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PREFACE TO THE SECOND EDITION

In the preparation of the manuscript for the second edition of the
book, the author’s desire was not only to bring the book up to date by
including some new material but also to make it more suitable for teaching
purposes. With this in view, the first part of the book was entirely re-
written and considerably enlarged. A number of examples and problems
with solutions or with answers were included, and in many places new
material was added.

The principal additions are as follows: In the first chapter a discussion
of forced vibration with damping not proportional to velocity is included,
and an article on self-excited vibration. In the chapter on non-linear sys-
tems an article on the method of successive approximations is added and it
is shown how the method ean be used in discussing free and forced vibra-
tions of systems with non-linear characteristics. The third chapter is
made more complete by including in it a general discussion of the equation
of vibratory motion of systems with variable spring characteristics. The
fourth chapter, dealing with systems having several degrees of freedom, is
also tonsiderably enlarged by adding a general discussion of systems with
viscous damping; an article on stability of motion with an application in
studying vibration of a governor of a steam engine; an article on whirling
of a rotating shaft due to hysteresis; and an article on the theory of damp-
ing vibration absorbers. There are also several additions in the chapter
on torsional and lateral vibrations of shafts.

The author takes this opportunity to thank his friends who assisted in
various ways in the preparation of the manuscript, and particularly
Professor I1.. 8. Jacobsen, who read over the complete manuscript and made
many valuable suggestions, and Dr. J. A. Wojtaszak, who checked prob-
lems of the first chapter.

STEPHEN TIMOSHENKO
STANFORD UNIVERSITY,
May 29, 1937
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PREFACE TO THE FIRST EDITION

With the increase of size and velocity in modern machines, the
analysis of vibration problems becomes more and more important in
mechanical engineering design. It is well known that problems of great
practical significance, such as the balancing of machines, the torsional
vibration of shafts and of geared systems, the vibrations of turbine
blades and turbine discs, the whirling of rotating shafts, the vibrations of
railway track and bridges under the action of rolling loads, the vibration
of foundations, can be thoroughly understood only on the basis of the
theory of vibration. Only by using this theory can the most favorable
design proportions be found which will remove the working conditions
of the machine as far as possible from the critical conditions at which
heavy vibrations may occur.

In the present book, the fundamentals of the theory of v1brat10n are
developed, and their application to the solution of technical problems is
illustrated by various cxamples, taken, in many cases, from actual
experience with vibration of machines and structures in service. In
developing this book, the author has followed the lectures on vibration
given by him to the mechanical engineers of the Westinghouse Electric
and Manufacturing Company during the year 1925, and also certain
chapters of his previously published book on the theory of clasticity.*

The contents of the book in general are as follows:

The first chapter is devoted to the discussion of harmonic vibrations
of systems with one degree of freedom. The general theory of free and
forced vibration is discussed, and the application of this theory to
balancing machines and vibration-recording instruments is shown. The
Rayleigh approximate method of investigating vibrations of more com-
plicated systems is also discussed, and is applied to the calculation of the
whirling speeds of rotating shafts of variable cross-section.

Chapter two contains the theory of the non-harmonic vibration of sys-
tems with one degree of freedom. The approximate methods for investi-
gating the frce and forced vibrations of such systems are discussed. A
particular case in which the flexibility of the system varies with the time is
considered in detail, and the results of this theory are applied to the inves-
tigation of vibrations in electric locomotives with side-rod drive.

* Theory of Elasticity, Vol. II (1916)—St. Petersburg, Russia.
v
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In chapter three, systems with several degrees of freedom are con-
sidered. The general theory of vibration of such systems is developed,
and also its application in the solution of such engineering problems as:
the vibration of vehicles, the torsional vibration of shafts, whirling speeds
of shafts on several supports, and vibration absorbers.

Chapter four contains the theory of vibration of elastic bodies. The
problems considered are: the longitudinal, torsional, and lateral vibrations
of prismatical bars; the vibration of bars of variable cross-section; the
vibrations of bridges, turbinc blades, and ship hulls; the theory of vibra-
tion of circular rings, membranes, plates, and turbine discs.

Brief descriptions of the most important vibration-recording instru-
ments which are of usc in the experimental investigation of vibration
are given in the appendix.

The author owes a very large debt of gratitude to the management of
the Westinghouse Electric and Manufacturing Company, which company
made it possible for him to spend a considerable amount of time in the
preparation of the manuscript and to usc as examples various actual cases
of vibration in machines which were investigated by the company’s
engincers. He takes this opportunity to thank, also, the numerous
friends who have assisted him in various ways in the preparation of the
manuscript, particularly Messr. J. M. Lessells, J. Ormondroyd, and J. P.
Den Hartog, who have read over the complete manuscript and have made
many valuable suggestions.

He isindebted, also, to Mr. F. C. Wilharm for the preparation of draw-
ings, and to the Van Nostrand Company for their care in the publication
ot the book.

S. TIMOSHENKO
ANN ARBOR, MICHIGAN,

May 22, 1928.
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CHAPTER 1

HARMONIC VIBRATIONS OF SYSTEMS HAVING ONE
DEGREE OF FREEDOM

1. Free Harmonic Vibrations. If an elastic system, such as a loaded
beam, a twisted shaft or a deformed spring, be disturbed from its position
of cquilibrium by an impact or by the sudden application and removal of
an additional forece, the elastic forces of the member in the disturbed posi-
tion will no longer be in equilibrium with the loading, and vibrations will
ensue. Gencrally an elastic system can perform vibrations of different
modes. For instance, a string or a beam while vibrating may assume the
different shapes depending on the number of nodes subdividing the length
of the member. In the simplest cases the configuration of the vibrating
system can be determined by one quantity only. Such systems are called
systems having one degree of freedom.

Let us consider the case shown in Fig. 1. If the arrangement be such
that only vertical displacements of the weight W are
possible and the mass of the spring be small in compari-
son with that of the weight W, the system can be
considered as having one degree of freedom. 'The
configuration will be determined completely by the
vertical displacement of the weight.

By an impulse or a sudden application and removal
of an external force vibrations of the system can be
produced. Such vibrations which are maintained by
the elastic force in the spring alone arc called free or
natural vibrations. An analytical expression for these
vibrations can be found from the differential equation
of motion, which always can be written down if the forces actmg on the
moving body are known.

Let % denote the load necessary to produce a unit extension of the
spring. This quantity is called spring constant. If the load is measured in
pounds and extension in inches the spring constant will be obtained in lbs.
per in. The static deflection of the spring under the action of the weight

W will be
o

1




2 VIBRATION PROBLEMS IN ENGINEERING

Denoting a vertical displacement of the vibrating weight from its position
of equilibrium by x and considering this displacement as positive if it is in
a downward direction, the expression for the tensile force in the spring cor-
responding to any position of the weight becomes

F =W+ ka. (a)

In deriving the differential equation of motion we will use Newton’s prin-
ciple stating that the product of the mass of a particle and its acceleration
is equal to the force acting in the direction of acceleration. In our case the
mass of the vibrating body is W/g, where ¢ is the acceleration due to
gravity; the acceleration of the body W is given by the sccond derivative
of the displacement z with respect to time and will be denoted by Z; the
forces acting on the vibrating body are the gravity force W, acting down-
wards, and the force F of the spring (Eq. a) which, for the position of the
weight indicated in Fig. 1, is acting upwards. Thus the differential equa-
tion of motion in the case under consideration is

Z:—'i=W—(W+kx). 1)

This equation holds for any position of the body W. If, for instance, the
body in its vibrating motion takes a position above the position of cquilib-
rium and such that a compressive force in the spring is produced the expres-
sion (@) becomes negative, and both terms on the right side of eq. (1) have
the same sign. Thus in this case the force in the spring is added to the
gravity force as it should be.

Introducing notation

P =

=&

-9
- 531:’ (2)

differential equation (1) can be represented in the following form
Z+ p?x = 0. 3)

This equation will be satisfied if we put « = Cy cos pt or z = C sin pt,
where C; and Cs are arbitrary constants. By adding these solutions the
general solution of equation (3) will be obtained:

z = C) cos pt + C2 sin pt. 4)

It is seen that the vertical motion of the weight W has a vibratory charac-
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ter, since cos pt and sin pt are periodic functions which repeat themselves
each time after an interval of time 7 such that

p(r + t) — pt = 2. ®)

This interval of time is called the period of vibration. Its magnitude,
from eq. (b), is

©

or, by using notation (2),
/W /&,
T=2rA|— = 21 A/—- 5
kg g ®)

It is seen that the period of vibration depends only on the magnitudes of
the weight W and of the spring constant £ and is independent of the mag-
nitude of oscillations. We can say also that the period of oscillation of the
suspended weight W is the same as that of a mathematical pendulum, the
length of which is equal to the statical deflection 8,.. If the statical deflec-
tion 8, is determined theoretically or experimentally the period = can be
calculated from cq. (5).

The number of cycles per unit time, say per sccond, is called the fre-
quency of vibration. Denoting it by f we obtain

1
‘2; 5:’ (6)

Nl

SR

f=

or, by substituting ¢ = 386 in. per scc.? and expressing é,; in inches,

f=3127 \/31—- cycles per second. 6"
st

A vibratory motion represented by cquation (4) is called a harmonic
motion. In order to determine the constants of integration C; and Cq, the
initial conditions must be considered. Assume, for instance, that at the
initial moment (¢ = 0) the weight W has a displacement zo from its position
of equilibrium and that its initial velocity is &o. Substituting { = 0 in
equation (4) we obtain

To = C 1. (d)

Taking now the derivative of eq. (4) with respect to time and substituting
in this derivative { = 0, we have
Zo

; = (2 | (e)
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Substituting in eq. (4) the values of the constants (d) and (e), the following
expression for the vibratory motion of the weight W will be obtained:

z = x0 cos pt + ? sin Pt )
Y
It is seen that in this case the vibration consists of two parts; a vibration

which is proportional to cos pt and depends on the initial displacement of
the system and another which is proportional to sin pt and depends on the

(9) j‘t\ /\t_

() 7 -

) "

. T
hT %

LS

—% %

Fia. 2.
()
initial velocity #o. Fach of these parts ean be represented graphieally, as
shown in Figs. 2a and 2b, by plotting the displacements against the time.
The total displacement z of the oscillating weight W at any instant ¢ is
obtained by adding together the ordinates of the two curves, (IFig. 2a and
Fig. 2b) for that, instant.

Another method of representing vibrations is by means of rotating
vectors. Imagine a veetor 04, Fig. 3, of magnitude xo rotating with a
constant angular velocity p around a fixed point, 0. This velocity is called
circular frequency of vibration. If at the initial moment (¢ = 0) the vector
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coincides with z axis, the angle which it makes with the same axis at any
instant ¢ is equal to pt. The projection OA; of the vector on the z axis
is equal to x¢ cos pt and represents the first term of expression (7). Taking
now another vector O equal to 7o/p
and perpendicular to the veetor 04,
its projection on the z axis gives
the seccond term of expression (7).
The total displacement z of the
oscillating load W is obtained now
by adding the projections on the z
axis of the two perpendicular vectors
0.4 and OB, rotating with the angular
velocity p.

The same result will be obtained
if, instead of vectors 0.4 and OB, we
consider the veetor OC, equal to the Fia. 3.
geometrical sum of the previous two
veetors, and take the projection of this vector on the r axis, The magni-
tude of this vector, from Iiig. 3, is

oC = \/:‘u" + (l[l')

and the angle which it makes with the » axis is

pt— a,
where
xo
a = arctan .
Pro
Iiquating the projection of this vector on the 2 axis to expression (7) we
obtain

\/.nr' + (fz;;-)~ cos (pl —a) = xy cos pl + ' ¢in pt. ®)

It is seen that in this manner we added together the two simple harmonie
motions, one proportional to cos pt and the other proportional to sin pt.
The result of this addition is a simple hmnonic motion, proportional to
cos (pt — «), which is represented by Tig. 2c. The maximum ordinate of
this curve, equal to \/.10 + ( m/ 1)) , Tepresents the maximum displace-
ment of the vibrating body from the position of equilibrium and is called
the amplitude of vibration.
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Due to the angle a between the two rotating vectors OA and OC the
maximum ordinate of the curve, Fig. 2¢, is displaced with respect to the
maximum ordinate of the curve, Fig. 2a, by the amount a/p. In such a
case it may be said that the vibration, represented by the curve, Fig. 2¢c,
is behind the vibration represented by the curve, Fig. 2a, and the angle «
is called the phase difference of these two vibrations.

PROBLEMS

1. The weight W = 30 lbs. is vertically suspended on a steel wire of length 1 = 50 in.
and of cross-sectional area 4 = 0.001 in.2. Determine the frequency of free vibrations
of the weight if the modulus for steel is E = 30-10° lbs. per sq. in. Determine the
amplitude of this vibration if the initial displacement 2z, = 0.01 in. and initial velocity
Zo = 1 in. per sec.

Solution. Static elongation of the wire is §; = 30-50/(30-10%-0.001) = 0.05 in.
Then, from eq. (6"), f = 3.13 V20 = 14.0 scc.~t. The amplitude of vibration, from
eq. (8), is8 Vzor + (2o/p)? = V(0.01)2 + [1/(2r-14)]* = .01513 in.

2. Solve the previous problem assuming that instead of a vertical wire a helical
spring is used for suspension of the load W. The diameter of the cylindrical surface
containing the center line of the wire forming the spring is D = 1 in., the diameter of
the wire d = 0.1 in., the number of coils n = 20. Modulus of material of the wire in

shear G = 12-10° lbs. per sq. in. In what proportion

l'—‘l will the frequency of vibration be changed if the spring

. < has 10 coils, the other characteristics of the spring
F_c_. W remaining the same?

= 4 3. A load W is supported by a beam of length [,

Fig. 4. Determine the spring constant and the frequency

Fia. 4. of free vibration of the load in the vertical direction

negleeting the mass of the beam.
Solution. The statical deflection of the beam under load is

5 = We(l — c)’.
“ T BRI

Here ¢ is the distance of the load from the left end of the beam and ET the flexural
rigidity of the beam in the vertical plane. It is assumed that this plane contains one
of the two principal axes of the cross section of the heam, so that vertical loads produce
only vertical deflections. From the definition the spring constant in this case is

__ 3IEI
T el — c)?

Substituting 8, in eq. (6) the required frequency can be calculated. The effect of the
mass of the beam on the frequency of vibration will be discussed later, see Art. 16.

4. A load W is vertically suspended on two springs as shown in Fig. 5a. Determine
the resultant spring constant and the frequency of vertical vibration of the load if the
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spring constants of the two springs are k; and k;. Determine the frequency of vibration
of the load W if it is suspended on two equal springs as shown in Fig. 5b.
Solution: In the case shown in Fig. 5a the statical deflec-

tion of the load W is 2
w W Wk + k)
LA LA S} K
‘ ky + ko kik: ‘
The resultant spring constant is kik2/(k1 + k2). Substituting
5, in eq. (6), the frequency of vibration becomes }/(
- 2
g= b [k
S 20 N Wk + k)
In the case shown in Fig. &b W
R W o7 («)
« = I = g\ Fia. 5.

6. Determine the period of horizontal vibrations of the frame, shown in Fig. 6, sup-
porting a load W applied at the center. The mass of the frame should be neglected in
this calculation.

Solution. We begin with a statical problem and determine the horizontal deflection
5 of the frame which a horizontal force H acting at the point of application of the load W
will produce. Neglecting deformations due to tension and compression in the members

I
I
b N /
)
R4 /
/
L 7
% %
g8
FiG. 6. 5V

and considering only bending, the horizontal bar AB is bent by two equal couples of
magpitude Hh/2. Then the angle « of rotation of the joints A and B is

Considering now the vertical members of the frame as cantilevers bent by the horizontal
forces H /2, the horizontal deflection & will consist of two parts, one due to bending of the
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cantilevers and the second due to the rotation « of the joints A and B calculated above.
Hence

_HR  EWL_HR( 11T

" 6El ' 12EI, 6EI 2h1,

The spring constant in such case is

k= n 6EI
e 111\
hB l . - —
< * 2h11)
Substituting in eq. (5), we obtain
11
3 —— —
| i
T 6gEl

If the rigidity of the horizontal member is large in comparison with the rigidity of the
verticals, the term containing the ratio /7, is small and can be neglected. Then

~9 [Whs
T T "\ 6gEIl

1 [egEI

T2\ Whe

and the frequency is

6. Assuming that the load W in Fig. 1 represents the cage of an elevator moving down
with a constant velocity » and the spring consists of a steel cable, determine the maximum
stress in the cable if during motion the upper end A of the cable is suddenly stopped.
Assume that the weight W = 10,000 lbs., I = 60 ft., the cross-sectional area of the
cable A = 2.5 sq. in., modulus of elasticity of the cable £ = 15-10°1bs. per sq. in.,v = 3
ft. per sec. The weight of the cable is to be neglected.

Solution. During the uniform motion of the cage the tensile force in the cable is
equal to W = 10,000 1bs. and the elongation of the cable at the instant of the accident is
8y = WI/AE = .192 in. Due to the velocity v the cage will not stop suddenly and
will vibrate on the cable. Counting time from the instant of the accident, the displace-
ment of the cage from the position of equilibrium at that instant is zero and its velocity
isv. From eq. (7) we conclude that the amplitude of vibration will be equal to v/p, where
p= \/g/a,, = 44.8 sec.”! and v = 36 in. per sec. Ilence the maximum elongation of
the cable is 64 = 8¢ + v/p = .192 + 36/44.8 = .192 + .803 = .995 in. and the maxi-
mum stress is (10,000/2.5)(.995/.192) = 20,750 lbs. per sq. in. It is seen that due to
the sudden stoppage of the upper end of the cable the stress in the cable increased in
this case about five times.

7. Solve the previous problem assuming that a spring having a spring constant
k = 2000 Ibs. per in. is inserted between the lower end of the cable and the cage.

Solution. The statical deflection in this casc is 8, = .192 + § = 5.192 in. and the
amplitude of vibration, varying as squaré root of the statical deflection, becomes
.803 V/5.192/.192. The maximum dynamical deflection is 5.192 + .803 V/5.192/.192
and its ratio to the statical deflection is 1 4+ .803 V' 1/.192.5.192 = 1.80. Thus the
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maximum dynamical stress is (10,000/2.5)1.80 = 7,200 lbs. per sq. in. It is seen that
by introducing the spring a considerable reduction in the maximum stress is obtained.

2. Torsional Vibration.—Let us consider a vertical shaft to the lower
end of which a circular horizontal disc is attached, ,
Fig. 7. If a torque is applied in the plane of the disc ﬁ/fé
and then suddenly removed, free torsional vibration ¢
of the shaft with the disc will be produced. The ! J_
angular position of the disc at any instant can be Td
defined by the angle ¢ which a radius of the vibrat-
ing disc makes with the direction of the same radius
when the disc is at rest. As the spring constant in
this case we take the torque & which is necessary to
produce an angle of twist of the shaft equal to one
radian. In the case of a circular shaft of length [ and diameter d we obtain
from the known formula for the angle of twist

wd*@
A ®

For any angle of twist ¢ during vibration the torque in the shaft is ke.
The equation of motion in the case of a body rotating with respect to an
immovable axis states that the moment of inertia of the body with respect
to this axis multiplied with the angular acceleration is equal to the moment
of the external forces acting on the body with respect to the axis of rota-
tion. In our case this moment is equal and opposite to the torque ke
acting on the shaft and the equation of motion becomes

I =— ko (a)

where I denotes the moment of inertia of the dise with respect to the axis
of rotation, which in this case coincides with the axis of the shaft, and ¢ is
the angular acceleration of the dise. Introducing the notation

k
p? = f) (10)
the equation of motion (a) becomes
¢+ pPe=0. (11)

This equation has the same form as eq. (3) of the previous article, hence its
solution has the same form as solution (7) and we obtain

¢ = ¢ocos pt + %’ sin pt, (12)
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where ¢o and o are the angular displacement and angular velocity respec-
tively of the disc at the initial instant ¢ = 0. Proceeding as in the previous
article we conclude from eq. (12) that the period of torsional vibration is

2 I
=" =2 \/~ (13)
v k
and its frequency is ~
1 1 \/k
f= r  2r VI ) (14)
In the case of a circular dise of uniform thickness and of diameter D,
_wp?
=%

where W is the weight of the disc. Substituting this in eqs. (13) and (14),
and using expression (9), we obtain
\/4WD2l 1 [rgd'C
r=2r\——, f=— —.
. rgd?(Q 2r VAW D3

®)

It was assumed in our discussion that the shaft has a constant diam-
eter d. When the shaft consists of parts of different diameters it can be
readily reduced to an equivalent shaft having a constant diameter. Assume,
for instance, that a shaft consists of two parts of lengths l; and I and of
diameters d; and dg respectively. If a torque M, is applied to this shaft
the angle of twist produced is

_32Md, | 32MJ,  32M, (l 4 dj)
7RG T wddG T G\ T P

It is scen that the angle of twist of a shaft with two diameters d; and d»
is the same as that of a shaft of constant diameter di and of a reduced length
L given by the equation

(114

L=ll+l2@'

The shaft of length L and diameter d; has the same spring constant as the
given shaft of two different diameters and is an equivalent shaft in this case.

In general if we have a shaft consisting of portions with different diam-
eters we can, without changing the spring constant of the shaft, replace any
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portion of the shaft of length I, and of diameter d, by a portion of a shaft
of diameter d and of length ! determined from the equation

l=ln—- (15)

The results obtained for the case shown in Fig. 7 can be used also in the
case of a shaft with two rotating masses at the ends as shown in Fig. 8.
Such a case is of practical importance since an arrangement of this kind
may be encountered very often in machine design. A propeller shaft with
the propeller on one end and the engine on the other is an example of this
kind.* (If two equal and opposite twisting couples are applied at the ends
of the shaft in Fig. 8 and then suddenly removed, torsional vibrations will
be produced during which the masses at the ends are always rotating in
opposite directions.t ¥rom this fact
it can be concluded at once that there m
is a certain intermediate cross section — 7 ———— b
mn of the shaft which remains im-

movable during_ vibrations. This / E
cross scction is called the nodal cross é’m.

———— e — ——

77 |
section, and its position will be found
from the condition that both por- n
tions of the shaft, to the right and l
to the left of the nodal cross scction, Fia. 8.

must have the same period of vibra-
tion, since otherwise the condition that the masses at the ends always are
rotating in opposite directions will not be fulfilled.

Applying eq. (13) to cach of the two portions of the shaft we obtain

.[_1_ _f“’ r b _ L (©)
ki~ Vky' ¢ ky I ¢

where k; and k2 are the spring constants for the left and for the right por-
tions of the shaft respectively. These quantities, as seen from eq. (9), are

* This is the case in which engineers for the first time found it of practical importance
to go into investigation of vibrations, see I1I. FFrahm, V.D.I., 1902, p. 797.

t This follows from the principle of moment of momentum. At the initial instant
the moment of momentum of the two discs with respect to the axis of the shaft is zero
and must remain zero since the moment of external forces with respect to the same
axis is zero (friction forces are neglected). The equality to zero of moment of momen-
tum requires that both masses rotate in opposite directions.
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inversely proportional to the lengths of the corresponding portions of the
shaft and from eq. (¢) follows

a_1I»
b I,
and, since a 4+ b = [, we obtain
s Vi i,

e

“Thih UThh @

Applying now to the left portion of the shaft egs. (13) and (14) we obtain

- L [ 32,
v or=2rAl L = B el B 1
7= 2Nk = 2 Naa( + 1) (16)
1 /7rd4G(IL + 1) '
s I= 2T 32l141, ) (1"

From these formulae the period and the frequency of torsional vibration can
be calculated provided the dimensions of the shaft, the modulus G and the
moments of inertia of the masses at the ends are known. The mass of the
shaft is neglected in our present discussion and its effect on the period of
vibration will be considered later, see Art. 16.

It can be seen (eq. d) that if one of the rotating masses has a very large
moment of inertia in comparison with the other the nodal cross section can
be taken at the larger mass and the system with two masses (Fig. 8) reduces
to that with one mass (Fig. 7).

PROBLEMS

1. Determine the frequency of torsional vibration of a shaft with two circular discs
of uniform thickness at the ends, Fig. 8, if the weights of the discs are W, = 1000 lbs.
and W, = 2000 lbs. and their outer diameters are D, = 50 in. and D, = 75 in. respec-~
tively. The length of the shaft is { = 120 in. and its diameter d = 4 in. Modulus in
shear G = 12-10°% lbs. per sq. in.

Solution. From egs. (d) the distance of the nodal cross section from the larger disc is

120-1000- 502 120

= = = 21.81n.
® = 1000-50° + 2000-75* 1+ 4.5 m

Substituting in eq. (b) we obtain

f= L M = 0.80 oscillations per sec
2x\ 4.2000.75%-21.8 o per see-
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2. In what proportion will the frequency of vibration of the shaft considered in the
previous problem increase if along a length of 64 in. the diameter of the shaft will be in-
creased from 4 in. to 8 in.

Solution. The length of 64 in. of 8 in. diameter shaft can be replaced by a 4 in.
length of 4 in. diameter shaft. Thus the length of the equivalent shaft is 4 4 56 = 60
in., which is only one-half of the length of the shaft considered in the previous problem.
Since the frequency of vibration is inversely proportional to the square root of the
length of the shaft (see eq. 17), we conclude that as the result of the reinforcement of

the shaft its frequency increases in the ratio Va2l

8. A circular bar fixed at the upper end and supporting a circular disc at the lower
end (Fig. 7) has a frequency of torsional vibration equal to f = 10 oscillations per
second. Determine the modulus in shear G if the length of the bar | = 40 in., its diam-
eter d = 0.5 in., the weight of the disc W = 10 lbs., and its outer diameter D = 12 in.

Solution. TFrom eq. (b), G = 12-10° Ibs. per sq. in.

4. Determine the frequency of vibration of the ring, Fig. 9, about the axis 0, assum-
ing that the center of the ring remains fixed and that rotation of the rim is accompanied

Fia. 9.

by some bending of the spokes indicated in the figure by dotted lines. Assume that the
total mass of the ring is distributed along the center line of the rim and take the length
of the spokes equal to the radius r of this center line. Assume also that the bending
of the rim can be neglected so that the tangents to the deflection curves of the spokes
have radial directions at the rim. The total weight of the ring W and the flexural
rigidity B of spokes are given.

Solution. Considering each spoke as a cantilever of length r, Fig. 9b, at the end of
which a shearing force Q and a bending moment M are acting and using the known
formulas for bending of a cantilever, the following expressions for the slope ¢ and the
deflection r¢ at the end are obtained

_e M e e
“=% "B’ 3B 2B’
from which ~ Qf - 2_}3?
T3 7
If M, denotes the torque applied to the rim we have
16B¢

M, = 4Qr — aM = 2.
,
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The torque required to produce an angle of rotation of the rim equal to one radian is
the spring constant and is equal to k¥ = 16B/r. Substituting in eq. (14), we obtain the
required frequency

1 [16B 1 [16gB

T2 NI 22\ W

3. Forced Vibrations.—In the two previous articles free vibrations of
systems with one degree of freedom have been discussed. Let us consider
now the case when in addition to the force of gravity and to the force in the
spring (Fig. 1) there is acting on the load W a periodical disturbing force
Psinwt. The period of this forece is 71 = 2r/w and its frequency is
fi = w/2x. Procceding as before (sce p. 2) we obtain the following differ-
ential equation

%i=W—(W+kx)+PSinwt, (a)
or, by using eq. (2) and notation '
‘ Pg |
L=l ®)
we obtain
z + p?z = gsin wt. (18)

A particular solution of this equation is obtained by assuming that z is
proportional to sin wt, i.e., by taking

z = A sin wl, (c)

where A is a constant, the magnitude of which must be chosen so as to
satisfy eq. (18). Substituting (c) in that equation we find

q
A= oy
Thus the required particular solution is
g sin wl
= - =

Adding to this particular solution expression (4), representing the solution
of the cq. (3) for free vibration, we obtain
q sin ot

p2__w2

x = C cos pt + C2 sin pt 4 (19)

This expression contains two constants of integration and represents the
general solution of the eq. (18). It is seen that this solution consists of two



HARMONIC VIBRATIONS 15

parts, the first two terms represent free vibrations which were discussed
before and the third term, depending on the disturbing force, represents
the forced vibration of the system. It is seen that this later vibration has
the same period 71 = 27/w as the disturbing force has. Its amplitude 4,
is equal to the numerical value of the expression
2 q 2 = —13 1') . (20)
P — w k1l — w?/p?
The factor P/k is the deflection which the maximum disturbing force P
would produce if acting statically and the factor 1/(1 — «?/p?) takes care
of the dynamical action of this force. The absolute value of this factor is
usually called the magnification factor. We sec that it depends only on the

0 2 4 6 8 10 1z 14 16 18 z'o%

Fia. 10.

ratio w/p which is obtained by dividing the frequency of the disturbing
force by the frequency of free vibration of the system. In Fig. 10 the
values of the magnification factor are plotted against the ratio w/p.

It is seen that for the small values of the ratio w/p, i.e., for the case
when the frequency of the disturbing force is small in comparison with
the frequency of free vibration, the magnification factor is approximately
unity, and deflections are about the same as in the case of a statical action
of the force P.

When the ratio w/p approaches unity the magnification factor and the
amplitude of forced vibration rapidly increase and become infinite for
w = p, i.e., for the case when the frequency of the disturbing force exactly
coincides with the frequency of free vibration of the system. This is the
condition of resonance. The infinite value obtained for the amplitude of
forced vibrations indicates that if the pulsating force acts on the vibrating
system always at a proper time and in a proper direction the amplitude of
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vibration increases indefinitely provided there is no damping. In practical
problems we always have damping the effect of which on the amplitude of
forced vibration will be discussed later (see Art. 9).

When the frequency of the disturbing force increases beyond the
frequency of free vibration the magnification factor again becomes finite.
Its absolute value diminishes with the increase of the ratio w/p and
approaches zero when this ratio becomes very large. This means that when
a pulsating force of high frequency (w/p is large) acts on the vibrating
body it produces vibrations of very small amplitude and in many cases
the body may be considered as remaining immovable in space. The prac-
tical significance of this fact will be discussed in the next article.

Considering the sign of the expression 1/(1 — w?/p?) it is scen that for
the case w < p this expression is positive and for w > p it becomes nega-
tive. This indicates that when the fre-
quency of the disturbing force is less
than that of the natural vibration of
X the system the forced vibrations and
\ the disturbing force are always in the
\ same phase, i.c., the vibrating load
N ,\_\\ (Fig. 1) reaches its lowest position at
B \.“B'" g \_/8" the same moment that the disturbing

@ (b) force assumes its maximum value in
Fia. 11. a downward direction. When o >p
the difference in phase between the
forced vibration and the disturbing force becomes equal to . This
means that at the moment when the force is a maximum in a downward
direction the vibrating load reaches its upper position. This phenomenon
can be illustrated by the following simple experiment. In the case of a
simple pendulum AB (Fig. 11) forced vibrations can be produced by giving
an oscillating motion in the horizontal direction to the point A. If this
oscillating motion has a frequency lower than that of the pendulum the
extreme positions of the pendulum during such vibrations will be as shown
in Fig. 11-a, thc motions of the points 4 and B will be in the same phase.
If the oscillatory motion of the point 4 has a higher frequency than that
of the pendulum the extreme positions of the pendulum during vibration
will be as shown in Fig. 11-b. The phase difference of the motions of the
points 4 and B in this case is equal to .

In the above discussion the disturbing force was taken proportional
to sin wt. The same conclusions will be obtained if cos wf, instead of
sin wt, be taken in the expression for the disturbing force.

A,l.A° AL
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In the foregoing discussion the third term only of the general solution
(19) has been considered. In applying a disturbing force, however, not
only forced vibrations are produced but also free vibrations given by the
first two terms in expression (19). After a time the latter vibrations will be
damped out due to different kinds of resistance * but at the beginning of
motion they may be of practical importance. The amplitude of the free
vibration can be found from the gencral solution (19) by taking into
consideration the initial conditions. Let us assume that at the initial
instant (¢ = 0) the displacement and the velocity of the vibrating body are
cqual to zero. The arbitrary constants of the solution (19) must then be
determined in such a manner that for ¢ = 0

z=0 and & =0.

These conditions will be satisfied by taking

Ci=0, Co=— —gﬂ—z
PP —w
Substituting in expression (19), we obtain
T = -—;,"!I———,, (sin wf — < sin pt)- (21)
P? — w* P

Thus the motion consists of two parts, free vibration proportional to sin pt
and forced vibration proportional to sin cwt.

Let us consider the case when the frequencey of the disturbing foree is
very close to the frequeney of free vibrations of the system, i.e., w is close
to p. Using notation

P — w =24,

whore A is a small quantity, and neglecting a small term with the factor
2A/p, we represent expression (21) in the following form:

. . 2 t . — o)t
5 A 5 (sin wt — sin pt) = —; 7 = COS (0 + p) sin (—p)
P°—w p° — w? 2 2

T =

2q sin Al (w + p)t q sin At
— cos ~—
P> — w? 2 2wA

coswi. (22)

Since A is a small quantity the function sin A¢ varies slowly and its period,
equal to 2x/A, is large. In such a casc expression (22) can be considered as

* Damping was entirely neglected in the derivation of eq. (18).
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representing vibrations of a period 27/w and of a variable amplitude equal
to ¢ sin At/2wA. This kind of vibration is called beating and is shown in
Fig. 12. 'The period of beating, equal to 2x/A, increases as w approaches p,

X

~R -~ P aaat N <
L2l ~ e ~
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Fia. 12.

i.c., as we approach the condition of resonance. For limiting condition
w = p we can put in expression (22) At instead of sin At and we obtain

i
2 =— -L cos ut. (23)
2w
The amplitude of vibration in eq. (23) increases indefinitely with the time
as shown in Fig. 13.

,f’

7
e

x _ - e
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~

Fia. 13.

PROBLEMS

1. Aload W suspended vertically on a spring, Fig. 1, produces a statical elongation
of the spring equal to 1 inch. Determine the magnification factor if a vertical disturbing
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force P sin wt, having the frequency 5 cycles per sec. is acting on the load. Determine
the amplitude of forced vibration if W = 101bs., P = 2 lbs.

Solution. From eq. (2), p = \/g-/ﬁ., =386 = 19.6 sec.-. We have also
w =2r-5 = 3l.4sec.”'. Hence the magnification factor is 1/(w?/p? — 1) = 1/1.56.
Deflection produced by P if acting statically is 0.2 in. and the amplitude of forced
vibration is 0.2/1.56 = 0.128 in.

2. Determine the total displacement of the load W of the previous problem at the
instant ¢ = 1 sec. if at the initial moment (¢ = 0) the load is at rest in equilibrium
position.

1.
156 (8in 107 — ?—9—% sin 19.6) =+ .14 inch.

3. Determine the amplitude of forced torsional vibration of a shaft in Fig. 7 pro-
duced by a pulsating torque M sin wt if the free torsional vibration of the same shaft has
the frequency f = 10 sec.™!, w = 107 sec.™ and the angle of twist produced by torque M,
if acting on the shaft statically, is cqual to .01 of a radian.

Solution. ILquation of motion in this case is (see Art. 2)

Answer. z =—

o+ ple = A{ sin wt
1 ’

where ¢ is the angle of twist and p? = k/I. The forced vibration is

mo M _
——————sinwl = ~—————3§
¢ TR =)

= t.
T e

Noting that the statical deflection is M /k = 0.01 and p = 27 -10 we obtain the required
amplitude equal to

0.01
a -2
4. Instruments for Investigating Vibrations.—For measuring vertical

vibrations a weight W suspended on a spring can be used (Fig. 14). If the
point of suspension A4 is immovable and a vibration

I

0.0133 radian.

in the vertical direction of the weight is produced, the A {
equation of motion (1) can be applied, in which z EI [
denotes displacement of W from the position of b3
equilibrium. Assume now that the box, containing N2

the suspended -weight W, is attached to a body per- = =

forming vertical vibration. In such a case the point X

of suspension A vibrates also and due to this fact Fia. 14.
forced vibration of the weight will be produced. Let

us assume that vertical vibrations of the box are given by equation

Z) = asin wf, (a)

so that the point of suspension A performs simple harmonic motion of
amplitude a. In such case the elongation of the spring is # — z; and the
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corresponding force in the spring is k(x — #1). The equation of motion of
the weight then becomes

-;]-Zi:=—k(:z:—x1),

or, by substituting for z; its expression (a) and using notations

akg

=y =0 ©®

=&

we obtain
z + p’zr = ¢sin wt.

This equation coincides with equation (18) for forced vibrations and we can
apply here the conclusions of the previous article. Assuming that the free
vibrations of the load are damped out and considering only forced vibra-
tions, we obtain

_ ¢ sin wt a sin wt
x_pz_wz*l_wz/pz' ©
It is seen that in the case when w is small in comparison with p, i.e., the
frequency of oscillation of the point of suspension A is small in comparison
with the frequency of free vibration of the system, the displacement z is
approximately equal to z; and the load W performs practically the same
oscillatory motion as the point of suspension 4 does. When w approaches p
the denominator in expression (¢) approaches zero and we approach reso-
nance condition at which heavy forced vibrations are produced.

Considering now the case when w is very large in comparison with p, i.e.,
the frequency of vibration of the body to which the instrument is attached
is very high in comparison with frequency of free vibrations of the load W
the amplitude of forced vibrations (¢) becomes small and the weight W can
be considered as immovable in space. Taking, for instance, w = 10p we
find that the amplitude of forced vibrations is only a/99, i.e., in this case
vibrations of the point of suspension A will scarcely be transmitted to the
load W.

This fact is utilized in various instruments used for measuring and
recording vibrations. Assume that a dial is attached to the box with its
plunger pressing against the load W as shown in Fig. 209. During vibration
the hand of the dial, moving back and forth, gives the double amplitude
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of relative motion of the weight W with respect to the box. This ampli-
tude is equal to the maximum value of the expression

1
wa( L )
a Sin w (1 _ w2/p2
W?/p®
1 — w?/p?

T — 1

= @ sin wi: (24)
When p is small in comparison with w this value is very close to the ampli-
tude a of the vibrating body to which the instrument is attached. The
numerical values of the last factor in expression (24) are plotted against
the ratio w/p in Fig. 18.

The instrument deseribed has proved very uscful in power plants for
studying vibrations of turbo-generators. Introducing in addition to
vertical also horizontal springs, as shown in Fig. 209, the horizontal vibra-
tions also can be measured by the same instrument. The springs of the
instrument are usually chosen in such a manner that the frequencies of
free vibrations of the weight W both in vertical and horizontal directions
are about 200 per minute. If a turbo-generator makes 1800 revolutions
per minute it can be expeeted that, owing to some unbalance, vibrations of
the foundation and of the bearings of the same frequency will be produced.
Then the dials of the instrument attached to the foundation or to a bearing
will give the amplitudes of vertical and horizontal vibrations with suffi-
cient accuracy since in this case w/p = 9 and the difference between the
motion in which we are interested and the relative _
motion (24) is a small onc. r[ A C }

To get a record of vibrations a cylindrical
drum rotating with a constant speed can be used.
If such a drum with vertical axis is attached to
the box, Fig. 14, and a pencil attached to the 8
weight presses against the drum, a complete record
of the relative motion (24) during vibration will
be recorded. On this principle various vibrographs i
are built, for instance, the vibrograph constructed Fia. 15.
by the Cambridge Instrument Company, shown
in Tig. 213 and Geiger’s vibrograph, shown in Fig. 214. A simple
arrangement for recording vibrations in ship hulls is shown in Fig. 15. A
weight W is attached at point A to a beam by a rubber band AC. During
vertical vibrations of the hull this weight remains practically immovable
provided the period of free vibrations of the weight is sufficiently large.
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Then the pencil attached to it will record the vibrations of the hull on a
rotating drum B. To get a satisfactory result the frequency of free vibra-
tions of the weight must be small in comparison with that of the hull of
the ship. This requires that the statical elongation of the string AC must
be large. For instance, to get a frequency of 14 of an oscillation per second
the elongation of the string under the statical action of the weight W must
be nearly 3 ft. The requirement of large extensions is a defect in this type
of instrument.

A device analogous to that shown in Fig. 14 can be applied also for
measuring accelerations. Insuch a case a rigid spring must be used and the
frequency of natural vibrations of the weight W must be made very large
in comparison with the frequency of the vibrating body to which the
instrument is attached. Then p is large in comparison with w in expression
(24) and the relative motion of the load W is approximately equal to
aw? sin wt/p? and proportional to the acceleration Z; of the body to which
the instrument is attached. Due to the rigidity of the spring the relative
displacements of the load W are usually small and require special devices
for recording them. An electrical method for such recording, used in inves-
tigating accelerations of vibrating parts in electric locomotives, is dis-
cussed later (see page 459).

PROBLEMS

1. A wheel is rolling along a wavy surface with a constant horizontal speed v, Fig. 16.
Determine the amplitude of the forced vertical vibrations of the load W attached to

w

,l’,& —
Iy

Fia. 16
the axle of the wheel by a spring if the statical deflection of the spring under the action
of the load W is 65, = 3.86 ins., v = 60 ft. per sec. and the wavy surface is given by the
equation y = a sin "T in which ¢ = 1 in. and I = 36 in.

Solution. Considering vertical vibrations of the load W on the spring we find, from
eq. 2, that the square of the circular frequency of these vibrations is p2 = g/8, = 100.
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Due to the wavy surface the center o of the rolling wheel makes vertical oscillations.
Assuming that at the initial moment ¢t = 0 the point of contact of the wheel isat z = 0

. . . ol
and putting z = o, these vertical oscillations are given by the equation y = asin ZZ—

The forced vibration of the load W is now obtained from equation (c) substituting in it

a =1in, 0w = WTv = 20r, p? = 100. Then the amplitude of forced vibration is

1/(4x? — 1) = .026 in. At the given speed v the vertical oscillations of the wheel are
transmitted to the load W only in a very small proportion. If we take the speed v of
the wheel 14 as great we get w = 57 and the amplitude of forced vibration becomes
1/(x?/4 — 1) = 0.68 in. By further decrease in speed v we finally come to the condition
of resonance when »v/l = p at which condition heavy vibration of the load W will be
produced.

2. For measuring vertical vibrations of a foundation the instrument shown in Fig.
14 is used. What is the amplitude of these vibrations if their frequency ig 1800 per
minute, the hand of the dial fluctuates between readings giving deflections .100 in. and
.120 in. and the springs are chosen so that the statical deflection of the weight W is
equal to 1 in.?

Solution. From the dial reading we conclude that the amplitude of relative motion,
see eq. 24, is .01 in. The frequency of free vibrations of the weight W, from eq. (6), is
f = 3.14 persec. Hence w/p = 30/3.14. The amplitude of vibration of the foundation,
from eq. 24, is

(30/3.14)2 — 1

= 01 2027 = 1 00989 in.
¢ (30/3.14)? 00989 in

3. A device such as shown in Fig. 14 is used for measuring vertical acceleration of a
cab of a locomotive which makes, by moving up and down, 3 vertical oscillations per
second. The spring of the instrument is so rigid that the frequency of free vibrations
of the weight W is 60 per second. What is the maximum acceleration of the cab if the
vibrations recorded by the instrument representing the relative motion of the weight W
with respect to the box have an amplitude a; = 0.001 in.? What is the amplitude a of
vibration of the cah?

Solution. From eq. 24 we have

aw?

a = p2 __wz.

Hence the maximum vertical acceleration of the cab is
aw? = a,(p? — w?).
Noting that p = 2760 and w = 2x-3, we obtain
aw? = .001-47%(60> — 3% = 142 in. sec.™?
and

142
3672

a= = .4 in.
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6. Spring Mounting of Machines.—Rotating machines with some
unbalance produce on their foundations periodic disturbing forces as a
result of which undesirable vibrations of foundations and noise may oceur.
To reduce these bad effects a spring mounting of machines is sometimes
used. Let a block of weight W in Fig. 17 represent the machine and P
denote the cent "fugal force due to unbalance when the angular velocity
of the machine one radian per sccond. Then at any angular velocity w
the centrifugal force is Pw? and, measuring the angle of rotation as shown
in the figure, we obtain the vertical and the horizontal components of the
disturbing force equal to Pw? sin wt and Pw? cos wt respectively. If the
machine is rigidly attached to a rigid foundation, as shown in Fig. 17a,
there will be no motion of the block W and the total centrifugal force will

W7\ Jdw N bz
\ | ot 7@ 7
/

kerrrsse

Fie. 17.

be transmitted to the foundation. To diminish the force acting on the
foundation, let us introduce a spring mounting, as shown in Fig. 17b, and
assume that there is a constraint preventing lateral movements of the
machine. In this way a vibrating system consisting of the block W on
vertical springs, analogous to the system shown in TFig. 1, is obtained.
To determine the pulsating vertical force transmitted through the springs
to the foundation the vertical vibration of the block under the action of
the disturbing force Pw? sin wf must be investigated.* Using the expression
for forced vibrations given in article 3 and substituting Pw? for P, we find
that the amplitude of forced vibration is cqual to the numerical value of
the expression

Pp?  w?/p?

T @)

4

Where £ is the spring constant, i.e., the force required to produce vertical
deflection of the block equal to unity, and p? is defined by cq. 2. A similar

* It is assumed here that vibrations are small and do not effect. appreeiably the mag-
nitude of the disturbing force calculated on the assumption that the unbalanced weight je
rotating about fixed axis.
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expression has been obtained before in discussing the theory of vibrographs,
sce eq. 24. It is scen that for a given value of the ratio Pp?/k the amplitude
of foreed vibration depends only on the value of the ratio w/p. The abso-
lute values of the second factor in expression (a) are plotted against the
values of w/p in Fig. 18. It is scen that for large values of w/p these
quantitics approach unity and the absolute value of expression (a)
approaches Pp?/k. Having the amplitude of foreed vibration of the block
W and multiplying it by the spring constant k, we obtain the maximum
pulsating foree in the spring which will be transmitted to the foundation.
Keeping in mind that Pw? is the maximum vertical disturbing force when
the machine is rigidly attached to the foundation, Fig. 17a, it can be
concluded from (a) that the spring mounting reduces the disturbing force

( w/}oz)/(wz/p /)

Wy
0 2 ¢ 6 8 1o /2 14 16 18 20 ©

F1a. 18.

only if 1 — w?/p? is numerically larger than one, i.c., when w > p V2.
When  is very large in comparison with p, i.c., when the machine is
mounted on soft springs, expression (a) approaches numerically the value
Pp?/k and we have, due to spring mounting, a reduction of the vertical
disturbing force in the ratio p2/w?. From this discussion we see that to
reduce disturbing forces transmitted to foundation the machine must be
mounted on soft springs such that the frequency of free vibration of the
block W is small in comparison with the number of revolutions per second
of the machine. The effect of damping in supporting springs will be dis-
cussed later (see Art. 10). To simplify the problem we have discussed here
only vertical vibrations of the block. To reduce the horizontal disturbing
force horizontal springs must be introduced and horizontal vibrations
must be investigated. We will again come to the conclusion that the fre-
quency of vibration must be small in comparison with the number of revo-
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lutions per second of the machine in order to reduce horizontal disturbing
forces.
PROBLEMS

1. A machine of weight W = 1000 lbs. and making 1800 revolutions per minute is
supported by four helical springs (Fig. 17b) made of steel wire of diameter d = 14 in.
The diameter corresponding to the center line of the helix is D = 4 in. and the number
of coils n = 10. Determine the maximum vertical disturbing force transmitted to the
foundation if the centrifugal force of unbalance for the angular speed equal to 1 radian
per sec. is P = 1 pound.

Solution. The statical deflection of the springs under the action of the load W is

s 2nD3W  2-10-43-1000
TG (1g)*12-100
from which the spring constant k¥ = 1000/1.71 = 585 Ibs. per in. and the square of the
circular frequency of free vibration p? = g/8, = 225 are obtained. By using equation
(a) we obtain the maximum force transmitted to foundation
(60x)?
(607)2/(225) — 1

2. In what proportion will the vertical disturbing foree of the previous problem in-
crease if instead of 4 there will be taken 8 supporting springs, the other conditions re-
maining unchanged?

3. What magmitude must the spring constant in problem 1 have in order to have

the maximum disturbing force transmitted to the foundation equal to one-tenth of the
centrifugal force Puw??

= 1.71 in.

= 227 1bs.

6. Other Technical Applications.—Oscillator.—For determining the
frequency of free vibrations of structures a special deviee called the
Oscillator * is sometimes used. It

Puw? m Pu? consists of two dises rotating in a

vertical planc with constant speed

wt in opposite directions, as shown in
. Fig. 19. The bearings of the discs are

~ X housed in a rigid frame which must
be rigidly attached to the structure,
)3 the vibrations of which are studied.
Tia. 19. By attaching to the dises the unbal-

anced weights symmetrically situated

with respect to vertical axis mn, the centrifugal forces Pw? which are pro-
duced during rotation of the dises have a resultant 2Pw? sin wt acting along
the axis mn.t Such a pulsating force produces forced vibrations of the

* Such an oscillator is described in a paper by W. Spiith, see V.D.I. vol. 73, 1929,
t It is assumed that the effect of vibrations on the inertia forces of the unbalanced
weights can be neglected.
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structure which can be recorded by a vibrograph. By gradually changing
the speed of the dises the number of revolutions per second at which the
amplitude of forced vibrations of the structure becomes a maximum can be
established. Assuming that this occurs at resonance,* the frequency of
free vibration of the structurc is equal to the above found number of
revolutions per second of the discs.

Frahm’s Vibration Tachometer.t—An instrument widely used for mea-
suring the frequency of vibrations is known as Frahm’s tachometer.
This consists of a system of stecl strips built in at their lower ends as shown
in Fig. 20. To the upper ends of the strips small masses are attached,
the magnitudes of which are adjusted in such a manner that the system
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Fia. 20

of strips represents a definite series of frequencies. The difference between
the frequencies of any two consecutive strips is usually equal to half a
vibration per second.

In figuring the frequency a strip can be considered as a cantilever
beam (Fig. 20-¢). In order to take into consideration the effect of the
mass of the strip on the vibration it is necessary to imagine that one
quarter of the weight Wy of the strip is added f to the weight W, the latter
being concentrated at the end. Then,

b = W+ W,/49P

N 3E1

This statical deflection must be substituted in eq. 6 in order to obtain
the period of natural vibration of the strip. In service the instrument
is attached to the machine, the frequency vibrations of which is to be

* For a more accurate discussion of this question the effect of damping must be
considered (see Art. 9).

t This instrument is described by F. Lux, E. T. Z., 1905, pp. 264-387.

1 A more detailed consideration of the effect of thec mass of the beam on the period
of vibration is given in article 16.
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measured. The strip whose period of natural vibration is nearest to the
period of one revolution of the machine will be in a condition near reso-
nance and a heavy vibration of this strip will be built up. From the
frequency of the strip, which is known, the speed of the machine can be
obtained. '

Instead of a series of strips of different lengths and having different
masses at the ends, one strip can be used having an adjustable length.
The frequency of vibration of the machine can then be found by adjusting
the length of the strip in this instrument so as to obtain resonance. On
this latter principle the well known Fullarton vibrometer is built (sce p. 443).

Indicator of Steam Engines.—Steam ecngine indicators arc used for
measuring the variation of steam pressure in the engine cylinder. The
accuracy of the records of such indicators will depend on the ability of
the indicator system, consisting of piston, spring and pencil, to follow
exactly the variation of the steam pressure. From the general discussion
of the article 3 it is known that this condition will be satisfied if the fre-
quency of free vibrations of the indicator system is very high in comparison
with that of the steam pressure variation in the cylinder.

Let A = .20 sq. in. is area of the indicator piston,
W = .133 lb. is weight of the piston, piston rod and reduced weight
of other parts connected with the piston,

s = .1 in. displacement of the pencil produced by the pressure of one
atmosphere (15 lbs. per sq. in.),
n = 4 is the ratio of the displacement of the pencil to that of the

piston.

From the condition that the pressure on the piston equal to 15 X .2
= 3.00 lbs. produces a compression of the spring equal to 14 X .1 = .025
in., we find that the spring constant is:

k = 3.00 :.025 = 120 lbs. in~!.

The frequency of the free vibrations of the indicator is (see eq. (6))

s L i_i\/;’:’f_L 386120 _ .
T2r Vo, 2 VW T2r ¥ 33 U Pereee

This frequency can be considered as sufficiently high in comparison with
the usual frequency of steam engines and the indicator’s record of steam
pressure will be st ffciently accurate. In the case of high speed engines,
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however, such an instrument may give completely unreliable records *
under certain conditions.

Locomotive Wheel Pressure on the Rail.—It is well known that inertia
forces of counter weights in locomotive wheels pro-
duce additional .pressure on the track. This effect
of counterweights can casily be obtained by using
the theory of forced vibrations. Let W is the weight
of the wheel and of all parts rigidly connected to
the wheel, @ is spring borne weight, P is centrifugal
force due to unbalance, » is angular velocity of
the wheel. Considering then the problem as one
of statics, the vertical pressure of the wheel on the
rail, Fig, 21, will be equal to

Q+ W 4 P coswt. (a)
At slow speed this expression represents a good approximation for the
wheel pressure. In order to get this pressure with greater accuracy, forced
vibrations of the wheel on the rail produced by the periodical vertical
force P cos ot must be considered. Iet k& denote the vertical load on the
rail necessary to produce the deflection of the rail equal to unity directly
under the load and $,,, the deflection produced by the weight W, then,
w
.
The period of free vibrations of the wheel on the rail is given by the equa-

tion 1 (see eq. (5)).
fW
T =2r —k_g )

The period of one revolution of the wheel, i.e., the period of the disturbing
force P cos wt, is

Fia. 21.

53‘ =

27
T] = —

w

* The description of an indicator for high frequency engines (Collins Micro-Indi-
cator) is given in Engineering, Vol. 113, p. 716 (1922). Symposium of Papers on Indi-
cators, see Proc. Meetings of the Inst. Mech., Eng., London, Jan. (1923).

t In this calculation the mass of the rail is neglected and the compressive force Q
in the spring is considered as constant. This latter assumption is justified by the fact
that the period of vibration of the engine cab on its spring is usually very large in
comparison with the period of vibration of the wheel on the rail, therefore vibrations
ot the wheel will not be transmitted to the cab and variations in the compression of
the spring will be very small (see Art. 4).
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Now, by using eq. (20), it can be concluded that the dynamical deflection
of the rail produced by the force P will be larger than the corresponding
statical deflection in the ratio,

1
— ©
r
()
T1
The pressure on the rail produced by the centrifugal force P will also

increase in the same ratio and the maximum wheel pressure will be given by

P

< r >2. (d)
1 —_ —
T1
For a 100 lb. rail, a modulus of the elastic foundation equal to 1500 lbs.

per sq. in. and W = 6000 lbs. we will have *
T = .068 scc.

Q+ W+

Assuming that the wheel performs five revolutions per sec. we obtain

71 = .2 soc.

Substituting the values of 7 and 71 in the expression (c) it can be concluded
that the dynamical effect of the counterbalance will be about 119, larger
than that calculated statically.
7. Damping.—In the previous discussion of free and forced vibrations
it was assumed that therc are no resisting forces acting on the vibrating
,body. As a result of this assumption it was found that in the case of free
vibrations the amplitude of vibrations remains constant, while experience
shows that the amplitude diminishes with the time, and vibrations are
gradually damped out. In the case of forced vibrations at resonance it
was found that the amplitude of vibration can be indefinitely built up, but,
as we know, duc to damping, therc is always a certain upper limit below
which the amplitude always remains. To bring an analytical discussion of
vibration problems in better agreement with actual conditions damping
forces must be taken into consideration. These damping forces may arise
from several differcnt sources such as friction between the dry sliding
surfaces of the bodies, friction between lubricated surfaces, air or fluid
resistance, electric damping, internal friction due to imperfect clasticity of
vibrating bodies, etc.

* See S. Timoshenko and J. M. Lessells, “ Applied Elasticity,” p. 334 (1925).
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In the case of friction between dry surfaces the Coulomb-Morin law is
usually applied.* It is assumed that in the case of dry surfaces the friction
force F is proportional to the normal component N of the pressure acting
between the surfaces, so that

F = N, (@)

where u is the coeffictent of friction the magnitude of which depends on the
materials of the bodies in contact and on the roughness of their surfaces.

" Experiments show that the force F required to overcome friction and
start a motion is larger than the force necessary to maintain a uniform
motion. Thus usually larger values are assumed for the coefficients of
friction at rest than for the coeflicients of friction during motion. It is
usually assumed also that the coeffi-
cient of friction during motion is u
independent of the velocity so that 4
Coulomb’s law can be represented by £
a line BC, parallel to abscissa axis, as

shown in Fig. 22. By the position of BT =g -——-—‘———-DC
the point A in the same figure the
cocfficient of friction at rest is given.
This law agrees satisfactorily with ex- o0 v

periments in the case of smooth sur- Fia. 22.

faces. When the surfaces are rough

the coefficient of friction depends on velocity and diminishes with the
increase of the velocity as shown in Fig. 22 by the curve AD.t

In the case of friction between lubricated surfaces the friction foree does
not depend on materials of the bodies in contact but on the wviscosity of
lubricant and on the velocity of motion. In the case of perfeetly lubricated
surfaces in which there exists a continuous lubricating film between the
sliding surfaces it can be assumed that friction forces are proportional both
to the viscosity of the lubricant and to the velocity. The coefficient of
friction, as a function of velocity, is represented for this case, in Fig. 22, by
the straight line OF.

* C. A. Coulomb, Mémoires de Math. et de Phys., Paris 1785; see also his “Theorie
des machines simples,” Paris, 1821. A. Morin, Mémoires prés. p. div. sav., vol. 4, Paris
1833 and vol. 6, Paris, 1935. For a review of the literature on friction, see R. v. Mises,
Encyklopadie d Math. Wissenschaften, vol. 4, p. 153. For references to new literature
on the same subject see G. Sachs, Z. f. angew. Math. und Mech., Vol. 4, p. 1, 1924; H.

Fromm, Z. f. angew. Math. und Mech. Vol. 7, p. 27, 1927 and Handbuch d. Physik. u.
Techn. Mech. Vol. 1, p. 751, 1929.

t The coeflicient of friction between the locomotive wheel and the rail were inves-
‘igated by Douglas Galton, See ““ Engineering,” vol. 25 and 26, 1878 and vol. 27, 1879.
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We obtain also resisting forces proportional to the velocity if a body
is moving in a viscous fluid with a small velocity or if a moving body
causes fluid to be forced through narrow passages as in the case of dash
pots.* In further discussion of all cases in which friction forces are pro-
portional to velocity we will call these forces viscous damping.

In the case of motion of bodies in air or in liquid with larger velocities
a resistance proportional to the square of velocity can be assumed with
sufficient accuracy.

The problems of vibration in which damping forees are not proportional
to the velocity can be discussed in many cases with sufficient accuracy by
replacing actual resisting forces by an equivalent viscous damping which is
determined in such a manner as to produce same dissipation of energy per
cycle as that produced by the actual resisting forces. In this manner, the
damping due to internal friction can be treated. For this purposec it is
necessary to know for the material of a vibrating body the amount of
energy dissipated per cycle as a function of the maximum stress. This can
be determined by measuring the hysteresis loop obtained during deforma-
tion.t Several simple examples of vibrations with damping will now be
considered.

8. Free Vibration with Viscous Damping.—Consider again the vibra-
tion of the system shown in Fig. 1 and assume that the vibrating body W
encounters in its motion a resistance proportional to the velocity. In
such case, instead of equation of motion (1), we obtain

_?.5=W_(W+kx)—ca'c. (a)

The last term on the right side of this cquation represents the damping
force, proportional to velocity z. The minus sign shows that the force is
acting in the direction opposite to the velocity. The coefficient ¢ is a con-
stant depending on the kind of the damping deviee and numerically is
equal to the magnitude of the damping force when the velocity is equal to
unity. Dividing equation () by W /g and using notations

p? = kg/W and cg/W = 2n, (25)

* See experiments by A. Stodola, Schweiz. Banzeitung, vol. 23, p. 113, 1893.

t Internal friction is a very important factor in the case of torsional vibrations of
shafts and a considerable amount of experimental data on this subject have been obtained
during recent years. See O. Foppl, V.D.I. vol. 74, p. 1391, 1930; Dr. Dorey’s papet
read before Institution of Mechanical Engineers, November, 1932; 1. Geiger, V.D.I. vol.
78, p. 1353, 1934.
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we obtain for frec vibrations with viscous damping the following equation
z+ 2nz + p*xr = 0. (26)

In discussing this cquation we apply the usual method of solving linear
differential cquations with constant cocfficients, and assume a solution of
it in the form

z = ¢ (b)

in which e is the base of natural logarithms, ¢ is time and r is a constant
which must be determined from the condition that expression (b) satisfies
equation (26). Substituting (b) in eq. (26) we obtain

r2 4 2nr 4 p? = 0,
from which

r=—n:i:\/n2——p2. (c)

Let us consider first the case when the quantity n?, depending on
damping, is smaller than the quantity p2. In such case the quantity

pt = p? — n? (27)
is positive and we get for » two complex roots:
rn=—mn-4+pt and re =—n — pi.

Substituting these roots in expression (b) we obtain two particular solu-
tions of the equation (26). The sum or the difference of these two solu-
tions multiplied by any constant will be also a solution. In this manner
we get solutions

C
T = ?l (& + &) = Cie™™ cos pit,

C: :
a2 = o0 (€M = ¢¥) = Coe™™sinpit.
1

Adding them together the gencral solution of eq. 26 is obtained in the
following form

z = ¢ ™(C cos pit + Cq sin pit), (28)

in which C; and C; are constants which in each particular case must be
determined from the initial conditions.

The expression in parenthesis of solution (28) is of the same form as we
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had before for vibrations without damping (see expression 4). It represents
a periodic function with the period

pa 1 (29)

Comparing this with the period 27 /p, obtained before for vibrations with-
out damping, we see that due to damping the period of vibration increases,
but if n is small in comparison with p, this increase is a small quantity of
second order. Therefore, in practical problems, it can be assumed with
sufficient accuracy that a small viscous damping does not affect the period
of vibration.

The factor ¢e~™ in solution (28) gradually decreases with the time and
the vibrations, originally generated, will be gradually damped out.

To determine the constants C; and C: in solution (28) let us assume
that at the initial instant ¢ = 0 the vibrating body is displaced from its
position of equilibrium by the amount zyp and has an initial velocity zo.
Substituting ¢ = 0 in expression (28) we then obtain

Ty = C1. (d)

Differentiating the same expression with respect to time and equating it to
&9, for ¢ = 0, we obtain

. C2 = (xo + nxo)/p1. (e)
Substituting (d) and (e) into solution (28) we obtain

z=e ™ (zo cos pit + I—sz—;——@g sin plt)- (30)
1

The first term in this expression proportional to cos pif, depends only on
the initial displacement zo and the sccond term, proportional to sin pi¢
depends on both, initial displacerent zo and initial velocity z9. ISach term
can be readily represented by a curve. The wavy curve in Fig. 23
represents the first term. This curve is tangent to the curve 2 = zoe™™
at the points mi, mge, ms, wheret = 0,¢ = 7,¢{ = 27, .. .; and to the curve
x=—z0e” ™ at the points my’, ms’,. . .wheret = 7/2,¢ = 37/2,. .. These
points do not coincide with the points of extreme displacements of the
body from the position of equilibrium and it is easy to see that due to
damping, the time interval necessary for displacement of the body from a
middle position to the snbsequent extreme position is less than that neces-
sary to return from an extreme position to the subsequent middle position.
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The rate of damping depends on the magnitude of the constant n
(see eq. (25)). It is scen from the gencral solution (30) that the amplitude
of the vibration diminishes after every cycle in the ratio

e™" 11, (f)

ie., it decreases following the law of geometrical progression. Equation
(f) can be used for an experimental determination of the coefficient of
damping n. It is only necessary to determine by experiment in what

Fia. 23.

proportion the amplitude of vibration is diminished after a given number
of cycles.
The quantity

nr=—m—_ @31)

on which the rate of damping depends, is usually called the logarithmic
decrement. 1t is equal to the difference between the logarithms of the two
consecutive amplitudes measured at the instants ¢ and ¢ + 7.

" In discussing vibrations without damping the use of a rotating vector
for representing motion was shown. Such vector can be used also in the
case of vibrations with damping. Imagine a vector OA, Fig. 24, of variable
magnitude zoe ™™ rotating with a constant angular velocity p;. Measuring
the angle of rotation in the counter clockwise direction from the z-axis, the
projection OA; of the vector is equal to zoe™™ cos pit and represents the
first term of the expression (30). In the same manner, by taking a vector
OB equal to ¢ ™™ (o + nzo)/p1 and perpendicular to OA and projecting it
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on the axis, we get the second term of solution (30). The total expression
(30) will be obtained by projecting on the z-axis the vector OC which is the
geometrical sum of the vectors 04 and OB. The magnitude of this vector is

0C = VOA? + 0B2 = ¢™™ V22 + (20 + n20)?/p1?, )

and the angle which it makes with z-axis is pit — « where

zo + nxo
o = arc tan ————.
P10

(h)

From this discussion it follows that expression (30) can be put in the
following form

z=e¢""Vz2 + (20 + n20)2/p:2 cos (pit — ). (30")

During rotation of the vector 0C, in Fig. 24, the point C' describes a
logarithmic spiral the tangent to which makes a constant angle equal to

arc tan (—n/p1) with the perpendicular to the radius vector OC. The
extreme positions of the vibrating body correspond to the points at which
the spiral has vertical tangents. These points are defined by the intersec-
tions of the spiral with the straight line M N, Fig. 24. The points of inter-
section of the spiral with the vertical axis define the instants when the
vibrating body is passing through the equilibrium position. It is clearly
seen that the time interval required for the displacement of the body from
the equilibrium position to the extreme position, say the time given by
the angle SON, in Fig. 24, is less than that necessary to return from the
extreme position to the subsequent equilibrium position, as given by the
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angle NOS;. But the time between the two consecutive extreme positions
of the body, such as given by the points M and N in Fig. 24 is always the
same and equal to half of the period 7.

In the foregoing discussion of equation (26) we assumed that p2 > n2,
If p2 < 72 both roots (c) become real and are negative. Substituting them
in expression (b) we obtain the two particular solutions of equation (26) and
the general solution of the same cquation becomes

= C1e" + Cae™. (k)

The solution does not contain any longer a periodical factor and does not
represent a vibratory motion. The viscous resistance is so large that the
body, displaced from its equilibrium position does not vibrate and only
creeps gradually back to that position.
| The critical value of damping at which the motion loses its vibratory
icharacter is given by the condition n = p, and by using notations (25) we
' obtain for this case:

Cor = 2\/

PROBLEMS

w
g

®

1. A body vibrating with viscous damping (Fig. 1) makes ten complete oscillations
per second. Determine n in eq. (26) if after an elapse of 10 seconds the amplitude of
vibration is reduced to 0.9 of the initial. Determine in what proportion the period of
vibration decreases if damping is removed. Calculate the logarithmic decrement.

Solution. Assuming that motion is given by equation

z =z ™ cos‘p,t
and substituting in this equation z = 0.9z,, ¢ = 10, p, = 20x we obtain

10n

0 = — =1.111,

1
.9
from which n = .01054.

The effect of damping on the period of vibration is given, in eq. (29), by factor
1/\/1 —n?/p? p/\/p’—n2 = p/p1. Substituting p = \/plz +n?=p;, V1 + n?/p,?

we see that by removing damping the period of vibration decreases in the ratio

1 2
1/V1+n/p2=1-— él‘_; , in which n and p, have the values calculated above. The
ya

logarithmical decrement is nr = .01054:0.1 = .001054.

2. To the body weighing 10 Ib. and suspended on the spring, Fig. 1, a dash pot
mechanism is attached which produces a resistance of .01 1b. at a velocity 1 in. per sec.
In what ratio is the amplitude of vibration reduced after ten cycles if the spring constant
is 10 Ib. per in.
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Solution. After 10 cycles the amplitude of oscillation reduces in the ratio 1/¢X°"".

Substituting, from (25) and (29),
= - K B rempreyyre
n = W nr 27r\/ / V1 — cg/4kW = .0617,

the ratio becomes 1/¢87 = .539.

_ 9. Forced Vibrations with Viscous Damping.—In discussing forced
vibration with viscous damping we assume that in addition to forces con-
sidered in the previous article a disturbing force P sin ot is acting on the
vibrating body, Fig. I. Then instead of equation (a) of the previous article,
we obtain

%5&= W — (W 4+ kx) — cx + P sin wt.

By using notations (25) this equation becomes
P
zZ + 2nz + p%x = —Wg sin wl. (32)

The general solution of this equﬁtion is obtained by adding to the solution
of the corresponding homogeneous equation (26), p. 33, a particular solution
of equation (32). This later solution will have the form

21 = M sin wt + N cos wt, (a)

in which M and N are constants. Substituting this expression into equa-
tion (32) we find that it is satisfied if the constants M and N satisfy the
following linear equations

— Nw? + 2Mwn + Np? = 0,
—Mw?2 — 2Non + Mp? = %i,
from which
Py p? — w? . _Pyg 2nw
M N=- W (p2— w?)? + 4n202

“w (p? — w?)? + 4n2w? '’ (b)

Substituting these expressions in (a) we obtain the required particular
solution. Adding it to the general solution (28) of the homogeneous equa-
tion the general solution of equation (32) becomes

z = e ™(Cy cos pit + Cz sin p1t) + M sin wt + N cos wt. (©)
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The first member on the right side, having the factor e™™, represents the
free damped vibration discussed in the previous article. The two other
terms, having the same frequency as the disturbing force, represent forced
wibration.

The expression for the forced vibration can be simplified by using rotat-
ing vectors as before, sce p. 35. Take a veetor 0D of magnitude M rotating
with a constant angular velocity w in the
counter clockwise direction. Then measur-
ing angles as shown in Fig. 25, the projec-
tion of this vector on the z-axis gives us the
first term of cxpression (a) for the foreed
vibration. The second term of the same
expression is obtained by taking the projec-
tion on the z-axis of the vector (OB perpen-
dicular to OD the magnitude of which is equal
to the absolute value of N and which is
directed so as to take care of the negative ol P
sign of N in the sccond of expressions (b). wf'dj/ \“ /)\
The algebraical sum of the projections of the = wt
two vectors OD and OB can be replaced by
the projection of their geometrical sum rep- Fia. 25.
resented by the vector OC.  The magnitude
of this vector, which we denote by A, is obtained from the triangle ODC
and, by using expressions (b), is

A=V1l12+N2=Bg; 1 —
W \/(p.: — w2)? + 4n20?

-

from which, by taking p? out of the radical and substituting for it its value
from (25), we obtain

P 1 1

4= ra 02\2  4n2e? = O 02\2  4n2,2 (33)
1—=) +— 1-=) +
P .

P p? p*

in which §,, denotes the deflection of the spring, in Fig. 1, when a vertical
force P is acting statically. The angle @ between the vectors OD and OC
is determined from the equation

(34)
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Projecting now vector OC on the x-axis we obtain the following expression
for the forced vibration

o1 = b 1 sin (of — a). 35)

\/ (1 w2>2 4n202
-—) +
p? p*
It is seen that the amplitude of the forced vibration is obtained by multi-
plying the statical deflection §,, by the absolute value of the factor

Nz 42,2
p- P

which is called the magnification factor. The magnitude of it depends on
the ratio w/p of the circular frequencies of the disturbing force and of the
free vibration without damping, and also on the ratio n/p which, in most
practical cases, is a small quantity. By taking this later ratio equal to zero
we obtain for the amplitude of forced vibration the value found before in
discussing vibrations without damping, see eq. (20) p. 15.

In Fig. 26 the valucs of the magnification factor for various values of
the ratio 2n/p are plotted against the values of w/p. Trom this figure it is
seen that in the cases when the frequency of the disturbing foree is small in
comparison with that of free vibration of the system, the magnification
factor approaches the value of unity, hence the amplitude of forced vibra-
tion is approximately equal to 6,;.. This means that in such cascs the de-
flection of the spring at any instant can be calculated with sufficient accu-
racy by assuming that the disturbing force P sin wt is acting statically.

We have another extreme case when w is large in comparison with p, i.e.,
when the frequency of the disturbing force is large in comparison with the
frequency of free vibration of the system. In such a case the magnifica-
tion factor becomes very small and the amplitude of forced vibration is
small also. ’

The curves shown in Fig. 26 are very close togetner for both extreme
cases mentioned above. This indicates that for these cases the effect of
damping is of no practical importance in calculating the amplitudes of
forced vibrations and the amplitude calculated before by neglecting damp-
ing, see Art. (3), can be uscd with sufficient accuracy.

When the frequency of the disturbing force approaches the frequency of
the free vibration of the system the magnification factor increases rapidly
and, as we see from the figure, its value is very sensitive to changes in the
magnitude of damping especially when this damping is small. It is seen
also that the maximum values of the magnification factor occur at values
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of the ratio w/p which are somewhat smaller than unity. By equating to
zero the derivative of the magnification factor with respect to w/p it can
be shown that this maximum occurs when
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Since 7 is usually very small in comparison with p the values of the fre-
quency w at which the amplitude of forced vibration becomes a maximum
differ only very little from the frequency p of the free vibration of the
system without damping and it is usual practice to take, in calculating
maximum amplitudes, w = p, in which case, from eq. (33),

_ bup
Anas = 5 (36)
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We have discussed thus far the magnitude of the amplitude of forced
vibration given in Fig. 25 by the magnitude of the vector OC. Let us
consider now the significance of the angle « défining the direction of the
vector OC. For this purpose we use a rotating vector for representation
of the disturbing force. Since this force is proportional to sin wt the vector
OP, representing the force, coincides in Fig. 25 with the direction of the
vector OD, and its projection on the x-axis gives at any instant the magni-
tude of the disturbing force. Due to the angle a between the vectors
0P and OC the forced vibration always lags behind the disturbing force.

of

n / 2 z
%

w,
0 / z P

Fia. 27.

When the vector OP coincides with the z-axis and the disturbing force is
maximum the displacement of the body, given by the projection of OC on
the z-axis, has not yet reached its maximum value and becomes a maximum
only after an interval of time equal to a/w when OC coincides with the
z-axis. The angle a represents the phase difference between the disturbing
force and the forced vibration. From equation (34) we see that when
w<p, i.e., when the frequency of the disturbing force is less than the fre-
quency of the natural undamped vibration, tan « is positive and « is less
than /2. For w > p, tan « is negative and a > 7/2. When w = p, tan «
becomes infinite and the difference in phase « becomes equal to /2. This
means that during such motion the vibrating body passes through the
middle position at the instant when the disturbing force attains its maxi~
mum value. In Fig. 27 the values of « are plotted against the values of the
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ratio w/p for various values of damping. It is seen that in the region of
resonance (w = p) a very sharp variation in the phase diffecrence o takes
place when damping is small. Under the limiting condition when n = 0
an abrupt change in the phase difference from a = 0 to @ = = occurs at
resonance and instcad of a curve we obtain in Fig. 27 a broken line 0113.
This later condition corresponds to the case of undamped forced vibration
discussed before, sce p. 16.

When the expression (35) for the forced vibration.is obtained the force
in the spring, the damping force and the inertia foree of the vibrating body,
Fig. 1, can be readily calculated for any instant. Taking, from (33) and
(35),

21 = A sin (0t — a), (e)

we obtain the force in the spring, due to the displacement from the equilib-
rium position, equal to
—kzy = — kA sin (0t — ). )

The damping force, proportional to velocity, is
—cr1 =— cAw cos (wt — a), )]
and the inertia force of the vibrating body is
w

- —I = %Aw2 sin (wt — a). (h)

All these forces together with the disturbing force P sin wt can be obtained
by projecting on the x-axis the four vectors the magnitudes and directions of
which are shown in Fig. 28. From d’Alembert’s principle it follows that
the sum of all these forces is zero, hence

w
Psinwt — kx1 — cz1 — ; 21 =0, (k)

which is the same equation as equation (32). This equation holds for any
value of the angle wt, hence the geometrical sum of the four vectors, shown
in Fig. 28, is zero and the sum of their projections on any axis must be zero.
Making projections on the directions Om and On we obtain

%Aw2+Pcosa—kA

0,
—cAw + Psina = 0.
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From these equations A and « can be readily calculated and the formulae
(33) and (34) for the amplitude of forced vibration and for the phase differ-
ence can be obtained.

Figure 28 can be used in discussing how thesphase angle « and the
amplitude A vary with the frequency w of the disturbing force. When w is
small the damping force is also small. The direction of the force P must
be very close to the direction Om and since the inertia force proportional
to w? in this case is very small the force P must be approximately equal to

£A
///7
h ////‘1{/:‘-'0(
X
cAw
11 7
— wt
m
Fia. 28.

the spring force kA ; thus the amplitude of vibration must be close to the
statical deflection §,,. With a growing value of w the damping force in-
creases and the phase angle a increases to the magnitude at which the com-
ponent of the force P in the direction On balances the damping forces.
At the same time the inertia force increases as w? and to balance this force
together with the component of P in the Om direction a larger spring force,
i.e., a larger amplitude A is required. At resonance (w = p) the inertia
force balances the spring force and the force P acting in the direction On,
balances the damping force. Thus the phase angle becomes equal to =/2.
With further growing of w the angle o becomes larger than =/2 and the
component of the force P is added to the force kA of the spring so that the
inertia force can be balanced at a smaller value of the amplitude. Finally,
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at very large values of w, the angle a approaches , the force P acts approxi-
mately in the direction of the spring force kA. The amplitude A4, the
damping force and the spring force become small and the force P balances
the inertia force.

Let us consider now the work per cycle produced by the disturbing force
during steady forced vibration.* The force acting at any instant is P sin wf
and the velocity of its point of application is 1 = Aw cos (w¢ — a), hence
the work produced in an infinitely small interval of time is

P sin wtdw cos (wt — «)dt,
and the work per cycle will be

T - AwP T )
/ P sin wtdw cos (wt — a)dt = 9 f [sin (2wt — @) + sin a]dt
0 0

AwPr sin a

=G = TAP sin a. 37

This work must be equal to the cnergy dissipated during one cycle due to
damping force. The magnitude of this force is given by expression (g).
Multiplying it by &1dt and integrating in the interval from 0 to = we get for
the energy dissipated per cyele the expression

T A202
f cA%w? cos*(wt — a)dl = Sl
0

Thus the encrgy dissipated per cycle increases as the square of the ampli-
tude.

Expressions (37) and (38) can be used for calculating the maximum
amplitude which a given disturbing force may produce when damping is
known. It may be assumed with sufficient accuracy that this amplitude
occurs at resonance, when w = p and a = 7/2. Substituting sin a = 1
in eq. (37) and equating the work done by the disturbing force to the
energy dissipated we obtain

= mcA%w. (38)

TAP = nwcA%,
from which
P
Amax = -c:.,)' (39)

* Due to presence of the factor e=™ in the first term on the right side of eq. (c) (see

p. 38) the free vibrations will be gradually damped out and steady forced vibrations
will be established.
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This expression can be easily brought in coincidence with the expression
(36) by using notations (25).

From Fig. 25 it is seen that the quantity A sin « is equal to the absolute
value of N given by expression (b). Substituting this value into formula
(37) we obtain for the work per cycle of the disturbing force the following
expression

P2 2nw 2r P%g 2n/p
W@ - ) A e W 2pl(p/e — o/p)?F @n/p)H]
Using notations
2n/p=v plo=1+z (1)
we represent this work in the following form
2r Py Y
)
*Woap| (145 - ) 4
and since 27/w is the period of vibration the average work per second is
!%2/9 ¥ TRV . (m)
(1= 1)+

Assuming that all quantities in this cxpression, except z, are given we
conclude that the average work per second becomes maximum at resonance
(p = w) when z is zero.

In studying the variation of the average work per second near the point
of resonance the quantity z can be considered as small and expression (m)
can be replaced by the following approximate expression

P?g ¥

2pW'4z2 + 12'
The second factor of this expression is plotted against z in Fig. 29 for three
different values of v. It may be seen that with diminishing of damping the
curves in the figure acquire a more and more pronounced peak at the reso-
nance (2 = 0) and also that only near the resonance point the dissipated
energy increases with decreasing damping. For points at a distance from
resonance (z = 0) the dissipated energy decreases with the decrease of
damping.

In studying forced vibration with damping a geometrical representation

in which the quantities 2nw and p? — w?, entering in formulas (33) and (34),
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are considered as rectangular coordinates, is sometimes very useful. Taking
pP—w?=2 and 2nw =y (n)

and eliminating «» from these two equations we obtain the equation of a
parabola:

(0)

-2 I
T=P 4n2’

/0

N

¥4
0 .05 10
Fig. 29.

which is represented in Fig. 30. For w = 0, we have ¥ = 0 and obtain the
vertex of the parabola. For w = p, 2 = 0 and we obtain the intersection
of the parabola with y-axis. For any given value of the frequency we
readily obtain the corresponding point C on the parabola. Then, as seen
from equations (33) and (34), the magnitude of the vector OC is inversely
proportional to the amplitude of forced vibrations and the angle which it
makes with z-axis is the phase angle a. Tor small damping n is small in
comparison with p. Thus we obtain a very slender parabola and the
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shortest distance OD from the origin 0 to the parabola is very close to the
distance OF measured along y-axis, which indicates that the amplitude of
forced vibrations for @ = p is very close to the maximum amplitude. For
w larger than p the amplitude of foreed vibrations decreases indefinitely
as the phase angle « increases and approaches the value .*

£ D

u'
|

2np || pglt
|

Fia. 30.

We have discussed thus far only the second part of the generar expres-
sion (¢) for motion of the body in Fig. 1, which represents the steady forced
vibrations and which will be established only after the interval of time
required to damp out the free vibration, produced at the beginning of the
action of the disturbing force. If we are interested in motion which the
body performs at the beginning of the action of the disturbing force the

general expression for motion,
z = e ™(Cy cos pit + Cysin pit) + A sin (ot — a), (p)

must be used and the constants of integration €, and C'> must be determined
from the initial conditions. Assume, for instance, that for { = 0, z = 0
and & = 0, i.e., the body is at rest at the instant when the disturbing force

P sin wt begins to act. Then by using expression (p) and its derivative
with respect to time we obtain

. nd sin ¢ — wA cos a
Cl =ASlna, Cz =

D1

by substituting which in eq. (p) the general expression for the motion of

* This graphical representation of forced vibrations is due to C. Runge, see paper
by v. Sanden Ingenieur Archiv, vol. I, p. 645, 1930.
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the body is obtained. For the case of a small damping and far from reso-
nance the phase-angle « is small and we can take C; = 0, C2 = — wA/p1.
The motion (p) is represented then by the following approximate expression

—nt

r=— sin pit 4 A sin ot (9)

P1
Thus on steady forced vibrations of amplitude A and with a circular fre-
quency w free vibrations, sometimes called transient, with a frequency p;
and with a gradually damped out amplitude are superposed.
If the frequencies w and p; arc close together the phenomena of beating,
discussed in article 3, will appear, but due to damping this beating will
gradually die out and only steady forced vibrations will remain.

PROBLEMS

1. Determine the amplitude of forced vibrations produced by an oscillator, fixed at
the middle of a beam, Fig. 19, at a speed 600 r.p.m. if P = 1 1b. the weight concentrated
at the middle of the beam is W = 1000 lb. and produces statical deflection of the beam
equal to 8, = .01 in. Neglect the weight of the beam and assume that damping is equiv-
alent to a force acting at the middle of the beam, proportional to the velocity and equal to
100 Ib. at a velocity of 1 . per sec. Determine also the amplitude of forced vibration at
resonance (w = p).

Solution. «? = 40072, ¢ = 100
p? = 38600,

cg 100 X 386
T 2W 2 X 1000

=193,

Pw? = 1-w? = 4007 1bs,,

g Pt 1 _

w \/(I,z — w3)? + dn%e?
40072 X 386
= — = .0439 in.,
1000 V/ (38600 — 40072)? + 4 X 19.3% X 400x?
ifw=rp,
2 38600 X 386
R L 33000 X386 1965 in,

W 2mp 1000 X 2 X 19.3 X V/38600

2. For the previous problem plot the curves representing the amplitude of forced
vibration and the maximum velocity of the vibrating body W as functions of the ratio
w/p.

3. Investigate the effect of damping on the readings of the instrument shown in
Fig. 14.
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Assuming that the vibratory motion of the point of suspension 4 is given by
z, = asin wt, the equation of motion of the suspended weight, by using notations (25), is

k
z + 2ng + p*x = a—ufsin wt.

Substituting ak for P in expression (33), the forced vibration becomes

z = ° sin (wt — a) = af sin (vt — a), )

w\?  4n%e?
I—Zé + Pt

where 3 is the magnification factor.
The instrument measures the difference of the displacements z, and z and we obtain

) —r = asin ot — Basin (0t — a).

The two terms on the right side of this equation can be added together by using rotating
vectors OC of magnitude a and 0D of magnitude Ba as shown in Fig. 31. The geo-

Fia. 31.

metrical sum OF of these two vectors gives us the amplitude of the relative motion
z1 — z. From the triangle OCE this amplitude is

A=aVpt—28cosa+ 1. (s)

It depends not only on the magnification factor g but also on the phase angle a.

In the case of instruments used for measuring amplitudes of vibrations (see Art. 4)
the frequency w is large in comparison with p, g is small, @ approaches the value » and
the amplitude, given by expression (), is approximately equal to a(1 + ). Substltutmg
for B its value from eq. (r) and neglecting damping we find

A_

which is approximately equal to a.
In the case of instruments used for measuring accelerations w is small in comparison
with p, a is small also and expression (s) approaches the value a(8 — 1). Substituting
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again for g its value and neglecting damping,* we get in this case

a

1
4= o) =5
1-2 P
p? w?

’

which is approximately equal to aw?/p? and proportional to the maximum acceleration.

4. Solve the problem 1 in Art. 4, see p. 22, assuming that there is damping in the
spring. The damping force is proportional to vertical velocity of the body W and is
equal to 1 1b. per unit mass of the body at the velocity 1 in. per sec. Calculate the
amplitude of forced vibration at resonance (p = w). At what position of the wheel on
the wave is the body in its highest position.

10. Spring Mounting of Machines with Damping Considered.—In our
previous discussion of spring mounting of machines, Art. 5, it was assumed
that there is no damping and the supporting springs are perfectly elastic.
Such conditions are approximately realized in the case of helical steel
springs, but if leaf springs or rubber and cork padding are used damping is
considerable and cannot any longer be neglected. In the case of such im-
perfect springs it can be assumed that the spring force consists of two
parts, one, proportional to the spring clongation, is
an elastic force and the other, proportional to the 7
velocity is a damping force. This condition can
be realized, for instance, by taking a combination
of perfect springs and a dash pot as shown in Fig.
32. Considering the case discussed in article 5 7,
and calculating what portion of the disturbing Fia. 32
force is transmitted to the foundation we have now
to take into account not only the elastic force but also the force of damp-
ing. From Fig. 28 we see that these two forces act with a phase difference
of 90 degrees and that the maximum of their resultant is

2,2
AVE: + c2? = Akl +4—7;;—, (a)

where A is the amplitude of forced vibration, & is the spring constant and
¢ = 2nW /g is the damping force when the velocity is equal to unity.
Substituting for A4 its value from formula (33) and taking, as in Art. 5, the

* Since the impressed motion is often not a simple sine motion and may contain
higher harmonics with frequencies in the vicinity of the resonance of the instrument it is
usual practice to have in accelerometers a considerable viscous damping, say taking
S <n/p<l.
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disturbing force Pw? sin wt, we find that the maximum force transmitted to
the foundation is

2\2  4n2 2 ®)
w n2w
\/<1 - ;,3) + o

Assuming that w is large in comparison with p and at the same time the ratio
n/p is small we find that the result (b) differs from what was found in
Art. 5 principally by the presence of the term 4n2w?/p* under the radical of
the numerator.

Taking, asin problem 1, p. 26, w = 607, p> = 225, P = 11b. and assum-
ing 2n = 1, we find

2

2\ 2 4 2 .2
V1 + 4n%e?/pt = 1.305, \/<1 - ‘—”—) + 2 < 156.9,
p

2

and the force transmitted to the foundation is
(60w)? 1.305
156.9
which is about 30 per cent larger than we obtained before by neglecting
damping.
The ratio of the force transmitted to the foundation (b) to the dis-
turbing force Pw? determines the transmissibility. It is equal to

= 296 lb.

V1 4 dn2e?/pt 1 V(1 — o?/p?)? + 4n2w?/pt, (¢
and its magnitude depends not only on the ratio «w/p but also on the ratio
n/p.

As a second example let us consider a single-phase electric generator.
In this case the electric forces acting between the rotor and stator produce
on the stator a pulsating torque which is represented by the equation

M, = Mo+ M, sin ut, (d)

where w is the double angular velocity of the rotor and My and M, are
constants.

If the stator is rigidly attached to the foundation the variable reactions
due to pulsating torque may produce very undesirable vibrations. To
reduce these reactions the stator is supported by springs as shown in Fig.
33.* The constant portion My of the torque is directly transmitted to the

* See C. R. Soderberg, Electric Journal, vol. 21, p. 160, 1924,
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foundation and produces constant reactions which can be readily obtained
from the equations of statics. We have to consider only the variable por-
tion M, sin wt. Under the action of this variable moment the stator is
subjected to rotatory vibrations with respect to the torque axis. If ¢ de-
notes the angle of rotation during these vibrations and k& the spring constant
which in this case represents the torque which, if applied statically, pro-
duces an angle of rotation of the stator equal to one radian, the moment
of the reactions acting on the stator during vibration will be —k¢ and the
equation of motion is

I+ cp + ko = M sin o, (e)

in which I is moment of inertia of the stator with respect to the torque axis
and ¢ is the magnitude of the damping couple for an angular velocity equal
to unity. Using notations

E_
7= 0

Fia. 33. Fic. 34.

we bring equation (e) to the form of equation 32 and we can use the general
expression (33) for the amplitude of forced vibration, it being only neces-
sary to substitute in this expression M, instead of P. Multiplying this
amplitude with the spring constant & we obtain the maximum value of
the variable torque due to deformation of the springs. To this torque we
must add the variable torque due to damping. Using the same reasoning
as in the previous problem we finally obtain the maximum variable torque
transmitted to foundation from expression (b) by substituting in it M,
instead of Pw2.

The use of elastic supports in the case of single phase electric motors and
generators has proved very successful. In the case of large machines the
springs usually consist of steel beams. In small motors such as used in
domestic appliances the required clasticity of supports is obtained by plac-
ing rubber rings between the rigid supports and the rotor bearings which
are in this case rigidly built into the stator as shown in Fig. 34. The rubber
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ring firmly resists any lateral movement of the bearing since any radial
compression of the rubber ring requires a eircumferential expansion which is
prevented by friction forces between the ring and the rigid support.
At the same time any rotation of the stator produces in the rubber ring
only shearing deformations which do not require a change in volume and
the rubber in such case is very flexible and has on the transmission of the
pulsating torque the same effeet as the springs shown in Fig, 33.

We have another example of the use of elastic supports in the case of
automobile internal combustion engines.  Here again we deal with a pul-
sating torque which in the casc of a rigidly mounted engine will be trans-
mitted to the car. By introdueing an elastic mounting, such that the engine
may have low frequency rotary vibrations about the torque axis, a con-
siderable improvement can be obtamed.

11. Free Vibrations with Coulomb Damping.—As an example of vibra-
tions with constant damping let us consider the case shown in Fig. 35. A

7
A

/ | L X
. Z// /rl/lt// /K}’ 22
H——— X
——10'-;(—,

Fig. 35.

"1
S

body W attached by a spring to a fixed point A slides along the horizontal
dry surface with a vibratory motion. To write the equation of motion let
us assume that the body is brought to its extreme right position and re-
leased. Then under the action of the tensile foree in the spring it begins to
move towards the left as shown. The forces which it is necessary to con-
sider are: (1) the force in the spring, and (2) the friction foree. Denoting
by z the displacement of the body from the position at which the spring is
unstretched and taking the positive direction of the z-axis, as shown in the
figure, the spring foree is —hz. The friction force in the case of a dry sur-
face is constant. It acts in the direction opposite to the motion, i.e., in this
case, in the positive direction of the z-axis. Denoting this forece by F,
the equation of motion becomes

g'g&:—kx-}-lr, (a)
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or, by introducing notations

kg ., F

W =D 76‘ = a, (b)
we obtain

z+4+ p*(x —a) =0, (c)

where a has a simple physical meaning, namely, it represents the statical
clongation of the spring which would be produced by the friction foree F.
Equation (¢) can be brought in complete agreement with the eq. (3) (p. 2)
for free vibrations without damping by introducing a new variable

I =r—uq, (d)

which means that the distances will now be measured not from the position
when the spring is unstretched but from the position when 1t has an elonga-
tion equal to a. Then, substituting r from (d) into eq. (¢) we obtain

n + 1)2.1‘1 = (. (e)
The solution of this equation, satisfying the initial conditions, is
ry = (o — @) cos pt, €))

where 1o denotes the initial displacement of the body from the unstressed
position. This solution is applicable as long as the body is moving to the
left as assumed in the derivation of equation (a). The extreme left position
will be reached after an interval of time equal to =/p, when ry = — (x0 — a)
and the distance of the body from the unstressed position is 1o — 2a. From
this discussion it is scen that the time required for half a eycle of vibration
is the same as in the case of free vibration without damping, thus the
frequency of vibration is not effected by a eonstant damping. At the same
time, considering the two extreme positions of the body defined by dis-
tances o and xo — 2a, it can be concluded that during half a cycle the
amplitude of vibrations is diminished by 2a.

Considering now the motion of the body from the extreme left position
to the right, and applying the same reasoning, it can be shown that during
the second half of the cycle a further diminishing of the amplitude by the
quantity 2a will occur. Thus the decrease of the amplitude follows the law
of arithmetical progression. Finally, the load W will remain in one of its
extreme positions as soon as the amplitude becomes less than a, since at
such a position the friction force will be sufficient to balance the tansile
force of the spring.
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This vibratory motion again can be visualized by using rotating vectors.
To obtain the motion corresponding to the first half of a cycle, eq. (f), we
use vector OB, Fig. 36, of mag-

nitude zo — a rotating with a constant

angular velocity p about the center Oy,

a,a| .a \ which is displaced to the right with

pt 0, % ¢ ’ respect to the unstressed position O by

33 4 0\‘0 X the amount a. For the second half of
\"“ 2 XI::l the cycle we use the vector O2B2 of
? X magnitude zo — 3a and rotating with

constant speed p around the center Oq,
Fia. 36 which is displaced from O to the left

by the amount a, and so on. In this
way we get a kind of a spiral, and the intersection point of this spiral with
the z-axis in the interval 0,0: gives the final position of the body.

PROBLEMS

1. The body in Fig. 35 is displaced from the unstressed position by the amount
Zo = 10in., with the tensile force in the spring at this displacement, equal to 5W = 101h.,
and then released without initial velocity. How long will the body vibrate and at what
distance from the unstressed position will it stop if the coefficient of friction is 4.

Solution. The friction force in this case is F = W/4 = .5 lb., spring constant
k =11b. perin, a = 14 in. Hence the amplitude diminishes by 1 in. per each half a
cycle and the body will stop after 5 cycles at the unstressed position. The period of
one oscillation i8 7 = 27 V é,/g = 21\/2/386 and the total time of oscillation is

0rV2/386 = 2.26 sec.

2. What must be the relation between the spring constant k, the friction force F

and the initial displacement z, to have the body stop at the unstressed position.

Iok
Answer. F must be an even number.

3. Determine the coefficient of friction for the case shown in Fig. 35 if a tensile
force equal to W produces an elongation of the spring equal to 4 in. and the initial
amplitude zo = 25 in. is reduced to .90 of its value after 10 complete cycles.

Solution. The amplitude of vibration due to friction is reduced after each cycle by

4F
4a = — and since after 10 cycles it is reduced by 2.5 in. we have

k
4F 10F
'k— = “u-,*‘ = 2.5in.
Hence F = 1{W and the coefficient of friction is equal to 14.
4. For determining the coefficient of dry friction the device shown in Fig. 37 is used.*

* Such a device has been used about 30 years ago in the Friction Laboratory of the
Polytechnical I[nstitute in S. Petersburg.
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A prismatical bar rests on two equal discs rotating with equal speeds in opposite direc-
tions. If the bar is displaced from the position of equilibrium and released, it begins to
perform harmonie oscillations by moving back and forth along its axis. Prove that the
coefficient of Coulomb friction between the materials of the bar and of the dises is given
by formula

4%

g’

—ed X b

]

u o=

14

G a
Fia. 37.

in which a is half the distance between the centers of the discs and 7 is the period of
oscillations of the bar.

Solution. If the bar is displaced from the middle position by the amount z the
pressures on the discs are W(a + z)/2a and W(a — z)/2a, the corresponding difference

w .
in friction forces is F; — F; = £~ 2 and is directed toward the axis of symmetry. It
a

is the same as the force in a spring with elongation z and having a spring constant equal
to uW/a. Hence the period of oscillation, from eq. 5 is

T =2x Z = ZWJE
kg ng

from which the formula given above for the coefficient of friction follows.

12. Forced Vibrations with Coulomb’s Damping and Other Kinds of
Damping.—From the discussion of the previous article it is seen that to
take care of the change in direction of the constant friction force F it is
necessary to consider each half cycle separately. This fact complicates
a vigorous treatment of the problem of forced vibration, but an approxi-
mate solution can be obtained without much difficulty.* In practical
applications we are principally interested in the magnitude of steady

* This approximate method has been developed by L. S. Jacobsen, Trans. Am. Soc.
Mech. Engrs., Vol. 62, p. 162, 1930. See also A. L. Kimball, Trans. Am. Soc. Mech.
Engrs., Vol. 51, p. 227, 1930. The rigorous solution of the problem has been given by
J. P. Den Hartog, Trans. Am. Soc. Mech. Engrs., Vol. 63, p. 107, 1931. See also Phil.
Mag., Vol. 9, p. 801, 1930.
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forced vibrations and this magnitude can be obtained with sufficient
accuracy by assuming that the forced vibration in the case of a constant
damping force F is a simple harmonic motion, as in the case of viscous
damping, and by replacing the constant damping force by an equivalent
viscous damping, such that the amount of energy dissipated per cycle will
be the same for both kinds of damping.

Let P sin ot be the disturbing force and assume that the steady forced
vibration is given by the equation

z = Asin (0t — o). (a)

Between two consecutive extreme positions the vibrating body travels a
distance 24, thus the work done per cycle against the constant friction
force, representing the dissipated energy, is

4AF. W)

If instead of constant friction we have a viscous damping the corresponding
value of the dissipated energy is given by formula (38), p. 45, and the
magnitude of the equivalent viscous damping is determined from the
equation

wcA%w = 4AF (c)
from which
4F
c = m (d)

Thus the magnitude of the equivalent viscous damping depends not only
on F but also on the amplitude A and the frequency w of the vibration.
Using notations (25), p. 32 and substituting in expression (33)

4F
rAkw’

S3ky

= °_
k

we obtain for the amplitude of the forced vibration with equivalent viscous
damping the following expression
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This expression represents the amplitude 4 in eq. (a), hence the equation
for determining 4 is

P ! 4
-+ ()
V=2 Y \aak
P V1 — (4F/xP)?
k 1—w/p?

The first factor on the right side represents static deflection and the second
is the magnification factor. We see that this factor has a real value only if

F/P < n/4. (e)

from which

A= (40)
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Fig. 38

In practical applications, where we are usually dealing with small fric-
tional force, this condition is satisfied and we find that the magnification
factor depends on the value of the ratio w/p. Values of this factor, for
various values of the ratio F/P, are plotted against w/p in Fig. 38 * It

* This figure and the two following are taken from the above mentioned Den Hartog's
exact solution By the dotted line the limit 1s indicated ahove which a non-stop oscil-

latory motion occurs. Below that limit the motion is more comphicated and the curves
shown 1n the figure can be obtained only by using the exact solution
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is seen that in all cases in which condition (e) is satisfied the magnification
factor becomes infinity at resonance (p = w), which means that in this
case even with considerable friction the amplitude at resonance tends to
infinity. This fact can be explained if we consider the dissipation of
energy and the work produced by the disturbing force. In the case of
viscous damping the energy dissipated per cycle, eq. (38), increases as the
square of the amplitude. At the same time the
work produced per cycle by the disturbing force
(eq. 37) increases in proportion to the amplitude.
Thus the finite amplitude is obtained by inter-
section of the parabola with a straight line as
shown in Fig. 39. In the case of constant fric-
tion the dissipated energy is proportional to 4,
eq. (b), and in Fig. 39 it will be represented by a
straight line the slope of which is smaller than
the slope of the line OF, if condition (e) is satis-
Fia 39. fied, hence there will always be an excess of
input and the amplitude increases indefinitely.
By substituting the value of the equivalent damping (eq. d) into eq. (34)
and using eq. (40) we obtain the equation

4
tana =+ o 1 )

P \/ (41#)2
1 P

from which the phase angle « can be calculated. The angle does not vary
with the ratio w/p and only at resonance (w = p) it changes its value
abruptly The exact solution shows that the phase angle varies somewhat
with the ratio w/p as shown in Fig 40

The described approximate method of investigating forced vibrations
can be used also in general, when the friction force 1s any function of the
velocity In each particular case tt 1s only necessary to calculate the
corresponding equivaient damping by using an equation similar to eq. (c).

Assuming for example that the fr.ct on force is represented by a function
f(2), this equation becomes

wcA 2w =[rf(x\xdt (@

Substituting for z its expression from eq (a) the value of ¢ can be always
calculated.
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Take, as an example, a combination of Coulomb’s friction and viscous

friction. Then
f(&) =+ F + cz.

Substituting in eq. (g) we find

wcA?2w = 4AF + nc14%w
from which
4F n
cC=— [
Ao ' !
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Proceeding with this value of ¢ as before we obtain for determining the
amplitude A the equation

2\ 2 2, .2 2 2
(1 _ ¢ ﬁw] 4Ferw <éE> P
4 [(1 p"’) + k? +24 k2 + wk k2 0. (k)

When ¢; = 0 this equation gives for A expression (40). When F = 0 we
get for A expression (33). For any given values of F and c;, the amplitude
of forced vibrations can be readily obtained from equation (k).

PROBLEMS

1. For the case considered in problem 1 of the previous article find the amplitude of
forced steady vibration if the frequency of the disturbing force P sin wt is 114 per sec.
and its maximum value is equal to W. Answer. 3.50 inches.
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2. Develop an approximate equation for the amplitude of steady forced vibration
if the damping force is proportional to the square of velocity.*

Solution. Assuming that the damping force is given by the expression ¢:(¢)? and
taking one quarter of a cycle, starting, from the middle position, the dissipated energy is .

x/2w
c.w“A“f cos’ wt dt = 24 crw?A3
0
and eq. (g) becomes
mcA2w = 84 c w2A?
from which
8

N ClwA
3

Cc =

and equation for calculating A becomes
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13. Balancing of Rotating Machines.—One of the most important
applications of the theory of vibrations is in the solution of balancing
problems. It is known that a rotating body does not exert any variable
disturbing action on the supports when the axis of rotation coincides with
one of the principal axes of inertia of the body. It is difficult to satisfy
this condition exactly in the process of manufacturing because due to
errors in geometrical dimensions and non-homogeneity of the material
some irregularities in the mass distribution are always present. As a
result of this variable disturbing forces occur which produce vibrations.
In order to remove these vibrations in machines and establish quiet
running conditions, balancing becomes necessary. The importance of
balancing becomes especially great in the case of high speed machines.
In such cases the slightest unbalance may produce a very large disturbing
force. For instance, at 1800 r.p.m. an unbalance equal to one pound
at a radius of 30 inches produces a disturbing force equal to 2760 lbs.

* Free vibrations with damping proportional to the square of velocity was studied
by W. E. Milne, University of Oregon Publications, No. 1 (1923) and No. 2 (1929).
The tables attached to these papers will be useful in studying such vibrations. TFor

forced vibrations we have the approximate solution given by L. S. Jacobsen developed
in the previously mentioned paper.

A + A

or

A( + A2k2

=0.
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In order to explain the various conditions of unbalance a rotor shown
in Fig. 41, a will now be considered.* Imagine the rotating body divided
into two parts by any cross section mn. The three following typical cases
of unbalance may arise:

1. The centers of gravity of both parts may be in the same axial
plane and on the same side of the axis of rotation as shown in Fig. 41, b.
The center of gravity C of the whole body will consequently be in the same
plane at a certain distance from the axis of rotation. This is called “static
unbalance,” because it can be detected by a statical test. A statical bal-
ancing test consists of putting the rotor with the two ends of its shaft on
absolutely horizontal, parallel rails. If the center of gravity of the whole

m
had - G
) 7. \8 \c? ‘_’—%a
@ (] P

Fia. 41.

rotor is in the axis (Fig. 41, ¢) the rotor will be in static equilibrium in any
position; if the center is slightly off the shaft, as in Fig. 40, b, it will roll on
the rails till the center of gravity reaches its lowest position.

2. The centers of gravity of both parts may be in the same axial
plane but on opposite sides of the axis of rotation as shown in Fig. 41, ¢,
and at such radial distances that the center of gravity C of the whole
body will be exactly on the axis of rotation. In this case the body will
be in balance under static conditions, but during rotation a disturbing
couple of centrifugal forces P will act on the rotor. This couple rotates
with the body and produces vibrations in the foundation. Such a case is
called “dynamic unbalance.”

3. In the most general case the centers of gravity, C; and Cs, may
lie in different axial sections and during rotation a system of two forces
formed by the centrifugal forces P and @ will act on the body (see Fig. 41,
d). This system of forces can always be reduced to a couple acting in an
axial section and a radial force, i.e., static and dynamic unbalance will
occur together.

It can be shown that in all cases complete balancing can be obtained
by attaching to the rotor a weight in each of two cross sectional planes

* The rotor is considered as an absolutely rigid body and vibrations due to elastic
deflections of it are neglected.
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arbitrarily chosen. Consider, for instance, the case shown in Fig. 42.
Due to unbalance two centrifugal forces P and @ act on the rotor during
motion. Assume now that the weights necessary for balance must be
located in the cross sectional planes I and II. The centrifugal force P
can be balanced by two forces P; and Ps, lying with P in the same axial
section. The magnitude of these forces will be determined from the
following equations of statics

P, + P; = P,
Pla = sz.
P
\ /
! b
(]
9, ~—1°
[
=

Fia. 42.

In the same manner the force @ can be balanced by the forces @; and
Q2. The resultant of P; and @; in plane I, and the resultant of P and
Q2 in plane II will then determine the magnitudes and the positions of
the correction weights necessary for complete balancing of the rotor.
It is seen from this discussion that balancing can be made without any
difficulty if the position and magnitude of the unbalance is known. For
determining this unbalance various types of balancing machines are used
and the fundamentals of these machines will now be discussed.

14. Machines for Balancing.—A balancing machine represents usually
an arrangement in which the effects of any unbalance in the rotor which
is under test may be magnified by resonance. There are three principal
types of balancing machines: first, machines where the rotor rests on two
independent pedestals such as the machines of Lawaczeck-Heymann,
or the Westinghouse machine; second, machines in which the rotor rests
on a vibrating table with an immovable fulerum ; third, balancing machines
with a movable fulerum.

The machine of Lawaczeck-Heymann consists mainly of two independent
pedestals. The two bearings supporting the rotor are attached to springs,
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which allow vibrations of the ends of the rotor in a horizontal axial plane.
One of the bearings is locked with the balancing being performed on the
other end (see Fig. 43). Any unbalance will produce vibration of the
rotor about the locked bearing as a fulerum. In order to magnify these
vibrations all records are taken at resonance condition. By a special
motor the rotor is brought to a speed above the critical and then the motor
power is shut off. Due to friction the speed of the rotor gradually decreases
and as it passes through its critical value pronounced forced vibrations
of the unlocked bearing of the rotor will be produced by any unbal-
ance. The process of balancing then consists of removing these vibra-

(a) Fia. 43.

tions by attaching suitable correction weights. The most suitable planes
for placing these weights are the ends of the rotor body, where usually
special holes for such weights are provided along the circumference.
By such an arrangement the largest distance between the correction
weights is obtained; therefore the magnitude of these weights is brought
to a minimum. When the plane for such correction weight has been
chosen there still remain two questions to be answered, (1) the location
of the correction weight and (2) its magnitude. Both these questions can
be solved by trial. In order to determine the location, some arbitrary
correction weight should be put in the plane of balancing and several runs
should be made with the weight in different positions along the circumfer-
ence of the rotor. A curve representing the variation in amplitude of
vibrations, with the angle of location of the weight, can be so obtained.
The minimum amplitude will then indicate the true location for the
correction weight. In the same manner, by gradual changing the magni-
tude of the weight, the true magnitude of the correction weight can be
established. -
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In order to simplify the process of determining the location of the
correction weight, marking the shaft or recording the vibrations of the
shaft end may be very useful. For marking the shaft a special indicator,
shown in Fig. 44, is used in the Lawaczeck machine. During vibration
the shaft presses against a pencil ab suitably arranged and displaces it
into a position corresponding to the maximum deflection of the shaft
end so that the end of the marking line on the surface of the shaft deter-

mines the angular position at the moment
! of maximum deflection. Assuming that
' at resonance the lag of the forced vibra-
g tions is equal to 7/2, the location of the
(]
]

-r=A
{
—

)

[

J

j

disturbing force will be 90° from the point
where the marking ceases in the direction
of rotation of the shaft. Now the true
location for the correction weight can
easily be obtained. Due to the fact that
near the resonance condition the lag
changes very sharply with the speed and
also depends on the damping (see Fig. 27, p. 42) two tests are usually
necessary for an accurate determination of the location of unbalance. By
running the shaft alternately in opposite directions and marking the shaft
as explained above the bisector between the two marks determines the
axial plane in which the correction weights must be placed.

For obtaining the location of unbalance, by recording the vibrations
of the face of the shaft end of the rotor, a special vibration recorder is
used in the Lawaczeck machine. The recording paper is attached to the
face of the shaft and revolves with the rotor. The pencil of the indicator
pressing against the paper performs displacements which are the magnified
lateral displacements of the shaft end with respect to the immovable
pedestal of the machine. In this manner a kind of a polar diagram of
lateral vibrations of the shaft will be obtained on the rotating paper
attached to the shaft end. By running the shaft twice, in two opposite
directions, two diagrams on the rotating paper will be obtained. The
axis of symmetry for these two diagrams determines the plane in which
the correction weight must be placed.*

T S,

e —— e —— —
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* A more detailed description of methods of balancing by using the Lawaczeck-
Heymann machine can be found in the paper by Frnst Lehre: ““ Der heutige Stand der
Auswuchttechnik,” Maschinenbau, Vol. 16 (1922-1923), p. 62. See also the paper by
E. v. Brauchisch, “Zur Theorie und experimentellen Prifung des Auswuchtens,”
Zeitschr. f. Angw. Math. und Mech., Vol. 3 (1923), p. 61, and the paper by J. G. Baker
and F. C. Rushing, The Journal of the Franklin Institute, Vol. 222, p. 183, 1936.
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The procedure for balancing a rotor AB (see Fig. 43) will now be
described. Assume first that the bearing B is locked and the end A
of the rotor is free to vibrate in a horizontal axial plane. It has been
shown (see p. 63) that in the most general case the unbalance can be
represented by two centrifugal forces acting in two arbitrarily chosen planes
perpendicular to the axis of the shaft. Let the force P in the plane I
(sce Fig. 43, a) and the force Q in the plane II through the center of the
locked bearing B represent the unbalance in the rotor. In the case under
consideration the force P only will produce vibrations. Proceeding as
described above the force P can be determined and the vibrations can be
annihilated by a suitable choice of correction weights. In order to bal-
ance the force @, the bearing A must be locked and the bearing B made
free to vibrate (see Fig. 43, b). Taking the plane III, for placing the
correction weight and proceeding as before, the magnitude and the location
of this weight can be determined. Let G denote the centrifugal force
corresponding to this weight. Then from the equation of statics,

Goe=Q-1
and
G
Q= —f’ (a)

It is easy to see that by putting the correction weight in the plane III,
we annihilate vibrations produced by @ only under the condition that
the bearing A is locked. Otherwise there will be vibrations due to the
fact that the force Q and the force (7 are acting in two different planes 11
and III. In order to obtain complete balance one correction weight
must be placed in each of the two planes I and III, such that the corre-
sponding centrifugal forces G; and G2 will have as their resultant the
force — @ cqual and opposite to the force Q (I'ig. 45). Then, from staties,
we have,

G, — G2 = Q,
ng = Q-a,
from which, by using eq. (a)
_Qa _ Gac
Gz = b = bl ) (b)
Ged
Gi=Q+@="0 ()
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It is seen from this that by balancing at the end B and determining in
this manner the quantity @, the true correction weight for the plane 111
and the additional correction weight for the plane I can be found from
equations (b) and (¢) and complete balancing of the rotor will be ob-
tained.

The large Westinghouse machine® having a capacity of rotors weighing
up to 300,000 pounds consists essentially of two pedestals mounted on a
rigid bedplate, together with a driving motor and special magnetic clutch
for rotating the rotor. A cross section of the pedestal consists of a solid
part bolted to the rails of the bedplate and a pendulum part held in place
by strong springs. ,The vertical load of the rotor is carried by a flexible
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thin vertical plate, making a frictionless hinge. The rotor is brought to a
speed above the critical speed of the bearing which can be controlled by
changing the springs according to the weight of the rotor, and the magnetic
clutch is disengaged. The rotor drifts slowly through this critical speed
when observations of the oscillations produced by magnified effect of the
unbalance are made.

The balancing is done by locking first one bearing and balancing the
opposite end, and then locking the second end and balancing the corre-
sponding opposite end. The balancing is done by a cut-and-try method,
the time of balancing proper of large rotors being small when compared
with the time of setting up and preparations for balancing. The addi-
tional correction weights are put into the balancing rings, the same as
described with the Lawaczeck-Heymann machine.

AlkimofP’s Balancing Machine,t consists of a rigid table on which the
rotor and the compensating device are mounted. The table is secured
to the pedestals in such a way that it is free to vibrate, either' about an

* L. C. Fletcher, “Balancing Large Rotating Apparatus,” Electrical Journal, Vol.
XXI, p. 5.

t Trans. A. 8. M. L., Vol. 38 (1916).
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axis parallel to the axis of the rotor or about an axis perpendicular to the
axis of the rotor. In the first case static unbalance alone produces vibra-
tions; in the second, both static and dynamic unbalance will cause vibration.
Beginning with checking for static unbalance, the table must be supported
in such a way as to obtain vibration about the axis parallel to the axis of
rotation of the rotor. The method for determining the location and
magnitude of unbalance consists in creating an artificial unbalance in
some moving part of the machine to counteract the unbalance of the
body to be tested. When this artificial unbalance becomes the exact
counterpart of the unbalance in the body being tested, the whole unit
ceases to vibrate and the magnitude and the angular plane of unbalance
are indicated on the machine.

After removing the static unbalance of the rotor testing for dynamic
unbalance can be made by re-arranging the supports of the table in such
a manner as to have the axis of vibration perpendicular to the axis of
rotation. The magnitude and the angular plane of dynamic unbalance
will then be easily found in the same manner as explained above by intro-
ducing an artificial couple of unbalance in the moving part of the machine.
It is important to note that all the static unbalance must be removed
before checking for dynamic unbalance.

The Soderberg-Trumpler machine is an example of the third type.

When mass production balancing of small units is performed, the time
per unit necessary for balancing is of great importance. The additional
correction weights necessary with the previously described types (see p. 67)
cause a loss of time. In order to eliminate these corrections, the fulerum
of the balancing table is movable in this machine. The body to be bal-
anced is mounted in bearing blocks on a vibrating table supported by two
spring members and a movable fulerum. By placing the fulerum axis in
the plane of one of the balancing rings, say BB, the action of the theoretical
unbalance weight in this plane is eliminated as far as its effect upon the
motion of the vibrating table is concerned. This will now be produced
by the unbalance in the other plane only. Then the force at AA is bal-
anced, after which the fulerum is moved to the position in the plane A4;
then BB is balanced. It is evident that this balancing is final and does
not require any correction. These machines are used mostly when small
rotors are balanced.

On this principle, an automatic machine is built by the Westinghouse
Company for their small motor works.* In order to eliminate harmful

* W. E. Trumpler, “The Dynamic Balance of Small High Speed Armatures,” Flectric
Journal, Vol. 22, 1925, p. 34.
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damping in friction joints, knife edges were replaced by flexible spring
members. The table oscillates horizontally, being carried on a vertical
stem presenting a torsionally flexible axis. The table proper is moved in
guides in such a way that one weight correction plane can be brought for
balancing in line with the axis of the vertical stem.

For “automatic”’ balancing, the table is supplied with an unbalance
compensating head coupled to the rotor. The counter-balancing is done
by two electrically operated small elutches. The movable weights in the
head produce a counter balancing couple. One clutch shifts the weights
apart, increasing the magnitude of this couple; another clutch changes
the angular position of the counter-balancing couple with respect to the
rotor. Two switches mounted in front of the machine actuate the clutches.
It is easy in a very short time, a fraction of a minute, to adjust the counter-
balancing weights in a way that the vibration of the table is brought to
zero. Indicators on the balancing head show then the amount and
location of unbalance, and the necessary correction weights are inserted
into the armature.*

Balancing wn the Ficld—Fxperience with large high speed units shows
that while balancing carried out on the balancing machine in the shop
may show good results, nevertheless this testing is usually done at
comparatively low speed and in service where the operating speeds are
high, unbalance may still be apparent due to slight changes in mass
distribution.t It is therefore necessary also to check the balancing
condition for normal operating speed. This test is carried out, either in
the shop where the rotor is placed for this purpose on rigid bearings or
in the field after it is assembled in the machine. The procedure of bal-
ancing in such conditions can be about the same as described above in
considering the Lawaczeck balancing machine. This consists in con-
secutive balancing of both ends of the rotor. In correcting the unbalance
at one end, it is assumed that vibrations of the corresponding pedestal
are produced only by the unbalance at this end.} The magnitude and
the location of the correction weight can then be found from measure-
ments of the amplitudes of vibrations of the pedestal, which are recorded

* Recently several new types of balancing machines have been developed which
reduce considerably the time required for balancing. It should be mentioned here the
Leblanc-Thearle balancing machine described in Trans. Am. Soc. Mech. Engrs., Vol. 54,
p. 131, 1932; the Automatic Balancing Machine of Spaeth-Losenhausen and the method
of balancing rotors by means of electrical networks recently developed by J. G. Baker
and F. C. Rushing, Journal of the I'ranklin Institute, Vol. 222, p. 183, 1936.

t See Art. 50.

t This assumption is accurate enough in cases of rotors of considerable length
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by a suitable instrument. Four measurements are necessary for four
different conditions of the rotor in order to have sufficient data for a
complete solution of the problem. The first measurement must be made
for the rotor in its initial condition and the three others for the rotor with
some arbitrary weights placed consecutively in three different holes
of the balancing ring of the rotor end at which the balancing is being
performed. A rough approximation of the location of the correction
weight can be found by marking the shaft of the rotor in its initial condi-
tion as explained before (p. 66). The three trial holes must be taken
near the location found in this manner (Fig. 46, a).

On the basis of these four measurements the determination of the un-
balance can now be made on the assumption that the amplitudes of
vibration of the pedestal are proportional to the unbalance. Let 40 (Fig.
46, b) be the vector representing the unknown original unbalance and
let 01, 02, 03 be the vectors corresponding to the trial corrections I, 1T
and III put into the balancing ring of the rotor end during the second,
third and fourth runs, respectively. Then vectors A1, A2, A3 (Fig. 46, b)
represent the resultant unbalances for these three runs. These vectors,
according to the assumption made are proportional to the amplitudes of
vibration of the pedestal measured during the respective runs.

When balancing a rotor, the magnitudes and directions of 01, 02, 03
(Fig. 46, b) are known and a network as shown in Fig. 46, ¢ by dotted
lines can be constructed. Taking now three lengths 4’1/, A’2’, and A’3’
proportional to the amplitudes observed during the trial runs and using
the network, a diagram geometrically similar to that given in Iig. 46, b,
can be constructed (I'ig. 46, ¢). The direction 04’ gives then the location
of the true correction and the length 0A’ represents the weight of it to
the same scale as 01/, 02’ and 03’ represent the trial weights I, IT and III,
respectively. It should be noted that the length 04’ if measured to the
same scale as the amplitudes 4’1", A'2', A’3’, must give the amplitude of
the initial vibration of the pedestal, this being a check of the solution ob-
tained. In the photograph 46, d a simple device for the solution of this
problem, consisting of four straps connected together by a hinge 0y, is
shown.* Taking now three lengths a;, a2 and as on the straps proportional
to the amplitudes observed during the trial runs and moving the ends of
these straps along the radii of the correction weights such as radii 01/,
02/, 03’ in Fig. 46, ¢ it will make no difficulty to find a position of the
system where all these three ends will be situated on the same broken line

* This device has been developed by G. B. Karelitz and proved very useful in ficld
balancing. See ‘“Power,” Febh. 7 and 14, 1928.
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Fig 46.
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of the net work such as line 1'2’3’. The corresponding vector 00; will
then determine the position and the magnitude of the true correction
weight.

The second method of balancing is based on measurement of amplitude
and angle of lag of vibration produced by unbalance. It is assumed
that an angle of lag of vibration behind the disturbing unbalance force is
constant, while the unbalance is changed when the correction weights are
placed into the balancing ring of the high-speed rotor. This angle of lag
may be measured in a rough way by simply marking or scribing the shaft.

Correction Wis.!
2

zz oz. 24 ;3 s Tral We. 20 oz.

Fia. 47.

A rough estimate of the unbalance can be obtained by the Single-Direct
Method.* The amplitude of vibration of a rotor bearing is observed
first without any correction weights in the balancing ring, and the shaft is
scribed. (This is done by painting the shaft with chalk and touching it as
lightly as possible with a sharp tool while rotating at full speed.) After
the rotor is stopped, the location of the ‘high spot’ of this scribe mark is
noted with respect to the balancing holes of the rotor. A correction weight
is then placed in the balancing ring (preferably about 60° to 90° behind

* This method, suggested by B. Anoshenko, is described in the paper by T. C.
Rathbone, Turbine Vibration and Balancing, Trans. A.S.M.E. 1929, paper APM-51-23.
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this high spot). With the rotor brought up again to full speed, the ampli-
tude is recorded and the shaft scribed again, the location of the new high
spot being later noted. The method of determination of the unbalance
will be demonstrated in an example. Assume twenty-four balancing
holes in the rotor with no correction weights (Fig. 47). The amplitude is
.004”” and the high spot is found to be in line with hole No. 17. After
placing 20 ounces in hole No. 23, the amplitude changes to .0025", and the
high spot is found to be in line with hole No. 19. The diagram of Fig. 47
shows the construction for the location and determination of the correction
weight. Vector OA to hole No. 17 represents the amplitude of .004" to
a certain scale. Vector OB to hole No. 19 to the same scale represents
the amplitude .0025”". Vector AB shows then the variation in the vibra-
tion to the same scale. This variation was produced by the weight C
placed in hole No. 23. Making OB’ parallel to AB the angle COB’ is then
the angle of lag. The original disturbing unbalance force is evidently
located at an angle AOX = COB’ ahead of the original high spot. The
correction weight has to be placed in the direction OD opposite to OX.
The magnitude of the necessary correction weight is 20 ounces times the
ratio of OA to AB, or 36} ounces.

The scribing of the shaft is a very crude and unreliable operation and
the method should be considered as satisfactory only for an approximate
commercial determination of the unbalance. A more accurate result can
be obtained by using a phasometer in measuring the angle of lag.*

16. Application of Equation of Energy in Vibration Problems.—In
investigating vibrations the equation of energy can sometimes be used
advantageously. Consider the system shown in Fig. 1. Neglecting the
mass of the spring and considering only the mass of the suspended body,
the kinetic energy of the system during vibration is

W,
2g:v . (a)

The potential energy of the system in this case consists of two parts:
(1) the potential energy of deformation of the spring and (2) the potential
energy of the load W by virtue of its position. Considering the energy
of deformation, the tensile force in the spring corresponding to any dis-
placement z from the position of equilibrium, is k(5,; + z) and the corre-
sponding strain energy is k(8,. + z)2/2. At the position of equilibrium

* This method is developed by T. C. Rathbone, see paper mentioned above, p. 73.
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(x = 0) this energy is ké2%,,/2. Hence the energy stored in the spring
during the displacement z is

k(5,¢ + x)2 _ k52,¢ kxz

2 g ~ Wty ®)

The energy due to position of the load diminishes during the displacement
x by the amount Wzx. Hence the total change of the potential energy of
the system is

ka?

> (c)

Due to the fact that the load W is always in balance with the initial tension
in the spring produced by the static elongation §,, the total change in
potential energy is the same as in the case shown in Fig. 35, in which,
if we neglect friction, the static deflection of the spring is zero.

Having expressions (a) and (c¢) and neglecting damping the equation of

energy becomes

W kz?
—_— 2 - =
% 2+ 5 const. (d)

The magnitude of the constant on the right side of this equation is de-
termined by the initial conditions. Assuming that at the initial instant,
t = 0, the displacement of the body is z¢ and the initial veloeity is zero,
the initial total energy of the system is kx?/2 and equation (d) becomes

w o kx®  kxg?

% x* + 2 = o (e)
It is secn that during vibration the sum of the kinetic and potential energy
remains always equal to the initial strain energy. When in the oscillatory
motion z becomes equal to xo the velocity z becomes equal to zero and
the energy of the system consists of the potential energy only. When z
becomes equal to zero, i.e., the vibrating load is passing through its middle
position, the velocity has its maximum value and we obtain, from eq. (¢),

W, kaxo?

2g T max 2 (f)
Thus the maximum kinetic energy is equal to the strain energy stored in
the system during its displacement to the extreme position, z = xo.
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In all cases in which it can be assumed that the motion of a vibrating
body is a simple harmonic motion, which is usually correct for small vi-
brations,* we can use equation (f) for the calculation of the frequency of
vibration. We assume that the motion is given by the equation z =
2o sin pf. Then (Z)max = zop. Substituting in eq. (f) we obtain

o _Hg
P = ()

This coincides with eq. (2), previously obtained, p. 2.

The use of eq. (f) in calculating frequencies is especially advantageous

if instead of a simplé problem, as in Fig. 1, we have a more complicated
system. As an example let us consider the
A frequency of free vibrations of the weight W

of an amplitude meter shown in Fig. 48.

The weight is supported by a soft spring k;
so that its natural frequency of vibration is
low in comparison with the frequency of vibra-
Joy: *ic‘ tions which are measured by the instrument.

5 [T When the amplitude meter is attached to a

W‘ body performing high frequency vertical vi-
brations the weight W, as explained before,
ﬁ see art. 4, remains practically immovable in
TIIII7777777 77z space and the pointer A connected with W,
Fia. 48. indicates on the scale the magnified amplitude

of the vibration. In order to obtain the fre-

quency of the free vibrations of the instrument with greater accuracy,
not only the weight W and the spring ki, but also the arm AOB and the
spring ks must be taken into consideration. Let z denote a small vertical
displacement of the weight W from the position of equilibrium. Then
the potential energy of the two springs with the spring constants k; and

k2 will be
ka2 ke (c)2 0
s T3\;) = (»)
The kinetic energy of the weight W will be, as before,
w
MAAEY
2% z2. (k)

* Some exceptional cases are discussed in Chapter II:
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The angular velocity of the arm AOB rotating about the point O is

z

b
and the kinetic encrgy of the same arm is

Ix

207 @

Now the equation of motion, corresponding to eq. (d) above, will be
from (h), (k) and (1),
w I k2 C >
M 2 AR [ S
< +2b2>x +< + 9 )" const.
We sce that this equation has the same form as the equation (d); only
instead of the mass W /g we have now the reduced mass
w I
¢ v
and instead of the spring constant k we have the reduced spring constant
ki + ka2(c?/b?).
As another example let us consider torsional vibrations of a shaft one
end of which is fixed and to the other end is attached a disc connected

c

F1a. 49:

with a piston as shown in Fig. 49. We consider only small rotatory
oscillations about its middle position given by the angle a. If ¢ is the
angle of twist of the shaft at any instant, the potential energy of the system,
which in this case is the strain energy of torsion of the shaft, is equal



78 VIBRATION PROBLEMS IN ENGINEERING

to ke?/2, where k is the spring constant of the shaft. In calculating the
kinetic energy of the system we have to consider the kinetic energy of the
rotating parts, equal to I$%/2 and also the kinetic energy of the recipro-
cating masses.* In calculating the kinetic energy of the reciprocating
masses, the total weight of which we call by W, it is necessary to have the
expression for the velocity of these masses during torsional vibration.
The angular velocity § of the connecting rod AB with respect to the
instantaneous center C, Fig. 49, can be obtained from the consideration
of the velocity of the point A. Considering this point as belonging to
the disc its velocity during vibration is 7p. The velocity of the same point,
as belonging to the connecting rod, is AC 8 and we obtain

lcosﬁé

COoS «

rg=AC 6 =
where [ is the length of the connecting rod and g its angle of inclination to
the horizontal. From this equation

é__r{pcosa
lcos B

and the velocity of the reciprocating masses is

z=0BC =60 (lcosB +rcosa)tana = r(psina(l +g’cosa). (m)
lcosp
We obtain also from the figure

rsina = [sin 8.
Hence
2 1,2
sin6=§sina; cosﬂ=\/l—%,sin2az1—§%sin2a- (m)
If the ratio r/l is small we can assume with sufficient accuracy that
cos 8 = 1. Then the velocity of the reciprocating masses is

:i:zr¢sina<l+rlcOSa) (0)

* The mass of the connecting rod can be replaced by two masses, m, = I,/I? at the
crankpin and m, = m — m, at the crosshead, where m is the total mass of the con-
necting rod and I, its moment of inertia about the center of the crosshead. This is the
usual’ way of replacing the connecting rod, see Max Tolle, ‘“Regelung der Kraft-
maschinen,” 3d Ed., p. 116, 1921;
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and the total kinetic energy of the system is

Io2 2
‘p +—r2¢2 sin? « (1 +€cosa) .

The energy equation in this case becomes

Iy? 2 kol
; %7%2 Sin2a<1+*§cosa) =—-2—0-

The effect of the reciprocating masses on the frequency of torsional vibra-
tions is the same as the increase in the moment of inertia of the disc ob-
tained by adding to the circumference of the disc of a reduced mass equal to

w 2
—&— sin? « (1 + Zl'cos a) . (»)

It is seen that the frequency depends on the magnitude of the angle a.
When « is zero or =, the reciprocating masses do not effect the frequency
and the effect becomes maximum when « is approximately equal to =/2.

PROBLEMS

1. Calculate the frequencies of small vibrations of the pendulums shown in Fig.
50a, b, ¢, by using the equation of energy. Neglect the mass of the bars and assume
that in each case the mass of the weight W is concentrated in its center.

Fia. 50.

Solution. If ¢ is the angle of inclination of the pendulum, Fig. 50a, and [ its length,
the kinetic energy of the pendulum is Wg%2/2g. The change in potential energy of
the pendulum is due to vertical displacement I(1 — cos ¢) = l¢?/2 of the weight W
and equation of energy becomes

Wetlr  Wle?
29 + 2

= const. (r)
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Assuming motion ¢ = ¢, sin pt and writing an equation, similar to eq. (f) we obtain

the circular frequency
= \[g.
P=A

In the case shown in Fig. 50b the strain energy of the springs must be added to the
potential energy of the weight W in writing the equation of energy. If k is the spring
constant, by taking into consideration both springs, the strain energy of springs is
k(agp)?/2 and, instead of eq. (r), we obtain
W o2
29

and the frequency of vibrations becomes

Y TRRLAY
P=AN0 Wi

In the case shown in Tig. 50c, the potential energy of the weight W, at any lateral
displacement of the pendulum from vertical position, decreases and by using t"e same
reasoning as before we obtain

L\Wl

It is seen that we obtain a real value for p only if

ka? ka?

“l> d =.

Wi an W< I
If this condition is not satisfied the vertical position of equilibrium of the pendulum is
not stable.

2
+ (Wl + ka?) i; - = const. (s)

A
D
8 ‘I C
i\ H
le—a —
e l w
7 7
Fia. 51.

2. For recording of ship vibrations a device shown in Fig. 51 is used.* Determine
the frequency of vertical vibrations of the weight W if the moment of inertia I of this
weight, together with the bar BD about the fulerum B is known.

Solution. let ¢ be the angular displacement of the bar BD from its horizontal
position of equilibrium and k the constant of the spring, then the energy stored during

* This is O. Schlick’s pallograph, see Trans. Inst. Nav. Arch., Vol. 34, p. 167, 1893.
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this displacement is ka?¢?/2 and the kinetic energy of the system is 7¢?/2. The energy
equation becomes
15* | katg?
2 2

= const.

Proceeding as in the casc of eq. (d) we get for circular frequency the expression

JE
P=NT

If we neglect the mass of the bar BD and assume the mass of the weight W concentrated
in its center I = WIi%/g and the frequency becomes

\/ka"’g ag
P = — M
wiz l 8¢
where 8;; = Wl/ak is statical elongation of the spring. Comparing this with eq. (2)
it can be concluded that for the same clongation of
the spring the horizontal pendulum has a much lower
frequency than the device shown in Fig 1 provided
that the ratio a/l is sufficiently small. A low frequency
of the vibration recorder is required in this case since
the frequency of natural vibration of a large ship may
be comparatively low, and the frequency of the instru-
ment must be several times smaller than the fre®
quency of vibrations which we are studying (see art. 4).

3. Figure 52 represents a heavy pendulum the axis
of rotation of which makes a small angle a with the
vertical. Determine the frequency of small vibration
considering only the weight W which is assumed to be
concentrated at its mass center C.

Solution. If ¢ denotes a small angle of rotation of I"1a. 52.
the pendulum about the inclined axis measured from
the position of equilibrium the corresponding elevation of the center C is

. lo?
I(1 — cos ¢) sina =~ —Z——a

and the equation of energy becomes

w Wle?
ZI 12? + —‘:;f—(—’ = const.

and the circular frequency of the pendulum is

_\/97:
P=N1

1t is seen that by choosing a small angle « the frequency of the pendulum may be made
very low. This kind of pendulum is used sometimes in recording earthquake vibra-
tions. To get two components of horizontal vibrations two instruments such as shown
in Fig. 52 are used, one for the N.-S. component and the other for the E.-W. component.
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4. For recording vertical vibrations the instrument shown in Fig. 53 is used, in
which a rigid frame AOB carrying the weight W can rotate about an axis through O
perpendicular to the plane of the figure. Determine the frequency of small vertical
vibrations of the weight if the moment of inertia 7 of the frame together with the weight

0
UL LGl
.’4(/1 )
<> Z H
. 1o
0 o o <: L,__ b ——t— b —

W
8 W 2

Fia. 63. Fia. 54.

about the axis through O and the spring constant k are known and all the dimensions
are given.

ka!
Answer. p = 4 [-I—

L]
5. A prismatical bar AB suspended on two equal vertical wires, Fig 54, performs
small rotatory oscillations in the horizontal plane about the axis oo. Determine the
frequency of these vibrations.

Solution. If ¢ is the angle of rotation of the bar from the position of equilibrium,
the corresponding elevation of the bar is a?¢?/2l and the energy equation becomes

2 2l

= const.
Taking I = Wb?/3g we obtain the frequency |
- [32,
P =T

8. What frequency will be produced if the wires in the previous problem will be placed
at an angle g to the axis oo.

2
Answer. p= \/cosﬂ 3902,
bt

7. The journals of a rotor are supported by rails curved to a radius R, Fig. 55.
Determine the frequency of small oscillations which the rotor performs when rolling
without sliding on the rails.

Selution. 1If ¢ is the angle defining the position of the journals during oscillations
and r is the radius of the journals, the angular velocity of the rotor during vibrations is
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#(R — r)/r, the velocity of its center of gravity is (R — r)¢ and the vertical elevation
of this center is (R — r)¢?/2. Then equation of energy is

IR — 1) W(R — 1)t W(R —r)e?
2r2 + 2g + 2

= const.

’
: 7
7 7
I1g. §5.

where I is the moment of inertia of the rotor with respect to its longitudinal axis. For
the frequency of vibration we obtain

Wr?
<1 + W’—2> (R =)
g

p? =

8. A semi-circular segment of a cylinder vibrates by rolling without sliding on a
horizontal plane, I'ig. 56. Determine the frequency of small
vibrations.

Answer. Circular frequency is

— ___—-—.—.—cg
PoNe+ ¢ —or

where r is the radius of the cylinder, ¢ = OC is the distance
of center of gravity and 2 = Ig/W the square of the radius
of gyration about centroidal axis. Fre. 56.

16. Rayleigh Method.—In all the previously considered cases, such as
shown in Figs. 1, 4, and 7, by using certain simplifications the problem
was reduced to the simplest case of vibration of a system with one degree
of freedom. For instance, in the arrangement shown in Fig. 1, the mass
of the spring was neglected in comparison with the mass of the weight W,
while in the arrangement shown in Fig. 4 the mass of the beam was
neglected and again in the case shown in Fig. 7 the moment of inertia
of the shaft was neglected in comparison with the moment of inertia of
the disc. Although these simplifications are accurate enough in many
practical cases, there are technical problems in which a more detailed
consideration of the accuracy of such approximations becomes necessary.



84 VIBRATION PROBLEMS IN ENGINEERING

In order to determine the effect of such simplifications on the fre-
quency of vibration an approximate method developed by Lord Rayleigh*
will now be discussed. In applying this method some assumption regarding
the configuration of the system during vibration has to be made. The
frequency of vibration will then be found from a consideration of the
energy of the system. As a simple example of the application of Ray-
leigh’s method we take the case shown in Fig. 1 and discussed in Art. 15.

Assuming that the mass of the spring is small in comparison with the
mass of the load W, the type of vibration will not be substantially affected
by the mass of the spring and with a sufficient accuracy it can be assumed
that the displacement of any cross section of the spring at a distance ¢
from the fixed end is the same as in the case of a massless spring, i.e.,
equal to

xc
“lf ’ (a)
where [ is the length of the spring.

If the displacements, as assumed above, are not affected by the mass
of the spring, the expression for the potential energy of the system will be
the same as in the case of a massless spring, (see eq. (¢), p. 75) and only
the kinetic energy of the system has to be reconsidered. Let w denote
the weight of the spring per unit length. Then the mass of an element
of the spring of length dc will be wde/g and the corresponding kinetic
energy, by using eq. (a), becomes

w [ zc)?
—\—=) dc
2¢ ( l >
The complete kinetic energy of the spring will be
w f ! (s’cc)z #2 wl
— —) de=——.
29 Jo l 29 3

This must be added to the kinetic energy of the weight W; so that the
equation of energy becomes

2 2 2
£~<W+ 7_”.l> +_]?E_ - @l, (b)

Comparing this with eq. (¢) of the previous article it can be con-
cluded that in order to estimate the effect of the mass of the spring on

* See Lord Rayleigh’s book “Theory of Sound,” 2d Ed., Vol. I, pp. 111 and 287.
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the period of natural vibration it is only necessary to add one-third of
the weight of the spring to the weight W.

This conclusion, obtained on the assumption that the weight of the
spring is very small in comparison with that of the load, can be used with
sufficient accuracy even in cases where the weight of the spring is of the
same order as W. For instance, for wl = .5W, the error of the approxi-
mate solution is about !/2%. For wl = W, the error is about 3{/%. For
wl = 2W, the error is about 39,.*

As a second example consider the case of vibration of a beam of uniform
cross section loaded at the middle (see Fig.

57). If the weight w! of the beam is small __“/f___c
in comparison with the load W, it can be ] '; _.I
assumed with sufficient accuracy that the "
deflection curve of the beam during vibration ‘L— % 77———1/} _q
has the same shape as the statical deflection F1G. 57.

curve. Then, denoting by z the displacement

of the load W during vibration, the displacement of any element wdc of
the beam, distant ¢ from the support, will be,

3cl? — 4¢3
x . _“ZB—_.

The kinetic energy of the beam itself will be,

1/2 .
w [, 3cl? — 4¢3\2 17 2
2/ _><' o —"’—_*> de = g5 uloy 4
|2 X T c=35 wl % (41)

This kinetic energy of the vibrating beam must be added to the encrgy
Wx2/2g of the load concentrated at the middle in order to estimate the
cffeet of the weight of the beam on the period of vibration, i.c., the period
of vibration will be the same as for a massless beam loaded at the middle
by the load

W4 (17/35)wl.

It must be noted that eq. (41) obtained on the assumption that the
weight of the beam is small in comparison with that of the load W, can
be used in all practical cases. FEven in the extreme case where W = 0
and where the assumption is made that (17/35)wl is concentrated at the
middle of the beam, the accuracy of the approximate method is sufficiently

* A more detailed consideration of this problem is given in Art. 52.
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close. The deflection of the beam under the action of the load (17/35)w!
applied at the middle is,

e,
= 35" 48EI

Substituting this in eq. (5) (see p. 3) the period of the natural vibration is

6,; wl4
=21 \|— = .6324/——-
T ™ J 6 Zl

The exact solution for this case * is

2 | wi wit
r= N~ .637\/Elg-

It is seen that the error of the approximate solution for this limiting casc

is less than 1%,
The same method can be applied also in the case shown in Fig. 58.
Assuming that during the vibration the shape

Q

7 ¢ of the deflection curve of the beam is the same
——i [ _%+ asthe one produced by a load statically applied
~~~~~~~ __.X at the end and denoting by z the vertical dis-
J W ¥ placement of the load W the kinetic energy
of the cantilever beam of uniform cross section

Fra. &8, will be,

i
w( . 3¢ — 03)2 33 2
—lr— = — —_—n 2
/o‘ 2g<x ) %= 0%y, (42)
The period of vibration will be the same as for a massless cantilever beam
loaded at the end by the weight,

W + (33/140)wl.

This result was obtained on the assumption that the weight wl of the
beam is small in comparison with W, but it is also accurate enough for
cases where wl is not small. Applying the result to the extreme casc
where W = 0 we obtain

_ 33 ! &

= 140" 3EI"

* See Art. 56.

8"
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The corresponding period of vibration will be

5,4 21!' ;iz
=2 —_— = —
TEYN T 3567 VEL ©

The exact solution for the same case is *

27 Tl‘*

"= 3515 VEIg @)

It is seen that the error of the approximate solution is about 114%,.
For the case W = 0 a better approximation can be obtained. It is only
necessary to assume that during the vibration the shape of the deflection
curve of the beam is the same as the one produced by a uniformly distrib-
uted load. The deflection yo at any cross section distant ¢ from the built-
in section will then be given by the following equation,

4
Yo = xo{—1/3 + (4/3)% +1/3 (1 - El) }, (e)
in which
_ wit
T = QEI

represents the deflection of the end of the cantilever.
The potential energy of bending will be

1 "w
T =~ / — y*dc.
24 ¢
Taking (see p. 75)

y=1yocospt and (J)max. = Yop.
The equation for determining p will be (see eq. (f), p. 75)

1f‘w ., _ 8EIzo?

* See Art. 57
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Substituting (e) for yo and performing the integration, we obtain

/EIg
p = 3.530 T

The corresponding period of vibration is
2w wit
"~ 3530 VEIg (s

Comparing this result with the exact solution (d) it can be conclude
that in this case the error of the approximate solution is only about 4%

It must be noted that an elastic beam represents a system with a:
infinitely large number of degrees of freedom. It can, like a string
perform vibrations of various types. The choosing of a definite shap
for the deflection curve in using Rayleigh’s method is equivalent to intro
ducing some additional constraints which reduce the system to one havin,
one degree of freedom. Such additional constraints can only increas
the rigidity of the system, i.e., increase the frequency of vibration. I
all cases considered above the approximate values of the frequencie
as obtained by Rayleigh’s method are somewhat higher than their exac
values.*

In the case of torsional vibrations (see Fig. 7) the same approximat
method can be used in order to calculate the effect of the inertia of th
shaft on the frequency of the torsional vibrations. Let 7 denote th
moment, of inertia of the shaft per unit length. Then assuming that th
type of vibration is the same as in the case of a massless shaft the angl
of rotation of a cross section at a distance ¢ from the fixed end of th
shaft is cg/l and the kinetic energy of one element of the shaft will be

2 \1

The kinetic energy of the entire shaft will be

l
1 ce\ . _ @,
2[(1)‘1""23 (43

This kinetic energy must be added to the kinetic energy of the disc i
order to estimate the effect of the mass of the shaft on the frequency o
vibration, i.e., the period of vibration will be the same as for a massles

* A complete discussion of Rayleigh’s method can be found in the book by G
Temple and W. G. Bickley, ‘“Rayleigh’s Principle,” Oxford University Press, 1933.



HARMONIC VIBRATIONS 89

shaft having at the end a disc, the moment of inertia of which is equal to
I+ il/3.

The application of Rayleigh’s method for calculating the critical speed
of a rotating shaft will be shown in the following article.

PROBLEMS

1. Determine the frequency of natural vibrations of the load W supported by a beam
AB, Fig. 59, of constant cross section (1)
assuming that the weight of the beam can e g b
be neglected; (2) taking the weight of the 0
beam into consideration and using Ray- 4 '; [l ; : 8
leigh’s method. 6 D S J——

Solution. 1If a and b are the distances fj}rf”’ dn .

of the load from the ends of the beam the l
static deflection of the beam under the load X
is 8 = Wa??/3lEI. Taking for the spring Tia. 59.

constant the expression k = 3lEI/a%? and
neglecting the mass of the beam the circular frequency of vibration is obtained from
the equation of energy (see p. 75)

w . kzo?

29 Zmax = - @

. \/E,= 3IEIg )
w =\ Waw

To take the mass of the beam into account we consider the deflection curve of the beam
under static action of the load W. The deflection at any point of the left portion of
the beam at the distance { from the support A4 is

in which Zmax = zop. Hence

_ e

=GBl

la +b) — &1, @

For the deflection at any point to the right of the load W and at a distance » from the
support B we have
Wan

T Th Bl + a) — 2%. )]

Applying Rayleigh’s method and assuming that during vibration the maximum velocity
of any point of the left portion of the beam at a distance ¢ from the support 4 is given
by the equation

Z £

(1) max = Tmax ; = imaxm [al +b) — &7

in which Zpax is the maximum velocity of the load W, we find that to take into account
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the mass of the left portion of the beam we must add to the left side of the equation (g)
the quantity

Wilmax 9 ‘El 2 Wi?max _ g
o <5>dz f4.b2{a(z+b) e de

112 23 a? 8 al
= 42 — = 4 = - - =].
T g [3 » 1055 15 bz] &)
In the same manner conéidering the right portion of the beam we find that we must add
to the left side of eq. (g) the expression

Z’maxwb _1_ (I +a) i _b_2 _ _1__ l_)(l_+_a) . @
2g 12 a? 28a2 10 a?

The equation of energy becomes
(W + awa + pwb) P

Zg “max =

kv
2

where « and 8 denote the quantities in the brackets of expressions (k) and (I) and we
obtain for the frequency of vibration the following formula

3lEIg
(W + aaw + Bbw)a2b?

p= (m)
2. Determine the frequency of the natural vertical vibrations of the load W sup-
ported by a frame hinged at A and B, Fig. 60a, assuming that the three bars of the
frame have the same length and the same

7 % % Y cross section and the load is applied at the
P L CI' Fi.‘\ ‘ middle of the bar CD. In the caleulation

c "‘T"a
W

3

Ql (1) neglect the mass of the frame; (2)

I consider the mass of the frame by using

,‘ Rayleigh’s method.

,‘ Solution. By using the known for-

| mulas for deflections of beams we find
5 that the bending moments at the joints C

///{ 77 (0) /{/ 77 (b) W‘% and D are equal to 3W1/40. The deflec-

tions of vertical bars at a distance ¢ from

2

——

———

P

F1a. 60. the bottom is
3wl £
' 240E1 (l 12) Q)
The deflections of the horizontal bar to the left of the load is
W . 3 K
%= oml (B2 — 49?) — %0 El 2l = 9). (0
The deflection under the load W is
11 Wi
= (Iz)y,-_l

2 960 EI
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By neglecting the mass of the frame we find the frequency

960E1g
L \[ \/11wza @)

In calculating the effect of this mass on the frequency let us denote by Zmax the maxi-
mum velocity of the vibrating body W. Then the maximum velocity of any point of
the vertical bars at a distance # from the bottom is

T X 12 £?
(£1)max = .’i:max‘a—l = Zmax 11 j(l ll) (r)

and the maximum velocity at any point of the left portion of the horizontal bar CD

z2 ) 20 4n? 36
(.’ilz)max = Imax ; = Tmax I:ﬁzlz (3 _— %) ) :<1 —_ ?):l . (8)

The kinetic energy of the frame which must be added to the kinetic energy of the load

W is
f 'wz Wz “max <1'1> dE + 2f1/2 W ’max <5;2> dy.

Substituting for the ratios z,/8 and z./8 their expressions from (r) and (s) and inte-
grating, the additional kinetic energy can be represented in the following form

wed
o~ (I) max
2g

where « is a constant factor.
The equation for frequency of vibration now becomes

~ \/ 960Elg ©
PENTIW + c)i

8. Determine the frequency of lateral vibrations of the frame shown in Fig. 60b.

Solution. The frequency of these vibrations, if the mass of the frame is neglected, can
be calculated by using the formulas of problem 5, see p. 7. To take into account the
mass of the frame, the bending of the frame must be considered. If z is the lateral dis-
placement, of the load W together with the horizontal bar CD, the horizontal displace-
ment of any point of the vertical bars at a distance £ from the bottom, from consideration
of the bending of the frame, is

¢ 2 |3 £\ 1 £\?*
mee= (=) 350 -9 3097 “

The kinetic energy of the vertical bars is

wi,? N
f z"

where a is a constant factor which is obtained after substituting for z, its expression
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from (u) and integrating. In considering the kinetic energy of the horizontal bar we
take into consideration only the horizontal component z of the velocities of the particles
of the bar. Then the total kinetic energy of the load together with the frame is

E 1 4+ 2a)wlz?

29 29
and the frequency is obtained from the equation (see prob. 5, p. 7).

_1 \/ g
/= 2 NIW + (1 + 2a)wi)ls

17. Critical Speed of a Rotating Shaft.—It is well known that rotating
shafts at certain speeds become dynamically unstable and large vibrations
are likely to develop. This phenomenon is due to resonance effects and
a simple example will show that the critical speed for a shaft is that speed
at which the number of revolutions per second of the shaft is equal to the
frequency of its natural lateral vibration.*

Shaft with One Disc—In order to exclude
from our consideration the effect of the weight
of the shaft and so make the problem as
simple as possible, a vertical shaft with one
circular dise will be taken (I'ig. 61, a). Let C

be the center of gravity of the disc and e a

@m small eccentricity, i.e., the distance of C' from

the axis of the shaft. During rotation, due

to the eccentricity e, a centrifugal force will

act on the shaft, and will produce deflection.

1.y The magnitude of the deflection z can easily

be obtained from the condition of equilibrium

of the centrifugal force and the reactive force

P of the deflected shaft. This latter force is proportional to the deflec-
tion z, and can be represented in the following form,

P = kz.

The magnitude of the factor k can be calculated provided the dimensions
of the shaft and the conditions at the supports be known. Assuming,
for instance, that the shaft has a uniform section and the disc is in the
middle between the supports, we have
48E1

B

* A more detailed discussion of lateral vibrations of a shaft is given in Articles 39

and 49.

’

R |
1

k =
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Now from the condition of equilibrium the following equation for deter-
mining z will be obtained
% (z + e)w® = kuz, (a)

in which W /g is the mass of the dise, w is angular velocity of the shaft.
From eq. (a) we have,

z = 70—(]——— ®)
CW
Remembering (see eq. (2), p. 2) that
k
TW%J = p?,

it can be concluded from (b) that the deflection z tends to increase rapidly
as w approaches p, i.e., when the number of revolutions per second of the
shaft approaches the frequency of the lateral vibrations of the shaft and
disc. The critical value of the specd will be

ky

7 (44)

Wer =

At this speed the denominator of (b) becomes zero and large lateral
vibrations in the shaft occur. It is interesting to note that at speeds
higher than the critical quiet running conditions will again prevail.
The experiments show that in this case the center of gravity C will be
situated between the line joining the supports and the deflected axis of
the shaft as shown in Fig. 61,b. The equation for determining the deflec-
tion will be

w

-{7 (z — e)w? = kaz,
from which

T = ———— (c)

1= ow
It is seen that now with increasing w the deflection z decreases and
approaches the limit e, ie., at very high speeds the center of gravity

of the disc approaches the line joining the supports and the deflected
shaft rotates about the center of gravity C.
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Shaft Loaded with Several Discs.—It has been shown above in a simple
example that the critical number of revolutions per second of a shaft is
equal to the frequency of the natural lateral vibration of this shaft. De-
termining this frequency by using Rayleigh’s method the critical speed
for a shaft with many dises (Fig. 62) can easily be established. Let Wi,
W2, W3 denote the loads and z,, z2, 23 denote the corresponding statical
deflections. Then the potential energy of deformation stored in the beam
during bending will be

Wlxx Wz:vz W313

+

v 2 2 2 @)

In calculating the period of the slowest type of vibration the static
deflection curve shown in Fig. 62 can be taken as a good approximation
for the deflection curve of the beam during vibration. The vertical
displacements of the loads Wi, W2 and W3 during vibration can be written
as:

x1 cos pt, z2 cos pt, x3 cos pt. (e)

Then the maximum deflections of the shaft from the position of equi-
librium are the same as those given in Fig. 62; therefore, the increase in
the potential energy of the vibrating
shaft during its deflection from the
position of equilibrium to the extreme
position will be given by equation
F1a. 62. (d). On the other hand the kinetic
energy of the system becomes maxi-
mum at the moment when the shaft, during vibration, passes through its
middle position. It will be noted, from eq. (e¢), that the velocities of the
loads corresponding to this position are:

pry, pxe, pr3

and the kinetic energy of the system becomes
P2
5; (Whiz1? + Wazo? + Wazz?). (f)

Equating (d) and (f), the following expression for p? will be obtained:

p? = g(Wizy + Wozs + Wars) (45)
Wiz12 + Woxe? 4 Wixs?
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The period of vibration is

2r 0 Wiz12 + Ware? + Wixs?

T = — = 4T .

P g(Wizy + Wazs + Wsxs)

In general, when = loads are acting on the shaft the period of the lowest
type of vibration will be

(46)

ZW.a,
T=2r [ . 47
g2 W,z
1
It is seen that for calculating 7 the statical deflections xy, 2 --- of

the shaft alone are necessary. These quantities can easily be obtained
by the usual methods. If the shaft has a variable cross section a graphical
method for obtaining the deflections has to be used. The effect of the
weight of the shaft itself also can be taken into account. It is necessary
for this purpose to divide the shaft into several parts, the weights of which,
applied to their respective centers of gravity, must be considered as
concentrated loads.

Take, for instance, the shaft shown in Fig. 63, a, the diameters of
which and the loads acting on it are shown in the figure. By constructing
the polygon of forces (Fig. 63, b) and the corresponding funicular polygon
(Fig. 63, ¢) the bending moment diagram will be obtained. In order
to calculate the numerical value of the bending moment at any cross
section of the shaft it is only necessary to measure the corresponding
ordinate e of the moment diagram to the same scale as used for the length
of the shaft and multiply it with the pole distance 2 measured to the
scale of forces in the polygon of forces (in our case kA = 80,000 lbs.).
In order to obtain the deflection curve a construction of the second funic-
ular polygon is necessary in which construction the bending moment
diagram obtained above must be considered as an imaginary loading
diagram. In order to take into account the variation in cross section of
the shaft, the intensity of this imaginary loading at every section should
be multiplied by Io/I where Ip = moment of inertia of the largest cross
section of the shaft and I = moment of inertia of the portion of the shaft
under consideration. In this manner the final imaginary loading repre-
sented by the shaded area (Fig. 63, ¢) is obtained. Subdividing this area
into several parts, measuring the areas of these parts in square inches and
multiplying them with the pole distance h measured in pounds, the imagi-
nary loads measured in pounds-inches® will be obtained. For these loads,
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the second polygon of forces (Fig. 63, d) is constructed by taking a pole
distance k1 equal to EIo/n where El is the largest flexural rigidity of the
shaft and 7 is an integer (in our case n = 800). It should be noted that
the imaginary loads and the pole distances EI/n have the same dimension,
i.e., in.%-lbs., and should be represented in the polygon of forces to the
same scale. By using the second polygon of forces the second funicular
polygon (Fig. 63, €) and the deflection curve of the shaft tangent to this
polygon can easily be constructed. In order to get the numerical values of
the deflections it is only necessary to measure them to the same scale to
which the length of the shaft is drawn and divide them by the number n
used above in the construction of the second polygon. All numerical
results obtained from the drawing and necessary in using eq. (47) are
given in the table below.

w 2 X 102 .2 X 104 Wz Wz
1bs. in. in.2 Ibs. X in. lbs. X in.?
4500 1.75 3.05 79 1.37
9300 2.07 4.28 193 3.98
9300 2.19 4.80 204 4.47
9300 2 25 5.06 209 4.71
9300 2.25 5.06 209 4.71
9300 2.2 5.36 209 4.71
9300 2.19 4.88 204 4.47
9300 2.07 428 193 ' 3.98
4500 1.56 2.43 70 1.09

ZWz, = 1570 ZWaz2 = 33.09

The critical number of revolutions per minute will be obtained now
as follows:

0ZWiz g \/386 X 1570
™

ﬁW‘xg .00 1290 R.P.M.

1

It should be noted that the hubs of spiders or flywheels shrunk on the
shaft increase the stiffness of the shaft and may raise its critical speed
considerably. In considering this phenomenon it can be assumed that
the stresses due to vibration are small and the shrink fit pressure between
the hub and the shaft is sufficient to prevent any relative motion tetween
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these two parts, so that the hub can be considered as a portion of shaft
of an enlarged diameter. Therefore the effect of the hub on the critical
speed will be obtained by introducing this enlarged diameter in the graph-
ical construction developed above.*

In the case of a grooved rotor (I'ig. 64) if the distances between the
grooves are of the same order as the depth of the groove, the material
between two grooves does not take any bending stresses and the flexibility

Fia. 64.

of such a rotor is near to one of the diameter d measured at the bottom
of the grooves.t

It must be noted also that in Fig. 62 rigid supports were assumed.
In certain cases the rigidity of the supports is small enough so as to
produce a substantial effect on the magnitude of the critical speed. If
the additional flexibility, due to deformation of the supports, is the same
in a vertical and in a horizontal direction the effect of this flexibility can
be easily taken into account. It is only necessary to add to the deflections
z1, 22 and z3 of the previous calculations the vertical displacement due
to the deformation of the supports under the action of the loads Wi, W2
and W3. Such additional deflections will lower the critical speed of the
shaft.{

18.FGeneral Case of Disturbing Force.—In the previous discussion
of forced vibrations (see articles 4 and 9) a particular case of a disturbing
force proportional to sin wt was considered. In general case a periodical
disturbing force is a function of time f(f) which can be represented in the
form of a trigonometrical series such as

fit) = ao + a1 coswt + az cos 2wt + ...bysinwt + b2sin 2wt 4 ..., (a)

* Prof. A. Stodola in his book “Dampf- und Gas Turbinen,” 6th ed. (1924), p. 383,
gives an example where such a consideration of the stiffening effect of shrunk on parts
gave 8 satisfactory result and the calculated critical speed was in good agrecement with
the experiment. See also paper by B. Eck, Versteifender Einfluss der Turbinen-
scheiben, V. D. 1., Bd. 72, 1928, S. 51.

t B. Eck, loc. cit.

t The case when the rigidities of the supports in two perpendicular directions are
different is discussed on p. 296.
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in which

Si= 21 is the frequency of the disturbing force,
™

2
T = T is the period of the disturbing force.
w

In order to calculate any one of the coefficients of eq. (a) provided
f(©) be known the following procedure must be followed. Assume that
any coefficient a, is desired, then both sides of the equation must be

multiplied by cos wt dt and integrated from ¢t = 0 to ¢ = 7;. It can be
shown that

T1 T1
f ap cos twt dt = 0; f ay, cos kot cos iwt df = 0;
0 0

T1 71
. . a;
f by, sin kwt cos 1wt dt = 0; / a, cos? 1wt di = 2 1,
0 0

where ¢ and k denote integer numbers 1, 2, 3, ---. By using these form-
ulas we obtain, from eq. (a),

2 ("
a; = - / f(t) cos iwt dt. )
LT
In the same manncr, by multiplying eq. (@) by sin twt dt, we obtain
2 [
b; = -- / S(t) sin twt dt. (c)
T1/9
Finally, multiplying eq. (a) by dt and integrating from ¢t = 0 to { = 1y,
we have
I A
ap = M./- S dt. (d)
710

It is seen that by using formulas (b), (c) and (d), the coefficients of
eq. (a) can be caleulated if f(f) be known analytically. If f(t) be given
graphically, while no analytical expression is available, some approxi-
mate numerical method for calculating the integrals (b), (¢) and (d)
must be used or they can be obtained mechanically by using one of
the instruments for analyzing curves in a trigonometrical series.*

* A discussion of various methods of analyzing curves in a trigonometrical series

and a description of the instruments for harmonical analysis can be found in the book:
“Practical Analysis,” by H. von Sanden.
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Assuming that the disturbing force is represented in the form of a
trigonometrical series, the equation for forced vibrations will be (sce
eq. (32), p. 38).

Z 4+ 2nz + p%x = ao + a1 cos wt + a2 cos 2wt + - -+
-+ by sin wt + be sin 2wt + - - -. (e)

The general solution of this equation will consist of two parts, one of
free vibrations (see eq. (26), p. 33) and one of forced vibrations. The
free vibrations will be gradually damped due to friction. In considering
the forced vibration it- must be noted that in the case of a linear equation,
such as eq. (e), the forced vibrations will be obtained by superimposing
the forced vibrations produced by every term of the series (a). These
latter vibrations can be found in the same manner as explained in article
(9) and on the basis of solution (35) (see p. 40) it can be concluded that
large forced vibrations may occur when the period of one of the terms
of series (a) coincides with the period 7 of the natural vibrations of the
system, i.e., if the period 7, of the disturbing force is equal to or a mul-
tiple of the period .

As an example consider vibrations produced in the frame ABCD by
the inertia forces of a horizontal engine (Fig. 65) rotating with constant
angular velocity w. Assume that the horizontal beam BC is very rigid
and that horizontal vibrations due to bending of the columns alone should
be considered. The natural period of these vibrations can easily be
obtained. It is only necessary to calculate the statical deflection &,; of
the top of the frame under the action of a horizontal force @ equal to the
weight of the engine together with the weight of horizontal platform
BC. (The mass of the vertical columns is neglected in this calculation.)
Assuming that the beam BC is absolutely rigid and rests on two columns,

we have
5o @ (.’%)3
* T 3EI\2/ "

Substituting this in the equation,
fﬁ.
=2l — ,
g

the period of natural vibration will be found.
In the case under consideration, forced vibrations will be produced
by the inertia forces of the rotating and reciprocating masses of the engine.
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In considering these forces the mass of the connecting rod can be replaced
with sufficient accuracy by two masses, one at the crank pin and the
second at the cross-head. To the same two points all other unbalanced
masses in motion readily can be reduced, so that finally only two masses
M, and M have to be taken into consideration (Fig. 65, b). The hori-

zontal component of the inertia force of the mass M, is

()

— M 10?7 cos wi,

in which w is angular velocity of the engine,
r is the radius of the crank,
wt is the angle of the crank to the horizontal axis.

plie

B~ ¢
] |
r; ’;' A
! H (a)
A D .
72,777 77 T
M,
!
o M B wt N[ %
R \\
- I+r (b)
T'1a. 65.

The motion of the reciprocating mass M is more complicated. Let
z denote the displacement of M from the dead position and 8, the angle
between the connecting rod and the z axis. From the figure we have,

z =11 — cosB) + r(1 — cos wt)

and
rsin wt = [ sin B.

From (h),
sin g = % sin wt,
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The length [ is usually several times larger than r so that with sufficient
accuracy it can be assumed that

o
cos B =4/1 — - sm~wt~ 1 —~l—,s1n2wt
Substituting in eq. (g),
2

z = r(l — coswt) + .T‘_ZZ sin? wt. k)

From this equation the velocity of the rceiprocating masses will be

,,.2
x = rwsin wt + T?l sin 2wt

and the corresponding inertia forces will be
r
—Mz =— Mo?r (cos wt -+ 5 008 2wt). 0)

Combining this with (f) the complete expression for the disturbing
force will be obtained. It will be noted that this expression consists of two
terms, one having a frequency equal to the number of revolutions of the
machine and another having twice as high a frequency. From this it can
be concluded that in the case under consideration we have two critical
speeds of the engine: the first when the number of revolutions of the
machine per second is equal to the frequency 1/7 of the natural vibrations
of the system and the second when the number of revolutions of the
machine is half of the above value. By a suitable choice of the rigidity of
the columns AB and CD it is always possible to ascertain conditions
sufficiently far away from such critical speeds and to remove in this manner
the possibility of large vibrations. It must be noted that the expression
(1) for the incrtia force of the reciprocating masses was obtained by making
several approximations. A more accurate solution will also contain har-
monics of a higher order. This means that there will be critical speeds of
an order lower than those considered above, but usually these are of no
practical importance because the corresponding forces are too small to
produce substantial vibrations of the system.

In the above consideration the transient condition was excluded. It
was assumed that the free vibrations of the system, usually generated at
the beginning of the motion, have been damped out by friction and forced
vibrations alone are being considered. When the displacement of a system
2t the beginning of the motion is to be investigated or when the actirg
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force cannot be accurately represented by few terms of series (a¢) another
way of calculating displacements of a vibrating system, based on solution
(7) (see p. 4) of the equation of free harmonic vibration, has certain
advantages. To explain the method let us consider the system shown in
Fig. 1. We assume that at the initial instant ({ = 0) the body is at rest
in its position of statical equilibrium. A vertical disturbing force of the
magnitude g per unit mass of the body W is applied at the initial instant
and it is required to find the displacement of the body at any instant
t = t;. The variation of the force with time is represented by the curve
MN in Fig. 66. To calculate the required

displacement we imagine the continuous action 9

of the force divided into small intervals dt.*

The impulse gdt of the force during one of M

these elemental intervals is shown in Fig. 66 ¢ D%
by the shaded strip. Let us now calculate |
the displacement of the body at the instant —‘—— & —™

t; produced by this elemental impulse. As a F1a. 66.

result of this impulse an increase in the velocity

of the body will be generated at the instant {. The magnitude of the
velocity increase is found from the equation

N

Aemmal -

—t

di
E =4q,
from which
dr = qdt. (a)

The displacement of the body at the instant {; corresponding to the velocity
dz which was communicated to it at the instant { may be calculated
by the use of solution (7). It is seen from this solution that by reason
of the initial velocity Zo the displaccment at any instant ¢ is (o sin pt)/p.
Hence the velocity di communicated at the instant ¢ to the body produces
a displacement of the body at the instart ¢; given by

dt
dz = lp sin p(t; — ¢). )

This is the displacement due to one elemental impulse only. In order to

* This method has been used by Lord Rayleigh, see ‘““Theory of Sound,” Vol. 1, p.
74, 1894. See also the book by G. Duffing, “Erzwungene Schwingungen,” 1918, p. 14,
and the book ‘‘Theoretical Mechanics,” by L. Loiziansky and A. Lurje, vol. 3, p. 338,
1934, Moscow.
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obtain the total displacement of the body produced by the continuous
action of the force ¢, it is necessary to make a summation of all the ele-
mental displacements given by expression (b). The summation yields:

31
z = %}[ g sin p(ty — t)dt. (48)

This expression represents the complete displacement produced by the
force q acting during the interval from ¢ = 0 to ¢t = ;. It includes both
forced and free vibrations and may become useful in studying the motion
of the system at starting. It can be used also in cases where an analytical
expression for the disturbing force is not known and where the force ¢
is given graphically or numerically. It is only necessary in such a case to
determine the magnitude of the integral (48) by using one of the approxi-
mate methods of integration.*

As an example of the application of this method, vibration under the
action of a disturbing force ¢ = u sin wt will now be considered. Substi-
tuting this expression of ¢ in eq. (48) and observing that

sin wt sin p(t — #;) = Y4{cos (vt + pt — pt1) — cos (wt — pt + pt1)}

we obtain

. o,
z (sin wty — ;} sin pt;)

= P2 — o?
which coincides with solution (21) for ¢ = ¢;.

Equation (48) can be used also in cases where it is necessary to find
the displacement of the load W (see Fig. 1) resulting from several impulses.
Assume, for instance, that due to impulses obtained by the load W at the
moments ', t’, t'"/, - - - increments of the speed Ak, A2z, AsZ, - - - be pro-
duced. Then from equations (b) and (48) the displacement at any moment
t), will be,

1
z = ;}[Al."c sin p(ty — ) + Asx sin p(ty — ') + Aszz sin p(t; — /") +---].

This displacement can be obtained very easily graphically by considering
A1z, Ak, - - - as vectors inclined to the horizontal axis at angles p(t; — ¢),
p(ty — t"), --- Fig. (67). The vertical projection OC; of the geometrical
sum OC of these vectors, divided by p, will then represent the displacement
z given by the above equation.

* See von Sanden, “Practical Analysis,”” London, 1924.
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case the force is removed when the body is in its highest position, which
is its position of static equilibrium.

If the loading and unloading of the system is repeated several times
and 7; is the constant interval of time between two consecutive applica-
tions of the force, the resulting motion is

2 A A
z =L;Z sin%[sin D (t; — 2) + sinp <t1 -1 — %)

+sinp(t1—2n—§)+---]-

We see that by taking 7, = 27/p the phenomenon of resonance takes
place and the amplitude of vibration will be gradually built up.

It was assumed in the derivation of eq. (48) that the system is at rest
initially. If there is some initial displacement z¢ and an initial velocity zo,
the total displacement at an instant ¢, will be obtained by superposing
on the displacement given by expression (48) the displacement due to the
initial conditions. In this case we obtain

. 1 1
x = zo cos pt + % sin pt + ;)f g sin p(t, — t)dt. (49)
0

If there is a viscous damping a similar method can be used in study-
ing forced vibrations. From solution (30) we see that an initial velocity
zo produces a displacement of the body (Fig. 1) at an instant ¢ which is
given by

1

y 40
The quantity n defines the damping and p; =V p? — n2. From this we
conclude that a velocity dr = ¢ df communicated at an instant ¢ produces
a displacement at the instant ¢; equal to

Z, e~ ™ sin pit. (e)

dz = L ¢4 gin py(t, — t)dt. €))

1
The complete displacement of the body resulting from the action of the

force g from ¢t = 0 to ¢ = ¢;, will be obtained by a summation of expressions
(). Thus we have
1 [
z=— ge~ """ gin p1(t; — ¢)dt. (50)
D1
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This formula is useful in calculating displacements when the force ¢ is
given graphically or if it cannot be represented accurately by a few terms
of the series (a).

19. Effect of Low Spots on Deflection of Rails.—As an example of an application
of eq. (48) of the previous article let us consider the effect of low spots on deflection of
rails. Due to the presence of a low spot on the rail some vertical displacement of a
rolling wheel occurs which results in an additional vertical pressure on the rail. This
additional pressure depends on the velocity of rolling and on the profile of the low spot.
Taking the coordinate axis as shown in Fig. 68 we denote by ! the length of the low

\|_M X
7\

Y

F1a. 68.

spot and by 5 the variable depth of the spot. The rail we consider as a beam on a
uniform elastic foundation and we denote by k the concentrated vertical pressure which
is required to produce a vertical deflection of the rail equal to one inch. If W denotes
the weight of the wheel together with the weights of other parts rigidly connected with
the wheel, the static deflection of the rail under the action of this weight is

w .
St = Z' (a)

If the rail be considered an elastic spring, period of the free vibration of the wheel sup-

ported by the rail will be
2
T =27 ,\/—‘:' . (b)
g

For a 100 lb. rail, with EI = 44 X 30 X 106 Ib.in.?2, and with W = 3000 lb., we will
find, for a usual rigidity of the track, that the wheel performs about 20 oscillations per
second. Since this frequency is large in comparison with the frequency of oscillation of a
locomotive cab on its springs, we can assume that the vibrations of the wheel are not
transmitted to the cab and that the vertical pressure of the springs on the axle remains
constant and equal to the spring borne weight. Iet us now consider the forced vibra-
tions of the wheel due to the low spot. We denote the dynamic deflection of the rail
under the wheel by y during this vibration.* Then the vertical displacement of the

* This deflection is measured from the position of static equilibrium which the
wheel has under the action of the weight W and of the spring borne weight.
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wheel traveling along the spot of variable depth 5 is y + # and the vertical inertia force
of the wheel will be

Wyt
g dt?

The reaction of the rail is —ky and the equation of motion of the wheel in the vertical
direction becomes:

W d*(y + ») _
g di +ky =0,
from which
W dxy W d*q
g dt? +hy=- g dt? ©

If the shape of the low spot and the speed of the locomotive are known, the depth »
and consequently the right side of eq. (c) can be expressed as functions of time. Thus
we obtain the equation of forced vibration of the wheel produced by the low spot.

Let us consider a case when the shape of the low spot (Fig. 68) is given by the equation

A 27z
1;=§<1—COS"I—>, (d)

in which A denotes the depth of the low spot at the middle of its length.

If we begin to reckon time from the instant when the point of contact of the wheel
and the rail coincides with the beginning of the low spot, Fig. 68, and if we denote the
speed of the locomotive by v, we have z = ut, and we find, from eq. (d), that

n=g(1—c082:—vt>- (e)
Substituting this into eq. (c) we obtain
W dzy W o\ dn2?  2xut
e TR == e
Dividing by W/g, and using our previous notations this becomes:

If the right side of this equation be substituted into equation (48) of the previous article
we find that the additional deflection of the rail caused by the dynamical effect of the
low spot is

27 2nw?

pl?

Performing the integration and denoting by =, the time I/v required for the wheel to pass
over the low spot, we obtain

h 2ot
y=- f cos —Tl—v- sin p(¢, — t)dt. (9
0

— CO8 —

Y=90 — /e (“’s " .

It is seen that the additional deflection of the rail, produced by the low spot, is pro-
portional to the depth X of the spot and depends also on the ratio 7;/r. As the wheel is

27ty 21rt1> . (k)
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traveling along the low spot, the variation of the additional deflection is represented for
geveral values of the ratio r,/7 by the curves in Fig. 69. The abscissas give the position
of the wheel along the low spot, and the ordinates give the additional deflection ex-
pressed in terms of \. As soon as the wheel enters the low spot the pressure on the rail
and consequently the deflection of the rail begin to diminish (y is negative) while the
wheel begins to accelerate in a downward direction. Then follows a retardation of this
movement with corresponding increases in pressure and in deflection. From the figure
we see that for r, < r the maximum pressure occurs when the wheel is approaching the
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other end of the low spot. The ratios of the maximum additional deflection to the depth
X\ of the low spot calculated from formula (k) are given in the table below.

n/r=2 3/2 1 4/5 2/3 3/5 1/2
Ymax/N = .33 .65 1.21 1.41 1.47 1.45 1.33.

It is seen that the maximum value is about equal to 1.47. This ratio occurs when the
speed of the locomotive is such that (+,/7) ~ 2/3.

Similar caleulations can bhe readily made if some other expression than eq. (e) is taken
for the shape of the low spot provided that the assumed curve is tangent to the rail sur-

face at the ends of the spot. If this condition is not fulfilled an impact at the ends of
the low spot must be considered.*

* See author’s papers in Transactions of the Institute of Engineers of Ways of Com-
munication, 1915, S. Petersburg and in ‘“Le Genie Civil,” 1921, p. 551. See also Doctor
Dissertation by B. K. Hovey, Gottingen, 1933.
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In the discussion given above the mass of the vibrating part of the rail was neglected
in comparison with the mass of the wheel. The error involved in this simplification of
the problem is small if the time 7, required for the wheel to pass over the spot is long
enough in comparison with the period of vibration of the rail on its elastic foundation.
If it be assumed that the deflection of the rail under the action of its own weight is .002
in., the period of natural vibration of the rail moving in a vertical dircction is 2x/+/500g
.0144 sec. This means that the solution (k) will give satisfactory results if r, > .03 sec.*

20. Self-Excited Vibration.—In discussing various problems of forced
vibration we always assumed that the force producing vibration is inde-
pendent of the vibratory motion. There are cases, however, in which
a steady forced vibration is sustained by forces created by the vibratory
motion itself and disappearing when the motion stops. Such vibrations
are called self-excited or self-induced vibrations. In most musical instru-
ments vibrations producing sound are of this kind. There are cases
in engineering where self-excited vibrations are causing troubles.t

Vibration caused by friction. Vibration of a violin string under the
action of the bow is a familiar case of self-excited vibration. The ability
of the bow to maintain a steady vibration of the string depends on the
fact that the coefficient of solid friction is not constant and diminishes
as the velocity increases (Fig. 22, p. 31). During the vibration of the
string acted upon by the bow the frictional force at the surface of contact
does not remain constant. It is greater when the vibratory motion of the
string is in the same direction as the motion of the bow, since the relative
velocity of the string and bow is smaller under such condition than when
the motion of the string is reversed. If one cycle of the string vibration
be considered it may ke seeni that during the half eycle in which the
directions of motion of the string and of the bow coincide the friction
force produces positive work on the string. During the second half of the
cycle the work produced is negative. Observing that during the first
half cycle the acting force is larger than during the second half, we may
conclude that during a whole cycle positive work is produced with the
result that forced vibration of the string will be built up. This forced
vibration has the same frequency as the frequency of the natural vibration
of the string.

* Recent experiments produced on Pennsylvania R. R. are in a satisfactory agree-
ment with the figures given above for the ratio ymax/\.

 Several cases of such vibrations are described and explained in a paper by J. G.
Baker, Trans. Am. Soc. Mech. Iingrs., vol. 55, 1933, and also in J. P. Den Hartog’s
paper, Proc. Fourth Intern. Congress Applied Mechanics, p. 36, 1934.

1 It is assumed that the velocity of the bow is always greater than the velocity of
the vibrating string.
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The same type of vibration can be demonstrated by using the device
shown in Fig. 36. In our previous discussion (see p. 57) it was assumed
that the Coulomb friction remains constant, and it was found that in such
a case the bar of the device will perform a simple harmonic motion. The
experiments show, however, that the amplitude of vibration does not
remain constant but grows with time. The explanation of this phe-
nomenon is the same as in the previous case. Owing to a difference in
relative velocity of the bar with respect to two dises the corresponding
coeflicients of friction are also different with the result that during cach
cycle positive work is produced on the bar. This work manifests itself in a
gradual building up of the amplitude of vibration.

One of the carliest experiments with self-excited mechanical vibration
was made by W. Froude,* who found that the vibrations of a pendulum
swinging from a shaft, Iig. 70, might be maintained or even
incrcased by rotating the shaft. Again the cause of this
phenomenon is the solid friction acting upon the pendulum.

If the direction of rotation of the shaft is as shown in the

figure, the friction force is larger when the pendulum is moving

to the right than for the reversed motion. Hence during

cach complete cyele positive work on the pendulum will be

produced. It is obvious that the devices of Iig. 36 and Fig. 14 70.
70 will demonstrate self-excited vibrations only as long as we

have solid friction. In the case of viscous friction, the friction force
increases with the velocity so that instead of exciting vibrations, it will
gradually damp them out.

An example of sclf excited vibration has been experienced with a
vertical machine, Fig. 71, consisting of a mass A driven by a motor B.
There is considerable clearance between the shaft and the guide €, and the
shaft can be considered a cantilever built in at the bottom and loaded at
the top. The frequency of the natural lateral vibration of the shaft,
which is also its eritical or whirling speed, can be readily calculated in the
usual way (sce Art. 17). Ixperience shows that the machine is running
smoothly as long as the shaft remains straight and does not touch the
guide, but if for one reason or another the shaft strikes the guide, a violent
whirling starts and is maintained indefinitely. This type of whirling may
occur at any speed of the shaft, and it has the same frequency as the
critical speed or frequency of the shaft mentioned above. In order to
explain this type of whirling, let us consider the horizontal cross sections

* Lord Rayleigh, Theory of Sound, vol. 1, p. 212, 1804,
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of the shaft and of the guide represented in Fig. 71, b. As soon as the
shaft touches the guide a solid friction force F will be exerted on the shaft
which tends to displace the shaft and thereby produces the whirl in the
direction opposite to the rotation of the shaft. The pressure necessary
for the existence of a friction force is pro-
vided by the centrifugal force of the mass
A A acting through the shaft against the
X guide.
_C Vibration of Electric Transmisston Lines.
A wire stretched between two towers at a
considerable distance apart, say about 300
ft., may, under certain conditions, vibrate
violently at a low frequency, say 1 cycle
per second. It happens usually when a
rather strong transverse wind is blowing
and the temperature is around 32°F, i.e.,
when the weather is favorable for formation
of sleet on the wire. This phenomenon
can be considered as a self-excited vibra-
tion.* If a transverse wind is blowing on a
wire of a circular cross section (Fig. 72, a), the force exerted on the wire
has the same direction as the wind. But in the case of an clongated
cross section resulting from sleet formation (Fig. 72, b), the condition is
different and the force acting on the wire has usually a direction different
from that of the wind. A familiar example of this occurs on an aeroplane
wing on which not only a drag in the direction of the wind but also a lift

Wind F
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Fia. 72. Fia. 73.

in a perpendicular direction are exerted. Let us now assume a vibration

of the wire and consider the half cycle when the wire is moving down-

wards. In the case of a circular wire we shall have, owing to this motion,

some air pressure in an upward direction. This force together with the

horizontal wind pressure give an inclined force F (Fig. 73, a), which has an
*J. P. Den Hartog, Trans. Am. Inst. El. Engrs., 1932, p. 1074.
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upward component opposing the motion of the wire. Thus we have a
damping action which will arrest the vibration. In the case of an elon-
gated cross section (Fig. 73, b) it may happen, as it was explained above,
that due to the action of horizontal wind together with downward motion
of the wire a force F having a component in a downward direction may be
exerted on the wire so that it produces positive work during the down-
ward motion of the wire. During the second half of the cycle, when the
wire is moving upwards, the direction of the air pressure due to wire motion
changes sign so that the combined effect of this pressure and the hori-
zontal wind may produce a force with vertical component directed up-
wards. Thus again we have positive work produced during the motion
of the wire resulting in a building up of vibrations.

2222
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The above type of vibration can be demonstrated by using a device
shown in Fig. 74. A light wooden bar suspended on flexible springs and
with its flat side turned perpendicular to the wind of a fan, may be brought
into violent vibrations in a vertical plane. The explanation of this vibra-
tion follows from the fact that a semicircular cross section satisfied the
condition discussed above, so that the combined effect of the wind and of
the vertical motion of the bar results in a force on the bar having always a
vertical component in the direction of the vertical motion. Thus positive
work is produced during the vibration.



CHAPTER 11
VIBRATION OF SYSTEMS WITH NON-LINEAR CHARACTERISTICS

21. Examples of Non-Linear Systems.—In discussing vibration prob-
lems of the previous chapter it was always assumed that the deformation
of a spring follows Hooke’s law, i.e., the force in a spring is proportional
to the deformation. It was assumed also that in the case of damping the
resisting foree is a lincar function of the velocity of motion. As a result
of these assumptions we always had vibrations of a system represented
by a linear differential equation with constant cocfficients. There are
many practical problems in which these assumptions represent satisfactory
actual conditions, however there are also systems in which a linear differ-
ential equation with constant coefficients is no longer sufficient to desecribe
the actual motion so that a general investigation of vibrations requires
a discussion of non-linear differential equations. Such systems are called
systems with non-linear characteristics. Onc kind of such systems we have
when the restoring force of a spring is not proportional to the displace-
ment of the system from its position of equilibrium.

Sometimes, for instance, an organic material such as rubber or leather
is used in couplings and vibrations absorbers. The tensile test diagram for
these materials has the shape shown in Fig. 75; thus the modulus of elas-
ticity increases with the elongation. For small amplitudes of vibration
this variation in modulus may be negligible but with increasing amplitude
the increase in modulus may result in a substantial increase in the fre-
quency of vibration. '

Another example of variable flexibility is met with in the case of
structures made of such materials as cast iron or concrete. In both
cases the tensile test diagram has the shape, shown in Fig. 76, i.e., the
modulus of elasticity decreases with the deformation. Therefore some
decrease in the frequency with increase of amplitude of vibration must
be expected.

Sometimes special types of steel springs are used, such that their
elastic characteristics vary with the displacement. The natural fre-
quency of systems involving such springs depends on the magnitude of

114
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amplitude. By using such types of springs the unfavorable effect of
resonance can be diminished. If, due to resonance, the amplitude of
vibration begins to increase the frequency of the vibration changes, i.e.,
the resonance condition disappears. A simple example of such a spring is
shown in Fig. 77. The flat spring, supporting the weight W, is built in

Fia. 75. Fi1a. 76. Fie. 77.

at the end A. During vibration the spring is partially in contact with
one of two cylindrical surfaces AB or AC. Due to this fact the free
length of the cantilever varies with the amplitude so that the rigidity
of the spring increases with increasing deflection. The conditions are
the same as in the case represented in Fig. 75, i.e.,
the frequency of vibration increases with an in-
crease in amplitude.

If the dimensions of the spring and the shape
of the curves AB and AC are known, a curve
representing the restoring foree as a function of
the deflection of the end of the spring can easily
be obtained.

As another example of non-linear system is
the vibration along the 2 axis of a mass m
attached to a stretched wirc AB (Fig. 78). Assume

S is initial tensile force in the wire,

z is small displacement of the mass m in a
horizontal direction,

A is cross sectional area of the wire,

E is modulus of elasticity of the wire.

The unit elongation of the wire, due to a displacement z, is
VE+2>—-1 2%
l o
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The corresponding tensile force in the wire is
22

S+ 4B,

and the restoring force acting on the mass m (Fig. 78, b) will be

x2 2 28z
(S+AE2—Z2>\/12+:€2 ~T+AE

23
z3—.

The differential equation of motion of the mass m thus becomes

28z
l

It is seen that in the case of very small displacements and when the
initial tensile force S is sufficiently large the last term on the left side of
eq. (a) can be neglected and a simple harmonic vibration
of the mass m in a horizontal direction will be obtained.
Otherwise, all three terms of eq. (a) must be taken into
consideration. In such a case the restoring force will
increase in greater proportion than the displacement and
the frequency of vibration will increase with the ampli-
tude.

In the case of a simple mathematical pendulum (Fig.
79) by applying d’Alembert’s principle and by projecting
the weight W and the inertia force on the direction of the
tangent mn the following equation of motion will be obtained:

—v;ilb+Wsin0=0

3
mi + +AE%=0. (@)

Fia. 79.

or

. P
0+—lsin0=0, ®)

in which [ is length of the pendulum, and 6 is angle between the pendulum
and the vertical.

It is seen that only in the case of small amplitudes, when sin 6 ~ 6, the
oscillations of such a pendulum can be considered as simple harmonic.
If the amplitudes are not small a more complicated motion takes place
and the period of oscillation will depend on the magnitude of the ampli-
tude. It is clear that the restoring force is not proportional to the dis-
placement but increases at a lesser rate so that the frequency will decrease
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with an increase in amplitude of vibration. Expanding sin 6 in a power
series and taking only the two first terms of the series, the following
equation, instead of eq. (b), will be obtained

6+ % @ — 6%/6) = . )

Comparing this equation with eq. (a) it is easy to see that the non-linear
terms have opposite signs. Hence by combining
the pendulum with a horizontal stretched string 1
(Kig. 80) attached to the bar of the pendulum at :/,DE
B and perpendicular to the plane of oscillation, a G
better approximation to isochronic oscillations may 4¢_-~"
be obtained.

In Fig. 81 another example is given of a
system in which the period of vibration depends
on the amplitude. A mass m performs vibrations @ )
between two springs by sliding without friction ~-
along the bar AB. Measuring the displacements I16. 80.
from the middle position of the mass m the
variation of the restoring force with the displacement can be repre-
sented graphically as shown in Fig. 82. The frequency of the vibrations
will depend not only on the spring constant but also on the magnitude of
the clearance a and on the initial conditions. Assume, for instance, that
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at the initial moment (¢ = 0) the mass m is in its middle position and has
an initial velocity v in the z direction. .Then the time necessary to cross
the clearance a will be

=

< IQ

(d)

After crossing the clearance, the mass m comes in contact with the spring
and the further motion in the z direction will be simple harmonic. The
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time during which the velocity of the mass is changing from » to 0 (quarter
period of the simple harmonic motion) will be (see eq. (5), p. 3)

T (m
="M, (e)
t2 2 \fk

where & is spring constant. The complete period of vibration of the mass
m is

T=4(t1+t2>=4—f+27r\[k@- (/)

For a given magnitude of clearance, a given mass m and a given spring
constant k the period of vibration
depends only on the initial velocity
v. The period becomes very large
for small values of » and decreases
with increase of v, approaching the
limit 70 = 27 \/E/_]c (see Fig. 83)
---------------------------- when »= «. Such conditions always
y are obtained if there are clearances
in the system between the vibrat-
ing mass and the spring.

If the clearances are very small, the period = remains practically con-
stant for the larger part of the range of the speed v, as shown in Fig. 83
by curve 1. With increase in clearance for a considerable part of the
range of speed v a pronounced variation in period of vibration takes
place (curve II in Fig. 83). The period of vibration of such a system
may have any value between » = « and 7 = 7¢. If a periodic disturbing
force, having a period larger than 7¢, is acting, it will always be possible
to give to the mass m such an impulse that the corresponding period of
vibration will become equal to 7 and in such manner resonance conditions
will be established. Some heavy vibrations in electric locomotives have
been explained in this manner.*

Another kind of non-linear systems we have when the damping forces
are not represented by a linear function of the velocity. For instance,
the resistance of air or of liquid, at considerable speed, can be taken
proportional to the square of the velocity and the equation for the vibra-
tory motion of a body in such a resisting medium will no longer be a linear
one, although the spring of the system may follow Hooke’s law.

T

211/7,"1

¥

I'1q. 83.

* See A. Wichert,‘‘Schiittelerscheinungen in elektrischen Lokomotiven,” Forschungs-
arbeiten, No. 277, 1924, Berlin.
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22. Vibrations of Systems with Non-linear Restoring Force.—If
damping be neglected the general equation of motion in this case has the
form

%& + k@) = 0 (@)

or

z + p?f(z) = 0, (51)

in which p?f(x) represents the restoring force per unit mass as a function
of the displacement z. In order to get the first integral of eq. (51) we
multiply it by dz/dt, then it can be represented in the following form:

dz da:)

—dl= 2 =

X (dt + p*f(x)dx = 0
or

1 dz

id (Et-) + p*f(x)dz = 0,

from which, by integration we obtain

12(%Y 4 [ @iz = o ®)

If f(x) and the initial conditions are known,
the velocity of motion for any position of
the system can be calculated from eq. (b).
Assume, for instance, that the variation in
the restoring force with the displacement is
given by curve Om (see Fig. 84) and that in
the initial moment ¢ = 0, the system has a 0
displacement equal to rp and an initial veloc- Xo
ity equal to zero. Then, from eq. (b), for Fia. 84.
any position of the system we have

12 (%) = f @, ©

which means that at any position of the system the kinetic energy is equal
to the difference of the potential energy which was stored in the spring
in the initial moment, due to deflection zo and the potential energy at the

P

N\
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moment under consideration. In Fig. 84 this decrease in potential energy
is shown by the shaded area. From eq. (c) we have*

dt = dz : (d)

— 2p2f f(x)dz

By integration of this equation, the time ¢ as a function of the displace-

ment is obtained,
dr
e
—\/2p2f f(x)dz

Take, for instance, as an example, the case of simple harmonic vibra-
tion. Then

(€)

f(@) = =

From eq. (e), we obtain

or

1 x
t = — arc cos —,
Zo

from which,
T = xo CcoSs pt.

This result coincides with what we had before for simple harmonic motion.
As a second example, assume,

f(x) . x2n——l.

Substituting this in eq. (¢), we obtain

* The minus sign is taken because in our case with increase in time r decreases.
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The period Of vibration will be
(
4\/71, 1 o To

p xou—l o J-—«—l (x )2".
Zo.

The magnitude of the integral in this equation depends on the value of n
and it can be concluded from eq. (52) that only for n = 1, i.e., for simple
harmonic motion the period does not depend on the initial displacement
x9. Forn = 2, we have

(52)

i.e., the period of vibration is inversely proportional to the amplitude.
Such vibrations we have, for instance, in the casc represented in Fig. 78,
if the initial tension S in the wire be equal to zero.

In a more gencral case when

f(x) = ax + ba? + ca?

a solution of eq. 51 can be obtained by using elliptic functions.* But
these solutions arc complicated and not suitable for technical applications.
Therefore now some graphical and numerical methods for solving eq. (51)
will be discussed.

23. Graphical Solution.—In the solution of the general equation (51)
two integrations, shown in eq. (b) and (e) of the previous article must be
performed. It is only in the simplest cases that an exact integration of

* Some examples of this kind are discussed in the book ‘Erzwungene Schwing-
ungen bei veriinderlicher Eigenfrequenz,” by G. Diiffing, Braunschweig, 1918. A
general solution of this problem by the use of elliptic functions was given by K. Weier-
strass, Monatsberichte der Berliner Akademie, 1866. See also, Gesammelte Werke,
Vol. 2, 1895. The application of Bessel’s functions in solving the same problem is given
in the book by M. J. Akimoff, ‘“Sur les Functions de Bessel a plusieurs variables et leurs
applications en mecanique,” S. Petersburg, 1929. An approximate solution by using

Simpson’s formula was discussed by K. Klotter. See Ingenieur-Archiv., Vol. 7, p. 87,
1936.
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these is possible, but an approximate graphical solution can always be
obtained on the basis of which the period of free vibration for any ampli-
tude can be calculated with a sufficient accuracy.

Let the curve om (Fig. 85) represent to a certain scale the restoring
force as a function of the displacement z of the system from its middle
position. From eq. (b) (p. 119) it is seen that by plotting the integral
curve to the curve om the magnitude of 4% as a function of the displace-
ment of z will be obtained. This graphical integration can be performed
as follows: The continuous curve om is replaced by a step curve abdfhino
in such a manner as to make A abc = A cde, A efg = Aghk and A klm =

b______ m
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A mno so that the area included between the abdfhin line and the z axis
becomes equal to that between the om curve and the z axis.

A pole distance Pa; is now chosen such that it represents unity on the
same scale as the ordinates of the om curve and the rays Pa, Pr, Ps are
drawn. Making now aib: || Pa, bif1 || Pr, fily || Ps and Loy || Paj, the
polygon aibifilio1 will be obtained, the slopes of whose sides are equal to
the corresponding values of the function represented by abdfhln. This
means that the aibifilio; line is the integral curve for the abdfhin line.
Due to the equality of triangles (see Fig. 85) mentioned above, the sides
of the polygon a;bifilio; must be tangent to the integral curve of om;
the points of tangency being at ai, e1, k1 and o;. Therefore the curve
aie1k101 tangent to the polygon aibifilior at ai, e1, k1 and o; represents
the integral curve for the curve om and gives to a certain scale the variation
of the kinetic energy of the system during the motion from the extreme
position (z = xo) to the middle position (x = 0). If the ordinates of the
curve om are equal to a certain scale, to 2p%f(z) (see eq. (b), p. 119) and the
pole distance Pa, is equal to unity to the same scale then the ordinates of
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the aie1k101 curve, if measured to the same scale as the displacement xo, give
the magnitudes of 2. From this the velocity  and the inverse quantity
1/& can readily be calculated and the curve pn representing 1/z as a
function of x can be plotted (see Fig. 86). The time which will be taken
by the system to reach its middle position (z = 0) from its extreme posi-
tion (x = z¢) will be represented by the following integral (see eq. (e),
p. 120)

1
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This means that ¢ can be obtained by plotting the integral curve of the
curve pn (see Fig. 86) exactly in the same manner as explained above.
The final ordinate Of, measured to the same scale as xo, gives the time ¢.
In the case of a system symmetrical about its middle position the time ¢
will represent a quarter of the period of free vibration for the amplitude
2o0. It must be noted that for z = x9, x = 0, i.e.,, 1/x becomes infinitely
large at this point. In order to remove this difficulty the plotting of the
integral curve can be commenced from a certain point b, the small co-
ordinates A r and At of which will be determined on the assumption that
at the beginning along a small distance A x the system moves with a con-
stant acceleration equal to pf(z), (see eq. (51), p. 119). Then

At?
Az =~ p*f(z0)
and
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Another graphical method, developed by Lord Kelvin,* also can be
used in discussing the differential equation of non-harmonic vibration.
For the general case the differential equation of motion can be presented
in the following form

z = f(z,t, 2). (53)

The solution of this equation will represent the displacement z as a function
of the time ¢ This function can be repre-
sented graphically by time-displacement curve
\ (Fig. 87). In order to obtain a definite solu-
tion the initial conditions, i.e., the initial dis-
] placement and initial velocity of the system
" must be known.
i

[}
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/
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-

Let z =29 and z = %o for ¢t = 0.

! Then the initial ordinate and initial slope of the
time-displacement curve are known. Substitut-
ing the initial values of z and z in eq. (53),

¥ the initial value of zZ can be calculated. Now

Fia. 87. from the known equation,
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the radius of curvature po at the beginning of the time-displacement curve
can be found. By using this radius a small element aoa; of the time-
displacement curve can be traced as an arc of a circle (Fig. 87) and the
values of the ordinate z = z; and of the slope & = Z; at the new point
a; can be taken from the drawing and the corresponding value of z calcu-
lated from eq. (563). Now from eq. (a) the magnitude of p = p; will be

* See, Lord Kelvin, On Graphic Solution of Dynamical Problems, Phil. Mag.,
Vol. 34 (1892). The description of this and several other graphical methods of inte-
grating differential equations can be found in the book ‘‘Die Differentialgleichungen
des Ingenieurs,” by W. Hort (2d ed., 1925), Berlin, which contains applications of
these methods to the solution of technical problems. See also H. von Sanden, Practical
Mathematical Analysis, New York, 1926. Further development of graphical methods
of integration of differential equations with applications to the solution of vibration
problems is due to Dr. E. Meissner. See his papers, “Graphische Analysis vermittelst
des Linienbildes einer Function,” Kommissions verlag Rascher & Co., Ziirich, 1932;
Schweizerische Bauzeitung, Vol. 104, 1934; Zeitschr. f. angew. Math. u. Mech. Vol. 15,
1935, p. 62.
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obtained by the use of which the next element aja2 of the curve can be
traced. Continuing this construction, as described, the time-displacement
curve will be graphically obtained. The calculations involved can be
somewhat simplified by using the angle of inclination of a tangent to
the time-displacement curve. Let 6 denote this angle, then

z=tan0 and Zz = f(z, ¢, tan 6).
Substituting in eq. (a)

V(1 Ftan? 6 1
"~ f(z,t,tan8)  cos? 6f(z, t, tan 6)

®)

In this calculation the square root is taken with the positive sign so
that the sign of p is the same as the sign of . If I is negative the center
of curvature must be taken in such a manner as to obtain the curve convex
up (see Fig. 87).

In the case of free vibration and by neglecting damping, eq. (53)
assumes the form given in (51) and the graphical integration described
above becomes very simple, because the function f
depends in this case only on the magnitude of dis-
placement x. Taking for the initial conditions
z =1x9 and £ = 0 for ¢t = 0, the time-displacement
curve will have the general form shown in Fig. 88. .——1—-—'74—-—4
In the case of a system symmetrical about the i,/ /
middle position the intersection of this curve with by
the t axis will determine the period = of the free " Fra. 8.
vibration of the system. The magnitude of r can
always be determined in this manner with an accuracy sufficient for
practical applications. In Fig. 88 for instance, the case of a simple
harmonic vibration was taken for which the differential equation is

X

3

24+ pxr=0
and the exact solution gives
27
T = —
D
Equation (b) for this case becomes
1
"~ cos30 pzx. ©)

The initial displacement xo in Fig. 88 is taken equal to 20 units of
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length and po equal to 100 units of length. Then from eq. (c¢) for § = 0,
we obtain

%=V%J%=M7mm. @)

The quantity 1/p has the dimension of time and the length given by eq.
(d) should be used in determining the period from Fig. 88. By measuring

i to the scale used for zo and p, we obtain from this figure

= 69.5 units

N

or by using (d)

4 X 69.5 6.22
=P T T

In this graphical solution only 7 intervals have been taken in drawing
the quarter of the period of the time-displacement curve and the result
obtained is accurate within 19,

24. Numerical Solution.—Nonharmonic vibrations as given by equa-
tions (51) and (53) can also be solved in a numerical way. Consider as
an example free vibration without damping. The corresponding differ-
ential equation is

z + p’f(z) = 0. ()

Let the initial conditions be
z = xo; =0, for t=0. )

By substituting zo for z in eq. (a) the magnitude of Zo can be calculated.
By using the value Zo of the acceleration at ¢ = 0 the magnitude of z; and
z1, i.e., the velocity and displacement at any moment ¢; chosen very
close to the time ¢ = 0 can be calculated. Let At denote the small interval
of time between the instant { = 0 and the instant ¢ = {;. The approxi-
mate value of z; and z; will then be obtained from the following equations,

h=m+hm;m=m+ﬂ%ﬂm. ©)

Substituting the value z; for z in eq. (a), the value of Z; will be obtained.
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By using this latter value better approximations for #; and z; can be
calculated from the following equations,
To + I Zo + o1

:i:1=:'vo+TAt and =z = 2o+ 2

At. @

A still better approximation for z; will now be obtained by substituting
the second approximation of r; (eq. (d) in eq. (a). Now, taking the
second step, by using 1, &; and Z; the magnitude of x2, 2, z2 for the time
t =ty = 2At can be calculated exactly in the same manner as explained
above. By taking the intervals At small enough and making the calcula-
tions for every value of ¢ twice as explained above in order to obtain
the second approximation, this method of numerical integration can
always be made sufficiently accurate for practical applications.

In order to show this procedure of calculation and to give some idea
of the accuracy of the method we will consider the case of simple har-
monic vibration, for which the equation of motion is:

z4+ p%x =0.
The exact solution of this equation for the initial conditions (b) is
x = xocos pt; I = — xop sin pi. (e)

The results of the numerical integration are given in the table below.
The length of the time intervals was taken equal to At = 1/4p. Re-
membering that the period of vibration in this case is + = 27 /p it is seen
that At, the interval chosen, is equal approximately to 1/6 of a quarter
of the period 7. The second line of the table expresses the initial condi-
tions. Now, for obtaining first approximations for &, and zi, at the time
t = At = 1/4p, equations (c) were used. The results obtained are given
in the third line of the table. For getting better approximations for 1,
and z,, equations (d) were used and the results are put in the fourth line of
the table. Proceeding in this manner the complete table was calculated.
In the last two columns the corresponding values of sin pt and cos pt
proportional to the exact solutions (e) are given, so that the accuracy of
the numerical integration can be seen directly from the table. We see
that the velocities obtained by calculation have always a high accuracy.
The largest error in the displacement is seen from the last line of the table
and amounts to about 1%, of the initial displacement xo.

These results were obtained by taking only 6 intervals in a quarter of
a period. By increasing the number of intervals the accuracy can be
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increased, but at the same time the number of necessary calculations
becomes larger.

TABLE I

NUMERICAL INTEGRATION
t z z Z cos pt sin pt
0 o 0 — pixo 1 0
Af L9687 xo — .2500 pz, — .9687 p2x,
At .9692 — .2461 —.9692 .9689 2474
24t L8774 ¢ — .4884 “ —.8774 ¢
24t .8788 ¢ — .4769 “ — 8788 ¢ .8776 .4794
3at L7321 ¢ — .6966 —.7321 “
3at .7344 ¢ — .6783 — 7344 L7317 .6816
4t .5419 “ - .8619 “ —.5419 “
44t .5449 « — .8378 “ —.5449 .5403 .8415
5at .3184 ¢ — .9740 “ — 3184 “
5At .3220 « — .0457 ¢ — 3220 .3153 .9490
6At .0755 « —1.0262 ¢ —.0755 ¢
6At .0794 — .9954 —.0794 “ .0707 .9975
74t —.1719 ¢ —1.0153 “ —.1719 “
74t —.1680 “ — .9838 —.1680 —.1782 .9840

By using the table the period of vibration also can be calculated.

It is seen from the first and second columns that for ¢{ = 6A¢ the time-
displacement curve has a positive ordinate equal to .0794xo. For ¢t = 7At
the ordinate of the same curve is negative and equal to .1680xo. The
point of intersection of the time-displacement curve with the ¢ axis de-
termines the time equal to a quarter of the period of vibration. By
using linear interpolation this time will be found from the equation

1 0794 6.32 1.58

2T T A A T tes0 OB T
The exact value of the quarter of a period of vibration is r/2p = 1.57/p.
It is seen that by the calculation indicated the period of vibration is
obtained with an error less than 19,. From this example it is easy to
see that the numerical method described can be very useful for calculating
the period of vibration of systems having a flexibility which varies with
the displacement.*

* A discussion of more elaborate methods of numerical integration of differential
equations can be found in the previously mentioned books by W. Hort and by H.
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25. Method of Successive Approximations Applied to Free Vibrations.—We begin
with the problems in which the non-linearity of the equation of motion is due to the
non-linear characteristic of the spring. If the deviation of the spring deformation from
Hooke’s law is comparatively small, the differential equation of the motion can be
represented in the following form:

%+ p + of() =0 (54)

in which « is a small factor and f(z) is a polynomial of z with the lowest power of z
not smaller than 2. In the cases when the arrangement of the system is symmetrical
with respect to the configuration of static equilibrium, i.e., for £ = 0, the numerical
value of f(z) must remain unchanged when z is replaced by —uz, in such cases f(z)
must contain odd powers of z only. The simplest equation of this kind is obtained by
keeping only the first term in the expression for f(z). Then the equation of motion
becomes:

+px+azd=0. (55)

A system of this kind is shown in Fig. 78. Since there are important problems in
astronomy which require studies of egs. (54) and (55), several methods of handling them
have been developed.t In the following a general method is discussed for obtaining
periodical solutions of eq. (55) by calculating successive approximations.

We begin with the calculation of the second approximation of the solution of eq. (65).1
Since « is small it is logical to assume, as a first approximation, for z a simple harmonic
motion with a circular frequency pi, which differs only little from the frequency p. We
then put

p? = pi + (p* — p?), (@)

where p? — p,? is a small quantity. Substituting (a) in eq. (55) we obtain:
Z+pk+ (2 —pdz+azd=0. ®)

Assuming that at the initial instant, { = 0, we have z = a, £ = 0, the harmonic motion
satisfying these initial conditions is given by

Z = a cos pit. )]

von Sanden (p. 124). See also hooks by Runge-Konig, ‘“Vorlesungen iiber numerisches
Rechnen,” Berlin, 1924, and A. N. Kriloff, Approximate Numerical Integration of
Ordinary Differential Equations, Berlin, 1923 (Russian).

t These methods are discussed in the paper by A. N. Kriloff, Bulletin of the Russian
Academy of Sciences, 1933, No. 1, p. 1. The method which is described in the following
discussion is developed principally by A. Lindsted, Mémoires de I’ Acad. des Sciences
de St. Petersbourg, VII serie, Vol. 31, 1883, and by A. M. Liapounoff in his doctor thesis
dealing with the general problem on stability of motion, Charkow, 1892 (Russian).

1 Such an approximation was obtained first by M. V. Ostrogradsky, see Mémoires de
I’Acad. des Sciences de St. Petersbourg, VI serie, Vol. 3, 1840. A similar solution was
given also by Lord Rayleigh in his Theory of Sound, Vol. 1, 1894, p. 77. The incom-
pleteness of both these solutions is discussed in the above mentioned paper by A. N.
Kriloff.
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This represents the first approximation to the solution of the eq. (65) for the given initial
conditions.
Substituting this expression for z into the last two terms of eq. (b), which are small,
we obtain:
Z 4+ pr1¥%x = — a(p? — p1?) cos it — wad cos? pat

or, by using the relation
4 cos® pit = cos 3 pit + 3 cos pit
we find

3 3 3
4+ pr =— l:a(zo2 - m?) + —c;i] cos pit — ‘% cos 3pit. (d)

Thus we obtain apparently an equation of forced vibration for the case of harmonic
motion without damping. The first term on the right side of the equation represents
a disturbing element which has the same frequency as the frequency of the natural
vibrations of the system. To eliminate the possibility of resonance we employ an
artifice that consists in choosing a value of p; that will make:*

a3
a(p’ -pY)+— =0
From this equation we obtain:
3aa?
Pt = pt = ©

Combining eqs. (d) and (e) we find the following general solution for

af!
z = Cicos pit + Casin pit + T cos 3pit.
32p,?

To satisfy the assumed initial conditions we must put

aal
Cr=a-—
! @ 321)12
and
in this solution. From this it follows that the second approximation for z is
_ aa®
z=\a— 32p73 cos pil + cosB pil. (56)

It is seen that due to presence in eq. (565) of the term involving z3 the solution is no
longer a simple harmonic motion proportxonal to cos pit. A higher harmonie, propor-
tional to cos 3p:t appears, so that the actual time-displacement curve is not a cosine
curve. The magnitude of the deviation from the simple harmonic curve depends on
the magnitude of the factor a. Moreover, the fundamental frequency of the vibration,

* This manner of calculation p,; represents an essential feature of the method of suc-
cessive approximation. If the factor before cos pit in eq. (d) is not eliminated a term
in the expresssion for z will be obtained which increases indefinitely with the time ¢.
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18 we see from eq. (e), is no longer constant. It depends on the amplitude of vibrations
7, and it increases with the amplitude in the case when « is positive. Such conditions
orevail in the case represented by Fig. 78.

Expressions (e) and (56) can be put into the following forms

p*=p’+ca

o
= ¢o + ag1
where
3a?
cl=‘-—4—v ¢o=0008p1¢
az
o1 = 2 (cos 3 pit — cos pit).

Thus the approximate expressions (f) for the frequency and for the displacement con-
.ain the small quantity a to the first power. If we wish to get further approximations
we take, instead of expressions (f), the series:

z = ¢o+ap +ale:+ aes + - - -
(9
p2=p12+cxa+62a2+63¢13+ ¢ ..

which contain higher powers of the small quantity «. 1In these series ¢o, ¢1, o2, *

are unknown functions of time ¢, p; is the frequency, which will be determined later,
and ¢y, ¢z, - - - are constants which will be chosen so as to eliminate condition of reso-
nance as was explained above in the calculation of the second approximation. By
increasing the number of terms in expressions (g) we can calculate as many successive
approximations as we desire. In the following discussion we limit our calculations by
omitting all the terms containing « in a power higher than the third. Substituting
»xpressions (g) into eq. (55) we obtain:

po + apr + a®p2 4+ a®ps + (012 + 1 + c20? + c3a®) (o + apr + a’er 1+ ales)
+ alpo + ag1 + a2 + a’es)® = 0. »)

After making the indicated algebraic operations and neglecting all the terms containing
x to a power higher than the third, we can represent eq. (k) in the following form:

®0 + Pi2eo + a(@1 + pier + c100 + @0®) + a?($2 + Pr2e2 + c200 + Crer + 3po?er)
+ a3($s + P12es + cswo + 21 + Cre2 + 3poler + 3popi?) = 0. ()

This equation must hold for any value of the small quantity « which means that each
factor for each of the tree powers of « must be zero. Thus eq. (z) will split in the
following system of equations:

o+ ;%o =0,
@1+ Diler = — Cipo — o,
@2 + Piler = — C200 — Cr1 — 3o,

1+ Pr2ps = — Cap0 — 101 — C1o2 — 3poto2 — 3popr® 0]
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Taking the same initial conditions as before, i.e., for t = 0,
z=a and =0
and substituting for z from eq. (g), we obtain:

#0(0) + a91(0) + a?¢2(0) + a®ps(0) = a
#0(0) + a@1(0) + a22(0) + a¢s(0) = 0.

Again, since these equations must hold for any magnitude of «, we have:

#0) =a @0(0) =0
¢1(0) =0 @) =0 (k)
¢200) =0 ¢200) =0
¢3(0) =0 #3(0) = 0.

Considering the first of eqs. (j) and the corresponding initial conditions represented by
the first row of the system (k) we find as before

@0 = a cos pil. ()

Substituting this first approximation into the right side of the second of eqs. (j) we
obtain

61+ pi2er = —cracospil — aleos? pit = — (cia + 34a’) cos pit — 14ad cos 3pit.

To eliminate the condition of resonance we will choose the constant ¢; so as to make the
first term on the right side of the equation equal to zero. Then

aa + 3ad =0
and we find

C =— % al, (m)

The general solution for ¢; then becomes

1 ad
¢1 = C; cos pit + C28in pit + — — cos 3pit.
32 plz

To satisfy the initial conditions given by the second row of the system (k), we put

ad

Cit 5o =0
C; =0.
Thus
8
¢1 = ——, (cos 3pst — cos pit). (n)

32p;

If we limit our calculations to the second approximation and substitute expressions (I),
(m) and (n) into expressions (g), we obtain
2 = acos pit + (cos 3 pit — cos pit) (0)

where
p? = p? + Yata ®
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These results coincide entirely with expressions (f) which were previously obtained
(see p. 131).

To obtain the third approximation we substitute the expressions (I), (m) and (n)
into the right side of the third of equations (j) and obtain

@1 + pr2p2 = — cqa cos pit + 34a? - (cos 3pit — cos pit)

a
32]};2

a3
— 3atcos? pit - v (cos 3pit — cos pit).

By using formulae for trigonometric functions of multiple angles we can write this
equation in the following form:

at 3
o 2 = — —_
o2 + pile2 a < ¢+ —= 128 pit ) 08 pit 128 (cos 3pit + cos 5pit).

Again, to eliminate the condition of resonance, we put

3 at

Cy = — 1—2% p_n’ )
Then the general solution for ¢, becomes
3 ab 1
= t —_ —_——
¢2 = C1cos pit + Ca8in py +1024 cos p1t+1024 cosSp,t

By using the third row of the system (k), the constants of integration are

1
P 256 pyt
C, =
Thus we obtain
¢1 = 10_24i — (cos 5pit + 3 cos 3pit — 4 cos pit). T (s)

If we limit the series (g) to terms containing « and a?, we obtain the third approximation
by using the above results for ¢, ¢1, @2, ¢1 and ¢;:

z = acospil + (cos 3pit — cospit) + (cos 5pit + 3 cos 3pit — 4 cos pit) (1)

1024
where p, is now determined by the equation

3 3 ata?
= p? — a —_——
p*+ i + 128 pi? (u)
Substituting the expressions for o, ¢1, ¢2, €1 and c¢; in the last of egs. (), and proceeding
as before, we finally obtain the fourth approximation

z = a cos pit + = — (cos 3pit — cos pit) + —— (cos 5pit + 3 cos 3pit — 4 cos pit)

1024
ad

32768

—_— (cos 7 pit + 3 cos 5pit — 3 cos 3pit — cos pit), (v)
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in which
.8 3 at
2 a? — — — ol -——.

pi=p + an? + 128 or T 10m” (@)
Since in all our calculations we have omitted terms containing « to a power higher
than the third, we simplify eq. (w) by substituting in the third term on the right side
the second approximation (p) for p; and in the last term of the same side substituting
p for p1. Thus we obtain

3 a! 3 at
2 = 2 2 g2 b — a2 — 3
Pt =pitgeat+ g N 1024 % pv’
—ad
1

from which
, o 21 at
2 -~ 2 JUESN, —_— e —— ey —
p?=p + oa? + 128 T 1024
We see that the frequency p, depends on the amplitude a of the vibration. The time
displacement curve is not a simple cosine curve; it containg, according to expression (v),
higher harmonics, the amplitudes of which, for small values of «, are rapidly diminishing
as the order of the harmonic increases.
Let us apply the method to the case of vibration of a theoretical pendulum. Equa-
tion of motion in this case is Fig. 79 (see p. 116)

ff—}-%sina =0.

Developing sin 8 in the series and using only the two first terms of this series we obtain

B+0—=0 =0.
. * l 6l
Taking for the frequency the second approximation (e) and denoting by 6, the angular
amplitude, we find

Thus the period of oscillation is

27 _l
T = =27 1 02
P \/y\/l—/seo \[( + 246)-

This formula is a very satisfactory one for angles of swing smaller than one radian.

The method of successive approximations, applied to solutions of eq. (55), can be
used also in the more general case of eq. (54).

The same method can be employed also in studying non-harmonic vibrations in which
the non-linearity of the equation of motion is due to a non-linear expression for the
damping force. As an example let us consider the case when the damping force is pro-
portional to the square of the velocity. The equation of motion is then:

Z + pit F az? = 0.

The minus sign must be taken when the velocity is in the direction of the negative z axis
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and the plus sign for the velocity in the direction of the positive z axis. Takingz = a
and z = 0 at the initial instant ({ = 0), we have for the first half of the oscillation the
equation

4 p—az?=0. (a)’

Limiting our calculations to terms containing «?, we put, as before,
oo T apr + o’y ®)
p? = p1? + cia + coo®.

x

Substituting in eq. (a)’ and neglecting all terms containing « to powers higher than
the second, we obtain the equation

@0 + pi%eo + a(@r + pi2er — @02 + a(9: + pilez + e + 200 — 20001) = 0

from which it follows that:

b0 + Pi%po = 0
61 + o1 = @ (e
¢ + piler = — cie1 — Capo + 20001

The initial conditions give
eo(0) = a #0) =0
@1(0) =0 #(0) =0 @’
¢2(0) =0 #2(0) = 0.

From the first of equations (c)’ and by using the first row of conditions (d)’, we obtain
the first approximation
@0 = a cos pil.

Substituting this into the right side of the second of equations (c)’, we obtain:
é1 + pi2e1 = a’p?sin? pt = 14 a?p,2(1 — cos 2put).
The solution of this equation, satisfying the initial conditions is then:
e1 = Y54 — 24 a? cos pit + 14 a? cos 2pt.
Substituting ¢o and ¢: in the right side of the third of egs. (c)’ we obtain

b2 + P12p2 = — caa cos pit — c1(Ysa? — 24 a? cos pit + 16 a? cos 2pit)
— 2a%p,? sin p\t(24 sin pit — 14 sin 2pt). (e)!

We have on the right side of this equation two constants ¢, and ¢; and since there will
he only one condition for the elimination of the possibility resonance, one of these con-
stants can be taken arbitrarily. The simplest assumption is that ¢, = 0. Then eq. (e)’
can be represented in the following form:

$2 + Pi%er = (— 8 + 34 pra?) cos pit — 3§ a’p?
+ 24 a3p:1? cos 2pit — 3§ a’p.? cos 3pit. o)
To eliminate the resonance condition we put
—ca+ Y paat=0

or ¢ = Y4 pi’a’ (@'
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Then the general solution of eq. (f)’ is
¢2 = C1cos pit + Casin pit — 24 a3 — 24 a® cos 2pit + Yy a? cos 3pit.
To satisfy the initial conditions, represented by the third row of the system (d)’ we must
put
01 = -g-%— a3, Cz = 0,
and finally we obtain

a3
ez =—24a% + 7 (61 cos pit — 16 cos 2pit + 3 cos 3pit).
Substituting ¢o, ¢1, ¢2, ¢1 and ¢ in expressions (b)’ we obtain

a?
z = acos pit + a—6— (3 — 4 cos pit + cos 2pit)

2743
- 3;*;— (48 — 61 cos pit + 16 cos 2pit — 3 cos 3pat) (h)
and
p? = p? + cix + ca? = pi? + 14 pilatal
from which
1 = _-—p . (‘I,)’
V1 + 0%

The time required for half a cycle is

2=1=I—\/1+1/§aza2zf(1+%a2az) (])’

2 poop P

and the displacement of the system at the end of the half cycle is obtained from expres-
sion (h)’ by substituting pi¢t = = into it. Then

(@tmnspy = 01 =— a + 34 aa? — 18 a%ad. (k)

Beginning now with the initial conditions z = a;, £ = 0 and using formulae (5)’ and
(k)’, we will find that the time required for the second half of the cycle is
T2

(1 + Y ara?)

P

and the displacement of the system at the end of the cycle is
Ay = — Q; + % aa,? — -196- a2a13.

Thus we obtain oscillations with gradually decreasing amplitudes.*

* Another method of solving the problem on vibrations with damping proportional
to the square of velocity is given by Burkhard, Zeitschr. f. Math. u. Phys., Vol. 68,
p. 303, 1915. Tables for handling vibration problems with non-linear damping con-
taining a term proportional to the square of velocity have been calculated by W. L.
Milne in Univ. of Oregon Publications, Mathematical Series, Vol. 1, No. 1, and Vol. 2,
No. 2.
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26. Forced Non-Linear Vibrations.—Neglecting damping and assuming
that the spring of a vibrating system has a non-linear characteristic, we
may represent the differential equation of motion for forced vibrations
in the following form:

z 4 p*r + of(x) = F() (a)

in which F(?) is the disturbing force per unit mass of the vibrating body
and f(z) is a polynomial determined by the spring characteristicc. We
assume that the vibrating system is symmetrical with respect to the
position of equilibrium, i.e., f(r) contains only terms with odd powers of
z. Limiting our discussion to the case when f(z) = 2? and assuming that
the disturbing force is proportional to cos «t, eq. (a) reduces to the following:

zZ 4+ p%xr 4+ axd = g cos wi. )

This is a non-linear equation, the general solution of which is unknown.
In our investigation we will use approximate methods. From the non-
linearity of the equation we conclude that the method of superposition
of vibrations which was always applicable in problems discussed in the
first chapter does not longer hold, and that if the free vibrations of the
system as well as its forced vibrations can be found, the sum of these two
motions does not give the resultant vibration. Again, if there are several
disturbing forces the resultant forced vibration cannot be obtained by
summing up vibrations produced by each individual force as it does in the
case of a spring with linear characteristics (see Art. 18).

To simplify the problem we will discuss here only the steady forced
vibrations and we will disregard the free vibrations that depend on the
initial conditions. We will assumne also that « is small, i.e., that the spring
approximately follows Hooke’s law in the case of small amplitudes. Re-
garding the vibrations we assume that under the action of a disturbing
force, q cos wf, a steady forced vibration of the same frequency as the
disturbing force will be established, moreover that the motion will be in
phase with the disturbing force or with a phase difference equal to .
Let this forced vibration be

z = a cos wt. )

To determine the amplitude a of this vibration we use eq. (b) and take for
a such a magnitude as to satisfy this equation when the vibrating system
is in an extreme position, i.e. when cos wt =+ 1. Substituting (c) into
eq. (b) we obtain in this way the following equation for determining a.

p%a + aa® = q + aw?. T (d)
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The left side of the equation represents the force exerted by the spring
for an extreme position of the vibrating system, and the right side is the
sum of the disturbing force and the inertia force for the same position.
All these forces are taken per unit mass of the vibrating body. Proceeding
in this way we satisfy eq. (b) for the instants when the system is in extreme
positions. The equation will be satisfied also when the system is passing
through the middle position since for such a position cos wf = 0 and all
terms of eq. (b) vanish. For other positions of the vibrating system eq. (b)
usually will not be satisfied and the actual motion will not be the simple
harmonic motion represented by eq. (¢). To find an approximate ex-
pression for the actual motion we substitute expression (c) for x in eq. (b).
Thus we obtain
Z = q cos wt — p%a cos wt — aa® cos? wt

or by using the formula

cos? wt = 14 (cos 3wt + 3 cos wt)
we find

. 3aa? aad
2 =\|qg— p?a — —— ) cos wt — — cos 3wt.
4 4
Integrating this equation we have
a3
36w?

It is seen that the vibration is no longer a simple harmonic motion. It
contains a term proportional to cos 3wt representing a higher harmonie.
The amplitude of this vibration is

z = 1 ( g + p%a + ¥4 aa®) cos wi + cos 3wt. (e)

a3

Fane = 25 (~0 + P+ Y o)) + S ®

For small values of « this amplitude differs only by a small quantity from
the value a as obtained from eq. (d). Sometimes eq. (f) is used for
determining the maximum amplitude.* Then, by neglecting the last
term on the right side of this equation, we obtain

1
a=- (—q + p%a + ¥ ad?), @

* See the book by G. Duffing, ‘‘Erzwungene Schwingungen bei veréinderlicher Eigen-
frequenz,” p. 40, Braunschweig, 1918. The justification of such an assumption will
be seen from the discussion of successive approximations to the solution of eq. (b),
see p. 147.
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which differs from eq. (d) only in the small term containing o as a
factor.

For determining the amplitude a of forced vibrations a graphical
solution of eq. (d) can be used. Taking amplitudes a as abscissas and
forces per unit mass as ordinates, the left side of eq. (d) will be represented
by curves OA 4243 and OB3BC3, which give the spring’s character-
istic, Fig. 89. The right side of the same equation can be represented by a

F1a. 89.

straight line with a slope w? and intersecting the ordinate axis at a point A
ruch that OA represents the magnitude q of the disturbing force per unit
mass. The straight lines A4, AA2, and AA; in the figure are such lines
constructed for three different values of the frequency w. The abscissas
of the intersection points A, 42, A3 give the solutions of the equation (d)
and represent the amplitudes of forced vibrations for various frequencies
of the disturbing force. It is seen that for smaller values of w there is
only one intersection point, such as point A in the figure, and we obtain
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only one value for the amplitude of the forced vibration. For the value of
w corresponding to the line A4, we have intersection point at Az and a
point of tangency at B. For higher values of » we find three points of
intersection such as points As, B3 and Cj3 in the figure. Thus there are
three different values of the amplitude a satisfying eq. (d).

Before we go into a discussion of the physical significance of these
different solutions, let us introduce another way of graphical representation

-
e mzm.——-a

Amplitude a

I1a. 90.

of the relation between the amplitude of forced vibrations and the fre-
quency of the disturbing force. We take frequencies w as abscissas and
the corresponding amplitudes a, obtained from Fig. 89, as ordinates. In
such way the curves in Fig. 90 have been drawn. The upper curve
ApA1A243 corresponds to the intersection points Ao, 41, A2, 43 in Fig.
89 and the lower curve C3BB3 corresponds to the intersection points such
as C3, B, Bs in the same figure. It is seen that the upper curve AgA1 4243
in Fig. 89 corresponds to positive values of a, and we have vibrations in
phase with the acting force g cos wt. For the lower curve B, B3 the
amplitudes a are negative and the motion is therefore = radians out of
phase with respect to the acting force. In general the curves in Fig. 90
correspond to the non-linear forced vibrations in the same way that the
curves in Fig. 10 correspond to the case of simple harmonic motion. By
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using these curves the amplitude of forced vibrations for any frequency
w of the disturbing force can be obtained. In the case of simple harmonic
motion for each value of w there is only one value of the amplitude, but in
the case of non-linear vibrations the problem is more complicated. For
frequencies smaller than ws there is again only one value of the amplitude
corresponding to a vibration in phase with the disturbing force as for
simple harmonic motion. However, for frequencies larger than we there
are three possible solutions; the one with the largest amplitude, is in phase
with the force, while the two others are = radians out of phase with the
disturbing force. The experiments show* that when we increase the
frequency w of the disturbing force very slowly we obtain first vibrations
in phase with the force as given by the curve ApA;4243 in Fig. 90. At a
certain value of w, say ws, which is larger than ws, the motion changes
rather abruptly so that instead of having vibrations of comparatively large
amplitude 43wz and in phase with the force, we have a much smaller vibra-
tion of an amplitude w3Bs and with a phase difference =. Vibrations with
amplitudes given by the branch CCj3 of the curve, indicated in the Fig. 90
by the dotted line, do not occur at all in the experiments with non-linear
forced vibrations. The theoretical explanation of this may be found in the
fact that vibrations represented by curves ApAs and BBj are stable vibra-
tions,t thus if an accidental force produces a small disturbance from these
vibrations, the system will always have a tendency to come back to its
original vibration. Vibration given by the dotted line CCjs is unstable,
which means that if a small deviation from this motion is produced by a
slight external disturbance, the tendency of the deviations will be to
increase so that finally a vibration corresponding in amplitudes to the
branch BBj; or to the branch A243 of the curve will be built up.

In our discussion it was always assumed that ¢, the maximum of the
pulsating disturbing force remains constant. By using the construction
explained in Fig. 89, the amplitude of a forced vibration for any value of ¢
can be determined and the curves similar to those given in Fig. 90 can be
plotted. Several curves of this kind are shown in Fig. 91. If, finally,

* The first experiments of this kind which cleared up the significance of the three
different, possible solutions, discussed above, were made by working with electric cur-
rent vibrations by O. Martienssen, Phys. Zeitschr., Vol. 11, p. 448, 1910. The same
kind of mechanical vibrations were studied by G. Duffing, loc. cit., p. 138.

t A theoretical discussion of the stability of the above mentioned three different
types of vibrations was given by E. V. Appleton in his study of ‘“The Motion of a Vibra-
tion Galvanometer,” see Phil. Mag., ser. 6, Vol. 47, p. 609, 1924. A general discussion
on stability of non-linear systems will be found in paper by E. Trefftz, Math. Ann
v. 95, p. 307, 1925.
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g is taken equal to zero, we obtain the free vibrations of the non-linear
system, discussed in the previous article. The frequencies of the free
vibrations for various amplitudes are obtained, as stated before, by draw-
ing inclined lines through the point 0 in Fig. 89 and by determining the
abscissas of their points of intersection with the curve OA;4243. "It is
seen that there is a limiting value wo of the frequency which is determined
by the slope of the tangent at 0 to the curve OAs, Fig. 89. This limiting
value is the frequency of the free vibrations of an infinitely small ampli-
tude. For such vibrations the term ax® in eq. (b) can be neglected as an

n

2
/

/l
2'

Fia. 91.

infinitely small quantity of a higher order from which we conclude that
wo = p. With an increase in amplitudes the frequencies also increase and
the relation between a and w for free vibrations is given in Fig. 91 by the
heavy line. From the curves of Fig. 91 some additional information
regarding stable and unstable vibrations can be obtained. Focusing our
attention upon a constant frequency, corresponding to a vertical line, say
mn, that intersects all the curves, and considering the intersection points
1, 2, of this vertical with the stable vibration curves lying above the heavy
line, we may conclude that if the maximum of the pulsating force be in-
creased the amplitude of the forced vibration will also increase. The same
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conclusion can be made regarding the points of intersection 1/, 2/, on the
lower portions of the curves below the heavy line which also correspond
to the stable conditions of vibrations. However, when we consider
points 1”7, 2”’, on those portions of the curves corresponding to the unstable
condition of motion, it is seen from the figure that an increase in the
disturbing force produces a decrease in the amplitude of vibration. We
know from the previously mentioned experiments that this kind of motion
actually does not occur and what really happens is that at certain frequen-
cies the amplitudes given by points 1, 2, are abruptly changed to ampli-
tudes given by points 1/, 2’. The frequencies at which this change of
type of motion takes place depend on the amount of damping in the
gystem as well as on the degree of steadiness of the disturbing force.

To simplify our discussion damping was neglected in the derivation of
eq. (b). If we take damping into consideration and assume that it is
proportional to the velocity of motion, we can again determine the ampli-
tude of vibrations by an approximate method similar to the one used
above.* Due to damping the curves of Fig. 90 will ke rounded as shown in
Fig. 92. It is seen that the question of instability arises only in the cases
when the frequency of the disturbing force is in the region w2 < w < ws.
Starting with scme frequency o, smaller than we, and gradually in-
creasing this frequency we will find that the amplitudes of the forced
vibrations are such as are given by the ordinates of the curve AoA24s.
This holds up to the point Az where an abrupt change in motion occurs.
With a further increase in frequency the change in phase by 180 degrees
takes place and the amplitudes are then obtained from the lower curve
B3Bs. If, after going along the curve from Bz to Bi, we reverse the
procedure and start to decrease the frequency of the disturbing force
gradually, the amplitudes of the forced vibrations will be determined by
the ordinates of the curve B4BzB. At point B an abrupt change in motion
occurs, so that during a further decrease in the frequency of the disturbing
force the amplitude of vibration is obtained from the curve A24¢. Thusa
hysteresis loop A243BsB in Fig. 92 is obtained due to the instability of
motion at A3 and at B.

The curve AoA2A3BB3Bs for non-linear forced motion replaces the
curve in Fig. 26 relating to the case of a spring following Hooke’s law.
Comparing these two curves we see that instead of a vertical line of Fig. 26
corresponding to a constant critical frequency, w/p = 1, we have in Fig.
92 a curve wods, giving frequencigs of free vibrations varying with the

* Such calculations with damping can be found in the previously mentioned paper
by E. V. Appleton, loc. cit., p. 141.
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amplitude. Also, instead of a smooth transition from oscillations in phase
with the force to oscillations with 180 degrees phase difference, we have
here a rather abrupt change from one motion to another at such points
as Az and B.

In all the previous discussions it was assumed that the factor « in
eq. (b) is positive, i.e., that the spring becomes stiffer as the displacement
from the middle position increases. An example of such a spring is given
in Fig. 75 and Fig. 77. If with the increase of the displacement the
stiffness of the spring decreases as shown in Fig. 76 the factor « in eq. (b)

Fia. 92.

becomes negative and the frequency of the free vibrations decreases with
an increase in amplitude. Proceeding as before we obtain for determining
the amplitudes of the corresponding forced vibration a curve of such type
as shown in Fig. 93. Starting with a small frequency of the disturbing
force and gradually increasing this frequency we will find that the ampli-
tudes of the motion are given by the ordinates of the curve 4o4:42. At
A a sharp change in motion occurs. The phase of the motion changes by
r and the amplitude changes from ws A5 to weBs. With a further increase in
w, the amplitudes will be given by the curve B2B. If we now reverse the
procedure and decrease w gradually, the amplitudes are obtained from the
curve BB2B3, and an abrupt change in motion occurs at Bs.
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It was assumed in our discussion that the spring characteristic can be
represented by a smooth curve. Sometimes an abrupt change in the
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stiffness of the spring occurs during the oscillation of a system. An
example of such a spring is shown in Fig. 94, a. When the amplitudes of
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vibration of the mass m are smaller than é only two springs are in action
and the spring characteristic can be represented by an inclined straight
line, as the line nn; in Fig. 94, b. For displacements larger than §, four
more springs will be brought into action. The system becomes stiffer
and its spring characteristic will now be represented by steeper lines such
as lines ninz and nng in Fig. 94, b. In calculating amplitudes of the steady
forced vibrations of such a system we replace the broken line Onins by a
cubic parabola* y = p%r + az® and determine the parameters p? and « of

14 m = 0.0664 bs se,,
K.=33.8 lbsAn.
2 K=15.8 '0/n.

§,= 050 in.
§,=0.50

Absolute Amplitude, a;, inches

00 120 140 160 30 180 . 200
Frequency of Ground Motion,3¥w , cycles per minute

Fia. 95.

this parabola in such a manner that for z = a the ordinate of the parabola
is the same as the ordinate nor of the broken line, and that the area between
the parabola and the abscissa is the same as the shaded area shown in the
figure. This means that we replace the actual spring system by a fictitious
spring such that the force in the spring and its potential energy at the
maximum displacement a is the same as in the actual spring system.
With expressions for p2 and «, obtained in this way, we substitute in the

* This'method wag successfully used by L. 8. Jacobsen and H. J. Jespersen, see their
paper in the Journal of the Franklin Institute, Vol. 220, p. 467, 1935. The results
given in our further discussion are taken from that paper.
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previous eq. (d) and, after neglecting some small terms, a very simple
equation for determining the amplitude «a is obtained. Experiments show
that the approximate values of the amplitude of the forced vibrations
calculated in this way are in a very satisfactory agreement with experi-
mental data. In Fig. 95 the amplitudes of the forced vibrations are
plotted against the frequencies given in number of cycles per minute.
Full lines give the amplitudes calculated for three different values of the
disturbing force. Each set of these curves corresponds to the full line
curves in Fig. 92. It may be seen that the experimental points are always
very close to these lines.

The method of successive approximations, described in the previous article, can also
be used for calculating amplitudes of steady forced vibration. Considering again
eq. (b) we assume that « is small and take the solution of the equation in the following
form:

z =g+ apr +a’ps + oL »)
We take also

p?=p? + cia + c2a® + .- - @)
Substituting expressions (k) and (¢) into eq. (b) and proceeding as explained in the
previous article, we obtain for determining the functions o, ¢1, ¢2 - -+ the following
system of equations

Yo + Pi2po = g cos wt

&+ Piter = — Cipo — ¢ (.7)

2+ pi2e2 = — c200 — C1e1 — 3po’er.

Assuming that a steady forced vibration is built up of an amplitude @ and in phase
with the disturbing force we obtain the following initial conditions

eo(0) = a, ¢(0) =0
¢1(0) =0, @(0) =0 (k)
¢:(0) =0, ¢:(0) =0

The general solution of the first of equations () is

¢o = Cycos pit + Cysinpit + cos wt.

1“2 — w?

To satisfy the initial conditions given by the first row of the system (k) we take

Cl=d— g Cz=0.

’
p12 — w?

Thus

,,,o=<a-—p2q ,>cosp,t+p2q 2cosmt.
19— w” 19— w
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In order that we may have a vibration of the frequency w, we put

—12 .o )

- Pt — w?
Then
@0 = a co8s wt. (m)

Substituting ¢, into the second of equations (j) we obtain
al
61 + pr2er = — c1a cos wt — vy (cos 3wt + 3 cos wt).

The general solution of this equation is then:

ca + 34 ad a?

— ———————— c08 3wl.
P — w? 4(p1? — Yw?) “

¢1 = C1co8 pit + Cssin pit —

In order that we may have a vibration of the frequency « and that the equation may
satisfy the ‘conditions given by the second line of the system (k), we take

Ci=C,=0,
qa + Hal @ =0 (n)
Pt — ot 4(pi? — 90?)
Then
az
o1 = m (cos wt — cos 3wt),
so that the second approximation for z from eq. (k) is
t—2 (cos ut 3wt) ®)
z=ac ———————— (co8 wt — Co .
08 w T — 9a7) w 8 3w
From eq. (2) we have
P =p:? + cia.
Substituting for ¢, its value from eq. (n), and using eq. (I), we obtain
q '3 aa? 1
2 o = 2 _ — (2 — — m——————
P a+w 4% Ty 1 —8wla/q’
or
p’a+a|za,5'=q-{-am2-1-1o¢aa l———l— . (@)
4 1 — 8w?a/q '

The left side of this equation represents the force in the spring for the extreme position
of the system. On the right side we have, as it can be readily shown by double differen-
tiation of expression (p), the sum of the disturbing force and of the inertia force for the
same position. Since the factor « is small, we may neglect the last term in eq. (¢) and we
obtain eq. (d) which was used before for approximate calculations of the amplitudes.
If we keep in mind that for large vibrations the inertia force w?a is usually large in com-
parison with the disturbing force ¢ and neglect the second term in parenthesis of eq. (g)
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as being small in comparison with unity, we find that eq. (¢) coincides with eq. (g)
derived before.

Substituting expressions for ¢, ¢1, and ¢; into the third of equations (j) and pro-
ceeding us before, we can find a third approximation for z and a more accurate equation
for calculating the amplitude.

Sometimes for an approximate calculation of amplitudes of forced vibrations the
Ritz’ method was used,* but in the case of non-linear equations the calculations of
higher approximations become very complicated and the method does not represent such
advantages as in the case of linear equations. Another way of calculating closer approxi-
mations for the amplitudes of forced vibrations was suggested by J. P. Den Hartog.t
The approximate equation (d) was obtained by assuming a simple harmonic motion and
determining its amplitude so as to satisfy equation of motion (b) for extreme positions of
the vibrating system. If, instead of a simple harmonic motion, an expression containing
several trigonometric terms is taken, we can determine the coefficients of these terms so
as to satisfy eq. (b) not only for the extreme positions of the system but also for one or
several intermediate positions.}

In the discussion of forced vibrations we assumed that the frequency
of this vibration is the same as the frequency of the disturbing force.
In the case of non-linear spring characteristics, however, a harmonic
force ¢ cos wt may sometimes produce large vibrations of lower frequencies
such as 14w, 14w. This phenomenon is called sub-harmonic resonance.
The theoretical investigation of this phenomenon is a complicated onc§
and we limit our discussion here to an elementary consideration which gives
some explanation of the phenomena. Let us take, as an example, the
case of eq. (55) discussed in the previous article. It was shown that the
free vibrations in this case do not represent a simple harmonic motion and
that their approximate expression contains also a higher harmonic of the
third order so that for the displacement z we can take the expression

z = a cos wt + b cos 3wt )

*See G. Duffing’s book, p. 130, loc. cit. p. 138. A similar method was recently
suggested by I. K. Silverman, Journal of the Franklin Institute, Vol. 217, p. 743, 1934.
t J. P. Den Hartog, The Journal of the Franklin Institute, Vol. 216, p. 459, 1933.

t An exact solution of the problem for the case when the spring characteristic
is represented by such a broken line as in Fig. 94, b was obtained by J. P. Den Hartog
and S. J. Mikina, Trans. Am. Soc. Mech. Engrs., Vol. 54, p. 153, 1932. See also paper
by J. P. Den Hartog and R. M. Heiles presented at the National Meeting of the Applied
Mechanics Division, A.S.M.E., June 1936.

§ The theory of non-linear vibrations has been considerably developed in recent
years, principally in connection with radio engineering. We will mention here impor-
tant publications by Dr. B. van der Pol, seec Phil. Mag., ser. 7, V. 3, p. 65, 1927. See
also A. Andronow, Comptes Rendues, V. 189, p. 559, 1929; A. Andronow and A. Witt,
C. R, v. 190, p. 256, 1930; I.. Mandelstam and N. Papalexi, Zeitschr. f. Phys. Vol. 73,
p. 233, 1931; N. Kryloff and N. Bogoliuboff, Schweizerische Bauzeitung, V. 103, 1934.
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If there is no exciting force, this vibration, owing to unavoidable friction,
will be gradually damped out. Assume now that a pulsating force
g cos (3 wt + B) is acting on the system. On the displacements (r) it will
produce the following work per cycle 7 = 27 /w:

/ g cos Buwt 4 B) z dt = — awq / sin wt cos (3wt + B) dt
0

0

— 3bwgq / sin 3wt cos (3wt + B) dt.
) 0

The first term on the right side of this expression vanishes while the second
term gives 37 b ¢ sin 8. Thus, due to the presence of the higher harmonic
in expression (r), the assumed pulsating force produces work depending
on the phase difference 8. By a proper choice of the phase angle we may
get an amount of work compensating for the energy dissipated due to
damping. Thus the assumed pulsating force of frequency 3w may main-
tain vibrations (r) having frequency » and we obtain the phenomenon
of subharmonic resonance.*

* The possibility of such a phenomenon in mechanical systems was indicated first
by J. G. Baker, Trans. Am. Soc. Mech. Engrs., vol. 54, p. 162, 1932.



CHAPTER III
SYSTEMS WITH VARIABLE SPRING CHARACTERISTICS

27. Examples of Variable Spring Characteristics.—In the previous
chapters problems were considered in which the stiffness of springs was
changing with displacement. Here we will discuss cases in which the
spring characteristic is varying with time.

As a first example let us consider a string AB of a length 2! stretched
vertically and carrying at the middle a particle of mass m, Fig. 96. If
x is a small displacement of the particle from its middle position, the
tensile force in the string corresponding to this displacement is (see p. 116).

8 =8+ AE g, (@)

where S is the tensile force in the string for static equilibrium position
of the particle, A is the cross scc-

. . v . x
tional area of the string and K is s

the modulus of elasticity of the A \ ® .
string. Let us assume that S is ;|\ i g
very large in comparison with the ” \f
change in the tensile force repre- @ !'
sented by the second term in ex- ,:[ " ¢

. N A X o F FZ
pression (a). In such a case this 7 — L
second term can be neglected, S'= 8, & s @ @f }é
and the equation for motion of the - ¢

. . F16. 96.
particle m is:

- 2S.T
mz + = 0. )

The spring characteristic in this case is defined by the quantity 2S/!

and as long as S remains constant, equation (b) gives a simple harmonic

motion of a frequency p = V' 2S/lm and of an amplitude which depends

on the initial conditions. If the initial displacement as well as the initial
151
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velocity of the particle are both zero, the particle remains in its middle
position which is its position of stable static equilibrium.

Assume now that by some device a small steady periodic fluctuation of
the tensile force S is produced such that

S = Sp 4 Si sin wt, (0

since S always remains large enough, eq. (b) continues to hold also in this
case and we obtain a system in which the spring characteristic 2S5/1 is a
periodic function of time. Without going at present into a discussion
of the differential eq. (b), it can be seen that by a proper choice of the
frequency w of the fluctuating tension, large vibrations of the particle m
can be built up. Such a condition is represented in Fig. 96, b and Fig.
96, ¢. The first of these curves represents displacements of the particle m
when it vibrates freely under the action of a constant tension S = Sy, so

that a complete cycle requires the time r = 27 /p = 27r\/im/2Sn. The sce-
ond curve represents the fluctuating tension of the string which is assumed
to have a circular frequency w = 2p. It is seen that during the first
quarter of the cycle, when the particle m is moving from the extreme
position to its middle position and the resultant of the forces S produces
positive work, the average value of S is larger than So. During the
second quarter of the cycle, when the forces S oppose the motion of the
particle, their average value is smaller than Sy. Thus during each half a
cycle there is a surplus of positive work produced by the tensile forces S.
The result of this work is a gradual building up of the amplitude of vibra-
tion. This conclusion can be readily verified by experiment.* TIurther-
more, an experiment will also show that the middle position of the particle
is no longer a position of stable equilibrium if a fluctuation in tensile force
S of a frequency w = 2p is maintained. A small accidental foree, pro-
ducing an initial displacement or an initial velocity may start vibrations
which will be gradually built up as explained above.

In Fig. 96, d a case is represented in which the tensile force in the string
is changing abruptly so that

S =8+ 8. (d)

* An example of such vibrations we have in Melde’s experiment, see Phil. Mag.,
April, 1883. In this experiment a fine string is maintained in transverse vibrations by
attaching one of its ends to the vibrating tuning-fork, the motion of the point of attach-
ment being in the direction of the string.  The period of these vibrations is double that
of the fork.
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By using the same reasoning as in the previous case it can be shown that
changing tension S as indicated in the Fig. 96, d, will result in the pro-
duction of a large vibration of the particle.

In Fig. 97 another case of the same kind is represented. On a vertical
shaft is mounted a circular disc AB. Rotation of the shaft is free but its
bending is confined, by the use of guiding bars nn, to the plane zy of the
figure. Along most of its length the shaft has non-cir-
cular cross-section, as shown in the figure, so that its
flexural rigidity in the ry plane depends on the angle of
rotation. Assume first that the shaft does not rotate and
in some manner its lateral vibrations in the xy plane are
produced. The disc will perform a simple harmonic
motion, the frequency of which depends on the flexural
rigidity of the shaft. Ifor the position of the shaft shown
in the figure, flexural rigidity is a minimum and the
lateral vibrations will therefore have the smallest fre-
quency. Rotating the shaft by 90 degrees we will obtain 2
vibrations of the highest frequency in the plane of @ﬂ
maximum flexural rigidity. In our further discussion ©
we will assume that the difference between the two Fia. 97.
principal rigidities is small, say not larger than ten per
cent. Thus the difference between the maximum and minimum frequency
of the lateral vibrations will be also small, not larger than say five
per cent.

Assume now that the shaft rotates during its lateral vibrations. In
such a case we obtain a vibrating system of which the spring characteristic
is changing with the time, making one complete eycle during half a revo-
lution of the shaft. By using the same kind of reasoning as in the pre-
vious case it can be shown that for a certain relation between the angular
velocity w of the shaft and the mean value p of the circular frequency of
its lateral vibrations, positive work will be done on the vibrating system,
and this work will result in a gradual building up of the amplitude of the
lateral vibrations. Such a condition is shown by the two curves in Fig.
98. The upper curve represents the displacement-time curve for the
lateral vibration of the shaft with a mean frequency p. The lower curve
represents the fluctuating flexural rigidity of the shaft assuming that
the shaft makes one complete revolution during one cycle of its lateral
oscillations so that w = p. At the bottom of the figure the corresponding
positions of rotating cross-sections of the shaft with the neutral axis n are
shown. It is secen that during the first quarter of a cycle when the disc is
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moving from the extreme position towards the middle position and the
reaction of the shaft on the disc produces positive work the flexural rigidity
is larger than its average value, while during the second quarter of a cycle,
when the reaction of the shaft opposes the motion of the dise, the flexural
rigidity is smaller than its average value. Observing that at any instant
the reaction is proportional to the corresponding flexural rigidity, it can
be concluded that the positive work done during the first quarter of the
cycle is numerically larger than the negative work during the second
quarter. This results in a surplus of positive work during one revolution
of the shaft which produces a gradual increase in the amplitude of the
lateral vibrations of the shaft.

If the shaft shown in Fig. 97 is placed horizontally the action of gravity
force must be taken into consideration. Assuming that the deflections
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due to vibrations are smaller than the statical deflection of the shaft
produced by the gravity force of the disc, the displacements of the disc
from the unbent axis of the shaft will always be down and can be repre-
sented during one cycle by the ordinates of the upper curve measured
from the ot axis in Fig. 99 a. There are two forces acting on the dise, (1)
the constant gravity force and (2) the variable reaction of the shaft on the
dise which in our case has always an upward direction. The work of the
gravity force during one cycle is zero, thus only the work of the reaction
of the shaft should be considered. During the first half of the cycle in
which the disc is mowing down the reaction opposes the motion and nega-
tive work is produced. During the second half of the cycle the reaction
is acting in the direction of motion and produces positive work. If we
assume, as in the previous case, that the time of one revolution of the
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shaft is equal to the period of the lateral vibrations and take the same
curve as in Fig. 98, b for the fluctuating flexural rigidity, it can be seen
that the total work per cycle is zero. A different conclusion will be
reached if we take the angular velocity w of the shaft two times smaller
than the frequency of the lateral vibrations, so that the variation of the
flexural rigidity can be represented by the lower curve in Fig. 99. It is
seen that during the first half of the cycle, when the reaction is opposing
the motion the flexural rigidity is smaller than its average value, and
during the second half of the cycle, when the reaction is acting in the

S
: — &5

F1a. 100.

direction of motion, the flexural rigidity is larger than its average value.
Thus a positive work during a cycle will be produced which will result in a
building up of the amplitude of vibrations. We see that, owing to a
combination of the gravity force and of the variable flexural rigidity, a
large lateral vibration can be produced when the number of revolutions
of the shaft per minute is only half of the number of lateral free oscillations
of the shaft per minute. Such types of vibration may occur in a rotor
having a variable flexural rigidity, for instance, in a two
pole rotor (Fig. 100) of a turbo generator. The deflec-
tion of such a rotor under the action of its own weight
varies during rotation and at a certain speed heavy
vibration, due to this variable flexibility, may take place.
The same kind of vibration may occur also when the
pon-uniformity of flexural rigidity of a rotor is due to
a keyway cut in the shaft. By cutting two additional
keyways, 120 degrees apart from the first, a cross-
section with constant moment of inertia in all the
directions will be obtained and in this way the cause F1a. 101.

of vibrations will be removed.

As another example let us consider a simple pendulum of variable
length ! (Fig. 101). By pulling the string OA with a force S, a variation
in the length [ of the pendulum can be produced. In order to obtain the
differential equation of motion the principle of angular momentum will be
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applied. The momentum of the moving mass W/g can be resolved into
two components, one in the direction of the string OA and another in the
direction perpendicular to OA. In calculating the angular momentum
about the point O only the second component equal to (W /g)l, must be
taken into consideration. The derivative of this angular momentum with
respect to the time ¢ should be equal to the moment of the acting forces
about the point 0. Hence the equation

Cft (L: 126) = — Wlsin 6,
cr

+l—zi—te+ 9 sin 6 = o. (57
In the case of vibrations of small amplitude, 6§ can be substituted for
sin 0 in eq. (57) and we obtain

2dl.

+ldto+ 0—0. (58)
When [ is constant the second term on the left side of this equation van-
ishes and we obtain a simple harmonic motion in which g/l takes the place
of the spring constant divided by the mass in eq. (b), p. 151. The varia-
tion of the length [, owing to which the second term in eq. (58) appears,
may have the same effect on the vibration as the fluctuating spring stiff-
ness discussed in the previous examples. Comparing eq. (58) with eq.
(26) (see p. 33) for damped vibration, we sec that the term containing
the derivative dl/dt takes the place of the term representing damping in
eq. (26). By an appropriate variation of the length [ with time the same
effect can be produced as with ‘‘negative damping.”” In such a case a
progressive accumulation of energy in the system instead of a dissipation
of energy takes place and the amplitude of the oscillation of the pendu-
lum increases with the time. It is easy to see that such an accumulation
of energy results from the work done by the tensile force S during the
variation in the length [ of the pendulum. Various methods of varying
the length ! can be imagined which will result in the accumulation of
energy of the vibrating system:.

As an example consider the case represented in Fig. 102 in which the
angular velocity d6/dt of the pendulum and the velocity dl/dt of variation
in length of the pendulum are represented as functions of the time. The
period of variation of the length of the pendulum is taken half that of the
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vibration of the pendulum and the d/dt line is placed in such a manner
with respect to the dl/dt line that the maximum negative damping effect
coincides with the maximum speed. This means that a decrease in the
length 1 has to be produced while the velocity d6/dt is large and an increase
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in length ! while the velocity is comparatively small. Remembering that
the tensile force S is working against the radial component of the weight
W together with the centrifugal force, it is casy to see that in the case
represented in Fig. 102 the work done by the force S during any decrease
in length ! will be larger than that returned during the increase in length
l. The surplus of this work results in
an increasc in encrgy of vibration of
the pendulum.

The calculation of the increase in
energy of the oscillating pendulum
becomes especially simple in the case
shown in Fig. 103. It is assumed in
this case that the length of the pen-
dulum is suddenly decreased by the
quantity Al when the pendulum is in
its middle position and is suddenly
increased to the same amount when Fia. 103.
the pendulum is in its extreme posi-
tions. The trajectory of the mass W/g is shown in the figure by the
full line. The mass performs two complete cycles during one oscillation
of the pendulum. The work produced during the shortening of the length

l of the pendulum will be
(W + ¥ ”i) AL* ()
b g l

* In this calculation the variation in centrifugal force during the shortening of the
pendulum is neglected.
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Here v denotes the velocity of the mass W/g of the pendulum when in its
middle position. The work returned at the extreme positions of the
pendulum is

WAL cos a. )]

The gain in energy during one complete oscillation of the pendulum
will be
[

2
AE = 2l<W + g%) Al — WAL cos a},

or by putting :
v?2 = 2gl(1 — cos a),
we have
AE = 6WAIl(1 — cos ). (9)

Due to this increase in energy a progressive increase in amplitude of
oscillation of the pendulum takes place.

In our discussion a variation of the length [ of the pendulum was
considered. But a similar result can be obtained if, instead of a variable
length, a variable acceleration g is introduced. This can be accom-
plished by placing an electromagnet under the bob of the pendulum. If
two cycles of the magnetic force per complete oscillation of the pendulum
are produced, the surplus of energy will be put into the vibrating system
during each oscillation and in this way large oscillations will be built up.

It is seen from the discussion that a vertically hanging pendulum at
rest may become unstable under the action of a pulsating vertical magnetic
force and vibrations, descritbed above, can be produced if a proper timing
of the magnetic action is used.* A similar effect can be produced also if a
vibratory motion along the vertical axis is communicated to the sus-
pension point of a hanging pendulum. The inertia forces of such a verti-
cal motion are equivalent to the pulsating magnetic forces mentioned above.

If, instead of a wvariable spring characteristic, we have a variable
oscillating mass or a variable moment of inertia of a body making tor-
sional vibrations, the same phenomena of instability and of a gradual
building up of vibrations may occur under certain conditions. Take,
for example, a vertical shaft with a flywheel attached to its end (Fig.
104). 'The free torsional vibrations of this system will be represented by
the equation

df..
d—t(zo) + k6 =0, (h)

* See Lord Rayleigh, Theory of Sound, 2nd ed., Vol. T, p. 82, 1894,
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in which I is the moment of inertia of the flywheel and k is the spring con-
stant. Let us assume now that the moment of inertia I does not remain
constant and varies periodically with the time due to the harmonic motion
of two symmetrically situated masses m sliding along the spokes of the
wheel (Fig. 104, ). In such a case the moment of inertia can be repre-
sented by a formula

I = Iv(1 + asin wi), )

in which  is the circular frequency of the oscillating masses m and « is a
factor which we assume small in comparison with unity, so that there is
only a slight fluctuation in the magnitude of the moment of inertia I.
Substituting expression (i) into eq. (h), we can write this equation in the
following form:

Toaw cos wt . k

Iob — 0+ -
0 +l+asmwt 1 4+ asin wt

9 =0,

or, observing that « is a small quantity, we obtain

Io6 + Ioawcos wt § + k(1 — asin wt)f = 0. €)

It is seen that on account of the fluctuation in the mag-
nitude of the moment of inertia we obtain an equation
(j) similar to those which we had before for the case
of systems with variable spring stiffnesses. From this
it can be concluded that by a proper choice of the
frequency w of the oscillating masses m large torsional
vibrations of the system shown in Fig. 104 can Le
built up. The necessary energy for these vibrations
is supplied by forces producing radial motion of the
masses m. When the masses are moving toward the
axis of the shaft a positive work against their cen-
trifugal forces is produced. For a reversed moticn
the work is negative. If the masses be pulled towards
the axis when the angular velocity of the torsional I1a. 104.
vibration and the consequent centrifugal forces are

large and the motion be reversed when the centrifugal forces are small
a surplus of positive work, required for building up the torsional vibra-
tions, will be provided. Such a condition is shown in Fig. 105 in which
the upper curve represents angular velocity 6 of the vibrating wheel and
the lower curve represents radial displacements r of the masses m. The
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frequency of oscillation of the masses m is twice as great as the fre-
quency of the torsional vibrations of the shaft.

If the wheel of the shaft is connected to a reciprocating mass as shown
in Fig. 106 conditions similar to those just described may take place.
If the upper end of the shaft is fixed and the flywheel performs small
torsional vibrations such that the configuration of the system changes
only little, all the masses of the system can be replaced by an equi-
valent disc of a constant moment of inertia (see p. 77). But if the shaft
is rotating the configuration of the system is changing periodically and
the equivalent disc must assume periodically varying moment of inertia.
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On the basis of the previous example it can be concluded that at certain
angular velocities of the shaft heavy torsional vibrations in the system
can be built up. These vibrations are of considerable practical impor-
tance in the case of engines with reciprocating masses.*

28. Discussion of the Equation of Vibratory Motion with Variable Spring Charac-
teristic.—Vibrations Withouwt Damping.—-The differential equation of motion in the
case of a variable spring characteristic can be represented in the following form if
damping is neglected:

z + [p* + of )]z = 0, (a)

in which the term «f(t) is a periodical function of time defining the fluctuation of the

* This problem is discussed in the following papers. k. Trefftz, Aachener Vortrige
aus dem Gebiete der Aerodynamik und verwandter Gebiete, Berlin, 1930; I'. Kluge,
Ingenieur-Archiv, V. 2, p. 119, 1931; T. Ii. Schunk, Ingenieur-Archiv, V. 2, p. 591,
1932; R. Grammel, Ingenieur-Archiv, V. 6, p. 59, 1935; R. Grammel, Zeitschr. f.
angew. Math. Mech. V. 15, p. 47, 1935; N. Kotschin, Appliecd Mathematics and
Mechanics, Vol. 2, p. 3, 1934 (Russian).
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spring stiffness. In mechanical vibration problems we usually have small fluctuations
of the stiffness and this term can be considered as small in comparison with p2.  When
this term vanishes, eq. (a) coincides with that for free harmonic vibrations. In some
of the examples discussed in the previous article, the fluctuation of the spring stiffness
follows a sinusoidal law and the equation of motion becomes: *

2 + [p? + asin otle = 0. ()

These conditions we have, for instance, in the case of lateral vibrations of a string sub-
jected to the action of a variable tension as shown in Fig. 96¢.

The simplest case of a variable spring stiffness is obtained in the case repre-
sented in I1g. 96d, in which a ripple is superposed on the spring constant of the system.
We will now discuss this later case and will show in this example how general conclu-
sions regarding type of motion can be made from the consideration of the equation (a).

The general solution of eq. (¢) can be represented mn the form i

z = Ciette(t) 4 Cae™ My (1), ()

where C; and C: are constants of integration, ¢ and ¢ are periodic functions of time
baving the same period 7 = 27/w as the period of fluctuation of the spring character-
istic and p is a cocflicient independent of t.  Owing to the periodicity of the funetions
¢ and ¢ it can be seen from (¢) that, if « = F(t) is a displacement of the system at any
instant ¢, the displacement after the elapse of an interval of time equal to the period
will be

{)7r
¥ <¢ n ;> — (), @

where s is a number depending on the magnitude of the coefficient u. Thus if we know
the motion during one cycle, the displacement at any instant of the second cycle is
obtammed by multiplying the corresponding displacement, of the first cycle by s. In
the same way the displacements of the thurd eyele will be obtained by using the multi-
pher s? and so on. [t is seen that the type of motion depends on the magnitude of the
factor s. If the absolute value of this factor is less than unity, the displacements, given
by expression (c), will gradually die out. If the absolute value of s is larger than unity,
the tendency of displacements will be to grow with time, i.e., if some initial motion to
the system is given, large vibrations will be gradually built up. Thus, in this case, the
motion is unstable.

* This is Mathieu’s differential equation which was discussed by Mathieu in his
study of vibrations of elliptical membranes, see K. Mathieu, Cours de Physique Mathe-
matique, p. 122, Paris, 1873.

t This problem has been discussed by B. van der Pol, sce Phil. Mag. Ser. 7, V. 5,
p- 18, 1928. Sce also the paper by L. Schwerin, Zeitschr. f. Techn. Phys., V. 12, p. 104,
1931. A complete bibliography of this subject can be found in the paper by L. Mandel-
stam, N. Papalexi, A. Andronov, 8. Chaikin and A. Witt, Ixposé des recherches
récentes sur les oscillations non linéaires, Technical Physics of the U.S.S.R., Vol. 2,
p- 81, 1935. .

1 Floquet, Annales de I'Iicole Normale, Vol. 1883/84.
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In practical applications it is very important to know the regions in which instability
takes place and a building up of large vibrations may occur. If the fluctuation of the
spring stiffness consists only in a ripple superposed on the spring constant, the deter-
mination of the regions of instability can be made without much difficulty since for each
half cycle the spring characteristic remains constant and the equation of simple har-
monic motion can be used. Let A be the quantity defining the magnitude of the ripple,
so that the equation of motion for the first half of a cycle, i.e., for 0 <t < 7/w, is:

I+ (p*+4)z =0, (e)
and for the second half of the cycle when n/w <t < 27/w, it is

4 (p*— Az =0. e))

Using the following notations
D =‘\/;"+A and p: =V p:— A, (9

the solutions of egs. (¢) and (f) are:

z = Cysin pit + C: cos pit (h)
zy = Cssin pat + C4 cos pal, (@)
where C; - - - C, are the constants of integration which must be determined from the

following conditions:
(1) At the end of the first half cycle (¢ = 7/w) solutions (k) and (¢) must agree,
i.e., at this instant both solutions must give the same value for the displacement
and for the velocity.
(2) At the end of a full cycle (t = 2x/w) the displacement and the velocity, by
virtue of (d), must be s times as large as at the beginning. Thus the equations for
determining the four constants are

@)y = @iy
(@)1= 10 = @)1= /0 ()
(@2); = 5 1y = 81,

(iz)l= 2x/w = s({vl)l——- 0.

Substituting for z; and z, from (k) and (2) the first of eqs. (j) becomes

T . TPs T
Clsinm +Cgcos-—p—l —C;sm& —C(cosﬁ =0,
w w w w

The remaining three equations of the system (j) will have a similar form so that we
obtain altogether four linear homogeneous equations for determining C; - - - C..
These equations can give solutions for the C’s different from zeros only if their deter-
minant is zero. Evaluating this determinant and equating it to zero we finally obtain
the following quadratic equation for s:

2 2
81—28<cosmcosﬂ)—%—wsinmsinm>+1=0 %)
w w 2p1p2 w w
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or using the notation

” 2 2
N = cos L) cosZrlz - —-———p" + P gin 7r—plsin il V)
w w 2})1])2 w w
we obtain

s2—=25N+1=0

8=N+tVN:—1 (m)

It is seen that the magnitude of the factor s depends on the quantity N. If N > 1
one of the roots of eq. (m) is larger than unity and the vibrations will gradually build
up. Hence the motion is unstable.

When N lies between +1 and —1 the roots of eq. (m) are complex with their moduli
equal to unity. This means that there will be no tendency for the vibrations to grow
so that the motion is stable.

When N < —1 one of the roots of eq. (m) again becomes numerically larger than
unity; consequently the motion becomes unstable.

Let us now consider the physical significance of the fact that multiplier s is positive
when N > 1, and negative when N < —1. Considering the displacements of the
vibrating system at the ends of several consecutive cycles of the spring fluctuations, we
find, from eq. (d), that in the case of positive value of s these displacements will increase
and will always have the same sign. This indicates that the vibrations have the same
frequency as the spring fluctuation frequency w or they are a multiple of it. If we denote
the frequency of vibrations by wo we conclude that for N > 1 we shall have wo = w or
wo = 2w, 3w, etc. If s is negative the displacement at the ends of the consecutive
cycles of the spring fluctuations have alternating signs, which indicates that wo = w/2,
3w/2, ete.

The quantity N, given by expression (l), is a function of the ratios p\/w and ps/w.
By using eqs. (g) we can also represent it as a function of the ratios A/p? and p/w.
The first of these ratios gives the relative fluctuation of the spring constant and the
second is the ratio of the vibration frequency of a ripple-free spring system, to the
frequency of the stiffness fluctuation. If we take (p/w)? as abscissas and (A/p?)(p?/w?)
as ordinates a point in a plane for each set of values of the ratios A/p? and p/w may be
plotted and the corresponding value of N may be calculated. If such calculations have
been made for a sufficient number of points, curves can be drawn that will define the
transition from stable to unstable states of motion. Several curves of this kind are
shown in Fig. 107,* in which the shaded arcas represent the regions in which
—1 < N <1 (stability) and the blank area, the regions where N > 1 or N < -1
(instability). The full lines correspond to N = +1 and dotted lines to N = —1.
The numbers in the regions indicate the number of oscillations of the system during
one cycle, 7 = 27/w, of the stiffness fluctuation.

For a given ratio A/p? i.e., for a known value of the relative fluctuation of the
stiffness of the spring, the ordinates are in a constant ratio to the abscissas in Fig. 107
and we obtain an inclined line, say OA. Moving along this line we are crossing regions
of stable and of unstable motions indicating that the stability of motion varies as the
frequency w of the stiffness fluctuation is changed. When w is small we get points on
the line OA far away from the origin O. As  is gradually increased, the system passes

from which

* See paper by B. van der Pol, loc. cit., p. 161,
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through an infinite number of instability regions. Finally, as p/w approaches the
origin, the last two regions of instability are crossed, one in which the ratio p/w is
approximately unity and the other, in which p/w is approximately one half. ~ Kxperiences
with such cases as discussed in the previous article indicate that these two instability
regions are the most important and that large vibrations can be expected if the fre-
quency of the stiffness fluctuation coincides with that of the free vibration * or is twice
as large as that frequency. It is seen from the figure that the extents of the regions of
instability such as are given by the distances aa or bb can be reduced by diminishing the
slope of the line OA, i.e., by reducing the relative fluctuation of the spring stiffness.
Practically such a reduction can be accomplished in the case of torsional vibrations by
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introducing flexible couplings. In this way the general flexibility of the system is
increased and the relative spring fluctuation becomes smaller.

Damping is, of course, another important factor. In all our discussions damping
has been neglected, thus theoretically we do not get an upper limit for the amplitude
of the gradually built up vibrations. Practically this limit depends on the amount
of damping, therefore, by introducing some additional friction into the flexible couplings
considerable reduction in the vibrations can be effected.

Figure 107 which we used in the above discussion corresponds to the case of a rec-
tangular ripple, but more elahorate investigations show that similar results are obtained
also in the case of the sinusoidal ripple that was assumed in eq. (b).f In more general
cases when the ripple superposed on the constant spring stiffness is of a more compli-

* Calculated by assuming the average value per cycle for the stiffness of the spring.
t See paper by B. van der Pol, loc. cit., p. 161,
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cated form, a method of successive approximations can be used for calculating the extent
of the instability regions. Taking one of the instability regions for a given stiffness
fluctuation, say region aa in Fig. 107, we know that for any point in that region the
numerical value of the factor s in eq. (d) 18 larger than unity and that the amplitude
of vibration is growing. If we now consider the limiting points a, we know that at
these points the numerical value of s becomes equal to unity and there is a possibility
of having a steady vibratory motion. Thus the limiting points of an instability region
are characterized by the fact that at these points steady vibrations of the system are
possible.  For the purpose of calculating the position of such points we may assume
some motion of the system and investigate for what values of the frequency w this
motion becomes a steady periodic motion. These values then define the limits of the
instability regions. The application of this method in studying electric locomotive
vibrations will be shown in the next article.

The points to the left from the origin in I'ig. 107 correspond to negative values of p?,
i.c., to negative spring constants.  Such spring characteristic we may have,
for mstance, in the case of a pendulum. For a hanging pendulum the B
spring characteristic is defined by the quantity g/l, where { is the equiva-
lent length of the pendulum. In the case of the inverted pendulum, Fig.
108, the spring characteristic is given by —g/l.  We know that this posi-
tion of equilibrium is unstable. By giving a vertical vibratory motion to
the point of support A a fluctuation in the spring stiffness can he

introduced (see p. 158). In such a case, as shown in Fig. 107, stability A r
conditions can be obtamed for certain frequencies of this fluctuation.

e . . . . Fia. 108.
Thus the pendulum will remain stable in the inverted position.

Vibrations with Damping.—As an example we take the case when
damping is proportional to the velocity and the spring stiffness has a sinusoidal fluctu-
ation of a period #/w.  The equation of motion in this case is

T+ 2k + (p? — 2 sin 20t)z = 0. (a)

When « vanishes, this equation coincides with eq. (26), p. 33 for free vibrations with
linear damping. TFrom the discussion of the previous article we know that a steady
vibration of a period twice as large as the period of the stiffness fluctuation can be
expected in this case. We will now investigate under what conditions such a steady
motion is possible. This motion will not he a simple harmonic vibration but we may
represent it by a series of the period 27/w:
z = A;sin wt + By cos wt + Ajzsin 3wl + Bj; cos 3wt + A sin Swt 4 ¢ ¢ - )
and use a methcd of successive approximations.*
Substituting the series in eq. (a) and equating the coefficients of sin wt, cos wt, ete.,
to zero, we obtain:
Iil(])2 - w:) - 2710)”1 - (‘!Bl + aB;;
Bi(p? — ) + 2nwly — ady — ad;
Ai(p? — Y0?) — bnwB; — aB + aBs
B;(p? — 9w?) + 6nwd; + ol — ad;
As(p? — 250w?) — 10nwBs — aBBs + a3y
By(p* — 25w + 10nwds + ad; — ad;y

[ A T
cocoocco
o)

o
N

* Such a method of investigation was used by Lord Rayleigh, see Theory of Sound,
21d ed., Vol. 1, p. 82, 1804,



166 VIBRATION PROBLEMS IN ENGINEERING

These equations show that the coefficients A;, B; are of the order o with respect to Ay,
B;; that A; Bj are of order o with respect to As, B;, and so on. Thus if « is small
the series (b) is a rapidly converging series. The first approximation is obtained by
keeping only the first two terms of the series. Omitting 4; and B; in the first two of
eqs. (¢), we find that

A(p? — 0?) — 2nw +a)B1 =0

A41(2nw — a) + (p? — w?)B; = 0. (d)

These equations will give solutions different from zero for A, and B, only if their deter-
minant vanishes, whence
(p? — w?)? = a? — 4nlwi (e)

Thus, if the quantity a, defining the spring stiffness fluctuation, is known, the magnitude
of the frequency w, at which a steady motion is possible, can be found from eq. (¢)
which gives

w = '\/pg —2n £V (p? — 222 + ot — P o

From egs. (d) we also have
é_?nw-}-a Y

()

a — 2nw

Bl— P — w?

Then the first two terms of the series, representing the first approximation of the motion,
can be given in the following form:

21 = Csin (ot + B)
where

C =V A:?+ B2 and B = arctan (B,/A)). h)

The amplitude of the vibration remains indefinite while the phase angle 8 can be caleu-
lated by using expression (k). If there is no damping, 2n = 0 and we obtan

/ a a .
w=7p l:t:;zzp<1:§:'2—p2>- (¥)

These two values of w correspond to the two limits of the first region of instability, such
as points aa in Fig. 107. Equation (e)

X requires that a be not less than 2naw.

g_ For a < 2nw sufficient energy cannot be
) 1 ¢ supplicd to maintain the motion. For
_7.7.\/_71 a = 2ne we have « = p, i.c., the fre-

“ “ quency of the stiffness fluctuation is

exactly two times larger than the free

a7~ vibration frequency of the system without

Az damping and with the assumed constant

(b) i ¢ spring stiffness defined by the quantity p.
The phase angle 8, as may be scen from

TF1a. 109. (9) and (h), is zero in this case and the

relation between the motion and the spring
fluctuation is such as is shown by curves (a) and (b) in Fig. 109. When a > 2nw, two
solutions for w are obtained from (f) and the corresponding phase angles from (k).
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When « is much greater than 2nw the ratio A,/B; in eq. (g) approaches unity and the
phase angle is approximately equal to & =/4. TFor this case we therefore conclude that
the curve (b) in Fig. 109 must be displaced along the horizontal axis so as to make
its maximum or its mmnimum correspond to the zero points of the curve (a), i.e., the
spring stiffness is a maximum or a minimum when the system passes through its posi-
tion of equilibrium.

If a second approximation is desired we use the third and fourth of egs. (c), from
which, for small damping, we have approximately

4, = an_____ B, = — ;’i‘._ G)

pt— 9w’ Pt — Yot

Thus the second approximation for the motion is

i

0
z = Csin (wl + B) + -——— cos (3wt + p). (k)
Pt — Yw*

Substituting expressions (j) in the first two of eqs. (¢) we find the following more
accurate equation for determining the values of o, at which a steady motion is possible:

<p2 — w? - _..._a- )“ = aq? — 4"1'3112 (l)

Pt — Yot

and for the phase angle

2

~ﬁmﬁ+w+hm

tan g = <p2 — w? ==
pr -

Thus, by using the described method of suceessive approximations, we can establish
the limits of the regions of instability, investigate how these limits depend on the
amount of damping and determine the phase angle 8. \ll this information is of prac-
tical interest in investigating vibrations due to fluctuation of spring stiffness.

29. Vibrations in the Side Rod Drive System of Electric Locomotives.—
General.—One of the most important technical examples of systems
with fluctuating stiffness is to be found in the case of electric loco-
motives with side rod drive. The flexibility of the system between
the motor shaft and the driving axles depends on the position of the
cranks and during uniform motion of the locomotive this is usually
a complicated function of time, the period of which corresponds to one
revolution of the driving axles. We have seen in the previous article that
such systems of variable flexibility under certain conditions may be
brought into heavy vibrations. Due to the fact that such vibrations are
accompanied by a fluctuation in the angular velocity of the heavy rotating
masses of the motors, large additional dynamical forces will be produced
in the driving system of the locomotive. Many failures especially in the
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early period of electric locomotive building must be attributed to this
dynamical cause.*

Variable Flexibility of Side Rod Drive—In order to show how the
flexibility of a side rod drive changes during rotation of the motor a simple
example shown in Fig. 110 will now be considered. A torque M, acting
on the rotor, is transmitted to the driving axle 0,0; through the motor
shaft 00, cranks 01 and 02 and side rods 11 and 22. Consider now the
angle of rotation of the rotor with respect to the driving axle 0,0; due to
twist of the shaft 00 and due to deformation of the side rods. Let M’,

2

n

Driver

F1c. 110.

and M'’, be the moments transmitted to the driving axle through the side
rods 11 and 22, respectively, then:

M, =M, 6+ M", (@)

and if k; is spring characteristic for the end OA of the shaft, then the
angle of rotation of the motor due to twist of the shaft will be given by

M,
Arp = ke b)

Consider now the angle of rotation A2¢ due to compression of the side
rod 11. Let,

* The most important papers dealing with vibrations in electric locomotives are:
1. “Ueber Schuttelerscheinungen in Systemen mit periodisch veranderlicher Elas-
tizitat,” by Prof. E. Meissner, Schweizerische Bauzeitung, Vol. 72 (1918), p. 95.
2. “Ueber die Schiittelschwingungen des Kuppelstangantriebes,” by K. E. Miiller,
Schweizerische Bauzeitung, Vol. 74 (1919), p. 141.
3. “Kigenschwingungen von Systemen mit periodisch verinderlicher Llastizitit,” by
L. Dreyfus. “A. Foppl zum siebzigsten Geburtstag” (1924), p. 89.
. A Wichert, Schiittclerscheinungen, Forschungsarbeiten, Heft 266 (1924).
. E. E. Seefehlner, Elektrische Zugforderung, 1924,
. A. C. Couwenhoven, Forschungsarbeiten, Heft 218, Berlin, 1919.

D O
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S1 be compressive force in this side rod,

_ S
" AE
r is the radius of the crank.

) is the corresponding compression of the side rod,

Then we have
M’y = Sirsin ¢, (¢

and from a geometrical consideration (see Fig. 111),

6 = rlqpsin o. ()

Fia. 111.
Remembering that
AE
Si=0
we have from egs. (¢) and (d),
Ao = M
27 AErsin? o’
or, by letting
AEr?
ABrZ
we have
Ao = LI
2% 7 kasin I ©)

The complete angle of rotation of the motor with respect to the driving
axle will be *

1 1
Ap = A1 + dop = M'z<-- +——>- N

k)_ kz sin2 @

* The deformation of the side rods and of the shaft 00 only are taken into con-
sideration in this analysis.
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The same angle should be obtained from a consideration of the twist of the
end OB of the shaft and of compression of the side rod 22. Assuming
that the arrangement is symmetrical about the longitudinal axis of the
iocomotive and repeating the same reasoning as above we obtain,

A¢=aM%(1~+——i——)- ()

ki k2 cos? ¢

From equations (a), (f) and (g), we have

1
— sin2 ¢ cos? ¢ + —
kl k2
Mg = A(p 1
i 2 —_ — 2 —_
(k1 sin <p+k2> (kl cos ¢p+k2>
2— —8——~2—co 4
= A kl k2 kl 5% (h)
Ss s 1 ]
ko2 | kiks | ki k20 0®
Putting
Cw 282,
¢ = wi, kl k2 - % kl - U
8 8 1 1
2o 2= — =d
o2 Tk T2 g W
we have

a — b cos 4wt

M, =Ap———-
‘ ‘pc—dcos4wt

(57

It is seen that the flexibility of the system is a function with a period
four times smaller than the period of one revolution of the shaft. In Fig.
112 the variation of the flexibility with the angle is represented graphically.
For a given value of torque the angle of twist becomes maximum and equal

1 1
to M, (k—1 + k—) when

p=wt=0,-,m...

T
2
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It becomes minimum and equal to M, <~1— + l) when

2k ke
P
p=w "‘4)4
M
a¢

Sk
Tk
:IN

i ! \
.
NEEEREE
l ! ! 2
0 L7 7, T
I'16. 112.

1711

It is casy to see that the fluctuation in the flexibility of the system
decreases when the rigidity of the shaft, i.c., the quantity ki, increases.

For an absolutely rigid shaft the
flexibility of the system remains con-
stant during rotation.

In our above consideration equa-
tions (a), (f) and (g) were solved ana-
lytically. The same equations can,
however, be easily solved graphically.* , .
Let AB represent to a certain scale i 4 i

0

» (3 icesg M

® (.kll,

the magnitude of the torque M, (see Mg

0

)Mt

7
kz 3Iﬂlz

Fig. 113); then by taking the end I'a. 113.
ordinates AF and BD equal to

1 1 1 1
= — = ) M. s el —
<k1 + ko cos? <p> M and <k1 + ky sin? <p) M.,

respectively the vertical OC through the point of intersection of the lines
BF and AD will determine AC and CB, the magnitudes of the moments M’

and M,”.
From the figure we have also,

1 1
R VN - RS
0C = M, (kl + ko sin? go) Ae,

* This method was used by A. Wiechert, loc. cit., p. 168.
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i.e., OC is equal to the angle of rotation of the motor due to deformation
of the side rod drive produced by the torque M ,.

This graphical method is especially useful for cases in which clearances,
as well as elastic, deformations are considered. Consider, for instance,
the effect of the clearance between side rod and crankpin. Let a denote
the magnitude of this clearance,* then the displacement (see Fig. 111) will
be equal to the compression of the side rod together with the clearance a
and we have,

Sil

T R
or, by using eq. (¢) and (d)
. oMl
rizesin ¢ = rsin g AE +a
]‘l/[ a
Azp =

kesinZ?p  rsin ¢

The complete angle of rotation will be

M, M, a
Ap = A1p + D2 = —— + =~ - )
ki1 kasin?¢ = rsin ¢
In the same manner, by considering the other crank, we obtain
A[’l M’/ a
Ap ==~ 5 : 0]
k1 kacos? o rcos e

From equations (&), (I) and (a) the moments M’, and M"', and the
angle Ay can be calculated. A graphical solution of these equations is
shown in Fig. 114. ADB represents, as before, the complete torque M..
The straight lines DF and LK represent the right sides of equations (k)
and (I) as linear functions of M’, and M’ respectively. The point
of intersection O of these two lines gives us the solution of the problem.
It is easy to see that the ordinate OC is equal to the angle Ay and that
the distances AC and CB are equal to the torque M’, and M",, respec-
tively.

It is seen from Fig. 114 that for the position of the cranks when

a a 1 1
" recos ¢ rsing + <}c—1 T ke sin? ¢>M¢ (m)

* a denotes the difference between the radius of the bore and the radius of the pin.
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M, becomes equal to 0. For smaller values of ¢* than those given
by eq. (m) the side rod 1-1 takes the complete torque and M’, = M,. In
the same manner for angles larger than those obtained from the equation,

a a 1 1
C e (Y
rsin ¢ T COS @ k1 ke cos® o

M’, = 0, and the complete torque is taken by the side rod 2-2. By using
the graphical solution (I'ig. 114) within the limits determined by equations

r

(/f by izcosi»M,

17D

(23
rsin M; M{—s| roos¢
L, c ||
R . | )
M
Fra. 114.

(m) and (n), and using equations (k) and (I) beyond these limits, the
complete picture of the variation of the angle A¢ can be obtained for
/2 < ¢ < . In a similar manner other crank positions can be con-
sidered and a curve representing the variable spring characteristic M,/A¢
as a function of «t, similar to that shown in Fig. 112, can be plotted.

Vibrations in the Side Rod Drive System.—Considering the motion of
the system shown in Fig. 110,

I, is moment of inertia of the mass rotating ahout the axis 0-0,

I> is moment of inertia of the mass rotating about the axis 0,-04,

o1, o2 are corresponding angles of rotation about 0-0 and 0,-0; re-
spectively,

A¢ = ¢1 — o2 is the angular displacement of the motor with respect
to the driving axle due to deformation in the shafts and side rods,

¢ is the variable flexibility of the side rod drive, i.e., the torque necessary

* The configuration shown in Fig. 111, in which the cranks are situated in the first
and second quadrants is considered here.
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to produce an angular displacement Ay equal to one radian. In the par-
ticular case considered above (eq. 57, p. 170) we have
M, a —bcosduwt

‘//=_

= . 57)1
Ap ¢ — d cos 4wt (57)

M., M, are moments of the external forces acting on the masses I; and
I, respectively. When motion of the locomotive takes place a constant
torque M, acts on the mass having a moment of inertia I; (Fig. 110) and
in opposition to this a moment Y (o1 — ¢2) is brought into play which
represents the reaction of the elastic forces of the twisted shaft 0-0. The
differential equation of motion will be
d2<P1
—L S+ Mo e — ) = 0. (@
In the same manner the differential equation of motion for the second
mass will be

d2
-1 md;? — M, + Y(e1 — ¢2) = 0. (b)

In actual cases I; and I represent usually the equivalent moments of
inertia, the magnitude of which can be calculated from the consideration
of the constitution of the system.

From equations (a) and (b) we have

d? (o1 — ¢2) I+ 1, M, M,
i + ¢ 1.5 (¢1—<P2)—Il+12'
Letting
I+ 1,
¢1— 2 =1, WP‘IL—IZ" =0, (58)
the following equation will be obtained:
. ]L[t Mr

:v+0x—Il+I2, (c)

in which 8 is a certain periodical function of the time. In the case shown

in Fig. 109, we have from eq. 57, p. 170.

§ = Ii+1I: I+ Ira — bcosdut
" LI, LIy ¢ — dcos4ut

(59)

If the rigidity of the shaft is very large in comparison with that of
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the side rods, the quantities b and d in eq. 59 can be neglected (see p. 170)
and we obtain

We arrive at a system having a constant flexibility, the circular frequency
of free vibration of which can be easily found from the following equation

(see p. 12)
ke + 12).
p—vﬁ7E;4 (60)

Under the action of a variable torque M, large vibrations in the system
may arise if the period of M, is equal to or a multiple * of the period of the
free vibrations of the system. In this manner a series of critical speeds for
the system will be established.

In the case of a variable flexibility the problem becomes more compli-
cated. Instead of definite critical speeds, there exist definite regions of
speeds within which large vibrations may be built up. In order to de-
termine the limits of these critical regions an investigation of the equation

%+ 6z =0, (61)

representing the free vibrations of the system becomes necessary. The
factor 6 in this equation is a periodic function of the time depending on
the variable flexibility of the system and is determined by eq. (68). Let
7 denote the period of this function and z(!) — a solution of eq. (61).
Then, as was shown in the previous article the values of 7 corresponding to
the limits of the critical regions are those values at which one of the two
following conditions is fulfilled:

z(t + 1) = z(®), (d)
z(t + 1) =—z(0). (o)

In the further discussion we will call the case (d) a periodic solution of
the first kind and the case (e) a periodic solution of the second kind. It
means that values r détermining the limits of the critical regions are those
values at which eq. (61) has periodic solutions either of the first o1 of the
second kind.

* 1t is assumed that M. is represented by a trigonometrical series (see article
18); then resonance occurs if the period of one of the terms of this series becomes
equal to 7.
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Calculation of Regions of Critical Speeds.*

In the case of an electric locomotive, the fluctuation in the flexibility of the system
is usually small and the regions of critical speed can be calculated by successive approxi-
mation. The procedure of these calculations will now be shown in a particular case
where the function 6 in the general equation,

Z2+0x=0 (62)
has the following form,
o = a~+bcos2wt + ccosdwt I, + I,
P+ gcos2wt + rcosdut 111,

(63)

In the case of a symmetrical arrangement, discussed above, b = ¢ = 0 and we
arrive at the form shown in eq. (59), p. 174.

Assuming only small fluetuations in 8 during motion of the locomotive, the quantities
b, ¢, ¢, and r in eq. (63) become small in comparison with a and p and, by performing
the division, this equation can be represented in the following form,

a b c q T
0 =4{- 4+ —cos2wt + ~cosdwt} {1 — |- cos 2wt + - cos 4wt
p p P P p

2
+ <§0032wt +£cos4wt> — ~-}Il + 1 (a)

LI,
Let,
(lI|+Iz . bIl+Iz 611+Ig q r
— = go; —— = (¢, — = gs¢; - == ; ]
p L. 9 oL U a0 T T e

where g1, g2, gs and g4 are quantities of the same order as go and e denotes a small quan-
tity. Then by using the identity,

2 cos 2mt cos 2nt = cos 2(m + n)t + cos 2(m — n)t, )
eq. (a) can be represented in the following form,
0 = 1r2{au + e(a, cos 2wt + as cos 4wt) + €2(a; cos 2wt + as cos 4wt
+ a5 co8 6wt + ag cos Buwt) + e(azcos 2wt + ++-) + ---}, (o)

in which the constants ao, a1, as, - -+ can be expressed by the quantities gy, g1, - -+ given
above.

It is seen now that the function 6, depending on the variable flexibility of the system,
has a period

..
1
ISR

(d)

i.e., two complete periods of 0 correspond to one revolution of the crank.

In the following discussion of the differential equation (62) the angle ¢, a new
independent variable, instead of the time ¢ will be introduced. This variable will be
determined by the equation,

¢ = wl, (6)

* See Karl E. Miiller, “Ueber die Schiittelschwingungen des Kuppelstangenan-
triebes,” Dissertation der Eidgen. Techn. Hochschule in Ziirich.
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and will represent the angle of rotation of the crank,

_dz  dz . o dio 2d’:l:
U T YTar T Yy
Substituting in eq. 62 and using eq. (d), we have
dx 72
do? +202=0 (64)

in which, from eq. (c)

0= w’{au + e(ay cos 2¢ + azcosd¢) + e2(az cos 2¢ + a4 cos 4o
+ as cos 6¢ + ag cos 8¢) + €¥(arcos 20 + --+)}, ()

i.e., the period of function 8 is now equal to .

According to the previous discussion the limits of the critical regions of the motion
of the system correspond to those values of the period = at which eq. (64) has periodic
solutions of the first or second kind, i.e.,

13(90 + 7") = $(¢), (g)

or
z(p + m) =— z(p). (@

For calculating these particular values of 7 assume that 7 and z(¢) are developed in the
following series,

T = ao + aie + aze® + aze® + -+, ®)

z(p) = z(p) + exr(e) + ex2(e) + -+,
in which e denotes the same small quantity as in eq. (f) above.
Substituting the series (f) and (k) in eq. (64) we have

dzo(p) d2z1(e) d2xs(e)
dp? +e de? te de?
X {ao + e(a; cos 2¢ + az cos 4¢) + e2(ascos 2¢ + - - -)} X
X {zo(e) + exi(e) + ex2(p) + +--} =0.

Ao 4 (o + ane +oze? - --0)2 X

Rearranging the left side of this equation in ascending powers of ¢ and equating the
coeflicients of every power of e to zero, the following system of equations will be obtained

M + ao?acze(e) = 0, (k)
de?
gle(ﬁf’)

4 4+ ag’aori(p) + zu(<p){2aoaoa1 + ao?(as cos 2¢ + azcosdp)} =0. (1)

Equation (k) represents a simple harmonic motion, the solution of which can be
written in the form:

zo = C cos (ng — do). (m)
In which
n=7V aoaoz (n)

and C and §, are arbitrary constants.
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In order to satisfy the conditions (g) and (g)’ it is necessary to take n = 2, 4, 6,
. . . for periodic solutions of the first kind and, n =1, 3, 5, . . . for periodic solutions of
the second kind. Substituting this in eq. (n) and taking into account that from eq. (k)
ao is the first approximation for the period 7, and 7% = 6, represents some average
value of 8, we have,

tnm—— = (65)
Va, V8
in whichn =1,2,3, ---.

Comparing this result with the period 2x/+/8, of the natural vibrations of a system
having constant flexibility = 6, it can be concluded that as a first approximation
definite critical speeds are obtained instead of critical regions of speeds. At this critical
speed the period 2r of one revolution of the crank is equal to or a multiple of the period
of the natural vibration of the system with a constant rigidity corresponding to the
average value 6, of the function 6.

The second approximation for the solution of eq. (62) will now be obtained by

substituting the first approximation (m) in equation (!). This gives
d%, (o
-7;%—) 4+ acao’z1(p) = — 2a0a0a:1C cos (np — &)

—ay?C cos (ngp — do)(a; cos 2¢ + az cos 4¢),
or by using eq. (b)

M + ax®r1(p) = — 2a0a001C co8 (ne — ) —
d?
aofal
- C {cos [(n + 2)¢ — 8] + cos [(n — 2)p — &} —
=T C {eos [(n + 4)p — 2] + cos [(n — 4)¢ — 4. ©)

The general solution of this equation consists of two parts: first the free vibration
represented by
C1cos (ne — &),

in which C, and §, represent two arbitrary constants while n = V aoa?, and another
part, a forced vibration. In calculating these latter vibrations the method described
on p. 103 will be used. Denoting by R(¢) the right side of eq. (o) the forced vibration
can be represented in the following form,

)
}L fo R(£) sin n(p — £)dE. ®)

The terms on the right side of eq. (0) have the general form
N cos [(n & m)ep — &).
Substituting this in (p) we have

N r¥ N 1
;/(; cos [(n &= m)f — 8] sinn(p — £)d¢ =—%-E{cos[(n;{:m)¢ - 9

— cos (ne — 5)} +]X-

1
W —— {cos [(n £ m)e — 8] — cos (ne + 8)}. (q)
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There are two exceptional cases m = 0 and 2n &= m = 0. In the first exceptional
case (m = 0) the first term on the right side of eq. (g) becomes,

N
— ¢ sin (ng — §).
2n

In the second exceptional case [(2n == m) = 0] the second term on the right side of
equation (g¢) becomes

N
— @ sin (ng + 8).
2n

After this preliminary discussion the general solution of eq. (0) can be represented
in the following form,

1
z1 = Cycos (np — &) — 2aoaoaq(:'2— ¢ sin (ne — &)
n

2 C
_i(‘)g%[cos (ne — 80) — cos (ne + do)] —
. 1 1 1 1
cos[(n+2)¢"50]<_§;'§+2—n'2n+2>+
11 1 1
ay?a,C cos[(n — 2)p — &] (57—0 §+;L.2n—2>+
- 2—‘eo( —6)<L'}'_—1- 1) +
208 (ne 0 om 2 2n 2
11 1 1
tcots (ne +.60) (‘ o m+2 on m) ’ ”
1 1
cos[(n+4)¢—5°]<—i+2n+4>+
1
anzazC{COS[(n_”‘P—ad <:1+2n—4>+
—‘2~2n 1 1
cos (ne — &) <Z"Z> +
+ 80) ).
cos (ne + 8o 2 +4 2n—4

It is seen that all the terms of the obtained solution, except the term,
1
—2apa001C — ¢ sin (ng — 9),
2n
are periodical of the first or second kind; therefore the conditions (g) and (g)’ will be

satisfied by putting,
a)y = 0
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In this manner the second approximation for r will be obtained from the first of the
equations (k) which approximation coincides with the first approximation. Exceptional
cases only occur if » = 1 and n = 2.

In the case n = 1, the terms

dozdlc 1
2

cos [(n — 2)o — 8] — -

11
p— 6 — —
o Bn g st oy 2n—2}

in the general solution (r) assume the form ~ — o and must be replaced by the term

20,C 1
- 30*2'1’* g esin (¢ + o).

In order to make solution (r) periodical of the first or second kind it is necessary
to put in this case

1 2a,C 1
—2apa0a1C = g sin (¢ — do) — il esin (¢ + &) =0
2 2 2
or
. a02a1 . a02a1
8in ¢ cos & | —aavar — 3 + cos ¢ sin &, | apaoar — T )= 0. (s)
There are two possibilities to satisfy this equation:
2a a
1) 3 =0, —doaoas — 2 2, oy =— 2
4 4a,
or
T ao?ay a1
(2) 50 = ‘2‘, Qoo — 4 =y, ay = Za—o"

Substituting the obtained values of «, in the first of the egs. (k) and taking into

1
account that, from eq. (n) forn =1, ay = = we have as the second approximation
WV Qo

for 71, corresponding to the boundaries of the first critical region,

R S Y
T Ve T Vs da
1 1 a
Timax = \/(;; + € \/a; 40,0' (66)

It is seen that instead of a critical speed, given for n = 1 by eq. 65, we obtain a
critical region between the limits (r1)mm and (r1)max- The extension of this region
depends on the magnitude of the small quantity e and it diminishes with the diminishing
of the fluctuation in the flexibility of the system. It is interesting to note also that the
difference in phase 8, between the function 6 and the free vibration of the system has
two definite values for the two limiting conditions, 8, = 0 and § = =/2. It should
be noted also that the critical region considered above (n = 1) corresponds to the
highest speed of rotation and is practically the most dangerous region.
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For the case n = 2, i.e., for the next lower critical region, by using the same method
as above, we will obtain,

(2o = f Feglr 2 ®7)
max Ao 4a0

In order to obtain the critical regions corresponding to n = 3 and n = 4 the third

approximation and the equation for z» must be considered. This equation can be

obtained from the general eq. (0) in the same manner as the equations (k) and (I),

used above for calculating the first and the second approximations.

By using the described method the critical regions for the equation (61) representing
free vibrations in a locomotive can be established. These regions are exactly those
in which heavy vibrations under the action of external forces (see eq. ¢, p. 174) may
occeur.* The investigation of actual cases shows f that the extensions of the eritical
regions are small and that the first approximation in which the variable rigidity is
replaced by some average constant rigidity and in which the critical speeds are given
by eq. 65, gives a good approximation to the actual distribution of critical speeds.

In our investigation only displacements due to elastic deformations in the system
were considered. In actual conditions the problem of locomotive vibrations is much
more complicated due to various kinds of clearances which always are present in the
actual structure and the effect of which on the flexibility of the system have already
been discussed. When the speed of a moving locomotive attains a critical region,
heavy vibrations of the system may begin in which the moving masses will cross the
clearances twice during every cycle.f The conditions will then become analogous to
those shown in Fig. 81, p. 117. Such a kind of motion is accompanied with impact
and is very detrimental in service. Many troublesome cases, especially in the earlier
period of the building of electric locomotives, must be attributed to these vibrations.
For excluding this type of vibrations a flexiblity of the system must be so chosen that
the operating speed of the locomotive is removed as far as possible from the critical
regions. Experience shows that the detrimental effect of these vibrations can be mini-
mized by the introduction into the system of flexibhle members such as, for instance,
flexible gears. In this manner the fluctuation in flexibility of the system will be reduced
and the extension of the critical regions of speed will be diminished. The introduction
in the system of an additional damping can also be useful because it will remove the
possibility of a progressive increase in the amplitude of vibrations.§

* See the paper by Prof. E. Meissner, mentioned above, p. 168.

t See the paper by K. E. Muiller, mentioned above, p. 168.

1 The possibility of the occurrence of this type of vibration can be removed to a
great extent by introducing a flexible gear system.

§ Various methods of damping are discussed in the book by A. Wichert mentioned
above, p. 168.



CHAPTER IV
SYSTEMS HAVING SEVERAL DEGREES OF FREEDOM

30. d’Alembert’s Principle and the Principle of Virtual Displacements.
—In the previous discussion of the vibration of systems having one degrec
of freedom d’Alembert’s principle has been sometimes used. The same
principle can also be applied to systems with several degrees of
freedom.

As a first example the motion of a particle free in space will be con-
sidered. For determining the position of this particle three coordinates
are necessary. By taking Cartesian coordinates and denoting by X, YV
and Z the components of the resultant of all the forces acting on the
point, the equations of equilibrium of the particle will be,

X=0, Y=0Z=0. 68)

If the particle is in motion and using d’Alembert’s principle the differential
equations of motion can be written in the same manner as the equations
of statics. It is only necessary to add the inertia force to the given external
forces. The components of this force in the x, y and 2z directions are
— mx, — my, — mz, respectively, and the equations of motion will be

X—mi=0 Y—mj=0 Z—mi=0. (69)

If a system of several particles free in space is considered, the equations
(69) should be written for every particle of the system.

Consider now systems in which the displacements of the particles
constituting the system are not entirely independent but are subjected
to certain constraints, which can be expressed in the form of equations
between the coordinates of these points. In Fig. 115, several simple
cases of such systems are represented. In the case of a spherical pendu-
lum (Fig. 115, a) the distance of the particle m from the origin O should
remain constant during motion and equal to the length I of the pendulum.
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