy to see that each term of the series (c) satisfies the

boundary conditions, namely, v = 0, for x = 0; x = a and v = for

y = 0; y = b.

Substituting (c) in the expression (a) for the potential energy we
obtain

Sir2 C= T7
m mirx-

n .

n r sm.6 a
cos ~i

b

Integrating this expression over the area of the membrane using the

formulae of Art. (18) (see p. 99) we find,

ct "L oTnftvn**/ o

v = SaJ^ T ^(rn? (d)

In the same way by substituting (c) in eq. (6) the following expression
for the kinetic energy will be obtained:

20 4 (e)

The expressions (d) and (e) do not contain the products of the coordinates
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and of the corresponding velocities, hence the coordinates chosen are prin-

cipal coordinates and the corresponding vibrations are normal modes of

vibration of the membrane.
The differential equation of a normal vibration, from (d) and (e), will be

w ab .. abw2 /m2 n2

g 4 4 \a2

from which,

The lowest mode of vibration will be obtained by putting m = n = 1.

Then

The deflection surface of the membrane in this case is

TTX TT]j
v = C sin sin ~- (g)

In the same manner the higher modes of vibration can be obtained.

Take, for instance, the case of a square membrane, when a = b. The
frequency of the lowest tone is

'

(205)
-
aV2

The frequency is directly proportional to the square root of the tension S
and inversely proportional to the length of sides of the membrane and to

the square root of the load per unit area.

The next two higher modes of vibration will be obtained by taking
one of the numbers ra, n equal to 2 and the other to 1. These two modes
have the same frequency, but show different shapes of deflection surface.

In Fig. 201, a and b the node lines of these two modes of vibration are

shown. Because of the fact that the frequencies are the same it is possible
to superimpose these two surfaces on each other in any ratio of their

maximum deflections. Such a combination is expressed by

/ . 2irx
. try .

TTX . 2iry\
v = I C sin -- sin --h D sin sin- I

,

\ a a a a /
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where C and D are arbitrary quantities. Four particular cases of such

a combined vibration are shown in Fig. 201. Taking D = we obtain

the vibration mentioned above and shown in Fig. 201, a. The membrane,
while vibrating, is sub-divided into two equal parts by a vertical nodal

C=o C=D

y
FIG. 201.

line. When (7 = 0, the membrane is sub-divided by a horizontal nodal

line as in Fig. 201, b. When C = D, we obtain

/
.

ZTTX .iry . TTX .
27rA

v = C I sin sin f- sin sin j
\ a a a a /

~ . TTX . iry/ TTX 7ry\= 26 sm sin l cos f- cos j
a a \ a a /

This expression vanishes when

or again when

TTX
sm = 0, or

a

I Acos h cos = 0.
a a

The first two equations give us the sides of the boundary; from the

third equation we obtain

or

= _ my.

a a

x + y = a.

This represents one diagonal of the square shown in Fig. 201, d. Fig.

201, c represents the case when C D. Each half of the membrane
in the last two cases can be considered as an isosceles right-angled tri-

angular membrane. The fundamental frequency of this membrane,
from eq. (204), will be

2 w w
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In this manner also higher modes of vibration of a square or rectangular
membrane can be considered.*

In the case of forced vibration of the membrane the differential equa-
tion of motion (/) becomes

wab .. abw2 /m2 n2\
7" Qmn + AS

-"-
I + I qmn = Q mri , (k)

in which Qmn is the generalized disturbing force corresponding to the co-

ordinate qmn .

Let us consider, as an example, the case of a harmonic force P =
Po cos utj acting at the center of the membrane. By giving an increase

6qmn to a coordinate qmn ,
in the expression (c), we find for the work done

by the force P:

_ rrnr nir
PO cos ut5qmn sin - sm

,

2i Lt

from which we see that when m and n are both odd, Qmn = db PO cos ut,

otherwise Qmn = 0. Substituting in eq. (A), and using eq. 48, (p. 104),
we obtain

A r> /"'
4g PO /

Qmn = ~
/ sin p mn (t ti) cos u>t\dti

abwp mn JQ

4fl^ PO= _j_ (CQS ^1 COS Pmn0> (k)
abwpmn2 or

where

\ > "" i ow \ a- o- (

By substituting (k) in the expression (c) the vibrations produced by
the disturbing force PO cos ut will be obtained.

When a distributed disturbing force of an intensity Z is acting on the

membrane, the generalized force in eq. (h) becomes

/& xa
^ / / ~ .

m?r:r
.

U7ry j j /TX
Qmn = I I Z sm sin dxdy. (I)

Jo JQ a b

* A more detailed discussion of this problem can be found in Rayleigh's book, loc.

cit., p. 306. See also Lame's, Legons sur relasticit^. Paris, 1852.
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Assume, for instance, that a uniformly distributed pressure Z is suddenly

applied to the membrane at the initial moment (t
= 0), then from (i),

Qmn = Z---
(1 cosm7r)(l cosnTr).

When m and n both are odd, we have

Qmn =-^ 2 Zi ("0mmr2

otherwise Q mn vanishes.

Substituting (m) in eq. (h) and assuming the initial condition that qmn
= at t = 0, we obtain

_ _ 160 Z(l - cos p mnt)~~ ~......
,,

pmn2 VV

Hence the vibrations produced by the suddenly applied pressure Z are

V 1 COS p mnt
. . n

(
.

"^-'

where m and n are both odd.

Rayleigh-Ritz Method. In calculating the frequencies of the natural

modes of vibration of a membrane the Rayleigh-Ritz method is very
useful. In applying this method we assume that the deflections of the

membrane, while vibrating, are given by

V = Vo COS pty (p)

where VQ is a suitable function of the coordinates x and y which determines

the shape of the deflected membrane, i.e., the mode of vibration. Sub-

stituting (p) in the expression (a) for the potential energy, we find

s

For the maximum kinetic energy we obtain from (6)

Traax = ~ P
2ffvo

2
dxdy. (r)

Putting (q) equal to (r) we get

2 8g
p

r
J J

T7/ / *vtfdxdy
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In applying the Rayleigh-Ritz method we take the expression VQ for

the deflection surface of the membrane in the form of a series:

, y) 2(x, y) , (0

each term of which satisfies the conditions at the boundary. (The
deflections at the boundary of the membrane must be equal to zero.)
The coefficients ai, 0,2

- in this series should be chosen in such a manner
as to make (s) a minimum, i.e., so as to satisfy all equations of the following
form

f nJ J \( =
0,

or

ff

By using (s) this latter equation becomes

= 0. (u)
p*w

j-
*'

dy / gb

In this manner we obtain as many equations of the type (u) as there are

coefficients in the series (t). All these equations will be

linear in ai, ao, #3, ,
and by equating the determinant

of these equations to zero the frequency equation for the

membrane will be obtained.

Considering, for instance, the modes of vibration of a

square membrane symmetrical with respect to the x and y

axes, Fig. 202, the series (f) can be taken in the following

form,
y = (a

2 - *2
)(a

2 -
7/
2
) (ai + a2x2 + a3*/

2 + a4x2
7/
2 +)

It is easy to see that each term of this series becomes equal to zero, when
x = y = i a. Hence the conditions at the boundary are satisfied.

In the case of a convex polygon the boundary conditions will be satis-

fied by taking

y
FIG. 202.

VQ (anx + bny
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where a\x + b\y + c\ = 0, are the equations of the sides of the

polygon. By taking only the first term (m = 0, n = 0) of this series a

satisfactory approximation for the fundamental type of vibration usually
will be obtained. It is necessary to take more terms if the frequencies of

higher modes of vibration are required.

Circular Membrane. We will consider the simplest case of vibration,
where the deflected surface of the membrane is symmetrical with respect
to the center of the circle. In this case the deflections depend only on the

radial distance r and the boundary condition will be satisfied by taking

irr 3?rr
#o =

i cos - + a<2 cos - --h i (v)
2a 2a

where a denotes the radius of the boundary.
Because we are using polar coordinates, eq. (q) has to be replaced in

this case by the following equation :

*
Instead of (r) we obtain

/av^lirrdr (r)'
,/

and eq. (u) assumes the form

d

By taking only the first term in the series (v) and substituting VQ

a\ cos 7rr/2a in eq. (u)
1 we obtain

- 2
wr j P2w r 9

^ j
/ sm2 rdr = / cos2 rdr,

4a2 JQ 2a gS J 2a
from which

or

P =
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The exact solution *
gives for this case,

2.404 IgS
P =

w (207)

The error of the first approximation is less than

In order to get a better approximation for the fundamental note and
also for the frequencies of the higher modes of vibration, a larger number
of terms in the series (v) should be taken. These higher modes of vibra-

tion will have one, two, three, nodal circles at which the displacements
v are zero during vibration.

In addition to the modes of vibration symmetrical with respect to the

center a circular membrane may have also modes in which one, two, three,

n=o 5-7 n- o

n-i

n=o 5=3

Fia. 203.

diameters of the circle are nodal lines, along which the deflections

during vibration are zero. Several modes of vibration of a circular mem-
brane are shown in Fig. 203 where the nodal circles and nodal diameters

are indicated by dotted lines.

In all cases the quantity p, determining the frequencies, can be ex-

pressed by the equation,

the constants a n8 of which are given in the .table below, f In this table

n denotes the number of nodal diameters and s the number of nodal

circles. (The boundary circle is included in this number.)

* The problem of the vibration of a circular membrane is discussed in detail by
Lord Rayleigh, loc. cit., p. 318.

t The table was calculated by Bourget, Ann. de. l'<5cole normale, Vol. 3 (1866).
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It is assumed in the previous discussion that the membrane has a

complete circular area and that it is fixed only on the circular boundary,
but it is easy to see that the results obtained include also the solution of

other problems such as membranes bounded by two concentric circles

and two radii or membranes in the form of a sector. Take, for instance,

membrane semi-circular in form. All possible modes of vibration of

this membrane will be included in the modes which the circular membrane
may perform. It is only necessary to consider one of the nodal diameters

of the circular membrane as a fixed boundary. When the boundary of a

membrane is approximately circular, the lowest tone of such a membrane
is nearly the same as that of circular membrane having the same area

and the same value of Sg/w. Taking the equation determining the fre-

quency of the fundamental mode of vibration of a membrane in the form,

P = aV~7
gs
wA' (209)

where A is the area of the membrane, the constant a of this equation will

be given by the table on page 421, which shows the effect of a greater
or less departure from the circular form.*

In cases where the boundary is different from those discussed above
the investigation of the vibrations presents mathematical difficulties and

only the case of an elliptical boundary has been completely solved by
Mathieu.f A complete discussion of the theory of vibration of mem-
branes from a mathematical point of view is given in a book by Pockels.J

* The table is taken from Rayleigh's book, loc. cit., p. 345.

t Journal de Math. (Liouville), Vol. 13 (1868).

t Pockels: t)ber die partielle Differentialgleichung, Au + k*u = 0; Leipzig, 1891.
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Circle .................................... a = 2.404y^ = 4.261

Square ................................... a = ?r\/2 4.443

Quadrant of a circle ....................... a = - \X^ = 4,551

r*
Sector of a circle 60 ....................... a = 6 379\/- = 4.616

* 6

/13
Rectangle 3X2 ........................... a =

-v/ TT = 4.624
^ 6

Equilateral triangle ........................ a = 27rVtan 30 = 4.774

Semi-circle ................................ a = 3 -832^H
= 4.803

Rectangle 2X1 ........................... a = TT ^ = 4.967

Rectangle 3X1 ........................... a = TT ^ = 5.736

70. Vibration of Plates. General. In the following discussion it is

assumed that the plate consists of a perfectly elastic, homogeneous,
isotropic material and that it has a uniform thick-

ness h considered small in comparison with its

other dimensions. We take for the xy plane the

middle plane of the plate and assume that with

small deflections * the lateral sides of an element,
cut out from the plate by planes parallel to the

zx and zy planes (see Fig. 204) remain plane
and rotate so as to be normal to the deflected

middle surface of the plate. Then the strain in a

thin layer of this element, indicated by the

shaded area and distant z from the middle plane
can be obtained from a simple geometrical con-

sideration and will be represented by the following equations:!

z d'
2v

* The deflections are assumed to be small in comparison with the thickness of the

plate.

t It is assumed that there is no stretching of the middle plane.
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z d2v

6*y
= - 22

in which
exx,

evy are unit elongations in the x and y directions,

exv is shear deformation in the xy plane,

v is deflection of the plate,

, are curvatures in the xz and yz planes,
R\ ri2

h is thickness of the plate.

The corresponding stresses will then be obtained from the known

equations:
Ez d2A

W'<TX
=

-i
-

2 (txx + veyy)
= - -

[
- + v

E _ Ez_

Ez 32v
exy
--

(1 + ^-^,
in which v denotes Poisson's ratio.

The potential energy accumulated in the shaded layer of the element

during the deformation will be

or by using the eqs. (a) and (6)

2(1
- ,2

d2v d2v

from which, by integration, we obtain the potential energy of bending of

the plate
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Eh3

where D = is the flexural rigidity of the plate.
1^(1 v )

The kinetic energy of a vibrating plate will be

(211)

where yh/g is the mass per unit area of the plate.

From these expressions for V and T, the differential equation of vibra-

tion of the plate can be obtained.

Vibration of a Rectangular Plate. In the case of a rectangular plate

Fig. (200) with simply supported edges we can proceed as in the case of a

rectangular mepabtane and take the deflection of the plate during vibra-

tion in the form of a double series

m= ~ n ^

Ev-^v = 2_j Lj^n sin sin - -
(d)

It is easy to see that each term of this scries satisfies the conditions at

the edges, which require that w, d'
2w/dx2 and d'

2
w/dy'

2 must be equal to

zero at the boundary.

Substituting (d) in eq. 210 the following expression for the potential

energy will be obtained

7r
4a6 "^ n^ ,

/ro2 n2\ 2

v = -

g-
D Z Z ?

2 ^ + ^J (212)

The kinetic energy will be

yh a
T = -

2g <

It will be noted that the expressions (212) and (213) contain only the

squares of the quantities qmn and of the corresponding velocities, from

which it can be concluded that these quantities are normal coordinates

for the case under consideration. The differential equation of a normal
vibration will be

u2

g \ a

from which

?mn = Ci cos pt + 2 sin pt,

where

(214)
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From this the frequencies of the lowest mode and of the higher modes of

vibration can be easily calculated. Taking, for instance, a square plate

we obtain for the lowest mode of vibration

rH
(215)

In considering higher modes of vibration and their nodal lines, the dis-

cussion previously given for the vibration of a rectangular membrane can

be used. Also the case of forced vibrations of a rectangular plate with

simply supported edges can be solved without any difficulty. It should

be noted that the cases of vibration of a rectangular plate, of which two

opposite edges are supported while the other two edges are free or clamped,
can also be solved without great mathematical difficulty.

*

The problems of the vibration of a rectangular plate, of which all the

edges are free or clamped, are, however, much more complicated. For
the solution of these problems, Ritz' method has been found to be very
useful, f In using this method we assume

v = VQ cos pt y (e)

where VQ is a function of x and y which determines the mode of vibration.

Substituting (e) in the equations (210) and (211), the following expressions
for the maximum potential and kinetic energy of vibration will be obtained :

p
2 I I v 2

dxdy,

^l j- - + 2(1 v) \
--

] \dxdy
dx2

dy
2 ^ '

\dxdy/
J

-r
J J ^

from which

Now we take the function VQ in the form of a series

vo = ai<t>i(x, y) + d2<p2(x, y) H---- , (f)

* See Voigt, Gottinger Nachrichten, 1893, p. 225.

t See W. Ritz, Annalen der Physik, Vol. 28 (1909), p. 737. See also "Gesammelte
Werke" (1911), p. 265.
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where ^i, ^2, are suitable functions of x and yy satisfying the con-

ditions at the boundary of the plate. It is then only necessary to de-

termine the coefficients ai, 02, in such a manner as to make the right
member of (216) a minimum. In this way we arrive at a system of equa-
tions of the type:

da, dy*

(217)

which will be linear with respect to the constants ai, 2, and by
equating to zero the determinant of these equations the frequencies of the

various modes of vibration can be approximately calculated.

W. Ritz applied this method to the study of the vibration of a square

plate with free edges.* The series (/) was taken in this case in the form,

where um(x) and vn (y) are the normal functions of the vibration of a

prismatical bar with free ends (see p. 343). The frequencies of the lowest

and of the higher modes of vibration will be determined by the equation

(218)

in which a is a constant depending on the mode of vibration. For the

three lowest modes the values of this constant are

ai = 14.10, <*2 = 20.56, a3 = 23.91.

The corresponding modes of vibration are represented by their nodal

lines in Fig. 205 below.

<*2
= 20.561410 23 91

FIG. 205.

An extensive study of the nodal lines for this case and a comparison with

experimental data are given in the paper by W. Ritz mentioned above.
* Loc. cit, p. 424.



426 VIBRATION PROBLEMS IN ENGINEERING

From eq. (218) some general conclusions can be drawn which hold

also in other cases of vibration of plates, namely,

(a) The period of the vibration of any natural mode varies with

the square of the linear dimensions, provided the thickness remains the

same;

(6) If all the dimensions of a plate, including the thickness, be increased

in the same proportion, the period increases with the linear dimensions;

(c) The period varies inversely with the square root of the modulus
of elasticity and directly as the square root of the density of material.

Vibration of a Circular Plate. The problem of the vibration of a

circular plate has been solved by G. Kirchhoff * who calculated also the

frequencies of several modes of vibration

for a plate with free boundary. The exact

solution of this problem involves the use

of Bessel functions. In the following an

approximate solution is developed by means
of the Rayleigh-Ritz method, which usually

gives for the lowest mode an accuracy suffi-

cient for practical applications. In apply-
FIG. 206. ing this method it will be useful to trans-

form the expressions (210) and (211) for

the potential and kinetic energy to polar coordinates. By taking the

coordinates as shown in Fig. 206, we see from the elemental triangle mns
that by giving to the coordinate x a small increase dx we obtain

dx sin
dr = ax cos 0; ad =

r

Then, considering the deflection v as a function of r and we obtain,

dv dv dr dv 30 dv dv sin 6= -4- = COS u "~~~

dx drdx 36 dx dr 36 r

In the same manner we will find

dv dv d/;cos0= sin 6 H
dy dr d6 r

* See Journal f. Math. (Crelle), Vol. 40 (1850), or Gesammelte Abhandlpngen von
G. Kirchhoff, Leipzig 1882, p. 237, or Vorlesungen liber math. Physik, Mechanik
Vorlesung 30.
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Repeating the differentiation we obtain

d2v

dx2 (d
d sin 0\ /dv dv sin 0\

cos 6 1 1 cos 6 1

dr d6 r / \dr dB r J

d2v d2v sin 6 cos dv sin2 6= COS2 0-2 --------
1

--------
dr2 dddr r dr r

dv sin cos d2*; sin2 6~~ ~ +

d2v d2v
.

a2^ sin cos dv cos2 9

dv sin cos a 2
i> cos2

a0 r2 a02 r2
3

a2^
__

d2v
.

a2?; cos 20 dv cos 20= gij\ COS "T" '
' ~~" " ~

dxdy dr2 drdO r d6 r2

dv sin cos a'~V sin cos

ar r a02 r2
!

from which we find

a2?^ d2v i i a2
t> i a^ i a2^

U *-*'i * *^

d*vd*v _ /^a
2

?' \ 2 _d2v/i dv i aL>\ _ fa A
ax2

a?/
2
~

\axdy)
~

dr2 \rdr r2 dff2) \dr\r dS

Substituting in eq. (210) and taking the origin at the center of the plate

we obtain

where a denotes the radius of the plate.

When the deflection of the plate is symmetrical about the center, v

will be a function of r only and eq. (219) becomes
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In the case of a plate clamped at the edge, the integral

vanishes and we obtain from (219)

2\2
(221)^ '

x.2, r
-

/
2 JQ J dr2 rdr r2 dff2

If the deflection of such a plate is symmetrical about the center, we have

(222)
o \dr r

^

The expression for the kinetic energy in polar coordinates will be

and in symmetrical cases,

, /*2ir s>a

T = J. / / v*rdedr (223)
2gJo Jo

T = ^ / i^r.
^o

(224)

By using these expressions for the potential and kinetic energy the

frequencies of the natural modes of vibration of a circular plate for various

particular cases can be calculated.

Circular Plate Clamped at the Boundary. The problem of the circular

plate clamped at the edges is of practical interest in connection with

the application in telephone receivers and other devices. In using the

Rayleigh-Ritz method we assume

V = VQ COS pt, (I)

where VQ is a function of r and
In the case of the lowest mode of vibration the shape of the vibrating

plate is symmetrical about the center of the plate and VQ will be a function

of r only. By taking VQ in the form of a series like

f -

-, (m)

the condition of symmetry will be satisfied. The conditions at the bound-

ary also will be satisfied because each term of the series (m) together
with its first derivative vanishes when r = a.
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The differential equation (217) in the case under consideration becomes

d fa
\/d2

vo 1 dvo\ 2
p
2yh J ,

. ^ x

^~ I HTT + "T~J -^TT^o2 rdr = 0. (225)
dan */ (\dr2 r dr / gD }

By taking only one term of the series (w) and substituting it in (225) we
obtain,

96_ p2-

9a2 gD 10

from which

1033

In order to get a closer approximation we take the two first terms of the

series (m), then

J
96 / 3 9

10

Equations (225) become

/UA_x\ , _ /96

where

Equating to zero the determinant of eqs. (n) we obtain

x2 -
2 4

g

X48
x + 768X36X7 =

0,
5

from which

xi == 104.3; x2 = 1854.

Substituting in (o) we obtain

10.21 GJD 43.04
Pi = r- V~T ^2 = ^-a2 ^

7/1 a2
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pi determines the second approximation to the frequency of the lowest

mode of vibration of the plate and p% gives a rough approximation to the

frequency of the second mode of vibration, in which the vibrating plate

has one nodal circle. By using the same method the modes of vibration

having nodal diameters can also be investigated.

In all cases the frequency of vibration will be determined by the

equation
nf L/^k

(228)

the constant a of which for a given number s of nodal circles and of a

given number n of nodal diameters is given in the table below.

In the case of thin plates the mass of the air or of the liquid in which the

plate vibrates may affect the frequency considerably. In order to take

this into account in the case of the lowest mode of vibration, equation

(228) above should be replaced by the following equation,*

10.21 IgD
(229)

in which

= .6689?
7 h

and (71/7) is the ratio of the density of the fluid to the density of the

material of the plate.

Taking, for instance, a steel plate of 7 inches diameter and 1/8 inch

thick vibrating in water, we obtain

= .6689 X X28 = 2.40;
7 .8

= .542.

* This problem has been discussed by H. Lamb, Proc. Roy. Soc. London, Vol. 98
(1921), p. 205.
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The frequency of the lowest mode of vibration will be lowered to .542

of its original value.

Other Kinds of Boundary Conditions. In all cases the frequencies of a

vibrating circular plate can be calculated from eq. (228). The numerical

values of the factor a are given in the tables below.

For a free circular plate with n nodal diameters and s nodal circles a.

has the following values:*

For a circular plate with its center fixed and having s nodal circles

a has the following values f

The frequencies of vibration having nodal diameters will be the same as

in the case of a free plate.

The Effect of Stretching of the Middle Surface of the Plate. In the

previous theory it was assumed that the deflection of the plate is small

in comparison with its thickness. If a vibrating plate is under con-

siderable static pressure such that the deflection produced by this pressure
is not small in comparison with the thickness of the plate, the stretching

of the middle surface of the plate should be taken into account in calcu-

lating the frequency of vibration. Due to the resistance of the plate

to such a stretching the rigidity of the plate and the frequency of vibration

increase with the pressure acting on the plate. J In order to show how
the stretching of the middle surface may affect the frequency, let us

consider again the case of a circular plate clamped at the boundary and

* Poisson's ratio is taken equal to Y$.

f See paper by R. V. Southwell, Proc. Roy. Soc., A, Vol. 101 (1922), p. 133; v = .3

is taken in these calculations.

t Such an increase in frequency was established experimentally. See paper by
J. H. Powell and Ji H. T. Roberts, Proc. Phys. Soc. London, Vol. 35 (1923), p. 170.
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assume that the deflection of the plate under a uniformly distributed pres-

sure is given by the equation
*

vo = ai
(
1 ~ $' (my

In addition to the displacements VQ at right angles to the plate the

points in the middle plane of the plate will perform radial displacements u
which vanish at the center and at the clamped boundary of the plate.

The unit elongation of the middle surface in a radial direction, due to

the displacements VQ and u
y
is

du
er = r

"

The elongation in a circumferential direction will be,

e t
= "-

(r)

For an approximate solution of the problem we assume that the radial

displacements are represented by the following series:

u = r(a r) (ci + c2r + w2 + ), (5)

each term of which satisfies the boundary conditions.

Taking only the first two terms in the series (s) and substituting (s)

and (m), in eqs. (p) and (r) the strain in the middle surface will be obtained

and the energy corresponding to the stretching of the middle surface can

now be calculated as follows:

Vl = -^ f (e? + ef + 2^i)rdr =^ (.250c,1 ~ VZ JQ 1 V* \

O 2

+.1167c22a4 + .300clC2a3 - .00846cia -
a
j-

w2 - + .00477^-)
cr cr /

* This equation represents the deflections when the stretching of the middle sur-

face is neglected. It can be used also for approximate calculation of the effect of the

stretching.
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Determining the constants c\ and 02 so as to make Vi a minimum, we
get, from the equations

d = 1.185.
;

c2 =- 1.75^--
a6 a4

Substituting in eq. (t) :

Vi = 2.597rZ>
a~

2
-

Adding this energy of stretching to the energy of bending (eq. 222) we
obtain,

The second term in the brackets represents the correction due to the

extension of the middle surface of the plate. It is easy to see that this

correction is small and can be neglected only when the deflection ai at

the center of the plate is small in comparison \vith the thickness h. The
static deflection of the plate under the action of a uniformly distributed

pressure w can now be found from the equation of virtual displacements,

*T7 ra / O\ O O3V I / r-V
7

Trwa2

Sai = 2irwdai I 11 -
J rdr = 5ai

dai J V a2/ 3

from which

The last factor on the right side represents the effect of the stretching of

the middle surface. Due to this effect the deflection a\ is no longer

proportional to w and the rigidity of the plate increases with the deflection.

Taking, for instance, ai = y?h, we obtain, from (230)

The deflection is 11% less than that obtained by neglecting the stretching
of the middle surface.

From the expression (u) of the potential energy, which contains not

only the square but also the fourth power of the deflection ai, it can be



434 VIBRATION PROBLEMS IN ENGINEERING

concluded at once that the vibration of the plate about its flat con-

figuration will not be isochronic and the frequency will increase with

the amplitude of vibration. Consider now small vibrations of the plate

about a bent position given by eq. (w)'. This bending is supposed to be

due to some constant uniformly distributed static pressure w. If A
denotes the amplitude of this vibration, the increase in the potential

energy of deformation due to additional deflection of the plate will be

obtained from eq. (u) and is equal to *

The work done by the constant pressure w during this increase in deflection

is

2 A 2 A
64aiD

irn*in/\ irn^/\

sw = 33 a4

The complete change in the potential energy of the system will be

Equating this to the maximum kinetic energy,

/"/, ^V A
Jo V

-
iM

rrfr = 2

o
p

we obtain

Comparing this result with eq. (226) it can be concluded that the last

factor on the right side of eq. (231) represents the correction due to the

stretching of the middle surface of the plate.

It should be noted that in the above theory equation (m)
f
for the

deflection of the plate was used and the effect of tension in the middle
surface of the plate on the form of the deflection surface was neglected.
This is the reason why eq. (231) will be accurate enough only if the deflec-

tions are not large, say a\ <> h. Otherwise the effect of tension in the
middle surface on the form of the deflection surface must be taken into

consideration.

* Terms with A8 and A4 are neglected in this expression.
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71. Vibration of Turbine Discs. General. It is now fairly well

established that fractures which occur in turbine discs and which cannot
be explained by defects in the material or by excessive stresses due to

centrifugal forces may be attributed to flexural vibrations of these discs.

In this respect it may be noted that direct experiments have shown *

that such vibrations, at certain speeds of the turbine, become very
pronounced and produce considerable additional bending stresses which

may result in fatigue of the metal and in the gradual development of

cracks, which usually start at the boundaries of the steam balance holes

and other discontinuities in the web of the turbine disc, where stress

concentration is present.

There are various causes which may produce these flexural vibrations

in turbine discs but the most important is that due to non-uniform steam

pressure. A localized pressure acting on the rim of a rotating disc is

sufficient at certain speeds to maintain lateral vibrations in the disc and

experiments show that the application of a localized force of only a few

pounds, such as produced by a small direct current magnet to the side

of a rotating turbine disc makes it respond violently at a whole series of

critical speeds.
Assume now that there exists a certain irregularity in the nozzles

which results in a non-uniform steam pressure and imagine that a turbine

disc is rotating with a constant angular velocity o> in the field of such a

pressure. Then for a certain spot on the rim of the disc the pressure
will vary with the angle of the rotation of the wheel and this may be

represented by a periodic function, the period of which is equal to the

time of one revolution of the disc. In the most general case such a function

may be represented by a trigonometrical series

w = oo + ai sin co + 02 sin 2ut + 61 cos ut + &2 cos 2ut + .

By taking only one term of the series such as ai sin ut we obtain a periodic

disturbing force which may produce large lateral vibration of the disc if

the frequency w/27r of the force coincides with one of the natural fre-

quencies p/2ir of the disc. From this it can be appreciated that the

calculation of the natural frequencies of a disc may have a great practical

importance.
A rotating disc, like a circular plate, may have various modes of

vibration which can be sub-divided into two classes:

* See paper by Wilfred Campbell, Trans. Am. Soc. Mech. Eng., Vol. 46 (1924), p. 31,

See also paper by Dr. J. von Freudenreich, Engineering, Vol. 119, p. 2 (1925),
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a. Vibrations symmetrical with respect to the center, having nodal lines

in the form of concentric circles, and
b. Unsymmetrical having diameters for nodal lines. The experiments

show that the symmetrical type of vibration very seldom occurs

and no disc failure can be attributed to this kind of vibration.

In discussing the unsymmetrical vibrations it can be assumed that the

deflection of the disc has the following form,

v = VQ sin nO cos pt, (a)

in which, as before, ^o is a function of the radial distance r only, 6 de-

termines the angular position of the point under consideration, and n

represents the number of nodal diameters.

The deflection can be taken also in the form

v = VQ cos ri0 sin pt. (a)'

Combining (a) and (a)' we obtain

v = VQ (sin nd cos pt =t cos nO sin pf) = VQ sin (nO db pt),

which represents traveling waves. The angular speed of these waves

traveling around the disc will be found from the condition

nO pt const.

From

= -t + const.
n

we obtain two speeds p/n and + p/n which are the speeds of the back-

ward and forward traveling waves, respectively. The experiments of

Campbell
*
proved the existence of these two trains of waves in a rotating

disc and showed also that the amplitudes of the backward moving waves
are usually larger than those of the forward moving waves. Backward
moving waves become especially pronounced under conditions of reso-

nance when the backward speed of these waves in the disc coincides

exactly with the forward angular velocity of the rotating disc so that

the waves become stationary in space. The experiments show that this

type of vibration is responsible in a majority of cases for disc failures.

Calculation of the Frequencies of Disc Vibrations. In calculating the

frequencies of the various modes of vibration of turbine discs the Rayleigh-

* Loc. cit., p. 435.
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Ritz method is very useful.* In applying this method we assume that

the deflection of the disc has a form

v = VQ sin nS cos pt. (a)"

In the particular case of vibration symmetrical with respect to the center

the deflection will be:

V = VQ COS pt. (6)

Considering in the following this particular case the maximum potential

energy of deformation will be, from eq. (220),

on \d
2vldv-

2(1 - v)
~ ~- T rdr,

rdr/ drz rdr
(c)

where a, b are outer and inner radii of the disc,

D
12(1

- is flexural ridigity of the disc, which in this case

will be variable due to variation in thickness h of the disc.

In considering the vibration of a rotating disc not only the energy of

deformation but also the energy corresponding to the work done during
deflection by the centrifugal forces

must be taken into consideration. It

is easy to see that the centrifugal

forces resist any deflection of the disc

and this results in an increase in the

frequency of its natural vibration.

In calculating the work done by the

centrifugal forces let us take an element

cut out from the disc by two cylin-

drical surfaces of the radii r and r + dr (Fig. 207). The radial displace-

ment of this element towards the center due to the deflection will be

FIG. 207.

dr
} dr.

The mass of the element is

9
dr

* The vibration of turbine discs by using this method was investigated by A. Stodola,
Schweiz. Bauz., Vol. 63, p. 112 (1914).
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and the work done during the deflection by the centrifugal forces acting
on this element will be

dr-- / (^)dr. (d)
g 2Jb \dr/ v '

The energy corresponding to the work of the centrifugal forces will be

obtained by summation of such elements as (d) in the following form,

<v \ f Tr2
<
2hy . f

T

(dv(\
2

(Fi)max = / dr I ( ) dr. (e)Jb g Jb \dr J w

The maximum kinetic energy is given by the equation

T =

Substituting expression (6) for v we obtain

Typ2

hvQ
2rdr.

9 /&

Now, from the equation

we deduce

In order to obtain the frequency the deflection curve ^o should be

chosen so as to make the expression (g) a minimum. This can be done

graphically by assuming for VQ a suitable curve from which v$, dvo/dr and
d2

vo/dr
2 can be taken for a series of equidistant points and then the

expressions (c), (e) and (/) can be calculated. By gradual changes in

the shape of the curve for #o a satisfactory approximation for the lowest

frequency can be obtained * from eq. (g).

In order to take into account the effect of the blades on the frequency
of natural vibration the integration in the expression (e) and (/) for the

* Such a graphical method has been developed by A. Stodola, loc. cit., p. 437. It

was applied also by E. Oehler, V. D. I., Vol. 69 (1925), p. 335, and gave good agreement
with experimental data.
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work done by the centrifugal forces and for the kinetic energy must be

extended from b to a + I where I denotes the length of the blade. In

this calculation the blades can be assumed to be straight during vibration

of the disc so that no addition to the expression for the potential energy
(c) will be necessary.

In an analytical calculation of the lowest frequency of a vibrating
disc we take VQ in the form of a series such as

VQ = ai(r
-

b)
2 + a2 (r

-
6)

3 + a3 (r - 6)* + -,

which satisfies the conditions at the built-in inner boundary of the disc,

where VQ and dvQ/dr become equal to zero. The coefficients ai, a^ #3

should now be chosen so as to make expression (g) a minimum. Pro-

ceeding as explained in the previous article (see p. 429) a system of

equations analogous to the equations (225) and linear in ai, #2, as can

be obtained. Equating to zero the determinant of these equations, the

frequency equation will be found.

In the case of a mode of vibration having diameters as nodal lines the

expression (a)" instead of (b) must be used for the deflections. The

potential energy will be found from eq. (219): it is only necessary to

take into consideration that in the case of turbine discs the thickness

and the flexural rigidity D are varying with the radial distance r so that

D must be retained under the sign of integration. Without any difficulty

also the expressions for V\ and T can be established for this case and

finally the frequency can be calculated from eq. (g) exactly in the same
manner as it was explained above for the case of a symmetrical mode of

vibration.*

When the disc is stationary V\ vanishes and we obtain from equation

(g)

' max , ^. f

Pi
2 =

12L /
9 J

hvjrdr

which determines the frequency of vibration due to elastic forces alone.

Another Extreme case is obtained when the disc is very flexible and
the restoring forces during vibration are due entirely to centrifugal forces.

Such conditions are encountered, for instance, when experimenting with

* The formulae for this calculation are developed in detail by A. Stodola, loc. cit.
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flexible discs made of rubber. The frequency will be determined in

this case from eq.

?ry C"

9 J*
hvo

2rdr

Now, from eq. (gr), we have

p'
2 = pi

2 + P2
2

-

fo)"

(h)

If the frequencies pi and p>2 are determined in some way, the resulting

frequency of vibration of the disc will be found from eq. (h). In the

case of discs of constant thickness and fixed at the center an exact solution

for pi and p2 has been obtained by R. V. Southwell.* He gives for pi
2

the following equation,

2 =
(*)

The values of the constant a for a given number n of nodal diameters and
a given number s of nodal circles are given in the table below, f

The equation for calculating p%
2

is

P2
2 = Xw2

, (0

in which w is the angular velocity and X is a constant given in the table

below,

* Loc. cit., p. 431.

f All other notations are the same as for circular plates (see p. 428). Poisson's

ratio is taken equal to .3 in these calculations.
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Determining pi
2 and p2

2 from the equations (k) and (/) the frequency of

vibration of the rotating disc will then be found from eq. (h).*

In the above theory of the vibration of discs the effect of non-uniform

heating of the disc was not considered. In a turbine in service the rim of

the disc will be warmer than the web. Due to this factor compressive
stresses in the rim and tensile stresses in the web will be set up which

may affect the frequencies of the natural vibrations considerably. The

experiments and calculations f show that for vibrations with and 1

nodal diameters, the frequency is increased, whereas with a larger number
of nodal diameters, the frequency is lowered by such a non-uniform heating.

* A discussion of the differential equation of vibration for the case of a disc of variable

thickness is given in the paper by Dr. Fr. Dubois, Schweiz. Bauz., Vol. 89, p. 149 (1927).

t Freudenreich, loc. cit., p. 435.





APPENDIX

VIBRATION MEASURING INSTRUMENTS

1. General. Until quite recently practical vibration problems in the

shops and in the field were usually left to the care of men who did not

have great knowledge of the theory of vibration and based their opinions
on data obtained from experience and gathered by the unaided senses of

touch, sight and hearing. With the increasing dimensions and velocities

of modern rotating machinery, the problem of eliminating vibrations

becomes more and more important and for a successful solution of this

problem the compilation of quantitative data on the vibrations of such

machines and their foundations becomes necessary. Such quantitative

results, however, can be got only by means of instruments. The funda-

mental data to be measured in investigating this problem are: (a) the

frequency of the vibration, (6) its amplitude, (c) the type of wave, simple

harmonic, or complex, and (d) the stresses produced by this vibration.

Modern industry developed many instruments for measuring the

above quantities and in the following some of the most important, which

have found wide application, will be described.*

2. Frequency Measuring Instruments. A knowledge of the frequency
of a vibration is very important and often gives a valuable clue to its

source. The description of a very simple frequency meter, Frahm's

tachometer, which has long been used in turbo generators, was given
before. (See page 27.) The Fullarton vibrometer is built on the same

principle. It is shown in Fig. 208. This instrument consists of a claw

A to be clamped under a bolt head, two joints B rotatable at right angles

to each other, a main frame bearing a reed C, a length scale D on the

side, an amplitude scale E across the top, and a long screw F. A clamp
carriage rides on the main frame, its position being adjusted by the screw.

* See the paper by J. Ormondroyd, Journal A.I.E.E., Vol. 45 (1926), p. 330. See

also the paper by P. A. Borden, A.LE.P1 Trans., 1925, p. 238, and the paper by H.

Steuding, V.D.I., Vol. 71 (1927), p. 605, representing an abstract from a very complete

investigation on vibration recording instruments made for the Special Committee on

Vibration organized by the V.D.I. (Society of German Engineers).

443
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The reed is held tightly in a fixed clamp at the bottom of the frame and its

free length is varied by the position of the movable clamp on the carriage.

The instrument is bolted to the vibrating machine* and the free length
of the reed is adjusted until the largest amplitude of motion is obtained

at the end of the reed. This is read on the transverse scale. The instru-

ment then is in resonance with the impressed frequency. This frequency
can be determined by measuring the free length of the reed.

This device is so highly selective (damping forces extremely small)
that it can be used ..only on vibrations with almost absolutely constant

FIG. 208.

frequency. The least variation in frequency near the resonance point
will give a very large fluctuation in amplitude. This limits the instrument
to uses on turbo generators and other machinery in which the speed
varies only slightly.

3. The Measurement of Amplitudes. There are many instances

where it is important to measure only the amplitude of the vibration.

This is true in most cases of studying forced periodic vibrations of a
known frequency such as are found in structures or apparatus under the
action of rotating machinery. Probably the most frequent need for

measuring amplitudes occurs in power plants, where vibrations of the

* The weight of the machine should be considerably larger than the weight of the
instrument to exclude the possibility of the instrument affecting the motion of the
machine.
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building, of the floor, of the foundation or of the frame are produced by
impulses given once, a revolution due to unbalance of the rotating parts.

The theory on which seismic instruments are based is given on page
19. An amplitude meter on this principle, built by the Vibration Specialty

Company of Philadelphia, is shown in Fig. 209. The photograph shows
the instrument with the side cover off. It is of the seismographic type.
A steel block (1) is suspended on springs (3) in a heavy frame (2), the

FIG. 209.

additional compression springs (4) centering the block horizontally.
The frequencies of the natural vibrations of the block both in vertical

and horizontal direction are about 200 per minute. The frame carries two
dial indicators (5), the plungers of which touch the block. The instrument

is to be bolted to the structure under investigation. The frequency of

vibration produced by high speed rotating machinery is usually several

times higher than the natural frequency of the vibrometer and the block

of the instrument can be considered as stationary in space. The indicators
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gluedon

register the vertical and horizontal components of the relative motion
between the block and the frame, their hands moving back and forth over
arcs giving the double amplitudes of these components.

This instrument proved to be very useful in power plants for studying
the vibration of turbo generators. It is a well known fact that at times
a unit, due probably to non-uniform temperature distribution in the rotor,

begins to vibrate badly when brought to full speed, the vibrations persisting
for a long period. This condition may be cured by slowing the machine
down and then raising the speed again. Sometimes vibrations may
be built up also at changes in the load or due to a drop in the vacuum, which
is accompanied by variations in temperature of the turbine parts. One
or two vibrometers mounted on the bearing pedestals of the turbine will

give complete information about such vibrations.

The instrument is also very useful

for balancing the rotors at high speed,

especially when a very fine balancing
is needed. The elimination of the

personal element during this opera-
tion is of great importance. The
balancing takes a long time when the
unit is in service, several days passing
sometimes between two consecutive
trials and a numerical record of the

amplitude of vibration gives a definite

method of comparing the condition

of the machine for the various loca-

tions of balancing weights. The pro-
cedure of balancing by using only the

amplitudes of the vibration was de-

scribed before (see page 70).
Another interesting application of

this instrument is shown in Fig. 210.

With the front cover off the instru-

ment, the actual path of a point on
the vibrating pedestal of a turbo

generator can be studied.* A piece of

emery cloth of a medium grade is glued to the steel block of the instrument.
A light is thrown onto the emery, giving very sharp point reflections on the

* This method was devised by Mr. G. B. Karelitz, Research Engineer of the Westing-
house Electric & Manufacturing Company.

FIG. 210.
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crystals of carborundum. A microscope is rigidly attached to the pedestal
inder investigation and focused on the emery cloth. The block being

stationary in space, the relative motion of the microscope and the cloth

Medium Vibration ^

Rough > ^
Scale

o 5 10 15 * io~
3
in.

Go

600 800 100Q 1200 1400 1600
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FIG. 211.

"1800 Wpp WOO

3an be clearly seen, the points of light scribing bright figures, of the same
kind as the well known Lissajous' figures. Typical figures as obtained on
a, pedestal of an 1800 r.p.rn. turbine are shown in Fig. 211.

FIG. 212;
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4. Seismic Vibrographs. Seismic vibrographs are used where a

complete analysis of the vibration is required. The chief application

these instruments find is in the measurement of floor vibrations in build-

ings, vibrations of foundations of machines and vibrations of bridges.

By analyzing a vibrograph record into simple harmonic vibrations, it is

possible sometimes to find out the source of the disturbing forces producing
these component vibrations.

The Vibrograph constructed by the Cambridge Instrument Company*
is shown in Figs. 212,and 213. This instrument records vertical vibrations.

Fia 213.

If required for violent oscillations, the instrument is fitted with a steel

yard attachment indicated by the dotted lines of the sectional diagram,

Fig. 213. The instrument consists of a weighted lever, pivoted on knife

edges on a stand which, when placed on the structure or foundation, par-

takes of its vibrations. The small lever movements caused by the vibra-

tions are recorded on a moving strip of celluloid by a fine point carried

at the extremity of an arm joined to the lever. The heavy mass M is

attached by a metal strip to a steel block which is pivoted to the stand

by means of the knife edges K. The steel block forms a short lever, the

*For a more detailed description of this instrument, see Engineering, Vol. 119

(1925), p. 271.
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effective length of which is equal to the horizontal distance between the

strip and the knife edges. The weight M is balanced by a helical spring Q
suspended from the upper portion of the stand. The lower end of this

spring is hooked into one of the four holes in the arm of the bell crank
lever L and by selecting one of these holes the natural frequency of the

moving system can be altered. An arm extending upward from the

pivoted steel block, previously referred to, has at its upper extremity a flat

spring S, carrying the recording point. This point bears upon the surface

of a celluloid film (actually a portion of clear moving picture film) wrapped
around the split drum D which is rotated by means of the clockwork

mechanism C. By means of an adjustable governor the speed of the film

can be varied between about 4 mm. and 20 mm. per second. In the

narrow gap between the two portions of the split drum D rests a second

point which can be shifted laterally by means of an electromagnet acting

through a small lever mechanism inside the drum. This electromagnet is

connected to a separate clock, making contact every tenth of a second,
or other time interval. Thus a zero line with time markings is recorded

on the back of the film simultaneously with the actual "vibrogram" on
the front. The records obtained can be read by a microscope accurately
to .01 mm. and as the initial magnification of the recording instrument is 10,

a vertical movement of the foundation of 10"4 cm. is clearly measurable.*

In Fig. 214, the "Geiger" Vibrograph is shown, t The whole instrument,
the dimensions of which are about 8" X 6" X 6", has to be attached to

the vibrating machine or structure. A heavy block on weak springs

supported inside the instrument will remain still in space. The relative

motion between this block and the frame of the instrument is transmitted

to a capillary pen which traces a record of it on a band of paper, 2J^"
wide. A clockwork, which can be set at various speeds, moves the band
of paper and rolls it up on a pulley. For time marking there is a canti-

lever spring attached to the frame with a steel knob and a pen on its end.

This cantilever has a natural frequency of 25 cycles per second. It can

be operated either by hand or electrically by means of two dry cells.

It must be deflected every second or so and traces a damped 25-cycle

wave on the record. The natural period of the seismographic mass
ftself is approximately 1J^ per second. The magnification of the lever

* This method of recording was first adopted by W. G. Collins in the Cambridge
microindicator for high-speed engines, see Engineering, Vol. 13 (1922), p. 716. See

also Trans, of the Optical Society, Vol. 27 (1925-1926), p. 215.

t For a more detailed description of this instrument, see V.D.I., Vol. 60 (1916), p.

811.
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system connecting this mass with the pen is adjustable. Satisfactory
records can be obtained with a magnification of 12 times for frequencies

up to 130 per second. It will operate satisfactorily even to 200 cycles

FIG. 214.

per second, provided the magnification chosen is not more than three
times. It should be noted that by means of an adjustment at the seismo-

graphic mass it is possible to obtain a record of the vibration in any
direction.
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FIG. 215.

In cases where the vibrating body is so small that its vibration will

be affected by the comparatively large mass of the instrument, it is possible

to use it merely as a recorder ("universal recorder/' as it is called by the

inventor). The seismographic mass is then taken out of it and the instru-
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ment has to be supported immovable in space in some manner; for instance,

by suspending it from a crane. The lever system of the recording pen is

directly actuated by a tiny rod which touches the vibrating body. (Fig.

215.) With this arrangement, magnifications of 100 times at 60 cycles

and of 15 times at 150 cycles can be obtained. A record of this instrument
is shown in Fig. 216.

5. Torsiograph. Many instruments have been designed for recording
torsional vibrations in shafting. An instrument of this kind which has

found a large application is shown in Fig. 217. This instrument, designed

r

FIG. 217.

by A. Geiger, has the same recording and timing device as the vibrograph
described above, but differs from it in its seismographic part. It has a

light pulley of about 6" diameter, in which a heavy fly-wheel is mounted
concentrically and free to turn on the same axis. The connection
between pulley and mass is by means of a very flexible spiral spring.
The natural frequency of torsional oscillations of this mass, when the
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pulley is kept steady, is about \y% per second. In operation the pulley
is driven by means of a short belt, 1" wide, from the shaft of which the

torsional oscillations are to be measured. The pulley moves with the

shaft, but the heavy mass inside will revolve at practically uniform angular

velocity provided that the frequency of torsional vibrations is above a
certain value, say four times larger than the natural frequency of the

instrument. The relative motion of the pulley and a point on the cir-

cumference of the fly-wheel is transmitted through a lever system to the

recording pen. This instrument operates up to 200 cycles per second for

low magnifications, and the magnification of the oscillatory motion on the

circumference of the shaft can be made as high as 24 to 1 for low frequency
motions. Small oscillations should be recorded from a portion of the shaft

with as large a diameter as possible. Large oscillations should be measured
on small diameter shafts to keep the record within the limits of the instru-

ment. The limit to the size of the driving pulley is established by the

effects of centrifugal forces on the spiral spring which is attached between
the fly-wheel and the pulley. At about 1500 r.p.m. the centrifugal forces

distort the spring enough to push the pen off the recording strip. This
instrument has been successfully applied in studying torsional vibrations

in Diesel engine installations such as in locomotives and submarines.

Recently a combined torsiograph vibrograph universal recorder has

been put on the market.

6. Torsion Meters. There are cases where not only the oscillations of

angular velocity as measured by Geiger's Torsiograph, but also the torque
in a shaft transmitting power, is of interest. Many instruments have been

designed for this purpose, especially in connection with measuring the

power transmitted through propeller shafts of ships.* The generally

accepted method is to measure the relative movement of two members
fixed in two sections at a certain distance from each other on the shaft.

The angle made by these members relative to each other is observed or

recorded by an oscillograph. Knowing the speed of rotation of the

shaft and its modulus of rigidity, the horse power transmitted can be

determined. Fig. 218 represents the torsion meter designed by E. B.

Moullin of the Engineering Laboratory, Cambridge, England, f "The
* There are various methods of measuring and recording the angle of twist in shafts,

to be divided in four groups: (a) mechanical, (b) optical, (c) stroboscopic, and (d) elec-

trical methods. Descriptions of the instruments built on these various principles are

given in the paper by H. Steuding, mentioned above. (See page 443. See also the

paper by V. Vieweg in the periodical "Der Betrieb," 1921, p. 378.

f See the paper by Robert S. Whipple, Journal of the Optical Soc. of America, Vol.

10 (1925), p. 455.
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relative movement of the two members of the instrument is measured

electrically and continuously throughout the revolution, so that the

instrument can be fixed in the ship's tunnel on the shaft, and the observa-

tions made at a distance. The Moullin torsion meter has been used to

measure the torque transmitted on ships' shafts up to 10 inches in diameter,
and transmitting 1500 H.P. The instrument consists of an air-gap

choker, one-half carried by a ring fixed to a point on the shaft, and the

other half carried adjacent to the first but attached to a sleeve fixed to

Fig.Z
END LEVATION OF SLEtV FigA.

Fig 5.

FIG. 218.

the shaft about four feet away. Fig. 218 shows the arrangement of the

halves of the choker, of which the one a is fixed to the ring, and the other

b is attached to the sleeve. A small alternating current generator supplies

current to the windings c at a frequency of 60 cycles per second and about

100 volts. As the shaft twists, the gap opens for forward running (and
closes in running astern) and the current increases in direct proportion
to the gap so that the measurements on a record vary directly with the

torque. Two chokers are fitted, one at each end of a diameter, so that

they are in mechanical balance, and, being connected electrically in series,

are unaffected by bending movements. Current is led in and out of the

chokers by two slip rings d and e." By using a standard oscillograph a

continuous record can be obtained such as shown in Fig. 219.

In Fig. 220 is shown the torsion meter of Amsler, which is largely
used for measuring the efficiency of high speed engines.
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The connecting flanges D and L of the torsion meter are usually keyed
on to the ends 1 and 2 of the driving and the driven shafts. The elastic

bar which transmits the torsional effort is marked G. It is fitted at the

ends of the chucks F and //. The chuck F is always fastened to the

FIG. 219.

sleeve A on which the flange B is keyed. The flange B is bolted to the

flange D, and the flange J to the flange L; the ends of the bar G are thus

rigidly secured to the flanges D and L. In order to measure the angle of

twist the discs M
,
N and are used. M is fastened to the chuck J, while

-f

FIG. 220.

the other two, N and 0, are fixed to the sleeve A. When the measuring
bar G is twisted under the action of a torque, the disc M turns with respect
to the other two discs N and O through a definite angle of twist. The

edge U of the disc M is made of a ring of transparent celluloid on which
a scale is engraved. Opposite this scale there is a small opening T in the

disc N, and a fine radial slot which serves is a pointer for making readings
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on the scale. The disc has no opening opposite T but only a radial slot

like the one in the disc N
y
and through this the observer looks when reading

the position of the indicator T on the scale U by means of the mirror S

placed at an angle of 45 degrees to the visual ray. The scale engraved on

the celluloid is well illuminated from behind by means of a lamp R. If

the apparatus has a considerable velocity, say not less than 250 revolutions

per minute, the number of luminous impressions per second will be sufficient

to give the impression of a steady image and the reading of the angle of

oflight

-soo

Fia. 221.

twist can be taken with a great accuracy, provided this angle remains

constant during rotation. Knowing the angle of twist and the torsional

rigidity of the bar G, the torque and the power transmitted can easily be

calculated.

V. Vieweg improved the instrument described above by attaching

the mirror S to the disc as shown in Fig. 221 and by taking the distance

of this mirror from the scale mn equal to the distance of the mirror from

the axis of the shaft. In this way a stationary image of the scale will be

obtained which can be observed by telescope.*
* For the description of this instrument see the Journal

"
Maschinenbau" 1923-24,

p. 1028.
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7. Strain Recorders. In studying the stresses produced in engi-

neering structures or in machine parts during vibrations, the use of

special instruments, recording deformations of a very short duration, is

necessary. In Fig. 222 below an instrument of this kind, the "Stress

Recorder/' built by the Cambridge Instrument Company, is shown.*

The instrument is especially useful for the measurement of rapidly

changing stresses in girders of bridges and other structures under moving
or pulsating loads. To find the stress changes in a girder, the instrument

c.

FIG. 222.

is clamped to the girder under test. A clamp is placed upon the pro-

jecting part C of a spring plunger, which yields to the clamp so that the

instrument is held on to the member, the extension of which is to be

measured, by a pre-determined pressure. At one end of the instrument

are two fixed points A, while at the other end is a single point carried on

the part D, which is free to move in a direction parallel to the length of the

instrument. This movement can take place because the bars E and EI

are reduced at the points marked, the reduction in the size of the bars

allowing them to bend at these points, thus forming hinges. The part D
is connected to a pivoted lever M carrying the recording stylus S at its

upper extremity. Any displacements of the point B due to stress changes

in the structure under test are reproduced on a magnified scale by the

stylus, and recorded upon a strip of transparent celluloid, which is moved

past the stylus by means of a clockwork mechanism P at a rate from

about 3 to 20 mm. per second. The mechanical magnification of the

* For the description of this instrument, see "Engineering" (1924), Vol. 118, p. 287.
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record in the instrument is ten. The records can be examined by means
of a suitable hand microscope, similar to that mentioned on page 449,

or direct enlargements from the actual diagrams can be obtained by
photographic methods. The record on the film can be read in this manner
with an accuracy of .01 mm. Taking the distance between the points A
and B equal to 15 inches, we find that the unit elongation can be measured
to an accuracy of

;

' 2-66 x 10--

For steel this corresponds to a stress of 80 Ibs. per square inch. The
recording part of the instrument is very rigid and is suitable for vibrations

of a very high frequency. For instance, vibrations of a frequency of 1400

per second in a girder have been clearly recorded but this is not necessarily
the limit of the instrument. It can be easily attached to almost any
part of a structure. The clockwork mechanism driving the celluloid

strip is started and stopped either by hand on the instrument itself or by
an electrical device controlled automatically or by hand from a distance.

The time-marking and position-recording mechanisms are also electrically

controlled from a distance. Synchronous readings can be obtained on a

number of recorders, as they can be operated from the same time and

position signals.

Fig. 223 below represents the diagram of connections of a Magnetic
Strain Gauge developed by Westinghouse engineers.* The instrument

is held on to the member or girder, the extension of which is to be measured,

by clamps such that the two laminated iron U-cores A and B forming a

rigid unit are attached to the member at the cross section mm and the

laminated iron yoke C through a bar D is attached at the cross section

pq so that the gauge length is equal to L Any changes in the length I

due to a change in stress of the member produces relative displacements
of C with respect to A and B causing a change in the air gaps. Coils

are wound around the two U-shaped iron cores. Through these coils

in series an a.c. current is sent of a frequency large with respect to the

frequency of the stress variations to be measured. Applying a constant

voltage on the two coils in series, the current taken is constant, not de-

pendent on changes in air gap. Unequal air gaps only divide the total

voltage in two unequal parts on the two coils. A record of the voltage
across one coil is taken by a standard oscillograph. The ordinates of

* Hitter's Extensometer.
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the envelope of the diagrams such as that shown in Fig. 219 are pro-
portional to the strains in the member. This magnetic strain gauge was
used * for measuring the stresses in rails, produced by a moving loco-

motive, and proved to be very useful. For a gauge length I = 8 in.

an accuracy in reading corresponding to a stress of 1000 Ibs. per sq. in.

can be obtained.

Electric Telemeter, f This instrument depends upon the well known
fact that if a stack of carbon discs is held under pressure a change of

FLUX PATH

HIGH FREQUENCY
GENERATOR, genera! mechanical scheme

FIG. 223.

pressure will be accompanied by a change in electrical resistance and also

a change of length of the stack. The simplest form of the instrument is

shown in Fig. 224 when clamped to the member E, the strain in which

is to be measured. Any change in distance between the points of support

* See writer's paper presented before the International Congress of Applied Mathe-
matics and Mechanics. Zurich, 1926.

f A complete description of this instrument can be found in the technologic paper
of the Bureau of Standards, No. 247, Vol. 17 (1924), p. -737, by O. S. Peters and
B. McCollum. See also the paper by 0. S. Peters, presented before the Annual Meeting of

the American Society for Testing Materials (1927).
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A and B produces a change in the initial compression of the stack C of

carbon discs, hence a change in the electrical resistance which can be

recorded by an oscillograph. Fig. 225 shows in principle the electrical

scheme. The instrument 1 is placed in one arm of a Wheatstone bridge,
the other three arms of which are 2, 3, and 4. The bridging instrument 5,

B
7 6

1

Tjuyir | |

FIG. 224. FIG. 225.

which may be a milliammeter or an oscillograph, indicates any unbalance
in the bridge circuit. The resistances 2 and 3 are fixed, and 4 is so adjusted
that the bridge is balanced when the carbon pile of the instrument is

under its initial compression. Any change of this compression, due to

strain in test member, will produce unbalance of the bridge, the extent of

which will be indicated by the instrument 5, which may be calibrated to

read directly the strain in the test member.

'

B

FIG. 226.

An instrument of such a simple form as described above has a defect

which grows out of the fact that the resistance of the carbon pile is not a

linear function of the displacement. In order to remove this defect, two
carbon piles are used in actual instruments (Fig. 226). In this arrange-
ment any change in distance between the points A and B due to strain in

the test member will be transmitted by the bar C to the arm D. As a
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result of this an increase of compression in one of the two carbon piles E
and Ef and a decrease in the other will be produced. Placing these two
carbon piles in the wheatstone bridge as shown in Fig. 227, the effects of

changes in the resistance of the two piles will be added and the resultant

rinjV1Jl
f

\m

FIG. 227. FIG. 228.

effect, which now becomes very nearly proportional to the strain, will be

recorded by the bridging instrument.

A great range of sensitivity is possible by varying the total bridge

current. Taking this current .6 amp. which is allowed for continuous

operation, we obtain full deflection of the bridging instrument with .002

FIG. 229 a. FIG. 2296.

inch displacement. Hence, assuming a gauge length AB (Fig. 226)

equal to 8 inches, the full deflection of the instrument for a steel member
will represent a stress of about 7500 Ibs. per square inch. The instrument

proved to be useful in recording the rapidly varying strain in a vibrating

member. Vibrations up to more than 800 cycles per second can be repro-

duced in true proportion.
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This instrument tfas been also successfully used for measuring accel-

erations.

A slight modification is necessary, consisting of attaching a small

mass m to the arm A (Fig. 228). The stacks act as springs, such that

the natural period of vibration of the mass m is quite high (of the order of

250 per second in the experiments described below). This instrument

was mounted on an oscillating table sliding in guides and operated by a

crank. The oscillation of such a table, due to the finite length of the

connecting rod is not sinusoidal, but contains also higher harmonics of

which the most important is the second. Fig. 229 a shows the acceler-

ation diagram of this table as calculated, and Fig. 229 6 gives the oscillo-

graph record obtained from the carbon pile accelerometer mounted on it.

The small saw teeth on this diagram have the period of natural vibration

of the mass m.
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Damping Continued

proportional to velocity, 32

in torsional vibration, 271

Degree of Freedom, definition, 1

Diesel Engine, Torsional vibration, 270
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Disturbing Force, 14
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Dynamic Vibration Absorber, 240

Geared Systems, torsional vibration, 256
Generalized Coordinate, 185

Generalized Force, 187

Governor, Vibration, 219

Graphical Integration, 121

Grooved Rotor, 98

Gyroscopic Effects, 290

Elastic Foundation, Vibration of bars on,

368

Energy
absorbed by damping, 49

method of calculation, 74

Equivalent Disc, 273

Equivalent Shaft Length, 10, 271

Harmonic Motion, definition, 3

Hysteresis loop, 32, 223

Impact
effect on bridges, 358
lateral on bars, 392

longitudinal on bars, 397

Indicator, steam engines, 28
Inertia of Crank Drive, 272

Flexible Bearings with rigid rotor, 296
Forced Vibrations

definition, 15

general theory, 208

non-linear, 137

torsional, 265
with damping, 37, 57

Foundation Vibration, 24, 51, 101

Frahm Tachometer, 27

Frame, Vibration of circular, 405, 410

rectangular, 90

Free Vibrations

definition, 1

general theory, 194

with Coulomb damping, 54
with viscous damping, 32

Frequency
circular, 4

definition, 3

equation, 197, 198
measurement of, 448

Fullarton Vibrometer, 28, 443
Fundamental Type of Vibration, 200

Lagrange's equations, 189
Lateral Vibration of bars, 332

Lissajous Figures, 447

Logarithmical decrement, 35

Longitudinal Vibration of bars, 307

M
Magnification Factor, 15, 40, 59
Membranes

circular, 418

general, 411

rectangular, 412
Modes of Vibration, 197

principal, 198

N
Natural Vibrations, 1

Nodal Section, 11

Non-Linear Restoring Force, 119
Non-Linear Systems, 114

Normal Coordinates, 124, 127

Normal Functions, 309
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Oscillator, 26

Pallograph, 80

Pendulum
double, 203

spherical, 192

variable length, 155

Period, definition, 3

Phase

definition, 6, 16

diagram, 42, 61

with damped vibration 42, 60

Phasometer, 74

Plates

circular, 426

clamped at boundary, 428

effect of stretch of middle surface, 431

free, 424

general, 421

rectangular, 422

Principal Coordinates, 197

Rail Deflection, 107

Rail Vibration, 256

Rayleigh Method, 83

in torsional vibration, 260

Regions of Critical Speed, 175

Resonance, definition, 15

Ring
Complete

flexural vibration, 408
radial vibration, 405

torsional vibration, 407

Incomplete, 410

Ritz Method, 370, 424

Seismic Instruments, 19

Self-Excited Vibrations, 110

Ships, Hull Vibration of, 388
Side Rod Drive, 167

Spring Characteristic Variable, 151

Spring Constant, 1

Spring Mounting, 24, 51

Stability of Motion, 216
Strain Recorder

Cambridge, 457

magnetic 458

telemeter, 459

Sub-Harmonic Resonance, 149

Tachometer, Frahm, 27

Telemeter, 459

Torsiograph, 452
Torsion Meter

Amsler, 454

Moullin, 453

Vieweg, 456

Torsional Vibrations

effect of mass of shaft, 325

many discs, 255

single disc, 9

two discs, 11

three discs, 254

Transient, 49

Transmissibility, 52 ~^

Transmission lines vibration, 112

Turbine Blades, 382

Turbine Discs, 435

Unbalance, definitions

dynamic, 63

static, 63

Universal Recorder, 335

Shafts

critical speed of, 282

lateral vibrations, 277

torsional vibrations, 253

Schlingertank, 252

Variable Cross Section

cantilever, 378

free ends, 381

Variable Flexibility, 151
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Vehicle Vibration, 229 Virtual Displacement, Principle of, 182

Vibration Absorber, 240 Viscosity, 31

Vibrograph Viscous Damping, 32, 213

Cambridge, 448

Geiger, 449

theory, 19 W
Vibrometer

Fullarton, 443 Wedge, 378
Vibration Specialty, 445 Whirling of Shafts, 222
























