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Preface
The information being collected by sensors on board Earth observation satellites 
has revolutionized our knowledge of the planet’s environment. The growing concern 
about the present environmental problems and future sustainability of our planet has 
spurred great interest in monitoring the main variables of the Earth system. We need 
to gain a better understanding of the biogeochemical cycles to enhance our efforts to 
mitigate or adapt to future changes. Satellite remote sensing is a particularly valuable 
tool to collect critical information about the state of the environment. The impacts 
of climate change, deforestation, desertification, fire, floods, and other natural and 
man-made disturbances require an up-to-date, spatially comprehensive, and global 
source of geographical data. Satellite Earth observations provide such global, recur-
rent, and comprehensive views of the many dynamic processes that are affecting 
the resources, and habitability of our planet. Human beings have demonstrated 
their capacity to dramatically alter Earth’s natural systems with both beneficial and 
negative consequences. To make more informed decisions concerning our changing 
environment, a better understanding of the tools used in environmental monitoring 
becomes more and more relevant. Watching how our planet changes from space may 
not be sufficient to modify our current way of living, but it will certainly help us 
to manage our resources more wisely and move toward more sustainable policies. 
Albert Einstein said that information is not knowledge, and certainly good informa-
tion does not necessarily provide good knowledge, but we can also affirm that bad 
information implies bad knowledge and therefore good knowledge requires good 
information, because access to accurate and updated information is the basis for 
making rational decisions.

This book is a modest attempt to help students and professionals become more 
familiar with the remote sensing technology. Many books have already been pub-
lished on this topic, which I obviously do not try to amend. The scope of this book 
relies on focusing on only satellite remote sensing systems and provide an envi-
ronmental orientation to illustrate the different interpretation techniques. A basic 
knowledge of aerial photography is assumed, and the main effort here is dedicated 
to digital interpretation. However, Chapter 5 on visual analysis of satellite images 
offers a synergic use of visual and digital interpretation techniques. Chapter 8 on 
accuracy assessment and the connection between remote sensing and geographic 
information systems will help the reader extend the interpretation of satellite images 
to a more operational, applications-oriented framework.

This book was initially published in Spanish in 1990 and was updated periodi-
cally in the same language. This edition is based on the first English version pub-
lished in 2010 with the help of Professor Alfredo Huete. In addition to translating all 
the material, we have tried to adapt the contents to a more international audience. 
More than half of the figures of this edition are new compared to the former. All are 
now offered in full color, so the reader can better appreciate the quality of informa-
tion provided by Earth observation satellite missions. Formulas are referenced using 
parentheses and are numbered sequentially, preceded by the number of the chapter, 
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in the same way as the figures. We have illustrated the different interpretation 
 techniques using a set of sample images acquired from different ecosystems and at 
different spatial resolutions.

We thank the publishing company for their support in the process, and the 
 valuable suggestions of colleagues and students who have helped to shape the text in 
a more pedagogical way.

All figures are available as powerpoint slides from the CRC Press  website: http://
www.crcpress.com/product/isbn/9781498728058. I hope this addition will help stu-
dents and professors to improve the educational content of the book.

Writing a textbook is really a difficult task that is highly under-appreciated by 
current academic evaluation criteria. Our main interest in carrying out this task was 
to help students and colleagues discover a fascinating world, as observed from above 
Earth, and to facilitate their learning of concepts and tools so that they can make a 
more effective use of satellite data for the benefit of humankind.

Emilio Chuvieco
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1

1 Introduction

1.1 DEFINITION AND OBJECTIVES

One of the earliest dreams of humans has been to observe Earth and its landscapes 
from a bird’s perspective. This was only possible with the advent of balloons, gliders, 
and airplanes. A key driving force in our quest to fly above the ground has been to 
find new perspectives from which to observe Earth’s diverse landscapes. Our view 
of Earth is quite limited when we are confined to the ground. Our desire to sur-
vey entire landscapes, mountain ranges, volcanoes, hurricanes, rivers, and ice fields 
has been evident since the beginning of aeronautics and now forms the foundation 
of space-based Earth observation (EO). Today, as a result of rapid technological 
advances, we routinely survey our planet’s surface from different platforms: low-
altitude unmanned aerial vehicles (UAVs), airplanes, and satellites. The surveillance 
of Earth’s terrestrial landscapes, oceans, and ice sheets constitutes the main goal 
of remote sensing techniques. The term “remote sensing” was first utilized in the 
early 1960s to describe any means of observing the Earth from afar, particularly 
as applied to aerial photography, the main sensor used at that time. In a broader 
context, remote sensing activities include a wide range of aspects, from the physical 
basis to obtain information from a distance, to the operation of platforms carrying 
out the sensor system, to the data acquisition, storage, and interpretation. Finally, the 
remotely collected data are converted to relevant information, which is provided to 
a vast variety of potential end users: farmers, foresters, fishers, journalists, glaciolo-
gists, ecologists, geographers, etc. Nowadays, satellite images have become widely 
accessible by ordinary people, who use them within well-known images or map 
services, as basis for planning tourist routes or finding shops and services.

In this book, we will mainly deal with EO from spaceborne imaging sensors. 
There are also a multitude of airborne sensing systems (aerial photography, vid-
eography, lidar, and radar [or radio detection and ranging] systems) that play an 
important role in remote sensing of the Earth’s surface. Airborne remote sensing 
is particularly valuable in local studies, as well as in the validation of satellite data 
within research and development. However, we will focus on satellite systems, as 
they provide worldwide coverage with an ample variation of spatial, spectral, and 
temporal detail, which make them suitable for a wide range of studies. This book is 
targeted mainly at environmental scientists, including biologists, geologists, ecolo-
gists, geographers, foresters, agronomists, pedologists, oceanographers, and car-
tographers. We will mostly deal with terrestrial applications, but some examples 
of atmospheric and oceanographic uses of remote sensing data will be considered 
as well.

Remote sensing may be more formally defined as the acquisition of informa-
tion about the state and condition of an object through sensors that do not touch it. 



2 Fundamentals of Satellite Remote Sensing: An Environmental Approach

A remote observation requires some kind of energy interaction between the target 
and the sensor. The sensor-detected signal may be solar energy (from the Sun) that is 
reflected from the Earth’s surface or it may be self-emitted energy from the surface 
itself. In addition to passive receivers, other sensors produce their own energy pulses 
and therefore are able to observe the Earth’s surface regardless of solar conditions. 
The radiant energy signal that is detected and measured by the satellite sensor is then 
either stored in memory on board the satellite or transmitted to a ground receiving 
station for later interpretation.

Remote sensing also includes the analysis and interpretation of the acquired 
data and imagery. For environmental scientists, this is the most important aspect of 
remote sensing since the main value of this technique is to provide relevant infor-
mation for monitoring Earth’s resources. Extracting relevant information requires 
a good understanding of the physical basis and the acquisition process, as well as a 
solid knowledge of the algorithms used to process the original data.

In summary, remote sensing includes the following six components (Figure 1.1):

 1. An energy source, which produces the electromagnetic radiation that inter-
acts between the sensor and the surface. The most important source of 
energy is the Sun, as it illuminates and heats the Earth.

Digital processing

Source of energy

Receiving system

End users

Earth’s cover

Atmosphere

Visual interpretation

Remote sensing
platform

FIGURE 1.1 Illustration of the main components associated with remote sensing activities.
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 2. Earth’s surface, consisting of vegetation, soils, water, rocks, snow, ice, 
and human structures. These surfaces receive the incident energy from 
the source (1) and, as a result of physical and chemical interaction with 
the incoming energy, reflect and emit a part of that energy back toward the 
satellite sensor. Part or the whole energy pulse may be filtered by the atmo-
sphere, depending on its gas and particulate matter concentrations.

 3. Sensor and platform. The sensor is the instrument measuring and record-
ing the energy coming from the surface. The platform provides the major 
services for sensor operation, such as attitude and orbit control, power sup-
ply, and communications with the ground receiving system. Ordinarily 
an EO satellite includes different sensors, depending on its main mission. 
Meteorological satellites commonly include sensors to detect atmospheric 
humidity, temperature, albedo, ozone, or aerosol concentrations.

 4. The ground receiving system collects the raw digital data measured by the 
sensor, stores the data, and formats them appropriately. Some basic pre-
processing corrections are performed by the ground system, prior to the 
distribution of the imagery.

 5. The analyst, who converts the processed image data into thematic informa-
tion of interest, using visual and/or digital techniques.

 6. The user community, which utilizes the information extracted from the 
original data for a wide variety of applications.

We can illustrate the six components by using the human eye as an example. The 
eye is a sensor (3) that sees the reflected sunlight (1) from the various objects 
observed (2). The received electromagnetic signal is transmitted to the brain (4), 
which then generates an image of what is observed. The observer (5) further ana-
lyzes and interprets the image and, as the end user (6), applies this knowledge 
toward making appropriate decisions concerning his or her own behavior. Human 
vision is a sophisticated and complete remote sensing system, providing great spa-
tial and color detail.

Despite the sophisticated nature of human eyesight, our personal remote sensing 
capabilities have several important limitations. Our eyes are restricted to a narrow 
portion of the electromagnetic spectrum, known as the “visible region.” Other forms 
of electromagnetic energy, such as infrared, microwave, and ultraviolet radiation, 
cannot be seen with our eyes. In addition, our vision is dependent on a source of 
external energy, and we are unable to see if objects are not illuminated by the Sun 
or a source of artificial light. On the other hand, we have a limited perspective con-
strained by our own height, which restricts our observing capabilities to a limited, 
and often oblique, point of view. Remote sensing techniques make it possible for us to 
overcome these limitations through the use of devices that provide information from 
nonvisible radiations, at different perspectives, and regardless of solar conditions. 
These new capabilities have not only greatly expanded our knowledge about the 
Earth’s environment but also provided increasing monitoring capabilities, to detect 
relevant changes. Remote sensing, in conjunction with parallel developments in geo-
graphical information systems (GISs), global positioning systems (GPS), and other 
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ground data collection systems, now provides vast amounts of information about the 
land surface, to improve our understanding of the Earth system and better contribute 
to preserving it.

The effective utilization of such enormous quantities of data is accomplished 
with the growing availability of computer processors, which perform the tedious 
and time-consuming tasks of data handling and transformations to enable quick and 
efficient user interpretations and problem solving. Digital analysis of satellite data 
extends our capability to integrate spatial information, by combining information 
from different sources (soil or land cover maps, terrain models, climatic data, etc.). 
By enhancing our analytical capacity, we are able to focus more on data interpre-
tation, problem solving, and making appropriate management decisions, tasks in 
which human intelligence is irreplaceable.

In this book, the study of remote sensing systems focused around the six com-
ponents described earlier: energy sources and interactions with terrestrial sur-
faces (Chapter 2); sensors and platforms (Chapter 3); analysis of the acquired data 
(Chapters 4 through 7), including validation of the results (Chapter 8); and con-
nection to end users within a GIS framework (Chapter 9). In the first part of this 
book, we cover the basic processes that allow for the acquisition of spaceborne 
imagery, including the physical principles of energy transmission and image acqui-
sition; optical, thermal, and microwave radiant energy interactions on the Earth’s 
surface (Chapter 2); and an overview of some of the main satellite observation sys-
tems (Chapter 3). The remaining chapters focus on visual and digital image analy-
sis and interpretation techniques and their applications to science and management 
(Chapters 4 through 8). The final chapter is devoted to the integration of remote 
sensing with GIS for environmental analysis (Chapter 9). This first chapter also 
presents an overview of remote sensing with discussion on its foreseeable develop-
ments and some remarks on legal issues and international debate concerning EO 
across national boundaries.

1.2 HISTORICAL BACKGROUND

Remote sensing, as an applied tool and methodology, has evolved historically in 
parallel with other technological advancements, such as the improvements in optics, 
sensor electronics, satellite platforms, transmission systems, and computer data pro-
cessing. These developments have resulted in enormous progress in the quantity, 
quality, and diversity of data available to the scientific community. A summary of 
milestones in remote sensing observation is included in Figure 1.2.

The first remote sensing acquisition can be traced back to the mid-1800s, along 
with the development of aerial photography. In 1839, the first ever photos were taken 
in France by Daguerre, Talbot, and Niepce, and by 1840 the French began using 
photos to produce topographic maps. In 1858, the first aerial photos were taken from 
a height of 80 m over Bievre, France, by Gaspard Félix Tournachon using cameras 
mounted on a hot air balloon. The first balloon photographies used for urban plan-
ning were acquired by James Wallace Black in 1860 over the city of Boston. The first 
attempts to use the new perspective provided by aerial platforms in military recon-
naissance occurred in 1861, during the American Civil War, when Thaddeus Lowe 
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was appointed Chief of the Union Army Balloon Corps by President Abraham 
Lincoln. In the 1880s, the British used kites to obtain aerial photography, and in the 
early 1900s, carrier pigeons were able to fly as more advanced, smaller, and lighter 
cameras were developed. The great San Francisco earthquake of 1906 was captured 
on film using a panoramic camera mounted 600 m above San Francisco Bay and 
supported by a string of kites.

The next major milestone in remote sensing occurred in 1909, when Wilbur 
Wright shot the first photographs over Italy from an airplane, establishing a new 
era of observations from airborne platforms. By 1915 and during World War I, the 
British Royal Air Force was collecting aerial reconnaissance photos with cameras 
designed specifically for aircraft surveying (Brookes 1975). In 1930, the first aer-
ial multispectral photographs were collected by Krinov and colleagues in Russia. 
The following year, the first near-infrared film was developed and tested by Kodak 
Research Laboratories.

In the 1940s, the military made significant advancements in the development 
and use of color infrared films, which were used to distinguish real vegetation from 
camouflaged targets that were painted green to look like vegetation. The greatest 
developments in aerial reconnaissance and photo interpretation were made during 
World War II. Other significant advancements were made with thermal scanners 
and imaging radar systems, which create images by focused radar beams that scan 
across an area.

In the late 1940s and early 1950s, improved navigation systems gave way to the 
first space-based sensor devices. Early experiments with the V-2, Aerobee, and 
Viking rockets recorded panoramic images of the Southwest United States from 
altitudes of 100–250 km. The first space-based photo was taken on March 7, 1947, 
at about 200  km above New Mexico while testing captured German V-2 rockets 
(Figure 1.3). In 1950, scientist Otto Berg pieced together several photos from one of 
these tests into a mosaic of a large tropical storm over Brownsville, Texas.

One of the main strategic objectives of the Cold War era was the space race. 
The launch of Sputnik by the Soviet Union in 1957 was the start of a long series of 
civil and military missions that enabled us to explore not only our planet but also 
the moon and neighboring planets. In April 1960, NASA launched the Television 
Infrared Observational Satellites (TIROS-1) that began relaying continental views 
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FIGURE 1.2 Historical development of remote sensing systems.
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of global cloud patterns (Figure 1.4). These repetitive images enabled a deeper 
understanding of atmospheric conditions and circulation patterns and provided early 
warnings of serious natural catastrophes.

In the 1960s, several manned missions were launched to explore our Solar System 
and to reach the Moon, but these missions also acquired valuable images of our 
planet. Astronauts provided us with breathtaking and scientifically useful images of 
the Earth during the Mercury and Apollo programs. The scientific value of explor-
ing our planet from space became particularly evident in the last Mercury mission, 
in May 1963, in which NASA astronaut Gordon Cooper took a series of spectacular 
photographs with a handheld Hasselblad camera over many regions inaccessible to 
Western scientists, such as the terrain of central Tibet. These photographs provided 
valuable information about the geology, hydrology, and vegetation of remote regions 
and provided the impetus for the creation of space programs devoted to the study of 
the planet Earth.

The first mission that officially incorporated photography to investigate poten-
tial geological and meteorological applications of space technology was the Gemini 
Titan mission in 1965. The Apollo 6 and Apollo 7 missions in 1968 also had strong 
photographic components (Figure 1.5), and in 1969, Apollo 9 carried the first mul-
tispectral remote sensing package, which consisted of four Hasselblad cameras with 
different filters.

NASA, encouraged by the success of these early EOs, introduced digital tech-
nologies in remote sensing in the late 1960s. Digital imaging sensors developed dur-
ing the Ranger, Surveyor, and Lunar Orbiter Probes provided key experience that 
aided the development of the first Earth Resources Technology Satellite (ERTS), 

FIGURE 1.3 This photo was taken by an automatic K-12 camera, using black-and-white 
infrared film, from a Viking sounding rocket that reached a height of 227 km. This scene 
spans parts of New Mexico, Arizona, Nevada, California, and northwest Mexico (upper Gulf 
of California on the left). (From http://earthobservatory.nasa.gov/Features/Observing/.)
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launched on July 23, 1972. ERTS-1 was later renamed Landsat 1 with the launching 
of a second satellite in 1975, which provided the first detailed, high-resolution, mul-
tispectral images of the entire land surface of our planet.

The Landsat series continues today, providing a continuous and consistent high-
quality 40+ year dataset of Earth’s land surface and its changes over time. This has 
been one of the most successful outcomes of remote sensing, resulting in a wide 
range of civilian applications from the assessment of natural resources to the moni-
toring of natural disasters such as flooding, drought, fires, volcanic eruptions, and 
hurricanes. The Landsat missions were also accompanied by other NASA environ-
mental observation projects, such as Skylab, a manned space laboratory in 1973; 
Seasat, an oceanographic satellite in 1978; and the Heat Capacity Mapping Mission 
(HCMM) for thermal investigations in 1978.

As a result of the Landsat series, the decade of the 1980s saw an increasing inter-
est by the international scientific community in developing spaceborne remote sens-
ing systems. The most outstanding developments began with the launching of the 

FIGURE 1.4 Scientist giving a vibration test to Television Infrared Observation Satellite 
(TIROS). The first TIROS was operational for 78  days. (From http://grin.hq.nasa.gov/
ABSTRACTS/GPN-2003-00028.html.)
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first Systeme Pour l’Observation de la Terre (SPOT) satellite in early 1986 by the 
French Centre National d’Etudes Spatiales (CNES). The Japanese launched their 
first Marine Observation Satellite (MOS-1) in February 1987, while the Indian 
Remote Sensing (IRS-1) satellite was launched in March 1988 and the European 
Remote Sensing satellite (ERS-1) in 1991.

More recently, remote sensing missions have increased exponentially, as will be 
discussed in more detail in Chapter 3. Benefiting from the experience and technical 
knowledge gained from the earlier launched missions, as well as the declining costs in 
the design of sensors and platforms, Russia, Canada, Germany, the United Kingdom, 
Brazil, Argentina, China, South Korea, Taiwan, and Israel, to mention some, have 
launched Earth-observing satellites for environmental and natural resource monitor-
ing purposes. This trend has increased the worldwide availability and diversity of 
remotely sensed data while reducing acquisition costs for the end users.

Many of the civilian uses of remote sensing have been the result of research per-
formed for military applications. The delicate affair of the capture of a U-2 spy plane 
by the Soviets in 1960 led to the U.S. administration to make a great investment in 
developing military reconnaissance satellites, much less vulnerable than airplanes 
to detection and eventual bringing down. In 1995, some of the photos taken by those 
military satellites were declassified, covering the period between 1960 and 1972, 
including high-resolution photos (from 2.5 to 7.5 m) from the Corona, Lanyard, and 
Gambit mission. In 2002, other missions were declassified covering the KH-7 and 
KH-9 missions with high-resolution photos acquired up to 1980. These photos are 
accessible through the United States Geological Survey (USGS) long-term archive 
facility (https://lta.cr.usgs.gov/products_overview, last access November 2015).

The private sector has also played an important role in promoting and advanc-
ing remote sensing capabilities, through the creation of consortiums that have 

FIGURE 1.5 Photograph taken by the Apollo 7 over Lake Chad (central Africa) in 1968. 
(From http://earthobservatory.nasa.gov/.)
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particularly promoted very-high-spatial-resolution satellite projects. The first com-
mercial satellites were launched in the late 1990s, the most famous being the IKONOS 
satellite launched by Space Imaging; the EROS A1, launched in 2000 by ImageSat 
International; and Quickbird, launched in October 2001 by Digital Globe. The role 
of the private commercial sector has greatly increased in the last decade, particu-
larly related to high-spatial-resolution applications, including homeland security and 
strategic observations, real state, tourism, location of services, and commodities. 
This trend has extended traditional applications and users of satellite observation 
(Table 1.1). For instance, current satellite missions providing images with spatial 
resolutions in the range of 0.5–2.5 m are very useful to monitor crop conditions, 
urban growing, or large public works. After natural or human disasters, they are 
also particularly useful to provide a quick assessment to help urgent recovery actions 
(Figure 1.6). More recently, these high-resolution images have provided critical 
information for humanitarian activities, such as supervising conditions in refugee 
camps or detect impacts of guerrillas in remote areas. A recent report from Amnesty 
International in Nigeria on terrorist activities as detected by satellite images is par-
ticularly striking (Figure 1.7).

Recent trends point to a growing availability of satellite missions aiming to gen-
erate operational services, where remotely sensed data are routinely used. This is 
already the case of meteorological forecast where climate models are closely linked 
to diverse EO products (cloud temperature and height, moisture conditions, rain-
fall, wind fields, etc.). New EO missions include public access policies that facilitate 
an extended use of the acquired data. In addition to the raw and calibrated data, 
some of the recent programs include the development of corrected reflectances or 
temperatures and even final products, thus facilitating the use of remotely sensed 
data even to nonexperts. The best example is the Moderate-Resolution Imaging 
Spectroradiometer (MODIS) program, which has been able to derive 45 standard 
products from the raw data acquired by the Terra and Aqua NASA satellite (see 
Chapter 3 for further explanations). The quick Internet connections further facilitate 
the distribution of data, enabling the operation of near-real-time services.

1.3 INTERNATIONAL SPACE LAW

Satellite remote sensing systems collect images across the world without regard to 
political boundaries. This can lead to the violation of the political air space of a coun-
try and to the disclosure of its strategic information, which may be exploited by another 
country. Because of this, there has been much concern and discussion of the political, 
economic, and environmental consequences of space remote sensing activities.

The first discussions on the legal aspects of aerial surveillance took place in the 
1950s soon after the launch of the first spy satellites. At an international confer-
ence in Geneva in 1955, President Eisenhower proposed an open skies policy, which 
would allow free and mutual observations between the United States and the Soviet 
Union. The concept behind this failed proposal was to ease tensions and slow the 
arms race by allowing each nation to conduct aerial reconnaissance on the military 
resources of the other (Leghorn and Herken 2001). The treaty was revived again in 
1989 by President George H.W. Bush and negotiated by the members of NATO and 
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the Warsaw Pact. It was signed in Helsinki, Finland, on March 24, 1992, and put in 
force on January 1, 2002, after being adopted by 26 nations. The treaty is the most 
wide-ranging international effort to date to promote openness and transparency of 
military forces and activities.

The treaty enables all participants, regardless of size, a direct role in gathering 
information about military forces and activities of concern to them. All Open Skies 

TABLE 1.1
Comparison of Traditional and New Users of Remote Sensing Image Data

Traditional Users New Users 

Governments
Civil planners (mapping, land management, 
disaster response, etc.)

Armed forces
Intelligence services
Scientific centers
State and local governments

News media information providers
Electronic media organizations
Print media
Trade journals

Multinational Organizations
United Nations (UN) agencies (e.g., UN Special 
Commission, UN High Commissioner Refugees)

Global change research programs
Regional centers (e.g., Western European Union 
Satellite Centre)

NGOs
Environmental policy
Arms control, nonproliferation, and disarmament
Regional conflict resolution
Humanitarian relief
Human rights
Biodiversity, deforestation, etc.

Business
Resource extraction (e.g., oil, gas)
Resource management (e.g., forestry)

Academia and research organizations
Media studies departments
Security policy studies departments
Archaeology departments
Transportation studies
Agricultural and ecosystem studies

Academia and research organizations
• Geography and geology departments
• Remote sensing programs
• Environmental studies

Business
• Utilities (e.g., telecommunications, pipelines)
• Insurance firms (e.g., hazard assessments)
• Precision agriculture

Environmental impact assessments

Remote sensing industry
Aerial photography firms
Satellite imagery data providers
Value-added, image processing firms
GIS firms

Customers
Real estate
Individuals interested in images of their homes or 
cultural attractions

Remote sensing professional organizations

Source: Baker, J.C., New users and established experts: Bridging the knowledge gap in interpreting com-
mercial satellite imagery, in: J.C. Baker, K.M. O’Connell, and R.A. Williamson, eds., 
Commercial Observation Satellites: At the Leading Edge of Global Transparency, RAND–
ASPRS, Santa Monica, CA, 2001, pp. 533–557.
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Treaty aircraft and sensors must pass specific certification procedures and only 
treaty-permitted sensors can be installed and launched. Open Skies aircraft may 
have video, optical panoramic, and framing cameras for daylight photography, infra-
red line scanners for day/night capability, and synthetic aperture radar for day/night 
all-weather capability. Collected imagery from Open Skies missions is made avail-
able to any participant state willing to pay the costs of reproduction. The treaty pro-
vides that at the request of any participant state, the observing state will provide it a 
copy of the data collected during a mission over the observed state.

The United Nations Committee on the Peaceful Uses of Outer Space (part of 
the UN Office for Outer Space Affairs [UNOOSA]) is the primary international 
forum for the development of laws and principles governing outer space. One of its 
primary roles has been to develop basic legal principles on space observations to 
avoid tensions between observer and observed nations. Many developing countries 
have expressed the need to control the distribution of satellite images taken over 
their territory. Some countries, such as Brazil and Argentina, believe that the nation 
that owns a satellite system must first ask permission to remotely observe another 
country and that by no means should the data be handed over to third countries. 
In 1982, at the United Nations UNISPACE Congress in Vienna, an agreement was 

FIGURE 1.6 GeoEye images acquired before and after the Japanese tsunami of 2011. 
The images were displayed by the New York Times web page. (From http://www.nytimes.
com/interactive/2011/03/13/world/asia/satellite-photos-japan-before-and-after-tsunami.
html?module=Search&mabReward=relbias%3Ar%2C{%222%22%3A%22RI%3A12%22}.)
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reached to facilitate the unrestricted access to imagery obtained over each nation and 
to require authorization from a country before disclosing imagery acquired within 
it to third countries (O.T.A. 1984). Russia and India proposed a 50 m spatial resolu-
tion limit of space-based observations to preserve sovereign military security, while 
the United States, the United Kingdom, and Japan were opposed to any restrictions 
whatsoever on data observation and distribution.

The United Nations sponsored the Treaty on Principles Governing the Activities 
of States in the Exploration and Use of Outer Space, including the Moon and Other 
Celestial Bodies, also known as the Outer Space Treaty, which was adopted by the 
General Assembly and entered into force on October 10, 1967. Ninety-nine states 
have ratified, and an additional twenty-six have signed this treaty as of January 2008. 
The Outer Space Treaty provides the basic framework on international space law 
and guarantees that exploration and use of outer space shall be carried out for the 
benefit and in the interests of all countries. Additional principles governing the use 
of remote sensing included in this treaty are as follows:

• Remote sensing shall promote the protection of Earth’s natural environment.
• Remote sensing shall promote the protection of humankind from natural 

disasters.

13˚5'11.12''N, 13˚49'29.73''E DigitalGlobe False-Color Infrared Imagery, January 2, 2015

Heavily burned 
area

13˚5'11.12''N, 13˚49'29.73''E DigitalGlobe False-Color Infrared Imagery, January 7, 2015

FIGURE 1.7 Images acquired by Digital Globe satellites showing the impacts of guerrilla attacks 
on civilians in the north of Nigeria. (Acquired for Amnesty International. http://blog.amnestyusa.
org/africa/the-story-behind-the-nigeria-satellite-images/, last access November 2015.)
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• The observed state shall have access to all primary and processed data 
acquired over its territory on a nondiscriminatory basis and on reasonable 
cost terms.

• The observed state shall also have access to the available analyzed informa-
tion concerning the territory under its jurisdiction, taking particularly into 
account the needs and interests of the developing countries.

• States carrying out remote sensing activities shall promote international 
cooperation in these activities. To this end, they shall make available to 
other states opportunities for participation therein. Such participation shall 
be based in each case on equitable and mutually acceptable terms.

• Furthermore, a state must inform both the Secretary-General of the United 
Nations, as well as the interested nations that request it, of the remote sens-
ing programs that will be developed.

The growth and expansion of remote sensing activities to many different countries 
and the increasing role of the commercial sector have lowered international con-
cerns considerably. However, transferring space technology to developing coun-
tries has not been very effective, an unfortunate consequence considering that they 
are most in need of information about their natural resources. During the Third 
U.N. Conference (UNISPACE III) in Vienna in 1999, there were still concerns on 
the part of some countries (e.g., India and Israel) about the availability of remote 
sensing data over their territories; however, the main concerns were in reducing 
the costs of satellite imagery and not in controlling data availability (Florini and 
Dehqanzada 2001).

International coordination of satellite remote sensing is done through a 
dedicated committee (the Committee on Earth Observation Satellites [CEOS]: 
http://www.ceos.org), which promotes exchange of data to optimize societal 
impacts of EO missions. Working groups within CEOS include one dedicated 
to quick assessment of natural hazards through a unified system of space data 
acquisition and delivery to countries affected by major disasters (International 
Charter on Space and Major Disasters). Other active groups are the calibration 
and validation, information system and services, and coordination of satellite 
constellations.

1.4  BENEFITS OF ENVIRONMENTAL MONITORING 
FROM SATELLITE SENSORS

Satellite remote sensing has several advantages over other conventional methods 
of environmental sampling and monitoring, such as in situ field measurements or 
ground sensors. Spaceborne sensors provide a global view over the Earth’s surface, 
at periodic times and including nonvisible regions of the electromagnetic spectrum. 
Data are accessible quickly and can be easily connected to other spatial databases, 
thus making a suitable information source for spatial data integration. More details 
on these characteristics follow.
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1.4.1 Global CoveraGe

Satellite data are acquired by a platform that has a stable orbit around the Earth. 
Therefore, EO sensors make it possible to acquire consistent and repetitive imagery 
of the entire planet, including areas that are fairly remote and normally inaccessible, 
such as polar, mountain, desert, and forest areas. For example, remote sensing has 
been found to be highly useful in mapping and monitoring ice sheets, a particularly 
relevant topic for water mass studies in the context of Arctic warming (Figure 1.8). 
Other examples include the use of remote sensing in detecting remote forest fires, 
observing uncontrolled oil spills, and assessing damage from tsunamis or floods.

The global coverage provided by satellites is particularly useful in monitoring 
and understanding the dynamic processes affecting our environment. There is much 
concern over the many stresses placed on the environment, such as global warming, 
reduction in biologic diversity, depletion of freshwater, and land degradation and 
desertification. Tropical glaciers in the Peruvian Andes and the famous snows of 
Mount Kilimanjaro in East Africa are retreating rapidly and are predicted to disap-
pear over the next two decades. By some estimates, as much as 40% of the Earth’s 
land surface has been permanently transformed by human action, with significant 
consequences for biodiversity, nutrient cycling, soils, and climate.

Many of these environmental issues are most effectively addressed with a holis-
tic planetary approach, for which global datasets, models, and information systems 
are needed. Assembling global databases is extremely difficult and time consuming 
and is often plagued by disparate data sources compiled with different criteria and 
formats. Country- or region-specific datasets must be merged and compiled to gener-
ate complete global datasets and images of the areas under study (Unninayar 1988). 
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FIGURE 1.8 Overall changes in the ice sheet of Greenland as observed by Envisat and the 
ICESat satellites. (Courtesy of Rene Forsberg.)
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EO satellite offers a quick and consistent source of uniformly collected data, from 
the same instrument and platform, with complete coverage of the planet for global 
studies.

The Global Climate Observing System (GCOS) program (http://www.wmo.
int/pages/prog/gcos/), part of the World Meteorological Organization (WMO), 
UNESCO, ICSU, and the UN Environmental Agency, has defined a set of 50 
Essential Climate Variables that can be retrieved and monitored by remote sensing 
systems. They include atmospheric (over land, sea, and ice), oceanic, and terrestrial 
parameters. The most actively monitored are temperature, water vapor, precipitation, 
radiation budget, aerosols, greenhouse gases (Figure 1.9), ozone, sea level, sea ice, 
ocean color, snow cover, glaciers, ice sheets, albedo, land cover, fire disturbance, soil 
moisture, and leaf area index.

1.4.2 SynoptiC view

Satellite sensors are located far from the Earth’s surface, observing large areas and 
thus providing a synoptic view of landscape features. A standard 1:18,000 aerial pho-
tography covers an area of approximately 16 km2. At a 1:30,000 scale, the area cov-
erage increases up to 49 km2. By comparison, a single Landsat TM image captures 
34,000 km2 and NOAA’s Advanced Very High Resolution Radiometer (AVHRR) 
image covers up to 9 million km2. Satellite images are able to observe and depict 
phenomena that would be nearly impossible using the very local perspective of aerial 
photos. Large geologic features such as faults, fractures, and lithological contacts are 
more easily detected using satellite imagery, which can help locate mineral resources 
(Short and Blair 1986). It is also worth noting that satellite images cover such vast 
areas in a very short time and therefore the data are comparable throughout space, 
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FIGURE 1.9 Global trends in CO2 concentrations as measured by the SCIAMACHY sen-
sor on board the Envisat. (Courtesy of Michael Buchwitz, University of Bremen, Bremen, 
Germany, http://www.esa-ghg-cci.org/?q=node/115.)
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whereas conventional aerial photography requires mosaicking images acquired at 
different flight times.

1.4.3 MultiSCale obServationS

Satellite-based sensors, as will be discussed in more detail later, have a wide range 
of orbital altitudes, optics, and acquisition techniques. Consequently, the imagery 
acquired can be at very fine resolutions (fine level of detail) of 1 m or less with 
very narrow coverage swaths, or the images may have much larger swaths and cover 
entire continents at very coarse resolutions (>1 km) (Figure 1.10).

The management and monitoring of Earth’s natural resources require spatial data 
at various scales, because the impacts of driving factors are often scale dependent 
(Ehleringer and Field 1993). For example, soil moisture may be more strongly related 
to local topography over short distances and to regional precipitation patterns over 
longer distances. Remote sensing may be the only feasible means of providing spa-
tially distributed data such as land use patterns, topography, and seasonal hydrologic 
and vegetation parameters at multiple scales and on consistent and timely bases.

FIGURE 1.10 Satellite images from the U.S. East Coast acquired by different sensors. 
(Images extracted from Google Earth.)
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1.4.4 obServationS over the nonviSible reGionS of the SpeCtruM

Satellite sensors are capable of acquiring data over various portions of the elec-
tromagnetic spectrum that cannot be sensed by the human eye or conventional 
photography. The ultraviolet, near-infrared, shortwave infrared, thermal infrared, 
and microwave portions of the spectrum provide valuable information over critical 
environmental variables. For example, the thermal infrared portion of the spec-
trum allows us to study the spatial distribution of sea surface temperatures and 
marine currents, as well as water stress in crops. The ultraviolet radiation is critical 
to monitor the ozone layer. The middle infrared region is ideal to sense CO2 con-
centrations and the microwave radiation is more sensitive to estimate soil moisture 
and snow cover.

1.4.5 repeat obServation

The orbital characteristics of most satellite sensors enable repetitive coverage of the 
same area of Earth’s surface on a regular basis with a uniform method of observation. 
The repeat cycle of the various satellite sensor systems varies from 15 min to nearly 
a month. This characteristic makes remote sensing ideal for multitemporal studies, 
from seasonal observations over an annual growing season to interannual observa-
tions depicting land surface changes (see Section 7.3). Such periodic observations are 
vital given the highly dynamic nature of many environmental phenomena. There are 
many examples of multitemporal applications of remote sensing, including deserti-
fication studies (Figure 1.11), drought and flooding patterns, snow cover melting, 
deforestation assessments, and meteorological phenomena.

1984 1994

2004 2012

FIGURE 1.11 Multitemporal Landsat images acquired over the Aral Sea in Kazakhstan. 
(Images available from https://earthengine.google.org.)
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1.4.6 iMMediate tranSMiSSion

Nowadays, all remote sensing systems record image data in digital format, facilitat-
ing a real-time transmission to the ground receiving station and eventually to the end 
user. This is particularly relevant when dealing with disasters and natural hazards 
that require quick access to imagery (as it is the case of the International Disaster 
Charter: https://www.disasterscharter.org/web/guest/home).

Traditionally, only meteorological sensors had direct transmission to the end user, 
as the signal was not codified and could be acquired by a relatively cheap receiving 
antenna. Currently, images from global sensors can still be acquired freely, in the 
case of MODIS, for instance, using a more sophisticated antenna. In addition, the 
Land Rapid Response system provides near-real-time data of some products, such 
as the active fire information that are received by email within hours of satellite 
acquisition. For most medium- and high-spatial-resolution sensors, images can be 
obtained fairly quickly using fast Internet connections, but ordinarily not yet in real 
time as the signal is usually coded. These sensor systems transmit images when they 
are within the coverage area of the antenna or otherwise record onboard for later 
transmission. The user obtains the image with a certain time delay, due to calibration 
and preprocessing of the data.

1.4.7 diGital forMat

As most images are now in digital format, the integration of satellite-derived 
information with other sources of spatial data is relatively straightforward. 
Computer-assisted visualizations of image data are also possible, as in the gen-
eration of 3D views by combining satellite imagery with digital elevation models 
(Figure 1.12). These views can be created from different angles and under differ-
ent simulated conditions.

FIGURE 1.12 The Strait of Gibraltar in three dimensions, combining terrain data retrieved 
from the SRTM (see Chapter 3) mission with a pseudo-natural color image acquired by the 
Landsat TM in 1987. (From http://earthobservatory.nasa.gov/.)
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In summary, there are many advantages to the use of remote sensing data for the 
study and monitoring of Earth’s landscapes. However, this does not imply that EO 
satellites can be used to retrieve any environmental variable. Remote sensing also 
has significant limitations related to the available spatial, spectral, and temporal 
resolutions. The images may not be recorded at the required spatial detail or not 
frequent enough to cope with the user requirements. Furthermore, persistent cloud 
cover may notably reduce useful observations of optical sensors, thus severely 
restricting observations in cloudy areas. Radar observations are an alternative as 
they are independent of cloud coverage, but they are much less frequent than opti-
cal observations.

On the other hand, current remote sensing techniques may not be sensitive enough 
to detect the variable of interest. For instance, subsurface soil moisture or deep water 
temperature is unlikely sensed by EO systems, which receive radiation mostly from 
the upper layers of the surface.

In summary, EO satellite should be viewed as a complementary tool to other 
natural resource and environmental monitoring techniques, such as soil or plant 
samples, meteorological sensors, or flux towers, which in any case are useful to vali-
date estimations provided by satellite instruments.

1.5 SOURCES OF INFORMATION ON REMOTE SENSING DATA

Although remote sensing is fairly new, much has been written on this subject, includ-
ing papers read at numerous symposia and conferences, scientific journals, manu-
als, and technical reports. There are various reference guides and series periodicals 
dedicated to this field, including Earth Resources: A Continuing Bibliography with 
Indexes, a series published by NASA, and Geographical Abstracts, G: Remote 
Sensing, Photogrammetry and Cartography, published by Geo Abstracts. Also, 
there are reference databases specializing in remote sensing, such as the Canadian 
Remote Sensing Online Retrieval System (RESORS) and the English GEOBASE.

Some of the most important congresses are those organized by the profes-
sional societies dedicated to the development of remote sensing. These orga-
nizations include the International Society for Photogrammetry and Remote 
Sensing (ISPRS), the IEEE Geoscience and Remote Sensing Society (GRSS), 
the American Society of Photogrammetry and Remote Sensing (ASPRS), the 
Remote Sensing and Photogrammetry Society (RSPS), the International Society 
for Optical Engineering (SPIE), and the European Association of Remote Sensing 
Laboratories (EARSeL).

The main scientific journals dealing with EO studies ranked by the impact 
factor are the following: Remote Sensing of Environment, IEEE Transactions on 
Geoscience and Remote Sensing, ISPRS Journal of Photogrammetry and Remote 
Sensing, IJ Applied Earth Observation and Geoinformation, Remote Sensing, IEEE 
Applied Earth Observations and Remote Sensing, Photogrammetric Engineering 
and Remote Sensing, IEEE Geoscience and Remote Sensing Letters, International 
Journal of Remote Sensing, Remote Sensing Letters, Canadian Journal of Remote 
Sensing, GIScience & Remote Sensing, The Photogrammetric Record, and Journal 
of Applied Remote Sensing. There are a large number of textbooks dedicated to 
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remote sensing, spanning a range of orientations and scopes. These can be classified 
in two broad groups: those intended for a general audience and those written for spe-
cific application fields (hydrology, oceanography, land use, geology, etc.).

The first group of books can be further classified into those that provide cov-
erage of all the main topics of remote sensing acquisition and interpretation, or 
those books that focus on specific topics, such as land cover classification, or the 
physical principles of image acquisition. The general textbook group is the most 
common (Asrar 1989; Barret and Curtis 1999; Campbell and Wyme 2011; Chen 
1985; Conway 1997; Couzy 1981; Cracknell and Hayes 1991; Curran 1985; Danson 
and Plummer 1995; Drury 1998; Elachi 1987; Estes and Lenger 1974; Gibson and 
Power 2000a,b; Harper 1983; Harris 1987; Holz 1973; Hord 1986; Howard 1991; 
Jensen 1996, 2000; Lillesand and Kiefer 2000; Lira 1987; Lo 1986; Mather 1998; 
McCloy 1995; Quattrochi and Goodchild 1997; Rees 1999; Richards and Xia 1999; 
Robin 1998; Schanda 1976; Schowengerdt 2007; Short 1982; Slater 1980; Swain and 
Davis 1978; Szekielda 1988; Thomas et al. 1987; Townshend 1981; Verbyla 1995; 
Weng 2012; Wilkie and Finn 1996). Special categories of general textbooks are 
those centered on specific sensors, such as radar (Allan 1983; Henderson and Lewis 
1998; Trevett 1986) or lidar systems (Beraldin et al. 2010; Fujii and Fukuchi 2005; 
Vosselman and Klein 2010; Vosselman and Maas 2010).

Another group of textbooks are those oriented toward specific applications: 
urban areas (Au 1993; Lulla 1993), pedology and geology (Drury 1998; Mulders 
1987; Rencz and Ryerson 1999; Short and Blair 1986; Metternicht 2008), hydrol-
ogy (Gower 1994; Hall and Martinec 1985; Robinson 1985), oceanography (Gower 
1994; Robinson 1985), climatology (Barret 1974; Carleton 1991; Conway 1997), 
natural vegetation (Achard and Hansen 2012; Franklin 2001; Frohn 1998; Hobbs and 
Mooney 1990; Howard 1991), forest fires (Ahern et al. 2001; Chuvieco 2003, 2009), 
archaeology (Lasaponara and Masini 2012), and global change studies (Chuvieco 
2008; Chuvieco et al. 2010; Purkis and Klemas 2011).

Access to satellite images is becoming easier, largely due to wide distribution 
through the Internet. For images acquired by NASA or other American programs, 
the USGS EarthExplorer (https://earthexplorer.usgs.gov/) and GloVis (http://glovis.
usgs.gov/) (Figure 1.13) servers are the most accessible portals to download EO 
images. Many other space agencies and companies also provide free data, including 
the European Space Agency and the Japanese Space Agency, JAXA.

Many organizations provide free, downloadable versions of images in standard for-
mats. Web searches provide the best guide, as the number and location of sites are 
evolving rapidly. At the time of writing this chapter (December 2014), the most inter-
esting references for accessing visual satellite data are NASA Visible Earth (http://visi 
bleearth.nasa.gov/), which includes sample images from all NASA missions, and the 
Google Earth Engine database (https://earthengine.google.org/#intro), which includes 
a full Landsat historical archive to observe changes in the Earth landscapes for the last 
30 years. A few years earlier from this initiative, the UN Environmental Program com-
piled a change detection atlas of Earth landscapes (UNEP: http://na.unep.net/atlas/).

Several books have been published in the last two decades compiling satellite 
images of different terrestrial landscapes. They provide an interesting source of 
information on the potentials of EO data, as well as a historical reference for 
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analyzing land changes. Among the most relevant works are Mission to Earth 
(NASA 1976), Earth Watch (Sheffield 1981), Man on Earth (Sheffield 1983), 
Images of Earth (Francis and Jones 1984), Looking at Earth (Strain and Engle 
1993), and the Satellite Atlas of the World (National Geographic 1999). Some 
may be now outdated.

1.6 REVIEW QUESTIONS

 1. Identify a component that is not required for a remote sensing system:
a. Source of energy
b. Image processing equipment
c. Platform
d. Sensor

 2. Which of these properties favors satellite versus airborne remote sensing?
a. Spatial resolution
b. Cost
c. Temporal resolution
d. Stereoscopic view

 3. Which of these properties favors airborne over satellite remote sensing?
a. Spatial resolution
b. Spectral resolution
c. Temporal resolution
d. Stereoscopic view

FIGURE 1.13 Visualization tool of GloVis to download images from different Earth obser-
vation sensor systems. (From http://glovis.usgs.gov/.)
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 4. Which of the following satellite programs is managed by a private company?
a. Landsat
b. GeoEye
c. SPOT
d. IRS

 5. Which of the following sensors has the longest historical archive?
a. NOAA-AVHRR
b. Terra MODIS
c. SPOT HRV
d. ERS SAR
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2 Physical Principles of 
Remote Sensing

Remote sensing has a strong physical basis, as it implies collecting electromagnetic 
(EM) signals coming from objects with different physical and chemical properties. 
This chapter explores the physical processes that make this interaction possible. Since 
the primary audience of this book comprises environmental scientists, we will just 
present the basis of these principles, focusing on how EM energy interacts with both 
the Earth’s surface and atmosphere. Several textbooks have been written for those 
interested in more detailed physical explanation (Elachi 1987; Slater 1980), which 
would unnecessarily complicate the presentation of this introductory text. A better 
understanding of EM energy interactions with the Earth’s surface will greatly benefit 
the interpretation of remote sensing imagery and the effective use of the acquired 
data for retrieving environmental information.

2.1 FUNDAMENTALS OF REMOTE SENSING SIGNALS

Remote sensing means that something is sensed remotely, that is, from a certain 
distance. This implies that there is a certain interaction between the object and the 
sensor that captures the former. For example, our eyes are sensors that can see a tree 
by deciphering the visible radiant energy that is reflected by the tree, by reflecting 
either sunlight or another illumination source. Our eyes would not be able to sense 
or see the tree in total darkness, since they are not sensitive to other sources of 
energy coming from the tree, such as thermal radiation. Both reflected and emit-
ted energy from the tree are closely linked to its chemical, biological, and physical 
properties; for instance, the number and position of its leaves and branches, or their 
pigment or water content. These components impact different types of EM energy. 
For instance, the pigment status affects the blue and red regions of the visible (VIS) 
spectrum, while water content has more impacts on the shortwave infrared (SWIR) 
and thermal infrared (TIR) bands. Similarly, reflected or emitted radiation from the 
Earth’s surface provides critical information on the properties of soils, ice, snow, 
water, vegetation, and rocks. The goal of remote sensing is to understand how EM 
energy interacts with the surface so that we may better extract relevant information 
from the images.

When we observe a tree, our eyes are sensitive only to the light the tree reflects. 
We can also use artificial sensors that are able to detect other sources of energy; for 
instance, thermal cameras that detect plant temperature. We could also use sensors 
with their own source of energy, such as laser or microwave (MW) pulses, which 
illuminate the tree and detect the return energy afterward. Thus, in remote sensing, 
we may consider three ways of sensing information about an object: by reflection, by 
emission, and by combined emission–reflection (Figure 2.1). The first one is the most 
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common because it utilizes sunlight, the main source of energy on Earth. The Sun 
illuminates the surface, which in turn reflects a portion of this energy back to space 
depending on the type and composition of cover present on the surface. The reflected 
EM energy is detected by the satellite sensor, which then records and transmits this 
signal to a receiving station.

Remote sensing observations may also be based on the emitted energy from the 
Earth’s surface (Figure 2.1, ii), wherein the sensor detects energy coming from the 
surface itself. Since it does not directly depend on the Sun, this observation can be 
performed both during day and night. All objects warmer than absolute zero (0 K) 
emit energy, and the hotter the object, the higher the radiant energy it produces. The 
Sun is the hottest object, and it emits very large amounts of energy. Warm objects 
(a fire, lava, hot water) emit energy at longer wavelengths that we can sense with our 
skin, but not with our eyes.

Finally, we can also base remote sensing observations on active sensors, so named 
as they have their own source of energy. They are able to send pulses to the target 
objects and record later their reflection to characterize those objects. The most com-
mon active technique in the early days of remote sensing was radio detection and 
ranging (radar), working with MW energy, but in the last decades light detection and 
ranging (lidar) sensors have also become very popular. They work with polarized 
VIS or near-infrared (NIR) light and are extensively used these days to measure 
distances.

We will review how these different sensors work in the next chapter. This one 
focuses on how the signal is generated and interacts with atmospheric components 
and surface covers in its way down to the Earth and reflected/emitted up to the 
sensor.

(i) (iii)

(ii)

FIGURE 2.1 Main types of radiation processes in remote sensing: (i) reflection, (ii) emis-
sion, and (iii) emission–reflection.
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The properties of EM radiation may be explained by two seemingly contra-
dictory theories of light: wave theory (Huygens, Maxwell) and quantum theory 
(Planck, Einstein). According to wave theory, EM radiation is a form of energy 
derived from oscillating magnetic and electrostatic fields that are mutually orthog-
onal to each other and to the direction of propagation (Figure 2.2). EM energy is 
transmitted from one place to another following a harmonic and continuous model 
with a constant velocity, c = 3 × 108 m s–1 (speed of light). The properties of this 
energy can be described according to its wavelength (λ) and frequency (ν), which 
are related by

 c = ln  (2.1)

where
λ is the wavelength or distance between two successive peaks (usually in microm-

eters, 1 µm = 10–6 m; or nanometers, 1 nm = 10–9 m)
n is the frequency, or number of cycles that pass over a fixed point per unit of time 

(in hertz, cycles s−1)

As Equation 2.1 shows, the frequency of light is inversely proportional to its 
wavelength, such that the greater the wavelength, the smaller the frequency and vice 
versa.

The quantum theory of light describes radiation as a succession of discrete pack-
ets of energy known as photons or quanta, with mass equal to zero. The amount of 
energy transported by a photon is proportional to its frequency:

 Q h= n  (2.2)

where
Q is the radiant energy of a photon (in joules, J)
ν is the frequency
h is Planck’s constant (6.626 × 10–34 J s)

Magnetic field

Transmission
direction

Electric �eld
Amplitude

λ = wavelength

FIGURE 2.2 The oscillating electric and magnetic components of electromagnetic radia-
tion propagation (the wave theory of light).
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Combining this with Equation 2.1 results in
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And, therefore, the greater the wavelength, or the smaller the frequency, the lower 
the energy content and vice versa. This implies that it is more difficult to detect lon-
ger than shortwave energy radiations, as the former have lower energy and require 
more sensitive means of detection.

2.2 ELECTROMAGNETIC SPECTRUM

Since radiation sources are very diverse and therefore EM radiations vary from 
very small to very long wavelengths, most textbooks tend to classify them in certain 
groups of wavelengths of frequencies that are finally organized in the so-called EM 
spectrum (Figure 2.3). It includes a continuous range of wavelengths or frequencies, 
but commonly several spectral regions or bands are identified, with particular radia-
tion properties. Although most spectral bands are referred to in length units, MWs 
are commonly expressed in frequency units (gigahertz, GHz = 109 Hz).

The shortest wavelengths, with the highest radiation energy, are gamma rays and 
x-rays, whose wavelengths range from 10–9 to 10–3 µm (or 10–15 to 10–9 m) and which 
are commonly used in astronomical observation and medical applications, respec-
tively. The longest wavelengths are used for telecommunications, radio, and televi-
sion, with wavelengths in the range of 108–1010 µm (or 100–10,000 m).

The spectral regions most commonly used in remote sensing observation are the 
following:

 1. The VIS region (0.4–0.7 µm). It covers the spectral wavelengths that our 
eyes are capable of sensing and at which the Sun’s energy is the highest. 
The VIS region can be further divided into the three primary colors: blue 
(0.4–0.5 µm), green (0.5–0.6 µm), and red (0.6–0.7 µm) (Figure 2.3).
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FIGURE 2.3 Major spectral bands within the electromagnetic spectrum.
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 2. The NIR region (0.7–1.2 µm). This portion of the spectrum lies just beyond 
the human eye’s perception capability and is sometimes known as the 
reflective infrared or photographic infrared because part of this spectral 
region (0.7–0.9 µm) can be detected with special films. The NIR is of spe-
cial interest because of its sensitivity to determine plant health status.

 3. The mid-infrared region (MIR, 1.2–8 µm). This spectral region lies between 
the NIR and TIR regions. From 1.2 to 2.5 µm, the influence of the Sun’s 
energy is still very relevant, and this band is commonly referred to as the 
SWIR region. This region provides the best estimations of the moisture 
content of soil and vegetation. From 3 to 8 µm, the signal becomes a con-
tinuous mixture of solar-reflected and a surface-emitted energy, becoming 
the more relevant emitted component as the wavelengths become longer. 
The 3–5 µm interval is particularly useful for detecting high-temperature 
sources, such as volcanoes or forest fires.

 4. The thermal infrared region (TIR from 8 to 14 µm). This is the emitted 
energy from the Earth’s surface that is commonly used to map surface tem-
peratures. The thermal region has been widely used in detecting vegetation 
evapotranspiration (ET), ice and cloud properties, urban heat effects, and 
rock discrimination.

 5. The microwave (MW) region, for radiations larger than 1 cm. This spectral 
region is where the imaging radar systems work. Its main advantage is the 
very low atmospheric absorption, which enables us to “see” through clouds. 
MW radiation can also penetrate forest canopies to various depths and are 
very useful in soil moisture and surface roughness analyses.

The EM energy signals received by a sensor across these different spectral regions 
vary with land cover type and with the biophysical and biochemical properties of the 
surface components. In the following sections, we examine how the various com-
ponents of the terrestrial surface behave over these spectral regions. However, first 
we introduce some of the basic energy concepts and units of measurement used in 
remote sensing in order to gain a better understanding of the characteristic properties 
of spaceborne measurements.

2.3 TERMS AND UNITS OF MEASUREMENT

As mentioned earlier, a remote observation requires an energy source and a sensor 
that can detect the EM energy leaving the Earth’s surface toward the field of view of 
the sensor. The EM energy of interest has a certain intensity, spectral composition, 
and direction (i.e., the energy may be directed toward or away from the surface). 
Here we describe the units commonly used in remote sensing applications. The pre-
cise formulas for each of these energy terms are included in Table 2.1 (Curran 1985; 
Elachi 1987; Rees 1999; Slater 1980):

 1. Radiant energy (Q), measured in joules (J), is the most basic energy unit 
and refers to the total energy radiated in all directions away or toward a 
surface.
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 2. Radiant flux (ϕ), measured in watts (W), is the number of joules per second 
(J s–1 = W) and represents the rate of energy transfer in all directions per 
unit of time.

 3. Radiant flux density is the rate of energy transfer per unit area measured in 
watts per square meter (W m−2).

 4. Radiant exitance or emittance (M) is the radiant flux density leaving the 
surface in all directions per unit area and per unit time (W m−2).

 5. Radiant irradiance (E) is the radiant flux density incident upon the surface 
per unit area and per unit time (W m−2). It is the same concept as the radiant 
exitance, but in this case it refers to the energy arriving at the surface rather 
than leaving the surface.

 6. Radiant intensity (I) is the total energy leaving the surface per unit time and 
within a unit solid angle (Ω). The solid angle is a 3D angle that refers to the area 
of transmitted energy that a surface subtends and is measured in steradians 
(Figure 2.4). Radiant intensity is thus measured in watts per steradian (W sr−1).

 7. Radiance (L) is the total energy exiting in a certain direction per unit area 
and solid angle of measurement. It is the most fundamental term in remote 
sensing since it describes exactly what the sensor measures. Radiance is 
expressed in watts per square meter per steradian (W m−2 sr−1).

The foregoing energy terms may also be expressed in terms of wave-
length basis and have the prefix spectral applied to them, such as spectral 
radiance or spectral irradiance. For example, the term spectral radiance, 
Lλ, refers to the energy output from a unit area, unit solid angle, and unit 
wavelength, or Lλ = W m−2 sr−1 λ−1. Similarly, spectral irradiance, Eλ, refers 
to the energy incident upon a surface per unit wavelength.

TABLE 2.1
Radiometric Quantities Commonly Used in Remote Sensing

Concept Symbol Equation Measured Unit 

Radiant energy Q — Joules (J)

Radiant flux ϕ δϕ/δt Watts (W)

Exitance M δϕ/δA W m−2

Irradiance E δϕ/δA W m−2

Radiant intensity I δϕ/δΩ W sr−1

Radiance L δI/δA cos θ W m−2 sr−1

Spectral radiance Lλ δL/δλ W m–2 sr –1μm–1

Emissivity ε M/Mn Unitless

Reflectance ρ ϕr/ϕi Unitless

Absorptance α ϕa/ϕi Unitless

Transmittance τ ϕt/ϕi Unitless

Note: sr, steradian, measure of the solid angle; μm, micrometer or micron (10–6 m); Mn, exitance 
of a black body at the same temperature; ϕi, incident flux; ϕr, reflected flux; ϕa, absorbed 
flux; ϕt, transmitted flux; θ, angle formed by the energy flux direction and the normal.
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There is also a series of dimensionless energy terms, varying from 0 to 1, that are 
widely used in characterizing the spectral properties of the Earth’s surface:

 8. Emissivity (ε): This is the relationship between the radiant exitance of a 
surface (M) relative to that of a perfect emitter at the same temperature 
(Mn). A perfect emitter is also known as a blackbody and has emissivity 1. 
Natural materials, on the other hand, are imperfect emitters with emissivity 
values ranging from 0 to <1. Emissivity values over different wavelengths 
are useful in characterizing materials.

 9. Reflectance (ρ): This is the relationship between the energy reflected by a 
surface and the energy incident upon that surface.

 10. Absorptance (α): This is the relationship between the energy absorbed by 
the surface and the energy incident upon that surface.

 11. Transmittance (τ): This is the relationship between the energy transmitted 
through a surface and the energy incident upon that surface.

These unitless terms can also have spectral added to them, as in spectral reflec-
tance. There are a few useful relationships that are derived from the aforemen-
tioned energy terms. The term albedo is the ratio of all outgoing energy to the 
incident energy for a given surface area. More specifically, albedo is the ratio 
of exitance (M) to irradiance (E) over all solar reflective, or shortwave, wave-
lengths and is the equivalent of hemispherical reflectance, that is, the reflectance 
integrated over all directions (Equation 2.4). Albedo is a fundamental variable in 
energy balance studies, climate modeling, and soil degradation studies. Spectral 
albedo refers to the exitance divided by the irradiance for a specific spectral band 
(Equation 2.5):

 
Albedo hemispherical= =r M

E
 (2.4)
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FIGURE 2.4 Solid angle and radiant energy changes with zenith angle.
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It is important to note that a satellite sensor does not measure outgoing, hemi-
spherical energy over all directions, but instead measures the directional radiance 
(Lλ) from only over a narrow angular field of view (Figure 2.4). The spectral direc-
tional radiance (Lλ) is related to the hemispherical spectral exitance (Mλ) as follows 
(Slater 1980):

 M Ll lp=  (2.6)

Similarly, the surface reflectances derived from satellite measurements are direc-
tional reflectances, as they refer to a specific measurement geometry between the 
satellite sensor and the Sun, relative to the surface. The relationship between the 
spectral radiance values received by a satellite sensor (Lsen,λ) and the surface spectral 
reflectance (ρλ) becomes
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where E0,λ is the solar irradiance arriving at the surface. We will further comment 
in Section 6.7.3.4 the impact of varying the observation geometry on the retrieval of 
ground reflectance.

2.4 ELECTROMAGNETIC RADIATION LAWS

There is a set of physical laws that govern the behavior and characteristics of EM 
radiation. We saw in Equation 2.3 that the energy content of EM radiation varies 
inversely with wavelength. The spectral distribution of EM radiation emitted by 
a blackbody (a perfect emitter) can be characterized by Planck’s radiation law as 
follows:
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where
Mn,λ (W m−2 µm−1) indicates the radiant spectral exitance at a certain wavelength 

(λ in µm)
c1 and c2 are constants (c1 = 3.741 × 108 W m−2 µm4 and c2 = 1.438 × 104 µm K)
T is the absolute temperature (K)

This equation describes the spectral exitance distribution of a blackbody at a cer-
tain temperature as a smooth curve with a single maximum (Figure 2.5). Planck’s 
equation indicates that any object hotter than absolute zero (−273°C) emits radiant 
energy and that the energy increases in proportion to its temperature. As shown in 
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Figure 2.5, with increasing temperature, an object will radiate more energy and with 
higher exitance in shorter wavelengths.

The total radiant energy per unit surface area is a function of the object’s tempera-
ture. The value can be obtained by integrating the spectral radiant exitance over all 
wavelengths. This is known as the Stefan–Boltzmann law:

 M Tn = s 4  (2.9)

where
σ is the Stefan–Boltzmann constant (5.67 × 10–8 W m−2 K−4)
T is the temperature in Kelvin

As Mn is the fourth power of T, small changes in temperature result in large varia-
tions in radiant exitance.

Kirchoff’s law enables us to extend the foregoing relationships describing black-
body emission behavior to naturally emitting surfaces through an emissivity (ε) 
correction:

 M T= es 4  (2.10)

A blackbody is a perfect emitter in that it absorbs and emits all the energy it receives. 
When an object does not absorb any of the incident energy, it is called a white body, 
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completely reflecting all energy received (emissivity = 0). Gray bodies absorb and 
emit a fixed proportion of energy equally at all wavelengths. Most objects in nature 
have emissivity values that vary with wavelength and are referred to as selective 
radiators. Chapter 6 presents methods to convert the thermal radiation Mλ mea-
sured by a sensor into the surface temperature T. The behavior of emissivity values 
with wavelength provides a mechanism for the discrimination of surface materials 
in the TIR.

The single maximum or wavelength of peak spectral radiant exitance of a black-
body may be derived from the first derivative of Planck’s radiation law (Equation 2.8), 
described by Wien’s displacement law:

 
l m K

max =
2898 m

T
 (2.11)

with the temperature (T) in Kelvin. Wien’s displacement law is useful to determine 
the most sensitive band in the EM spectrum for the detection of a certain feature with 
high thermal contrast with their surroundings. For instance, a forest fire burning at 
800–1000 K would be better detected between 3.6 and 2.98 µm (MIR region).

In summary, the amount and spectral distribution of energy radiated by an object 
vary according to (1) the temperature of the object and (2) the nature of the material, 
as depicted by its emissivity. From Equations 2.4 through 2.11, we can estimate the 
total spectral distribution and radiant exitance of an object by knowing its absolute 
temperature and emissivity. As with blackbodies, the energy emitted from a natural 
object is primarily a function of its temperature, but with important modifications 
dependent on its emissivity. Finally, knowing the temperature and emissivity of an 
object or surface allows us to determine the most suitable portion of the spectrum for 
optimal detection and discrimination.

In the following sections, we explore the behavior of EM radiation in more detail 
by focusing on the three regions of the spectrum where remote sensing measure-
ments are made, namely, the solar spectrum (from VIS to SWIR), the TIR, and the 
MW portion of the spectrum. Our main interest from an environmental perspective 
is to better understand how the energy interacts with the main components of the 
Earth’s surface: vegetation, water, soils, snow, and so on. Since these interactions 
do not occur in vacuum but are rather affected by atmospheric components, we will 
close this chapter by presenting the main effects of the atmosphere on the detected 
signal.

2.5 SPECTRAL SIGNATURES IN THE SOLAR SPECTRUM

2.5.1 introduCtion

As previously mentioned, the Sun is the main source of EM energy. It is a gas-
eous body made up mostly of hydrogen. The internal temperature may reach 
20 million K, but externally only the surface, called photosphere, is observable. 
The photosphere is at a temperature of ~6000 K. Using radiation laws we can 
calculate that most of the solar radiant exitance extends over a wavelength range 
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from 0.3 to 3 μm, with a maximum output in the VIS region (0.4–0.7 µm) and 
peak exitance at 0.50 µm (Figure 2.5).

The actual solar radiation arriving at the top of Earth’s atmosphere (E0,λ) is a func-
tion of the Sun’s temperature, the size of the Sun, and the distance between the Sun 
and Earth, and it can be computed as follows:

 
E M

R

D
0 6000

2

2, ,l l=  (2.12)

where
R is the radius of the Sun (6.96 × 105 km)
D is the distance between the Sun and Earth

D changes throughout the year, following the elliptical orbit of the Earth. The aver-
age values can be approximated to 149.6 × 106 km. For this reason, even though the 
Sun’s radiation is always greater than the Earth’s (as the Sun is much hotter), the 
actual solar radiation arriving on Earth is only relevant in the 0.4–2.5  µm band, 
which is consequently named the solar spectrum (Figure 2.6). For longer wave-
lengths, radiant exitance from the Earth or from hotter objects is higher than solar 
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radiation. The Earth’s surface has an internal temperature of 300 K with a maximum 
emittance in the 8–14 µm band (TIR) and a peak spectral exitance output at 10 µm.

The sum of total solar irradiance over all wavelengths is called the solar constant 
(=1370 W m−2), but this amount varies largely throughout the Earth’s surface as a 
function of latitude, day of the year, and time of the day. The actual solar irradi-
ance reaching the ground is always lower than Eo since the gases and aerosols of the 
atmosphere filter out different parts of the spectrum (Figure 2.6). Spectral regions 
where atmospheric transparency is high are called atmospheric windows. Most 
remote sensing missions include sensors sensitive to those wavelengths as they try to 
observe the ground. However, when they try to detect atmospheric components, such 
as ozone or water vapor, sensors on board are precisely sensitive to those regions 
where absorption of that target atmospheric component is more intense.

Solar radiation reaching the ground interacts with different land covers (soils, 
water, vegetation, asphalt, etc.). The incoming irradiance energy (ϕi) will be either 
reflected (ϕr), transmitted (ϕt), or absorbed (ϕa) by the cover elements (Figure 2.7), 
and therefore we can state

 f f f fi r a t= + +  (2.13)

or expressed in terms of radiance (W m−2 sr−1)

 L L L Li r a t= + +
 
 (2.14)

We can also express these quantities in relative terms by dividing each of the radi-
ances by the incident energy Li:
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which becomes

 1 = + +r a t  (2.16)

For any given surface, the magnitudes of the three components are not con-
stant and will vary with wavelength. It is therefore more appropriate to express 
Equation 2.16 as

 1 = + +r a tl l l  (2.17)

The proportions of incident energy that are reflected, absorbed, and transmitted are a 
function of the unique characteristics of the surface, and these proportions vary with 
wavelength. In fact, the manner in which solar radiation interacts with the Earth’s 
surface results in variations of the three components with wavelength, which can tell 
us much about the chemical and physical properties of the surface. For example, a 
leaf will appear green if its reflectance at green wavelengths is greater than its reflec-
tance in the blue or red portions of the VIS spectrum. An object will appear blue if 
it reflects more energy in the blue region relative to the other wavelengths within the 
VIS spectral region. In the visible part of the spectrum, the variation in reflectance 
behavior of an object over the visible wavelengths results in what is called “color.”

The reflectance behavior of an object over various wavelengths of the EM spec-
trum is commonly referred to as a spectral reflectance signature or just spectral 
signature. Figure 2.8 includes a series of spectral signatures for various covers. 
These materials have highly variable spectral signatures. The reflectance of snow 
is very high in the VIS region (blue, green, red), resulting in its “white” appearance 
(i.e., color theory tells us that high and equal amounts of blue, green, and red result 
in the color white). As we proceed to longer wavelengths, the reflectance of snow 
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decreases dramatically, and snow appears “dark grey” (near-zero reflectance) over 
the SWIR wavelengths. Water, on the other hand, has low reflectance in the visible 
wavelengths, which decreases toward the NIR and SWIR wavelengths. The presence 
of sediments, pollutants, phytoplankton, and other constituents, however, alters the 
spectral signature of water, which allows us to optically and quantitatively measure 
the amounts and turbidity of the constituents in water. Similarly, dust and pollutants 
will modify the spectral reflectance signature of snow such that the resulting changes 
in the remotely sensed spectral signatures can be used to assess the “age” of snow.

Vegetation has unique spectral reflectance signatures with low reflectance in the 
VIS, high reflectance in the NIR, and low reflectance in the SWIR portion of the 
spectrum. The spectral signatures of vegetation are modified by leaf type and mor-
phology, leaf physiology, chlorophyll content, plant stress, and senescence. Soils, 
on the other hand, have spectral reflectance signatures that gradually increase with 
increasing wavelengths in a manner dependent on their iron, organic matter, water, 
mineral, and salt content. The spectral signature of a soil will also be modified by its 
structural and morphologic properties at the surface (e.g., roughness), as well as by 
the presence of plant litter and its stage of decomposition.

In summary, the relationship between the incident solar energy at the surface and 
the spectral composition of the remotely sensed reflected energy provides a wealth 
of information about the biogeochemical nature of the surface (leaf chemistry, soil 
mineralogy, water content) and the physical and structural characteristics of the sur-
face (e.g., canopy height, leaf area, and soil roughness). The area observed by a sen-
sor will most likely contain a variety of the surface materials (soil, vegetation, water, 
litter) in varying proportions and arrangements, and thus, remote sensing measure-
ments often consist of mixed signals comprising multiple reflectance signatures. As 
we will comment later (see Section 7.1.5), there are various techniques to extract 
information from these spectral mixings.

Spectral signatures form the basis to discriminate objects from remote sensing 
measurements in the solar region of the EM spectrum. Unfortunately, these signa-
tures are not constant for each cover, as the radiance flux detected by remote sensing 
depends not only on the intrinsic properties of the observed area but also on the 
external conditions of the measurement. The main factors affecting spectral signa-
tures are the following (Figure 2.9):

 (i) Atmospheric components, which affect both the absorption and the scatter-
ing of incoming and reflected radiation.

 (ii) Land cover variations causing changes in chemical or physical composition, 
such as density, pigment contents, moisture, or roughness. They may be 
caused by vegetation or crop phenology, agricultural practices, grazing, etc.

 (iii) Soil and geologic substrate, which are particularly important in open and 
sparse canopy covers, as the sensor will detect a stronger signal coming 
from the background.

 (iv) Solar illumination conditions, which depend on the latitude, day of the year, 
and hour of the day.

 (v) Terrain slope.
 (vi) Aspect, both affecting the illumination conditions of a target cover.
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Among these factors, it is particularly relevant to consider the impact of the geo-
metric conditions of the observation, in particular, the incidence and viewing angles 
relative to the reflecting surface. This geometric relationship, along with the surface 
properties (primarily roughness), determines how the incoming radiation is scat-
tered and the strength of the outgoing radiation. There are three types of surface 
scattering that may occur (Figure 2.10). The first type of scattering is known as 
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FIGURE 2.9 Factors (see text) influencing spectral signatures.
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specular reflection. In specular reflection, surface incident energy is reflected away 
from the Sun and at the same angle as the solar incident angle, and no energy 
is scattered in any other direction. In this case, the sensor can measure only the 
ground reflected energy at this particular viewing angle and will receive no energy 
at any other viewing directions. In the second type of surface scattering, the inci-
dent energy is reflected diffusely and equally, or isotropically, in all directions. 
When a surface is perfectly diffuse and exhibits the same reflected radiance for any 
angle of reflection, that is, independent of viewing angle to the surface normal, it 
is known as a Lambertian surface. Most surfaces exhibit the third type of scatter-
ing behavior, known as anisotropic reflectance, in which both diffuse and specular 
scattering occur.

These factors illustrate some of the challenges involved in the accurate assessment 
and characterization of land surface conditions with remote sensing data. Therefore, 
the spectral reflectance signatures presented in Figure 2.8 may be regarded just as 
reference signatures. In other words, land surface cover types will unlikely have the 
same observed reflectances as those referred in their expected spectral signatures. 
Rather, they show spectral variability caused by surface, illumination, and atmo-
spheric variations, often making it difficult to unequivocally discriminate objects 
based solely on detected reflectance. Therefore, to obtain sound retrievals from 
remote sensing images, the interpreter needs to introduce different corrections aim-
ing to remove the influences of those factors. As we will see in Chapter 6, different 
quantitative methods are available to eliminate or at least mitigate the impact of 
atmospheric, illumination, and terrain effects.

Despite this, the reference spectral reflectance signatures are very useful in under-
standing the images and can also be used to select the optimal bands or band combi-
nations for discriminating certain surface properties, as well as to suggest technical 
requirements for future remote sensing missions.

In the following sections, we analyze in greater detail the spectral behavior and 
signatures of typical land surface components, namely, vegetation, soil, and water. 
We discuss the optical properties of these materials and relate their spectral signa-
tures to key biochemical and mineralogical components.

2.5.2 veGetation refleCtanCe

The spectral properties and characterization of vegetation canopies are one of the 
most important and challenging problems in remote sensing. The reflectance proper-
ties of a vegetation canopy are complex and a result of many biochemical and bio-
physical canopy attributes and the external factors that influence the signal detected 
at the sensor. A complete understanding of the reflectance behavior of a vegetation 
canopy includes the role of leaf biochemical, plant physiologic, and canopy struc-
tural and morphologic properties. Leaf biochemical constituents include pigments, 
lignins, and water. Differences in pigment concentrations are responsible for “color” 
changes, primarily in the visible portion of the spectrum, while leaf moisture content 
involves energy interactions in the SWIR portion of the spectrum. Plant physiologic 
condition (vigor, phenology, stress) involves nutrient, water, and light availability, 
which alters the pigments, lignins, and water-related biochemical interactions and 
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affects plant structure. One must also consider the structural properties at the can-
opy level, which include the leaf area index (LAI), leaf angle distribution (LAD), 
fractional vegetation cover, plant height, crown diameter, leaf clumpiness, planting 
geometry, and associations with other species of shrubs, trees, and grasses.

Typically, many of these vegetation properties change simultaneously with plant 
canopy development, making it difficult to isolate the variation of specific vegetation 
biophysical components. For example, as a canopy develops, both fractional vegeta-
tion cover and LAI change simultaneously, along with pigment and water contents. 
Aside from the vegetation canopy itself, there is also the underlying canopy back-
ground consisting of soil, rock, litter, water, and snow, with optical properties that 
contribute a signal to the overlying vegetation canopy. External to the canopy are 
also the various influences that alter the signal at the sensor including Sun illumina-
tion and sensor view angles, landscape topography (slope, aspect), and atmospheric 
effects.

In this section, we introduce some of the most basic vegetation properties in the 
solar spectrum. More rigorous treatments involving laboratory-based studies of leaf 
reflectance, optical–geometric models of plant canopies, and numerical canopy radi-
ative transfer models (RTM) can be found elsewhere (Asner 1998; Asner et al. 2000; 
Colwell 1974; Gates et al. 1965; Jacquemoud 1990; Jacquemoud et al. 1995; Knipling 
1970; Liang 2004; Westman et al. 1988).

The reflectance properties of a leaf are mostly related to the levels of photosyn-
thetic pigments and leaf water, as well as the leaf’s structural characteristics. The 
overall spectral signature of a leaf or plant is further affected by leaf age, nutrient 
stress, and health (disease, vigor, etc.). A typical spectral reflectance signature of a 
green leaf obtained from laboratory measurements is shown in Figure 2.11. There 
are three main spectral domains influencing the optical properties of leaves, namely, 
the VIS, the NIR, and the SWIR regions.

The low reflectance in the VIS region (0.4–0.7 µm) is due to the absorbing effect 
of leaf pigments, mainly chlorophyll a, chlorophyll b, carotenoids, and xanthophylls, 
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with the chlorophyll pigments accounting for 60%–75% of the energy absorbed 
(Gates et  al. 1965). All of these pigments absorb in the “blue” region of the EM 
spectrum centered on wavelengths ~0.45  µm, while chlorophyll also absorbs in 
the “red” portion of the spectrum, centered ~0.65 µm. Between the blue and red 
spectral regions, there is a spectral region of less intensely absorbed radiation, a 
“green reflectance peak” at 0.55 µm, which is responsible for the green appearance 
of healthy leaves. Because energy in the 0.4–0.7 µm range is absorbed by pigments to 
drive photosynthesis, the term incident photosynthetically active radiation (IPAR) 
is often used to describe the radiation in the visible part of the spectrum.

Other pigments also have an important effect on the spectral reflectance of leaves 
in the VIS spectrum. For example, the yellow to orange-red pigment carotene has a 
strong absorption in the 0.35–0.50 µm range and is responsible for the color of some 
flowers and fruits as well as leaves without chlorophyll. When leaves undergo senes-
cence, chlorophyll levels and the associated absorptance decrease, causing a higher 
red reflectance, which combined with the green reflectance yields a yellowish color 
(green + red – yellow). The influence of the more persistent carotenoid pigments 
becomes more pronounced as the amount of chlorophyll in the leaves decreases dur-
ing senescence. In some species, the red and blue pigment xanthophyll with strong 
absorption at 0.35–0.50 µm becomes prominent with leaf aging, resulting in many of 
the leaf colors in autumn (e.g., northern maples and Chilean Nothofagus).

Beyond the highly absorbing red region is the sharp “red edge” transition region 
at ~0.74–0.78 µm, in which leaf pigments and cellulose become transparent to NIR 
wavelengths. Leaves have very low absorptance (<10%) and high leaf reflectance 
that can reach 50%. Plant nutrient and mineral stress are known to cause shifts in the 
red edge. The region between 0.70 and 1.1 µm is called the NIR reflectance plateau, 
where reflectance is very high, except in two minor water-related absorption bands 
(0.96 and 1.1 µm), which depend on the internal cellular structure of the leaf.

Leaf structural properties strongly influence reflectance, particularly by the 
relative thickness of the mesophyll cell layer. The spongy mesophyll layer con-
tains internal air cavities that scatter incident radiation (Figure 2.12). Leaf reflec-
tance increases for more heterogeneous cell shapes and contents as well as with 
increases in the number of cell layers, intercellular spaces, and variations in cell 
size. The vegetation spectral reflectance curves are modified by the morphology of 
the leaf. Thus, needle leaves tend to exhibit greater absorptance across all wave-
lengths, while desert succulent plants will reflect more energy than other meso-
phytic species (Gates et al. 1965). As a result of NIR sensitivity to leaf structural 
properties, which varies across plant species, the NIR spectral region is very use-
ful in plant biodiversity studies and in discriminating among plant species that are 
often not distinguishable in the VIS spectrum.

The NIR spectral domain also has a transition area between 1.1 and 1.3 µm, where 
reflectance decreases sharply from the NIR reflectance plateau to the low-reflecting 
SWIR domain (1.3–2.5 µm) (Figure 2.12). This region is characterized by strong 
absorption by leaf water. Leaf water strongly absorbs incident solar radiation in this 
range but is transparent to the shorter VIS or IPAR wavelengths. Reflectance of 
SWIR wavelengths generally increases as leaf liquid water content decreases; how-
ever, water absorbs radiation so strongly at 1.45 and 1.95 µm that these wavelengths 
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cannot be used in land remote sensing because most of the solar radiation in these 
wavelengths is absorbed by the atmosphere before reaching the ground.

From laboratory measurements, we see dramatic differences between dry leaves 
and leaves infiltrated with water in this spectral region, especially at wavelengths 
near 1.45, 1.92, and 2.7 µm (Lusch 1989; Short 1982, p. 501; Yebra et  al. 2013a; 
Figure 2.13), although these variations depend on the leaf type and plant species 
(Westman and Price 1988). A sensor placed above a canopy generally does not 
measure individual leaves but rather many leaves forming the vegetation canopy. 
The overall radiation transferred through the canopy also depends on the structural 
arrangement and quantity of leaves within a canopy. The canopy’s structural or 
 optical–geometric properties include canopy architecture, LAD, LAI, ground cover 
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fraction, leaf “clumping,” species composition, leaf morphology, leaf size and shape, 
and the underlying soil and litter.

In spite of this structural complexity, there are many common features in most veg-
etation spectra, such as the high contrast observed between the red band (~0.645 µm) 
and the NIR region (0.7–1.3 µm). In general, one can say that the greater the contrast 
between these two regions, the greater the amount and vigor of the vegetation. This 
theoretical spectral behavior of vegetation in the “red” and NIR forms the basis for 
the design and development of vegetation indices (see Section 7.1.3). Vegetation indi-
ces are constructed from combinations of these two bands (ratios, linear sums, etc.) 
when multispectral images are available. They are designed to isolate and enhance 
the vegetation signal in remotely sensed imagery, thereby facilitating the discrimina-
tion and extraction of useful vegetation information (Asrar et al. 1992; Gutman 1991; 
Huete et al. 1994; Huete et al. 1997).

It is implicit that any source of stress in the vegetation will cause a change in 
its spectral behavior. Senescent or stressed leaves tend to immediately reduce 
chlorophyll activity, resulting in less absorptance in the red band, with slight 
decreases in blue absorption (since carotenes persist and continue to absorb in 
the blue). The consequent increase in red reflectance and slight increase in blue 
reflectance alters the proportion of reflectance in the primary colors (blue, green, 
red), resulting in a change in leaf color. This is why leaves tend to show a yellow-
ish color with senescence or stress. Stress may also reduce leaf reflectance in the 
NIR portion of the spectrum, due to the deterioration of the cellular structure of 
the leaf. The spectral curve often becomes flatter and less chromatic (Knipling 
1970; Murtha 1978).

Such information is valuable in detecting damages produced by pollution, insects 
(Rock et al. 1986; Souza et al. 2005), or fires (Chuvieco 2009). The contrast between 
NIR and SWIR has also been extensively used to estimate leaf moisture content, 
provided an estimation of other controlling factors is available (Yebra et al. 2013a). 
In addition, it has been shown that certain factors in leaf stress are associated with a 
displacement in the red edge, that is, the slope change in the spectral curve between 
red and the NIR, toward shorter wavelengths. This phenomenon has been observed 
when the plants are affected by heavy metal contamination (Rock et al. 1986).

2.5.3 Soil refleCtanCe propertieS

Much is known about soil properties through extensive laboratory and in  situ 
field measurements. In contrast to vegetation, very little EM energy is transmitted 
through soils, and therefore their spectral signature is basically related to the most 
superficial conditions. The spectral composition of energy reflected and emitted by 
soil is mostly dependent on the biogeochemical (mineral and organic) constituents, 
optical–geometrical scattering properties (particle size, aspect, roughness), and 
moisture conditions of the immediate soil surface (Ben-Dor et al. 2008; Lusch 1989; 
Mulders 1987). For example, soils with high quartz content often reflect a large 
portion of incoming energy across the EM spectrum, and wet soils absorb most of 
the NIR and SWIR light they receive, while soils with high organic matter tend to 
absorb much of the incoming visible light.
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Different soil spectral reflectance signatures result from the presence or absence, 
as well as the position and shape of specific absorption features, of a number of 
soil constituents. Absorption is due to various chemical/physical phenomena such as 
intermolecular vibrations and electronic processes in atoms. The VIS–NIR regions 
(0.4–1.1 µm) contain broad spectral absorption features such as strong absorption 
near 1 µm due to ferrous iron, and weaker absorptions at 0.7 and 0.87 µm are attrib-
uted to ferric iron. Strong Fe–O charge transfers in the blue and ultraviolet region 
result in fairly steep decreases in reflectance with shorter wavelengths. Iron is fairly 
ubiquitous, so most soils exhibit increasing reflectance with wavelength over the VIS 
to NIR portion of the spectrum (Mulders 1987). Soils have distinct spectral features 
in the SWIR region caused by atomic vibrational processes, which include two broad 
water absorption bands at 1.4 and 1.9 µm. Minerals with OH, CO3 (calcite), and SO4 
(gypsum) exhibit absorption features in the 1.8–2.5 µm region, while layer silicates 
with OH absorb near 1.4 and 2.2 µm (Mulders 1987; Shepherd and Walsh 2002). 
Humus content also has a great influence on soil color, tending toward a low reflec-
tance, especially around 0.7–0.75 µm (Curran et al. 1990).

Soils are mixtures of a number of inorganic and organic constituents, so it is not 
straightforward to evaluate the composition of soils from their spectral signatures 
(Ben-Dor et al. 2008). Many soil spectral signatures are fairly similar, making it dif-
ficult to distinguish them. As a result, only a limited number of soil spectral curves 
have been found to be distinguishable using remote sensing. Stoner and Baumgardner 
(1981) analyzed the spectral signatures of a great variety of soils (485 types), from 0.50 
to 2.45 µm, and documented five unique soil spectral curve shapes primarily related to 
their relative contents of organic matter and iron and modulated by their textures. Other 
spectral libraries, such as the NASA Jet Propulsion Laboratory (JPL) Aster, include 
a wide range of soil spectral signatures (Figure 2.14). These, along with numerous 
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laboratory and field studies, have shown that soil spectral signatures are largely con-
trolled by the iron oxides, organic molecules, and water that coat soil particles.

Most soil surfaces scatter incident radiation anisotropically, which is a conse-
quence of a soil’s 3D structure. Scattering takes the form of diffuse and specular 
reflection and is sensitive to the geometric properties of soil components (particle 
size, aspect, roughness), the macro soil surface, sensor viewing angle, solar illumi-
nation angle, and the relative azimuthal positions of the Sun and sensor relative to 
the surface (Ben-Dor et al. 2008; Stoner and Baumgardner 1981). With the shortest 
wavelengths most affected, roughness and Sun–soil–sensor geometries alter a soil’s 
spectral signature and the inferences of basic soil properties such as soil mineralogy. 
Remote sensing data taken under different Sun and viewing geometries are not nec-
essarily comparable without correction for these angular effects (see Section 6.6.2.4).

Particle size distribution and surface height variation (roughness) are the most 
important factors influencing the directional reflectance of bare soils. They cause 
a decrease in reflectance with increasing size of “roughness elements,” as coarse 
aggregates contain many interaggregate spaces and “light traps.” Smooth, crusted, 
compacted, and structureless soils generally reflect more energy and are brighter 
(Lusch 1989). Clayey soils, despite having a finer particle size distribution, tend to 
be darker than sandy soils because clays aggregate and behave as larger, “rougher” 
surfaces.

Soil moisture has a strong influence on the amount and composition of reflected 
and emitted energy from a soil surface, and thus, information about soil moisture 
condition can be derived from measurements in all parts of the EM spectrum. In 
the shortwave region, the major effect of adsorbed water on soil reflectance is a 
pronounced decrease in reflected energy, making soils darker when moistened, par-
ticularly in the water absorption bands centered at 1.45 and 1.9 µm (Reginato et al. 
1977). The decrease in reflectance is proportional to the thickness of the water film 
around the soil particles and can be related to the gravimetric water content as well 
as energy status of the adsorbed water.

In the shortwave portion of the spectrum, the SWIR region is considered most 
sensitive to surface moisture content. Water absorption in these two bands can be 
expressed as a ratio, relative to the other bands, or in linear combination and then 
related to soil water content for discrete soil textural classes.

At the landscape level, it is much more difficult to measure soil properties and 
extract soil information with spaceborne sensors. This is due to the extreme spa-
tial variability of soil properties and because the soil surface is often masked by 
vegetation and plant litter. The discrimination and mapping of soil types and soil 
properties becomes a function of not only the properties of the surface materials but 
also sensor characteristics such as number of wavebands, bandwidths, spatial resolu-
tion, and instrument noise. The wealth of knowledge available from laboratory, field, 
and model studies, however, provides a strong foundation and starting point for the 
extraction of soil information at the more heterogeneous landscape level.

Direct measurements provide information on soil spectral signatures, moisture, 
and textural properties and can be interpreted using the extensive knowledge gained 
from laboratory and field studies. In arid and hyperarid regions, there has been much 
success in mapping soils with remote sensing because of the dominance of the soil 
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spectral signal and the minimal interference from vegetation (Figure 2.15). In more 
densely vegetated areas, the soil signal may become significant again with land con-
version activities that result in exposed soil surfaces, such as in clear-cutting of for-
ests, biomass burning, wind storms, agricultural and pasture expansions, and natural 
disasters (Adams et al. 1995).

Where the surface is strongly vegetated, soil properties must be inferred from 
measurements of the vegetated surface. Many studies have demonstrated the pos-
sibility of inferring valuable information about a soil from the spectral patterns and 
characteristics observed over the vegetation (Bruce and Hormsby 1987). This tech-
nique is known as geobotany and relies on the detection of anomalies in the vegeta-
tion cover to obtain information on soil and geologic characteristics. Examples of 
such anomalies include unique patterns of plant species distribution, abnormal plant 
growth, and density patterns, as well as alterations in plant pigments or a plant’s 
phenological cycle.

The presence of leaf litter and other nonphotosynthetic vegetation (NPV) on 
the soil surface influences the resulting soil spectral signatures. Many studies have 
investigated the chemical and optical properties of soil organic matter dynamics as 
a function of plant source and aging. Stoner and Baumgardner (1981) showed three 
unique spectral signatures representative of various stages of litter decomposition in 
soils. A fibric curve had the most tissue morphology intact and thus had high reflec-
tance properties. Hemic curves resulted from intermediate levels of decomposition, 
while sapric curves represented mostly decomposed litter and were very low reflect-
ing. Ben-Dor et al. (2008) found that the slopes in the VIS–NIR spectral region and 
specific absorption features in the NIR–SWIR region were useful in assessing the 
properties of soil organic matter at several stages of biological decomposition.

FIGURE 2.15 RapidEye image of the Colorado River Delta, Mexico, showing the spectral 
contrast of different soils in arid areas. (Image courtesy of BlackBridge, color combination 
NIR, G, B.)
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2.5.4 water in the Solar SpeCtruM

Water bodies and aquatic surfaces absorb or transmit most of the radiation they 
receive. In general, the longer the wavelength, the greater the absorption, so the 
spectral reflectance signature of water bodies shows decreasing reflectances with 
increasing wavelengths. The highest reflectance of clear water takes place in the blue 
band, and there is a gradual decrease nearing the NIR and SWIR regions, where 
reflectance values approach zero. For this reason, it is generally straightforward to 
spectrally recognize water bodies on remotely sensed images, as they appear very 
different from soil or vegetation.

Variation in water optical properties is more easily detectable in shorter wave-
lengths (blue and green) and is related to differences in water depth, chlorophyll con-
tent, dissolved particles, and surface roughness. For example, reflectance increases 
with sediment content across all the visible bands (Figure 2.16), although the amount 
of increase depends on sediment particle diameters (Bhargava and Mariam 1990). 
Reflectance also increases with increasing algal concentrations.

The depth of water directly influences the reflectance contribution from materi-
als at the bottom layer of water. In shallow waters, the bottom layer has a stronger 
optical contribution and will generally increase the remotely sensed reflectance from 
the water body. The greater the water depth, the greater the absorptance, and bathy-
metric (water depth) mapping in coastal zones is based on these relationships. From 
studies conducted with Landsat thematic mapper (TM) images, the maximum water 
depth that could be determined was 6.4 m in the blue band, 3 m in the green band, 
and 2.1 m in the red band (Ji et al. 1992).

Water composition also influences reflectance properties, and several studies have 
demonstrated that water chlorophyll content can be mapped from spaceborne sen-
sors. As the chlorophyll levels in water increase, reflectance decreases in the blue 

FIGURE 2.16 MODIS-Aqua image of South Florida, showing different sediment concen-
trations in shallow waters. (From http://visibleearth.nasa.gov/.)
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band. This has been used to map seaweed density (Robinson 1985) and to study 
eutrophication in reservoirs and lakes (Pulliainen et al. 2001).

Finally, water surface roughness promotes diffuse reflection and scattering, 
which result in a greater reflectance. With very calm waters, the surface behaves as a 
specular reflector (or mirror), with a highly anisotropic reflectance pattern and vari-
able reflectance values depending on sensor view angles and direction (Figure 2.17). 
Ocean measuring sensors are designed to sense variations in very low reflecting 
waters while having orbits designed to avoid the strong specular signal, or Sun glint, 
which could easily damage the internal detectors.

Snow, on the other hand, provides a very different spectral signature to water. 
Snow has very high reflectance in the visible bands, lower reflectance in the NIR, 
and even lower reflectance in the SWIR region. Snow reflectance is most affected 
by the snow grain size, the depth and density of the snow layer, and the amount of 
impurities present (Dozier 1989). Reflectance is highest for fresh snow, lower for 
frozen snow, and lowest for dirty snow (Figure 2.18). Snow reflectance in the visible 
bands can decrease by up to 80% with increasing snow age and content of impurities 
(Hall 1988; Kelly and Hall 2008).

Snow is often difficult to distinguish from clouds in the VIS spectrum; however, 
differences are more evident in the SWIR because cloud ice crystals or drops are 
smaller than snow grains, which is why they absorb much less radiation in this por-
tion of the spectrum. In addition, snow usually has a greater reflectance in the visible 
bands and a more homogeneous texture than clouds (Dozier 1989).

FIGURE 2.17 Terra-MODIS image of Mexico and Central America acquired April 13, 
2004, showing Sun glint effects. Notice the white colors of Lake Chapala (central section of 
the image) and the Pacific Ocean to the south. (From http://visibleearth.nasa.gov/.)
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FIGURE 2.18 Reflectance curves for different types of snow and ice. (Adapted from Hall, 
D.K. and Martinec, J., Remote Sensing of Ice and Snow, Chapman & Hall, London, U.K., 
1985.)

FIGURE 2.19 Landsat image mosaic of Antarctica based on 1100 images from Landsat 7. 
(Image courtesy of USGS, NASA, National Science Foundation, and the British Antarctic 
Survey, http://visibleearth.nasa.gov/.)
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The growing concern on climate warming and its impact on ice melting has 
increased the interest on using temporal series of satellite data to monitor glacier and 
ice cap trends. For instance, recent estimations of glacier extent and trends based on 
the analysis of satellite images have been able to provide more accurate estimations 
on the contribution of glacier loss to sea level rise (Gardner et  al. 2013). Similar 
studies are being conducted for the ice caps of Greenland and Antarctica, using a 
combination of remote sensing techniques, including gravimetry, laser altimetry, and 
MW and optical observations (Figure 2.19).

2.6 THERMAL INFRARED DOMAIN

2.6.1 CharaCteriStiCS of eM radiation in the therMal infrared

According to Wien’s (Equation 2.6) and Plank’s laws (Equation 2.4), the spectral 
radiant exitance from the Earth is most pronounced in the spectral region between 
8 and 14 µm, considering the Earth’s temperature (about 300 K). This spectral band 
is named thermal infrared (TIR) because radiation in these wavelengths are closely 
linked to the Earth’s temperature variations. As previously commented, the spectral 
signal received by the sensor in this band proceeds mainly from the Earth’s emitted 
energy, as the solar reflection in this spectral region is very low. Therefore, observing 
in the TIR region is particularly useful to detect heat variations both from the ground 
(both ocean and land) and from the atmosphere (clouds, for instance).

The temperature of an object is closely linked to its capacity to absorb incoming 
solar radiation. Equation 2.16 states that the sum of reflectance, transmittance, and 
absorptance is 1. Considering that the transmittance is practically zero in the TIR, 
this equation can be simplified by stating that incident energy is either reflected 
or absorbed. Following Kirchoff’s radiation laws, at thermal equilibrium the spec-
tral emissivity of an object equals its absorptance. In other words, the greater the 
absorption, the greater the emission, which allows us to reformulate Equation 2.17 
according to

 1 = +r e  (2.18)

which, in summary, means that surfaces with high reflectance (e.g., snow) are low 
emitters, while those with low reflectance are highly emissive, as is the case with water.

As already mentioned, emissivity is a relative measure that relates the radiant 
exitance of an object with that of a blackbody. High emissivity (close to 1) indicates 
that an object absorbs and emits a great proportion of the incident energy, while an 
emissivity considerably smaller than 1 refers to an object that absorbs and emits only 
a small proportion of the incident energy. In the case of land surfaces, water and 
dense vegetation have the greatest emissivity (0.99 and 0.98, respectively), while the 
lowest emissivity values correspond to sandy soils (0.90), snow (0.80), and metals 
(0.16). The moisture content modifies these values remarkably. Thus, in sandy soils, 
the moisture content increases of 8% imply a rise in emissivity from 0.90 to 0.94 
(Mulders 1987). The emissivity values are calculated for an average temperature, 
in this case around 20°C (Curran 1985).
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If we know the kinetic temperature of an object, the global radiant exitance can be 
estimated by measuring its emissivity, which is a critical parameter in the TIR. Two 
objects with the same temperature can produce different radiant exitances if having 
different emissivities. Emissivity values can be estimated if the land cover is known 
(see Section 6.7.4). Corrections can also be made based on empirical correlations of 
satellite radiances with temperatures taken in the field or from meteorological sta-
tions. Recent studies have shown that in sufficiently dense vegetation covers, there 
is no need to take the soil into account, which simplifies calculations remarkably.

In addition to emissivity, the thermal behavior of an object is related to other 
parameters. The most important are its thermal capacity, conductivity, diffusivity, 
thermal inertia, and heating index.

The thermal capacity (C) indicates the capacity of the cover to store heat. The 
thermal capacity per mass unit is known as specific heat (c). Water has the great-
est thermal capacity, which is why it can store more heat than vegetation or soils. 
Thermal conductivity (k) measures the rate at which the heat in a land cover is trans-
mitted. Urban areas are good thermal conductors, whereas vegetation and soils are 
not. For that reason, the diurnal temperature in zones with a vegetation cover is 
mainly a function of the temperature of the surface layer and not of lower layers.

The thermal diffusivity (K) is a measure of how well the temperature of a surface 
changes through heat conduction. In general, dry surfaces show low temperature 
changes in contrast to wet surfaces with higher conductivity.

Finally, thermal inertia (P) refers to the resistance of a material to temperature 
changes. This parameter is directly related to the thermal conductivity (k), the heat 
capacity (C), and the density of the material (D), according to the following formula:

 P DCK=  (2.19)
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FIGURE 2.20 Thermal inertia of different land covers. (Adapted from Short, N.M. and Stuart, 
L.M., The Heat Capacity Mapping Mission (HCMM) Anthology, NASA, Washington, DC, 1982.)
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Dry and sandy soils with low thermal inertia show severe contrasts between day 
and night temperatures. In contrast, humid and clayey soils are much more resis-
tant to changes and will have lower daytime and higher nocturnal temperatures 
compared to dry soils (Figure 2.20). Thermal inertia is easily derived from peri-
ods of maximum and minimum sunlight, approximately at noon and midnight, 
respectively.

The heating index is a function of the intensity of the radiation and the absorp-
tance of the object. The intensity is smaller in areas with forest, clouds, or buildings, 
which prevent direct radiation. Topography (slope or aspect) also directly affects 
radiation.

2.6.2 therMal propertieS of veGetation

The thermal properties of vegetation are quite complex, since plants absorb a 
high amount of incident solar energy to drive photosynthesis. This energy is 
reemitted during the night to maintain the energy balance. In addition to this, 
vegetation has a high water content, and therefore will have a high thermal iner-
tia. Another important factor controlling vegetation thermal patterns is evapo-
transpiration (ET), which regulates plant water and temperature. When plants 
transpire, the extra energy involved in releasing water vapor implies a reduction 
in sensible heat and a parallel decrease in plant surface temperature. For this rea-
son, plants tend to be cooler during the day than their surroundings. On the other 
hand, the energy absorbed during the day is reemitted at night in the TIR region 
and the plant shows higher temperatures than its surrounding areas. Water stress 
or other physiological problems reduce this day–night thermal contrast in vegeta-
tion, which make it possible to detect plant health conditions. Although most of 
the studies on vegetation health are based on the solar spectrum, thermal images 
have also been extensively used to look at vegetation changes resulting from 
deforestation processes, desertification, or water stress (Curran 1985; Jackson 
et al. 1981; Moran et al. 1994; Nieto et al. 2011; Sandholt et al. 2002). Plant stress 
indices, such as the surface moisture index (SMI) (Nemani et al. 1993) and the 
water deficit index (WDI) (Moran et al. 1994), utilized thermal and vegetation 
index measurements of soil and vegetated surfaces to estimate the moisture con-
tent through the rate of evaporative water loss. When soil moisture is abundant, 
plants are able to transpire water at maximum rates for the given meteorological 
conditions. As the soil dries out, it becomes more difficult for plants to extract 
the necessary water to meet the atmosphere’s evaporative demands and transpira-
tion is reduced, resulting in higher leaf temperatures than those with ample water 
supply.

Several external factors may modify this thermal behavior. For example, ET rates 
are influenced by atmospheric humidity, wind speed, availability of light, air temper-
ature, and soil moisture. Atmospheric humidity reduces ET, while the other factors 
generally increase ET (Allen et al. 1989). An important factor that affects vegetation 
emissivity is percent cover and density. Some authors have tried to estimate globally 
ET from satellite data, combining thermal and optical data. The former provide an 
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estimation of energy balance, while the latter facilitate canopy cover and vegetation 
fraction (Li and Lyons 2002; Yebra et al. 2013b).

2.6.3 SoilS in the therMal doMain

Soil thermal behavior is largely a function of soil moisture, which modulates the 
heating and cooling of the soil through a partitioning of radiant energy into latent and 
sensible heat components. The difference in the amplitude of the diurnal variation 
in temperature across soil surfaces is a result of their differences in thermal inertia, 
which is primarily related to their moisture content and texture properties (Mulders 
1987). Reginato et al. (1976) showed how daily maximum–minimum surface soil 
temperatures and maximum–minimum soil–air temperatures were inversely related 
to the water content (0–2 cm) in soils.

An indirect approach to estimate the water status of soil is to measure the TIR 
energy emitted by the overlying vegetation canopy. The greater the moisture content, 
the greater the soil’s thermal inertia, because this increases its thermal capacity and 
conductivity. This makes wet soils appear cooler than dry soils during the day and 
warmer during the night.

Other parameters to consider include density, thermal capacity, and conductivity. 
Several laboratory studies have shown how quartz exhibits a density and thermal 
capacity similar to those of clay but has much higher values of conductivity. For this 
reason, its thermal inertia is greater, and it also has low values of emissivity (0.90). 
Soils with a high content of organic matter offer the lowest values of conductivity, 
which is why they tend to more clearly show temperature differences between day 
and night.

2.6.4 therMal SiGnature of water and Snow

From what has been mentioned, it is readily noted that water has a greater thermal 
inertia than other types of cover. This resistance to temperature changes is due to 
its high conductivity: the incident radiation is strongly absorbed and transmitted 
throughout the surface by convection movements, which explains the relative stabil-
ity of water temperature. Thermal observation of oceans is very relevant to monitor a 
wide range of processes that affect both climatology and meteorology. Among them 
are the geographical variation of temperature throughout the oceans (Figure 2.21), 
the interannual variability of oceanic oscillations (“El Niño” being the most rel-
evant), the meanders and eddies on major fronts and boundary events, the diurnal 
warming cycle, and the coral bleaching events (Merchant 2013). Estimating water 
temperatures is also quite useful for detecting fishing banks (Santos 2000) or plumes 
produced by power plants or other sources of water pollution.

In the case of snow, the temperature, size of the crystals, and liquid water content 
affect the measurement of radiating temperature. As we saw earlier, a snow cover has 
the lowest emissivity (or the greatest reflectance), which is why snow tends to register 
lower temperatures than the surroundings. The observation of snow in the TIR helps 
in differentiating the types of snow and monitoring snow cover, as well as estimating 
snow volume (Ferris and Congalton 1989; Kelly and Hall 2008).
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2.7 MICROWAVE REGION

2.7.1  CharaCteriStiCS of eleCtroMaGnetiC radiation 
in the MiCrowave reGion

Despite its name “microwave” (MW), this spectral region comprises the longest 
wavelengths used in remote sensing. They also have other civilian and military 
applications (communications, tracking of moving objects, heating food, etc.), which 
have made this region quite popular in everyday use.

As a legacy of the military tradition of naming radar bands, MW bands are desig-
nated by a series of letters, referring to specific wavelengths or frequencies (Table 2.2).

From a remote sensing perspective, observations in the MW region are comple-
mentary and more complex than those performed in the optical region. The thematic 
applications of this spectral region are less extended than those using optical data, 
although they have remarkably grown over the last few years, thanks to the increasing 
availability of satellite missions equipped with MW sensors (ERS, Radarsat, Envisat, 
Sentinel-1, TOPEX, SMOS, TerraSAR, Cosmos, and ALOS, among them). The main 
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FIGURE 2.21 Global sea surface temperature estimated from 2014 MODIS Aqua data. 
Note thermal contrast between the two hemispheres in the two seasons. (Data extracted from 
http://neo.sci.gsfc.nasa.gov/, last access November 2015.)
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advantage of the MW region is its high atmospheric transmissivity, which makes it 
possible to observe areas regardless of weather conditions. This is particularly useful 
in cloudy areas, such as equatorial or subpolar regions, which are particularly dif-
ficult to observe in the solar spectrum. MW wavelengths used in remote sensing are 
much larger than the usual size of atmospheric particles and therefore atmospheric 
effects in this region are almost negligible (particularly for λ > 3 cm, Figure 2.22).

TABLE 2.2
Bands Frequently Used in Microwave Remote Sensing

Name Width (cm) Central Value Frequency (GHz) 

Ka 0.75 1.10

K 1.10 1.67 1.0 10.9 36

Ku 1.67 2.40

X 2.40 3.75 3.0 5.75 10.90

C 3.75 7.50 5.6 3.90 5.75

S 7.50 15.00 10.0 1.55 3.90

L 15.00 30.00 23.0 0.39 1.55

P 30.00 100.00 70.0 >0.39
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FIGURE 2.22 Atmospheric transmissivity in the microwave region. (Adapted from ESA, 
1995, RADAR course notes.)
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Remote observations in this spectral region have been mainly performed with 
active sensors (radar), which both emit MW energy and detect its return from the 
ground. However, there are also passive MW radiometers, which collect radiation 
from the surface, in a manner similar to optical sensors. We will review both types 
of sensors in Chapter 3, describing their technical characteristics and their impact 
on image interpretation, focusing here on the interaction of MW radiation with the 
main Earth covers. For better understanding this interaction, we need to examine 
first the radiation properties in this spectral band. In the case of passive sensors, the 
energy observed in the MW region is mostly derived from very cold targets, fol-
lowing Planck’s and Wien’s laws, and it has been used in mapping and monitoring 
snowcaps and ice caps. At these wavelengths, an adaptation of Plank’s law calculated 
by Rayleigh–Jeans (Elachi 1987) is used:
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where
Mλ is the spectral radiant exitance
ε is the emissivity
T is the temperature (K)
k is the Boltzmann constant (1.38 × 10–23 W s2 K−1)
λ is the wavelength

In this region, the values of Mλ are very low, and there are frequent interferences 
between emitted, reflected, and transmitted signals. In this spectral region, different 
covers have very diverse emissivities, ranging from 0.41 for liquid water to close to 
1 for ice. Since at Earth’s temperatures the signal is very weak at these wavelengths, 
passive MW radiometers need to observe a wide area to obtain longer integration 
rates and better signal-to-noise ratios, and therefore the spatial resolution of those 
instruments is very low.

In the case of the radar sensor, the energy is generated by the sensor itself, which 
is also able to detect the returned energy. Radar measures both the time elapsed 
between the emission and reflection of the MW pulse and the intensity of the returned 
signal. The former is mainly used in remote sensing to estimate the distance between 
the sensor and the surface (see Radar altimeters in Chapter 3), while the latter can 
be used to extract relevant properties of observed covers. The intensity of returned 
energy (commonly named backscatter pulse) to the radar can be computed from
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where
Pr indicates the reflected backscattered power
Pt is the power emitted by the radar
G is the gain factor of the antenna
r is the distance between the sensor and the surface cover
λ is the wavelength
σ is the backscatter coefficient
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The σ values are the most complex to estimate, since they depend on a wide variety 
of factors: surface roughness, dielectric conditions, terrain characteristics (mainly 
slope and aspect) in relation to the emitted beam, wavelength, polarization, and inci-
dence angle. In other words, as it is the case with other regions of the spectrum, land 
surface covers do not yield unique and constant backscatter coefficients. Different 
environmental factors modify the returned signal.

Surface roughness affects the intensity of the return signal. In simple terms, 
we can state that the higher the surface roughness, the greater the return signal. 
Depending on the nature of the substrate, the radar beam may be scattered upward 
in different directions (in the case of the soil) or internally (in the case of the vegeta-
tion), or it may be specularly reflected (in the case of the water). Depending on these 
three behaviors, the radar will register very different return signals (Figure 2.23).

Roughness is commonly defined as height variations within the target surface, but 
the impact of those variations on the incident beam depends on the wavelength and inci-
dence angle of the emitted beam as well. At short wavelengths, a relatively flat surface 
can appear as rough, while at greater wavelengths it can behave as smooth. According 
to the Rayleigh criterion for roughness, a land surface is considered rough when

 
sh ³ l g

8
sin  (2.22)

where
sh is the standard deviation of the height of the surface
λ is the wavelength of observation
γ is the radar incidence angle (between the radar beam and the normal to surface)

Diffuse backscatter

Corner backscattering

Specular backscatter

FIGURE 2.23 Different types of radar backscatter (Adapted from Campbell, J.B. and 
Wyme, R.H., Introduction to Remote Sensing, The Guilford Press, New York, 1996.)
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Briefly, this indicates that land covers with the same roughness will appear smoother 
at larger wavelengths and/or at greater incidence angles (more oblique observation).

The rougher the surface, the more diffuse the backscatter that will be derived 
from the target area, and the more intense the signal that will return to the radar 
antenna. However, if the surface cover is smooth, the backscatter is very low, since 
the reflection will be directed away from the radar antenna. This is the case in calm 
water bodies, which appear as dark tones in a radar image. Oil spills tend to make the 
water surface even smoother and, therefore, are clearly observable in radar images 
when wind speeds, and therefore ocean waves, are not very high (Figure 2.24). An 
extreme case of roughness is found in urban areas where building shapes frequently 
act as corner reflectors, which provide a high-intensity backscatter signal.

Along with surface roughness, the electrical characteristics of the surface play a 
critical role in determining the intensity of the backscattered signal. The ability of 
a surface to store and transmit electrons is termed the dielectric constant, and it is 
closely related to conductivity. In general terms, the drier the substance, the lower the 
dielectric constant, and the lower the backscatter. Dry soils have dielectric constant 
values between 4 and 7, while water has values as high as 80. Consequently, the pres-
ence of water in the soil or in vegetation can significantly alter the return pulse. Wet 
soils will return greater pulses than dry soils. Other good conductors are metallic 
surfaces, which give quite high values of backscatter. The dielectric constant also 
affects the emissivity in the MW region, which is a key parameter of radiant exi-
tance (see Equation 2.20). Following Kirchoff’s law, emissivity and reflectivity are 
complementary, and therefore the higher the dielectric values, the lower the emissiv-
ity. Consequently, wet surfaces tend to have lower emissivity.

FIGURE 2.24 Envisat radar image of the oil spill caused by the sinking of the Prestige 
tanker affecting the northwest of the Iberian Peninsula in 2002. (From ESA—Envisat 
mission.)
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In most remote sensors, the recorded energy comes from the most superficial 
layer observed by the detector. However, in the MW region, there is a great potential 
to obtain information from deeper layers of soil and vegetation. The penetration 
capacity depends on the wavelength (the longer the pulse, the higher penetration) and 
the dielectric constant (being higher for dry surfaces).

Finally, polarization refers to vibrational planes in which radar signals are trans-
mitted and received (Figure 2.25). A polarized signal indicates that its vibration is 
restricted to a certain direction. The two most important forms are (1) like polariza-
tion and (2) cross-polarization; the former applies when both emitted and received 
signals have the same polarization (horizontal–horizontal or vertical–vertical), 
while in the latter the polarization changes from the emitted to the received beam 
( horizontal–vertical or vertical–horizontal). The polarization can alter the backscat-
ter coefficient (σ) significantly in conjunction with the incidence angle, typically 
reducing σ as the incidence angle increases and when cross-polarization is used.

2.7.2 CharaCteriStiCS of veGetation in the MiCrowave reGion

Vegetation MW signals are closely associated with variations in roughness and 
dielectric constant. The roughness is very dependent on the size, shape, direction, 
and number of leaves. The retrieval of vegetation parameters from a single radar 
band has proved to be very complex because of the wide variations of shapes and leaf 
conditions even within the same species. Attempts have been made in several forest 
inventory projects to separate, for example, coniferous from deciduous trees, using 
the L band (Deane 1980) as well as the S, X, and C bands. Many difficulties were 
encountered because of the great variability of backscatter coefficients in coniferous 
forests (Leckie 1990).

With respect to conductivity, the dielectric constant increases when the moisture 
content of vegetation is greater during the growing period of the plant. When the 
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FIGURE 2.25 Different polarization types of the radar pulses: H, horizontal; V, vertical. 
The first two are like polarization, and the last two cross-polarization.
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vegetation loses vigor or the contribution of the soil becomes greater, the dielectric 
constant diminishes drastically. For this reason, MW images have been used for 
estimating vegetation water content, although results are very dependent on species 
composition (Leblon et al. 2002).

In a pilot study to measure the moisture content of prairie grass covers, the best 
results were observed using shorter bands (X band) and at an incidence angle of 30° 
(r2 = 0.9). For lower incidence angles (up to 0°), r2 values close to 0.5 were obtained 
and a similar but worse correlation was observed in the C band (Gogineni et  al. 
1991).

The depth of penetration in vegetation canopies is dependent on the wavelength 
used as well as moisture conditions and the polarization. Canopy penetration 
depths are greater at long wavelengths (L band), where the substrate soil con-
ditions influence the return signal and with like-polarization signals (HH or 
VV). There is decreased radar signal penetration into vegetation canopies with 
shorter wavelengths (the X band is more sensitive to the geometry and direction 
of the leaves) or with cross-polarization signals (HV or VH). According to some 
authors, the roughness of the vegetation can be estimated using the X band, the 
leaf biomass using the C band, and the wood biomass using the L band (Curran 
and Foody 1994).

2.7.3 CharaCteriStiCS of Soil in the MiCrowave reGion

From the previous paragraphs, it can be inferred that rough and wet soils have a 
greater backscattering coefficient and, therefore, will have bright tones in MW 
images. In dry soils, the penetration capability of radar increases up to several 
meters if the wavelength is sufficiently long. Urban areas, which are very rough, 
in long wavelengths appear with bright tones as well, which allow us to discriminate 
them from surrounding cultivated areas.

Both active and passive MW remote sensing can accurately measure surface soil 
moisture contents in the top 5 cm of the soil. The longer wavelengths (>5 cm) are best 
suited for soil moisture determinations. The theoretical basis for MW remote sensing 
measurements of soil moisture results from the large contrast between the dielectric 
properties of liquid water and dry soil. An increase in soil moisture content results 
in higher dielectric constant and therefore higher backscatter to the radar pulses 
and lower emissivity and radiant exitance to the MW radiometers. Therefore, radar 
instruments will generally receive a higher returned pulse from wet than dry soils, 
while passive radiometers will receive less radiation.

Global soil moisture estimations are currently based on different passive MW 
sensors on board several meteorological satellites (Figure 2.26). The challenge to 
retrieve this variable is to discriminate the impact of moisture from other factors 
affecting radiant exitance, such as vegetation cover or surface roughness. In addition, 
since MW exitance is very low, the sensors need to have a high radiometric accuracy 
to be sensitive enough to soil moisture variations (Wagner et al. 2013a). A recent 
project has cross-analyzed passive and active MW retrievals of soil moisture condi-
tions to build a global temporal series that may be related to precipitation or other 
climate anomalies (Al-Yaari et al. 2014; Wagner et al. 2013b).
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2.7.4 water and iCe in the MiCrowave reGion

The retrieval of water properties in the MW region is generally difficult since water 
surfaces tend to be very smooth and have very low backscatter signals. Wind or 
underwater relief may change the smooth character of water bodies, and therefore, 
wave patterns can be observed in radar images as long as the incidence angle is low. 
This application is very useful for detecting anomalies in the surface, for example, 
those caused by uncontrolled oil spills, as previously seen.

However, passive MW radiometers are very useful for monitoring sea ice, as 
they are more sensitive to cold temperatures than optical sensors. Different pas-
sive MW sensors have been launched to survey ice conditions, particularly in the 
Poles (Shepherd et  al. 2012). A time series of these observations has detected a 
considerable reduction in Arctic sea ice, mainly at the end of the summer period. 

Soil Water Index (SWI) Anomaly (%)(b)
–40 –20 0 20 40

Soil Water Index (SWI) (%)(a)
200 40 60 80 100

Forest mask
Arid regions mask
Snow/frost mask

FIGURE 2.26 Absolute soil moisture conditions (a) and anomalies (b) derived from 
the ASCAT sensor on board the METOP satellite. Period July–September 2012. (From 
Wagner, W. et al., The use of Earth observation satellites for soil moisture monitoring, WMO 
statement on the status of the global climate in 2012, World Meteorological Organization, 
Geneva, Switzerland, pp. 32–33.)
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In September 1979, the sea ice extent was estimated at 6.4 million km2, while in 
September 2012 it was estimated to be 3.11 million km2 (Figure 2.27). Passive MW 
sensors have also been used successfully to retrieve the snow water equivalent, while 
low-frequency radar has been used to discriminate between dry and wet snow (Kelly 
and Hall 2008).

On the other hand, MW nadir-looking radar can be used to estimate ocean wave 
heights, which are useful for monitoring ocean currents and oceanic relief. This has 
been the basis to monitor sea level trends. This information is very useful to predict 
global climate oscillations, such as the El Niño Southern Oscillation (ENSO), which 
implies an increase of ocean temperature and height in the South American Pacific 
coast and a parallel decrease in SE Asia. The average trends toward increasing sea 
level as a result of ice sheet and glacier melting are also well documented from radar 
altimeters (Figure 2.28; Ablain et al. 2015).

2.8 ATMOSPHERIC INTERACTIONS

We have assumed so far that the detection of EM radiation from the observed surface 
is dependent on the surface properties and observation conditions alone. However, 
we should also take into account the fact that this process does not happen in 
vacuum. Between the observed surface and the observing sensor, the atmosphere 
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FIGURE 2.27 Comparison of summer sea ice in the Arctic based on passive microwave data: 
Blue area, ice covered in 1979 and open water in 2012. (Courtesy of Nansen Environmental 
and Remote Sensing Center, Bergen, Norway.)
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interacts with both the incoming and outgoing radiation, thus distorting the signal 
that comes originally from the ground. This factor needs to be taken into account 
to accurately retrieve surface properties from satellite observations, as they observe 
the Earth from high elevations (commonly 600–900 km), and therefore the detected 
energy will most likely be affected by the different atmospheric layers.

The atmosphere is composed of many gases, including mainly nitrogen (N, 78%), 
oxygen (O2, 21%), argon (Ar, 0.9%), water vapor (H2O, 0.04%), carbon dioxide (CO2, 
0.033%), and ozone (O3, 0.012%). In addition to these gases, there are also solid 
particles, called aerosols, that also interact with EM radiation. They are very diverse 
and include ocean salt, carbon, dust, and particulate matter produced by combustion 
processes.

The effects of these components can be grouped into three classes: (1) total or 
partial absorption of incoming or outgoing radiant energy; (2) reflection and scatter-
ing of incoming energy, which alters its path direction and intensity; and (3) emis-
sion, which adds new radiation to that emanating from the surface. These processes 
are wavelength dependent, and therefore they need to be tackled specifically for 
different spectral bands.

2.8.1 atMoSpheriC abSorption

The atmosphere behaves as a selective filter at different wavelengths, such that remote 
observations cannot be partially or totally conducted over certain spectral regions. 
The main causes for this absorption are the following atmospheric components:

• Atomic oxygen (O2), which filters the ultraviolet radiation below 0.1 µm, as 
well as short ranges in the TIR and MW bands

• Ozone (O3), which eliminates most of the ultraviolet radiation below 0.3 µm, 
as well as some narrow bands in the VIS spectrum

• Water vapor (H2O), with one strong absorption around 6 µm and secondary 
absorption bands between 0.6 and 2 µm

• Carbon dioxide (CO2), which absorbs in the TIR (15 µm), with important 
effects too in the MIR, between 2.5 and 4.5 µm

Since most remote sensors are designed to observe the Earth’ surface, their spec-
tral sensitivity is adjusted to focus on those spectral regions where atmospheric 
absorption is low (or alternatively atmospheric transmittance is high). As previously 
mentioned, these regions are known as atmospheric windows, the main ones being 
(1) VIS and NIR, located between 0.4 and 1.35 µm; (2) SWIR to MIR bands, from 
1.5 to 1.8 µm, 2.0 to 2.4 µm, 2.9 to 4.2 µm, and 4.5 to 5.5 µm; (3) TIR, between 
8 and 14 µm; and (4) MW, >1 cm, where the atmosphere is practically transparent 
(Figure 2.29).

Even though atmospheric transmittance at these wavelengths is generally high, 
it is not always 100%, as it depends on atmospheric conditions. The most obvious 
case is when the area is covered by thick clouds, which prevents surface observation 
in the solar and thermal bands. Solid particles (particulate matter or PM) derived 
from different sources have also an absorption effect, reducing visibility at long 
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distances, as it is noticeable in a sunny day after recent rains, when the atmosphere 
gets much clearer as a result of PM precipitation.

Most terrestrial and oceanic sensors are adapted to atmospheric windows as they 
try to observe the ground. However, when the main goal of observation is actually 
the atmospheric components, remote sensors are designed to cover those regions 
where the target atmospheric component has a stronger absorption effect. More pre-
cisely, those sensors have generally observations bands with contrasting effects for 
that component: strong and weak absorption bands, since the estimation of their 
abundance is based on differential absorption retrieval.

This is the case, for instance, with greenhouse gases (GHGs), which are so rel-
evant to better understand the Earth’s climate. Several satellite missions have been 
developed to monitor carbon dioxide (CO2) and methane (CH4), two of the most 
relevant GHGs for climate change analysis (Dils et  al. 2014). A dedicated sensor 
for these two gases, named SCIAMACHY, was launched in the Envisat’s European 
Space Agency (ESA) satellite in 2002, followed by the TANSO-FTS sensor on board 
the Japanese mission GOSAT in 2009 (Figure 2.30).
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FIGURE 2.29 Atmospheric windows suitable for Earth observations from space, along with 
the main gas responsible for absorption. (Adapted from http://earthobservatory.nasa.gov/.)
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FIGURE 2.30 Global CO2 map retrieved from TANSO/GOSAT. (From Buchwitz et al., 
2013, Fig. 3, http://www.esa-ghg-cci.org/index.php?q=webfm_send/148.)
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2.8.2 atMoSpheriC SCatterinG

The scattering of EM radiation is caused by the reflection of incoming solar radiation 
by gases, aerosols, and water vapor present in the atmosphere. As a result, radiation 
detected by the sensor is a mixture of both surface and atmospheric reflected energy, 
and thus contains an undesirable noise that needs to be removed during the retrieval 
of the surface properties. At the surface, the direct irradiance is reduced, while dif-
fuse radiance (coming from other objects) increases.

Aerosols originate from both natural and human causes. They can be oceanic, 
caused by the water movement, or continental, as in dust in suspension or particles 
emitted by combustion. Because these atmospheric particles are highly variable in 
time and space, correction of atmospheric scattering is rather problematic. However, 
this factor must be taken into account whenever a fine estimation of ground radiance 
is required: for instance, when satellite measures are compared with ground radio-
metric measurements, or when we try to detect changes between two images acquired 
several years apart. Normally, in situ atmospheric measurements are not available at 
satellite acquisition times, and therefore atmosphere correction often needs to rely on 
data extracted from the image itself. Some methods may involve changes in reflec-
tance across several bands or from several observation angles (see Section 6.6).

Ideally, aerosol impacts need to be removed when the objective is the retrieval of 
ground properties. However, aerosols can also be the target of a remote sensing anal-
ysis, as they are very relevant for climate or human health, for instance. In this case, 
the retrieval of aerosol optical depth (AOD) is based on differential absorption (com-
paring reflectance measurements in wavelengths with high and low dispersion) or on 
differential observation angles (comparing reflectance measurements from nadir and 
off-nadir observations, analyzing different atmospheric thicknesses). Commonly, the 
satellite retrievals of AOD are compared with estimations from ground-based pho-
tometers, with very high correlations (de Leeuw et al. 2013).

Based on their origin and characteristics of aerosols, they vary widely in size, which 
causes different types of dispersion, since this process is highly dependent on the 
diameter of the scattering particles. The three main types of atmospheric dispersion 
are Rayleigh scattering, which is caused by particles smaller than the wavelength of 
the radiation; Mie scattering, when the particle is similar in size to the wavelength; and 
nonselective scattering, when the size of the particle is greater than the wavelength.

Rayleigh dispersion is highly dependent on the wavelength and mainly affects the 
shortest bands. It causes, for example, the blue color of the sky because blue is the 
lowest wavelength of the VIS spectrum. In aerial photography, the effect of Rayleigh 
scattering is very clear, as it leaves a bluish tone in photographs taken from high 
elevations.

Mie scattering is also dependent on the wavelength of incoming radiation, 
although to a smaller degree than Rayleigh scattering. Aerosols and atmospheric 
dust are the main causes of this type of dispersion, although it is also caused by for-
est fires or coastal mist.

Finally, the nonselective scattering affects various wavelengths equally. That is 
why clouds and fog tend to appear in gray tones, since they disperse the different 
bands of the VIS spectrum in a similar way.
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2.8.3 atMoSpheriC eMiSSion

There are also atmospheric emission influences that are important in the TIR. These 
must be corrected for in order to accurately retrieve the temperature of the surface 
from satellite acquired images. Similar to all materials with a temperature above 
absolute zero, the atmosphere emits radiant energy that will travel in the direction of 
and be detected by the sensor. Thus, as with atmospheric scattering, the atmospheric 
emission signal must be separated from the thermal exitance leaving the surface.

2.9 REVIEW QUESTIONS

 1. According to Planck’s radiation law, choose the correct sentence:
a. Warm bodies emit more energy at longer wavelengths.
b. Cold bodies emit more energy at longer wavelengths.
c. Cold bodies emit more energy at shorter wavelengths.
d. Warm bodies emit more energy at shorter wavelengths.

 2. Which of these spectral regions is independent of Sun’s energy?
a. Thermal infrared
b. Shortwave infrared
c. Visible light
d. Middle infrared

 3. The solar spectrum is located between
a. 0.4 and 0.7 µm
b. 0.4 and 1.2 µm
c. 0.4 and 2.5 µm
d. None of the above

 4.  Which of the following parameters represents the energy detected by the satel-
lite sensor?
a. Irradiance
b. Radiance
c. Radiant intensity
d. Radiant flux

 5. Reflectance can be defined as the ratio between
a. Reflected and emitted flux
b. Reflected and scattered flux
c. Reflected and incident flux
d. Reflected and absorbed flux

 6. Objects that have similar radiance from different observation angles are named
a. Scatterers
b. Lambertian
c. Specular
d. Amorphous

 7. Low reflectance of healthy vegetation in the blue band is caused by
a. Chlorophyll absorption
b. CO2 emission
c. Thermal inertia
d. Water absorption
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 8. When the plant is in a dark soil, as the leaf area index increases, it
a. Increases reflectance in the visible spectrum
b. Reduces reflectance in the NIR
c. Increases reflectance in the NIR
d. Increases reflectance in the SWIR

 9. Which band is more sensitive to soil moisture discrimination?
a. Visible
b. SWIR
c. TIR
d. NIR

 10. Which band is more sensitive for discriminating snow from clouds?
a. Visible
b. SWIR
c. TIR
d. NIR
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3 Sensors and Remote 
Sensing Satellites

In this chapter, we describe the basic sensor systems that acquire remote sensing 
images, as well as the main Earth observation (EO) satellite missions. Understanding 
the basics of how images are acquired helps the interpretation process, while being 
familiar with satellite missions provides an overview of the information potentially 
available for different applications.

One of the most common ways to classify sensor systems is on the basis of the 
main mechanism they use to detect electromagnetic energy. In this regard, we could 
establish two broad groups of sensors: (1) passive sensors, which collect radiations 
derived from external sources; and (2) active sensors, in which the sensor system 
emits its own energy to the target and collects later the reflection of that flux to 
characterize the observed areas. A further distinction among passive sensors takes 
into account the method used to record the incoming energy. In the past, photo-
graphic cameras were the most common, but nowadays electronic systems are the 
most extended.

In addition to the characteristics of the sensor system, the user of remotely sensed 
data should also be aware of the different missions developed to observe different 
aspects of the Earth system. The beginnings of EO were characterized for general-
purpose platforms, which provide information for a wide range of applications. As 
the prices of both sensor and satellite platforms are rapidly decreasing, it is more 
and more common nowadays to design missions for specific variables; therefore, 
they optimize the spatial, temporal, and spectral resolutions required for that target 
variable (clouds, CO2, ocean color, etc.). We will review the most used EO satellite 
systems, including land, ocean, and atmospheric applications.

Before describing the different sensors and EO mission systems in more detail, 
we will review the aspects that affect the quality of a sensor system, in terms of the 
precision of its measurements (resolution). These aspects are relevant to select the 
most appropriate sensor for a particular application.

3.1 RESOLUTION OF A SENSOR SYSTEM

In general terms, we can define the resolution of a sensor system as its ability to 
discriminate between information (Estes and Simonett 1975). This concept includes 
several aspects that deserve detailed discussion. First, the resolution of a sensor 
refers to the system as a whole instead of its individual components. For example, 
improvement of the lens does not imply acquisition of higher photographic resolution 
if a more sensitive film is not used or if exposure conditions are not modified.

On the other hand, discrimination refers to the ability of the sensor to distin-
guish a specific object from other objects. This process may simply determine that 
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the object is there (detection) or it may imply as well a precise delimitation of its 
shape (identification). Obviously, the latter task requires a higher spatial resolution 
than the former (Robin 1998). For instance, an object can be detected through its 
effect on the observed global radiance, such as an abrupt increment in temperature 
due to a volcanic eruption, but in order to identify and characterize the volcanic 
crater itself, the sensor should be able to resolve objects much smaller than the 
crater size.

The discrimination of information in remotely sensed images refers not only to 
the spatial detail but also to the number of spectral wavebands, their bandwidths, 
and spectral range covered, the temporal frequency of observation, and the signal-
to-noise ratio or its ability to distinguish variations in the energy detected. One may 
also consider sensor potential to acquire information at different viewing angles or 
polarization channels. All of these informational dimensions are useful for discrimi-
nating target variables.

In summary, the concept of resolution embraces several aspects. The most common 
refers to the spatial resolution, but this feature is not necessary. The most important 
for image interpretation—the spectral, radiometric, or temporal resolutions—may 
be more relevant for specific applications.

3.1.1 Spatial reSolution

Spatial resolution identifies the smallest object that can be detected on an image. 
In a photographic system, spatial resolution identifies the minimum separation at 
which objects appear independent and isolated. It is measured in millimeters on 
the photograph or in meters on the ground, and it depends on the focal length of 
the camera and the height of the camera above the ground. In optical electronic 
sensors, the term “instantaneous field of view” (IFOV) is commonly used instead. 
The IFOV is defined as the angular section observed by the sensor, in radians, at 
a given moment in time. In practical terms, the most common definition of sensor 
spatial resolution is the size of the projected IFOV on the ground (d), computed as 
follows (Figure 3.1):
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where
d is the distance on the ground per each information unit (pixel)
h is the height of the observation

Since images are mostly acquired in digital form, the spatial resolution is commonly 
expressed as the length (in meters) of the minimum spatial units in the image, which 
are named pixels (from picture element). There are also more complex terms such as 
effective resolution element (ERE) or effective instantaneous field of view (EIFOV) 
that consider the detected signal as a composed modulation function (Townshend 
1980). The total field of view (FOV) is the area observed by the satellite in a sin-
gle image. It depends on the number of detectors and the optical system, and it is 
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associated with the temporal frequency of the satellite overpass: the higher the FOV, 
the more frequent an image is acquired.

The spatial resolution of optical electronic sensors depends on orbital height, 
number of detectors, focal size, and system configuration. As for the antenna sen-
sors, their resolution depends on the aperture angle, height of the platform, and the 
wavelength at which they work. The lower the height, the larger the aperture angle 
and the wavelength, and the more detailed the resolution.

Earth-observing sensors in operation cover a wide range of spatial resolutions 
(Figure 3.2). Sensors of higher spatial resolution now have 0.5–4.0 m pixel size; 
medium-resolution sensors have 20–50 m pixel size; sensors oriented toward global 
applications have a pixel size between 200 and 1000 m; and atmospheric oriented 
sensors typically have a very coarse spatial resolution (10–50 km).

Spatial resolution plays a major role in image interpretation because it affects 
the level of detail achieved. Obviously, the interpreter can only identify objects 
several times larger than the pixel size, although smaller features can be detected 
when enough radiometric contrast between the object and the background exists 
(for instance, a high-temperature fire can be detected even if its size is only a small 
proportion of the total pixel area).

The selection of the most convenient spatial resolution is closely related to the 
suitable scale for the particular problem under study. Additionally, spatial resolution 
affects the purity of a pixel signal. The smaller the size of the pixel, the smaller the 
probability that the pixel will be a mix of two or more cover types. A mixed pixel 
will likely have an average signal of the land covers present within the IFOV. As a 
result, that pixel may not resemble any of the mixing categories, which will make its 
identification difficult (Figure 3.3). However, an increase in spatial resolution does 
not always facilitate the discrimination of features since the internal heterogene-
ity within categories may increase as well (Cushnie 1987; Green 2000). Regarding 
visual analysis, the need to improve spatial resolution to facilitate a more accurate 
interpretation of the image is evident (Trolier and Philipson 1986).

h

IFOV (β)

IFOV  (d)

Detectors

Optics

FOV  (D)

FIGURE 3.1 Spatial resolution of a sensor system.
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the recorded signal will be more similar to the target cover. The upper right pixel has an 
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3.1.2 SpeCtral reSolution

Spectral resolution refers to the number of bands provided by the sensor and their 
spectral bandwidths. Generally speaking, a sensor will provide better discrimination 
capacity as more bands are acquired. Ideally, those spectral bands should be nar-
row enough to identify specific absorption features that may be blurred otherwise 
(Figure 3.4).

Among EO satellite systems, the worst spectral resolution is found in the radar 
systems as commonly only a single band is acquired. Photographic systems acquire 
either panchromatic (one band) or color pictures (three bands). Digital sensors are 
generally multispectral (acquire a few bands, 4–7), although some of them have 
hyperspectral capabilities, acquiring dozens or cents of bands. The highest spectral 
resolution among the EO satellite sensors is the Hyperion, onboard the EO-1  satellite, 
which has 220 bands covering from 0.4 to 2.5 µm. NASA’s Airborne Visible/Infrared 
Imaging Spectrometer (AVIRIS) has 224 bands with a similar spectral coverage but 
higher signal-to-noise ratio.

The selection of the number of bands, width, and spectral range measured by the 
sensor is related to the objectives that it is expected to achieve. While mining applica-
tions require multiple bands in the visible, near, and mid-infrared ranges, a meteoro-
logical satellite sensor may require just one or two bands in the visible range and several 
dozens in the middle infrared channels to estimate atmospheric gas composition.

3.1.3 radioMetriC reSolution

Radiometric resolution denotes the sensitivity of the sensor, that is, its capacity 
to discriminate small variations in the recorded spectral radiance. In the case of 
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FIGURE 3.4 Impact of bandwidth on discrimination of surface covers. A simple wide band 
does not discriminate between healthy and senescent vegetation, since the average value is 
similar, while this distinction is easily made from a multispectral observation.
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photographic systems, the radiometric resolution of the sensor is given by the num-
ber of gray levels captured by the film. In optical electronic sensors, the image is 
acquired digitally, and the radiometric resolution is commonly expressed as the 
range of values used for coding the input radiance or, more precisely, as the num-
ber of bits used to store the input signal. An 8-bit sensor system may discriminate 
256 different input radiances per pixel (28 = 256, therefore a range of 0–255). As 
more speed is available for data transmission and data storage is more accessible, 
the radiometric resolution of sensors is increasing. Formerly, most sensors provided 
8-bit coding, while nowadays several have 11–16 bits per pixel (for instance, GeoEye, 
WorldView, MODIS, or Landsat 8 OLI).

Radiometric resolution is more critical in digital than in visual analysis. The num-
ber of gray levels that the human eye is able to discern does not exceed 64, and it 
cannot distinguish more than 200,000 colors. It seems redundant to have even 256 
digital values per band (16.8 million values in a three-band color image). However, 
when the interpretation is digital, computers take advantage of all the available 
range, in which case high radiometric resolution is important to discriminate objects 
with similar spectral signatures, which would not be possible with less sensitive sen-
sors (Figure 3.5).

3.1.4 teMporal reSolution

Temporal resolution refers to the observation frequency (revisiting period) provided 
by the sensor. This cycle is a function of the orbital characteristics of the satellite 

Area 1: Bright
areas

Area 2: Dark
areas

11 bits: 2048 8 bits: 256

FIGURE 3.5 IKONOS images showing the impact of improving radiometric resolution. In 
the upper part of the figure, different roofs can only be discriminated when enough radio-
metric resolution is available, while in the lower part, the same applies to the darker areas. 
(Courtesy of Indra Espacio.)
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(height, speed, and declination), as well as the sensor FOV. Sensors with high tem-
poral resolution have coarse spatial resolution as they will be able to observe a larger 
area in each image acquisition. Consequently, they also have wide FOV, which 
implies geometrical problems, as the same area may be observed from very differ-
ent angles in a daily time series. We will later comment how this problem can be 
mitigated (see Section 6.7.3.4). If the sensor observes a smaller area (narrower FOV), 
it will need more orbits to repeat the same observed area; therefore, the acquisitions 
will have higher time gaps. To alleviate this problem, some sensors can make off-
nadir observations, detecting adjacent areas to the orbit (pointing capacity typically 
goes from 0° to 20°). This is the case of cameras on board the SPOT or WorldView 
satellites. An alternative to nadir-looking sensors is to have several satellites with 
the same characteristics. This is the case of the RapidEye constellation (owned by a 
private company), which provides daily global acquisition frequency at 6.5 m resolu-
tion using five satellites.

The temporal resolution of EO sensor system varies according to the objectives 
set for the mission. Meteorological satellites observe very dynamic phenomena 
and, therefore, provide the highest temporal resolution: the geostationary satel-
lites acquire images every 15 or 30 min, and the polar-orbiting satellites, such as 
the NOAA (United States), METOP (Europe), or Fengyun (China), provide world 
coverage every 12 h. Normally, higher-spatial-resolution sensors offer lower tem-
poral resolutions, from 16 days (as the case of the Landsat series) to 28 days (for 
ERS radars). However, a growing tendency exists toward having a higher temporal 
resolution even for medium- or high-spatial-resolution satellites. For instance, the 
Sentinel-2 satellite of the European Space Agency (ESA) will provide 10–60 m 
resolution images for 13 spectral channels every 2–5 days when the two satellites of 
the constellation are active.

Before closing this section, it is important to consider that the effective temporal 
resolution of an EO system may be longer than the theoretical one, depending on the 
acquisition plans and the atmospheric conditions. If the satellite system is not pro-
grammed to register all possible images, the actual historical archive will have much 
less images than expected. Most privately owned satellites only acquire images on 
demand; therefore, the actual availability of historical images may have quite a long 
temporal gap. Finally, the cloud coverage is an important impediment of temporal 
resolution, since optical and thermal sensors cannot observe areas under clouds. In 
these areas, the historical archive even from systems with continuous acquisition 
programs may be quite limited.

3.1.5 anGular reSolution

This concept of resolution is very recent and refers to the sensor’s capacity to make 
observations of the same area from different viewing angles (Diner et al. 1999). As 
an introductory concept, it is commonly assumed that terrestrial surfaces exhibit 
Lambertian reflection, which implies having similar reflectance, independently of 
the observation angle. This may lead to notable errors, especially in those surfaces 
with strong directional effects when observed from different angles. The varia-
tions in reflectance with viewing and illumination angles are commonly named 
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bidirectional reflectance distribution function (BRDF; see Section 6.7.3.4). One way 
to model these effects is to observe the surface from different directions, thus facili-
tating a better characterization of the BRDF. Multiangular observations are also of 
great interest in estimating some atmospheric properties such as aerosol thickness 
or cloud height.

Several sensors with multiangular observation capabilities have been designed 
in the last decades, providing a better characterization of atmospheric components 
(particularly aerosol optical thickness). This is the case of ATSR 2 (Along-Track 
Scanning Radiometer), which was launched in 1995 onboard the European Earth 
Resources Satellite (ERS), which has a conic scanning mechanism providing almost 
simultaneous observations at nadir and 55° forward. The French mission Polarization 
and Directionality of the Earth’s Reflectance (POLDER), installed in the Japanese 
satellites ADEOS-1 and 2, includes a spatial sampling at different observation and 
illumination angles. The Multi-Angle Imaging Spectroradiometer (MISR) sensor, 
launched onboard the Terra platform in 1999, provides nine observation angles 
almost simultaneously from the same zone and at different wavelengths (Figure 3.6).

3.1.6 relationShip between different reSolution typeS

It is important to emphasize that all aspects of resolution are closely interconnected. 
Acquiring high-spatial-resolution images usually implies reducing temporal reso-
lution and/or spectral resolution. Considering limitations in data transmission or 
onboard recording, a sensor is able to optimize only one or two of the resolution 
types. Increasing any one of the five types of resolutions involves a considerable 
amount of additional data transmission and processing, for both the sensor and the 
ground segment.

FIGURE 3.6 Diagram of data acquisition by the MISR sensor. (From https://www-misr.
jpl.nasa.gov/.)
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Since the various types of resolutions have a great impact on data volumes, each 
remote sensing mission tries to emphasize a particular resolution that best fits its 
mission requirements. If the system is designed to detect dynamic phenomena, tem-
poral coverage is critical, even at the expense of spatial resolution, as it is the case 
of meteorological satellites. However, if the mission is oriented for mineral explora-
tion, the spectral and spatial details are more important, while the temporal cover-
age becomes less significant. For this reason, planning a general-purpose mission 
is very problematic because it is very difficult to accomplish the requirements of 
different end-user communities, and the compromises that are frequently made to 
meet budget constrains have historically resulted in remote sensing missions that 
serve experimental but not operational users, since a single mission cannot cover 
all needs.

As a summary of what has been discussed about the different types of resolu-
tions, it should be emphasized that identifying the quality of a sensor based on 
its spatial resolution is very simplistic. High spatial resolution is required for cer-
tain applications (e.g., urban or agricultural mapping), but it might be secondary 
for other applications, such as fire detection or geological surveys. Assessment of 
natural hazards, for instance, requires high temporal resolution, so does weather 
forecasting. Other remote sensing applications must optimize spectral resolution, 
as in estimation of crop productivity or water demands. Consequently, the type of 
resolution to be prioritized is critical to selecting the most adequate sensor for a 
particular application.

3.2 PASSIVE SENSORS

Passive sensors are limited to measuring the electromagnetic radiation derived from 
external sources—energy either reflected from solar radiation or emitted by the 
Earth’s surface. These sensors have been extensively used in remote sensing for the 
last few decades and include photographic cameras, electro-optical scanners, and 
MW radiometers.

3.2.1 photoGraphiC CaMeraS

In the past, photographic cameras registered the incoming radiation of the target 
object using a photosensitive film. An optic system (lens, shutter) controlled the 
acquisition conditions and the time of film exposure. If the film grain and the optical 
system were fine enough, photographs provided a very high spatial resolution, even 
from long distances. For this reason, they were extensively used for both civilian and 
military surveillance.

Most aerial remote sensing used panchromatic film, in which the visible spectrum 
was captured on just one emulsion layer and images were displayed in gray tones. 
In color film, several photochemical layers were mixed, each of which was sensitive 
to one band of the visible spectrum (blue, green, or red). Infrared black-and-white 
films captured the incoming radiation between 0.7 and 0.9 µm in gray tones. Finally, 
color infrared film was sensitive to three bands in the green, red, and near-infrared 
(NIR) regions.
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Photographic cameras were the most used systems to collect aerial remote sensing 
data, since they provide high-resolution images with a relatively simple technology. 
However, they had a more limited use on satellite platforms, because the recording 
capacity was constrained by the amount of film that a satellite could carry on board.

However, several photographic cameras were mounted in satellite missions, espe-
cially during the manned spacecraft missions of the 1960s. The first space photo-
graphs were acquired by the Mercury 4 mission, followed by the Gemini and Apollo 
programs. Initially, these photographs were taken by astronauts spontaneously, but 
later photographic missions were prepared for the observation of natural resources 
(see Figures 1.3 and 1.5).

The Skylab space station, active and with different crews during 1973, conducted 
several photographic experiments, within the Earth Resources Experiment Package 
(EREP). This program included a multispectral camera (S 190A), with six lenses sen-
sitive to several wavelengths between 0.4 and 0.9 μm, and the Earth Terrain Camera 
(ETC), equipped with a long focal lens (457 mm), which provided high-resolution 
photography (15 m) (NASA 1974). These photographs were used for diverse the-
matic studies, including land cover, geological mapping, and vegetation and crop 
mapping (Links 1976; NASA 1974).

Following this experience, several camera systems were mounted on the Space 
Shuttle missions, the most common being the Hasselblad cameras with 70 mm film 
and diverse lenses (from 40 to 250 mm focal length). However, the most innovative 
cameras were the metric camera (RMK 30/23), the large-format camera (LFC), and 
the electronic still camera (ESC).

The metric camera RMK 30/23 was built by Zeiss to provide high-precision 
stereoscopic photography with a high level of coverage and a conventional format 
(23 × 23  cm). It was included on the first Spacelab mission of the ESA in 1983, 
onboard the Space Shuttle. This mission acquired around 1000 photographs with 
panchromatic and color infrared film over several parts of the world, covering 
an approximate region of 11 million km² (Konecny 1986). The focal length was 
305 mm, which allowed an approximate scale of 1:820,000 at a height of 250 km, 
with an estimated spatial resolution between 20 and 30 m. The stereoscopic cover-
age was set at 60% overlap, although it was extended to 80% in rough terrain (see 
Figure 5.13).

The LFC was designed for precise mapping of the Earth’s surface. Its main novelty 
was the extension of the area covered from the conventional 23 × 23 cm to 23 × 46 cm. 
The LFC was mounted on the Space Shuttle mission 41-G (1984), obtaining a wide 
collection of photographs using various panchromatic, color, and color infrared films 
with up to an 80% overlap. A 305  mm (12 in.) lens was used, which resulted in 
ground coverage of 225 × 450 km per photograph and resolution of 14–25 m, with a 
precision in height estimation of 30 m, at a 1:50,000 scale (Togliatti and Moriondo 
1986). Photographs acquired by this camera proved especially valuable for natural 
resources assessment (Francis and Jones 1984; Lulla and Holland 1993). A good 
example of the information acquired by this camera is shown in Figure 3.7, which 
covers the urban region of Madrid in Central Spain. The fine spatial resolution of this 
camera can be seen in the clear display of urban structures such as street networks, 
main roads, and gardens.
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The ESC is a charge-coupled device that produces near-film-quality images in 
digital format. It was utilized on several missions since 1991. The current spectral 
response range was from 0.4 to 1.1 µm (Lulla and Dessinov 2000). The ESC was 
used in different missions of the International Space Station (ISS), providing a large 
collection of satellite photographs. Many other digital cameras have been used from 
the ISS. NASA created an image web server to facilitate the access to those pho-
tographs, as well as those from other photographic missions of the ISS and Space 
Shuttle (http://eol.jsc.nasa.gov/, last accessed in June 2015). Figure 3.8 shows an 
example of a photograph acquired from the ISS by a Nikon D3S camera with a focal 

FIGURE 3.7 LFC photograph over the city of Madrid. (Courtesy of R. Núñez de las Cuevas 
and F. Doyle.)

FIGURE 3.8 Example of an ISS photograph from South Africa. (From http://eol.jsc.
nasa.gov/.)
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length of 50 mm, showing the southwestern region of South Africa. The photograph 
was acquired on May 9, 2013, a few months before the death of Nelson Mandela.

Other interesting sources of photographic images were those acquired by the 
military surveillance missions, as they provided a historical perspective on land 
use–land cover transformation, particularly interested in those areas where aerial 
photography was not available. The White House announced in 1995 the decision 
to open part of the military satellite photographs archive to the general public. The 
released missions covered the period between 1960 and 1972 and provided a very 
valuable material for long-term change analysis. The archive includes photographs 
acquired by the Corona, Argon, and Lanyard satellites over more than 100 missions 
(Figure 3.9). They have very diverse formats, depending on the missions. Their spa-
tial resolution varies from 2 to 150 m, although they are commonly between 2 and 
10 m. The nominal scales vary between 1:275,000 and 1:4,250,000, and the area 
covered by the photographs ranges from 18 × 234 to 480 × 480 km (Day et al. 1998). 
Another set of historical photographs was declassified in 2002 covering the period 
up to 1980. These photographs are available at the U.S. National Archives, and some 
of them are digitized and can be obtained through a dedicated USGS image server 
(https://lta.cr.usgs.gov/declass_1, last accessed June 2015).

Russian satellites included several photographic sensors, some of high preci-
sion. One of the most outstanding was the multispectral camera MKF-6, installed 
on board the missions of the satellite Soyuz. Equipped with six lenses, the MKF-6 
obtained photographs over six spectral bands, from blue to near infrared. Other 
cameras have also been widely used on board the RESURS-F satellite, such as the 
KFA-200 camera with a spatial resolution of 25–30 m and three spectral bands 
(green, red, and near infrared), the panchromatic KFA-1000 with a resolution of 
8–10 m, and the multispectral camera MKF-4 with a 12–14 m spatial resolution 
(Kramer 2002). These photographs are valuable for natural resources studies (Strain 
and Engle 1993). The KVR-1000 camera was on board the Russian satellite Cosmos 
and provided a resolution of 2 m over an area of 160 × 160 km.

FIGURE 3.9 Corona photograph of the Santa Barbara coastline acquired in 1966. (From 
www.geog.ucsb.edu/~kclarke/Corona/gallery3.htm.)
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3.2.2 CroSS-traCk SCannerS

Digital sensors perform an onboard analog-to-digital conversion recording the 
incoming radiation in digital values that can be directly transmitted to the ground 
segment. The most commonly used in satellite missions have been the cross-track 
scanners. The incoming radiation is focused by a set of lenses and mirrors that rotate 
perpendicularly to the satellite track (Figure 3.10). The detected radiance is directed 
to a series of detectors that amplify the signal and convert it to a numerical value that 
can be stored on board or transmitted to a receiving antenna. The incoming radia-
tion is commonly divided into several spectral bands, which are recorded by differ-
ent detectors (most commonly Si photodiodes in the visible and near infrared and 
InGaAs in the SWIR). The information received on the ground is stored in magnetic 
media for further processing and distribution to end users.

The conversion from the analog radiance to digital values is constant in space 
and time, following a specific calibration procedure, although recalibration is often 
needed as the sensor degrades with time. In any case, digital values acquired by the 
sensor have a physical meaning, since they can be converted back to radiance and 
used for quantitative estimations of target variables.

The sensor samples the observed ground surface at systematic time intervals. 
Each of the instantaneous measurements becomes one digital value in the final 
image, which is the basis for the visual or digital interpretation of each pixel.

Multispectral scanner (MSS) systems were introduced in the early 1970s in EO 
satellite systems, such as the Landsat MSS, the Skylab S192, or the Nimbus Coastal 
Zone Color Scanner (CZCS). They presented several advantages over the then used 
analog cameras for EO satellites, as they were able to observe nonvisible bands 
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FIGURE 3.10 Scheme of the functioning of an across-track scanner.
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(including the NIR, SWIR, and TIR wavelengths), and they did not need films to 
store the acquired images, therefore extending the useful life of the satellite. In addi-
tion, images were acquired in digital format; therefore, they were readily available 
for digital processing and more easily connected to geographical databases than ana-
log photography.

Even though new detection techniques have been developed in the last decades, 
still across-track scanners are widely used in EO satellites. The MODIS sensor on 
board the Terra and Aqua satellites, the AVHRR on board the NOAA and METOP 
satellites, the SEVIRI instrument on board the Meteosat Second Generation, and 
many other atmospheric sensors used this technique. In addition, many histori-
cal missions have included across-track scanners, such as the Landsat satellites 
(MSS, Thematic Mapper [TM], and Enhanced Thematic Mapper [ETM]), the 
DMSP (Operational Linescan System [OLS]), HCMM (Heat Capacity Mapping 
Radiometer [HCMR]), and the Soviet program RESURS (MSU-E y MSU-SK), 
among others.

3.2.3 alonG-traCk (puSh-brooM) SCannerS

In the early 1980s, a new scanning technology was tested by the German space 
agency on board a Space Shuttle mission, which became operational in 1986 with 
the launch of the French satellite SPOT. Along-track scanners avoid the use of an 
oscillating mirror by detecting the whole FOV of the sensor system at once, using a 
linear array of detectors. The sensor explores each line simultaneously and creates 
the image along with the satellite orbital track (Figure 3.11). For this reason, these 
sensors are named push-broom or along-track scanners. Similar to the across-track 
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FIGURE 3.11 Scheme of the functioning of an along-track scanner.



83Sensors and Remote Sensing Satellites

scanners, the incoming radiance is separated in different wavelengths and sent to 
solid detectors that record them in digital values.

This technology permits an improvement in the spatial resolution of the system 
over across-track scanners, as well as reduces the potential problems caused by the 
misalignment of the mirror oscillation and the satellite movement. Data are also 
acquired digitally and in different wavelengths beyond the visible spectrum.

Push-broom scanners may have more calibration problems than conventional 
scanners, since they have many more sensor arrays (3000 for SPOT-HRV versus 100 
for Landsat TM). As their number increases, they require complex adjusting mecha-
nisms to transform the received signal consistently; otherwise, the image would not 
be homogeneous across columns. For the same reason, push-broom scanners are 
more difficult to calibrate in the thermal infrared because they may be affected by 
heating of other detectors; therefore, most thermal scanners are still based on across-
track systems.

Push-broom scanners are nowadays the most common digital cameras for EO 
satellites. The SPOT French family used several sensors on this kind (the Haute 
Resolution Visible [HRV]) and the VEGETATION. The Indian Remote Sensing 
(IRS) satellites have also used this technology since the late 1980s (PAN, LISS 
WIFS, and AWIFS sensors). NASA has also incorporated these sensors in the lat-
est Landsat 8 mission (Operational Land Imager [OLI]), as well as in its precursor, 
the Advanced Land Imager (ALI). All high-spatial-resolution systems include push-
broom scanners, such as the cameras on board the QuickBird, IKONOS, GeoEye, 
WorldView, or RapidEye systems.

3.2.4 video CaMeraS

Video cameras were used in the first EO satellites programs, in both panchromatic 
and multispectral modes. The image was focused over a photoconductor, generating 
an electronic copy of the original image, and it is kept on this surface until a beam 
of electrons sweeps it again and is in equilibrium. The system was modified in the 
case of the Return Beam Vidicon (RBV) on board the first Landsat satellites. On 
these systems, the signal of the camera was derived from the unused portion of the 
beam of electrons that returned along the same trajectory as the incident ray and was 
then amplified electronically. This mechanism provided enhanced resolution over 
conventional video cameras, and it was included in some satellite missions: Apollo, 
Mariner, Nimbus, and Bhaskara-1 and 2, as well as the first three Landsat satellites.

The use of digital video cameras in local-scale studies is more recent. Videography 
then became defined as a new remote sensing technique that allows gathering of 
calibrated information with a great level of detail and low cost (especially if using 
conventional cameras) (Linden 2000).

3.2.5 MiCrowave radioMeterS

Although the most common sensors in the MW region are active (radar), passive 
sensors have also been used at these wavelengths. They are commonly known as 
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microwave radiometers. The radiometer is integrated by a directional element, a 
receptor that detects and amplifies the microwave signal, and a detector. These sen-
sors operate in the spectral range corresponding to MW frequencies, usually between 
6.8 and 90 GHz, which is why they are not affected by atmospheric situations or 
illumination conditions. The spatial resolution of MW radiometers is inversely pro-
portional to the diameter of the aperture and directly proportional to the wavelength. 
Therefore, obtaining a fine spatial resolution would require an immense antenna, 
which is not feasible in satellite missions. For this reason, most MW radiometers 
have coarse spatial resolutions.

Microwave radiometers have a limited range of applications, since the radiant 
exitance of natural targets is hardly perceivable in this band, but they provide critical 
information for ice, rain, and snow monitoring. In fact, one of the first attempts to 
map Antarctica was based on the ESMR microwave radiometer on board the Nimbus 
5 satellite. A thermal map of both polar caps was obtained from these images in 
1977, revealing interesting information for the study of these regions hardly accessi-
ble through any other means (Hall and Martinec 1985). More recent studies for ana-
lyzing ice melting in oceans (Figure 3.12) are being conducted with data acquired by 
the Advanced Microwave Scanning Radiometer (AMSR-E) aboard the NASA satel-
lite Aqua and the Japanese satellites ADEOS-II and Shizuku. Data of microwave 
radiometers are also very useful for estimating soil moisture conditions (Al-Yaari 
et al. 2014). The Tropical Rainfall Measuring Mission (TRMM) had a microwave 
radiometer designed to estimate rainfall over the ocean. This mission is continued 
by the Global Precipitation Mission (GPM: Smith et  al. 2007), launched in 2014, 
which includes a core satellite with a precipitation radar and a multichannel passive 
microwave rain radiometer.

Concentration of sea ice (%) Concentration of sea ice (%)

0
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FIGURE 3.12 Ice concentration map derived from the AMSR-E data—Arctic (a) and 
Antarctica (b)—from January 3, 2008. (Courtesy of Nansen Environmental and Remote 
Sensing Center, Bergen, Norway.)
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3.3 ACTIVE SENSORS

3.3.1 radar

Active systems have the capacity to generate energy pulses and collect them after 
the surface target reflects them back. Radar is the best-known active sensor system. 
It is an active MW system working in different spectral bands between 0.1 cm and 
1 m. Each pixel in a radar image represents the backscattering coefficient of that area 
on the ground, and the stored value is greater as more intense signals are received. 
Working with microwaves, radar can acquire images under any atmospheric condi-
tion (Figure 3.13) and independently of solar illumination. Therefore, it has been 
greatly promoted in the last two decades (Henderson and Lewis 1998; Lewis et al. 
1998). Currently, there are many radar satellite missions, acquiring images at differ-
ent bands and with different polarization conditions. Band C is the most extended, 
being used by ERS-1 and 2, RADARSAT-1 and 2, ENVISAT ASAR, Sentinel-1, and 
Risat-1. Shorter wavelengths (band X) were used by the Shuttle Radar Topographic 
Mission (SRTM), TerraSAR-X, and COnstellation of small Satellites for the 
Mediterranean basin Observation (COSMO-SkyMed), while longer wavelengths 
(bands L or P) are used by JERS-1 and ALOS-PALSAR.

(a) (b)

FIGURE 3.13 Images acquired by the JERS-1 satellite in 1993 in the vicinity of Manaus 
(Brazil). (a) Visible image derived from the OPS sensor; (b) radar image of the same area and 
time. (Courtesy of NASDA, Arlington, VA.)
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The first radar sensors were on board aerial platforms. The most widely used 
system was the side-looking airborne radar (SLAR), which was widely used in 
tropical regions (Allan 1983; Trevett 1986). These sensors do not provide good 
spatial resolution at long distances, since for a real aperture radar system, the 
minimum size of an object to be detected is directly proportional to the wave-
length (λ) and the height of observation (h) and inversely related to the diameter of 
the antenna (ϕ) following
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Therefore, when h becomes large, as in space platforms, obtaining an adequate reso-
lution would imply using a very long antenna.

This problem can be avoided using an artificially synthesized virtual antenna. 
This is the concept behind the synthetic aperture radar (SAR) systems. SAR sys-
tems benefit from the Doppler effect, which is the change in radiation frequency 
resulting from the relative movement between the sensor and the observed surface. 
Space-borne radar emits continual pulses of microwave energy to the ground. As 
the satellite orbits, the emitted pulses are backscattered along the satellite path with 
a different frequency from what was originally transmitted. If the system is able to 
register from where the backscattered radiation was emitted, the discrimination of 
the observed surface would be as precise as when observing it with an antenna the 
size of the distance between the points of the initial and final phases of the satel-
lite orbit. Following Equation 3.2, that long antenna provides high spatial resolution 
(Elachi 1987).

Both real and synthetic aperture radars have a side-looking observation, which 
results in a series of geometrical distortions that need to be properly addressed to 
retrieve significant information from the radar data. First, we should consider that 
the spatial resolution of a radar system is different in the parallel (range) and perpen-
dicular (azimuth) directions to the satellite orbit, and therefore the pixel size changes 
in both directions.

The range resolution depends on the length of the pulses emitted (Figure 3.14). 
Two objects can be discriminated when their ground distance is greater than half the 
pulse wavelength (half because the beam has to travel back and forth). Additionally, 
the discrimination depends on the incidence angle (θ). To increase the length of the 
pulse, it is necessary to decrease the frequency, but this will imply a higher noise. 
This paradox is solved by modulating the frequency of the emitted and received 
pulses. In summary, the range resolution is given by
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where
c is the speed of the electromagnetic energy
B is the spectral bandwidth
θ is the angle of incidence
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As for the azimuth resolution, the minimum distance on the ground between two dis-
cernible objects on the image depends on the wavelength (λ), the distance between 
the antenna and the surface (h), and the antenna’s length (La) (Figure 3.15):
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Although in a synthetic aperture system the length of the antenna is incremented arti-
ficially, since it is generated from the two different signals registered in two different 
moments along the trajectory, the azimuth resolution is still dependent on the distance 
of the observed object. In consequence, since the distance between the object and the 
antenna changes from the nearest end to the most distant column of the image, it 
changes the effective spatial resolution across the image. Homogenization of the pixel 
size, therefore, requires postprocessing. A common method is slant-range correction, 
which takes into account the change in pixel size across the satellite trajectory:
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where
τp is the pulse length 
θ is the incidence angle

The impact of the slant-range correction is seen in Figure 3.16.
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FIGURE 3.14 Range resolution of a radar system.
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As a result of the side-looking observation, radar data have several geometrical 
distortions, which are enhanced in the case of rough terrain (Figure 3.17). If the 
surface slope is smaller than the angle of incidence, the image tends to make 
distances shorter than in reality. Therefore, the slopes oriented toward the 
antenna look inclined in that direction. When the slope is steep enough, a layover 
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FIGURE 3.15 Azimuth resolution of a radar system. (Adapted from Lillesand, T.M. and 
Kiefer, R.W., Remote Sensing and Image Interpretation, John Wiley & Sons, New York, 
2000.)

(a) (b)

FIGURE 3.16 Slant-range correction of a SEASAT image near Geneva. (a) Raw image; 
(b) corrected image. (From http://earth.esa.int/applications/data_util/SARDOCS/_icons.)
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effect may occur, that is, the inversion of the real position of objects throughout 
the slope, because the echoes reach the antenna in inverse order to their real 
location.

These factors can be corrected if detailed digital elevation models are available. 
Corrections are more complex when slopes facing away from the radar trajectory 
are not observed at all (radar shadows). That information may be retrieved if a sat-
ellite trajectory provides two or more observation angles, which frequently occurs 
with ascending and descending orbits of satellite radar missions. An example of two 
images acquired by the European satellite ERS-1 over a mountain area in Central 
Spain may help to understand better the impact of rough topography on radar images. 
The images were acquired 6 days apart, in the ascending and descending trajectory 
of the satellite (Figure 3.18).

In addition to geometrical problems, SAR images also present radiometric 
noise, known as speckle, which is caused by the random distribution of phase and 
amplitude, mainly related to surface roughness. The effect is very noticeable in raw 
images, which tend to offer a random white spot pattern, especially evident in areas 
of land cover transition.

In spite of these problems, SAR systems have proven very useful for different 
environmental applications: soil mapping, vegetation change as a result of for-
est fires or clear-cuts, forest biomass estimation, and vegetation regeneration after 
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FIGURE 3.17 Terrain effects on a radar image: (a) shortening of radar-facing slopes, 
(b) layover, and (c) radar shadows.
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catastrophic events (Goldshleger et  al. 2010; Kasischke et  al. 2007; Saatchi et  al. 
2007; Tanase et al. 2010a).

Technical developments during the last several years have increasingly favored 
the use of radar in natural resource management. The growing availability of 
multiangular, multifrequency, and multipolarization observations creates new 
possibilities for retrieval of additional information on vegetation, snow, and soil 
characteristics.

In addition to imaging radar systems, over the last decades radar altimeters have 
been widely employed. These systems provide vertical measurements of distances 
between the sensor and the surface, although data can only be precisely retrieved 
over water bodies when good measures of the Earth geoid are available. The basic 
altimeter equation is (Figure 3.19)

(a)

(b)

FIGURE 3.18 SAR images from the ERS-1 satellite over Central Spain (Sierra de Gredos). 
(a) Descending acquisition from April 23, 1993; (b) ascending acquisition from April 29, 
1993.
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 r – Rs – ψ = N + T + Ar (3.6)

where
ψ is the radar altimeter measurement
r – Rs is the elevation with respect to the reference ellipsoid
N is the height of the geoid–ellipsoid at the point
T is the sea level ellipsoid
Ar is the measurement error

Radar altimeter measurements have been very useful to monitor ocean currents 
associated with El Niño events or other climatic phenomena. They are also very 
useful for monitoring water reservoirs, both of dams and natural lakes (Birkett 1998) 
as well as sea level rise (Figure 3.20), which is one of the main negative impacts of 
global warming.

In addition to the analysis of backscatter values and distances, the interferences 
of the radar signal have also been found very useful to obtain relevant information 
about terrain characteristics. Radar interferometry was developed during the late 
1990s when the European ERS-2 satellite (launched in 1995) was used for acqui-
sition in tandem with the existing ERS-1 (launched in 1991). The two satellites 
provided nearly simultaneous acquisitions, which were able to observe phase dif-
ferences related to the surface conditions (Madsen and Zebker 1998; Quegan 1995). 
The principle of interferometry is simple, although the modeling of the signal is very 
complex. The goal is to measure the differences in phase from two backscatter sig-
nals that are produced by variations in terrain heights or object position. These phase 
differences can be deconvolved to estimate height variations in the range of the radar 
wavelength (for the ERS satellite, in band C = 5.7 cm, this implies an accuracy of 
a few centimeters). However, to obtain those precisions, a perfect adjustment of the 
two images should be obtained. For this reason, the acquisitions need to be almost 

Ellipsoid

Ocean surface

Satellite orbit

Geoid
N

T

Orbital height

FIGURE 3.19 Principles of radar altimetry. (Adapted from Robin, M., La Télédétection, 
Nathan, Paris, France, 1998.)
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simultaneous, or at least without any perceptible change between the two observa-
tions. In semiarid regions, interferometric pairs have been obtained from images 
acquired even months apart (Massonet et al. 1993), while in more vegetated areas, 
minor changes imply losing the coherence.

Interferometric techniques were the basis to generate the first worldwide digital 
elevation model at medium resolution (30 m). The radar data were acquired by the 
SRTM, installed on board the STS-99 mission in February 2000 (Figure 3.21). 
The mission included two radar systems 60 m apart, separated by a very stable 
pole. The mission flew for 11 days with a 57° inclination orbit. It covered land 
surface between 60° north and 57° south, accumulating about 80% of the world 
emerged areas.

In addition to topographic cartography, interferometry has also been used very 
successfully for the detection and modeling of seismic movements, volcanoes, and 
glaciers (D’Errico et al. 1995; Massonet et al. 1993), achieving very precise adjust-
ments with geologic and mathematical models. Recent studies have also shown good 
potential for interferometric measurements to retrieve forest parameters and degra-
dation (Slatton et al. 2001; Tanase et al. 2010b).

3.3.2 lidar

Lidar is the acronym of “light detection and ranging.” Similar to radar, lidar 
is an active sensor system, emitting pulses to the ground, which are collected 
after being reflected from the target surface. However, there are several differ-
ences between the two sensors. First, they work at different wavelengths: radar 
with microwave energy, while lidar systems at the range from ultraviolet to NIR 
(Dubayah and Drake 2000; Fujii and Fukuchi 2005). This implies that lidar sen-
sors are as affected by atmospheric perturbations as other sensors working on the 

FIGURE 3.21 Artistic representation of the interferometric Space Shuttle SRTM. (From 
http://www2.jpl.nasa.gov/srtm/multimed.htm.)
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solar spectrum. Radars observe mostly obliquely, while lidars mostly vertically 
(± low angle from nadir), and therefore they have different geometrical problems. 
Finally, the main interest of the radar signal for EO is the backscatter signal, while 
in lidar the time measurements. Radars also measure distances (radar altimeters), 
and lidars also measure return intensity, but these are not the most common uses 
of both.

Lidar systems use laser pulses (light amplification by stimulated emission of 
radiation [laser]), which are collimated, polarized, and have coherent radiation. 
This implies that laser emissions are very directional, the electrons are aligned, and 
the photons are in phase. These properties provide a very efficient source of radiation 
for many different applications. Spatial coherence makes it possible for a laser beam 
to stay narrow over long distances; therefore, a lidar is very useful for estimating 
concentrations, when the laser beam passes through a medium, and for measuring 
distances. These are the two main types of lidar sensors currently used in EO: dif-
ferential absorption and ranging lidars.

Differential absorption lidars estimate medium properties based on how reflec-
tance varies at two or more wavelengths crossing that medium. Frequently, green 
and NIR bands are used, as many materials present very different absorption coef-
ficients in those wavelengths. The response time and intensity of those two returns 
provide an estimate of the properties of the absorption medium (for instance, water 
depth). Green light penetrates clean water, while infrared light is mostly absorbed. 
Therefore, the time delays between the two laser pulses will provide a good estima-
tion of water components, particularly useful in coastal areas. Similar differential 
absorption principles have been applied to monitor atmospheric conditions, such as 
ozone or aerosol concentrations. An example of these measurements is the Cloud-
Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol 
Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, which 
obtains aerosol and cloud height distribution from a vertical two-band lidar system 
(Figure 3.22).

On the other hand, ranging lidar systems base their measurements on a very pre-
cise estimation of the time that a laser pulse takes to move from the sensor to the 
ground and back to the sensor. From this time (t), the distance (d) can be easily 
computed from

 
d = ct

2
 (3.7)

where c is the speed of light (3 × 105 km s−1). If the sensor location is very pre-
cisely determined, the relative distances between the object and sensor can be 
converted to absolute coordinates (X,Y,Z); therefore, measurements of verti-
cal properties can be obtained from lidar systems. The sensor coordinates are 
determined through an onboard global positioning system (GPS), which is com-
monly complemented with another ground GPS, and an inertial measurement 
unit (IMU), which measures variations in airplane speed and observation angles 
(pitch, roll, yaw).
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Within ranging lidars, a further distinction can be made between large- and 
small-footprint systems, based on the size of the ground projection of the laser pulse 
(Figure 3.23). Large-footprint systems cover areas of several meters in diameter (typ-
ically from 30 to 300 m), while small-footprint lidars refer to small observation areas 
(around 0.30 m or less). The large-footprint lidar systems normally collect the return 
signal at a very high frequency (1 ns), generating a waveform of pulses that can be 
used to model the vertical distribution of all elements within the lidar FOV. These 
systems are called full waveform. The small-footprint lidar systems typically collect 
a few discrete returns (the first and last one, and up to 2–3 in between), which may 
hit different parts of the cover (crown, branches, small trees, shrubs, and finally the 
ground). The large-footprint systems with full waveform record provide a more pre-
cise description of vertical diversity in the observed area than discrete pulse lidars 
but require a significantly higher amount of data to handle.

The size of the laser footprint on the ground can be easily computed from 
Figure 3.24.
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FIGURE 3.22 CALIPSO 3D profile on the eruption of the Puyehue-Cordón Caulle volcano 
in Chile (June 2011). The upper part is a TIR nighttime image acquired by MODIS; the lower 
part includes the vertical profile acquired by CALIOP, where the volcanic plume can be 
clearly located at the center of the image. It reached almost 15 km, passing the lower limit of 
the stratosphere. (From http://earthobservatory.nasa.gov/.)
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FIGURE 3.23 Small- (a) and large-footprint (b) lidar systems. The small-footprint pulses 
may hit different sections of the target and record discrete pulses, while large-footprint 
systems cover the diverse heights of the observed area and record the full return waveforms.
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FIGURE 3.24 Variations of lidar footprint size along and across the scanning line.
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d h= 2

2
tan

b
 (3.8)

where
d is footprint diameter
h is flight elevation above ground
β is the IFOV of the laser sensor (also named “laser divergence”)

This formula assumes a vertical observation and flat terrain. When the observation 
is off-nadir, the footprint of an across-track laser scanner will be elliptical, and the 
size can be computed as follows (Sheng 2008; Figure 3.24): 

 
d hl = +

2
2
sin

cos cos
b

q b
 (3.9)

 

d hs = +( )
2

1
sin

cos cos
b

q b
 (3.10)

where
dl and ds are the long and short axes of the elliptical laser footprint, respectively
θ is the instantaneous scanning angle.

The larger this angle, the higher the footprint. For a typical lidar scanning system, 
the footprint at 30° will be 54% larger than at nadir (Sheng 2008). Again these mea-
surements refer to a flat terrain. In inclined terrain, the footprint size changes along 
with the slope gradient (see Sheng 2008).

Another classification of lidar systems is related to the observation patterns. The 
first lidars were basically profiling systems, sending single pulses along the plat-
form trajectory. This implies nadir observation, monitoring areas underneath the 
platform. Most lidar systems now include scanning capabilities, which make survey-
ing a wider area possible (Figure 3.25). Different scanning patterns are available in 
the current systems, which try to mitigate geometric errors while covering the whole 
target area (Beraldin et al. 2010).

Current lidar systems are mostly airborne, providing small footprints and discrete 
returns, but technology is evolving toward full waveform systems, even for small 
footprints. A few lidar systems have been mounted on satellite missions. We earlier 
referred to CALIOP, which was launched in 2006 and was developed for atmospheric 
applications. Besides this system, the GLAS lidar on board the ICESAT satellite was 
developed to monitor ice sheets (Shepherd et al. 2012), but it was also very useful for 
retrieving biophysical properties of vegetation with good results, particularly in flat 
terrain (García et al. 2012; Simard et al. 2011). This system includes a large footprint 
(70 m) and collects the full waveform. Future missions are being studied to extend 
the GLAS measurements and provide a worldwide coverage of lidar observations. 
ICESAT-2 and DESDYNI are on the decadal survey of NASA. The former will 
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have a laser altimeter, complementing the measurements of ICESAT-1, and the latter 
will host both an L-band SAR and a laser altimeter, aiming to better understand the 
crustal deformations and ice sheet trends.

Many lidar studies have been conducted in the last few years, almost exclusively 
from airborne systems, providing an extensive experience of the potential of this 
sensor for vegetation, crop, natural hazards, and urban mapping (Beraldin et  al. 
2010; Vosselman and Maas 2010). The estimations of vertical structure are very 
precise; therefore, a wide range of applications requiring vertical information can 
be derived. The most obvious application is the generation of digital elevation mod-
els (Vosselman 2000), with much higher accuracy than traditional photogrammet-
ric methods, particularly in cities (Zhou et al. 2004; Figure 3.26) and floodplains 

(a) (b)

FIGURE 3.25 Profile (a) and scanning (b) lidar systems. Common scanning patterns are 
portrayed in (b), showing mirror scanning and multiple fiber optics.

FIGURE 3.26 Three-dimensional view of Manhattan (New York) from a lidar survey 
acquired in September 2001. (Courtesy of NOAA/U.S. Army JPSD, Washington, DC.)
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(Webster et al. 2006). Vegetation properties have also been derived from lidar data, 
with a wide range of parameters: biomass loads, basal area, crown size and shape, 
and leaf area index (García et al. 2010; Lefsky et al. 1999; Morsdorf et al. 2004; 
Naesset and Okland 2002; Riaño et  al. 2004a,b, 2007a). Ground lidars are also 
becoming very useful to measure field parameters, such as leaf area index, heights, 
and carbon stocks (García et al. 2011a). Procedures to retrieve information from lidar 
data will be reviewed later (see Section 7.1.5).

3.4 SATELLITE REMOTE SENSING MISSIONS

3.4.1 Satellite orbitS

Section 3.4 reviews the main satellite remote sensing missions. This section of the 
book is particularly sensitive to updates because the status of the missions changes 
quite significantly even in short periods of time. For this reason, we suggest that the 
reader visits the different missions’ web pages to get the most recent information 
available.

A first review of the EO satellite missions distinguishes between geostation-
ary and polar-orbiting satellites. The former are located at very high equatorial 
orbits (36,000 km over the Earth) and always observe the same area (Figure 3.27). 
They have a wide FOV to register the whole visible hemisphere of the planet in 
a single image. A network of geostationary satellites from different longitudes 
ensures coverage of the whole Earth. Meteosat is located on the 0° meridian 
(to acquire images of Europe and Africa), and two Geostationary Operational 
Environmental Satellites (GOES) are located on the 70° and 140° W meridians, 
focused toward the east and west coasts of America. Similar satellites operate in 
Asia. Geostationary satellites provide the best temporal resolution possible, which 
ranges between 15 and 30 min, but at coarse spatial resolutions caused by the very 
high orbit.

To complement the observation of geostationary orbits, other lower-altitude EO 
missions have been launched. The most common orbits for EO satellite missions 
are near polar (Figure 3.28), either elliptic or circular, with different orbital heights 

FIGURE 3.27 Scheme of a geosynchronous orbit.
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(typically between 700 and 900 km). Since the orbital plane is approximately per-
pendicular to the equatorial plane, as the Earth rotates these satellites can observe 
different areas and cover a whole view of the planet in a certain number of hours 
or days, depending on the height and the sensor FOV. One particular polar orbit is 
named Sun-synchronous, where it is possible to acquire images at the same solar 
time, therefore facilitating multitemporal comparisons (Figure 3.28). Some satel-
lite systems have near-equatorial orbits, which are more suited to improve temporal 
resolution in tropical regions. Obviously, those satellites will not be able to observe 
areas outside the tropical belt (this is the case of the TRMM). The specific observed 
latitudes will depend on the equatorial inclination of the orbit.

The selection of the satellite orbit is determined by the characteristics of the mis-
sion. If the platform is designed to obtain global and very frequent observations, 
geostationary sensors or polar sensors with a large FOV are preferable. When higher 
spatial resolution is required, polar sensors with a narrow FOV are most commonly 
used.

After this summary review of orbits, we next analyze the main EO missions, with 
special emphasis on the technical characteristics of the sensor payload.

FIGURE 3.28 Scheme of a polar orbit.
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3.4.2 the landSat proGraM

The success of the space photographic missions during the 1960s led NASA to 
develop the first program oriented toward monitoring Earth resources. This effort 
led to the launch of the first Landsat satellite, which was originally named Earth 
Resources Technology Satellite (ERTS), on July 23, 1972. After the second launch in 
1975, the series was renamed Landsat and extended in 1978, 1982, and 1984 with the 
subsequent launches of Landsat 3, 4, and 5, respectively. Landsat 6 was lost shortly 
after the launch in 1993, while Landsat 7 was launched in 1999 and is still working, 
although it has a serious technical problem in the main sensor. Landsat 5 was work-
ing until 2012, when it was officially decommissioned. Landsat 8 was developed 
within the program termed Landsat Data Continuity Mission (LDCC: Irons et al. 
2012). Finally launched in February 2013, Landsat 8 started operations 3 months 
later. In April 2015, the U.S. Congress approved the development of Landsat 9, 
expected to launch in 2023. The Landsat program has been the most important EO 
mission ever designed.

The first three Landsat satellites had a Sun-synchronous polar orbit at 917 km, 
with a revisiting period of 18 days and a 10:30 a.m. equatorial crossing time. For the 
fourth and fifth Landsat satellites, their instrument configuration and orbital charac-
teristics were modified. The orbital height was reduced to 705 km, and the revisiting 
observation was improved to 16 days in temperate latitudes. Overpass time remained 
similar to the previous Landsat, crossing the Equator around 10:10 a.m. The next 
two satellites of the mission, Landsat 6 and 7, were changed in their appearance 
again (Figure 3.29), although they maintained the orbital characteristics of their two 
predecessors.

The first three Landsat satellites included the MSS sensor and three video cam-
eras (RBV). The cameras did not work properly in the first two satellites; hence, the 
MSS was really the most useful sensor of the mission until the launch of Landsat 4. 
The MSS had an 11.56° FOV and could observe an area of 185 × 185 km at 57 × 79 m 
nominal pixel resolution. It covered four bands of the spectrum (green, red, and two 
in the near infrared, numbered 4, 5, 6, and 7, respectively), designed to imitate true 
and false color infrared photography. Landsat 3 included an updated version of the 
MSS with a thermal band. Data were digitally acquired and recorded on board or 
transmitted in real time to a set of acquisition antennas. Bands 4–6 were coded in 
7 bits (between 0 and 127) and band 7 was in 6 bits (0 and 63). Table 3.1 includes 
the technical specifications of the different sensors on board the Landsat program.

FIGURE 3.29 Artist view of the different Landsat missions. From left to right: Landsat 1–3, 
Landsat 4 and 5, Landsat 6 and 7, and Landsat 8.
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The launch of Landsat 4 and 5 gave a boost to the program, by incorporating 
another across-track scanner with better spatial, spectral, and radiometric resolu-
tions than the MSS. It was named Thematic Mapper (TM), which has been exten-
sively used in the last three decades for a wide range of environmental studies 
(Wulder et al. 2012). Landsat 7 included an improved version of the TM, named 
ETM+, with similar characteristics as TM, but with an additional panchromatic 
band with a 15 m spatial resolution and improved resolution of the thermal band to 
60 m (Table 3.1). The TM/ETM+ sensors included two new bands in the shortwave 
infrared (SWIR, 1.6–2.2 µm) as well as one in the thermal infrared, not contained 
previously in the MSS. The former were very valuable for estimating water content 
of soils and plants and improving atmospheric correction. Unfortunately, the ETM+ 
encountered a serious technical problem in May 2003 when the scan line corrector 
failed. This is a critical hardware component, which results in incomplete scan lines, 
with missing strips that become wider as the scan moves out from the center of the 
image (Figure 3.30). These images are commonly referred to as SLC-off images 
(scan line corrector).

TABLE 3.1
Landsat Sensor Characteristics

MSSa (µm) RBV (µm) TMb  (µm) ETM+c (µm) OLI/TIRd (µm) 

4 0.5–0.6 1e 0.475–0.575 1 0.45–0.52 1 0.45–0.52 1 0.43–0.45

5 0.6–0.7 2e 0.580–0.680 2 0.52–0.60 2 0.52–0.60 2 0.45–0.51

6 0.7–0.8 3e 0.690–0.830 3 0.63–0.69 3 0.63–0.69 3 0.53–0.59

7 0.8–1.1 1f 0.505–0.750 4 0.76–0.90 4 0.76–0.90 4 0.64–0.67

8f 10.4–12.6 5 1.55–1.75 5 1.55–1.75 5 0.85–0.88

6 10.40–12.50 6 10.40–12.50 6 1.57–1.65

7 2.08–2.35 7 2.08–2.35 7 2.11–2.19

8 0.52–0.90 8 0.50–0.68

9 1.36–1.38

10 10.60–11.19

11 11.50–12.51

Spatial Resolution
4–7 79 m 1–3 80 m 1–5 

and 7
30 m 1–5 

and 7
30 m 1–7 

and 9
30 m

6 120 
m/60 m3

8 15 m

8 240 m 1 40 m 6 120 m 8 15 m 10–11 100 m

a Only Landsat 1–3.
b Only Landsat 4 and 5.
c Only Landsat 7.
d Only Landsat 8.
e Only Landsat 1 and 2.
f Only Landsat 3.
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Landsat 8 includes two sensors on board: OLI and TIR. The former is a successor 
of ETM+, although it includes the push-broom technology and two additional bands, 
while TIR is still an across-track scanner and contains two bands in the thermal 
infrared at lower spatial resolution than the other bands (100 vs 30 m for the mul-
tispectral and 15 m for the panchromatic). OLI has a high signal-to-noise ratio and 
has a radiometric resolution of 12 bits. The sensor incorporates two new bands over 
the TM/ETM: a deep-blue band (#1) for better discrimination of coastal waters and 
a cirrus cloud band (#9) to improve atmospheric correction.

Landsat images were recorded on board during the first three missions and 
directly transmitted to the ground receiving antennas in the last five. The network 
of receiving antennas practically covers the whole Earth’s surface, as images can be 
transmitted to different communications satellites. Data access policy has undergone 
changes during the lifetime of the Landsat mission. During the 1990s, the man-
agement of the Landsat program was moved to the commercial sector through the 
EOSAT company, which operated Landsat 4 and 5. During those years, images were 
expensive and applications were broad but mostly focused on research and develop-
ment. As a result of the Land Remote Sensing Policy Act of 1992, later in the 1990s, 
the U.S. government decided to return Landsat operations to the USGS (Williamson 
2001), which reduced prices and extended operational applications.

The Landsat historical archive was made freely downloadable in October 2008 
(Landsat 7) and in January 2009 (all Landsats), leading to a 60-fold increase in 
data downloads, which surpassed six million only 2 years later (Rocchio 2011). The 
immense benefits of this data access policy have been observed in the extension 
of operational uses of Landsat images and the potentials of multitemporal change 

FIGURE 3.30 Impact of the malfunctioning of SLC. Errors increase from the center to the 
image edges. (From http://landsat.usgs.gov/products_slcoffbackground.php.)
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detection to monitor Earth changes in the last 30 years (see, for instance, the atlas of 
our changing environment: http://na.unep.net/atlas/, last accessed in June 2015). In 
addition, other space agencies have also opened their historical archives for extend-
ing the opportunities of analyzing trends in critical environmental variables.

3.4.3 Spot SatelliteS

After Landsat, the SPOT program has been the most extended and fruitful for 
land applications. The acronym stands for Systeme Pour l’Observation de la Terre 
(System for Earth Observation) and it was developed by the French Centre National 
de Etudes Spatiales (CNES), in collaboration with Belgium and Sweden. Now the 
program is run by a private company, SPOT Image, based in Toulouse, France. 
The first SPOT satellite was launched in 1986, followed by other platforms in 1990, 
1993, 1998, 2002, 2012, and 2014. The last two satellites were developed by EADs 
Astrium and are still operated by SPOT Image, which is a subsidiary of Astrium.

The first SPOT satellite had a Sun-synchronous orbit at 822 km height, with a 98° 
inclination and an orbital period of 101 min. The complete coverage duration cycle 
was 26 days. The last two, SPOT-6 and 7, have an altitude of 694 km.

Among the most interesting innovations in this satellite was the use of two push-
broom scanners named initially HRV (haute resolution visible, high resolution vis-
ible). These two sensors offered two modes of image acquisition: panchromatic and 
multiband (green, red, and NIR in the first three satellites), with a spatial resolu-
tion of 10 and 20 m, respectively (Table 3.2). The area covered by each image was 
60 × 60 km. The high-resolution sensor installed on SPOT-4 and 5 provided an addi-
tional band in the SWIR and reduced the pixel size from 20 to 10 m in the multiband 

TABLE 3.2
Sensors Onboard SPOT Satellites

HRVa (µm) HRVIRb (µm) HRGc (µm) HRd VEGETATIONb,c (µm) 

1 0.50–0.59 1 0.50–0.59 1 0.50–0.59 1 0.455–0.525 1 0.43–0.47

2 0.61–0.68 2 0.61–0.68 2 0.61–0.68 2 0.530–0.590 2 0.61–0.68

3 0.79–0.89 3 0.79–0.89 3 0.78–0.89 3 0.625–0.695 3 0.78–0.89

P 0.51–0.73 4 1.58–1.75 4 1.58–1.75 4 0.760–0.890 4 1.58–1.75

P 0.51–0.73 P 0.48–0.71 P 0.45–0.74

Spatial Resolution
1–3 20 m 1–3 20 m 1–3

4
10 m
20 m

1–4 6 m 1–4 1000 m

P 10 m P 10 m P 2.5–5 m P 1.5 m

a Only in SPOT-1 to 3.
b Only in SPOT-4.
c Only in SPOT-5.
d Only in SPOT-6 and SPOT-7.
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mode and from 10 to 2.5 in the panchromatic one. Finally, the last two sensors 
include a higher spatial resolution instrument with 6 m in the multiband mode (from 
B to NIR, SWIR has been removed) and 1.5 in the panchromatic.

These high-resolution cameras have the capacity for off-nadir acquisitions by 
using a pointable mirror (Figure 3.31). This makes it possible to improve the nominal 
observation cycle (from 26 days to 2–3 days depending on the latitude) and to take 
stereoscopic images, which can be used to generate digital terrain models.

In addition to the HRV sensor, the first SPOT satellite included other instruments, 
such as Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), 
which provided a very precise position of the satellite, and Polar Ozone and Aerosol 
Measurement (POAM) in SPOT-3, which measured the content of ozone, aerosols, 
nitrogen, oxygen, and water vapor, with nine channels between the ultraviolet and 
near infrared. SPOT-4 and SPOT-5 also carried a coarse-resolution sensor named 
VEGETATION, intended for global assessment of crops and natural vegetation. This 
instrument had a spatial resolution of 1 km, four spectral bands (matching the HRV-
HRG instruments), and a coverage area of 2250 km, with daily acquisition over the 
whole planet. The SPOT VEGETATION images have been very valuable for global 
analysis of land cover and vegetation trends (Liu et al. 2002; Silva et al. 2005; Tansey 
et al. 2004a). The successor of SPOT VEGETATION sensor is the PROBA-V, devel-
oped by the Belgian Science Policy Office and operated by ESA. It was launched in 
2013 and includes four bands at 333 m resolution (G, R, and NIR) and 666 m (SWIR).

Observation day t1

Paralax

Observation day t2

FIGURE 3.31 Stereoscopic acquisitions of the SPOT-HRV sensor.
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3.4.4 other MediuM-reSolution optiCal SenSorS

Other EO satellite missions oriented toward monitoring natural resources have been 
developed by different space agencies, from Japan, India, China, Brazil, Argentina, 
Korea, or Taiwan, as well as private companies (Surrey Technologies). A brief review 
of the most relevant follows.

The Japanese space agency has developed several EO projects in the last 30 years. 
The first one, named the Marine Observation Satellite (MOS), was launched in 
February 1987 and 1990 and remained active until 1996. It was first designed for oce-
anic investigations, although it had interesting features for terrestrial applications. The 
payload included the Multispectral Electronic Self-Scanning Radiometer (MESSR), 
with 50 m resolution and four spectral bands, two in the visible and two in the NIR; 
the Visible and Thermal Infrared Radiometer (VTIR), with one visible band and three 
in the TIR (spatial resolution 900 and 2700 m, respectively); and a microwave radi-
ometer (Tsuchiya et al. 1987). The continuation was the JERS-1, launched in 1992, 
with mainly a radar focus, although it also had an optical radiometer, the OPS, with 
eight bands in the VIS, NIR, and SWIR and 18 m spatial resolution. Band 8 provided 
stereoscopic coverage over band 3 (0.76–0.86 μm). The ADEOS series (1996 and 
2002) and the Advanced Land Observing System (ALOS) satellite 2006 were the last 
EO satellites launched by the Japanese space agency. However, the agency cooperates 
with other international missions and develops atmospheric observation satellites, 
such as GOSAT (to monitor greenhouse gases) and GPM (for rainfall monitoring).

The Indian Space Research Organization (ISRO) has been very active in satellite 
observation program development since the 1970s with the Bhaskara series. Among 
the most recent missions, the most outstanding are the four IRS satellites launched in 
1988, 1994, 1995, and 1997. The main objective of this mission was to improve the 
knowledge of natural resources in this Asian country, but its images have been used 
in many other countries. The IRS had a push-broom scanner system, with two sensors 
called Linear Imaging Self-Scanning (LISS). LISS-I had a resolution of 72.5 m when 
only one camera was active and 36.25 m when both cameras were active (LISS-II). 
The area covered by each image was 148 km for LISS-I and 74 km for LISS-II, with a 
cycle of 22 days. The sensor LISS provided information on four bands of the spectrum. 
The two last satellites of the series (IRS-1C and 1D) included two additional sensors: 
a high-resolution panchromatic camera (5.8 m) and a sensor for regional observation, 
the WIFS, with a resolution of 188 m and 810 km coverage (improved later with the 
AWIFS [60 m], and the same coverage: Figure 3.32). A similar configuration had the 
Resourcesat-1 (IRS-P6) and two satellites, launched in 2003 and 2011, respectively, 
which included the three sensors of previous IRS satellites.

Additional satellites of ISRO are Cartosat-1, 2, 2A, and 2B, launched in 2005, 
2007, 2008, and 2010, which carried two stereo cameras with 2.5 m spatial reso-
lution, covering an area of 30 km. In addition to these platforms, ISRO manages 
an oceanographic satellite, known as IRS-P4 (Oceansat) launched in 1999, with an 
eight-channel sensor and a microwave radiometer, radar, and geostationary satellites.

The Russian space agency has undergone several transformations in the last few 
decades, weakening considerably its role in EOs. The most interesting programs 
were the meteorological satellites METEOR-3 and GOMS, and the natural resources 



107Sensors and Remote Sensing Satellites

satellites RESURS and OKEAN. The METEOR incorporated a series of television 
cameras of medium low resolution (0.7–35 km), as well as equipment designed by 
other countries to obtain atmospheric profiles (aerosols and ozone layer). GOMS was 
a geostationary satellite similar to Meteosat first generation (three bands and similar 
spatial resolution) located at longitude 76°50′. RESURS took images at intermediate 
resolution between Landsat MSS and NOAA-AVHRR, which are very useful for 
regional to continental studies. It has two multispectral across-track scanners, the 
MSU-E with higher spatial resolution and MSU-SK with medium resolution (140 m 
in the optical channels and 550 in the thermal), providing information in the green, 
red, NIR, and TIR bands.

Other countries have joined in the last two decades the list of space agencies 
involved in EO satellite development. In Asia, South Korea launched in 1999 the 
Kompsat-1, equipped with a panchromatic camera (6 m) and other oceanographic 
sensors. The program was continued by Kompsat-2 in 2006, Kompsat-3 in 2012, and 
Kompsat-5 in 2013. This latter equipped with a SAR instrument. Taiwan launched 
its first EO satellite, Formosat-1, in 1999 with six bands and 800 m resolution. This 
mission has been extended with four additional satellites, two of which have high-
spatial-resolution capabilities.

In Latin America, the most active countries are Brazil and Argentina. Brazil has 
launched a series of EO satellites in partnership with China, named CBERS. The 
first two satellites were launched in 1999 and 2003. They had a medium-resolution 
camera system (20 m) in four bands and a regional coverage scanner, WFI, with two 
bands and 260 m resolution. The most recent CBERS-4 was launched in 2014 and 
includes four instruments, with spatial resolutions ranging from 5 to 866 m. The 
Argentinean EO program developed the SAC-C in 1998, which included a medium-
resolution sensor, with 350 and 175 m and five spectral bands, as well as other sen-
sors for the analysis of geomagnetic fields, ground positioning systems, and space 
radiation of low orbit. The SAC-D mission (Aquarius) launched in 2011 is a coopera-
tive international mission between the Argentinean Space Agency and NASA and 
includes several scientific instruments.

FIGURE 3.32 AWIFS image of a large wildland fire occurring in Central Spain in August 
2005.
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The ESA will launch in 2015 the Sentinel-2A series of satellites, as part of the 
Global Monitoring for Environment and Security (GMES) initiative of the ESA/
European Commission (later named Copernicus). This mission is planned as a con-
tinuation of the Landsat and SPOT series, incorporating a medium-resolution sensor 
named Multispectral Instrument (MSI), with 13 spectral bands and spatial resolution 
between 10 and 20 m (60 m for channels used for atmospheric correction), with a 
very wide swath of 290 km, thus providing a 5-day coverage at the Equator when the 
two satellites of the series are launched.

Finally, it is worth mentioning the Disaster Monitoring Constellation (DMC), 
which was developed by a British company (Surrey Satellite Technology Ltd.) for 
different countries. The constellation was designed to take advantage of low-cost 
technology that made it possible to operate an EO satellite with standard configu-
rations at a reduced budget. The company has developed 43 satellites for differ-
ent agencies and applications, including global positioning. The most relevant for 
EO images were the Alsat-1 (operated by Algeria), Bilsat-1 (Turkey), Nigeriasat-1 
(Nigeria), Beijing-1 (China), Deimos-1 (Spain), and the DMC series, providing 
Landsat-like resolution at a high temporal resolution.

3.4.5 hiGh-Spatial-reSolution SatelliteS

In the late 1990s, a new generation of high-spatial-resolution satellites (between 0.5 
and 4 m) was developed by different private consortiums with the goal of opening 
new markets for satellite images. Urban applications and precision farming have 
extensively benefited from these new high-quality images, although other appli-
cations have also been opened to EO satellites from these high-quality data, from 
national security to natural hazard assessment (Baker 2001).

Three private U.S. consortiums took the leadership in developing high-resolution 
commercial satellites: Space Imaging, Orbimage, and Earthwatch Inc. Space 
Imaging (later named DigitalGlobe) successfully launched the IKONOS-2 in 
September 1999 after a failed launch in 1998. The sensor on board this satellite 
provided a 1 × 1 m resolution in the panchromatic channel and 4 × 4 m in the multi-
spectral channels (blue, green, red, and NIR: Figure 3.33). The area covered in each 
image was 11 km and swaths up to 11 × 1000 km could be acquired. Images were 
coded with 11-bit radiometric resolution, which offers a high sensitivity for land 
cover discrimination. Data were commercialized through a net of commercial dis-
tributors, but the reception of images was centralized. The satellite was deactivated 
in April 2015.

Orbimage (later renamed GeoEye) was the pioneer company to own commercial 
satellites with the launch of Orbview-1 in 1995, mainly oriented toward meteoro-
logical forecast. It also owned Orbview-2, which included the oceanographic sen-
sor SeaWiFS, developed in collaboration with NASA. SeaWiFS was a radiometer 
with eight high-resolution spectral bands between 0.4 and 0.88 μm, mainly oriented 
to monitor various ocean phenomena. It was active until 2010. The company also 
launched Orbview-3 in 2003, with a panchromatic camera at 1 m resolution and a 
multispectral with 4 m resolution, operating in four spectral bands. It was active 
until 2007. Recent developments of GeoEye included the GeoEye-1 and GeoEye-2 
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satellites. The former was launched in 2008 and provides 41 cm panchromatic and 
1.65 multispectral images. The system has a very fine location accuracy (>3 m). The 
image swath is 15.2 km. GeoEye-2 was initially developed with even better resolu-
tion, but as a result of the fusion between GeoEye and DigitalGlobe in 2013, it was 
decided to be held in storage until needed.

The third commercial owner of satellite missions was DigitalGlobe, which is now 
the heir of the previous two companies after fusion with Space Imaging first and 
later with GeoEye. It was responsible for the operation of the QuickBird satellite, 
launched on October 18, 2001, and deactivated in 2015. This satellite incorporated 
two cameras: one panchromatic, with a 61 cm spatial resolution, and another multi-
spectral, with 2.5 m resolution. It had a 17 km area of coverage and could generate 
images of up to 17 × 225 km. It provided 11 bits radiometric resolution and could take 
oblique observations to improve temporal frequency up to 3 days.

DigitalGlobe launched another high-resolution satellite named WorldView-1 in 
2007, with improved geolocation capabilities. It provided a single panchromatic 
channel at 0.5 m spatial resolution with 11-bit radiometric sensitivity and up to 2 days 
revisiting time. WorldView-2 was launched in 2009. It includes a panchromatic sen-
sor with a 0.46 m pixel size and a multispectral sensor with eight bands (from blue to 
NIR) and 1.84 m of spatial resolution (Figure 3.34). In 2014, the company launched 
WorldView-3 with a panchromatic band of 0.31 m, 8 multispectral bands at 1.24 m, 
8 SWIR bands at 3.7 m, and 12 additional bands at 30 m resolution. The revisiting 
time may be better than 2 days in oblique acquisitions.

FIGURE 3.33 Image acquired by the IKONOS camera on 2008 over irrigated areas in 
Spain. (Courtesy of European Space Imaging/DigitalGlobe, Munich, Germany.)
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In 2009, a new provider of high-spatial-resolution images was created, Skybox 
Imaging, which developed two satellites named SkySat-1 and SkySat-2. These sat-
ellites obtained images and videos. In the image mode, they have a 0.9 resolution 
in the panchromatic band and 2 m in the B, G, R, and NIR bands for 8 km swaths 
(Figure 3.35). The company was purchased by Google in 2014, which plans to build a 
full constellation of high-spatial-resolution sensors for very frequent revisiting access.

Outside the United States, other private consortiums are leading the development 
and operation of high-spatial-resolution systems. A good example is the German 
company BlackBridge, which currently owns the RapidEye constellation. This pro-
gram includes five small satellites, providing world daily coverage (using off-nadir 
acquisitions) at 6.5 m resolution in five spectral bands (B, G, R, R-NIR, NIR) with a 
dynamic range of 12 bits (Figure 3.36). Another example is ImageSat International, 

FIGURE 3.34 Natural color image acquired by Worldview-2 camera in 2014 over the 
Vatican City. (Courtesy of European Space Imaging/DigitalGlobe, Munich, Germany.)

FIGURE 3.35 Natural color image acquired in 2014 by the SkySat-1 over the Shenzhen 
port, China. (Courtesy of Skybox Imaging, Inc., Mountain View, CA, Provided by European 
Space Imaging, Munich, Germany.)
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established in 1997, which involves the participation of several countries and is 
headed by an Israeli consortium that has its technical headquarters in Chipre. In 
2000, ImageSat launched its first satellite of the EROS series, which had a pan-
chromatic camera with a 2.1 m resolution, a swath of 15 km, 11 bits radiometry, and 
offers stereoscopic coverage. In 2006 the EROS-2 was launched, providing 0.7 m 
spatial resolution with a single band, 10 bits of sensitivity, and a swath of 7 km. These 
satellites were designed primarily for intelligence, homeland security, and national 
defense uses.

3.4.6 GeoStationary MeteoroloGiCal SatelliteS

Geostationary satellite images are well known because they are commonly used in 
TV weather forecasting. These satellites are coordinated by the World Meteorological 
Organization (WMO) through the Global Atmospheric Research Program (GARP). 
The first geostationary satellite, Applications Technology Satellite (ATS), was 
launched in 1966 by NASA. In operational form, this satellite became the series SMS, 
known as Geostationary Operational Environmental Satellite (GOES) since 1975. 
Other geostationary satellites are the European Meteosat, the Indian INSAT, the 
Russian Elektro-L, the Chinese FY-2D, and the Japanese MTSAT. Geosynchronous 
satellites orbit the Earth at 36,000 km in the Equatorial plane, therefore observing 
the same area. A scanning system provides coverage of the full observable Earth 
disc at a certain longitude (Figure 3.37).

Currently, there are two operational GOES satellites: one located at 75° west 
(eastern coast of the United States) and the other at 135° west (between Hawaii 
and California). Both satellites include different sensors for atmospheric observa-
tion. The most important is named Imager, a multispectral scanning sensor with 
five channels (visible, two in the MIR, and two in the TIR), with a spatial resolution 
of 1 km for the visible, 8 km for the long MIR, and 4 km for the rest of the bands 
(Figure 3.38). The Earth disc full scanning takes 26 min. The GOES satellites also 
include an atmospheric profiler, called Sounder, with 19 spectral bands.

FIGURE 3.36 RapidEye natural color image of the city of Madrid, Spain, acquired in 2011. 
(Courtesy of BlackBridge, Lethbridge, Alberta, Canada.)
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Meteosat is the European counterpart of the GOES platform. It was first launched 
in 1977, and nine more have been orbited since then, providing critical weather 
information for Europe and Africa. Currently, three satellites are working in par-
allel: one at 0° longitude (the primary one) and another two in nearby orbits (for 
backup and to improve temporal observation) and another one at 57° east. All are 

FIGURE 3.37 Meteosat-10 image captured on April 22, 2015, with the SEVIRI instrument. 
(From www.esa.int.)

FIGURE 3.38 GOES-12 image of the Hurricane Katrina acquired on August 29, 2005. 
(From http://apod.nasa.gov/apod/ap050829.html.)
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orbiting at 36,000 km. These satellites are built by the ESA and operated by the 
EUMETSAT consortium.

The first generation of Meteosat satellites had an MSS with three spectral 
bands—VIS, MIR, and TIR—with 2.5 × 2.5  km spatial resolution for the former 
and 5 × 5 km for the latter two. In 2002, a new series of Meteosat satellites (named 
Meteosat Second Generation, MSG) was launched, incorporating notable improve-
ments over the previous ones. The MSG included two observation instruments: 
the Geostationary Earth Radiation Budget (GERB) instrument, a visible-infrared 
radiometer for Earth radiation budget studies, and the Spinning Enhanced Visible 
and InfraRed Imager (SEVIRI), which observes the Earth in 12 spectral channels 
every 15 min, with a spatial resolution up to 1 km in the visible band and 3 km in 
the other channels. A third generation of Meteosat is currently being developed. It 
will include new sensors and improve the presently operational. The new scanning 
instrument will provide 16 channels at higher spatial resolution (from 1 to 2 km), 
at a higher frequency observation of 10 min. This satellite series is expected to be 
launched in 2019.

In addition to atmospheric products, information acquired by geostationary 
satellites is very useful for oceanographic (chlorophyll concentration, surface 
temperature) and land applications (fire detections, fire risk, land temperature, 
snow cover, vegetation trends, etc.) (Calle et  al. 2006; Nieto et  al. 2010, 2011; 
Trishchenko 2006).

3.4.7 polar-orbitinG MeteoroloGiCal SatelliteS

The main advantage of geostationary satellites is the very frequent observation they 
provide, which is ideal for atmospheric monitoring. However, since the geosyn-
chronous orbit is very far, the images have coarse resolution. In addition, they only 
observe a certain area of the Earth, always the same. For these two reasons, a com-
plementary series of polar-orbiting meteorological satellites have been developed by 
national weather services and space agencies.

The first and most relevant so far has been the Television Infrared Observation 
Satellite (TIROS), first launched during the 1960s, and renamed NOAA after the 
deployment of the sixth satellite in 1979. The NOAA designation comes from the 
U.S. weather service (the National Oceanic and Atmospheric Administration), which 
is the agency in charge of the satellites’ management.

The orbital height of the NOAA satellites has varied from 833 to 870 km, along 
with the development of the series (the last one launched in 2009, and it was named 
NOAA-19).

The NOAA series carries out several weather-oriented sensors, the main one 
being the AVHRR. This system is an across-track MSS providing 1.1 km nadir reso-
lution at nadir in five spectral bands (R, NIR, MIR, and two in the TIR). The FOV is 
55.4° on both sides of the satellite track, covering a swath of 3000 km. The observa-
tion cycle of AVHRR is 12 h, but this frequency is improved to every 6 h since two 
satellites have operated simultaneously, one crossing the equator at 7:30 and 19:30 
GMT, and the other one at 14:30 and 2:30 GMT. These hours change throughout the 
sensor’s life as a result of orbit degradation (Privette et al. 1995).
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The AVHRR has provided one of the longer time series of satellite data, from 
1979 to the present. Its coarse spatial resolution is balanced by its good spectral and 
very good temporal resolution; therefore, it has been successfully used for many 
different terrestrial and oceanic applications (Chuvieco et al. 2008a; Gitelson et al. 
1998; Goetz et al. 2006; Loveland et al. 2000; Peters et al. 2002; Riaño et al. 2007b; 
Soja et al. 2004; Figure 3.39). The sensor has important radiometric and geometrical 
problems (Cracknell 1997), especially because of the large-view zenith angle and 
orbital degradation, but it is still an important source of temporal trends for many 
dynamic variables at global scales.

AVHRR images are available in three different formats: the highest resolution is 
known as Local Area Coverage (LAC), when recorded onboard, or High Resolution 
Picture Transmission (HRPT), when data are sent in real time to the receiving stations. 
Since the recording system on NOAA was quite reduced, only a coarser-resolution 
product (4 × 4 km), named Global Area Coverage (GAC), was usually stored on board. 
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FIGURE 3.39 Multitemporal series of burned areas in Northern Canada extracted from 
AVHRR images. (After Chuvieco, E. et al., Remote Sens. Environ., 112, 2381, 2008a.)
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From GAC data, historical time series of AVHRR have been released for the analysis 
of global temporal trends. The most used was the Pathfinder AVHRR Land data sets 
(PAL) at 8 km resolution, including the raw bands from 1981 to 1996, and the Global 
Inventory Modeling and Mapping Studies (GIMMS) data set, which includes only 
a spectral vegetation index (the NDVI; see Chapter 7), also at 8 km spatial resolu-
tion for a 25-year period spanning 1981 to 2006. More recently, the PAL database 
has been improved with a new time series named Land Long-Term Data Record 
(LTDR) (http://ltdr.nascom.nasa.gov/cgi-bin/ltdr/ltdrPage.cgi, last accessed in June 
2015), which includes global coverages of both AVHRR and MODIS images at 0.05° 
resolution from 1981 to 2014.

In addition to the AVHRR, the NOAA satellite series includes other meteo-
rological sensors such as the Solar Backscatter Ultraviolet Spectral Radiometer 
(SBUV/2) to measure the vertical concentrations of ozone in the atmosphere; the 
Earth Radiation Budget Experiment (ERBE), with a resolution of 200–250 km at 
nadir, dedicated to the analysis of global radiation; and the TIROS Operational 
Vertical Sounder (TOVS), which measures a vertical profile of atmospheric tem-
peratures, humidity, and ozone contents. The TOVS includes three sensors: the 
High Resolution Infrared Radiation Sounder (HIRS/3), an MSS with 19 channels 
in the infrared (3.76–14.95 μm) and one in the visible (0.69 μm), with a spatial 
resolution of 17 km at nadir; the Microwave Sounding Unit (MSU), a microwave 
radiometer with 4 channels close to 55 GHz and a spatial resolution of 109 km 
at nadir; and the Stratosphere Sounding Unit (SSU), an infrared radiometer of 
modular precision with 3 channels in 15 μm and a spatial resolution at nadir of 
147 km. The MSU and SSU sensors have been substituted after NOAA-15 by the 
AMSU-A and B; the first is a microwave radiometer with 15 channels that provide 
more precise sounding of temperature and atmospheric moisture. The AMSU-B 
is a microwave radiometer with five channels especially adapted to measuring 
water vapor.

Although NOAA has been the longest civilian satellite series used for meteoro-
logical and global environmental analysis, it is also worth mentioning the Defense 
Meteorological Satellite Program (DMSP) series, which were initially limited to 
military applications but were released in the late 1990s for civilian uses as well. The 
DMSP series were initially designed for facilitating global diurnal information of 
cloud coverage. Initially, they included only video cameras, but they were improved 
in the late 1970s with passive microwave radiometers. The last DMSP satellite (F-19) 
was launched in 2014.

For terrestrial applications, the most interesting sensors on board the DMSP are the 
Special Sensor Microwave Imaging (SSM/I), a microwave radiometer that completes 
the measurements on soil moisture and rainfall taken by the Nimbus in the 1970s, 
and the Operational Linescan System (OLS), which is an MSS that provides diurnal 
and nocturnal images in two bands, visible (0.5–0.9 μm) and TIR (10.5–12.6 μm). 
The spatial resolution can be up to 0.56 km, although only a degraded version of 
2.7 km is usually recorded. This sensor has a very high radiometric sensitivity at 
visible wavelengths, which makes it possible to detect light sources at night (urban 
areas, oil wells, or fires), obtaining spectacular images of urban patterns at global 
scale (Figure 3.40).
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In the near future, both the NOAA and DMSP satellites will be replaced by the 
Joint Polar Satellite System (JPSS), which will incorporate advanced sensors to 
make more detailed observations over the Earth system. The preparatory mission 
for this new constellation of satellites was launched in 2011 and named Suomi after 
a U.S. meteorologist, while the next two are expected for 2017 and 2021. JPSS series 
include different atmospheric sensors for temperature and moisture, clouds and earth 
radiation budget, ozone concentration and aerosols retrieval. The main sensor on 
board is the Visible/Infrared Imager/Radiometer Suite (VIIRS), with 21 bands and 
a nadir spatial resolution of 375 m, which can obtain sea and land temperature and 
aerosol optical depth; monitor vegetation and crop trends, snow, and ice melt; detect 
active fires and volcanoes; and many other applications. In addition, this satellite 
incorporates the Advanced Technology Microwave Sounder (ATMS), a cross-track 
scanner with 22 channels, aiming to retrieve atmospheric profiles; the Cross-track 
Infrared Sounder (CrIS), a Fourier transform spectrometer with 1305 spectral chan-
nels, oriented to produce 3D temperature, pressure, and moisture profiles; the Ozone 
Mapping Profiler Suite (OMPS), an ozone-profile detector; and the Clouds and the 
Earth’s Radiant Energy System (CERES), a three-channel radiometer, measuring 
both solar-reflected and Earth-emitted radiation.

Other countries have also developed polar meteorological satellites. The most 
widely known are the Russian METEOR, active since 1991, with two bands in the 
visible and in the TIR; and the Chinese Feng Yun, launched for the first time in 
1988. In the last versions, this satellite includes 10 channels (VIS, NIR, SWIR, 
and TIR), with a spatial resolution of approximately 1  km. More recently, ESA 
and EUMETSAT have developed and launched the polar-orbiting European plat-
form named METOP-A. The first satellite of this constellation is named and it was 
launched in October 2006 and the second one in 2012. These satellites will replace 
the morning NOAA satellites in the near future. The payload of METOP is very 
similar to that of NOAA, with AVHRR-3, HIRS, AMSU, and MHS. The only sen-
sors not included in the NOAA series are the Infrared Interferometer, for tempera-
ture sounding; an advanced scatterometer, for retrieval of oceanic winds; and Global 
Ozone Monitoring Experiment (GOME), for measuring ozone concentrations. 

FIGURE 3.40 World mosaic of DMSP images showing urban lights. (From http://
visibleearth.nasa.gov/view.php?id=55167.)
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The ESA’s Copernicus constellation will include additional missions that either have 
a meteorological scope or will include coarse-resolution sensors that could serve the 
needs of climate researchers. This is the case of Sentinel-3 and 5. The former will 
include different sensors for measuring ocean color and temperature, with updated 
instruments over the AATSR and MERIS sensors onboard the ENVISAT satellite. 
Sentinel-5 will include sensors for meteorological observation to prepare the second 
generation of METOP satellites.

3.4.8 terra–aqua

The Terra and Aqua platforms are part of the NASA Earth-Observing System (EOS) 
program (Parkinson et al. 2006), which includes several other platforms for terrestrial 
observations. Terra was successfully launched in December 1999, and it is located 
in a near-polar, Sun-synchronous orbit, crossing the equator around 10:30  a.m. 
and p.m. The orbital height is 705 km, with a period of 98.88 min and a repeat cycle 
of 16 days. It carries five sensors (MODIS, CERES, MISR, MOPITT, and ASTER) 
designed for global observations of critical land, oceans, and atmospheric variables. 
Aqua was launched in May 2002, and it has similar orbital characteristics as Terra, 
but with a lag period of 3 h and, therefore, crosses the equator at 1:30 and 13:30. This 
satellite carries six sensors (AIRS, AMSR-E, CERES, HSB, and MODIS), with an 
instrument configuration oriented toward oceanographic studies.

The main sensor on board the two platforms is MODIS. It is the most advanced 
MSS ever used for remote sensing studies and acquires worldwide daily data from 
36 different spectral bands, at different resolutions, from 250 to 1000 m. The first 
two bands have finer spatial resolution (250 m) and include the red and NIR spec-
tral wavelengths to monitor vegetation activity. Another five bands are acquired 
at 500 m resolution, covering the visible and SWIR, and are mainly intended for 
retrieval of vegetation, snow, and soil properties. All the other bands have 1000 m 
resolution and cover additional wavelengths in the visible, MIR, and TIR. The 
swath covered by MODIS is 2300 km, and observation frequency is daily (twice 
when the two satellites are accounted for). The MODIS program was built around 
a wide range of scientists working together to obtain both calibrated radiances and 
final products. These products are grouped in three domains: atmosphere products, 
including aerosol, total precipitable water, clouds, and atmospheric profiles; land 
products, including surface reflectance, surface temperature, land cover, vegeta-
tion indices, active fires, incoming radiation, evapotranspiration, plant productivity, 
albedo, burned areas, snow cover, and sea ice; and ocean products, which includes 
sea temperature, chlorophyll-a concentration, particulate carbon, fluorescence, and 
incoming photosynthetic radiation. Images are free and can be accessed through 
the data distribution network of NASA, named Distributed Active Archive Center 
(DAAC). Figure  3.41 shows an example of a global albedo image derived from 
MODIS three reflectance channels (B, G, R). Snow and desert areas are shown in 
more intense values, while vegetated areas present more reflectance in the green 
region, as expected.

On board the Terra and Aqua missions are also other sensors worth mentioning. 
One of those included in Terra is the Advanced Space-Borne Thermal Emission 
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and Reflection Radiometer (ASTER), developed by the Japanese Ministry of 
Economy. ASTER had 15 channels: 4 with 15 m resolution (G, R, NIR1, NIR2), 
the last two bands duplicated for stereoscopic view; 6 with 30 m resolution in 
the SWIR; and 5 other TIR bands with 90 m. Its main objectives were the mea-
surement of cloud and soil properties, vegetation and crop monitoring, land tem-
peratures, and generation of digital elevation models. Since images were acquired 
simultaneously with other sensors, ASTER has been used for validation of coarse-
resolution sensors such as MODIS (Schroeder et al. 2008). From the stereoscopic 
bands, a freely available digital elevation model with 15 m resolution was created 
from photogrammetric methods (Tachikawa et al. 2011). ASTER was not operated 
continuously, but only for a few minutes of each orbit because of energy con-
straints; therefore, it does not provide a systematic coverage, as Landsat sensors 
do. Figure 3.42 shows a beautiful example of an ASTER image for the vicinity of 
Arequipa, the second largest city of Peru.

The Multi-Angle Imaging Spectroradiometer (MISR) is one of the first sensors 
providing a multiangular observation of the whole planet. It acquires images at nine 
different angles (at nadir plus at 26.1°, 45.6°, 60°, and 70.5°, forward and backward) 
and in four spectral bands (B, G, R, and NIR). This configuration facilitates the 
analysis of atmospheric optical thickness of the atmosphere (Figure 3.43), cloud 
type and height, leaf area index, and fraction of absorbed photosynthetically active 
radiation. Each image covers 360 km at a variable spatial resolution, which depends 
on the observation angle, although the most common are 275, 550, and 1100 m. 
MISR flies on the Terra platform.

The Measurements of Pollution in the Troposphere (MOPITT) instrument was 
primarily designed to measure carbon monoxide and methane concentrations in the 
atmosphere. The sensor uses a correlation spectroscopy technique, which estimates 
the concentration of a gas by spectral selection of emitted or absorbed radiance, 
using a sample of the same gas as a filter. The sensor has a resolution of 22 km with a 
swath width of 640 km. It was included in the Terra platform, as part of a cooperative 
agreement with Canada.

FIGURE 3.41 Spectral gap-filled snow-free albedo in the MODIS blue, green, and red 
channels showing the percentage of solar radiation reflected by the land surface. Images rep-
resent July12, 2010 (range 0–0.25 albedo). (Courtesy of Crystal Schaaf and Qingsong Sun, 
University of Massachusetts Boston, Boston, MA.)
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The Atmospheric Infrared Sounder (AIRS) is a high-spectral-resolution grating 
spectrometer containing 2378 infrared channels (from 3.7 to 15.4 µm) for obtain-
ing atmospheric temperature profiles. AIRS also has four visible/NIR channels 
(from 0.4 to 1 µm) for characterizing cloud and surface properties and obtaining 
higher spatial resolution than the infrared measurements. It is included on the Aqua 
platform.

FIGURE 3.42 Three-dimensional ASTER image of the Arequipa region (Peru). The Misti 
volcano at more than 5800 m is shown prominently in the image. (From http://visibleearth.
nasa .gov/.)

FIGURE 3.43 Images acquired by the MISR multiangular mission over the Appalachian 
range. Increasing atmospheric haze is observed in the most oblique viewing angles (to the 
right). (From http://visibleearth.nasa.gov/.)
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The AMSR-E is a Japanese instrument on board the Aqua platform. It includes a 
12-channel microwave radiometer designed to monitor a broad range of hydrologic 
variables, including precipitation, cloud water, water vapor, sea surface winds, sea 
surface temperature, sea ice, snow, and soil moisture.

The Advanced Microwave Sounding Unit-A (AMSU-A) is a 15-channel micro-
wave sounder designed to obtain temperature profiles in the upper atmosphere and 
to provide a cloud-filtering capability for the AIRS infrared measurements, for 
increased accuracy in troposphere temperature profiles. It is on board the Aqua satel-
lite as well as the latest in the NOAA Polar-Orbiting Environmental Satellite (POES) 
series (after NOAA-15).

The Humidity Sounder for Brazil (HSB) provided atmospheric water vapor pro-
file measurements until February 2003 when it lost operation. It included a four-
channel microwave sounder designed to obtain atmospheric humidity profiles under 
cloudy conditions and to detect heavy precipitation under clouds. It was included on 
the Aqua platform.

As previously commented, the next generation of U.S. polar-orbiting weather 
satellites will incorporate some of the sensors tested in the EOS program, such as 
VIIRS (the legacy of MODIS) and CERES.

3.4.9 radar MiSSionS

Even though the SEASAT was the first civilian satellite incorporating a radar sensor 
in 1978, the first long-term mission based on SAR instruments was the European 
Remote Sensing Satellite (ERS), launched in 1991 by the ESA, and continued in 
1995 by a similar satellite (ERS-2). The ERS focused on ocean and ice monitor-
ing. These satellites had an orbital height of 780 km and included a synthetic aper-
ture imaging radar, radar altimeter, an across-track scanner named Along-Track 
Scanning Radiometer (ATSR), and other instruments to measure ozone (GOME), 
wind speed, and atmospheric profiles.

The most innovative sensor was the Active Microwave Instrument (AMI) and 
included a radar imager and a wind scaterometer. The first instrument could be used 
in image mode working in band C (5.3 GHz), vertical polarization with a spatial 
resolution of 26 m in range and between 6 and 30 m in azimuth, and a coverage 
area of 102 km. The average angle of incidence was 23°. This equipment could also 
work in “wave” mode, directed toward the study of oceanic waves. The second MW 
instrument on board the ERS-1 and 2 was the radar altimeter, working in the K band 
(13.8 GHz). The system was capable of calculating the height of ocean waves with a 
10 cm precision, which was extensively used for monitoring sea level alteration and 
oceanic current movements. The ERS mission ended in 2011.

In 2002, ESA launched an ambitious satellite mission named ENVISAT. In addi-
tion to continuing with ERS observations, this new satellite intended to improve the 
role of Europe in global observation missions, with special emphasis on atmospheric 
chemistry and oceanographic studies. ENVISAT followed a Sun-synchronous orbit 
at 800 km, with a 35-day repeat cycle. It carried a wide variety of scientific instru-
ments. It included an advanced version of radar instruments previously flown on the 
ERS, which was named Advanced Synthetic Aperture Radar (ASAR), also working 



121Sensors and Remote Sensing Satellites

in the C band with 30 m spatial resolution, but with up to five polarization modes 
and different swath modes. The radar altimeter on board the ENVISAT worked in 
band R, but with higher precision than the previous versions on board the ERS. The 
ENVISAT satellite also included an improved version of ATSR, a hyperspectral sen-
sor named Medium Resolution Imaging Spectrometer (MERIS), with 15 channels 
and 300 m pixel size, and several other sensors for measuring aerosols, trace gases, 
and atmospheric constituents. The mission ended suddenly in 2012 as a result of 
unexpected communication problems.

The ESA continued radar observations after the launch of the Sentinel-1A satel-
lite in 2014, which is part of the Copernicus Operational Services being developed 
by the agency. Sentinel-1 orbits at 693 km and includes an advanced SAR, able to 
detect 80 km swaths at a resolution of up to 5 m spatial resolution (Figure 3.44). 
A second satellite with the same instruments is expected to be launched in 2016.

In addition to ESA, the Japanese and Canadian space agencies have been very 
active in developing radar missions. The JERS-1 was launched by the Japan Aerospace 
Exploration Agency (JAXA) in 1992 and incorporated an L-band SAR, with HH 
polarization, 35° angle of observation, spatial resolution of 20 m, and swath cover-
age of 75 km. Unfortunately, it stopped functioning in 1998. The successor of this 
Japanese mission was the ALOS, launched in January 2006. ALOS had three sen-
sors: the Panchromatic Remote Sensing Instrument for Stereo Mapping (PRISM), 
which has three sets of optical systems to measure land elevation; the Advanced 
Visible and Near-Infrared Radiometer Type 2 (AVNIR-2), for land cover monitor-
ing; and the Phased Array Type L-band Synthetic Aperture Radar (PALSAR). This 
advanced SAR instrument was able to work at two different imaging modes, with 
resolutions between 7 and 44 m in the fine mode (up to 70 km swaths) and 100 m 
in the scan mode (up to 350 km swaths), with different polarizations. The ALOS 
satellite was lost in 2011, replaced in 2014 by the ALOS-2 satellite, which included 
a more sophisticated L-band Radar system capable of acquiring up to 3 m resolution 

FIGURE 3.44 Sentinel-1A multitemporal radar image of the Chinese city of Tianjin. (From 
www.esa.int/spaceinimages/Images/2015/06/Tianjin_China.)
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images in the ultrafine mode, keeping the scan mode of the previous PALSAR. 
A striking figure of the local displacements produced by the Nepal earthquake of 
2015 is obtained from the interferogram portrayed in Figure 3.45, which was based 
on the analysis of two PALSAR-2 images acquired before and after the quake.

The Canadian RADARSAT program had also been very successful with 
almost continuous series in the last 20 years. The first satellite was launched in 
November 1995. The satellite was placed in a 798 km height polar orbit, with an 
inclination of 98.6° over the equatorial plane. It incorporates a highly advanced 
radar that can operate in several modes, with several spatial resolutions, areas of 
coverage, and incidence angles. It used the same frequency as the ERS satellites 
(band C, 5.3 GHz) and horizontal polarization (HH). The spatial resolution could 
vary between 11 and 100 m and the area covered between 50 and 500 km. For 
the standard mode of operation, the temporal frequency was 24 days. As for the 
angle of incidence, it could vary its operative mode between 20° and 50°, reach-
ing up to 10° and 60°, in experimental mode. A successor of this mission was 
the RADARSAT-2 launched in 2007, which improved the SAR instrument char-
acteristics with a finer mode spatial resolution that could reach 3 m. It included 
multipolarization (HH, HV, VV, and VH) and more flexibility in the incidence 
angles than RADARSAT-1.

The Italian Space Agency and Ministry of Research built and successfully 
launched the COSMO-SkyMed, formed by four identical medium-sized satellites 
equipped with SAR instruments and launched between 2007 and 2010. The SARs 
work in band X with two polarizations and provide different observation modes and 
spatial resolutions, being the finest 1 m for 10 × 10 km areas.

Finally, some radar missions have also been promoted by private companies, such 
as TerraSAR-X, a joint venture from the German space agency and EADS Astrium. 
This system launched in 2007 includes an X-band SAR with different image modes 
that can provide up to 1 m resolution for small areas. Different polarization modes 
are provided. The system was established in tandem with another mission named 
TanDEM-X (launched in 2010) to derive a new global high-resolution digital ter-
rain model using interferometric techniques. The model was finally released in 

FIGURE 3.45 PALSAR-2 interferogram around Katmandu processed by JAXA. (From 
PALSAR-2 data: JAXA, www.eorc.jaxa.jp/ALOS-2/en/img_up/dis_pal2_npl-eq_20150502.
htm; Map data: Copyright OpenStreetMap contributors.)
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2014, at 12 × 12 m spatial resolution, with an estimated vertical accuracy of 2–4 m, 
and it is commercially available as WorldDEM™ by Airbus.

3.4.10 proGraMS with hyperSpeCtral SenSorS

Hyperspectral instruments (more properly named imaging spectrometers) provide 
very high spectral resolution as they can collect simultaneous images in numerous 
spectral bands. Until recently, these instruments were limited to airborne observa-
tion, since the data flow and energy consumption were very high for reliable space-
borne operation.

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been the 
most extensively used imaging spectrometer to date because of its sound technical 
characteristics. This sensor has been flown in four different airplanes at different 
elevations, and it is managed by the NASA Jet Propulsion Laboratory. The sensor 
has 224 continuous channels, covering from 0.4 to 2.5 μm, and 12-bit radiometry. 
This spectral resolution provides continuous spectra or surface features at different 
spatial resolutions from 5 to 20 m, depending on the height of the flight. The range 
of studies performed with these sensors is enormous in vegetation studies (Bo Cai 
and Goetz 1995; Riaño et al. 2002; Roberts et al. 1993, 1997; Serrano et al. 2000) and 
soil analysis (Kruse et al. 1993a; Okin et al. 2001; Palacios-Orueta and Ustin 1996, 
1998; Smith et al. 1990). The AVIRIS data allow the extraction of several parameters 
of the structure of forest cover, the age of tree plantations, the importance of soils, 
or the effect of shadows (Ustin and Trabucco 2000). Figure 3.46 shows an AVIRIS 
image of a forest fire in Southern California. The same phenomenon is observed 
in several wavelengths, showing different types of information. While in the short 
bands (0.5 μm), the smoke is the most evident feature, in the NIR (1 μm), the recently 
burned area clearly contrasts with unburned vegetation, and the SWIR (1.5–2 μm) 
shows the active fire front. In this band, the dispersion of smoke is smaller than in the 
shorter wavelengths, which is the reason the fire can be seen more clearly.

In addition to AVIRIS, there are other airborne hyperspectral sensors worth 
mentioning. The Digital Airborne Imaging Spectrometer (DAIS), managed by the 

Bands 0.5 µm 1 µm 1.5 µm 2 µm 2.5 µm

FIGURE 3.46 AVIRIS image of the San Bernardino forest fire of 1999. The bands selected 
for display are (from left to right) 0.5, 1, 1.5, 2, and 2.5 μm. (From visibleearth.nasa.gov.)
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German DLR, is capable of registering 79 channels, most of them in the VIS–NIR–
SWIR, but also some in the MIR and TIR; also included are the Canadian Compact 
Airborne Spectrographic Imager (CASI), with 288 bands between 0.43 and 0.87 μm, 
and the Australian HyMap, with 125 bands between 0.4 and 2.5 μm.

Imaging spectrometers have been widely used by atmospheric remote sensing 
scientists, as well as by extraterrestrial observation. However, the first sensor with 
proper hyperspectral capacity was the Hyperion, launched in 2000 on board the 
EO-1 satellite. This sensor has 220 channels between 400 and 2500 nm, a 30 m 
spatial resolution and a coverage area of 7.5 × 180 km. Even though it did not have a 
good signal-to-noise ratio, it was very useful to test different potential applications 
of satellite imaging spectrometers (Goodenough et al. 2003; Roberts et al. 2003). In 
addition to this sensor, the EO-1 mission included additional sensors to test the use 
of new systems in future remote sensing missions. In fact, the ALI was a precursor 
to the Landsat 8 OLI, being a push-broom sensor with similar spectral bands but 
higher spatial resolution than ETM+ (10 m in the panchromatic band), as well as 
better radiometric sensitivity.

Hyperspectral images have also been built by ESA, particularly with the Compact 
High Resolution Imaging Spectrometer (CHRIS) on PROBA-1, launched in 2001, as 
a technology demonstration mission. The CHRIS instrument can be programmed 
for different acquisition modes, from 18 to 61 spectral bands with widths from 1.3 to 
11.3 nm, and different spatial resolutions. MERIS, on board the ENVISAT satellite, 
could also be considered an imaging spectrometer, although it had only 15 bands, as 
they were continuous and fairly narrow.

Future hyperspectral missions for Earth resources observation are being planned. 
Among the most developed is the HyspIRI satellite, managed by NASA-JPL, 
which will incorporate two imaging spectrometers, one focused on the solar spec-
trum (400–2,500 nm) with 10 nm contiguous bands and 60 m spatial resolution, 
and another one in the middle and thermal infrared (3,000–12,000  nm). Launch 
is not yet fixed, but it may occur in the early 2020s. The Japanese agency is also 
developing a hyperspectral instrument named Hyperspectral Imager Suite (HISUI), 
to be included in ALOS-3 (expected to be launched in 2017), which will include 
57 bands in the VIS–NIR range and 128 additional bands in the SWIR at 30 m 
spatial resolution.

3.5 REVIEW QUESTIONS

 1. Which one of the following resolutions is more relevant for urban studies?
 a. Spatial
 b. Spectral
 c. Temporal
 d. Radiometric
 2. Which one of these sensors has higher spatial resolution?
 a. Landsat 8 OLI
 b. GeoEye
 c. SPOT-HRG
 d. Terra MODIS
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 3. The radiometric resolution of a sensor is commonly measured as
 a. The number of spectral bands
 b. The pixel size
 c. The bits per pixel
 d. The orbiting cycle
 4. Which one of the following geometrical errors is exclusive of a radar image?
 a. Scan angle
 b. Panoramic distortion
 c. Fore shorting
 d. Earth’s curvature
 5. What is the main innovation of the MISR sensor?
 a. Multiple polarization
 b. Multiple angles
 c. Multiple bands
 d. None of the above
 6. Which one of these sensors was not on board the Terra platform?
 a. SAR
 b. MODIS
 c. MOPPITT
 d. MISR
 7. Which one of these sensors acquires stereoscopic images?
 a. Landsat TM
 b. ASTER
 c. SAR
 d. Terra MODIS
 8. Which one of the following sensors has hyperspectral capacity?
 a. MODIS
 b. Hyperion
 c. VEGETATION
 d. SAR
 9. Which of the following missions includes a radar sensor?
 a. Terra
 b. Sentinel-1
 c. EO-1
 d. SPOT
 10. What is the main observation advantage of a geostationary satellite?
 a. Temporal resolution
 b. Spatial resolution
 c. Angular resolution
 d. Spectral resolution
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4 Basis for Analyzing 
EO Satellite Images

As mentioned in Section 1.1, this book has an environmental scope, and it is intended 
to improve the readers’ understanding of how remote sensing (RS) techniques are 
used to extract relevant information from the Earth system. Therefore, we will place 
more emphasis on the interpretation of the images rather than on the acquisition 
process, which has been reviewed in previous chapters. Before addressing visual or 
digital interpretation methods, this chapter reviews a series of introductory concepts 
that may help the reader to better manage a project dealing with RS data.

In the organization of an Earth observation (EO) project, the interpreter should 
make decisions mainly based on two considerations: (1) the objectives of the project 
and (2) the means available to accomplish them (Figure 4.1). The project objectives 
include end-user requirements as well, which affect the number and precision of the 
categories to be discriminated, the scale of the output results, the deadline of the 
project, and budget considerations. On the basis of those requirements, the inter-
preter should select the most suitable sensor, the number and dates of the images, the 
processing steps, etc. The appropriate decisions are always a balance between what 
is ideal and what is feasible, with time, cost, and labor limitations taken into account.

4.1 CONSTRAINTS IN USING REMOTE SENSING DATA

4.1.1 what Can be eStiMated froM the eo iMaGeS

Three types of variables can be retrieved from RS imagery, depending on whether 
they are retrieved directly or indirectly from sensor measurements (Jensen 2000). 
Primary variables are those directly associated with the physical quantity measured 
by the sensor system: radiance, when working on detecting incoming radiation flux, 
or time, when measuring the temporal gap between sending and receiving a certain 
flux (this is the case of lidar or radar altimeters). Secondary variables are those asso-
ciated with the interactions between radiation and ground covers; they are factors 
that explain how much a particular cover radiates energy at different wavelengths. 
For instance, water or chlorophyll content impacts the outgoing spectral radiance 
from a vegetated area, absorbing incoming solar energy and thus reducing outgo-
ing radiation (reflectance). There are many other variables that are closely linked to 
the way a cover reflects or emits energy, such as leaf area, leaf angle distribution, 
or dry matter for plants; mineral content, roughness, or water content for soils; or 
turbidity, salinity, and acidification for water. We analyzed the impact of those vari-
ables in Chapter 2. Finally, a third group of variables are those not directly affecting 
observed radiation but related to the secondary variables. To retrieve these variables, 
a certain level of abstraction is required. For example, we can determine when the 
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plant is stressed from the temperature, water, or chlorophyll content, but the stress 
itself is not directly measured. In the same way, we can identify the land cover of a 
particular area by its reflectance or texture in several spectral wavelengths, but land 
cover per se is not directly measured from satellite images.

Any interpreter should keep in mind the advantages and limitations of RS data for 
any particular application. Obviously, remote sensing is not a panacea for all require-
ments of environmental information. Unfulfilled overoptimistic expectations often 
lead to the opposite position. When an unrealistic target is carried out, poor results 
can lead to the opposite conclusion that RS techniques are useless. To avoid both 
extremes, any project should start with a critical attitude toward the advantage and 
limitations of current sensors and whether they have the potential to properly satisfy 
end-user requirements. The range of applications of remote sensing is constantly 
growing, thanks to the innovations in sensor performance and processing methods. 
However, when proposing a new application, the EO analyst should clearly state 
whether that proposal is based on previous successful results or rather is a research 
area with potential for failure: overselling is even worse than ignorance.

Objectives Resources

Scale 

Accuracy

Project
length

Precision 

Costs Equipment

# Images 

Methods

Sensor

FIGURE 4.1 The effective incorporation of remote sensing into a project requires a series 
of decisions to meet the proposed objectives with available resources.
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With the current state of EO development, some applications can be considered 
quite mature, while others are still in the research or development realm. Land cover 
and precision farming, active fire detection, weather forecast, mineral exploration, 
ozone monitoring, ocean color or temperature, or snow or flood monitoring can be 
considered very reliable. Other fields are still in experimental phases, such as the 
retrieval of vegetation biomass, biomass consumed by fires, snow volume invento-
ries, or earthquake prediction. Finally, there are other projects currently unfeasible, 
either because of the level of precision required (cattle or wildlife inventories, demo-
graphic estimations) or insufficient spatial or temporal resolution (traffic control). 
In any case, a literature review on what has been done by previous researchers may 
avoid unrealistic expectations and unnecessary expenses.

4.1.2 CoStS of data aCquiSition

A couple of decades ago, a common question when presenting a certain analysis 
based on EO satellite data to a non-RS specialist was: how expensive are those 
images? Certainly, the common image of satellite technology was to be unafford-
able. Nowadays, the growing availability of satellite information makes this percep-
tion more unusual, but still many scientists or managers interested in using satellite 
images consider this technique quite expensive.

First of all we should clarify that accessing accurate and updated information 
is always expensive. Any expert in developing corporative geographic information 
system (GIS) knows well that a high percentage of implementing and maintaining 
the GIS will be the cost of information. Traditional sources of spatial data were 
aerial photographs, field work, and meteorological or hydrological sensors. Aerial 
photographs were relatively cheap, but covered small areas, and were only adequate 
when acquired at the period when the survey was required. In case of requiring a 
specific aerial survey, prices went much higher. On top of this cost, analog photo-
graphs were interpreted manually and commonly need manual digitizing for creat-
ing digital databases.

Satellite images are acquired at the date needed, since there are now many sen-
sors that can be used to observe almost anywhere in the world at different spatial 
resolutions. These images are acquired in digital format and therefore their connec-
tion with GIS is straightforward. Finally, the costs of high-spatial-resolution satel-
lite imagery are decreasing as more satellite missions are developed, particularly 
in the high-spatial-resolution range, which is still the most expensive (Figure 4.2). 
Medium-resolution sensors (such as Landsat OLI, IRS LISS, Sentinel-2 MSI, etc.) 
are now freely accessible and therefore new approaches oriented toward large ter-
ritories and long time series are now affordable. Coarse-resolution sensors, including 
those used for atmospheric and oceanographic purposes, are most commonly freely 
accessible as well.

In any case, even though the investment in satellite data could be high, one should 
always consider the benefits of having accurate and updated geographic informa-
tion. If decisions are made with poor or outdated information, the outcomes may 
be far more costly than the required EO images. This is especially true in the case 
of natural disasters, where the lack of timely data can accentuate the catastrophic 
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consequences of these events. Mitigation measures may be too late and ineffi-
cient, increasing the loss of lives and damage to infrastructures (Baker et al. 2001; 
Linnerooth-Bayer et al. 2005; Nourbakhsh et al. 2006).

4.1.3 end-uSer requireMentS

The use of remote sensing has been generalized in many applications, but for others 
it is still scarce or nonexistent. This may be either because the available data do not 
meet the real requirements of that user community or because the RS community 
has not properly understood user needs.

The beginning of EO satellite missions was characterized by few and general-
purpose systems, which tried to maximize the benefits of the acquired informa-
tion. This implied the selection of the spatial, spectral, and temporal resolutions 
that would serve a wide user community, as the investments to develop and launch 
satellite missions were very high.

Nowadays, the decrease in cost of technical components and weights makes an 
EO satellite mission affordable, even for medium-size countries and private corpo-
rations. This also implies that the needs of specific user communities can be met, 
optimizing the technical requirements. This has been the case of the atmospheric 
community, which has been able to develop specific missions for retrieving the con-
centration of certain gases, such as CO2, CO, CH4, ozone, water vapor and clouds, 
aerosols, etc. A similar conclusion can be drawn of oceanographic systems, but this 
is not yet the case of land applications community, which still lack specific missions 
that could serve the needs of a certain service. For instance, if satellite systems are 
intended to replace terrestrial observation networks for fire detection, they should 
provide very frequent observation (≤30 min) of high-temperature sources for small 
areas (<50 m2). There is not yet a single satellite mission that accomplishes all these 
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requirements, and it is unlikely that a mission will be designed for this purpose in 
the near future. Consequently, satellite observation would not be an alternative for 
fire managers in those countries with good ground fire prevention infrastructures. 
However, it is very useful for countries that do not have field observations, since even 
one or two daily detections would significantly improve their current information. 
For those end users, current satellite missions may already be considered operational 
for detection of fires.

Something similar can be said about the estimation of vegetation biomass, which 
would need dedicated radar or lidar missions, which are still in the process of 
development.

4.2 TYPES OF INTERPRETATION

The interpretation of digital values acquired by the sensor can be approached in 
different ways, leading to several procedures to extract information from remote 
sensing data. Considering the final goal of the interpretation process and the target 
variables, four types of interpretation approaches can be distinguished (Figure 4.3): 
thematic classification, generation of biophysical variables, change detection, and 
spatial patterns.

Classification

Physical model

Change detection

Pattern analysis

320 K

290 K

Increase +

Decrease –

+ Compacity

– Compacity

Cover 1
Cover 2
Cover 3
etc.

FIGURE 4.3 Different approaches to image interpretation.
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4.2.1 theMatiC ClaSSifiCation

This analysis involves assigning each element of an image to a certain category (land 
cover, crop type, vegetation species, etc.) through either visual or digital interpreta-
tion. This approach aims to label each pixel with the most appropriate thematic class.

This has been the most common application of image interpretation, as a direct 
inheritance of classic photointerpretation. Conceptually, this approach implies con-
verting the original interval scale of the raw image to a categorical one. Visual analy-
sis is appropriate for this goal, since the human interpreter can integrate a wide 
variety of criteria to differentiate neighbor surfaces (see Chapter 5). Digital proce-
dures can also be used for the same goal by classifying the image based on different 
statistical techniques (Tso and Mather 2001) that aim to compare every element of 
the image with a set of reference patterns (see Section 7.2).

4.2.2 Generation of biophySiCal variableS

A second goal of remote sensing interpretation aims to generate the spatial distribu-
tion of a biophysical variable that is derived from the sensor measurements through 
an empirical or physical model (Section 7.1). In this case, the goal is not to obtain 
categories but to convert raw digital values to calibrated energy measurements, and 
ultimately to a biophysical variable (temperature, ice thickness, moisture, etc.). The 
quantitative nature of the sensor measurements is fully exploited in this case, as those 
measurements have a physical meaning: they are not just an expression of how brighter 
some areas are versus others, but are in fact a quantitative measurement of a radio-
metric signal. For instance, acquiring a thermal image is similar to measuring tem-
peratures at regular intervals, the distance between measurements being the pixel size.

Even in the case of meteorological satellites of low spatial resolution, spatial sam-
pling provided by satellite images is much denser than any observation network of 
ground sensors, and therefore they provide a more spatially representative measure-
ment of the radiometric variation of the observed area (and those variables linked 
to radiometric variability). For example, to create a temperature map of the sea sur-
face, thermal samples taken by buoys or ships’ transects can be used to interpolate 
a continuous surface. With satellite observations, measurements of temperature can 
be obtained twice a day every kilometer from the MODIS or AVHRR sensors and 
every 15–30 min at coarser resolutions from geostationary meteorological satellites. 
In both cases, the spatial coverage would be much denser than ground observation. 
This also applies to other oceanographic variables, such as ocean height, chlorophyll 
content, or water turbidity.

Obviously, this interpretation approach is only applicable when digital and 
calibrated information is available, that is, when there is a consistent relationship 
between the data of the image and the given physical variable.

4.2.3 ChanGe deteCtion

In this case, the interpretation is oriented toward analyzing what has changed between 
two or more images acquired with a certain time gap. Satellites observe areas in a 
periodic way, depending on sensor field of view (FOV) and orbital characteristics. 
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Therefore, EO satellite is an ideal tool to monitor dynamic phenomena. This moni-
toring potential is invaluable in many environmental processes—urban growth, 
deforestation, wetland drying, floods, etc.—as well as to monitor agricultural yields 
or pasture condition. From this point of view, the goal of the interpretation is to iden-
tify image changes between two or more dates. Change detection can be performed 
over classified images or over biophysical parameters (see Section 7.3).

4.2.4 Spatial patternS

Finally, satellite imagery can also be considered as a representation of the landscape 
mosaic. From this standpoint, the image can be used to measure spatial properties 
of objects within the observed area: size, connectivity, shape, etc. (Frohn 1998). The 
spatial structure can also be used to improve the discrimination of thematic catego-
ries, measuring their spatial diversity or homogeneity (see Section 7.4).

We will further comment on these four types of interpretation in Chapters 6 
and 7. From now on, the interpreter should be aware that EO is not only valuable for 
thematic classification but also has many other potentials that extend its possibilities 
for retrieving interesting environmental variables and fuel many operational services 
requiring updated and accurate information.

4.3 ORGANIZATION OF REMOTE SENSING PROJECT

Assuming that a certain project can be carried out and is attainable through remote 
sensing techniques, some aspects have to be defined to better organize the project 
workflow. For instance, suppose that a fishing company tries to use satellite images 
to better locate certain fish species, providing the interpreter with the thermal 
and chlorophyll range of water this species is more likely to live in. The company 
demands from an EO consultant company the required decisions to meet its infor-
mation needs. Several aspects have to be looked into: which sensor is most suitable 
for the analysis, how many images are required, what dates are preferred, which 
methods will be applied, and how much and when fieldwork and ground truth are 
required. These decisions must be made on the basis of the project requirements and 
objectives, the current potentials of different sensor systems, and the most suitable 
interpretation techniques. A review of these aspects would help improve the manage-
ment of the project.

4.3.1 deSCription of objeCtiveS

A clear definition of project objectives is crucial for making proper decisions on the 
role of EO images for any particular task. The project requirements should guide 
the decisions regarding which remote sensing data are most suitable for any particu-
lar project: sensor, number of images, dates, and so on, as well as the appropriate 
methodology.

A broad range of remote sensing projects can be established based on whether 
the projects are defined by the end user or proposed by the remote sensing inter-
preter. The former implies that an institution, either a government body or a private 
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company, states its requirements and the remote sensing specialist has to figure out 
how to meet them in a cost-effective and timely way. This would be the case of the 
fishing company, where the interpreter does not have any role in defining, but rather 
in answering properly to, the requirements.

Whenever the interpreter is forwarding a proposal to either a research-funding 
organization or a potential EO end user, the interpreter is responsible for defining 
the objectives and the methods to answer them. As a general rule, any proposal of 
any EO project should be based on a clear and well-defined set of objectives that are 
compatible with the remote sensing capabilities. In the case of a research project, 
a set of hypotheses need to be made explicit, as science advances by hypotheses 
that are verified or discarded. Often, we tend to forget the second part and assume 
that a project failed when basic assumptions were not verified. However, it is worth 
remembering that a project is just as scientifically sound when the initial hypotheses 
are confirmed as when they are refuted. What matters is following a sound proce-
dure for assessing the assumptions. Generally speaking, a research project always 
entails risks and uncertainties associated with the exploration itself, but this is what 
investigation is all about. Proposing an application project with the same amount of 
risks would not be appropriate since it would create false expectations to the client 
that may not be met. Therefore, the remote sensing scientist should clearly identify 
whether the project is research-oriented or operational-oriented and identify, as hon-
estly as possible, the potential failures and expected successes of the project.

Confusion between operational and research applications can diminish the use 
of remote sensing in institutions that otherwise would be open to this technique. 
In conclusion, it is important to use realistic objectives, based on previous experience 
or sound references, and adapted to the spatial, spectral, and temporal resolutions of 
the sensor to be used. The definition of objectives should make reference not only to 
the generic purpose of the work (e.g., inventory of crops) but to the project specifica-
tions, such as target scale, precision, accuracy, time length, and budget limits. In the 
case of projects that are defined by the end user, these specifications are part of user 
requirements that the remote sensing interpreter should properly answer.

4.3.2 SCale and reSolution

The word scale has two different meanings, which are almost contradictory. From a 
mapping point of view, scale refers to the level of reduction of reality on a particular 
map: that is, how many times items represented in the map are smaller than in reality. 
Therefore, scale is a fraction that relates measures in the map with measures in real-
ity. Following this concept, a large scale (for instance, 1:5,000) implies a low reduc-
tion of reality, while a small scale (1:1,000,000) implies a large reduction of reality.

In everyday language, however, large scale commonly refers to the amount of sur-
face covered by a particular study. A large-scale inventory of redwoods, for instance, 
would imply in this sense that the study will cover a large area (e.g., the whole west-
ern United States). However, since the larger the areas covered, the smaller the level 
of detail, typically, a large-scale study is done at a small mapping scale, and vice 
versa, a very small surface study is typically done at a very detailed (large) mapping 
scale.
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This conceptual precision helps us to define the relationship between scale and 
image resolution. Large mapping scales require high-spatial-resolution images, while 
small-scale studies are commonly undertaken by coarse-spatial-resolution sensors.

Another aspect to consider in this regard is the relation between scale and the 
level of precision, meaning the level of desegregation that is intended. Projects at 
large scale generally have more detailed legends, since it does not make much sense 
to include many categories when the level of cartographic generalization is large. 
The more categories in a map, the more polygons, and the more difficult it is to rep-
resent them at smaller scales.

Similarly, project scale is associated with the smallest unit of information that 
can be included in a thematic map, usually known as the minimum mapping unit 
(MMU). Several authors have recommended that the MMU should not be smaller 
than 4 mm2, measured on the scale of the map (Anderson et al. 1976). This rule pro-
vides some insights into defining which sensor is more appropriate for a particular 
scale (Robin 1998; Figure 4.4). A land cover map at the 1:50,000 scale using the 
AVHRR sensor would imply an MMU of ~4 cm2 (10 times bigger than the recom-
mended MMU). Similarly, it would not be reasonable to undertake a small-scale 
study (e.g., 1:1,000,000) using high-resolution GeoEye images, because the results 
would have to be tremendously degraded afterward, and therefore the quality of 
the input data would be lost in the generalization process. Following these rules, 
we can consider an appropriate scale for the range of AVHRR or MODIS between 
1:2,000,000 and 1:1,000,000, the range of Landsat TM/OLI between 1:100,000 and 
1:50,000, and the range of GeoEye–WorldView and other high-spatial-resolution 
sensors between 1:25,000 and 1:10,000.

The MMU should not be confused with the smallest-size object observed on an 
image. Obviously, the MMU has to be larger than this; otherwise, the features will 
not be recognized. In this sense, it is convenient to recall the differences between 
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FIGURE 4.4 Relationship between resolution and the MMU size. (After Robin, M., 
Télédétection, Nathan, Paris, France, 1998.)
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object identification and object detection. For example, a river can be detected even 
if its width is smaller than the spatial resolution of an image because of the high 
contrast between the low reflectance (high absorption) of water pixels and the adja-
cent drier upland pixels. Consequently, even for narrow rivers, their presence can 
be detected on medium-resolution images, but often not their characteristics (water 
turbidity, for instance), which will be perceptible only from higher-resolution images 
(Figure 4.5). In conclusion, the spatial resolution of an image will determine whether 
specific features can be detected or interpreted.

FIGURE 4.5 Two images of the Henares River in Central Spain. The 15 m resolution of 
the top image provides an identification of the river, while the 180 m resolution of the bottom 
image only detects it.
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With the increasing use of satellite images in different applications, one can 
find numerous examples of mapping projects at different scales. These include 
“global”-scale imagery from the NOAA-AVHRR, SPOT-VGT, Envisat-MERIS, 
or Terra/Aqua-MODIS sensors that cover the entire planet at resolutions ranging 
from 8 × 8 km to 0.3 × 0.3 km (Alonso-Canas and Chuvieco 2015; Bartholome and 
Belward 2005; Giglio et al. 2010; Riaño et al. 2007b; Tansey et al. 2004b) to regional 
and continental inventories at scales of 1:100,000 to 1:50,000 based on the Landsat 
TM/ETM+, SPOT-HRV/HRG, and ASTER sensors (Boschetti et al. 2015; Goward 
2001; Woodcock et al. 2001). Finally, high-spatial-resolution sensors provide sound 
information for large scales, 1:10,000 and higher (Baker et al. 2001; Green 2000).

4.3.3 ClaSSifiCation typoloGy

A thematic map legend identifies the categories that the map includes, which should 
be adapted to the project requirements. As mentioned earlier, the legend is very 
much dependent on the project scale, but it is also related to the complexity of the 
target territory. Consequently, it has become common practice in land cover and 
land use mapping projects to use specific legends that are applicable to the needs of 
certain study areas while being unsuitable to other areas. The lack of a common cri-
terion for building thematic legends makes it difficult to extrapolate mapping efforts 
to other study areas and inhibits the generalization of classes for systematic mapping 
of larger areas and territories.

In situations in which a legend is not already established for a project, that is, the 
categories to be discriminated are not fixed a priori, the interpreter must be care-
ful to establish classes that are consistent among them and with the data and tools 
used in the analysis. It is particularly important that the legend capture all the pos-
sible diversity in the study area, that the classes do not overlap, and that all surface 
features are included in one class. In other words, these classes should be mutually 
exclusive (the same area cannot be placed in two classes) and exhaustive (at least one 
class for each area).

Many of the published thematic classifications do not always follow these two 
basic logical rules, especially when several criteria for legend definition are mixed. 
For example, a category named “shrub on north-facing slopes” implies a mixture of 
two different terms, land cover and slope aspect, which creates problems when clas-
sifying. In this example, shrubs occurring over other aspects will not fit the class, 
and therefore the typology would not be exhaustive. Similarly, the classes “regrowth 
pine” and “pine on limestone” are not mutually exclusive since one may also encoun-
ter “regenerating pine on limestone rocks.”

In an effort to establish more robust legends, several classification schemes 
have been proposed that incorporate a hierarchical character, allowing one to 
obtain different levels of detail as a function of the available data. An example of 
this scheme was designed by the U.S. Geological Survey in 1976 for using remote 
sensing imagery in land cover mapping (Anderson et  al. 1976). This scheme 
included four hierarchical levels, each of which was designed to be obtained 
through different remote sensing imagery, such as satellite images at the most 
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general level and large-scale aerial photography, in combination with fieldwork, 
for the more detailed classes. Moreover, this classification was flexible and could 
be applied to diverse areas, guaranteeing the extension and integration of differ-
ent environmental inventories. One weakness of the classification, in our opinion, 
was the inclusion of land use and land cover in the same scheme of classes, which 
leads to ambiguity in the classification process. For example, an area could be 
assigned to several categories according to their designation as land use or land 
cover: quarries (land use) and bare rock (land cover) or grazing fields (land use) 
and grassland (land cover). Logically, remote sensing systems take into account 
only the land cover since the signal detected by the sensor corresponds to the 
objects that appear on the terrestrial surface and not to their human uses. In some 
instances, land use could be deduced by the interpreter: when the land cover is 
“crops,” one can easily infer an agricultural land use. However, there are other 
cases where this is not straightforward, as in a shrub cover class from which one 
cannot deduce whether the land use is as a natural reserve or is dedicated to rec-
reation or cattle grazing.

In spite of this problem, the work of Anderson and collaborators has been fruit-
ful and useful for similar attempts. Such was the case of the class legend used for 
the CORINE-Land Cover program (Table 4.1), which was designed specifically for 
satellite images. This project was promoted by the European Commission for the 
European Environmental Agency (EEA) in the late 1980s and intended to monitor 
land cover in Europe at 1:100,000 scale from satellite images (Büttner et al. 2000a; 
European Commision 1993). The project was one of the first terrestrial-based, 
operational applications of satellite remote sensing, with the aim of generating a 
systematic inventory of the land cover of the European territory. The first inven-
tory was completed at the beginning of the 1990s, the second inventory was based 
on images from 2000, and the third one was from images of 2006. The CORINE 
Land Cover legend employs a hierarchical approach in such a way that individual 
countries can develop common schemes according to their own needs while main-
taining consistencies among them to ensure that the results are comparable. After 
the second Corine land cover inventory, the program also included some techni-
cal guidelines for monitoring changes between reference periods (Büttner et  al. 
2000b).

Another interesting effort at unifying classification legends is the Land Cover 
Classification System (LCCS), developed by the FAO (Di Gregorio 2000). The pro-
posed scheme tries to harmonize the different classification schemes by using a hier-
archical approach based on dichotomous and modular properties.

The level of complexity of a legend is associated with potential errors in the inter-
pretation phase. It is very likely that a subdivision of a land cover class into more 
detailed categories will involve dealing with discriminating similar spectral catego-
ries and therefore increasing the likelihood of misclassification. If the last division 
is impossible to undertake using the images available or the proposed methods of 
analysis (interpretation), the user will have to either shift toward a more generalized 
legend or use more refined input imagery (higher spectral and spatial resolution) or 
advanced processing methods.
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TABLE 4.1
CORINE Land Cover Project Class Legend

First Level Second Level Third Level 

1. Built-up area 1.1 Urban fabric
1.2 Industrial, commercial
1.3 Mine, dump
1.4 Artificial nonagricultural

1.1.1 Continuous urban fabric surfaces
1.1.2 Discontinuous urban fabric
1.2.1  Industrial or commercial units 

and transport units
1.2.2  Road and rail networks and 

associated land
1.2.3 Port areas
1.2.4 Airports
1.3.1  Mineral extraction sites and 

construction sites
1.3.2 Dump sites
1.3.3 Construction sites
1.4.1  Green urban areas and vegetated 

areas
1.4.2 Sport and leisure facilities

2. Agricultural area 2.1 Arable land 2.1.1 Nonirrigated arable land

2.1.2 Permanently irrigated land

2.1.3 Rice fields

2.2 Permanent crops 2.2.1 Vineyards

2.2.2 Fruit trees and berry plantations

2.2.3 Olive groves

2.3 Pastures 2.3.1 Pastures

2.4 Heterogeneous 2.4.1  Annual crops associated with 
permanent crops

2.4.2 Complex cultivation patterns

2.4.3  Land principally occupied by 
agriculture, with significant areas 
of natural vegetation

2.4.4 Agroforestry areas

3. Forest and natural area 3.1 Forests 3.1.1 Broad-leaved forest

3.1.2 Coniferous forest

3.1.3 Mixed forest

3.2 Shrub and/or herbaceous 3.2.1 Natural grassland

3.2.2 Moors and heathland

3.2.3 Sclerophyllous vegetation

3.2.4 Transitional woodland—shrub

3.3  Open spaces with little 
or no vegetation

3.3.1 Beaches, dunes, and sand plains

3.3.2 Bare rock

3.3.3 Sparsely vegetated areas

3.3.4 Burnt areas

3.3.5 Glaciers and perpetual snow

(Continued)



140 Fundamentals of Satellite Remote Sensing: An Environmental Approach

4.3.4 SeleCtion of iMaGery

Once the legend and the scale of work are determined, the selection of the imagery to 
better achieve the desired goals follows. Global inventories and maps should rely on 
coarse- and moderate-spatial-resolution sensors (MODIS, AVHRR, VEGETATION, 
MERIS, etc.), while those projects oriented at larger scales require sensors that 
offer more detailed spatial resolution (TM/ETM/OLI, HRV, ASTER, IKONOS, 
QuickBird, etc.).

However, spatial resolution is not the only criterion to be taken into account. 
Spectral and temporal resolutions may be more critical than spatial details. For 
example, if the project is intended to estimate crop yields, the input sensor should 
provide very frequent updates of crop conditions, and therefore the use of high-
temporal-resolution sensors such as MODIS or VEGETATION will be preferred, 
even over those with a higher spatial resolution. On other occasions, the spectral 
dimension will be the dominant criterion for sensor selection. For instance, when 
evapotranspiration rates need to be estimated, the input sensor should provide TIR 
radiances as well as VIS and NIR radiances for estimating ground emissivity.

Once the input sensor is selected, the remote sensing specialist needs to define 
the most convenient period for data acquisition, depending on the seasonality of 
the phenomenon under study. Logically, the most suitable period for image acquisi-
tion would be when the phenomenon of interest is best discriminated, as opposed 
to other times when it cannot be easily distinguished from similar covers. For 
instance, in geomorphologic studies, a winter date may be desirable since shadow 
effects are greater, rendering the detection of topographic features more evident. 
On the other hand, an inventory of irrigated lands in the Mediterranean region is 
best accomplished during the summer time when there is maximum contrast with 
the rainfed crops.

TABLE 4.1 (Continued)
CORINE Land Cover Project Class Legend

First Level Second Level Third Level 

4. Wetland, salt 4.1 Inland wetlands 4.1.1 Inland marshes

4.1.2 Peat bogs

4.2 Coastal wetlands 4.2.1 Salt marshes

4.2.2 Salines

4.2.3 Intertidal flats

5. Water bodies 5.1 Inland waters 5.1.1 Water courses

5.1.2 Water bodies

5.2 Marina waters 5.2.1 Coastal lagoons

5.2.2 Estuaries

5.2.3 Sea and ocean

Source: Büttner, G. et  al., Corine Land Cover Technical Guide: Addendum 2000, European 
Environmental Agency, Copenhagen, Denmark, 2000a.
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Sometimes, to ensure discriminability of certain land covers, several dates are 
required. For example, one may wish to follow the growth cycle of a certain crop 
over the growing season to discriminate it from another type, or study vegetation 
changes between two critical moments. In these cases, it is convenient to create a 
phenology calendar for the various vegetation cover types to select optimal times for 
their discrimination.

If one can acquire only a single image for vegetation cover mapping, one may 
select either a single date that maximizes the separation among all the cover types 
present or a time period that coincides with the least amount of cloud cover. Generally, 
summer months, when the average solar radiation is high, topographic shadows less 
evident, and vegetation is green, are the most preferred times, particularly right after 
the rainy season when the atmosphere is more transparent.

4.3.5 iMaGe forMatS and Media

The format and media of the input image depends on the type of processing to be 
applied. For visual analysis, paper or photographic products were very common dur-
ing the past 20 years, but nowadays most visual analysis is done by digitizing on 
the screen. For older images, the most common media were negative film, posi-
tive film, and hardcopy paper. As most historical archives are being digitized, today 
almost all old photographic products are available in digital format. As in the case 
of digital images, all those products are commonly available through dedicated web 
pages, where image files are stored. Although some users with slow Internet connec-
tion may prefer magnetic or optical devices, most images are nowadays transmitted 
through Internet file transfer protocols. These transmissions are quicker than ordi-
nary mail services and generally cheaper.

4.3.6 SeleCtion of interpretation Method: viSual or diGital proCeSSinG?

As was reviewed in Chapter 3, most satellite images are originally acquired in digital 
format, and therefore, computer image processing seems the most obvious option for 
image interpretation. However, digital values can be transformed into brightness or 
color tones, making it possible to apply visual interpretation techniques as well. Both 
digital and visual interpretation have advantages and drawbacks. To choose which is 
more convenient for a particular application, several aspects should be considered: 
(1) economic and human resources available, (2) timeliness and accuracy required, 
(3) type and continuity of the tasks, and (4) homogeneity of the target surface.

In spite of the large reductions in costs of hardware and software for image pro-
cessing, visual interpretation is still cheaper than computer processing, especially for 
small study sites. On the other hand, visual interpretation provides a wide range of 
interpretation criteria that are difficult to translate into computer code, and therefore 
it may provide better results than computer interpretation when the areas are highly 
heterogeneous and the objects are large enough to be recognized at the resolution of 
the image. A clear example is urban environments, which are very difficult to map 
from computer processing (because of the great mixture of different materials) and 
are relatively simple to interpret visually (see Chapter 5). In other categories, the 
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relation is the opposite, since the human eye is not able to detect tonal variations 
that are numerically distinguishable (marshland, vegetation transitions, and different 
crops). Some studies have compared both techniques for land cover mapping, finding 
advantages and disadvantages of visual versus digital interpretation (Chuvieco and 
Martínez Vega 1990; European Commision 1993).

Computer image processing, in principle, provides faster and cheaper processes 
for repetitive procedures, which are common in large study areas or multitemporal 
analysis. It provides enough flexibility to access a wide range of operations, from 
image corrections to the creation of synthetic bands and different classification strat-
egies. Additionally, computer interpretation is more objective than visual analysis 
because the process is independent of the analyst and can be replicated. The dis-
advantage of computer interpretation is the higher initial investment required com-
pared to visual analysis, considering both hardware and software costs as well as the 
investment in training and education.

Visual analysis applies similar identification methods such as classic photointer-
pretation (tone, texture, size, location, forms, etc.) and does not require sophisticated 
training. Obviously, visual analysis greatly benefits from the interpreter’s experience 
and visual and mental sharpness, but in general, it can easily be performed by an 
environmental scientist having a good knowledge of the application field (geomor-
phology, ecology, land cover, etc.). Digital processing, on the other hand, requires 
training in fields that may not be included in the standard curriculum of an envi-
ronmental scientist, for example, statistics, computer systems, or programming lan-
guages. However, statistics and computer sciences are only a means of improving 
interpretation and not the objective itself.

In summary, digital processing requires greater economic investment and training 
than visual analysis. However, it provides greater versatility, speed, and objectivity. 
In addition, it provides good accuracy and the ability to discriminate homogeneous 
areas or subtle changes in reflectance that are not observable visually, as in the case 
of spatial distribution of biophysical variables (temperature, chlorophyll in water, 
etc.), and simplifies the identification of temporal changes.

Actually, both methods should be regarded as complementary. Computer-assisted 
interpretation performs operations that are too complex, expensive, or inaccessible 
for visual analysis (Büttner et  al. 2000b). On the other hand, visual analysis is a 
good alternative in order to update existing maps, identify heterogeneous classes, 
or classify areas at medium scales. It aids digital classification by isolating sectors of 
potential confusion on the image or stratifying sectors for further processing. Digital 
processing needs a high initial investment, but the costs decrease as the area of the 
analyzed surface increases. In contrast, the costs of visual analysis are linear with 
small starting investment costs.

Assuming that digital processing equipment is available, image interpretation can 
be achieved with both visual and digital criteria. The former may be used to extract 
complex forms or texture information, while the latter helps in image color enhanc-
ing, geolocation, or retrieval of biophysical properties. A hybrid approach might 
make use of computer processing for preprocessing (geographic location, color com-
positing, or image enhancement, for instance) and then visual analysis to extract 
features of interest (new roads, clouds, burn scars, etc.) by on-screen digitizing.
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4.4 INTERPRETATION PHASE

The applications of satellite remote sensing are numerous and diverse, making it dif-
ficult to establish a general framework applicable to all of them. However, we believe it 
is worth describing a general workflow that may help use remotely sensed imagery for 
a particular application with the necessary adaptations. We will review this process 
using as an example the case of a fishing company trying to locate a certain species 
breeding area, once it knows the ideal range of thermal and chlorophyll conditions.

The proposed scheme is included in Figure 4.6 and involves the following phases:

 1. A clear and well-defined set of objectives is needed, indicating the limitations 
of the study area (heterogeneity), time, or scale required for the application 
(duration of project, maximum cost, thematic categories to be discrimi-
nated) and the resources available. In the case of the fishing industry, these 
requirements should be set by the company following its end needs.

 2. Fieldwork is used in several stages of the interpretation phase. The first 
stage involves the general characterization of the study site, its environmen-
tal characteristics, and associated human activity, which may greatly help 
the selection of images (dates of the season, selecting the period when it is 
easier to discriminate the target phenomenon). During this phase, measure-
ments with field radiometers can be taken (Figure 4.7) for a better spectral 
characterization of the area as well as to select the most adequate sensor 
and bands to discriminate the target variable. This work may also help iden-
tify ancillary data that may be needed for later interpretation and analysis 
of the image. Obviously for oceanographic applications, these analyses are 

Definition of objectives 

Bibliographic review

Field workData acquisition

Interpretation Definition of classes

Accuracy 
assessment

Integration to GIS

Interpretation of results

Reconnaissance

Calibration

FIGURE 4.6 Generalized procedure for the interpretation of remote sensing imagery.
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more limited. However, chlorophyll or thermal sensors are also adapted to 
surveying ships or buoys.

 3. Selection of the desired satellite data including the sensors, the dates of 
image acquisition, number of images, and formats. For the fishing problem, 
we obviously need to rely on sensors that detect images in the blue band, the 
most sensitive to chlorophyll concentration, and the thermal bands: MODIS 
include both regions, MERIS only the former, ATSR or AVHRR the later.

 4. When the classification or discrimination categories (legend) are not 
known, the user must establish a legend or set of classes suitable to the 
project, based on the characteristics of the area and the potential offered by 
the sensor. In case of quantitative variables, the requirements should also 
establish a certain level of accuracy and precision to be met.

 5. Once the images are acquired and processed, field data are very useful for 
adjusting models of interpretation or validating the results obtained through 
the interpretation process. Normally, this phase is conducted nearly simul-
taneously with satellite acquisitions, in order to ensure that the conditions 
observed by the sensor are the same as those measured in the field. This is 
particularly important for retrieval of biophysical properties (leaf chloro-
phyll, leaf area index, soil moisture, for instance) that may greatly change 
throughout the season. Finally, fieldwork is also important for validation 
purposes, to measure the degree of correspondence with sampled values of 
the target variable. In the case of oceanographic analysis, this step is based 
on observation networks already established.

 6. The interpretation phase, either through visual analysis or computer-based 
processing. In this phase, the interpreter aims to classify the target categories 
over the whole area of interest. Whenever biophysical variables are targeted 

FIGURE 4.7 Spectroradiometric measurements in the field are useful in selecting the most 
useful sensor and spectral bands for a particular application. (Courtesy of M. Pilar Martin, 
SpecLab, CSIC, Madrid, Spain.)
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(as is the case of water chlorophyll or temperature), the estimations are based on 
physical models that retrieve those variables from radiometric measurements.

 7. Once the results are obtained, they are commonly integrated with other 
relevant variables within a GIS (see Chapter 9 for details). Working with 
digital images makes this process much simpler than when using analog 
photographs, as digitizing of cover limits is not required.

 8. Finally, the results are given to the end user. They can be used as a final 
product or integrated with other critical information to be used in the 
decision-making process.

4.5 PRESENTATION OF STUDY AREAS

This section is dedicated to presenting some of the images that will be used to illus-
trate the methods of visual and computer-based image interpretation. From a ped-
agogical point of view, we intend to apply the different interpretation procedures 
reviewed in this book to a few study cases, so the student can better understand the 
implications of those procedures by comparing them in the same scenarios.

Since it is difficult to find a single site that is suitable for all techniques covered in this 
book, we decided to select instead a large study region from which specific sites will 
be extracted in the different sections of the following chapters. The region we selected 
covers an area of more than 1 million km2 in southwest United States and northwest 
Mexico (Figure 4.8). The elevation varies from sea level at the Colorado River delta 
to 3000 m in the White Mountains and San Francisco Peaks region near Flagstaff, 
Arizona. The MODIS image covering this area contains a wide range of landscape 
features and vegetation types, including a high-plateau shrub desert, a conifer-forested 

(a) (b)

FIGURE 4.8 Study areas used for image interpretation: (a) MODIS image of southwest 
United States acquired on February 19, 2001, and (b) Landsat 8 image of the Tucson area 
acquired on May 14, 2014.
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mountain zone with snow cover (the image was acquired in February 19, 2001), geo-
logic formations such as the Grand Canyon and volcanic fields, major urban areas such 
as Phoenix and Tucson, two lakes (Lake Powell and Lake Mead), extensive agriculture 
cropland with different management practices to the southwest of the image, and wet-
land and riparian areas. Remarkable features can be observed in the images, such as 
the Colorado river delta, the Imperial Valley with its vast irrigated agricultural areas, 
the Californian and Nevada deserts, the Grand Canyon, the Petrified Forest National 
Park, and Saguaro State Parks, as well as interesting human-made features, such as the 
Hoover Dam. This image will be used mainly in Chapters 5 through 7.

A small area within this broad image acquired by the Landsat 8 on May 13, 
2014, has been selected to show examples of image processing methods applied to 
finer-resolution data. The L-8 image includes spectral bands acquired by the OLI 
and TIRS sensors and covers the Tucson city limits, along with the Santa Catalina 
Mountains that hold Mt. Lemmon (2791 m) and the Coronado National Forest. In 
addition to the recent Landsat 8 acquisition, we will also present examples of another 
image of the same area acquired by the Landsat 5 TM sensor in 1986. These images 
will also be used in Chapters 6 and 7 to show examples of classification and multi-
temporal analysis. Landsat TM/ETM+/OLI images have provided the most valuable 
source of environmental information for the past 25 years, and therefore, the student 
may easily apply similar concepts to his or her own area of interest.

As an example of the relevance of high-resolution images for visual interpreta-
tion, Chapter 5 incorporates an example of a RapidEye image acquired over the 
region of Madrid, Spain (Figure 4.9).

Finally, in the change detection section, we will present some examples of image 
processing techniques using as study case two Landsat images acquired by the 

FIGURE 4.9 RapidEye image from the city of Madrid, Spain, acquired on October 2011. 
(Image courtesy of BlackBridge©, Berlin, Germany, color combination NIR, R, G.)
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Thematic Mapper sensor in 1990 and 2010 (Figure 4.10). The area is located in the 
state of Acre, on the Brazilian Amazonia, and shows severe changes between the two 
reference dates due mostly to severe deforestation processes.

4.6 REVIEW QUESTIONS

 1. Which factor is associated with map scale?
 a. Spatial resolution
 b. Spectral resolution
 c. Temporal resolution
 d. Radiometric resolution
 2. When the scale is larger, the legend of a land cover project should be
 a. More general
 b. More detailed
 c. The same at all scales
 d. None of the above
 3. Which one of these scale–sensor combinations is particularly unsuitable?
 a. IKONOS: 1:5,000
 b. Landsat OLI: 1:10,000
 c. SPOT-HRV: 1:100,000
 d. NOAA-AVHRR: 1:2,000,000
 4. Which of these characteristics favors visual versus digital image interpretation?
 a. Geometric accuracy
 b. Use of multiple interpretation criteria
 c. Inventory of categories
 d. Repetitive processes
 5. Which of these applications should be easier to carry out with visual inter-

pretation than with digital interpretation?
 a. Crop mapping
 b. Chlorophyll content estimation
 c. Monitoring seasonal trends
 d. Updating urban features

1990 2010

FIGURE 4.10 Multitemporal Landsat-TM images acquired over the state of Acre, Brazil, 
in 1990 and 2010.
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5 Visual Interpretation

5.1 CHARACTERISTICS OF PHOTOGRAPHIC IMAGES

Until a few years ago, visual interpretations were based mostly on photographic prod-
ucts. Nowadays, however, the vast majority of products are digital, either originally 
acquired as such or digitized afterwards to facilitate delivery. Digital products include 
auxiliary information on acquisition conditions (metadata), which is required to carry 
out the processing, including acquisition date and time, sensor calibration coefficients, 
sensor spectral wavelengths, and cartographic information (in case the image was 
previously georeferenced). Similarly, the photographic products included auxiliary 
information for the interpreter, which was commonly printed on the borders of the 
image on the same paper or film. An example is shown in Figure 5.1, which shows 
one of the first Landsat images processed by NASA and distributed by the EROS Data 
Center (U.S. Geological Survey). In the image margins, the following information 
was included: date of acquisition (February 2, 1975); approximate center coordinates 
of the image (37°21′ north and 8°26′ west); coordinates at nadir (point of intersection 
between the terrestrial surface and a perpendicular line from the acquisition center); 
sensor and band used (multispectral scanner, band 7); Sun’s elevation angle (26°), mea-
sured between the horizontal surface and the direction of the solar rays; Sun’s azimuth 
angle (143°), measured clockwise from the geographic north; processing and correc-
tions, including geometric corrections applied, scale, projection, compression, etc.; 
agency and project (National Aeronautics and Space Administration ERTS); scene 
identification code, which includes the number of the satellite; days since the launch of 
the satellite; and the time of acquisition (hour, minutes, and seconds). The image also 
included a “grayscale” to assess the quality of the reproduction. Similar information 
was included in other photographic products generated by other space agencies.

5.2 FEATURE IDENTIFICATION

One way to become familiar with an image is to compare it with conventional maps. 
This exercise can be performed in several phases. First, we can compare the image 
with a topographic map of the area at the same scale and begin to locate some of 
the most important features, such as water bodies and dams. A second inspection of 
the image may then enable the identification of human-made features, such as cities, 
roadways, and networks of communication. Topographic features, such as mountains, 
can be identified in the third stage since they are represented more abstractly on con-
ventional maps and are, therefore, more difficult to delineate. Vegetation and ephem-
eral features on the image (e.g., fires or pollutants) can be identified in the later stages 
since they rarely appear on a conventional map. This exercise serves as a preamble 
to a discussion of the principal criteria used in visual interpretation of images. For 
instance, it will be useful for the reader to compare the MODIS image of our study 
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FIGURE 5.1 Landsat image of the Portuguese coast in the original NASA format.
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FIGURE 5.2 MODIS image of the study region: A grid reference has been overlaid to help 
identify outstanding features.
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region with an atlas of the southwestern region of the United States, to identify some 
of the outstanding features. For instance, the reader may locate, using the reference 
grid of Figure 5.2, the following geographic elements: Salton Sea, Lake Mead, Grand 
Canyon, Colorado River delta, Cerro del Pinacate (México), Gila River, San Pedro 
River, San Francisco Mountains, Roosevelt Lake, and the city of Phoenix.

5.3 CRITERIA FOR VISUAL INTERPRETATION

As mentioned in Chapter 4, one of the main advantages of visual over digital inter-
pretation is the capability of the former to incorporate complex criteria to detect and 
identify features in an image. While digital image processing is mostly based on the 
spectral radiances of the different image pixels, visual interpretation of images uses 
other criteria, such as texture, arrangement, location, or spatial patterns, which are 
very difficult to define in digital terms. Therefore, visual analysis makes it possible 
to discriminate categories that have similar spectral properties but different spatial 
features. For example, some irrigated crops might present similar spectral reflec-
tance in summer time as lawns in urban parks, because they have similar herbaceous 
vegetation components. However, they have very different thematic meanings and 
should be differentiated in any land cover map. With digital interpretation, their 
discrimination may be complex because they will probably have similar radiances. 
However, a simple visual criterion, such as geographic context, enables a visual 
interpreter to distinguish them quite accurately.

Many of the visual interpretation criteria that are applied to satellite images are 
common to traditional aerial photointerpretation, such as tone, texture, structure, 
shadows, or context, while other criteria are more exclusive to satellite images, such 
as those associated with multispectral and multitemporal observations, which are 
very restricted in traditional aerial photography. A third group of criteria would be 
those that are used routinely in aerial photointerpretation but are rarely accessible 
to satellite images, such as stereoscopic coverage, which is vital for geomorphol-
ogy studies. As reviewed in Chapter 3, some satellite sensors (ASTER, SPOT-HRV, 
Cartosat, Space Shuttle or ISS photographs, etc.) provide stereoscopic coverage, but 
this feature is found more commonly in aerial photography.

In comparison, some criteria for interpreting aerial photography are similar to 
those for visual analysis of satellite images, but they have some uncommon ones too. 
Additionally, it is important to emphasize that satellite images have very different 
scales from those used in aerial photographs (typically from 1:18,000 to 1:30,000), 
and therefore the recognition of objects and the geometry of acquisition are very 
different. However, the growing use of high-spatial-resolution images (GeoEye, 
WorldView, SkySat, etc.) makes this distinction nowadays less relevant.

Criteria for visual interpretation of satellite images can be grouped in a hierarchi-
cal way, according to their degree of complexity (Figure 5.3). Brightness and color 
are the most elemental criteria, since they characterize spectrally the cover under 
consideration. Shape, size, and texture are related to the spatial properties of the 
object. Shadow and location describe the relation of the target with the surrounding 
objects. Finally, the temporal dimension refers to the seasonal evolution of the land 
cover. The following sections discuss these interpretation criteria in greater detail.
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5.3.1 briGhtneSS

The brightness of a particular cover refers to the intensity of radiance received by a 
particular pixel for a given spectral band. In a photographic product, pixels with dark 
tones indicate areas where the sensor detected low radiances, while lighter zones 
represent higher intensities. Therefore, brightness can be associated with the spec-
tral reflectance of any particular area and band. As a general remark, we should 
remember that the number of gray levels one can visually distinguish is limited by 
our eye perception and the sensitivity of the medium (paper or computer monitor). 
A visual interpretation always implies a reduction in radiometric sensitivity from the 
raw image. The human eye is restricted to discriminating 64 or fewer gray levels, 
and therefore the full radiometric resolution of the image (from 256 to 2048 different 
digital values) is not exploited in visual interpretation.

As seen in Chapter 2, reflectance of most covers changes at different wavelengths, 
and therefore their brightness in different spectral bands will also be different. For 
instance, since vegetation pigments absorb incoming visible light, densely vegetated 
surfaces will show dark tones in the visible (VIS) bands, especially in the B and R 
regions. In contrast, those surfaces will have light tones in the near-infrared (NIR) 
region, since leaf pigments do not absorb light in this spectral region. Consequently, 
to discriminate between vegetated areas, a contrast of brightness tones between the 
R and NIR bands will be a clear clue.

To detect a particular category of interest, the visual interpreter should be famil-
iar with the spectral behavior of that cover. In this way, the analyst can select which 
spectral regions should be more appropriate to detect that feature and fully under-
stand the reasons for the tonal differences observed in different spectral regions. For 
instance, drainage patterns and morphology should be more detectable in the NIR, 
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FIGURE 5.3 Hierarchical organization of visual interpretation criteria. (After European 
Commission, Corine Land Cover: Guide Technique, Office for Official Publications of the 
European Union, Luxembourg, Europe, 1993.)
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urban layout in the G–R space, water turbidity in the B band, soil–water boundary in 
the NIR, and vegetation in the R–NIR bands.

An example of the spectral diversity of brightness may be observed in Figure 5.4, 
which includes three bands of a MODIS image of our study region acquired in the 
winter season of 2001. The image contains a wide diversity of land covers, and so the 
spectral differences can be observed by comparing brightness tones in the different 
spectral channels. The R band (620–670 nm) shows green vegetation (1) and water 
(2) with low brightness tones, while snow (3) and bare soils (4) are shown in light to 
very light gray tones. The NIR band (841–876 nm) shows lighter tones for green veg-
etation (see, e.g., the large crop area in the Imperial Valley: 1), while snow and bare 
soils are still shown in bright tones and water presents dark tones (strong absorption) 
in this band too. Finally, the shortwave infrared (SWIR) band (2105–2155 nm) pres-
ents a clear contrast in snow covers from other bands, since at longer wavelengths the 
snow absorbs, which therefore has darker tones than in the NIR or VIS bands. Green 
vegetation also absorbs in this band, as well as water and dark soils, and therefore 
they are shown in dark grays. Only bare soils have bright tones in this spectral band.

5.3.2 Color

It is well known that the human eye is more sensitive to chromatic variations than 
brightness variations. When mixing three spectral bands in a color composite, more 
information is available for detection and identification of features in the images. 
Therefore, color becomes a critical element in visual interpretation of images.

Our perception of color is a result of the selective reflectance of objects observed 
at different wavelengths. Surfaces with high reflectance in short wavelengths (blue) 
and low in the remaining wavelengths appear blue, while red objects absorb the short 
wavelengths and reflect the long visible ones. Our eyes only perceive wavelengths 
between 400 and 700 nm, separating the energy received into three color components 
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FIGURE 5.4 Variation in brightness of different spectral bands of MODIS for our sample 
region: image was acquired on February 19, 2001. (a) R band (B1); (b) NIR band (B2); and 
(c) SWIR (B7). Green vegetation (1), water (2), snow (3), and bare soils (4).
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on our own spectral sensitivities. These three components are known as “primary 
colors” (red, green, and blue; RGB), from which any other color can be derived.

The colors we perceive with our eyes can be created by assigning the primary 
colors (RGB) to the spectral bands red, green, and blue, respectively. This natural 
combination can be modified by the interpreter by assigning RGB to three spectral 
bands in any convenient order. Obviously, this new color composite will not cor-
respond to the colors we normally perceive (what we refer to as “natural colors”); 
the resulting colors will be unusual to our eyes, and therefore we name them “false 
color” composites. False color composites are not perceived by our eyes, but they are 
usually more interesting to discriminate different ground features and therefore are 
very common in EO visual analysis.

A color composite can be obtained by combining three spectral bands using two 
different processes: additive and subtractive. In the additive process, a given color is 
obtained by adding light of different wavelengths. The more reflectance a pixel has, 
the more light (the brighter) that color will have in the composite. The three basic 
color guns are blue, green, and red. In the additive process, any other color is obtained 
by summing up light from two or more basic colors. For instance, cyan is the sum of 
blue and green, magenta is the sum of blue and red, and yellow is the sum of green and 
red. The three color guns together yield white color (Figure 5.5a). The additive pro-
cess is the one used in electronic display systems (computer monitors, tablets, screen 
projectors), and it is the most commonly used for digital image processing systems.

The subtractive method is used in mechanical reproduction of color, typically in 
printed media (journals, books, etc.). The printed colors are obtained by mixing three 
basic inks: yellow, magenta, and cyan. In contrast to the additive process, the more 
reflectance a pixel has, the less ink it will have, since it needs to be brighter in the final 
composite. In other words, the more the ink, the darker the color, and the less reflec-
tance in that particular band. As mentioned earlier, the subtractive process uses three 
elementary inks, and the other colors are obtained by mixing them (Figure 5.5b).

Among the multiple color combinations used in visual analysis, the most out-
standing is known as “color infrared.” This combination is obtained by shifting the 
visible bands toward longer wavelengths and applying RGB to the NIR, R, and G, 
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FIGURE 5.5 Processes in color formation: (a) additive and (b) subtractive.
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respectively (Figure 5.6). It has been widely used because most satellite sensors 
include these three spectral bands. In order to facilitate color interpretation, it is con-
venient to include a simple color key to familiarize the interpreter with these types of 
composites. The most usual colors correspond to the following covers (Tindal 1978):

• Red-magenta represents vigorous vegetation, such as irrigated crops, moun-
tain meadows, or deciduous forests in summer images and herbaceous crops 
of nonirrigated land in spring images. The detailed study of the intensity 
and saturation of red in these composites makes it possible to identify sev-
eral vegetation covers, as well as to estimate their growth cycles and vigor.

• Pink represents less densely vegetated areas and/or vegetation in early 
stages of growth and suburban areas close to large cities when they have 
gardens and scattered trees.

• White represents sparsely vegetated area, clouds, sand, saline deposits, 
quarries, bare soils, and snow.

• Dark blue to black represents surfaces totally or partially covered by water, 
rivers, lakes, and dams. In volcanic zones, black tones might represent lava 
flows or soils with low vegetation cover.

• Gray to metallic blue represents cities and bare rocks.
• Brown represents shrub land, variable according to the density and ground 

material.
• Beige represents zones of transition, dry meadows frequently associated 

with sparse scrub.

When Landsat TM images started to become available at the beginning of the 1980s, the 
number of new color combinations was greatly expanded. The inclusion of the blue band 
made it possible to obtain a natural color composite from this sensor, while the addition 
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FIGURE 5.6 Process to generate a false color composite: example of color infrared.
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of SWIR remarkably extended the possibilities of combining multiband information. 
Several authors have tried to establish an objective indicator to aid in the selection of 
the most suitable color composite by maximizing nonredundant information. For doing 
so, various statistical techniques have been used, such as principal component analysis, 
maximum variation index, and maximum variation ellipsoid (see Section 6.5.2).

For visual analysis, some studies have been performed to identify the color com-
posite images that offer the best land cover discrimination. This approach is based 
on selecting interpreters with different levels of experience to quantify the number of 
covers that can be adequately discriminated in diverse color composites (Trolier and 
Philipson 1986). For Landsat TM-ETM+ and now OLI, the most highly graded com-
binations included a band from the VIS spectrum, one from NIR, and another from 
the SWIR region. The usual order is to apply red to NIR, green to SWIR or R, and 
blue to R or G (see Figure 5.7). These results are very similar to the ones obtained by 
other authors through statistical methods (Hord 1986).

Following these results, the European CORINE land cover project selected the color 
composite NIR, SWIR, and R for Landsat TM/ETM images as the basis for visual 

(a) (b)

(c) (d)

FIGURE 5.7 Different color composites for the MODIS February image: (a) MODIS 261 
(NIR, SWIR, B), (b) MODIS 214 (NIR, R, G), (c) MODIS 275 (NIR, SWIR2, SWIR1), and 
(d) MODIS 143 (R, G, B).
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image interpretation of land covers. For particular objectives, other combinations may 
be more useful. For instance, again with TM images, the combination SWIR, NIR, 
and B proved to be efficient in detecting burned areas (Koutsias et al. 2000), SWIR, 
NIR, and R helped in discriminating irrigated crops or flooded zones, and SWIR/R/B 
is useful in oceanographic applications. In spite of these interesting composites, the 
traditional false color composite (NIR, R, G) is still widely used (Figure 5.8a).

The interpretation of color in a three-band composite depends on the three channels 
selected for the composition as well as the order of the three primary colors assigned to 
that combination. When new bands are included, changes in color are associated with 
different spectral information. When different composites use the same spectral bands 
but in different orders, the chromaticity becomes different but the spectral information 
remains the same. For example, if we modify the aforementioned conventional infra-
red composite (NIR, SWIR, R) and instead assign SWIR, NIR, and R, healthy vegeta-
tion will appear in green tones instead of red ones (Figure 5.8b). This change does not 
mean that we can talk of a natural color, as two of the bands used (NIR and SWIR) 
cannot be observed by our eyes. However, since vegetation is expected to be green to 
ordinary people, this color composite has been commonly used by different mapping 
agencies. Even if they have the same spectral information, technically speaking, the 
potential for interpreting the image may be lower in this latter case because it is widely 
recognized that the human eye is more sensitive to red than to green variations.

5.3.3 texture

Texture refers to the spatial heterogeneity of a given cover, that is, the spatial contrast 
between the elements of which it is made. Visually, it appears as the roughness or 

(a) (b)

FIGURE 5.8 Same color composite but different color gun assignments for the MODIS 
February image: (a) MODIS (NIR, SWIR, R) and (b) MODIS (SWIR, NIR, R).
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smoothness of the tones in the image. The more similar the tones in the image, the 
more homogeneous the cover and the smoother the texture. On the other hand, if the 
cover has a greater variation of reflectance values in the vicinity, the heterogeneity 
will be greater as well, and the area will appear with a rough texture.

Texture depends on the relation between the size of the objects in a particular 
cover and the resolution of the sensor. When an object occupies a surface <1 mm2 
in the image, it cannot be identified individually but can be done through the spatial 
variability that it produces. On the basis of size of the objects that make up a cover, 
three types of texture are possible:

 1. Rough texture: When the objects are between 0.25 and 1 mm2 on the scale 
of the image

 2. Medium texture: When the objects are between 0.04 and 0.25 mm2

 3. Fine texture: When objects are smaller than 0.04 mm2

In addition to the size of the objects, the texture also depends on other factors, such 
as the sensor observation angle (a more oblique observation increases the rough-
ness), the illumination conditions (the lower the solar angle, the greater the shadow 
effect), and the wavelength (a smooth surface at long wavelengths can appear rough 
at short wavelengths). In the VIS and NIR parts of the spectrum, roughness is mainly 
modified by changes in solar illumination. For instance, a forested area can present 
different textures during the year depending on the Sun’s elevation angle and its 
seasonal changes.

In any case, the texture criterion is very important in discriminating certain cov-
ers that show similar spectral behavior. For example, citrus trees in irrigated areas 
and some deciduous trees in forested areas may present very similar reflectance. In 
this case, texture can facilitate the distinction. Fruit trees show a regular plantation 
with a low spatial variability in cover, while deciduous forests develop in a much 
more heterogeneous manner. Consequently, fruit trees show a finer texture, which 
enables the interpreter to separate them from natural forest species (Gordon and 
Philipson 1986).

Figure 5.9 shows several types of textures in the northern part of the city of 
Tucson, Arizona, based on a Landsat-8 OLI image. The area is located toward 
the south of MODIS image. The urban area includes a great diversity of covers 
(roofs, asphalt, vegetation, etc.) that most commonly are smaller than the pixel size, 
and therefore the grain of those areas is coarse. In contrast, irrigated areas and 
grasslands tend to present a smooth surface because they have little variations in 
reflectance within a pixel size. Forested areas may appear rougher or smoother, 
depending on whether they are natural or plantation forest and whether there are 
many shadows.

With higher-resolution images, a different perspective of texture can be obtained 
(Figure 5.10), since small objects appear rougher than in lower-resolution images. 
Different textures within an urban area are noticeable in an IKONOS image, while 
in an OLI image those texture distinctions would be blurred.
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FIGURE 5.9 Different textures in a Landsat 8 OLI image of northern Tucson, Arizona. 
Image was acquired on May 2014: (1) smooth, irrigated crops; (2) medium–low, shrubs and 
grasslands; (3) medium–high, forested areas; and (4) rough, built-up areas.
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FIGURE 5.10 Textures on high-resolution images: (1) smooth, grass; (2) medium, concrete 
roof; (3) medium–high, gardened single-family housing; and (4) rough, trees. Fragment of 
the RapidEye image from the city of Madrid, Spain. (Image courtesy of BlackBridge, Berlin, 
Germany.)
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5.3.4 Spatial Context

The relative location of an object includes the vicinity of the object, which is taken 
into account for detection or interpretation. In other words, the context criterion con-
siders the surrounding elements of a particular cover for its interpretation.

The spatial context is a good indicator of a thematic category in many cases. 
For instance, green vegetation within an urban area is most likely an indicator of 
an urban park. This park may be composed of deciduous trees with tone, color, 
and texture similar to that of a deciduous forest. However, the meaning of an urban 
park is very different from that of a natural forest, and therefore it is logical to dis-
criminate between them. In this case, since spectral reflectance and texture may be 
similar, the only criterion left would be the geographic context: those trees inside a 
built-up area should be considered urban parks (see for instance #1 in Figure 5.11), 
while those located in an area of natural vegetation will be assigned to forest (#2 in 
Figure 5.11). This association could also be applied to discriminate riparian vegeta-
tion from other deciduous species, since their distribution is associated with river 
streams.

Context is more easily applied to visual than digital interpretation, as the human 
eye system is very powerful to understand relations and spatial connections. However, 
in Chapter 7, some possibilities for contextual analysis will be considered.

5.3.5 Shape and Size

The shape of an object greatly helps to identify it, since its contour allows its 
asso ciation with familiar patterns. As in other visual criteria, shape is more easily 
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FIGURE 5.11 Spatial context and shapes in high-resolution images: (1) urban park, (2) nat-
ural forest, (3) golf courses, and (4) hippodrome. Fragment of the RapidEye image from the 
city of Madrid, Spain. (Image courtesy of BlackBridge, Berlin, Germany.)
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recognizable in high-resolution images, while in medium- or coarse-resolution 
images it is restricted to large features. Different urban objects can be determined 
from shape such as sport complexes, race or golf courses (Figure 5.11), manufactur-
ing complexes, airports, storage, and transport networks. It also helps to discriminate 
between highways and railroads (which tend to have wider curves) or between riv-
ers and artificial channels (which are more geometrically regular). As far as large 
structures are concerned, shape can help in the identification of regional geologic 
structures such as volcanoes, domes, or lineaments, as well as some meteorological 
phenomena (Figure 5.12).

In the case of uncertainty and confusion generated from shape, size complements 
the identification of objects. For example, the shapes of a tennis court and a soccer 
field are similar but their sizes are not (and in many cases neither the surfaces: lawn 
versus clay). The use of the shape criterion is determined by the spatial resolution of 
the image. Images with higher resolution can identify single objects (e.g., swimming 
pools), while the ones with lower resolution only indicate ranges of size for different 
surfaces (e.g., dams, flooded areas). Consequently, the shape of an object might not 
be identifiable but that of a group of objects will be, and in the end this will help iden-
tify a cover type. For example, a pine plantation will appear with geometric borders, 
while a natural forest will have an irregular shape.

5.3.6 ShadowS

Variations of illumination conditions may create severe problems in discriminating 
particular surfaces, and therefore shadows are considered as added noise in image 
interpretation (see Chapter 6 for shadow removal techniques). However, they can be 
useful in object recognition, since shadows give an estimate of the height and depth 
of objects. In addition, shadows enhance the interpretation of geomorphologic fea-
tures and texture of the image, especially in forested zones.

(a) (b)

FIGURE 5.12 Large shapes visible in medium- and coarse-resolution satellite images. 
(a) Appalachian relief in a Landsat MSS image and (b) tropical cyclone in an AVHRR image.
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Object height can be precisely determined if the Sun’s angle at the time of 
image acquisition is available. A simple trigonometric equation applies here 
(Figure 5.13):

 
h

ls=
tan q

 (5.1)

where
h is the height of the building
ls is the length of its shadow
θ is the solar zenith angle

This method is adequate for isolated buildings. In dense urban zones, this method 
can be more difficult to apply, since shadows of different buildings may overlap and 
it will be difficult to determine the full length of a single building.

An example of the relevance of shadows for building height estimation is included 
in Figure 5.14, which shows a fragment of the RapidEye image acquired over the 
city of Madrid. The image shows the northern section of the city, dominated by four 
skyscrapers (~250 m tall). The actual shape of the buildings is not easily observ-
able, but the long shadow evidences its position. In the surroundings, the contrast 
between apartment buildings and one-story, single-family buildings can also be eas-
ily detected.

h

ls

θ

FIGURE 5.13 Estimation of a building height from its shadow length.
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5.3.7 Spatial pattern

This concept refers to the spatial arrangement of objects that belong to a particular 
cover. For instance, an olive orchard can be distinguished by its regular plantation 
patterns from a sparsely forested area. This criterion has been rather limited with 
satellite images because of the low resolution of most sensors, but it can be effective 
with high-spatial-resolution images.

However, even in medium-resolution images some features can be discriminated 
by their spatial pattern, such as forest plantations (that may show a regular sequence 
of trees) or golf courses that in the NIR region show a peculiar alternation of sectors 
of high reflectances (the golf lanes and the greens) and medium reflectances (the 
original surrounding vegetation). A similar principle can be used to identify geologi-
cal structures or marine features (Figure 5.15).

5.3.8 StereoSCopiC view

Stereoscopic vision is fundamental to geomorphologic interpretation because it 
provides a 3D view of the areas observed. Most satellite sensors do not provide 
stereoscopic coverage; however, SPOT-HRV, Terra-Aster, IRS-Cartosat, and some 
missions on board the Space Shuttle have this capability. For other satellite images, 
stereoscopic vision can be obtained only in overlapping zones between orbits, 
restricting this criterion to a narrow portion of the image.

1
2

3

2

2

2 2

2

2

FIGURE 5.14 Shadows help to identify different heights in urban areas: (1) skyscrapers, 
(2) apartment buildings, and (3) single-family houses. Fragment of the RapidEye image from 
the city of Madrid, Spain. (Image courtesy of BlackBridge, Berlin, Germany.)
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5.3.9 period of aCquiSition

Most investigators agree that systematic observation of the Earth is one of the main 
advantages of satellite remote sensing. The characteristics of the satellite’s orbit 
allow periodic acquisitions of images under similar conditions of observation, facili-
tating any study that requires a temporal dimension.

This multitemporal analysis has been carried out from two main perspectives:

 1. The main goal is the determination of changes between two or more dates 
of reference. The examples of application studies are very diverse, from 
analysis of flooding or volcanic eruptions to monitoring of deforestation or 
land erosion processes. Commonly, the images are well separated in time. 
For instance, when the process being monitored is slow (urban growth, 
desertification, etc.), a time frame of several years is very usual. For this 
reason, we can term this approach multiannual. The images are commonly 
acquired around the same time of the year to reduce the impact of seasonal 
variations in discriminating the permanent change in the images.

 2. The second perspective deals with changes in shorter periods, and it is fre-
quently associated with seasonal trends such as crop growth or snow-cover 
variations. In these cases, the approach is termed multiseasonal and is typi-
cally based on many images, sometimes even dozens or hundreds if the 
required time resolution is very high. In this case, the images are acquired 
at all seasons, as the common goal is precisely to characterize seasonal 
trends in the target areas (Figure 5.16).

Both multitemporal approaches require previous georeferencing of images or at least 
a common rectification among them, so that the spatial information is common and 

1

2

(a) (b)

FIGURE 5.15 Spatial pattern facilitates visual discrimination. (a) QuickBird image of 
an agricultural region in Salamanca (Spain) showing contrast between crops (linearly 
arranged, 1) and natural vegetation (scattered trees, 2). (b) SAR image of the Gibraltar Strait, 
showing ocean waveforms.
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both refer to the same ground sites. The multitemporal capability in remote sensing 
is a very important identification criterion in visual analysis, both in multiannual 
(Bruzzone and Fernández-Prieto 2000; Hermosilla et al. 2015) and multiseasonal 
studies (Alcaraz-Segura et al. 2010; Goetz et al. 2005).

Some multitemporal studies have been based on color composition techniques 
to enhance changes between two reference dates. In a study to detect patches of 
infected forest in Canada, primary colors were applied to the NIR and R bands of 
the two reference dates (Hall et al. 1984; Sader and Winne 1992).

5.4 ELEMENTS OF VISUAL ANALYSIS

Having reviewed the main criteria for visual interpretation, we will now review a 
series of elements that must be taken into account when working with satellite images.

5.4.1 GeoMetriC CharaCteriStiCS of a Satellite iMaGe

Although satellite images have fewer geometric errors than aerial photographs, 
because of greater stability and higher flight altitude of the platform, they are not free 
from geometric errors, and therefore they cannot be directly overlaid on standard 

(a)

(b)

FIGURE 5.16 Seasonal changes in Landsat TM images over an agricultural area in Central 
Spain. (a) Spring image (May), and (b) summer image (July).
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maps. These geometric differences between map and image position are caused by 
several factors: (1) Earth’s shape and rotation, (2) terrain characteristics, (3) sensor’s 
field of view, and (4) cartographic projection. In Chapter 6, procedures to correct 
such geometric distortions are discussed.

Figure 5.17 shows the effect of geometric correction on an image of the Tucson 
metropolitan area. The two images were acquired by a similar sensor (TM and 
ETM+) with the same spatial resolution and orbital characteristics, but the sec-
ond one was corrected to a Universal Transverse Mercator (UTM) projection. The 
direction of the main streets of the city, leading true north–south in the corrected 
image and NW to SE in the uncorrected one, is noticeable. This orientation of the 
raw image is caused by the combination of satellite orbit and Earth’s movement, 
which results in the original image columns to not follow an exact north–south 
direction.

Once the geometric deformations of an image are solved using different correc-
tion methods (see Section 6.6), satellite images can be used to update features on 
the map at different scales, depending on the spatial resolution of the input sensor 
(Martínez Vega 1996).

5.4.2 effeCt of Spatial reSolution in viSual analySiS

As previously mentioned, spatial resolution refers to the size of the minimum dis-
cernible unit on the image. This concept, in visual analysis, is related to the pixel 
size as well as the scale at which the image is represented. Therefore, spatial reso-
lution has an important impact on the interpretation of the scene and its minimum 
discriminating unit. As we have seen, elements smaller than the pixel size will not 
be discriminated in the image; this is essential for selecting the most adequate sen-
sor to meet the desired objectives. Higher resolution implies better definition of the 

(a) (b)

FIGURE 5.17 Effect of geometric distortions on image interpretation. (a) Tucson TM image 
acquired June 9, 1989; (b) Tucson ETM+ image acquired on September 3, 2000.
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pixel because it will more likely represent a single cover type. On the other hand, if 
the pixel size is large, the signal frequently represents several cover types, making 
its interpretation more complicated.

The effect of spatial resolution on image interpretation is shown in Figure 5.18, 
which shows three images of the Tucson area at very different resolutions: MODIS 
(500 m), ETM+ (30 m), and IKONOS (1 m). The general distribution of gray levels is 
similar across all sensors, but the details for recognizing single objects are very dif-
ferent. MODIS provides good regional to continental coverages, while ETM+ is suit-
able for local to regional coverages, and IKONOS is adequate for detailed local areas.

5.4.3 effeCt of SpeCtral reSolution in viSual analySiS

As we have pointed out in several sections of this book, multispectral observations 
are the basis of identification and detection of surface features and covers in satel-
lite images. The possibility of observing surface features in several bands of the 
spectrum extends remarkably our capacity to recognize them. The spectral signature 

FIGURE 5.18 Effect of spatial resolution on image visual interpretation. Top, comparison 
between (left) MODIS and (right) ETM+ images of the Tucson area; bottom, comparison 
between (left) ETM+ and (right) IKONOS of the University of Arizona’s campus.
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provides the physical basis for land cover recognition (see Chapter 2). This spectral 
signature is modified by different factors, such as atmospheric conditions, plant sea-
sonal cycle, topographic position, or soil substratum. However, the use of spectral 
signatures remains important as reference points.

The spectral signature of a particular cover can be approached by analyzing dif-
ferences in gray levels over different sensor bands. In fact, brightness levels display 
visually these digital values recorded by the sensor. Within this context, we pro-
pose a single exercise for qualitative recognition of spectral signatures, based on 
visual analysis of MODIS spectral bands.* The reader should complete the tables 
in Figure 5.19 after observing how gray tones of different covers change in MODIS 
spectral bands of the study region shown in Figure 5.20. Consulting a land cover map 
of the region will be useful for the exercise, but not fully necessary, since the reader 
can rely on previous sections of this book for finding representative areas of the dif-
ferent covers. The reader should keep in mind that the image was acquired during 

* Adapted from Short (1982).

Brightness B3 B4 B1 B2 B6 B7

Very light

Light

Dark

Very dark

Brightness B3 B4 B1 B2 B6 B7

Very light
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Dark

Very dark

Brightness B3 B4 B1 B2 B6 B7

Very light

Light

Dark

Very dark

Brightness B3 B4 B1 B2 B6 B7

Very light

Light

Dark

Very dark

Brightness B3 B4 B1 B2 B6 B7

Very light

Light

Dark

Very dark

Brightness B3 B4 B1 B2 B6 B7

Very light

Light

Dark

Very dark

B. Water

A. Urban areas

C. Bare soils F. Snow

E. Shrubs—Grasslands

D. Irrigated crops

FIGURE 5.19 Template for visual analysis of MODIS spectral signatures.
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the winter season; as gray levels are influenced by vegetation phenology, they change 
throughout the seasons.

5.4.4 Color CoMpoSiteS

Once the brightness levels for the different land covers have been identified, it 
becomes simple to infer the color they will present in different color composites, 
keeping in mind what we previously learned regarding the additive process of color 
compositing. For instance, if using a false color composite (B2, B4, and B3 for 
MODIS applied to RGB, respectively, see Figure 5.8a), vegetation will be shown in 
red tones, since the brightness of vegetation in B2 is medium to high, while it is dark 
to very dark for B4 and B3. Similarly, snow will be white, since brightness levels are 
high in B2, B4, and B3, and water will be black for the opposite reason.

Following the same line of reasoning, the reader can answer the questions regard-
ing the color in which bare soils or urban areas will appear, which color composite 
yields vegetation in green tones, and what colors the shrubs and grasslands will be 
in that particular combination.

The reader can also observe again Figure 5.7, which includes several color com-
posites for the same MODIS image used here for the exercise. The color composites 
stand out with much stronger contrast than the gray-level images, and the reader 
can clearly distinguish between the different land cover types. Using auxiliary car-
tography, different features can be identified, such as dams and reservoirs, main 
mountain areas, rivers, roads, and cities. When elevation data are available, some 
relationships between vegetation types and topography can be derived; for instance, 

A
B

C
D

F
E

FIGURE 5.20 MODIS spectral bands of the study region (images acquired on February 19, 
2001). From left to right and top to bottom: B3, 459–479 nm; B4, 545–565 nm; B1, 620–670 nm; 
B2, 841–876 nm; B6, 1628–1652 nm; and B7, 2105–2155 nm. Letters refer to Figure 5.19.
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it is interesting to note that higher elevations in the arid regions of the U.S. Southwest 
are the only zones where tree-covered areas can be found. The reader can confirm 
this relation in the vicinity of the city of Tucson, located in the southern portion of 
the image.

5.4.5 MultiteMporal approaCheS

The analysis of temporal change is very relevant for discriminating land covers, as well 
as for better understanding their seasonal trends. Figure 5.21 includes three MODIS 
images acquired at different times of the year: winter, spring, and the beginning of 
fall. This seasonal depiction enables us to discriminate the snow cover (winter image, 
white; spring and fall in dark), the permanence of irrigated crops (all dates dark), and 
the variations of turbidity in the Colorado River delta (note that in the May image, the 
sediments make the water appear very light in the red band). The bottom part of the 
figure shows the areas around Hoover Dam and part of the Grand Canyon. The varia-
tions of accumulated water (flooded areas) are notable, as well as the different shad-
owing effects caused by the variations in Sun’s illumination on the canyon fringes.

The second approach to multitemporal analysis focuses on change detection 
between two or more distant dates in order to study the temporal dynamics of an 
area such as urban expansion, agricultural changes, deforestation, and land degrada-
tion. This comparison makes it possible to evaluate changes caused by ephemeral 
phenomena, such as floods or volcanic eruptions, as well as to monitor the temporal 
evolution of these effects (see Section 7.3 for further details).

(a) (b) (c)

FIGURE 5.21 MODIS images of the study region acquired at different times of year. 
(a) February 19; (b) May 21; and (c) September 25. The bottom window shows the status of 
the Hoover Dam on the same dates.



171Visual Interpretation

Figure 5.22 illustrates this type of multitemporal analysis within the city of Tucson, 
using two Landsat images acquired exactly the same day (May 14, with 29 years of 
difference). Changes in both urban areas, mining and agricultural zones are notice-
able. According to recent statistics, Tucson has almost doubled its population and size 
in the last 40 years, going from a little more than 260,000 people in 1970 to more than 
525,000 people in 2010. The images partially show this urban growth, since the increase 
in urbanized area is prominent, both to the south and north of the original area. Many 
more examples of these trends are found in the Atlas of Our Changing Environment 
compiled by the UNEP a few years ago and are continuously being updated.

Additional examples of visual interpretation could be associated with geological 
interpretation (Woldai 1983), forest mapping (Morain and Klankamsorn 1978; Sadar 
et al. 1982), landscape stratification (Astaras 1984; Hilwig 1980), land cover mapping 
(Chuvieco and Martínez Vega 1990; Harnapp 1978), and analysis of urban patterns 
(Adeniyi 1987; Olorunfemi 1987).

5.5 REVIEW QUESTIONS

 1. When an area shows dark tones in both the red and SWIR bands, then it 
may be

 a. Vegetation
 b. Snow
 c. Soil
 d. Vegetation or water
 2. Which one of these criteria is not spatial?
 a. Brightness
 b. Context
 c. Shape
 d. Association

(a) (b)

FIGURE 5.22 Multitemporal change of the Tucson city observed through the analysis of 
Landsat images: (a) TM acquired in 1985, and (b) OLI image acquired in 2014.
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 3. What should be the main criteria to discriminate an irrigated crop from an 
urban garden?

 a. Color
 b. Texture
 c. Spatial context
 d. Shadows
 4. What is the dominant color of vegetation in the standard false color 

composite?
 a. Green
 b. Red
 c. Yellow
 d. White
 5. Which of the following color assignments would display vegetation in green 

(RGB)?
 a. NIR, SWIR, R
 b. SWIR, R, NIR
 c. NIR, R, SWIR
 d. R, NIR, SWIR
 6. What is the main criterion to discriminate a deciduous forest from irrigated 

fruit trees in a summer image?
 a. Texture
 b. Color
 c. Tone
 d. Context
 7. Which of the following color compositions have the greatest unique 

information?
 a. NIR, R, B
 b. R, G, B
 c. SWIR, NIR, R
 d. NIR, R, G
 8. To estimate the height of objects in a visual image we should know
 a. Sensor calibration conditions
 b. Solar angles
 c. Spectral characteristics
 d. Solar angles and spatial resolution
 9. The relevance of shapes in visual analysis depends on
 a. Spatial resolution
 b. Spectral resolution
 c. Texture
 d. Color composite
 10. Multitemporal comparisons by visual analysis require
 a. Geometrical matching
 b. Same spatial resolution
 c. Same spectral resolution
 d. None of the above
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6 Digital Image 
Processing (I)
Enhancements and 
Corrections

6.1 STRUCTURE OF A DIGITAL IMAGE

Remote sensing images were traditionally distributed in two different media: pho-
tographic products and computer files. Nowadays, both currently acquired and his-
torical images (such as those acquired by spy satellites or airborne cameras) are 
distributed in digital format, and therefore digital image interpretation has become 
the standard for Earth observation (EO) information retrieval. Digital images are 
accessible through user-friendly web image services, which provide a first visualiza-
tion to the image contents before it is downloaded.

A digital image is a numeric translation of the original radiances received by the 
sensor, forming a 2D matrix of numbers (actually a 3D matrix if we include the spec-
tral dimension). Those values represent the optical properties of the area sampled 
within the sensor coverage. Radiances of the observed area are sampled every x 
meters, x being the projected area on the ground of the sensor instantaneous field of 
view (IFOV) (Figure 6.1). Radiance received at the sensor is converted to a discrete 
numerical value for each of the spectral bands to which the sensor is sensitive.

The instantaneously observed area is named pixel, a contraction of picture ele-
ment, which is the minimum unit of information in a digital image. They can be 
easily seen in the image when it is amplified (Figure 6.2). The value defining the 
brightness of a pixel is denoted as a digital number (DN; Lillesand and Kiefer 2000), 
pixel values (Hord 1986; Mather 1998), brightness values (Jensen 1996), gray levels 
(Schowengerdt 2007), and digital counts (Richards 1993). In this book, we will use 
the term DL (digital level) to emphasize that they are digital values with a clear pic-
torial content easily converted to gray or color levels. There are as many DLs in an 
image as the radiometric resolution of the sensor. As previously seen (Section 3.1.3), 
the coding range of DL can be identified with the radiometric resolution of the sys-
tem sensor and is expressed in the number of bits per pixel required to store that DL.

The actual DLs of any image can be manipulated through a variety of meth-
ods, which commonly result in new arrays of transformed numbers. In this sense, 
it is important to distinguish between the DL of a pixel, as stored in the computer 
disk, and the brightness levels (BLs) or values displayed in the monitor or printer. 
Those BLs are useful to facilitate visual image interpretations, while the original 
DLs are physically based and are related to the actual radiances received at a sensor. 
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Lsen,i,j,k = f (DLi,j,k)

Ls,i,j,k

Analog–digital
conversion ... ...

B3 

B1 
B2 

Bk 16

87
45
23

DLi,j,k

FIGURE 6.1 Digital image acquisition process. Soil radiance (Ls) at a certain coordinate 
(i,j) and wavelength (k) is converted to a list of digital levels (DLs) one for each band. Later, 
those values can be converted back to radiances.

FIGURE 6.2 Digital image consisting of picture elements (pixels) each coded by a numeric 
value (DL). Inner boxes represent the areas that are magnified. DL values for each of the three 
color bands are displayed.
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Thus DLs can be used to retrieve physical parameters (e.g., reflectances or tempera-
tures) from remotely sensed imagery and serve as a reference for digital analysis and 
interpretation (see Section 6.7).

In summary, the minimum spatial unit of measurement in a digital image is 
known as a pixel, defined by a DL that represents the detected average radiance 
within the ground area of the IFOV.

The structure and organization of the data within a digital image can be illustrated 
as a 3D numerical matrix (Figure 6.3). The first two axes correspond to the geo-
graphic or spatial range of coordinates in the image, while the third axis describes the 
spectral dimension or how the area is sampled through different spectral filters and 
band passes. The spatial matrix consists of rows or lines, numbered in a north–south 
orientation, and columns that indicate the west–east orientation of the image. In this 
image matrix, the origin of the image starts at the upper left corner (line 1, column 
1) rather than the lower left corner as in the case with Cartesian axes. This is a result 
of the image acquisition sequence, which generally proceeds from north to south in 
many polar orbiting satellite paths. The third dimension corresponds to the spectral 
properties of the sensor and consists of as many layers as there are available bands 
on the sensor; for example, 36 for MODIS, 9 for Landsat 8 OLI, and 5 for AVHRR.

A thorough understanding of the 3D structure of digital images and data matrix 
formats readily enables one to perform digital image transformations and analy-
sis. For example, one can perform many statistical operations commonly applied 
to other numerical matrices, such as computing the mean and standard deviation, 
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FIGURE 6.3 Structure and organization of numeric data within a digital image.
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building histograms, generating new matrices by multidimensional combinations 
across bands (e.g., principal components), filtering, feature extraction, classification, 
image registration, and many others. In the sections that follow, we first discuss the 
structure of digital images and then the presentation of a wide range of image pro-
cessing techniques to correct and extract relevant information from the original data.

6.2 MEDIA AND DATA ORGANIZATION

The first step in digital image analysis is to read and organize the raw image data. 
Data access depends mainly on the storage media and file formats.

6.2.1 data StoraGe

Several years ago, most satellite images were archived and distributed on computer-
compatible tapes (CCTs), an economical and standard data storage medium for large 
volumes of information. The main problem with CCTs was their sequential access 
of data, which slowed down data reading, the high cost of tape readers, and their low 
storage density, compared with recent technologies. Today, images are commonly 
distributed through the Internet protocols (file transfer protocol [FTP] or Secure 
SHell [SSH]), particularly when a high-speed network connection is available. This 
is the quickest way to obtain the images, and therefore it is the most common when 
real-time access to the data is critical (such as in natural hazards applications). 
When working on large areas with medium-resolution images (such as Landsat 8 or 
Sentinel 2), or with long-term time series of images, the storing demands for a par-
ticular project may reach up to several terabytes (1 Tb = 1012 bytes). Transferring this 
amount of data may take very long when internet connections are slow, and therefore 
sending magnetic discs by courier services may still be a good alternative.

6.2.2 iMaGe file forMatS

To access the image contents for starting the digital processing, the first require-
ment is to understand how the images have been recorded. This implies knowing 
the logical organization of the data and how it was coded. The DLs of an image are 
recorded in binary numbers. Most sensors used to code the raw radiances in 8 bits 
per pixel. For 8 bits, each DL is defined by a byte with a range of 256 gray levels (28) 
that vary from 0 (darkest) to 255 (brightest). Now, 11 or 12 bits per pixel is increas-
ingly becoming more common (IKONOS, MODIS, or Landsat 8). This implies that 
a wider range is available to storage DLs and therefore the sensitivity to discriminate 
ground reflectances will be larger.

Digital images are organized in a series of files, each of which is divided into 
records. The Committee on Earth Observation Systems (CEOS) has recommended 
format conventions for remotely sensed digital images and the media in which they 
are stored. The media in CEOS format contain a volume directory file, a leader file, 
and a data file. The data file is organized into a header record and N data records 
corresponding to the number of image products or bands. The header file contains 
information on the organization of DLs, the acquisition conditions (type of sensor, 
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location of the scene, day of year, elevation and solar azimuth angle, etc.), and the 
type of processing, and data corrections applied at the receiving station. Now, the 
header file is commonly named “metadata,” and it follows geographic documenta-
tion standards, such as the ISO 19115 and the ISO 19121, currently the most accepted 
schema to describe geographic information and services with vector and gridded 
data, respectively. Metadata include all the necessary information to manage the 
contents of the images.

The organization and format of files to archive a particular image follow the 
description found in the image header or metadata. There are file formats generally 
accepted as standards for transferring geographic information, such as the GeoTIFF 
(a version of the well-known TIF (tagged image file) format that includes geographi-
cal coordinates), the Hierarchical Data Format (HDF), EOS, and Network Common 
Data Form (NetCDF) formats. HDF is an open format used for handling NASA’s 
Earth Observing System data products, particularly those from Terra and Aqua mis-
sions. It was originally developed in 1988 by the National Center for Supercomputing 
Applications (NCSA) at the University of Illinois at Urbana–Champaign, to handle 
large mathematical arrays in diverse computing environments. HDF is a self-describ-
ing and portable, platform-independent data format for sharing science data, as it 
can store many different kinds of data objects, including multidimensional arrays, 
metadata, raster images, color palettes, and tables in a single file (Folk et al. 1999). 
All the HDF source codes are available in the public domain. The NetCDF is also 
a self-describing, portable, scalable format that is currently widely used by climate 
modelers (Zender 2008).

6.3 DIGITAL IMAGE PROCESSING SYSTEMS

Processing and manipulation of digital images are supported by computer systems 
and image processing software (IPS). A brief review of some the basic characteris-
tics and components of image analysis equipment is summarized in the following, 
although it is somewhat difficult to keep up to date with the new advancements in 
image processing hardware and software available, given the market dynamism. The 
development of operating systems, for both personal computers (Windows or IOS) 
and workstations (e.g., Linux), has also aided in integrating the main differences 
between these two systems. Even tablets or cell phones now have the potential to host 
image processing programs.

To carry out the main functions of digital image analysis, the interpreter needs a 
series of hardware and software components, including internal and external mem-
ory, processing units, display devices, and output peripherals (Figure 6.4). Today’s 
personal computer systems have internal memories of at least 8 Gb, processing 
speeds exceeding 3 GHz, and disk capacities of over 1 Tb.

There is a variety of IPS available, both in the commercial and public domain, 
that offers the most common and basic image analysis routines. These software 
packages are available in UNIX or Linux, Windows (XP, Vista, W-7-10). Apple IOS, 
and Android operating systems. For the most part, the user and interpreter will only 
need to write software code for very specific tasks, since most common routines are 
available in both commercial and public domain software. Most commercial systems 
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offer programming tools to help the interpreters in writing their own code, by using 
either graphic tools or program libraries that can be accessed through standard pro-
gramming languages (e.g., IDL [interface definition language], Python).

IPS systems nowadays are hardware independent and user friendly and have 
more open environments, distributed access, and closer links between image pro-
cessing and geographic information systems (GIS). Among commercial software 
packages, the most commonly used include ERDAS, PCI Geomatics, and ENVI. 
There are very powerful open source IPS, such as GRASS, originally written by 
the U.S. Army Construction Engineering Research Laboratories (USA-CERL) 
and now in the public domain as part of the Open Source Geospatial Foundation; 
SPRING, developed by the Brazilian National Space Research Institute; MultiSpec, 
designed by Purdue University; and ILWIS originally developed by the ITC in the 
Netherlands. In addition, several libraries have been created for specific IPS needs, 
such as VICAR, a collection of Unix and Windows platform image processing 
programs developed at the Jet Propulsion Laboratory for the analysis of data from 
the NASA family of airborne and spaceborne imaging spectrometers, and BEAM, 
developed by Brockman consulting for processing datasets from the European 
Space Agency missions. Updated links to these resources can be easily searched 
with standard Internet browsers.

In general, there are no strict criteria in selecting between one IPS or another. 
In many cases, the best selection will vary with the intended application. A user 
interested in geologic applications may be more interested in the visualization capa-
bilities of the system or the transformation and image enhancement capabilities. On 
the other hand, a user focusing on land cover mapping may be more concerned with 
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FIGURE 6.4 Components of a digital image processing system.



179Digital Image Processing (I)

available classification algorithms in a software package. In all cases, it is important 
to consider some general characteristics:

 1. Processing speeds, based on programming language and the structure of 
algorithms used. The time used on common tasks is also important (filters 
and classification).

 2. User friendliness: most of the new equipment facilitates the handling 
capacities with a system of interactive menus and instructions aimed at 
helping the user. It is important to consider this aspect to obtain results in 
less time.

 3. File export/import capabilities and type of formats accepted for reading and 
writing, paying special attention to the most standardized.

 4. Programming capabilities, macro languages, libraries, or available pro-
gramming languages.

6.4 GENERAL FILE OPERATIONS

In this section, we discuss the operations employed in IPS to access and maintain 
image files. To illustrate various image processing techniques, we utilize the same 
MODIS and Landsat 8 images used in Chapter 5. The selection of a few images 
from two sensors enables the reader to observe, compare, and understand the trans-
formations created by various image processing techniques. However, to extend the 
illustration of some processes, we will also use examples of images from other areas 
when appropriate.

The basic digital image processing techniques that we have classified as gen-
eral utility include those that are applied for a variety of purposes, and serve as an 
intermediate step to more specific operations. We include in this section procedures 
related to file management, display utilities, statistics, and image histograms.

6.4.1 file ManaGeMent

Most IPS contain an image processing toolbox or a series of modules that include 
general-purpose utilities and functions for reading and displaying images, copying 
and deleting files, spatial transformations, image enhancements, image registration, 
image displays, and on-the-screen digitizing.

IPS commonly starts by reading and displaying image files. The software should 
easily allow one to import the raw data and access the metadata, which should 
include data formats, image size, cartographic characteristics, acquisition condi-
tions, sensor calibration, and any other ancillary information necessary to read and 
process the image data.

Several display utilities help in the visual inspection of the selected image. For 
instance, observing the entire image is useful to display a reduced resolution version 
of the image, in order to locate sectors of interest. A reduction factor is obtained 
through systematically sampling the image (every nth line and column for view-
ing the image, with n being the reduction factor). Once the target area is precisely 
located, it can be read at full resolution.
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Once the data have been read, the IPS should import header information to 
properly document the image for further processing. Metadata fields should at least 
include image dimensions (number of lines and columns), number of bands, and 
number of bits per pixel of the image. If the image is georeferenced, cartographic 
projection details, as well as the boundary coordinates (NW and SE corners) and 
pixel size in the x- and y-directions, are required to handle pixel position properly. 
Other relevant information includes basic statistical properties (mean, variance, 
histograms, etc.), sensor radiometric calibration, and image acquisition conditions 
(e.g., Sun elevation and azimuth angles, cloud cover, atmospheric haze). In some IPS, 
these fields are attached to the image, normally in the first bytes of the file, while 
in other cases they are stored as auxiliary files with the same name as the original 
image but with a different extension. The former option facilitates the compactness 
of the information, since all data referring to that image are recorded in the same 
file (Figure 6.5), while the latter alternative facilitates accessing the image by other 
programs since the image file will contain only DLs and not the metadata.

A common utility in IPS is the ability to display several images simultaneously, 
which helps visual comparison between different dates or bands. For example, 
Figure 6.6 displays four bands of the L-8 image. The ability to observe simultane-
ously several bands facilitates understanding image spectral variations. For instance, 
in the L-8 image, band 2 (located in the blue spectral band) has overall dark tones 
and strong contrasts between mining districts and surrounding vegetated zones, with 

FIGURE 6.5 Image documentation stored in PCI Geomatics showing cartographic infor-
mation from the Tucson OLI image. The standard USGS metadata format for Landsat 8 
images is also displayed.
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dark tones for irrigated crops. The NIR image (band 5) has very light tones over the 
irrigated agriculture areas, while the SWIR (band 6) shows more contrast between 
dry and green vegetation and emphasizes absorbed surfaces such as asphalt and des-
ert scrubs. Finally, the thermal band shows higher temperature for built-up areas and 
dry streams and lower temperature for the vegetated upper elevations of the Santa 
Catalina and Mica mountains.

A useful utility for certain applications is to delineate and isolate sections of 
the image, defined by regular or even irregular polygons, in order to apply specific 
processing techniques and analysis. This is known as masking, and it is commonly 
linked to external datasets stored in a GIS. For instance, one may want to obtain crop 
estimations for specific agricultural districts, or evapotranspiration estimations for 
certain water basins. To mask out an image, we should first define the boundaries of 
the mask (commonly by the enclosing polygon), either by importing them from an 
external file or by digitizing them using a digitizer or electronic mouse. Then, the 
masking polygon is used to extract pixel values that lie inside the polygon, assigning 
a DL of 0 to those outside. Figure 6.7 illustrates this process for selecting an irrigated 
agricultural section the MODIS image.

(a) (b)

(c) (d)

FIGURE 6.6 Four spectral bands of the L-8 image: (a) band 2 (blue), (b) band 5 (NIR), 
(c) band 6 (SWIR), and (d) band 10 (TIR).
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6.4.2 diSplay utilitieS

The ability to display an image is an essential property of any IPS. Some of the most 
common visualization tools and utilities include the following:

 1. Analog-to-digital conversion of DLs stored in the image, which allows their 
visual representation on the monitor. The technical process applied can 
be seen in other publications (Muller 1988a; Richards 1993, Appendix F). 
Here, it is sufficient to note that it involves a conversion from a digital value 
to a BL for its visual representation. The old cathode ray tubes to display 
digital images have now been changed to a diversity of electronic systems: 
light-emitting diode (LED) display, electroluminescent display (ELD), 
plasma display panel (PDP), liquid crystal display (LCD), thin-film tran-
sistor (TFT) display, and organic light-emitting diode (OLED) display. To 
keep a fixed image on the screen, the data are stored temporarily in the 
refresh buffer that facilitates high-speed scanning (25–30 times per sec-
ond), enough to be unnoticed by the human eye. Data are stored in three 
refresh buffers, corresponding to the three primary colors (red, green, and 
blue [RGB]), providing a composite color of the three bands. Commonly, 
refresh memory used to be a part of the video or graphic card, an external 
unit with high-speed access memory. Nowadays, video memory is being 
included in the motherboard of the CPU.

 2. Extraction of coordinates. With the aid of a digitizer or electronic mouse, 
the interpreter can locate the coordinates or the DLs of points of interest 
(Figure 6.8). This is a very common task in image processing, for instance, 
to perform a geometric correction of the image or to characterize spectral 
values of different land covers. Usually the cursor is represented by a cross 
or an arrow on the screen.

FIGURE 6.7 Example of a mask applied to a sector of the MODIS image.
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 3. Digitizing areas on the image, again using a digitizer or mouse. The fea-
tures to delimit can be training areas for classification, linear elements 
(roads, rivers) to overlay on classified images, or areas to be masked out (as 
previously commented). Similarly, text and symbols (headers, orientation 
arrows, UTM grids, etc.) can be added for cartographic purposes.

 4. Changes of scale (zoom in and out). This operation is utilized to reduce 
or enlarge the image and observe an area in smaller or greater detail, 
respectively. This process takes place in the refresh buffer, occurring 
almost instantaneously, making it very interactive to the user. In addition 
to increasing the size of the image, the user can scroll a zoomed image 
and move through it at a more detailed scale, which greatly simplifies 
locating points of interest. A more detailed image enlargement can be 
obtained using an interpolated zoom. Here, instead of duplicating the 
original DLs, a new matrix with a size equivalent to the magnification 
level is created. This new matrix is based on interpolation techniques 
from the original DLs. The output image is sharper than one enlarged by 
duplicating DLs because it maintains a transition between neighboring 
pixels (Figure 6.9).

 5. Creating image files. It is often convenient to keep a copy of the image 
displayed on the monitor. This operation can be done through a variety of 

FIGURE 6.8 An image processing software (IPS) provides a wide range of functions to 
obtain information from pixels being located by the mouse or other pointing device. In this 
case, file, cartographic, and geographic coordinates plus DLs at the cursor and neighbors 
pixels are shown.



184 Fundamentals of Satellite Remote Sensing: An Environmental Approach

auxiliary programs that capture the information stored of the refresh buf-
fer and save it to a new graphic file. This capability is particularly useful 
for instructional purposes, as the interpreter can display a set of images 
and/or associated graphic elements without the need to recreate the process. 
In this case, the resolution of that graphic composition would depend on 
screen resolution. An alternative is to save a batch file that stores the opera-
tions used to build that particular visual representation, which can later be 
invoked from the same IPS software.

6.4.3 iMaGe StatiStiCS and hiStoGraMS

Like with any numeric variable, digital images can be described using basic statisti-
cal parameters, such as the mean and standard deviation. The former accounts for 
the central tendency of the image DLs, while the latter informs about their variabil-
ity. The mean is computed as
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FIGURE 6.9 Comparison of a zoom obtained (a) by duplication and (b) by interpolation of 
original pixels in the OLI image. The area surrounding Tucson airport is shown.
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Both parameters for the OLI image of Tucson are included in Table 6.1, along with 
the minimum and maximum DLs. Thermal and atmospheric correction bands have 
not been included in the table. The range of DLs goes from 0 to 65,536, following 
the 16-bit codification range of the L-8 OLI sensor. Band 2 (blue) has the highest 
minimum DL and the lowest mean, while band 6 (SWIR 1) has the highest mean 
and range (maximum–minimum) values, followed by band 6 and 7 (SWIR 2), which 
have the highest variability, and the visible bands (band 2–4) with the lowest value. 
Therefore, the SWIR and NIR bands offer a higher variability and therefore the most 
information content, and land covers should be more distinguishable in those bands 
than in the shorter ones (B2–B4).

In addition to the average and standard deviation values, it is also useful to 
compute the histogram for each band, which describes graphically the distribution 
of DLs for the image. In order to facilitate the representation of the histogram, 
absolute frequencies are usually turned into relative frequencies, according to a 
simple formula:
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The relative frequency (RF) of a given DL (e.g., the value 8123) is calculated as the 
quotient between the number of pixels with that DL value and the total number of 
pixels in the image. This ratio serves to scale the histogram from the highest relative 
frequency.

The histogram provides a first evaluation of the data distribution of each band. 
The center of the histogram indicates the dominant brightness of each band (mean), 
while its width is related to band variability (SD). The presence of relative peaks 
might represent certain land covers in case they have distinct absorption to other 
features and high frequency. Band histograms for the Tucson image (Figure 6.10) 
show that only a small portion of the DL’s range (0–65,536) is actually being used in 
the image. Bands 5, 6, and 7 have the widest histograms, while bands 2 and 3 have 
narrower ones.

TABLE 6.1
Basic Statistical Properties for the Tucson OLI Image

Mean Min Max SD 

Band 2 12,118 7,958 61,376 1,424

Band 3 12,632 6,875 62,528 1,783

Band 4 14,166 6,200 55,117 2,450

Band 5 18,230 5,315 65,536 2,535

Band 6 19,737 5,031 63,997 3,143

Band 7 16,762 5,211 60,888 2,928
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In addition to analyzing each band separately, it is also interesting to look at the 
relationship between bands to determine the degree of original information they 
provide. This analysis can be done graphically, through bivariate scatter graphs that 
show the DL values of two bands simultaneously. When the distribution of points 
tends to form a line (or a narrow ellipse), the two bands are highly correlated and 
contain similar information. If this is the case, it may be sufficient to use only one 
of the bands (the one with higher variance) without losing much of the original 
information. This often occurs with the visible bands or the bands located in the 
SWIR. If the distribution of points is more scattered, as it is commonly the case 
with the NIR and R bands, the correlation between these bands is lower, since 
both offer unique and contrasting information. In this case, the interpreter should 
include them together for further analysis. As an example of this graphic analysis, 
the scatter graphs of the B and R bands and R and NIR bands over the Tucson 
image are shown in Figure 6.11. The first two bands are in the visible region and 
are highly correlated, as most of the land covers have similar reflectances in both 
bands. In contrast, the red and NIR bands show much less similarity, which is due 
to the greater spectral contrasts for different land covers (high reflectance in NIR 
and low in red).

The relationship between two bands can also be measured numerically using the 
Pearson’s linear correlation coefficient (r). The r statistic ranges between −1 and +1, 
meaning perfect negative and positive correlation, respectively. The Pearson correla-
tion is computed as the ratio of the covariance of two bands, k and m, and the product 
of their standard deviations:
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For the Tucson image, the correlation between visible bands 2 (B) and 3 (G) is 
very high (r = 0.97), as expected, while bands 4 (R) and 5 (NIR) are less corre-
lated (r = 0.83) although they still show similar trends, particularly because of the 
importance of bare soils in the area (which have similar reflectances in the NIR 
and visible bands).

Another technique to achieve a better understanding of the radiometric informa-
tion content of an image is through the construction of spatial or spectral profiles. 
The former are also named transects, and they are created from extracting the DLs 
that intersect a line digitized by the user. These profiles are useful to better under-
stand the spatial variation of the DLs in different spectral bands. In the example of 
Figure 6.12, a small transect was digitized from the MODIS image. It crosses the 
irrigated areas of the Imperial Valley, the wetlands of the Colorado River delta, 
and the Sea of Cortez. The three bands used are the NIR (MODIS band 2), the 
SWIR (MODIS band 6), and the red (MODIS band 1). The NIR band shows high 
reflectance for crops and other vegetated areas, while the SWIR and red bands show 
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similar trends in this area although with lower red values. Water bodies result in 
lower reflectance for all bands, which is especially clear at the end of the transect 
(Sea of Cortez). In between the irrigated crops and the sea, different mineral deposits 
offer differential absorption features, with much higher absorption for the SWIR 
band than the NIR or red bands around 60 km from the origin.
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FIGURE 6.11 Scatter graphs of bands 2–3 (a) and 4–5 (b) of the OLI image.
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6.5 VISUAL ENHANCEMENTS

In this section, we consider various techniques aimed at improving the visual quality 
of the image, including a discussion on contrast enhancement, color compositions, 
pseudocolor, and filters.

6.5.1 ContraSt enhanCeMent

The process of contrast enhancement attempts to adjust the radiometric resolution 
of the image to the capabilities of the display system. It is required when the digital 
range of values does not match the number of brightness values available for display. 
Two opposite situations may occur: (1) the range of DLs in the image is less than the 
range of brightness display values and (2) the image has a greater number of DLs 
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than can be visualized. In the first case, the interpreter should apply techniques for 
contrast stretching, while in the second one the data need to be compressed.

The idea of digital contrast can be illustrated with a photographic analogy. A pho-
tograph appears with low contrast when there is not much difference between light 
and dark tones. In the same way, we can define the digital contrast by the DL range 
or any other measure of image variability. The most common digital definitions of 
contrast are the ratio between the maximum and minimum value, the range of val-
ues, and the standard deviation (S) of the DLs in the image (Schowengerdt 2007):
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Stretching operations should provide a higher contrast, increasing any of the three 
referred measures. The opposite operation to stretching is termed color compression 
and implies maintaining the visual quality of the color images with a significant 
reduction of the file sizes. This operation has been greatly advanced in the last few 
years with the increasing use of Internet-based image servers, which are favored by 
smaller file sizes.

6.5.1.1 Color Lookup Table
A color lookup table (CLUT), or simply a lookup table (LUT), is a numeric matrix 
that shows the brightness values (BVs) on the screen that will be assigned to each 
of the DL values of the image. In other words, it defines the brightness intensity at 
which each DL is displayed.

In most IPS, the LUT is a numerical matrix of 3 columns × 256 rows (as BLs in 
computer systems usually have 8-bit resolution). The order of the row indicates the 
input DL, while the value in the LUT expresses the BV that will display that DL. The 
three columns correspond to the three primary colors (RGB: Figure 6.13). We should 
remember that IPS uses the additive process to create color images (see Chapter 5). 

BV (blue) BV (green) BV (red)

1 1 1

2 2 2

3 3 3

… … …

255 255 255

FIGURE 6.13 Tabular structure of a lookup table.
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For this reason, the higher the BVs in each column, the more R, G, or B the pixel will 
be. In the case of displaying only one band, the image is commonly shown in gray 
levels, which implies that each DL has the same BV for the three primary colors. 
For instance, when the BV for a particular DL is 0, 0, 0, all pixels with that DL will 
be displayed as black, while a BV of 127, 127, 127 will show as medium gray and a 
BV of 255, 255, 255 as white. When the three values are different, then color tones 
appear on the screen, which are usually obtained through mixing three different 
spectral bands.

The LUT can also be represented as a line in a bivariate graph, where the DL of 
the image (input) is located along the X-axis and the BV (output) is represented along 
the Y-axis. If we displayed the original DLs, without any enhancement, the LUT 
would be described graphically as the diagonal of the square going from the origin 
(0, 0) to the maximum (255, 255) brightness (Figure 6.14a). In other words, the BVs 
would have the same values as the DLs. With the processes of contrast stretch and 
compression, this relation is modified in such a way that the full range of BVs is 
better represented. For instance, we can decide to assign all BL values to the range 
between the minimum and maximum DL (Figure 6.14b).

The utility of this numeric table can be easily understood with an example. Let 
us assume that we want to stretch the contrast of an image with DL distributed 
between 0 and 127. To adjust this range to the available number of BVs (0, 255), it 
will be sufficient to multiply by 2 each of the input DLs, which would expand the 
original range to between 0 and 254. Now, this option presents two problems: on 
the one hand, it transforms the original DLs to create an output image, which results 
in either losing the original information or having the need to increase the stor-
age capacity, and on the other hand, the process involves a considerable volume of 
procedures—786,432 multiplications for a small 512 × 512 pixel, three-band image. 
If we consider that the enhancement is only an intermediate stage, and usually an 
ephemeral part of the process, it is reasonable to find an alternative to this process. 
Using an LUT, we can easily modify the relation between DL and BV using a simple 
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FIGURE 6.14 Linear profile of the LUT: (a) original; (b) after linear stretching.
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function (BV = 2 × DL). This option would have the same visual effect as the mul-
tiplication of all original DL, but with two advantages: the original DL would be 
preserved and the transformation would be much quicker, since the modification 
through an LUT involves only 768 calculations (256 BV × 3 color guns), indepen-
dent of the size of the image.

The use of the LUT can be effective for both contrast enhancement and compres-
sion, although it has been more utilized in the former case. Pseudocolor and categori-
cal color tables can also be created, as explained in the next sections.

6.5.1.2 Contrast Compression
If the range of the sensor exceeds the number of available BVs, the interpreter should 
compress the original DL range. This adjustment is necessary when working with a 
sensor of high radiometric resolution, but it is also advisable when the image needs 
to be transferred at high speeds for visual interpretation, such as most image servers 
actually do.

The most recent sensors such as the L-8 OLI or Sentinel-1 radar systems provide 
high spectral sensitivity (16 bits), and therefore some sort of compression is required 
when trying to visualize them in 8-bit display systems. The most common approach 
is to reduce the original range of DL to a number of reduced intervals, selected from 
the histogram distribution of DLs. Intervals of equal width or equal frequency are 
two simple options, or the user can adjust the interval thresholds manually. In any 
case, a unique BV is assigned to each interval, thus eliminating its internal variation. 
When the contrast is reduced, the colors are less discernable, decreasing the quality 
of display. Nevertheless, if the selection of colors is adequate, a high-quality display 
can still be obtained.

There are more refined algorithms to compress data, which control the number 
of assigned intervals for each band used in the color composition through a pro-
cess similar to an unsupervised classification that will be discussed later on (see 
Section  7.2). These algorithms first establish a series of partitions in a 3D space 
formed by the three bands used in the color generation. Based on the width of the 
histogram of each band, color partitions are assigned. To assign an interval of DL to 
each of these partitions, the most significant variation range is established on each 
of the bands, from their mean and standard deviation. Finally, the DLs of the image 
are classified into the closest partition in that space (Baudot 1990; Muller 1988b). 
The result of the process is a new image composed of a single band, which is associ-
ated with an LUT to represent, as close as possible, the chromatic variation of the 
multiband composition, using a fraction of the original stored file size (Figure 6.15).

Currently, the increasing use of Internet image servers has made color compression 
algorithms a very active field or research. Those algorithms generate high-quality 
versions of the original image at a fraction of its size (sometimes with compression 
ratios larger than 50:1). The most commonly used compression algorithms are the 
LZW, the JPEG, and the PNG. The Lempel–Ziv–Welch (LZW) was developed in 
1984 and allows the creation of Graphic Interchange Format (GIF) images, widely 
used on web pages, although limited to 256 colors. The Joint Photographic Experts 
Group (JPEG) accepts 24 bits per pixel and guarantees a 20:1 compression ratio with-
out noticeable quality loss, and it is more common in commercial digital cameras. 
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The Portable Network Graphics (PNG), developed by CompuServe and W3C, also 
accepts up to 24 bits per pixel as well as overlays, although the ratios of compression 
are not as high as in JPEG. Lately, new techniques have been developed for massive 
compression of images for distribution via the Internet. Among them, those based 
on wavelets are popular because they allow a high index of compression with low or 
null loss of information (Yocky 1996).

6.5.1.3 Contrast Stretch
Contrast enhancing is widely used in both remote sensing and other image pro-
cessing applications. It implies adjusting the original DL distribution to the capa-
bilities of the display system, thereby improving image contrast and therefore 
the visual interpretation capability. When a sensor is designed, it is calibrated 
to acquire a wide range of radiances, from the very low of water to the very high 
of desert or snow areas. A single image will only very unusually include such a 
diversity of radiances, and therefore, part of the designed sensor sensitivity will 
not be used. In other words, even if the sensors have more than 8-bit radiometric 
resolution, in most images the original data distribution do not cover the lower 
and/or upper ranges of brightness values. Therefore, the original DL histogram 
never populates the 256 or higher possible BVs. Visually, this implies that there is 
a large range of gray tones that are not used, resulting in low-contrast images on 
the screen.

As an example, Figure 6.16a shows the original color composition (NIR, 
SWIR, R) of the OLI image, without any enhancement. The image has a low con-
trast, concealing many features of interest. The other sections of Figure 6.16 exem-
plify different contrast stretching methods for the same color composition. Figure 
6.16b shows the impact of distributing the BVs linearly between the minimum and 
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FIGURE 6.15 Three-band color Meteosat image of Southern Europe with different com-
pression algorithms. Resulting file sizes are included at the margin of each image.
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maximum DL of the image, Figure 6.16c shows a nonlinear stretching based on the 
frequency distribution of DLs, and Figure 6.16d shows an example of stretching 
based on a small range of DLs, in this case the darker tones. This option implies that 
the selected range of DL values is enhanced and therefore internal differences are 
more clearly seen, but at the cost of reducing contrast in other brightness ranges of 
the image, in this case the lighter ones.

In the following sections, these three contrast enhancement methods will be 
reviewed in more detail by considering the LUT of a single band. If a color enhance-
ment is desired, the same procedures should be followed to stretch each of the bands 
that form the color composition.

6.5.1.3.1 Linear Contrast Enhancement
A linear stretch is the most basic way to adjust the contrast of an image and enhance 
its visual quality. In this case, we just need to design an LUT in which the minimum 
and maximum DL of the image correspond to BVs of 0 and 255, respectively, and lin-
early distribute the rest of the values between these two margins. Figure 6.16b shows 

(c) (d)

(a) (b)

FIGURE 6.16 Different types of contrast enhancement over the OLI image: (a) original 
data, (b) linear enhancement, (c) frequency enhancement, and (d) selected enhancement over 
areas of low radiance.
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the visual quality of the new image after applying the linear contrast stretch. We will 
illustrate the linear stretching process using another Landsat image of the same area 
acquired by the Thematic Mapper (TM) sensor exactly 29 years earlier than the OLI 
image previously commented (on May 13, 1985). Since this image was acquired with 
8-bit radiometric resolution, the display of LUT values is easier than for the 16-bit 
OLI images, but the process for both images is really the same.

Selecting the R band (band 3 for TM), the raw histogram of the target area shows 
poor contrast with medium to high brightness values missed (Figure 6.17a and b). The 
stretched image displays more information, as the brightness differences between 
covers are more evident (Figure 6.17d). The histogram of the stretched image is 
better distributed along the full range of brightness values. The LUT profile shows 
the graphic transformation applied to the original data, with greater slope than the 
original transformation, as now the expansion is focused between the minimum and 
maximum DL values of the image.

To accomplish this linear transformation, the interpreter should find a linear func-
tion that adjusts the DL–BV relation as follows:

 BV b g DL= +  (6.8)

where each BV is a function of the original DL, after applying two coefficients, 
known as bias (b) and gain (g). The latter determines the slope of the LUT and the 
former the intersection of the LUT with the BV axis. To determine the value of these 

(a)

(d)

(b)

(c)

FIGURE 6.17 Impact of linear stretch on image brightness (a, original; d, expanded) and 
DL histograms (b, original; c, expanded).
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coefficients, we should solve a simple set of two equations that sets the minimum and 
maximum DL values to 0 and 255, respectively, as follows:

 0 = +b g DLmin

and

 255 = +b g DLmax

Substituting in both equations, the coefficients are calculated as follows:

 
g

DL DL
=

-
255

max min

 (6.9)

and
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DL DL
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Alternatively, DL–BV relations can be expressed in a single term as

 
BV

DL DL

DL DL
= -

-
*min

max min

255  (6.11)

but it is more appropriate to use Equation 6.8, which is the conventional equation 
for linear transformation of data. Instead of making DLmax and DLmin equal to the 
absolute maximum and minimum values, the interpreter may select different thresh-
olds to fit the linear function. A common way is to select a certain percentile from 
the maximum and minimum values, such as 99% and 1%, respectively, or a given 
number of standard deviations above and below the mean. This choice will usually 
be more efficient than the absolute maximum and minimum, since the presence of 
anomalous high or low values would imply missing a certain range of BVs.

6.5.1.3.2 Histogram Equalization
A linear contrast stretch only considers the extremes of DL distribution, and there-
fore all the DL internal intervals are equally stretched. However, from a statistical 
point of view, it is more reasonable to stretch the values following the actual fre-
quency distribution of the DLs. This requires the generation of an LUT in which 
each BV has approximately the same frequency of DLs in the image. In other words, 
DLs with the higher number of pixels will occupy a proportionally larger range in 
the enhanced image than those with a lower frequency. This process is known as 
histogram equalization, and it offers better results than linear stretch, especially if 
the original image has a Gaussian distribution.

As can be seen in Figure 6.18a, histogram equalization results in a more balanced 
enhancement, showing less contrast between zones of high and low reflectance. As a 
result of this enhancement, the histogram of the image offers a better distribution of 
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the data (Figure 6.18b). It can also be observed that the graphical profile of the LUT is 
not a straight but a curved line, similar to the cumulative distribution function of the 
original DLs. Other forms of nonlinear stretch can be applied, such as root or power 
functions, to better enhance the low or the high values, respectively. Table 6.2 shows 
the resultant LUT values using three different criteria: linear, histogram equaliza-
tion, and root stretch.

6.5.1.3.3 Special Contrast Stretch
This is a specific case of the previous methods. The idea is to restrict the contrast to 
a specific range of the DL in order to enhance a specific land surface feature of inter-
est. For example, in applications involving marine zones, it may be more convenient 
to enhance the lower end of the histogram to emphasize water differences, even 
though the contrast for the brighter ranges of the image is lost.

The special contrast stretch is based either on setting a maximum and minimum 
threshold selected by the user, considering the DLs of the target feature (linear 
method), or by restricting the histogram equalization to a certain range. In either 
case, the objective surface feature is enhanced while sacrificing the contrast of other 
areas in the image. Figure 6.18d shows an example of this type of enhancement, done 
over the lowest brightness values of the Tucson TM image, thus emphasizing internal 
differences in low reflectance (forest and water). These areas now show a better con-
trast than in the previous stretches, although the brightness range and visual content 
of the rest of the image is now poorly characterized, since the higher DL values are 
saturated (see the histogram, Figure 6.18c).

(c) (d)

(a)

(b)

FIGURE 6.18 Impact of histogram equalization on (a) image brightness and (b) resulting 
histogram. (d) Special contrast stretch and (c) histogram.
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A special case of this type of stretch is the creation of a binary image, in which 
the contrast of the image is reduced to just two BVs, white and black. In this case, 
the LUT has a stepping profile. The first step includes the range that will be black 
and the second step the one that will be assigned to white. This process is used to 
isolate a range of DLs for further analysis; for example, the DLs corresponding to a 
water body in an oceanographic study should first be isolated by masking out all land 
values in order to avoid the noise created by the coastal zone. Of course, in this case, 
there is no stretch or enhancement, but rather a drastic compression of the contrast 
as it is reduced to two levels.

6.5.2 Color CoMpoSiteS

As seen in Chapter 5, numerous color composite images can be made and displayed 
from remotely sensed multispectral datasets. The process is based on assigning 
each of the primary colors (RGB) to three spectral bands. The process of contrast 
stretch is the same as explained before, but in this case the three columns of the 

TABLE 6.2
LUT Values after Different Stretches of 
the Red Band of Tucson 1985 Image

Original Linear Histogram Root 

0 0 0 0

25 2 4 26

30 16 9 64

35 29 14 87

40 43 20 105

45 56 29 120

50 70 41 134

55 84 61 146

60 97 90 157

65 111 123 168

70 124 158 178

75 138 188 187

80 151 211 196

85 165 226 205

90 179 236 213

95 192 96 221

100 206 103 229

105 219 255 236

110 233 255 243

115 246 255 250

120 255 255 255

Note: Only values every five DL have been included 
for brevity.
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LUT (one for each primary color) will have different values and therefore the actual 
stretch parameters may be different in each band.

The selection of bands in a color composite image and the order of assigned colors 
for each band will vary with the sensor used and the type of application. As previ-
ously discussed, the most common color composite is called a false color or infrared 
color composite, in which the red, green, and blue primary colors are assigned to 
the near-infrared, red, and green bands, respectively. This type of color composite is 
widely used in a diverse range of applications and facilitates the mapping of vegeta-
tion, water bodies, urban areas, etc. (Figure 6.19).

When more spectral bands are available, and particularly in the case of hyper-
spectral sensors, the possibilities of creating color composite images are almost 
unlimited. Logically, only some will have interest for a particular application, and 
some of them will be almost identical. Besides the subjective visual perception, 
quantitative criteria to select the optimal band combination are available as well. 
Statistical and chromatic indexes, which retain the original variance of the data, have 
been developed. This is the case of the optimum index factor (OIF) that evaluates the 
variances of each band and their inter-band correlations with the aim of maximizing 
the information content of the three bands selected for compositing:
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FIGURE 6.19 Different color composites for the Tucson OLI image (order of band assign-
ment is always RGB).
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where
sk is the standard deviation of each of the three bands included in the color 

composite
rj is the correlation coefficient between each pair of the selected bands (Jensen 

1996, pp. 97–100)

Other methods of selecting the input bands for the color composite image consider 
the maximum variation ellipsoid (Sheffield 1985) and the divergence value (Mather 
1998). These techniques generally show a similar tendency; for example, in the case 
of Landsat TM images, nearly all of the various indexes will generally select one of 
the visible bands, another in the NIR band, and a third one in the SWIR, thus deter-
mining the main axes of spectral variation in a TM image (excluding the thermal).

Figure 6.19 includes a set of color band combinations for the Tucson OLI image, 
showing the impact on visual interpretation of using different sets of bands. The 
upper left image is a natural color composition, which shows little contrast among 
the different land covers, particularly green vegetation from other low-reflectance 
surfaces, such as dark soils. Contrast between irrigated crops and other vegetated 
areas is particularly clear in those color compositions using the NIR, while those 
using SWIR provide a better characterization of nonphotosynthetic vegetation and 
bare soils.

6.5.3 pSeudoColor

Several authors have shown that the human eye is more capable of discriminating 
color tones than brightness intensities. Therefore, the use of color can help in the 
interpretation of images, even when only a single band is available. In this case, we 
are not referring strictly to color, since three bands are required, but rather to pseu-
docolor. In a three-band color composite, we used different BV values for each of the 
three color guns (RGB). When a single image is displayed, the RGB values are the 
same, resulting in a gray-scale image. However, we can also display a single image 
in color if we create an LUT where a single DL is represented in different values 
of RGB. This is often used in two instances: (1) when a color scheme is needed for 
a classified image and (2) to enhance a single-band image, by substituting the gray 
levels with color tones. Pseudocolor is also used when a color image of 24 bits is 
compressed to 8, generating a color palette that captures the chromatic variation of 
the original image.

As an example, Table 6.3 shows an LUT designed for a classified image. The DLs 
represent various thematic classes (e.g., categories representing bare soil, vegetation, 
etc.) that will be displayed visually with different colors. DL = 1 (e.g., indicating 
urban zones) will appear in red, since it is represented by the highest intensity of red 
(scale from 0 to 255) and a minimum in green and blue. In the same way DL = 2, 
which could represent vegetation, will be seen as green, with a maximum value in 
this color and a minimum in the other two. Different colors will also be achieved 
with different intensity levels of red, green, and blue. For example, the color ochre 
is obtained from mixing maximum values of red and medium levels of green and 
blue. The available color palette will allow combinations of 256 levels of RGB, or 
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16.8 million different tones (2563). Obviously not all of the colors can be visually dis-
tinguished, and a small selection of colors (between 10 and 20) is normally enough 
to create an adequate color key for thematic classifications.

Pseudocolor can also be used to better visualize one of the original bands, enhanc-
ing its characteristics. Pseudocolor can be applied to a group of DLs in the scene, 
designing an LUT, for example, by combining numbers between 0 and 255 for each 
of the colors. Now, this will complicate our interpretation, because there is no scale 
of reference for the analyst. For this reason, it is more common applying a progressive 
color transformation, where the LUT is gradational: for example, blue tones for lower 
DL to red for the highest. Applications of this visualization technique would be the 
display of temperature variations or vegetation index images representing variations 
in vegetation amount or status. The thermal image can be represented with a blue-red 
gradient (Figure 6.20), while the vegetation image may be displayed by an ocher-green 
gradation scale. In these cases, instead of applying an LUT to the entire range of DLs 
(values), the range can be divided into a series of discrete intervals (density slicing), in 
which each of the resulting groups corresponds to a class of relatively similar radiance 
values. The thresholds that define each interval can be established arbitrarily or by 
statistical criteria. For instance, intervals of constant width or selecting quartiles are 
commonly selected.

6.5.4 filterS

6.5.4.1 Digital Filters
Digital filters, similar to optical filters, are used to select certain features and elimi-
nate or reduce others. When using a blue filter in a digital camera, for instance, the 
photographer tries to reject blue light from the incoming solar energy. In IPS, filters 
are used to select certain spatial features of the image, eliminating others. Therefore, 
using filtering techniques, the image spatial contrast can be smoothed or sharpened, 
so the original DLs become either more similar or more contrasting with their sur-
rounding pixels.

TABLE 6.3
Example of a Lookup Table for a Classified Image

DL BV Red BV Green BV Blue Resulting Color 

0 0 0 0 Black

1 255 0 0 Red

2 0 255 0 Green

3 0 0 255 Blue

4 0 255 255 Cyan

5 255 255 0 Yellow

6 255 127 0 Ochre

7 127 127 127 Gray

8 255 0 127 Pink
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As shown in Figure 6.21, when we draw a radiometric transect over an area of 
interest, numerous peaks and valleys are observed as a result of changes in radio-
metric characteristics of the different areas crossing the transect. Those spatial 
variations can be considered as the sum of two components: low-frequency infor-
mation, which measures the global spatial variation, and high-frequency variations, 
which indicate local contrasts. The purpose of digital filters is to remove one or the 
other. They are referred to as low-pass filters when they select the global variations 
(smooth trends) and high-pass filters when they emphasize the local variations (sharp 
changes). Digital filters can be applied in the spatial domain, by considering values 
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FIGURE 6.21 Radiometric profile over the NIR band (solid red), composed of low (green) 
and high frequencies (orange) of spatial variation.

48°C

18°C

FIGURE 6.20 Color coding of the brightness temperature for the Tucson OLI image 
(band 10). The reddish tones are the warmest temperatures.
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of neighboring pixels, or in the frequency domain, by selecting specific components 
of the image frequency distribution.

Unlike contrast enhancements, spatial filtering modifies the original DLs, not 
only the BV stored in the LUT, although the process is commonly done only in the 
computer memory and the original DLs are preserved on the hard drive. In any case, 
the use of filtered images is not advisable when the final goal is to obtain physical 
variables or cover classifications, because the physical meaning of DLs will be lost 
after applying spatial filtering operations. However, when the objective of the user 
is obtaining a visually enhanced product, such as for generating image web servers, 
filters can be applied to improve the spatial features of the images.

Spatial domain filters are simpler, conceptually and operationally, while fre-
quency domain filters involve more complex mathematical operations, such as 
Fourier analysis. Fourier transformation converts an image into a 2D function, 
with two frequency components (horizontal and vertical), assuming that the 
variation of the DL in the image can be approximated by a continuous complex 
function. Once the transformation is applied, the Fourier spectra are obtained, 
which define the image by their components of phase and amplitude. Filters and 
corrections can be applied on the Fourier spectra, especially when dealing with 
systematic noise (e.g., stripping effects), since they will appear in a fixed direc-
tion of the frequency (Richards 1993; Schowengerdt 2007). Once the operation is 
performed, it can be returned to the image domain by applying an inverse Fourier 
transformation.

Spatial filters can be grouped in two categories: low-pass filters, which enhance 
the homogeneity component of the image, thereby reducing spatial contrast, and 
high-pass filters, which select local contrast and therefore improve the visualization 
of highly variable areas. In both cases, the mathematical procedure to achieve the 
filtering effect is the same. A moving window with filter coefficients (FCs) is used 
to compute the filtered values for each pixel (Figure 6.22). This filter matrix (kernel) 
may have variable sizes, with 3 × 3 to 7 × 7 pixels being the most common. The larger 

Kernel

FIGURE 6.22 Filtering through the use of a spatial moving window (kernel) that is used to 
define the neighboring pixels.
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the kernel size, the more intense the smoothing or sharpening effect will be, since 
more distant neighboring pixels will be included in the computation.

In summary, the mathematical operations of a digital filter are based on relating 
each pixel with its neighbors through a user-specified FC matrix. In the case of a 
3 × 3 matrix, the equation to obtain the filtered DL is (Mather 1998)
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(6.13)

where
DLi,j is the original DL of pixel i,j
DLi, j

¢  is the output DL
FC is the filter coefficient
r and c are the central row and column of the filtering matrix

The final output result is rounded to the nearest whole number. The results of a 
digital filter depend on the FC matrix designed by the user. If the FC tends to 
weigh the central pixel, the output DLs will be more diverse than the original 
image (high-pass filter). When the FC values the border pixels are higher than or 
equal to those of the central one, then the spatial variation of DLs will decrease 
(low-pass filter).

The process involved in filtering can be illustrated with the following exam-
ple. Let us apply a 3 × 3 FC filter matrix to a 5 × 5 image using Equation 6.13. 
Observing the results (Figure 6.23), we first note that the first and last row and 
column are not filtered since they do not have the eight neighboring pixels that 
are needed to compute the operation. The operator can either repeat the original 
values or equal them to zero. This is common in both low- and high-pass filters. 
Obviously, in the case of a larger image (e.g., 3000 × 3000 pixels), the missing 
pixels will not be a relevant problem. The other values of the filtered image are 
computed from the original values and the FC of the filter matrix. In this example, 
the output DL of the center pixel is calculated by a weighted average of that pixel 
plus the eight neighboring pixels. The center pixel is weighted by a factor of two. 

12 14 17 24 32 34

10 18 21 35 38 40

25 15 17 27 40 43

18 16 18 24 29 39

14 16 20 20 27 36

Original image

0 0 0 0 0 0

0 17 21 29 35 0

0 17 21 28 35 0

0 18 19 25 31 0

0 0 0 0 0 0

Filtered image

1 1 1

1 2 1

1 1 1

Filter matrix

FIGURE 6.23 Example of digital filtering.
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For example, the pixel in row 3, column 3, with an initial value (DL) of 17 will 
have a DL in the filtered image of

 
DL¢ = + + + + ´ + + + + =3 3

18 21 35 15 2 17 27 16 18 24
10

20 8,
( )

.

which is rounded to the closest integer number, 21. The global contrast of the filtered 
image is appreciably reduced, from the original standard deviation (8.91) to that of 
the filtered image (6.77), resulting in a greater spatial homogeneity. A similar process 
is used in any other type of filtering.

6.5.4.2 Low-Pass Filter
A low-pass filter reduces or smoothes the spatial contrast in an image by minimizing 
the spatial variability in DLs inside the filter window, thus adjusting the DL of the 
center pixel to be more similar to its neighboring pixels. Visually, the filtered image 
is more diffuse (blurred), since border transitions are smoothed by the filter opera-
tions. Figure 6.24 compares the results of applying two low-pass filters the Tucson 
OLI image. We observe that the filtered images are fainter, which can be seen in the 
airport or main highways. This spatial averaging effect becomes more evident at 
larger FC windows.

Low-pass filters can be used to clean up (restore) errors that can occur in the DLs 
of the image due to problems in image acquisition or data reception. Low-pass filters 
are also used to reduce the spatial variability over some land cover classes, as a prior 
step to classification. The goal is to attenuate “image noise” produced in highly het-
erogeneous areas in relation to the spatial resolution of the sensor. The most studied 
cases are from urban zones, where a multitude of different cover types are present 
in relatively small spaces (at local scale). To diminish this spatial variability, low-
pass filters are used to smooth and generalize the urban class into a more homoge-
neous one. The effect of these filters has been very efficient for digital classification 
(Cushnie and Atkinson 1985; Haack et al. 1987). The low-pass filter can also be used 
to obtain the “background signal” when we want to compare a DL with its context 
in order to detect a specific feature of interest that is anomalous to the area, such as 
active fires (Flasse and Ceccato 1996) or clouds (Saunders and Kriebel 1988) or to 

FIGURE 6.24 Low-pass filters of a window of the Tucson OLI image. From left to right: 
original image, 3 × 3 filtered image, and 9 × 9 filtered image.



206 Fundamentals of Satellite Remote Sensing: An Environmental Approach

obtain the characteristic reflectance of an area in order to correct for the adjacency 
effect (Richter 1997).

There is a wide range of FC matrices for low-pass filtering. Some of the most 
common are as follows:

1.00 1.00 1.00 1.00 1.00 1.00 0.25 0.50 0.25

(1) 1.00 1.00 1.00 ;   (2) 1.00 2.00 1.00 ;   (3) 0.50 1.00 0.50

1.00 1.00 1.00 1.00 1.00 1.00 0.25 0.50 0.25

The first one is a simple average of nine pixels within the kernel, while the other two 
filters include a weight for the central pixel to better preserve original features.

Low-pass filtering can also be achieved using the median value instead of the 
average. The median filter substitutes the center pixel value by the median value of 
the corresponding surrounding pixels. Since the median is less sensitive to extreme 
values (Shaw and Wheeler 1985), this filter results in an output image more similar to 
the original radiometry, and it has been recommended for the elimination of anoma-
lous values caused by noise in data acquisition. Median filters are very common for 
removing the speckle in radar images (Blom and Daily 1982).

6.5.4.3 High-Pass Filter
The goal of a high-pass filter is to preserve the local contrast of the image by keep-
ing the high-frequency variation. These filters enhance the spatial contrast among 
neighboring pixels, and therefore they are very useful to emphasize linear changes, 
such as roads, agricultural fields, and geologic faults (Jong 1993).

The simplest method to obtain a high-pass filter is the subtraction between the 
original image and a low-pass-filtered image. In summary,

 
DL DL DL DLi j k i j i j L i j¢ = + -, , , , , ,( )  (6.14)

where
DL′ corresponds to the filtered output DL value
DL is the original pixel value
DLL is the output value result of a low-pass filter

The application of this filter to the Tucson image can be observed in Figure 6.25 
for two different filter matrix sizes. The process implies an enhancement of the lin-
ear features of the image, such as highways, railroads, the airport lines, and urban 
networks.

A high-pass filter can also be based on FC, similar to the low-pass filters. However, 
in this case, FC tries to reinforce the contrast between the center and neighboring 
pixels. Two commonly used high-pass FC matrices are as follows:

−1 −1 −1 0 −1 0

(4) −1 9 −1 ;   (5) −1 4 −1

−1 −1 −1 0 −1 0
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Both are derived from gradient analysis. The second filter, known as Laplacian, is 
recommended to enhance linear features in urban areas or geological lineaments.

To further enhance the border pixels, several nonlinear filters can also be applied. 
One of the most common is known as Sobel (Gonzalez and Wintz 1977) and empha-
sizes the variations between columns and lines in the filtering matrix. In a 3 × 3 
window, the DL value of the center pixel is calculated as follows:

 
DL C Li j¢ , = +2 2  (6.15)

where

 
C DL DL DL DL DL DLi j i j i j i j i j i= + + - + +- + + + + - - - +( ) (, , , , ,1 1 1 1 1 1 1 1 12 2 ,, )j-1

and

 
L DL DL DL DL DL DLi j i j i j i j i j i= + + - + +- - - - + + - + +( ) (, , , , ,1 1 1 1 1 1 1 1 12 2 ,, )j+1

In addition to the filters already discussed, a simple way to enhance the borders of an 
image is to make a copy of the image, shift it by one row and one column, and then 
subtract it from the original. The resulting pixels with values close to zero will indi-
cate low variation, while those pixels exhibiting greater differences are indicative of 
greater contrast between neighboring pixels. In the same way, a directional contrast 
can be defined toward higher or lower values depending on whether the difference is 
negative or positive. Other methods have been developed for edge enhancement and 
specific applications, such as lineament detection, enhancement in water plumes, or 
delimiting of city streets (Gong and Howarth 1990).

The filter matrices discussed thus far allow for the enhancement of adjacent fea-
tures, independent of its spatial orientation. The interpreter can also design direc-
tional filters that enhance only those linear features in a specific direction. The filter 

FIGURE 6.25 High-pass filters on a window of the Tucson OLI image. From left to right: 
original image, 3 × 3 filtered image, and 9 × 9 filtered image.
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coefficients need only be appropriately distributed in the matrix. Some examples of 
these directional filters are as follows:

North South East

1 1 1 −1 −1 −1 −1 1 1

(6) 1 −2 1 ;    (7) 1 −2 1 ;     (8) −1 −2 1

−1 −1 −1 1 1 1 −1 1 1

West Southeast Northwest

1 1 −1 −1 −1 1 1 1 1

(9) 1 −2 −1 ;  (10) −1 −2 1 ;   (11) 1 −2 −1

1 1 −1 1 1 1 1 −1 −1

Southwest Northeast

1 −1 −1 1 1 1

(12) 1 −2 −1 ;   (13) −1 −2 1

1 1 1 −1 −1 1

The name assigned to these matrices follows the direction they indicate and not 
the direction they enhance, which is their perpendicular. For example, the north 
matrix emphasizes the northern front of lines oriented east–west, while the east 
enhances the eastern border of the N–S lines. Figure 6.26 shows the results obtained 
from these directional filters applied to the Tucson image. The differences from the 
original image and between the two directions are evident, particularly the contrast 
between the N and E filters, which enhances different streets and highways that fol-
low the main direction of the edge enhancement.

6.6 GEOMETRIC CORRECTIONS

6.6.1 SourCeS of errorS in Satellite aCquiSitionS

The process of acquiring satellite images involves potential errors in both the radi-
ance detected and the position of the observed pixels. We will cover in this section 
the geometric corrections and reserve the next one for radiometric transformations.

A satellite image cannot be directly overlaid on a cartographic projection, but 
rather includes several problems that prevent the direct georeferencing of the image 

FIGURE 6.26 Directional filters applied to a window of the Tucson OLI image. From left 
to right: original, north, and east.
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pixels. The most frequent geometrical factors causing georeferencing problems can 
be grouped into three categories:

 1. Errors caused by the sensor platform. Even though a satellite orbit is more 
stable than an airplane track, several geometric problems can occur as a 
result of small variations in orbit altitude, velocity, and orientation along the 
three axes (roll, pitch, and yaw). These variations will cause changes in the 
scale or the geometric position of observed areas (Figure 6.27). They are 
sporadic and are hard to predict and model (Welch and Usery 1984).

 2. Distortions produced by the Earth’s rotation. The effects of the Earth’s 
movement are quite evident in satellite images when they have a large field 
of view (GOES or NOAA, for instance), but they also need to be consid-
ered even in more local observation sensors. For example, a Landsat image 
covering 185 × 185 km is acquired in around 30 s. During this period, the 
Earth moves by ~8 km from the first to the last line of the image at middle 
latitudes. This displacement, combined with the inclination of the orbit, 

Track

Pitch
Roll Yaw

Height Speed

FIGURE 6.27 Sources of geometric errors in a satellite image.
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results in a NE–SW orientation of the image. At the same time, there are 
also variations of the pixel size due to the Earth’s curvature.

 3. Problems caused by the sensor operation. Several radiometric and geo-
metric distortions can be attributed to sensor performance. For instance, 
across-track scanners require a very precise synchronization between the 
orbit and scan speed. Otherwise, lines may be duplicated or missed. As is 
shown in Chapter 3, an error in the compensating mechanism of the Landsat 
7 ETM+ sensor is responsible for the presence of image gaps, areas that are 
not observed, which increase from the center to the image edges. A much 
more common problem is the geometric deformation caused by the sensor 
zenith angle. For those sensors with a wide FOV (e.g., AVHRR, Vegetation, 
or MODIS), the observation angle may change in daily image series, from 
nadir to very oblique observations, causing a significant change in the effec-
tive ground resolution. In AVHRR images, for instance, this panoramic 
distortion implies that the pixel size changes from 1.1 km at nadir to up 
2.4 × 6.5 km at the edge of the scan (Goward et al. 1991). Variation of sen-
sor zenith angle also implies different atmospheric effects across the image, 
since the optical thickness varies from nadir to the borders. In sensors with 
a smaller field of view, such as Landsat TM or SPOT-HRV, these effects are 
less critical.

Some of these problems are handled at the receiving stations, while others are cor-
rected through image software programs. Other factors important to the retrieval 
of physical parameters, the generation of spectral indices, and addressing multi- 
temporal studies need to be handled by the image analyst.

Geometric corrections include any change in the position of the image pixels. 
They imply generating a set of equations that relate image and reference coordi-
nates, the latter being the cartographic projection to which we aim to locate image 
pixels. The general expression for these functions is
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The column and line coordinates (c′ and l′) of the corrected image are a function of 
the coordinates, column and line, of the reference cartographic system to which the 
image (x, y) needs to be overlaid. Reference coordinates can also be another image 
from the same area, and therefore the same approach can be used to overlay two or 
more images for multitemporal change detection.

The georeferenced image can later be combined with ancillary information or 
integrated into a GIS (Chapter 9). In the second case, the geometric transformation 
of the image is aimed at multitemporal studies (Section 7.3) or to create mosaics to 
cover greater extensions of territory than a single scene.

The geometric correction of images can be approached in two ways. The first 
consists of mathematical modeling of known geometric errors and applying inverse 



211Digital Image Processing (I)

transformations. To do so, it is crucial to have access to highly precise information 
on the platform’s orbital characteristics and sensor specifications. These orbital cor-
rections can solve systematic errors, such as those derived from the Earth’s rotation 
or curvature and the inclination of the satellite orbit. The second approach is more 
empirical. It attempts to model the geometric error of the image from a series of 
points with known coordinates. In this case, the error is modeled inductively, since 
the transformation functions include, simultaneously, all the sources of error, assum-
ing that these points are sufficiently representative of the geometric deformation of 
the image.

Both methods have their advantages and disadvantages. The first one is more 
automatic, since it does not require human input. It is very adequate when the sensor 
resolution is too coarse to find ground control points (GCPs), or in areas of difficult 
location (marine or desert areas, high cloud cover). This is the main procedure used 
to correct meteorological satellite data. Its main disadvantage is the poor precision 
when the telemetry of the sensor is not very exact or when the image includes ran-
dom errors, such as unexpected platform movements or local relief, which can induce 
displacements of ±5 pixels (Ho and Asem 1986). The most recent satellites include 
refined navigations systems that offer greater accuracy from orbital corrections and 
are becoming the standard process. Most space agencies and image distributors offer 
a georeferenced version of the images (in the case of commercial satellites, at a 
higher cost), with usually high accuracy.

The empirical geometric correction method, based on GCPs, is rather tedious and 
requires significant human intervention to locate those points accurately, but it offers 
high precision, and therefore is still used for very detailed products or for correcting 
historical archives.

6.6.2 GeoreferenCinG froM orbital ModelS

Orbital corrections are particularly adequate for coarse-resolution sensors. The 
growing interest in the use of global observation sensors has emphasized the need 
for these corrections and has become a mandatory step in image analysis. Usually 
while applying orbital corrections, the term image navigation is used (Emery et al. 
1989) because we try to locate on a geographic grid each of the pixels.

Image navigation involves a complex mathematical process that exceeds the intro-
ductory character of this book. A complete reference can be found in more specific 
texts (Bachmann and Bendix 1992; Bordes et al. 1992; Emery et al. 1989; Ho and 
Asem 1986; Krasnopolsky and Breaker 1994; Rosborough et  al. 1994). We  will 
briefly review the most common orbital corrections.

6.6.2.1 Image Inclination
Polar orbiting satellites frequently have inclined orbits with respect to geographic 
north. This results in an inclination of the axis of the image to the northeast. In addi-
tion, during the time of acquisition of the image, the Earth rotates to the east, with a 
variable distance depending on the latitude, the angular velocity of the satellite, and 
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the area covered in the image. These problems an be solved with the following equa-
tions (Richards 1993, pp. 48–54; Figure 6.28):

 D Dx xe= cosd  (6.16)

 Dx Te s= ne  (6.17)

 n we e= re cosj  (6.18)
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From the first equation, the displacement of the image on the x-axis (∆x) can be 
derived to equal the displacement due to the Earth’s rotation (∆xe) multiplied by the 
cosine of the inclination angle of the orbit (δ). From Equation 6.17, Earth’s displace-
ment (∆xe) can be calculated from the angular velocity (νe) and the time of acquisition 
of the image (Ts). The angular velocity can be calculated from the rotational speed 
of the Earth (ωe = 72.72 μrad s−1), the Earth’s radius (re ≈ 6378 km), and the cosine of 
the latitude of the image (ϕ). The time of acquisition is a function of the area covered 
(L), the Earth’s radius, and the angular velocity of the satellite (ω0). Therefore, only 

ωe

ω0re

∆x

L
δ

FIGURE 6.28 Geometric errors due to Earth’s rotation. (After Richards, J.A., Remote 
Sensing Digital Image Analysis: An Introduction, Springer-Verlag, Berlin, Germany, 1993.)



213Digital Image Processing (I)

the inclination of the orbit of the satellite, its angular velocity, and the area covered 
by the images are required to position the image in a northern direction.

6.6.2.2 Panoramic Distortion
Any optical sensor obtains the images from an observation point, which makes the 
acquisition parameters (mainly the Earth–sensor distance) exact only at nadir. One 
of the most critical effects of this panoramic observation is the variation of the pixel 
size from nadir to the edges of the image, since the distance between the sensor and 
the observed area increases (Figure 6.29). In the case of images with a small field of 
view (Landsat TM/OLI, SPOT-HRG), this effect is low because images are acquired 
with a narrow field of view. This is not the case for global sensors, which have a 
greater scanning angle and, therefore, considerable errors toward the border of the 
image. A similar effect occurs for off-nadir pointing cameras, which provide oblique 
observations that are also affected by panoramic distortion.

A simple correction for the panoramic effect is given by the following equation:

 
p

p¢ =
cos2 g

 (6.20)

on the y-direction of the pixel (latitude), and
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FIGURE 6.29 Effect of panoramic observation on the geometry of the image. (After 
Richards, J.A., Remote Sensing Digital Image Analysis: An Introduction, Springer-Verlag, 
Berlin, Germany, 1993.)
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on the x-direction of the pixel (longitude), with p as the size of the pixel at nadir 
and γ the scanning angle (formed by the line of observation and the vertical to the 
sensor; Figure 6.29). In this scheme, it is assumed that the IFOV is constant. This 
correction allows the adjustment of the pixel size to the nadir distance, throughout 
each scanned line.

6.6.2.3 Effect of Earth’s Curvature
When the sensor has a wide field of view, the assumption of a flat Earth may create 
significant geometrical errors. Therefore, it is required to account for the Earth’s ter-
restrial spherical character. By using nonlinear angular relationships, the correction 
becomes (Richards 1993; Figure 6.30)
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where
pc is the pixel size corrected for the curvature effect
β is the angle of the instantaneous field of view
h is the height of the sensor
re is the Earth’s radius
γ is the scanning angle
ψ is the angle formed by the center of the observed pixel and Earth’s center

From these equations, knowing the geographic position of the satellite, we can navi-
gate the image, generating a grid of coordinates x, y with the DL acquired by the 
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FIGURE 6.30 Errors generated by terrestrial curvature. (After Richards, J.A., Remote 
Sensing Digital Image Analysis: An Introduction, Springer-Verlag, Berlin, Germany, 1993.)
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sensors that are nearest to each position. This process of interpolation is relatively 
similar to the one later discussed for geometric correction with control points. The 
whole process requires a large number of calculations because it deals with complex 
equations. On occasions, orbital models are enhanced by locating a small number of 
GCPs that facilitate a better modeling of the satellite orientation (attitude).

6.6.3 GeoreferenCinG froM Control pointS

Nowadays, orbital models are becoming the standard process for image georeferenc-
ing, as satellite position and attitude are now very precisely estimated. However, 
empirical methods based on GCPs are still much extended. In this approach, the 
interpreter assumes that the origin of the errors is unknown, but they can be modeled 
by adjusting some empirical equations to a set of points. The image coordinates to 
be corrected, as well as the map or image coordinates used as reference, are known. 
In both cases, the correction is performed in three phases (Figure 6.31): (1) location 
of common points to the image and the map (or other image of reference), (2) calcu-
lation of the transformation functions between the corrected and reference images, 
and (3) transfer of the original DLs to their new position defined by the previous 
transformation.

Col = a0 + a1X + a2Y

(1)

(2)

(3)

Column

X

Y
Lin = b0 + b1X + b2Y

Raw image
Corrected image

1 2
3

4 1
2

43

DL3 DL4

DL1 DL2

FIGURE 6.31 Phases in the empirical correction based on ground control points: (1) selection, 
(2) generation of transformation functions, and (3) interpolation of the DL to the new position.
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6.6.3.1 Establishing Control Points
To build functions for transforming image and map coordinates, a series of com-
mon coordinates to both geometric systems need to be identified. Since the functions 
are fitted following those sampled coordinates, the quality of the georectification 
 process will strongly depend on the precision and distribution of these common 
points  (commonly named ground control points [GCP]). Imprecise location of these 
points, on the image or the map, or a biased spatial distribution (favoring some areas 
over others with different errors), will produce an erroneous geometric correction. 
For this reason, finding GCPs is the most crucial phase of the georeferencing process 
and the one that demands more human input. Three aspects are essential in the selec-
tion of GCP: number, location, and distribution.

The ideal number of control points depends on the size and geometric deformations 
of the image. In a flat area, acquired by a narrow FOV sensor, the image map transfor-
mation can be based on linear equations. In areas with rough terrain, second- or third-
degree polynomials may be required. The number of GCP increases in parallel to the 
degree of the equation. Mathematically, only 3 points are needed to fit a first-degree 
equation, 6 for a second-order function, and 10 for a third-degree function. However, 
it is convenient to exceed these minimums to properly model the potential errors. For 
a small area (say, 1000 × 1000 pixels), 20 or 24 points and a first-order transformation 
are usually sufficient. If the elevation of the area is very diverse, a greater number of 
points and a more complex polynomial transformation should be used, although for 
rough terrain the use of digital elevation models (DEMs) are more adequate.

With respect to the location of the points, it is advisable that they are clearly 
identifiable in both the source and the reference products. For image-to-map trans-
formations, human-made features that are not subjected to temporal changes, for 
example, crossroads or railroad tracks, are preferable. The interpreter should try to 
avoid points along the coastline, because the tide effect can modify the exact location 
of a geographic feature. The same reasoning can be applied to water bodies (rivers, 
dams) that can undergo important seasonal changes. An outstanding element of veg-
etation can be used as a control point as long as the appropriate thematic cartography 
is available and no major changes have occurred between image acquisition and map 
inventory. When two images are to be registered, the search for GCP is easier than 
for maps because there are common visual characteristics between images that are 
not included in basic cartography, as in the case of vegetation or agricultural pat-
terns. Most of the IPS currently available facilitate the simultaneous visualization of 
both images to help the identification of common points.

With respect to the GCP distribution, it is convenient to select these points evenly 
over the image area. This will avoid errors due to the excessive weight of a certain area 
of the image at the expense of increasing errors in other areas. When correcting several 
images to a single one, the search for common points can be computer aided, based 
on a library of reference GCPs. The same points can be automatically searched in the 
other images of the same area using iterative searching algorithms (Gao et al. 2009).

We will present an example of georeferencing based on GCP for the same area we 
are using in this chapter. In this case, we have used an uncorrected image acquired 
by the Landsat TM sensor in 1986. Correction is based on the latest acquisition of the 
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same area by Landsat 8 OLI, which is used as reference image. This facilitates the 
location of control points and the analysis of the impacts of different resampling tech-
niques. Figure 6.32 shows the location of selected control points for the 1986 image. 
Two sets of points have been selected: GCP, which are used for calibrating the regres-
sion model, and check points, which are only used for validation. This figure shows 
how GCPs are well distributed on the image and cover most sectors, although they are 
less represented in the Catalina Mountains (Eastern side). Table 6.4 includes the col-
umn and line coordinates of the image, and the X and Y from the map for those points.

6.6.3.2 Calculating the Correction Function
As mentioned previously, the digital correction of the geometry of the image is per-
formed by establishing some functions that relate the coordinates of the image to 
those of the map. In this way, from the X, Y coordinates of the map, the new column 
and row of the image can be estimated. This transformation can be expressed as 
(Mather 1998)

 

ˆ
,

,

,

s a X Y
j m

j k
j k

k m j

=
= = -
å å

0 0

 (6.23)

where ŝ  is the estimated coordinate of the corrected image obtained from the X and 
Y coordinates of the map. The subindex m indicates the order of the polynomial. The 
simplest case would be a linear equation where
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where ĉi  and l̂i  are the estimated column and line, respectively, for a given Xi and 
Yi map coordinates.
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FIGURE 6.32 Ground control points selected to correct the Tucson image of 1986. Check 
points are displayed in blue.
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As we can see, equations for geometric correction are simply multiple linear 
regressions, where a0, a1, a2, b0, b1, and b2 are the regression coefficients, Xi and Yi 
the independent variables, and ci, li the dependent variables. The conversion can be 
performed in both directions: from the map coordinates to the image and vice versa.

As in conventional regression, these functions can be defined graphically by one 
plane that expresses the relation among the coordinates of the independent variables 
(X- and Y-axes) and the dependent variables (c- or l-axis). From a practical point of 
view, it is worth considering that one linear function is enough to approach a wide 
set of transformations of the image, such as to change the scale and origin, alter the 
image skew, modify the relation of the axes, and rotate them (Figure 6.33). These 
functions are adequate to correct small images as long as there is no contrasting 
topography. If a more rigorous modification is needed, second- or third-degree func-
tions can be applied, where nonlinear geometric alterations are addressed (in other 
words, the function is defined not by a plane with linear axes but by a surface with 
curvilinear axes). For simplicity, we focus on first-order functions, although these 
comments can also be applied to more complex polynomials.

TABLE 6.4
Coordinates of the Control Points Used to Correct the Tucson Image of 1986

GCP Status Col. Lin. X Y

G0001 Active 1271 1330 510,335 3,559,693

G0002 Active 586 717 494,073 3,580,203

G0003 Active 689 672 497,221 3,580,986

G0004 Active 909 499 504,243 3,584,768

G0005 Active 995 409 507,061 3,586,820

G0006 Active 1474 743 518,879 3,575,159

G0008 Active 1625 1082 521,451 3,564,915

G0009 Active 1644 1194 521,451 3,561,693

G0023 Active 737 947 497,235 3,573,030

G0011 Active 1703 1535 521,467 3,551,828

G0012 Active 1726 1700 521,294 3547106

G0013 Active 1853 1645 525,118 3,548,012

G0014 Active 1459 1791 513,349 3,545,804

G0015 Active 1290 1766 508,726 3,547,369

G0017 Active 1002 1765 500,683 3,548,780

G0018 Active 985 1537 501,300 3,555,250

G0019 Active 847 1561 497,322 3,555,234

G0020 Active 588 1434 490,701 3,560,067

G0021 Active 860 1157 499,655 3,566,537

G0010 Check 1663 1479 520,569 3,553,625

G0016 Check 1200 1820 505,974 3,546,240

G0007 Check 1749 731 526,618 3,574,203

G0022 Check 861 984 500,517 3,571,385
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The coefficients of the transformation functions (a0, a1, a2, etc.) are calculated 
from the coordinates of the control points previously selected. The most common 
method to obtain the correction functions is by applying a minimum-square fitting, 
with identical calculation as those required for a conventional multiple regression 
(Snedecor and Cochran 1980). The quality of the fitting is measured by the impor-
tance of the residuals, which are the differences between the estimated and the 
observed values, for each of the sample points used in the process; the greater the 
value, the smaller the adjustment between the independent and dependent variables. 
In our case, the quality of the geometric correction can be evaluated by comparing, 
for each of the control points, the estimated coordinates by the regression with the 
real ones. The average of the residuals is commonly known as root-mean-squared 
error (RMSE). The RMSE is calculated with the square root of the differences 
between the observed values and those estimated by the regression for columns and 
lines. In our case

Translation

y = b0 + y΄
x = a0 + x΄

Scale

y = b2 y΄
x = a1 x΄

Rotation
x = a1 x΄ + a2 y΄
y = b1 x΄ + b2 y΄
a1 = b2 = cos θ
a2 = –b1 = sin θ

θ

Skew

y = y΄
x = x΄ + a2 y΄

Perspective

y = y΄
x = a3 x΄y΄

FIGURE 6.33 Examples of geometric transformation functions with the effect they pro-
duce. (After Schowengerdt, R.A., Techniques for Image Processing and Classification in 
Remote Sensing, Academic Press, New York, 1983.)
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The RMSE for each point can also be calculated as the square root of the squared 
residuals at each point. That value is only the distance between its real coordinates 
and those estimated by the regression. As a result, we can use the term longitudinal 
error (LE) to refer to the RMSE for each particular point:

 LE c c l li i i i= - + -( ) ( )2 2ˆ ˆ  (6.26)

Using this term, we can clean up a frequent confusion that considers the RMSE as 
applicable only to the set of points (because of the term mean error) and not to each 
individual point. In addition, it is more appropriate to express the variable we are esti-
mating (position) and the types of errors we made (distance to the observed point).

The general quality of the adjustment is evaluated through the RMSE or the LE 
value for each point. If the mean exceeds a value previously set (usually equal to or 
less than 1 pixel), it will be necessary to apply one of the following solutions:

 1. Verify the coordinates of the selected points, ensuring that the coordinates 
of the image and the map are accurate. At this point, the user should con-
sider the degree of confidence of the point and how accurate its location is.

 2. If the RMSE is still high after the coordinates have been modified, it is 
worth eliminating the point with the highest error, as long as it is one of the 
points considered as having doubtful reliability or is close to other points 
included in the equation. This will guarantee a good coverage of that sector 
in the final adjustment. Eliminating a point in an area poorly represented 
can create a fictitious reduction of the error that will result in that area of 
the image to be incorrectly rectified.

 3. We can also decide to increment the order of the polynomial if the deforma-
tions of the image are severe, for example, in rough terrains. This solution 
must be approached with caution, especially if the number of control points 
is low, because an overadjustment can be obtained in these areas, introduc-
ing notable errors in less well-represented areas, even when the residual 
values are very low (Richards 1993, pp. 67–70).

For these and other reasons, to verify an accurate geometric correction, it is neces-
sary to include check points that have not been used in the calculation of the equation 
and provide an independent estimation of the RMSE obtained in the process. This 
will avoid the bias that an incorrect distribution of points can generate, since the 
error is evaluated not on the points used to generate the model.

For the correction of the Tucson image, it was decided to select an adjustment 
equation of first order, with a RMSE no greater than 1 pixel (30 m). From the 23 
control points previously selected, 19 were used to compute the polynomial model 
and 4 to check the error (Table 6.5). The equation that was derived provided a mean 
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residual (RMSE) of 0.67 pixels, with 0.42 RMS in the X-direction and 0.52 RMS in 
the Y-direction. For the check points, the RMSEs were a bit higher: 0.94 and 0.72, 
respectively, but still acceptable. The equations computed were

 ˆ ( ). . .c X Y= + * - *4962 5165 0 034622 0 00600076  (6.27)

 
ˆ ( ), . . .l X Y= - * - *127 539 647 0 005993 0 0345961  (6.28)

6.6.3.3 Generation of the Georeferenced Image
The functions previously analyzed allow the translation of map to image coordinates. 
However, if we want to create an image that corresponds satisfactorily with those coor-
dinates, it is necessary to somehow transfer the DL of the original image to the new 
position. The equations obtained from the regression model can calculate the correct 
position of each pixel, but do not move the pixels to that new position: an additional 
criterion to transfer the original DL values to the new position is required. In other 

TABLE 6.5
Estimated Column and Line Coordinates and Residuals of the Correction of the 
Tucson Image of 1986

GCP Status ĉ Residual c l̂ Residual l RMS

G0001 Active 1270.96 −0.46 1329.51 −0.01 0.464

G0002 Active 584.85 0.75 717.41 −0.05 0.747

G0003 Active 689.15 0.15 671.46 0.11 0.186

G0004 Active 909.55 −0.15 498.51 0.81 0.823

G0005 Active 994.83 −0.33 410.62 −1.42 1.455

G0006 Active 1473.98 0.35 743.24 0.12 0.371

G0008 Active 1624.47 0.13 1082.23 −0.03 0.128

G0009 Active 1643.81 0.11 1193.71 0.39 0.400

G0023 Active 737.34 −0.03 946.60 0.51 0.511

G0011 Active 1703.58 −0.11 1534.89 0.50 0.510

G0012 Active 1725.92 −0.38 1699.30 0.24 0.452

G0013 Active 1852.88 −0.38 1645.02 −0.52 0.646

G0014 Active 1458.67 0.43 1791.96 −0.86 0.964

G0015 Active 1289.20 1.02 1765.50 0.55 1.163

G0017 Active 1002.25 0.18 1764.89 −0.05 0.185

G0018 Active 984.79 −0.19 1537.36 0.04 0.195

G0019 Active 847.14 −0.09 1561.75 −0.36 0.370

G0020 Active 588.94 −0.64 1434.24 −0.14 0.652

G0021 Active 860.10 −0.36 1156.75 0.16 0.392

G0010 Check 1661.70 0.97 1478.12 0.44 1.061

G0016 Check 1200.67 −0.53 1821.06 −0.90 1.043

G0007 Check 1747.65 1.17 729.93 0.73 1.381

G0022 Check 860.86 −0.20 983.85 0.15 0.252
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words, correction functions create a new matrix, correctly positioned but empty. The 
process of “filling” this matrix is the last phase of the geometric correction.

This is a complicated process. Ideally, each pixel of the corrected image corre-
sponds to only one pixel of the original one. This does not usually occur, but often 
the pixel of the new image is located between several pixels of the original image 
(Figure 6.34) because this process produces a considerable alteration of the original 
geometry of the scene. In addition, the size of the pixel can be changed in the cor-
rected image, making it more difficult to find the DL that shows best the radiometric 
value detected by the sensor for that position.

The transfer of DL to the desired cartographic coordinates has been approached 
mainly with three methods: (1) nearest neighbor, (2) bilinear interpolation, and (3) cubic 
convolution. They can be divided in two groups based on whether they select a DL from 
the original image or they interpolate the output DL from the original DL values.

The nearest neighbor method is based on locating in each cell of the corrected 
image the DL of the nearest pixel in the original image. This is the fastest method 
and involves less transformation of the original DLs. Its main disadvantage is the dis-
tortion introduced in linear features of the image (geological faults, highways, and 
roads) that may appear in the corrected image as broken lines. Bilinear interpolation 
obtains the average of the four nearest DLs in the original image. This average is 
weighted depending on the distance of the original pixel to the corrected one: pixels 
that are closest in the original image have the greatest weight. This method reduces 
the effect in linear features but tends to blur the spatial contrast of the original image. 
Finally, cubic convolution considers the DLs of the nearest 16 pixels. The visual 
impact of this correction provides better quality but requires greater computation 
time and more alteration of original values.

The effect of these three transformation methods are shown in Figure 6.35, which 
includes a small area of the Tucson image, centered at the airport. The distortion 
introduced by the nearest neighbor method is evident in the airport tracks and some 
of the wider streets. As can be observed, the differences between the bilinear inter-
polation and the cubic convolution are nearly unnoticeable.

Corrected imageOriginal image

Nearest neighbor Bilinear interpolation Cubic convolution

FIGURE 6.34 Process to transfer the original DL to the corrected position.
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The selection of the method depends on the purpose of the process and computer 
resources. If a classified image is to be corrected, the nearest neighbor method is the 
only option, because it is the only method that preserves the original values and avoids 
averages (which would not make sense in a thematic classification). If, however, we 
are trying to improve the visual analysis, more elaborate interpolation algorithms 
should be considered, especially cubic convolution if the resources are available.

To better illustrate the operations carried out by these methods of DL transfor-
mations, we will discuss the processes followed to correct an image via the nearest 
neighbor–bilinear interpolation methods. The example is based on the Tucson image, 
for which the adjustment equations have been discussed (Equations 6.27 and 6.28).

First, the interpreter has to define the area where the process is going to be 
applied. To do so, the (X, Y)* UTM coordinates of the corners and the pixel size in 
X, Y need to be entered into the computer, or else the coordinates of the corners and 

* To avoid confusion, when we refer to the coordinates of a given pixel, we refer to the coordinates at the 
center point of the pixel.

(b)

(c) (d)

(a) 

FIGURE 6.35 Effects of the interpolation criteria in the Tucson image: (a) original, (b) near-
est neighbor, (c) bilinear interpolation, and (d) cubic convolution.
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the size of the image in columns and rows. In the first case, the size of the image is 
calculated by dividing the difference between the coordinates by the pixel size, and 
in the second case the size of the pixel is obtained by dividing the difference between 
coordinates by the number of rows and columns. Usually the first option is used. 
In our example, the following coordinates were entered for the corners NW (UTM 
coordinates 481,395, 3,590,535) and SE (UTM coordinates 548,415, 3,531,255), 
using the WGS84 ellipsoid and datum definition. The output pixel size was selected 
as 30 × 30 m to match the Landsat 8 image.

With these data, the program operates as follows:

 1. It estimates the coordinates, in columns and rows, of the corners of the 
corrected image, from the adjustment equations previously obtained 
(Equations 6.27 and 6.28). It usually starts at the NW corner, since it is the 
origin of the new image, using the functions previously fitted:

  

ˆ ( ), . . , – ( . , , )c = + * * =4 962 5165 0 034622 481 395 0 00600076 3 590 535 83..

, . . , – ( . , ,ˆ ( )

89

127 539 647 0 005993 481 395 0 0345961 3 590 535l = - * * )) .= 435 93

 2. The column and row coordinates estimated by the equations are used to 
extract the DL that will be situated in the desired position (x = 481,395, 
y = 3,590,535). The estimated coordinates are not integers, meaning that there 
are no original pixels perfectly matching these UTM coordinates. For this rea-
son, we need to resample the original DLs to find out which is the most suit-
able to fill the desired coordinates. If we apply the nearest neighbor criterion, 
the output DLs will correspond to the pixel located in column 84 and line 436 
of the original image (the closest integer numbers to the values estimated by 
the equation). If we use bilinear interpolation, the DL would be obtained by a 
weighted average of the four nearest pixels, using the following equation:

 

DL
DL D

D

i i
i

i
i

out

2

2

/

1/
= =

=

å
å

( )

( )
,

,

1 4

1 4

 (6.29)

  where Di is the distance between pixel i and the one to be interpolated. 
In our case, the DL assigned to position (481,395, 3,590,535) would be a 
weighted average of the corresponding DLs 83–435, 83–436, 84–435, and 
84–436. The distance D would be calculated from

 
D x y= +D D2 2  (6.30)

  where ∆x and ∆y are the differences between the estimated value and 
the original column and row, respectively. For example, for the pixel 
located in the coordinates 83–435, ∆x = 0.89 and ∆y = 0.93, then D = 1.29. 
Consequently, that pixel would have less weight in the calculation than the 
one located at 84–436, which has a distance D = 0.13.
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 3. The rest of the DLs of the corrected image are computed in a similar way. 
Knowing the UTM coordinates of the NW corner and the pixel size, the 
UTM coordinates of the area to be “filled” with the DLs from the original 
image can be calculated. It is sufficient to add iteratively to the X coordinate 
of the NW corner the pixel size (30 m in this case) to obtain the X coor-
dinate of the next pixel. When the program computes the last pixel of the 
first line, we should keep in mind that Y coordinates decrease to the South, 
and therefore, the Y coordinate of the second line is obtained by subtracting 
the pixel size from the Y coordinate of the first line, and so on. Once the 
UTM coordinates are calculated, they are included in the previous equa-
tions, obtaining the estimated column and row for such coordinates. From 
these estimated values, the DLs corresponding to those coordinates can be 
obtained. For example, the pixel located in column 220 and row 165 of the 
output image will have the following UTM coordinates:

X

Y

220 165 481 395 220 30 487 995

220 165 3 590 535 165

, , ,

, , ,

( )
( )

= + ´ =
= - ´330 3 585 585= , ,

From these coordinates we can calculate the position in column and row of the origi-
nal image, again using Equations 6.27 and 6.28, which gives an estimated value of 
column and row of 342.10 and 567.63, respectively. Therefore, the DL of the pixel 
220–165 in the corrected image, with UTM coordinates 487,995 and 3,585,585, will 
be assigned the DL of the pixel located in column 342 and row 568 of the original 
image (using the nearest neighbor method). This process continues until the SW 
corner assigned by the user is reached, thus concluding the correction.

The final result of the process is shown in Figure 6.36. It includes the original 
and the corrected image of the Tucson city area. The geometric transformation 

(a) (b)

FIGURE 6.36 Tucson image before (a) and after (b) geometric correction.
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applied to the original image becomes evident in the direction of the main city 
streets and highways.

6.6.4 GeoreferenCinG with diGital elevation ModelS

Geometric corrections based on GCPs have been the most common procedure for sat-
ellite images of medium to high resolution, Landsat or SPOT, and is the one available 
in most of the commercial image processing programs. The results are in most of the 
cases sufficiently satisfactory. However, if working in areas of rough terrain or with 
aerial images where the geometric deformations are closely associated with the relief, 
it is necessary to incorporate topographic information. To perform a geometric correc-
tion with topographic effect, it is necessary to have a DEM of a similar resolution to 
the image to be corrected. A DEM is very similar in structure to an image, but instead 
of having radiance values, it includes elevation heights of each pixel. Using DEM for 
georeferencing implies usually a differential rectification, where each DL is transferred 
separately from the original image to the output image by correcting the position of the 
pixel based on its displacement due to the relief (Palà and Pons 1995). Each coordinate 
X, Y, Z of the DEM is transformed onto the image through colinear equations. This 
correction can be simplified using a polynomial model where elevations are introduced 
as a new independent variable

 ĉ a a X a Y a Z a ZX a ZY= + + + + +0 1 2 3 4 5  (6.31)

which offers better results than the basic linear adjustment, or even the second-order 
polynomial, particularly when the terrain is rough. The inclusion of elevation data 
are crucial when data are not acquired vertically (as can be the case of SPOT), where 
errors due to topography are very noticeable.

6.7 RADIOMETRIC CORRECTIONS

Within this section, we cover a series of operations intended to improve an image’s 
radiometric properties, which serve to better prepare the data for extracting relevant 
information, either as biophysical values (reflectance, temperature) using empirical 
or simulation models or as thematic maps from classification techniques.

6.7.1 SolvinG MiSSed or deteriorated data

6.7.1.1 Restoration of Missing Lines and Pixels
Random problems in sensor performance, communications, or reception systems 
may cause missing lines or pixels, resulting in images with anomalous lines or pixels 
highly contrasting with their surroundings. In both cases, the missing information 
was never acquired and thus is permanently lost, so the correction process is aimed 
at just enhancing the visual appearance of the image, but they do not provide a bio-
physical measurement for those missed pixels.

A simple way to estimate the values of missing or corrupt pixels is to rely on 
neighboring pixels. Variables in close geographic proximity tend to be spatially 
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autocorrelated, and therefore closer areas tend to be more similar with one another 
than with those further away (Cliff and Ord 1973). The probability that two nearby 
weather stations have similar precipitation amounts is higher than for two weather 
stations farther apart. Similarly, radiance values tend to be correlated with distances 
(Woodcock et al. 1988a,b). Therefore, it seems a logical choice to estimate the DL of 
missing pixels from the neighboring pixels. There are many ways to use these vicin-
ity criteria, of which the most common is the simple substitution of the DLs of each 
line/pixel by the previous values:

 
DL DLi j i j, ,= -1  (6.32)

where
DLi,j corresponds to the digital value of the pixel in line i and column j (the cor-

rupted one)
DLi−1,j indicates the digital value of the pixel in the preceding line. This can also 

be accomplished with the subsequent lines

A second method involves the substitution of the missing pixels by the average val-
ues of the previous and subsequent values:
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where INT {} indicates that the resulting value is rounded to the closest whole num-
ber. According to Mather (1998), this method is more risky than the first approach, 
particularly when the assumption of spatial auto-correlation is less clear.

In case the problem occurs only in one band, a third method of recuperating lost 
information is to use another band that is highly correlated with the problematic one. 
The values of the defective pixels are estimated from the pixel values in the second 
band, as in the following formula (Bernstein et al. 1984):
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where sk and sr are the standard deviations of the band to be restored (k) and the 
auxiliary band (r), respectively. As in the previous method, the result is rounded to 
the nearest integer.

In the three algorithms (Equations 6.32 through 6.34), it is assumed that the cor-
rupted lines have already been identified. This is a trivial task in some cases, but can 
become very complex in others. Therefore, an automatic searching routine based on 
comparing the arithmetic mean of each line with the previous and subsequent lines 
can be used. If they differ significantly, that is, above a determined threshold, the 
DLs are analyzed in more detail to detect anomalous values (e.g., 0 or 255). If these 
extreme values are detected, it is considered to be a result of corrupt data, and the 
interpreter can apply any of the algorithms previously mentioned to those values.
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The same can be said of pixels with anomalous values produced by an acquisition 
or reception error. In these cases, it will be harder to visually detect the defective 
pixels. Lillesand and Kiefer (2000) proposed an automatic search routine, based on 
detecting those pixels that have values significantly higher or lower than the sur-
rounding values (calculated from a 3 × 3 moving window). If the DL of the central 
pixel in the window exceeds (above or below) a given threshold, the output DL is 
substituted by the mean of the neighboring pixels.

6.7.1.2 Correction of Striping Effects
Another common problem of sensor performance is calibration deterioration. In 
across-track scanning sensors, each scan collects several lines simultaneously to 
cope with the along-track speed of the satellite. Each line is detected by a different 
sensor, which should be well calibrated with the others to ensure uniform response 
along the image. The radiometric performance of the detectors may deteriorate, 
producing a striping effect in the image (Figure 6.37a), especially in areas of low 
radiance (shadows, marine surface). This effect is caused by intercalibration dis-
crepancies in the sensor detectors, which provide a systematically lower or higher 
signal than the others. The effect is periodic, since each detector records 1 of every 
p lines (p being the number of detectors per band). In the case of Landsat MSS, 
6 detectors were recorded simultaneously, while 16 were used for Landsat TM 
and ETM+.

In the case of along-track scanners, the potential calibration noises are even 
greater since these sensors have a large number of detectors per line (7000 for the 
multispectral bands of the Landsat 8 OLI, double for the panchromatic one). In this 
instance, a miscalibration between detectors would create a longitudinal striping 
on the image. An example of vertical striping is seen in Figure 6.37b with the ALI 

(a) (b)

FIGURE 6.37 Effects of calibration problems among detectors: (a) thermal band of a 
Landsat ETM+ image acquired over Central Spain and (b) red band of an EO-1 ALI image 
acquired in the Mendoza province (Argentina). (Courtesy of Ruiliang Pu, University of 
California–Berkeley, Berkeley, CA.)
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sensor (onboard the EO-1 satellite) over the Mendoza region of Argentina. The cali-
bration coefficients are specific for each column, or detector, in the image.

In order to adjust the signal for each of the detectors, it is assumed that all of the 
detectors should have a similar histogram for the entire image when all are properly 
calibrated. Therefore, one can restore the histogram of each detector by calculating 
the histograms of all pixels acquired by each detector (Figure 6.38). In the example 
of the Landsat TM/ETM+ image, with 16 detectors per band, the histogram of detec-
tor 1 would be computed using lines 1, 17, 33, 49, 65,…; the pixels acquired by the 
second detector would be lines 2, 18, 34, 50, 66,…; and so on until the histograms 
for all of the 16 detectors are calculated. The next step is to adjust all of the detector-
specific histograms to a reference histogram. Most likely, the reference histogram 
corresponds to that of the entire image with all lines included. A simple way to per-
form this correction is to apply linear coefficients (bias and gain) to the histograms 
of each detector, in order to match their means and standard deviations to the refer-
ence histogram.

The process starts by computing the mean and standard deviation of the pixels 
sampled by each detector (partial histograms). Then, the histograms are adjusted to 
the reference histogram using

 
DL a b DLi j i i i j¢ = +, ,  (6.35)

where ai and bi are the correction coefficients, computed as
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FIGURE 6.38 Histograms of DL for values detected by each detector in a striped image. 
(Adapted from Campbell, J.B., Introduction to Remote Sensing, The Guilford Press, 
New York, 1996.)
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 a DL b DLi i i= -  (6.37)

where
s and si indicate the standard deviation of the reference and partial histogram, 

respectively

DL DLiand  are the mean DL for both

To minimize the volume of calculations, this algorithm is usually applied in a similar 
way as a LUT previously addressed.

Another problem causing missing areas in across-track sensors occurred in 2003, 
when the scan line corrector (SLC) mechanism of Landsat 7 failed. This device 
compensated the mirror rotation and the forward motion of the satellite, thus align-
ing scan strips and avoiding either missing or duplicating observed areas. As seen in 
Chapter 3, the failure of this system causes the ETM+ images to have longitudinal 
strips of missing data that extend from the center to the image edges (Figure 3.30). 
Since ETM+ images were widely used in various land applications, different 
researchers proposed several methods to recuperate those missing areas, the most 
common being the use of geostatistical approaches (estimation of gap areas from 
nearby observed pixels) and the recourse to images acquired for the same area in 
other dates using regression models (Zeng et al. 2013).

6.7.2 ConverSion froM dl to radianCe

Most space agencies use a terminology that identifies satellite products according to 
their level of processing. The raw data are termed level 0, implying that no correction 
has been applied to the acquired data and therefore it may include different errors and 
artifacts. Level 1 implies that geometric and radiometric corrections have been applied. 
Depending on the agency processing the sensor, this level may imply different correc-
tions. The most standard are those dealing with sensor equalization (thus solving strip-
ping effects), geometric corrections (either with or without georeferencing, depending 
on the correction model), and sensor calibration. This last step implies converting the 
DL to radiance, which is the original physical measurement that a sensor registers.

Level 2 implies the calculation of a secondary physical variable associated to 
radiance, which is reflectance when working on the solar spectrum and temperature 
when working in the thermal wavelengths. This processing level implies maintain-
ing the original sensor’s spatial resolution.

Level 3 implies resampling the original resolution to a certain standard grid, with 
spatial and temporal resolution determined by product specifications. If this product 
proceeds from different orbits, it may also need further processing to ensure complete-
ness and consistency. Finally, Level 4 implies a derived variable, such as evapotrans-
piration or land cover, probably obtained through a combination of different inputs.

This section covers the first radiometric correction, which aims to generate radi-
ance products from the image DLs. This process is commonly named calibration, 
as the main goal is to convert back digital values to radiance units. This is the first 
step to work with physical variables instead of DLs, and therefore necessary for 
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estimating both reflectance and temperature. Working with physical units has many 
advantages including the potential for comparing values over time and space from 
the same sensor, across different sensors, and between satellite measurements and 
other remote sensing platforms (from airplanes, UAV to ground and laboratory 
instruments), as all will be measuring in the same physical units. Implications of 
these corrections affect change detection, image fusion, scaling-up processes, and 
calibration and assessment of interpretation models.

Sensor calibration implies converting DLs to radiance. As explained in 
Sections 3.2 and 6.1, a satellite image is acquired by a sensor system that converts 
incoming radiance to digital values. The range of radiance values to which the sen-
sor is sensitive and the number of different input radiances that a sensor can dis-
criminate are part of the design specifications of the sensor. From these parameters, 
calibration coefficients can be obtained as (Figure 6.39)
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where
a1,k is the gain coefficient
RDL is the range of DL values of the image (256 or 2048 depending on sensor 

radiometric resolution)
Lmax and Lmin are the maximum and minimum radiances detected by the sensor 

(in W m−2 sr−1 µm−1)

To fit better the equation for lower radiances, a bias coefficient (a0,k) is commonly 
used and therefore the calibration formula becomes

 L a a DLk k k k= +0 1, ,  (6.39)

Coefficients to obtain radiances from DL values should be provided by the sensor 
manufacturer, at least for pre-launch conditions. Commonly, sensors need to be 

Lsen = a0 + a1DL

Lmin

DLmin

a0

a1

Lmax

DLmax

FIGURE 6.39 Sensor calibration implies translating DL into radiances. a0 and a1 are cali-
bration coefficients.
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recalibrated after launching using a set of ground control areas that are well charac-
terized radiometrically, such as deserts or deep lakes.

The calibration coefficients are usually included in the header of the image file or 
are provided by the sensor manufacturer. As an example, Table 6.6 shows the pub-
lished calibration coefficients of the Landsat TM/ETM+/OLI sensors.

6.7.3 CalCulation of refleCtanCe

6.7.3.1 Simplified Reflectance
In Chapter 2, we defined directional reflectance as the energy reflected from a surface 
in the direction of the sensor and normalized by the incident energy on that target. 
Thus, reflectance can vary between 0 (a perfect absorbing surface) and 1 (a perfect 
reflecting surface). The spectral reflectance of a target will depend on its physical, 
biological, and chemical properties, in addition to the conditions of the observation. 
Reflectance also varies with wavelength, resulting in spectral reflectance signatures 
that enable the discrimination of surface features and land cover types (see Chapter 2).

Assuming the target behaves as a Lambertian surface, the radiance reaching 
the sensor is a function of the solar irradiance, the surface reflectance, and the 
Sun–target–sensor observation geometry (Figure 6.28):
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where
E0,k is the solar irradiance at the top of the atmosphere (ToA) in spectral band k 

(see Table 6.7)

TABLE 6.6
Parameters to Convert DL to Radiance for Landsat TM/ETM+/OLI Images

Bandc

Landsat 5 TM Landsat 7 ETM Landsat 8 OLI

a0,k a1,k
a a1,k

b a0,k a1,k a1,k 

1 (2) −1.52 0.602 0.763 −6.2 0.786 0.01256

2 (3) −2.84 1.175 1.443 −6.0 0.817 0.11576

3 (4) −1.17 0.806 1.039 −4.5 0.639 0.009762

4 (5) −1.51 0.815 0.873 −4.5 0.635 0.005978

5 (6) −0.37 0.108 0.120 −1.0 0.128 0.001485

7 (7) −0.15 0.057 0.065 −0.35 0.044 0.000501

Sources: Calibration coefficients are derived from Chander et al. (2004). For recent ETM+ images, the 
calibration coefficients were taken from the header files.

a Before May 5, 2003.
b After May 5, 2003.
c In parenthesis the OLI bands.
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rk
* is the apparent reflectance of the surface in band k

θi is the zenith angle of the incident flux, formed by the vertical and the solar rays 
(this is the complementary angle of the solar elevation angle included in the 
header of the image)

D is a correction factor accounting for the variations of the Earth–Sun distance, 
obtained from
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where
J is the day of the year
the sine term is in radians

This factor varies approximately between 0.983 (January 3) at the perihelion and 
1.017 (July 4) at the aphelion.

In summary, the simplified reflectance can be computed from the simple equation
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Therefore, the conversion of DL to simplified reflectance requires sensor radiances, 
solar irradiance at the ToA, illumination angle, and the day of acquisition (alterna-
tively, latitude, longitude, and day, from which D and the solar zenith angle θi can be 
computed) (Figure 6.40).

An example of transforming DL values to apparent reflectances for three different 
surface features is shown in Figure 6.41. The reflectance values and spectral profiles 
differ from those using radiances as a result of band-specific differences in calibra-
tion factors and solar irradiances. However, the conversion of radiances to apparent 
reflectances does not consider atmospheric influences, nor adjacency effects, sensor 

TABLE 6.7
Top-of-the-atmosphere (ToA) Irradiance Values for 
the OLI and TM/ETM+ Spectral Bands

Landsat 8 OLI Landsat TM 

Band TOA* Band ToA

2 (B) 2067 1 (B) 1983

3 (G) 1893 2 (G) 1796

4 (R) 1603 3 (R) 1536

5 (NIR) 972.6 4 (NIR) 1031

6 (SWIR) 245.0 5 (SWIR) 220

7 (SWIR) 79.72 7 (SWIR) 83.44
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observation angles, and illumination conditions. In summary, apparent reflectances 
are computed at ToA conditions and assume that the sensor observed Earth through 
a transparent atmosphere, at nadir view angle, and over flat and perfect Lambertian 
surfaces.

6.7.3.2 Atmospheric Correction
As mentioned in Chapter 2, the various constituents of the atmosphere modify the 
irradiances at the surface as well as the radiances leaving the surface, primarily 
through absorption and scattering processes (Figure 6.42).

Lsen

Lsun

ρ = Lsen /Lsun

Lsun = Lo* cos θi

Lo = Eo * π

θi

θi

FIGURE 6.40 Calculation of simplified reflectances (ρ*).

0

50

100

150

200

250

ETM1 ETM2 ETM3 ETM4 ETM5 ETM7
Bands

D
L

0

0.1

0.2

0.3

0.4

0.5

0.6

Re
fle

ct
an

ce

Water DL

Soil DL

Veget DL

Water Ref

Soil Ref

Veget Ref

FIGURE 6.41 Comparison of the spectral curves of raw DL and simplified reflectances (ρ*) 
for water, bare soil, and vegetation.
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Scattering effects are caused by aerosols and particulate matter from different 
sources and imply that part of the radiance received by the sensor does not come 
from the ground but actually from the atmosphere (La in Figure 6.42). The most 
important scattering process (Rayleigh’s) is particularly strong at shorter wave-
lengths, and therefore it needs to be taken into account even for computing transfor-
mations among bands of the same image.

Absorption implies that part of the incident solar energy is absorbed by the atmo-
sphere, thus arriving at less radiance values than those measured at ToA. Similarly, 
the outgoing radiance is partially absorbed before reaching the sensor, and therefore 
the finally detected radiance is lower than at ground level. The opposite effect occurs 
from diffuse irradiance, which is energy illuminating a certain object from energy 
reflected by nearby objects, as they also reflect solar energy in different directions 
(Ed in Figure 6.42). This effect causes, for instance, that objects in a shade are vis-
ible even if they do not receive direct solar energy. Also associated with the atmo-
sphere is the “adjacency effect,” in which a part of the signal from neighboring pixels 
influences the radiance of each pixel, thereby making the spectral contrast between 
neighboring pixels lower than expected and their discrimination difficult.

In summary, the radiance measured by a satellite sensor is not the same as that 
leaving the Earth’s surface due to the complex role of the atmosphere. The radiance 
at the sensor is related to the following parameters (Gilabert et al. 1994):

 
L asen, , , ,k g k k kL L= +t 0  (6.43)

where
Lg,k is the radiance coming from the ground in band k
τk,0 is the transmittance of the atmosphere between the ground surface and the 

sensor
La,k is the atmosphere path radiance contribution

ρ=Lg,o/Lg,i

θi

τi τo

θoEd

La

Lo

FIGURE 6.42 Atmospheric effects on reflectance calculations.
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Similarly, the incoming radiance arriving at the ground surface (Eg,k) is not the same 
as that measured at the ToA (E0,k) due to atmospheric attenuation effects and the dif-
fuse irradiance component:

 
E E Eg k k d k, , , ,cos= +0 q ti k i  (6.44)

where
E0,k and cos θi have the same meaning as in Equation 6.42
τk,i is the atmospheric transmittance of the incoming flux
Ed,k is the diffuse irradiance associated with downward atmosphere scattering 

(Mie and Rayleigh), dependent on atmospheric conditions

The transmittance in the upward direction depends on atmospheric scattering and 
absorption processes (attenuation), and includes the optical thickness of ozone (τ0z,k), 
aerosols (τa,k), and the molecular or Rayleigh optical thickness (τr,k) for a given band 
at the angle of observation (θ0):
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The transmittance of incoming solar radiation through the atmosphere is similarly 
expressed as with the reflected radiance, except that the sensor angle of observation 
is replaced with the angle of incidence (θi):
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The angle of observation determines the path length of the atmosphere and becomes 
important in the case of sensors with off-nadir acquisition capacity (SPOT-HRG, 
GeoEye, WorldView), as well as sensors with wide swath angles, as in AVHRR, 
MERIS, and MODIS. For example, a satellite observation angle θ0 of 30° increases 
the path length of the atmosphere by a factor of 1.25 (1/cos 30°), thereby increasing 
the amount of attenuation between the ground and sensor.

Following the previous formulas, the true surface reflectance, which is defined as
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requires solving the following equation, from Equations 6.43 and 6.44:
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In other words, to compute surface reflectance, we need to remove the atmospheric 
effects, which requires estimating atmospheric transmissivity (downward, τk,i, and 
upward, τk,0), diffuse irradiance (Ed,k), and atmospheric scattering (La,k).

The atmosphere correction process is quite complex and requires information 
on atmospheric conditions and atmospheric properties at the time of image acquisi-
tion. This information, however, is usually not available. Furthermore, atmospheric 
effects can be highly variable across an image, especially when caused by the spatial 
variability of aerosols or water vapor.

In general, atmospheric corrections have been approached in the following four 
ways (King et al. 1999; Robin 1998; Sobrino 2000):

 1. Through in  situ measurements, including radiosonde profiles of atmo-
spheric composition and indirect estimates of atmosphere optical thickness 
through estimations of visibility and through measurements of the incident 
solar radiance or reflectance on the ground. These in situ methods are gen-
erally most accurate as they involve measurements of atmospheric condi-
tions at the time of image acquisition (Figure 6.43), but such measurements 
are limited to local areas and specific time conditions. They are ideal for 
airborne or UAV campaigns.

 2. Another way is by using satellite data and information from other sensors 
to provide estimates of the key atmospheric variables or properties at the 
time of acquisition of the images. The simultaneous use of two or more 
sensors, one measuring the ground surface and the other the atmosphere, 
makes it possible to better estimate atmospheric conditions. For example, 
the Terra platform includes sensors designed to specifically measure atmo-
sphere properties (e.g., MISR) simultaneously with other sensors that mea-
sure surface reflectance and temperature (e.g., MODIS). Even though the 
spatial resolution of these sensors may not be the same, the integration of 
these data has provided quite useful in deriving calibrated products with 
adequate accuracies (King et al. 1999).

FIGURE 6.43 In situ measurements for atmospheric correction of an airborne campaign.
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 3. Physically based radiative transfer models (RTMs), which usually include 
a series of standardized atmospheres, may be used in atmosphere correc-
tions. The accuracy of these models depends upon the validity of the model 
assumptions for the specific conditions when the image was acquired, as 
well as the access to external information for model calibration, such as 
in situ measures of water vapor or aerosols.

 4. Atmospheric correction may be performed from the image data and proper-
ties of the scene itself, such as areas of known surface optical properties. 
This would be the most operational method, since it does not require exter-
nal information or in situ measurements.

Of the four methods of atmospheric correction, we will focus on the last two, as they 
are the most available to use. There are quite a few RTMs with standard atmospheres 
that are widely used in atmospheric correction with a high degree of accuracy, espe-
cially when there are good similarities between the atmospheric conditions of the 
image and the standard atmospheres included in the model. Two of the best known 
models are 6S (Second Simulation of the Satellite Signal in the Solar Spectrum: 
Kotchenova et al. 2008; Vermote et al. 1997) and MODTRAN (Berk et al. 2006). 
The 6S was initially developed by the Laboratory of Atmospheric Optics, Lille 
University, and is now part of the MODIS land surface reflectance products. The 
model simulates a flat land surface, considers elevation and a surface bidirectional 
reflectance distribution (BRDF), and models the influence of gases (CH4, N2, O, 
CO) in the calculation of gaseous transmission. It facilitates an estimation of the 
atmospheric effect for the whole optical spectrum, with bands up to 0.025 μm wide. 
MODTRAN was based on a model developed by the U.S. Air Force and a private 
company (Spectral Sciences, Inc.). It also considers surface BRDF effects and the 
adjacency effect. Modifications of this code are the basis for the FLAASH algo-
rithm included in the ENVI IPS. It is also useful to mention the ATCOR model, 
developed by Richter (1996, 1997), and included in the modules of PCI Geomatics 
software. The ATCOR model centers the correction in a series of standard atmo-
spheric profiles, included in the program, although they are easily adaptable by the 
user in case more detailed information exists. The definitions of atmospheric profiles 
include the water vapor contents and types of aerosols. The program requires an 
estimation of the atmospheric thickness, indicating a visibility range (in km), and 
an average height of the atmosphere (a DEM can also be incorporated) and the solar 
zenith angle. The software includes an optional estimation of the adjacency effect 
of neighboring surfaces, considering the differences between the reflectances of the 
pixel and the surrounding ones (in this case, an area of 1 × 1 km is considered). 
The authors of this model note that it works adequately only for sensors close to 
nadir (a tolerance of ±8° is accepted), in zones below 1500 m of elevation, and with 
surfaces with moderate slopes.

Naturally, the ideal case would be to derive the atmospheric correction from the 
information contained in the image itself. The alternatives can be summarized in 
four possibilities: estimate the atmospheric contribution from very dark surfaces with 
reflectances close to zero (“dark object” method), from the absorption and scattering 
differences in the different spectral bands of the same image, from a multitemporal 
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comparison between images, and from images acquired at different angles. The first 
method, based on radiance observed for dark objects, was first proposed by Chavez 
in 1975, with successive improvements in 1988 and 1996 (Chavez 1975, 1988, 1996). 
This method assumes that any image has some areas with high-absorption materials, 
where the reflectance should be close to zero (water, shadows). However, the mini-
mum DL of any image is commonly higher than zero, which is attributed to atmo-
spheric scattering. Additionally, in most images this minimum value decreases as the 
wavelength increases, being close to zero in the SWIR. As we have seen, the most 
common atmospheric scattering (Rayleigh) affects mainly the shorter wavelengths, 
which confirms that this minimum value should be attributed to atmospheric effects. 
Therefore, a simple approximation to reduce the impact of atmospheric scattering 
consists of subtracting the minimum DL of each band from all DLs of that band, thus 
shifting the origin of the histogram at zero. In terms of radiance contribution, this 
expression leads to the following formula:

 L a a DLa k k k k, , , min,= +0 1  (6.49)

which can be used as an input parameter in Equation 6.48. The Chavez method 
assumes there is always a high absorption area in the image, which can be reason-
ably accepted for shadowed areas or deep water bodies. However, it is assumed that 
atmospheric scattering is constant throughout the image, since it is computed from 
a single value. Some authors have proposed establishing a network of dark surfaces 
distributed in the image, which might be used to account for the spatial variation of 
the atmospheric optical depth (Ouaidrari and Vermote 1999).

The dark object method is very simple and is valid for calculating the atmospheric 
thickness of aerosols, but errors can be significant for high reflectance values (above 
15%) when the transmittance of the incident and reflected flux are not considered. To 
avoid this problem, it has been suggested to complement this method with estima-
tions of atmospheric transmittance on the ground or with ancillary climate param-
eters (mainly to estimate the ozone and water vapor contents, Ouaidrari and Vermote 
1999). In fact, the last version proposed by Chavez suggests estimating the transmit-
tance from the atmospheric thickness defined by the cosine of the zenith angle θi 
(Chavez 1996). In addition, similar to the previous version, the author suggests not to 
consider the diffuse irradiance. In other words, for vertical observations, the equa-
tion (Equation 6.48) should be
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where the downwelling transmittance is approached from the cosine of the Sun’s 
zenith angle (θi). The author assumes that the upwelling transmittance is 1, which is 
reasonable for vertical observations. This model has been shown effective only for 
TM bands 1, 2, 3, and 4 (B, G, R, and NIR, respectively).

According to Chavez’s model, the value of transmittance would be independent 
of the wavelength, which is not appropriate. Consequently, TM1 is slightly corrected 
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and TM4 is highly corrected with this method, although the author claims that this 
error is not significant. The transmittance is practically 1 for the SWIR bands: TM5 
and 7 (Gilabert et al. 1994); thus, in these bands the correction of the cosine is not 
applicable because these bands would be overcorrected. Finally, the same author 
suggests the use of some standard values of transmittance instead of the cosine cor-
rection. The proposed equation in this case would be
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where τk,i = 0.70 (TM1), 0.78 (TM2), 0.85 (TM3), 0.91 (TM4), and 1 for the SWIR 
(TM5 and 7). These values of τk,i are very similar to the ones proposed by other 
authors. Gilabert et al. (1994) suggested, respectively, 0.73, 0.79, 0.85, 0.91, 0.95, and 
0.97 for the same wavelengths. Pons and Solé-Sugrañes (1994) also recommended 
average values similar to the previous ones, although they are incorporated into a 
function of the solar zenith angle.

Figure 6.44 shows a graphical comparison between reflectances calculated with 
the Chavez method (with average transmittances) and ones obtained in the previous 
section (ToA reflectance). The effect of the correction is very obvious, mainly in the 
blue band, in which the values of corrected reflectances decrease notably. In addition, 
the standard signature of vegetation is now more clearly observed by the absorption 
in the blue and red bands, which were highly distorted by the atmospheric effect in 
the apparent reflectance. The water also displays the expected reflectance curve, with 
low values and descending towards longer wavelengths, although an overcorrection 
may have occurred in the blue band.
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FIGURE 6.44 Comparison of apparent reflectance (Ref) and atmospherically corrected 
reflectances for water, bare soil, and vegetation using Chavez method (CRef).
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In Figure 6.44, the Chavez method is compared with the outputs of an RTM (included 
in the ATCOR model) for the same land covers. The correction effects of both methods 
are quite comparable, especially in water and vegetation. However, the Chavez method 
underestimates the transmittance in the red band, shown in the  vegetation curve as a 
lack of an absorption band in relation to the green band, and the anomalous high value 
for soil. Both seem to overestimate the atmospheric effect in the blue band. Their com-
parison requires a more detailed analysis to be applied to images acquired on different 
dates. Both methods were applied to two Landsat TM images obtained during the sum-
mer in the central part of the Iberian Peninsula. The ATCOR method overestimates the 
correction in the shortwave bands (even generating negative numbers) and underesti-
mates values in the NIR and SWIR bands (Riaño et al. 2003).

6.7.3.3 Topographic Shadow Corrections
Another important factor to be considered in the calculation of reflectance is the 
effect of topography. Reflectances are dependent on both the incident and observa-
tion angles. Thus far, we have assumed that the incident angle depends only on the 
solar zenith angle, but this is true only for a flat terrain. In rougher terrains, slope 
gradient and aspect affect the incident energy, generating higher radiation in Sun-
facing slopes and lower in the opposite ones. Figure 6.40 shows how incident energy 
is a function of the solar zenith angle (θi) over a flat surface. The maximum energy 
incident on a flat surface is obtained when the solar zenith angle is 0° (cos θi = 1; i.e., 
the Sun is at nadir). Over rough terrain, however, the slope and aspect will modify 
the angle of the incident flux (γi), which will be no longer the same as the zenith 
angle as shown in Figure 6.45. The most severe impact of changing illumination 
conditions occurs in slopes facing away from the Sun, which do not receive direct 
solar energy at all (i.e., when the surface is in shadow).

γi

θp

θi

Shade area

FIGURE 6.45 Effects of topography on reflectance calculations.
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As the energy reflected by a rough terrain will vary proportionally with the inci-
dent energy, our computed reflectance values will not be the same for similar surface 
features unless topographic effects are considered and corrected. The reflectances 
derived for the same land cover characteristics, but over different slopes, will be very 
different, creating several problems in quantifying surface biophysical quantities and 
the discrimination and classification of land cover types.

Computing the ratio of two image bands is a simple way of reducing the topo-
graphic effects on reflectance. Since the solar incident angles (cos θi in Equation 6.42) 
are constant for two simultaneously acquired bands, variations in reflected energy 
due to topographic influences are reduced, assuming that radiation variability is con-
stant for different bands and that atmospheric effects have been previously removed 
(Colby 1991). These assumptions are generally not correct, given the strong spec-
tral dependence of atmospheric influences that modify the direct irradiance at the 
surface, as well as atmospheric scattering contributions to diffuse radiation at the 
surface (shown in Equation 6.48), which are not removed by ratioing (Leprieur et al. 
1988). In addition, the ratioing of bands reduces spectral information, potentially 
hindering land surface classification.

An alternative to image ratios is correcting the radiation–slope effects by mod-
eling them using a DEM that needs to be previously registered to the image (or, 
more commonly, vice versa). In this way, variations introduced by topography can 
be estimated for each DL by modeling the illumination conditions at the time the 
image was acquired. For doing so, we first need to calculate the incident angle (γi) of 
a slope, which is a function of the solar zenith angle, the slope aspect, and gradient 
(Hantson and Chuvieco 2011; Riaño et al. 2003):

 
cos cos cos sin sin cos( )g q q q q f fi i p i p a= + - 0  (6.52)

where
γi corresponds to the incident angle
θi is the solar zenith angle
θp is the slope gradient
ϕa is the azimuth solar angle
ϕ0 is the aspect of the slope

These four angles can be obtained from a DEM and the date and time of the image 
acquisition. The cos γi term enables the estimation of the effect of slope on illumina-
tion. Additionally, this term is used to generate the shadowing effects that numerous 
GIS programs compute. Values of this parameter vary from −1 to +1, indicating 
for each pixel of the DEM the minimum and maximum condition of illumination, 
respectively. Figure 6.46 shows the Tucson image with clear examples of shadowing 
effects, along with an illumination image (cos γi) for the same area and same condi-
tions of image acquisition. The arrows indicate in which sectors the shadowing effect 
is more evident on the original image.

Once the incidence angles are derived, several methods can be used to account 
for the differences in incident radiation between slopes. A simple classification of 
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those methods group them on the basis of whether they assume Lambertian sur-
faces or they consider directional effects (Itten and Meyer 1993; Riaño et al. 2003). 
Among the Lambertian methods, the simplest is the one proposed by Teillet et al. 
(1982):
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where
ρh,i is the reflectance of pixel i in horizontal terrain
ρi is the reflectance on a slope (corresponding to the image before correction)
θi is the solar zenith angle of the scene
γi is the incident angle for that pixel

This method has been shown to overcorrect the image, especially in areas of low 
illumination (Duguay and LeDrew 1992; Holben and Justice 1981; Meyer et  al. 
1993), which is why it has been proposed to balance the correction as a function of 
the average conditions of illumination of the scene (Civco 1989):
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where cos γm indicates the average value of the illumination in the scene of interest. 
This model reduces the topographic effect, although not as much as it should. In this 
correction, as well as the previous one, it is assumed that the topographic effect is 
constant in all bands.

(a) (b)

FIGURE 6.46 Effect of relief on the Tucson image: (a) original band 4; (b) shaded relief 
derived from the DEM.
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Within the non-Lambertian methods, one of the most cited was proposed by 
Minnaert (1941) to evaluate the rough surface of the moon:
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where l is introduced to model the non-Lambertian bodies. If l = 1, the surface 
behaves like an ideal Lambertian reflector. The problem with this method is getting 
a true value of l, since it varies from band to band and for each surface. A simple way 
to consider the importance of the Lambertian character on each band is to apply a 
semiempirical adjustment, as the one named on the C correction (Teillet et al. 1982):
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where ck is an empirical constant for each band k, which is related to the average 
roughness of that band and is obtained from
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where bk and mk are the constant and the slope, respectively, of the regression line 
between the reflectance image (band k) and the illumination image (cos γi).

The problem of these simple corrections is the lack of consideration of the diffuse 
irradiance, which can be important on slopes in shadowed areas. Some alternatives 
have been proposed to solve this problem, but they are more complicated in their 
practical application. For example, Conese et al. (1993) suggests the use of a varia-
tion of the equation for the incident radiance that considers slope effects:

 Esu k k d kE E, , ,cos* *= +0 g ti k,i  (6.58)

where
Esu,k

*  is the radiance that reaches the ground
Ed k,

*  is the diffuse radiance in a rough terrain

If the incident angle (γi) is greater than 90° (or if preferred, cos γ < 0), the slope is in 
a shadowed area. Therefore, there is no direct illumination, and only the diffuse radi-
ance ( ),Ed k

*  reaches the ground. Diffuse radiation is computed as a function of the inci-
dent angle, the slope of the terrain, and an anisotropic coefficient (Eg,k /E0,k), dependent 
on the band and observation date. This topographic correction greatly enhances the 
computation of reflectances in rough terrains, reducing notably the spectral variability 
of cover types. Nevertheless, the authors (Conese et al. 1993) warn that the algorithm is 
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not adequate for images with a large Sun zenith angle or with very rough topography. 
This same conclusion has been reached by other authors who have proposed similar 
methods for diffuse irradiance (Itten and Meyer 1993; Richter 1997).

The effect of topographic correction over the Tucson study zone is shown in 
Figure 6.47, which includes the same area as in Figure 6.46. In this case, band 4 
is shown before and after the illumination correction, using Civco’s method, that 
for this date confers good results, although registration problems between the DEM 
and the Landsat ETM+ image may cause an overcorrection of the upper mountain-
ous areas. The arrows indicate the sections where the correction is more evident. 
One way to verify the effect of the correction is to calculate the correlation between 
the illumination image and the bands of the image, before and after correction. For 
our study area, the correlation decreases after correction from 0.57 to 0.28 in band 
4, indicating that part of the topographic effect has been eliminated over the sig-
nal. Another verification method is to measure the difference in reflectances in a 
series of land covers along diverse slopes. If the correction is accurate, values should 
be homogeneous, eliminating their differences due to Sun exposure (Hantson and 
Chuvieco 2011).

6.7.3.4 Correction of Bidirectional Effects
The last aspect that will be considered in the retrieval of surface reflectance is the effect 
of observation and illumination angles. Normally, the surface is assumed to behave in 
a Lambertian manner in the computation of reflectance. This implies that the radiance 
reflected by the surface is the same in all directions and largely independent of the 
sensor’s viewing angle. This assumption is reasonable only as a first approximation in 
the computation of reflectance because most land surface conditions are anisotropic. 
Everyone has experienced directly how the appearance of an object varies according 
to the position of the observer in relation to the incident light (Figure 6.48); hence one 
must consider this factor for detailed computations of reflectance.

(a) (b)

FIGURE 6.47 Effect of the shadow correction on the Tucson area: (a) original band 4; 
(b) band 4 after correction.
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Most medium- and high-spatial-resolution sensors have a narrow FOV and take 
images almost from the nadir. Therefore, it is generally assumed that the reflected 
radiances are derived from vertical observations. However, in the case of sen-
sors with wider swaths, such as Terra-MODIS, SPOT-VEGETATION, or NOAA-
AVHRR, there are large variations in viewing and Sun angles across the pixels of 
the image. These observations would not be perfectly comparable in space or time, 
thus  creating potential noises in time series analysis. Compositing techniques may 
reduce, but not eliminate, bidirectional effects in the images, and corrections are 
necessary for the accurate retrievals of surface reflectance.

To address these corrections, we should consider the BRDF of each observed surface 
for trying to model a vertical observation for each image pixel. BRDF is a  theoretical 
concept that describes the directional effects of reflected radiance for any given com-
bination of viewing and solar illumination angles (Sandmeier and Itten 1999):
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where
dL is the reflected radiance at a given view zenith (θr) and azimuth angle (ϕr)
dE is the incident irradiance at a specified solar zenith (θi) and azimuth (ϕi) direc-

tion (Figure 6.49)

(a) (b)

FIGURE 6.48 Variations on the reflectance of a forest canopy by the effect of the obser-
vation angles. (a) The Sun is behind the camera; (b) the Sun is in front (Photo courtesy of 
Don Deering from https://www.umb.edu/spectralmass/terra_aqua_modis/modis, BRDF 
Explained, last access November 2015.)
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The λ parameter has been included to indicate that BRDF is also wavelength depen-
dent, or that the differences in the direction of observation will not have the same 
effect in all spectral wavelengths and is more pronounced at shorter wavelengths, 
such as in the visible in the case of vegetation (Sandmeier and Itten 1999). One can 
highlight BRDF effects more by dividing the directional reflectances by their cor-
responding nadir view observation:
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where ANIF is the anisotropic factor that measures reflectance variations relative 
to the nadir view direction. Some examples of anisotropic factors are included in 
Figure 6.50 in the case of herbaceous cover. One can see very different directional 
effects, depending on the wavelength. In the high absorption bands (B, G, and 
R), there is a strong directional component, with the higher intensities at angles 
closer to the vertical and also when observed in the backscatter direction (Sun 
backward). On the other hand, the NIR and SWIR bands have less marked direc-
tional effects.

To make bidirectional corrections to an image, the BRDF signatures of each land 
cover should be available. This information is not easily accessible, since few sensors 
provide multiangular observations. Most of the available studies are based on field 
goniometer data (Sandmeier and Itten 1999), but recent measurements by MISR or 
POLDER are very useful in this regard. In addition to performing the correction of 
nonvertical observations, the BRDF is very useful for retrieving relevant information 
of a particular cover, such as vertical structure or composition.

Since the BRDFs are not available, operational corrections of the angular effects 
need to rely on simplified models. In the case of AVHRR images, a simple correction 
based on a physical model was proposed by Dymond et al. (2001), which estimates a 
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FIGURE 6.49 Angles involved in the calculation of the BRDF.



248 Fundamentals of Satellite Remote Sensing: An Environmental Approach

standardization factor of the reflectance, assuming reference observation conditions 
(vertical view and a 45° solar zenith angle). The conversion was based on

 r̂ jr=  (6.61)

where
r̂ is the normalized reflectance
ϕ is the conversion factor
ρ is the observed reflectance

The ϕ factor is computed differently for the R and NIR for AVHRR (bands 1 and 
2, respectively). The authors of the method (Shepherd and Dymond 2000) suggest 
computing this factor from the following relationships:
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and
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FIGURE 6.50 Anisotropic graphs calculated from radiometric measurements obtained 
with a field goniometer over a grass cover. (Adapted from Sandmeier, S.R. and Itten, K.I., 
IEEE Trans. Geosci. Remote Sensing, 37, 978, 1999; Courtesy of Stefan Sandmeier.)
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where
θi and θe indicate the incident and reflection angle of the signal to be corrected
θi0 and θe0 are the angles corresponding to the reference direction of observation 

(usually 45° and 0°, respectively)
α and α0 are the phase angles (the ones formed by the solar rays with respect to the 

position of the sensor, that is, the azimuth difference between the Sun and the 
sensor) of the signal to be corrected and the reference direction of observation 
(in this case 45°)

The term H considers the multiple reflections in the interior of the vegetation canopy 
and can be calculated as
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for each of the angles considered (incident and reflection angle, for the detected 
signal as well as the reference). The rest of the parameters, namely, w, a, and k, 
are dependent on the observed cover and are calculated from their BRDFs. If they 
are not available, w can be estimated from the leaf reflectance (ρ; w = 2ρ), and a 
and k from a regression analysis from data proceeding from two different orbits of 
the AVHRR over the same zone (i.e., taken with different angles), minimizing the 
residuals (Ri) in the following expression:
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where ρa and ρb are the reflectances of a given cover extracted from two AVHRR 
images (a and b) taken with different angles.

Figure 6.51 shows an example of the importance of these directional effects in 
NOAA-AVHRR images. It includes a series of reflectance values for bands 1 and 
2, extracted from an area covered by evergreen forest, as well as the corresponding 
solar angles at the moment of acquisition. All of them are from images of the diur-
nal pass of the NOAA-16 acquired between 13:00 and 14:22 GMT. The dependence 
of the azimuth angle is quite clear, and a cyclic tendency of the reflectance closely 
related to the cyclic orbit of the satellite is observed.

For MODIS data, angular reflectance corrections are routinely derived using a 
BRDF model. The corrected reflectance is a standard product of the MODIS pro-
gram (termed MOD43: Román et al. 2009; Schaaf et al. 2002).

6.7.4 CalCulation of teMperature

Temperature is a critical variable to understand the Earth system, affecting both 
ocean and land processes. Location of ocean currents and blooms, evapotranspira-
tion and crop’s water demand, ice and glacier melting, and vegetation productivity are 
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associated with temperature changes. Climate studies commonly use air  temperature 
to understand and monitor those processes. EO satellite retrievals of temperature are 
based on surface or radiant temperature, which are linked to thermal status of the 
upper part of the ground surface.

To calculate radiant temperature from EO sensors, first DLs are converted to radi-
ances. Since radiance in the thermal infrared (10–12 µm) has little influence from the 
Sun’s incoming energy, the energy detected by the sensor is considered as coming 
directly from the ground, and therefore Sun angles are not considered in this case. 
The radiance received at the sensor (Lsen) is the result of the flux emitted by the 
ground (Lg), minus the energy absorbed by the atmosphere, plus a minor emission 
of the atmospheric constituents. From the detected radiance, one can compute the 
temperature based on Planck’s radiation law (Equation 2.8), which assumes that the 
radiant object is a blackbody. Since real covers are not blackbodies, we additionally 
need to estimate the emissivity to obtain an accurate estimation of the surface tem-
perature (Figure 6.52).

Several models have been proposed to take into account both atmospheric and 
emissivity corrections. Methods have been derived for images from NOAA-AVHRR 
(Coll and Caselles 1997), Landsat TM (Sobrino et al. 2004), ATSR (Sobrino 2000), 
MODIS (Wan et al. 2002), geostationary satellites (Trishchenko 2006), and, more 
recently, the Landsat 8 thermal infrared sensor (TIRS: Jimenez-Munoz et al. 2014).

Since the AVHRR has a long historical series of data, the illustration of the pro-
cess to compute surface temperature will be based on this sensor.

As in the case of reflectances, the first step in the calculation of temperatures is 
to convert the DLs into radiances. From radiances, brightness temperatures can be 
computed from the inverse of Planck’s equation (Kidwell 1991):
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FIGURE 6.51 Temporal daily series of reflectance values extracted from AVHRR bands 
1 and 2. Azimuth and Sun zenith angles are included to observe their effect on the signal 
detected by the sensor.
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where
T * is the brightness temperature in K (also termed T at ToA) for a given radiance 

value L, and corresponds to the central wavelength of the thermal band under 
consideration (ν in cm–1)

c1 and c2 are constants (c1 = 1.1910659 × 10−5 mW m−2 sr−1 cm−4 and c2 = 
1.438833 cm K)

Brightness temperature refers to the thermal values at the ToA, assuming the emit-
ting surface is a black body (emissivity = 1).

The main gas affecting atmospheric transmissivity in the thermal bands is water 
vapor, particularly in the 10–12 µm region, while CO2, O3, and N2O contribute also 
to absorption in the range 4–5, 9–10, and 14–16 µm. Atmospheric correction of ther-
mal wavelengths is commonly based on the differences in brightness temperatures 
of two adjacent bands. These methods are known as split window algorithms, since 
at least two bands in the TIR window are needed. The generic equation for this type 
of correction is (Li et al. 2013)

Lg = f(T, ε)

Lsen= f(Lg * τ +La)

Atmosphere

FIGURE 6.52 Schematic retrieval of surface temperature.
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T a a T a T Ts i i j

* * * *= + + -( )0 1 2  (6.67)

where
Ts

* is the ground temperature
Ti

* and Tj
* are the brightness temperatures in two contiguous bands of the spectrum

Coefficients a0, a1, and a2 are coefficients that depend on the spectral response 
function of the two thermal channels, the emissivities, and the atmospheric 
composition (particularly water vapor)

Other authors have proposed similar equations for biangular observations, that 
is, the acquisition of the same TIR band but with two different angles, as in the 
ATSR.

One of the proposed forms of the split window method, valid for middle latitudes, 
is (Coll et al. 1994)

 
T T T T T Ts

* * * * * *1 0.58= + + -( )( ) -( )4 4 5 4 5  (6.68)

where
Ts

* is the brightness temperature on the surface
T4

* and T5
* are, respectively, the brightness temperatures of bands 4 and 5 for the 

AVHRR

The last step for obtaining the surface temperature would be to include the emis-
sivity correction that assesses the radiative efficiency of a determined surface. The 
importance of this factor is incorporated in the following equation:

 T Ts s= + + - -* 0.51 40 (1 ) 75e eD  (6.69)

where
e corresponds to the average emissivity of a pixel in bands 4 and 5 of AVHRR
∆ε is the difference of emissivity for the same pixel in those two bands 

(∆ε = ε4 − ε5)

Emissivity of marine water varies with the observation angle and wind velocity, 
being 0.987–0.991 in the 10–12 µm channel at ±25° from nadir (Niclòs et al. 2005). 
For land applications, emissivity is more complex to obtain, as the surface may be 
covered by different materials with very diverse emissivity values. Since land cover 
is not available in many cases or it changes throughout the year (i.e., seasonal varia-
tion of vegetation covers), emissivity estimation may be estimated by assuming that 
a pixel is covered either by soil or vegetation, calculating an average emissivity as 
a function of the proportion of surface occupied by these two covers. To estimate 
these proportions, Valor and Caselles (1996) suggested a method based on the R and 
NIR reflectances of the same sensor, acquired simultaneously with the thermal chan-
nels. They estimate the pixel proportion occupied by vegetation from the normalized 
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difference vegetation index (NDVI), which will be discussed in Chapter 7, and the 
minimum and maximum greenness detected in a sufficiently long series of images:
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where
NDVImax and NDVImin correspond to the values of vegetation indices observed as 

a maximum and minimum vegetation cover, respectively
k is a normalization factor, given by
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2 1s s

 (6.71)

ρ2v and ρ1v being the reflectances of vegetation in bands 2 and 1 of the AVHRR, 
respectively, while ρ2s and ρ1s are the reflectances of the soil in the same channels.

From these proportions of green cover, the emissivity of each pixel can be calcu-
lated, by multiplying that proportion by the average emissivity of vegetation (εv = 0.952 
for dry grass, 0.983 for trees, and 0.985 for green grass and shrubs; an average global 
value of 0.985 can also be applied) and the rest by the average emissivity of the bare 
soil (εs = 0.968 for sandy soil, 0.972 limy soil, and 0.974 for clays; here the average 
value would be 0.96). In this way, we would have (Caselles and Sobrino 1989)

 e e - e e= + +v v vP P d( )1 s  (6.72)

and

 De De - De De= + +v v vP P d( )1 s  (6.73)

The terms dε and d∆ε evaluate, respectively, the effects of the cavity on ε and ∆ε, and 
can be determined from the geometric characteristics of the plants, although they have 
only a very small contribution (values vary from 0.004 to 0.0025 for the most common 
vegetation covers). Other methods to estimate the emissivity are based on field or lab 
measurements on empirical relationships, inversion techniques, day/night temperature–
independent indices, and two temperature methods, among others (Li et al. 2013).

6.8 IMAGE FUSION METHODS

As we reviewed in Chapter 3, the interpreter of EO data has nowadays access to 
images with a wide range of spectral, spatial, and temporal resolutions. Many envi-
ronmental phenomena are scale dependent, meaning that their characteristics vary 
depending at which level of spatial detail they are analyzed. For this reason, analyzing 
the same phenomenon at different spatial scales provide interesting insights to better 
understand its impacts. In addition, even though many environmental problems are 
global, they need to be studied at fine spatial detail as well. In this framework, scaling-
up methods are required to integrate knowledge that is generated at different spatial 
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resolutions. For instance, a better estimation of evapotranspiration flows requires 
understanding in detail mechanisms of water exchange between the soil–plant system 
and the surrounding atmosphere, as well as knowing the impact of landscape compo-
sition (species mixing, canopy cover), and the interactions of landscapes and biomes.

The integration of data and products at different spatial scales is greatly benefited 
by using fusion methods. The general definition of fusion is the generation of hybrid 
products by combining images acquired at different spatial resolutions, generally from 
the same spectral bands. The most common approach to image fusion has been the 
generation of improved resolution images by combining the multispectral and pan-
chromatic bands of the same or different sensors (Pohl and Van Genderen 1998). As 
reviewed in Chapter 3, different EO missions include sensors that acquire simulta-
neously images from different spatial resolutions. For instance, the first SPOT satel-
lites included a multispectral camera that acquired images at 20 m resolution and a 
panchromatic camera that acquired images at 10 m. Landsat 7 ETM+ had a similar 
system with 30 and 15 m, respectively, which is the same configuration as the new 
Landsat 8 OLI. The higher-spatial-resolution satellites (QuickBird, IKONOS, GeoEye, 
etc.) included similar sensor systems, which are able to acquire simultaneous images at 
0.5–1 resolution in panchromatic mode and 2–4 m in the multispectral mode.

Fusing images acquired at two different pixel sizes implies the integration of 
the spatial detail provided by the panchromatic image and the spectral information 
included in the multispectral one (Bruzzone and Serpico 1998; Pellemans et  al. 
1993). Different methods have been proposed to carry out this merging. They can 
be grouped in two categories: those using algebraic operations and those based 
on image transformations. Before applying any fusion technique, the multispectral 
image needs to be resampled to the panchromatic resolution, so the number of pix-
els in both sets of images is the same. This can be easily done by reduplicating pix-
els in the multispectral image or interpolating them using nearest neighbor or cubic 
convolution algorithms (similar to those commented in Section 6.6.3.3). In addition, 
a radiometric equalization between the panchromatic and multispectral histograms 
may be carried out to improve color matching.

Algebraic methods rely on creating synthetic images by combining the panchro-
matic and multispectral images using simple mathematical operations. An example 
of this approach is the high-pass filter modulation method (Zhang and Moore 2015):
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where the output DL in band k is the result of multiplying the multispectral input 
data for that band (DLms,k) by the high-pass information of the panchromatic image, 
resulting from dividing the original data (DLp) by the low-pass filtered (DLLP, p).

The second group of fusion methods is based on image transformations, which 
create new images from the original spectral bands by maximizing the statistical 
or spectral contrast between input bands. We will comment on some of these trans-
formations in Chapter 7, but here we should mention one of the most commonly 
used, which is the intensity, hue, and saturation (IHS) (Carper et al. 1990). This is 
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an alternative way of representing colors. Instead of using the composition of the 
three primary colors (RGB) in the IHS space, each color is defined by its physi-
cal properties. Intensity refers to the brightness or average reflectance, hue to the 
dominant radiant wavelength, and saturation to the color purity, that is, the degree 
of combination with other tones. The IHS space represents the colors in a hexacone, 
where the length is the intensity, the angular direction the hue, and the proximity to 
the hexagon center the saturation (Figure 6.53).

Different algorithms have been proposed to convert the RGB to the IHS space 
(Pellemans et  al. 1993). The user needs to select which spectral bands and with 
which color assignment will be used for the color composite. In the case of image 
fusion, the three bands to be merged should have a similar spectral range to the one 
covered by the panchromatic image. In the case of the Landsat or SPOT sensors, this 
implies selecting the NIR, R, G color composite, since the SWIR is not commonly 
covered by the panchromatic channel. The process starts by computing the three 
IHS components from the RGB space. Then the I channel is assumed to include the 
spatial variation of the image, while the H and S channels include mainly the spec-
tral variation. Therefore, the I channel is replaced by the panchromatic image, and 
afterward the inverse transformation is computed (IHS to RGB) to obtain the new 
color composite. The new image should have a similar (ideally the same) color infor-
mation of the multispectral bands and the spatial details of the panchromatic one.

Figure 6.54 includes an example of image fusion with the Landsat OLI image of 
Tucson. The new image shows much more spatial detail, particularly evident when 
objects are observed at larger scales, such as narrow roads, airport buildings, or veg-
etation features.

More elaborate methods to merge images of different resolutions are available in 
the research papers, the frequency transformations (Fourier and Wavelet analysis) 
being among those providing better results (Garguet-Duport 1997; Lillo Saavedra 
and Gonzalo 2006; Yocky 1996). Fusion techniques can also be used for other pur-
poses, such as integrating information acquired by sensors working in different 
spectral regions or at very different spatial resolutions. For instance, radar and opti-
cal data can be merged for vegetation mapping (Simard et al. 2008), or active lidar 
and passive optical data for mapping forest parameters (Garcia et al. 2011b). In recent 
years, the growing availability of medium-resolution images (Landsat, SPOT, DMC, 

Red

Green

Yellow White

Cyan

Black Blue

Red

Hue

Intensity

Green

Yellow

White

Cyan

Magenta

Blue
Black SaturationMagenta

FIGURE 6.53 Color representation using the RGB and the IHS color spaces.
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(a)

(b)

FIGURE 6.54 (a) Original multispectral (left) and merged (right) image of the Tucson OLI 
image, showing the impact of the fusion process. (b) Detail window that shows the original 
(up) and merged (down) images in the area surrounding the Tucson international airport.
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Sentinel-2) has made their use more common in continental or even global studies, 
by fusing them with coarse-resolution sensors, such as MODIS-VIIRS, SPOT-VGT, 
or AVHRR data (Boschetti et al. 2015; Iverson et al. 1989).

6.9 REVIEW QUESTIONS

 1. Raw digital levels in a remote sensing image are a numeric translation of
 a. Emittance
 b. Radiance
 c. Reflectance
 d. Radiant intensity
 2. The image histogram provides relevant information on
 a. Spectral resolution
 b. Average conditions
 c. Variability
 d. Both average conditions and variability
 3. When two bands have a high correlation, the interpreter should
 a. Accept the one with higher variance
 b. Reject both
 c. Accept both
 d. Accept the one with lower variance
 4. Contrast stretch in a digital image involves
 a. Applying spatial filters
 b. Creating noncorrelated images
 c. Adjusting image histogram
 d. Transforming image geometry
 5. Which of the following operations is most relevant for image enhancement?
 a. Emphasize spatial features
 b. Blur spatial features
 c. Apply atmospheric correction
 d. Apply geometric correction
 6. What is the main purpose of digital filters?
 a. Enhancing spatial contrast
 b. Color stretching
 c. Histogram normalization
 d. Color composites
 7. When the size of the filter window increases
 a. The filtering is more intense
 b. The filtering is less intense
 c. The color contrast is more evident
 d. The histogram is stretched
 8. Which one of these problems is not accounted for in orbital corrections?
 a. Earth’s curvature
 b. Satellite orbit
 c. Terrain characteristics
 d. Panoramic distortion
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 9. The geometric correction of a digital image is assessed using
 a. Training fields
 b. Ground control points
 c. Ground test points
 d. Image variance
 10. Which one of the following geographical features would not be suitable as 

a ground control point?
 a. A road crossing
 b. A river and road crossing
 c. A lagoon
 d. A road and trail crossing
 11. Which interpolation method can be used with thermal images?
 a. Nearest neighbor
 b. Bilinear interpolation
 c. Cubic convolution
 d. All of the above
 12. The calculation of simplified reflectance does not consider
 a. Sensor calibration
 b. Atmospheric effects
 c. Solar angles
 d. Solar irradiance
 13. The dark-object method for atmospheric correction identifies a low-

reflectance image area with
 a. Atmospheric scattering
 b. Diffuse radiance
 c. Atmospheric transmissivity
 d. Ground reflectances
 14. Which one of the following processes does not require atmospheric 

correction?
 a. Classification
 b. Relationship with spectroradiometer measurements
 c. Computation of spectral indices
 d. Multitemporal comparisons
 15. A key parameter to obtain surface temperature from satellite data is the 

estimation of
 a. Solar angles
 b. Atmospheric scattering
 c. Emissivity
 d. Day of acquisition
 16. When merging two images for creating hybrid resolution outputs, the user 

should first
 a. Ensure that both have atmospheric correction
 b. Ensure that both have the same frame and pixel size
 c. Perform image enhancement.
 d. Adjust the histograms of both images
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7 Digital Image 
Processing (II)
Generation of Derived 
Variables

A very important use of satellite remote sensing is the generation of spatially con-
tiguous, thematic information and inventories of the Earth’s surface, along with the 
detection of land cover changes. This chapter presents methods to retrieve different 
parameters from the primary variables detected by Earth observation (EO) sensors.

In the first decades of EO satellites, information obtained from satellite images 
was restricted to thematic maps (e.g., land covers) using different classification tech-
niques. Even though this approach still attracts great interest, it is quite reduction-
ist and does not take full advantage of the quantitative measurements acquired by 
EO sensors. We have reviewed in Section 4.2 other possible approaches to image 
interpretation: conversion to biophysical measurements to estimate a continuous-
scale variable, such as fractional vegetation cover or leaf moisture content, and 
analysis of multitemporal trends and spatial patterns as monitored by satellite data. 
We will explain in this chapter different processing techniques that facilitate those 
approaches. First, the extraction of continuous biophysical variables is reviewed, 
then various classification schemes are discussed, also techniques for temporal anal-
ysis are reviewed, and finally different possibilities of extracting spatial information 
are presented.

7.1 GENERATION OF CONTINUOUS VARIABLES

Satellites can uniformly sample entire landscapes and regions with spatial coverages 
that are largely unobtainable with field measurements on the surface. By transform-
ing such satellite measurements into certain biophysical or biochemical param-
eters, a comprehensive spatial distribution of a certain variable can be retrieved. 
In this regard, satellite observations complement existing ground sensor networks. 
Commonly, ground sensors provide a very sparse spatial observation, but highly 
frequent (seconds to minutes), while satellite data are spatially continuous with long 
temporal gaps (hours to days). This is the case of meteorological stations, which can 
measure temperature or rainfall at short intervals but with low density (one observa-
tion every cent or thousands of square kilometers), while satellite thermal or micro-
wave information can estimate these variables every few hours to days at a relatively 
high spatial resolution (1–10 km2). The two sets of measurements complement each 
other and provide a more accurate representation of how temperatures are spatially 
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distributed and how they change with time, thus improving our understanding of 
 surface–climate interactions in a region. The coupling of satellite measurements 
with ground-acquired measurements will be discussed in more detail in this chapter, 
as well as in Chapter 8 dedicated to validation methods.

7.1.1 induCtive and deduCtive ModelS in reMote SenSinG

Biophysical variables that can potentially be derived from remote sensing measure-
ments are numerous. The basis for this estimation relies on the physical relationship 
that links the surface properties with the radiance detected by the sensors. A distinc-
tion between surface properties that are directly measurable by satellite sensors and 
those that are inferred or derived indirectly can be made in this regard. The for-
mer are primary variables, and the latter are secondary variables (see Section 4.1.1). 
Primary variables include the following:

• Spectral radiances in the whole spectrum
• Spectral reflectance in the solar reflective spectrum (bands in the vis-

ible [VIS], near-infrared [NIR], and shortwave infrared (SWIR) spectral 
regions)

• Land surface temperature (ST) in the thermal infrared (TIR) region
• Surface backscatter coefficients in the MW region
• Heights, from optical stereoscopy, radar interferometry, or lidar measurements

EO images can also be used to estimate biophysical variables derived from the pri-
mary acquired ones. Many of these variables are critical to our understanding of 
environmental change and landscape processes. Examples of variables that have been 
obtained from remote sensing satellite data include chlorophyll and water content in 
plant canopies, leaf area index (LAI), fraction of absorbed photosynthetically active 
radiation (fAPAR), soil moisture, sediments suspended in water, ozone or aerosol 
density in the atmosphere, surface albedo, evapotranspiration (ET), and marine ice 
thickness. Estimating these variables requires developing empirical, semiempirical, 
or physical models that relate the target variable with primary variables detected by 
the sensor. Auxiliary information, such as elevation or climatic products, may be 
used in combination with EO images to control some of the external parameters and 
obtain better estimations.

Any physical or empirical model should be based on a theoretical relationship 
between the parameter being estimated and the radiances measured by the sensor. 
For example, green vegetation cover can be estimated from red (R) and NIR reflec-
tances, since vegetation pigments will absorb the R radiance, while green leaves are 
highly reflecting in the NIR. This behavior is pretty unique, and therefore a combina-
tion of R and NIR bands can be used to estimate the density of vegetation cover. The 
specific amount, however, requires models to convert reflectance to the proportion 
of cover. These models may be empirically derived, that is, generated for a particular 
site by taking ground measurements simultaneously with satellite acquisitions, or 
may be based on deductive models that are based on physical relations (Figure 7.1).
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Inductive or empirical models fit a numerical relationship between the parameter 
to be estimated and the satellite measurements (raw data, radiance, or reflectance 
units), based on in situ observations taken at the time the image is acquired. In other 
words, the satellite image data is calibrated with the surface parameter of interest 
by means of local fits, usually based on regression techniques (Chuvieco et al. 2004; 
Koutsias and Karteris 1998; Morisette et al. 2005; Silva et al. 2004). There have also 
been adjustments using neural networks (Baret 1995; Fang and Liang 2003). In both 
cases, the equations are locally based, are simple to derive, and generate results of 
known accuracy. The main disadvantages of the inductive, or empirical, approach 
are that it requires field measurements simultaneously with the acquisition and the 
results only have local applicability, thus limiting their extension to other areas with 
different surface and observation conditions, as well as to different time periods and 
other sensors.

Deductive or theoretical models try to establish general relationships between the 
required parameter and satellite measurements. Therefore, the utility of the model 
extends beyond a single site, specific image, or specific time period (Strahler et al. 
1986). There are many examples of land surface bidirectional reflectance models 
that describe how soils and plant canopies scatter radiation (Asner 2000; Gao et al. 
2003; Verhoef and Bach 2003). Canopy reflectance models such as scattering by 
arbitrarily inclined leaves (SAIL) model physically the radiative transfer in the can-
opy as a function of vegetation structural properties, biophysical variables, and the 
optical properties of vegetation elements and soil (Goel 1988; Jacquemoud 1990; 
Verhoef 1984; Verhoef and Bach 2003). There are lidar-based models to retrieve 
canopy heights and estimate forest biomass (Nelson et al. 2000) and chlorophyll and 
canopy water content models (Zarco-Tejada et al. 2003, 2004). The surface energy 
balance algorithm for land (SEBAL) was developed to estimate ET from satellite 
data inputs of land ST and vegetation cover. Once the relationships are verified with 
some empirical test data, the physical models can be inverted to retrieve the bio-
physical parameters (e.g., LAI) from the surface reflectances contained in an image 
(De Santis and Chuvieco 2007). Remotely sensed data are increasingly being used 
in land surface atmosphere and climate models (Chuvieco 2008).

Physical models also have their limitations in their attempts to simplify highly 
complex land cover structures. As a result, many assumptions are made to simplify 
the real complexity, for instance, a uniform single- or two-layer vegetation canopy, 
an isotropic distribution of leaves, a flat surface, a Lambertian reflectance, and a cer-
tain soil background. For these reasons, physical and theoretical models are in con-
stant need of being tested and constrained by actual data and observations in order 
to discover their weaknesses and inaccuracies and to improve their performance to 
be more comparable to the real world. However, even if the relationship between the 
estimated variable and the spectral data is consistent, it may not be easy to retrieve 
the variable because of extraneous influences that hinder or prevent a model inver-
sion (Combal et al. 2002; Yebra et al. 2008). In spite of these difficulties, the deduc-
tive modeling approach is much stronger and is preferred to the inductive approach 
for the estimation of biophysical variables from remote sensing because such models 
are more extendable in space and time and they do not require simultaneous field 
data to be acquired with the satellite data.
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There are also many intermediate approaches that involve both theoretical and 
empirical approaches, sometimes labeled as semiempirical models. These models 
assume a previous physical modeling of the estimated variable, but with empiri-
cal adjustments made by local regressions. An example of this is the model by van 
Leeuwen et al. (1994), who used local, site-based field measurements at the Hydrologic 
Atmospheric Pilot Experiment (HAPEX) field campaign to adjust and fine-tune the 
retrieval of biophysical parameters from the SAIL model. Other examples involve the 
use of vegetation indices (VIs) with an already demonstrated theoretical relationship 
with the variables being estimated (Danson et al. 1995). Neural nets and support vec-
tor machines (SVMs) may also be considered in this mixed class of retrieval methods, 
since they are essentially inductive machine learning techniques (Yang et al. 2007).

Given the introductory nature of this book, we will not review in detail the deriva-
tion and inversion of the large variety of physical models published in the literature. 
Instead, we will discuss and illustrate more about how these models are incorpo-
rated into satellite data processing workflows to generate biophysical products. In 
this section, we include the generation of image products from principal component 
analysis (PCA), spectral VIs, spectral mixture analysis (SMA), and advanced satel-
lite products. For most of these image products, we assume that the original data or 
digital numbers of the image have been converted into physically calibrated radi-
ances, reflectance units, or temperatures. These are essential prerequisite steps for 
model implementation in the retrieval of surface physical and biological variables 
useful in land surface characterization. This facilitates spatial and multitemporal 
comparability across different land surfaces and different time periods, and further 
enables integrated analysis among images from different sensors.

Spectral measurements made over terrestrial surfaces often can be treated as 
spatially variable mixtures involving two or more surface-reflecting features. The 
Earth’s surface is rarely spectrally pure but contains complex vegetated canopies 
with leaves, stem, bark, litter, water, and soil background. Each of these surface ele-
ments, in turn, will have a certain portion illuminated directly by the Sun (sunlit) and 
a shaded portion that is primarily illuminated by diffuse or sky radiation in a manner 
dependent on canopy structure and the Sun–surface–sensor observation geometry. 
Over 75% of the Earth’s terrestrial surface consists of open canopies (deserts, grass-
lands, savannas, open forests, etc.) with vegetation overlying significant amounts of 
exposed soil, litter, and even understory vegetation that will contribute to the overall 
spectral signal detected by a satellite sensor. These vegetated surfaces will further 
vary seasonally and with land cover disturbance. Resolving the presence and amount 
of the individual surface features, elements, and physical variables from the spectral 
information content present in satellite imagery is the primary objective of thematic-
based digital image analysis. The extraction of key spectral features, such as range-
land forage, is key to effective natural resource management and for understanding 
hydrologic and biogeochemical processes within ecosystems.

7.1.2 prinCipal CoMponent analySiS

PCA is a well-known mathematical technique for solving multivariate problems 
in the social and natural sciences. The primary objective is to characterize a large 
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group of variables into a new smaller set, without losing a significant amount of orig-
inal information. In the case of remote sensing, this usually involves the analysis of 
multispectral data structures to uncover complex interrelationships among spectral 
features, to discern independent sources of variability, and to compress the spectral 
data by removing redundant spectral information present in the multiband images 
(dimensionality reduction).

The origin of this technique may be traced to the field of psychiatry in the inter-
pretation of human responses in intelligence tests. PCA was used to uncover an 
underlying series of factors that could explain the complex multivariate responses 
found within certain groups of variables. PCA is also widely used in the interpreta-
tion of complex multivariate data sets in the fields of chemistry and optics. A pri-
mary benefit of this approach is the ability to separate the multivariate data into 
independent sources of variability, which in linear combination can reconstitute the 
original data with minimal loss of information.

When the image has numerous spectral bands, they frequently contain redun-
dant information either because those bands are in similar spectral regions or 
because some features have similar radiances across spectral regions. PCA allows 
us to remove the redundancies found in a spectral data set. This technique outputs a 
smaller data set from multiple bands, with minimal loss of original information. This 
is accomplished through a least-squares mathematical method called eigenanaly-
sis, which decomposes the image spectral data into a new set of abstract eigenvec-
tors with associated eigenvalues. This transformation is very useful, for instance, in 
selecting the three most suitable bands for a color composite (Green et al. 1988), or 
in change detection analysis of multitemporal data (Adams et al. 1995; Fung and 
LeDrew 1987).

On the other hand, and from a merely statistical point of view, PCA facilitates 
a first interpretation of image variability identifying the axes of variation, which 
allows one to identify those characteristics that are gathered in most of the bands 
and those that are specific to some group. Therefore, it provides a better distribution 
of the data, as opposed to those axes of variability, and can facilitate a more accurate 
identification of the different covers.

As is well known, the direction and strength of the linear correlation between 
two variables can be graphically represented in a bivariate axis plot. In our case, 
the cloud of points plotted indicates the location of the digital levels (DLs) or reflec-
tances in the two bands considered. The ellipse that limits these points graphically 
expresses the strength of the correlation between the two bands. The more it resem-
bles a straight line, or in other words, the greater contrast between the two axes of 
that ellipse, the greater the correlation. In Figure 7.2, there is a high positive cor-
relation with two axes of variation: the first in the sense of the correlation (A) and 
the second in the sense of the residual (B). It is worth considering that this second 
component is perpendicular to the first, which indicates in statistical terms that the 
principal components are not correlated and that the information each one contains 
is unique.

Graphically, one can see that a rotation of X, Y axes toward the A, B directions 
will improve the original disposition of the data and probably also the separation 
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between the homogeneous groups of DLs in the image. That rotation is obtained 
simply by applying a function of the type

 PC a DL a DLi i k k1 1 1= +  (7.1)

where PC1 indicates the value corresponding to the first principal component, 
obtained from the DLs (or reflectances) of bands i and k. From the geometric point 
of view, this new axis is only a rotation of the original ones (Figure 7.2). Sometimes, 
it can be useful to accompany the rotation with a displacement of the axes, locating 
the origin of coordinates at the resulting minimum values of the two bands. In doing 
so, a constant term should be added to the previous equation.

In more general terms, the principal components of an image are obtained according to

 

PC a DL Rj i, j i j

i p

= +
=
å

1,

 (7.2)

where
PCj indicates the DLs corresponding to principal component j
ai,j is the coefficient applied to the DLs of band i to generate the component j
Rj is a constant that is usually introduced in each component to avoid negative 

values

There are as many components (p) as bands, but they are extracted in such a way that 
only the former have significant information.
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FIGURE 7.2 Process of obtaining principal components.
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In simple terms, PCA can be summarized by the following steps. From the 
variance–covariance matrix of the original image, the eigenvalues for each of the 
components (λj) are extracted. The eigenvalues express the length of each of the new 
components and, consequently, the proportion of original information they retain. 
These data are useful in deciding which PCs are more interesting: they are usually 
those that retain the greatest amount of original information. The PCs are obtained 
in such a way that the eigenvalue decreases progressively from the first to the last 
ones, since the objective is to maximize successively the variance extracted in the 
analysis. The original variance explained by each component is calculated as the 
proportion of its eigenvalue, as opposed to the sum of all the eigenvalues:

 

Vj =
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 (7.3)

with p being the total number of components.
To be able to interpret the meaning of the new variables (the principal compo-

nents), we need to know their relationship with the original ones (the input bands). 
Similarly, to calculate the equations that will help obtain the new images, the coef-
ficients of the transformation are needed. Both aspects can be deduced from the 
eigenvectors. The eigenvector indicates the weighting that must be applied to each of 
the original bands to obtain the new PC (ai,j in Equation 7.2). Briefly, it is equivalent 
to the regression coefficients in a standard linear transformation, the bands of the 
image being the independent variables and the PCs the dependent variables.

From the eigenvectors, the matrix of correlation between the PC and image bands 
is calculated, which allows us to know the spectral direction of these components. 
To do this, we must apply
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where
ri,j indicates the correlation coefficient between the component j and band i
ai,j is the eigenvector of that component in the same band
λj is the eigenvalue of the component j
si is the standard deviation of band i

The last step is to obtain an image of the principal components using Equation 7.2. 
Once the image of the PCs is obtained, they can be represented in black and white 
or in color, enabling a new visualization of the study zone. To do this, we must scale 
the results to the most common range in visualization equipment (0–255). A simple 
method of carrying out this process would be to take a small sample of the resulting 
values in order to estimate the maximum and minimum values, and then apply some 
of the procedures to increase the contrast as previously mentioned (Section 6.5.1).

In order to illustrate the utility of the PCA in digital image interpreta-
tion, this technique was applied to the Tucson image that we used in Chapter 6. 
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The variance–covariance matrix for the seven bands of the image was computed 
(Table 7.1). The eigenvalues of the image were calculated on that matrix after per-
forming a standardization, in order to reduce the effect of the different variabilities 
between bands. The eigenvalues (λj) extracted were 4477.44, 613.23, 112.82, 42.29, 
14.77, and 4.38. Following Equation 7.3, the original variance associated with each 
of these components can be calculated as 85.04% for the first component, 11.65% for 
the second, 2.14% for the third, 0.8% for the fourth, 0.28% for the fifth, and 0.08% 
for sixth. According to these percentages, only the first three components would be 
selected, as they retained a total of 98.83% of the original variance of the image.

The spectral meaning of these components can be obtained from the eigenvector 
matrix (Table 7.2). In this case, the first component is a weighted average of all the 
bands and provides information on the general brightness of the image. The second 
component shows a contrast between NIR and SWIR bands and the visible ones, 
and seems more related to soils and building materials. Finally, the third component 
shows the contrast between the VIS and SWIR reflectance, which may be associated 
with dark objects and shadows.

The images of the resulting PCs seem to confirm this theoretical interpretation 
(Figure 7.3). The first is very similar in appearance to a panchromatic image, with 
low values in the water and vegetation, average values in the built-up areas, and high 
values over bare soils. The second component offers higher values for the urbanized 
area of Tucson, with a clear contrast with agricultural and vegetated areas. Finally, 
the third component displays in brighter tones the darker targets of the image, such 
as volcanic areas, asphalt, and water.

TABLE 7.2
Eigenvector Matrix of the Tucson Image

 B1 B2 B3 B4 B5 B7 λ Variance (%) 

CP1 0.552 0.188 0.465 0.320 0.380 0.444 4477.44 85.04 

CP2 0.285 −0.017 −0.546 0.503 0.385 −0.468 613.23 11.65 

CP3 0.250 −0.847 −0.252 −0.033 −0.063 0.389 112.82 2.14

TABLE 7.1
Variance–Covariance Matrix of the Tucson Image

 B1 B2 B3 B4 B5 B7 

B1 1443.30 

B2 443.07 243.85 

B3 1043.43 414.51 1166.48 

B4 859.79 260.55 503.65 630.02 

B5 999.67 319.26 665.64 664.89 741.61 

B7 1020.65 342.95 1065.25 492.80 642.28 1039.70
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PCA is also a very appropriate technique for multiseasonal analysis when several 
images are used in a single classification. In that case, PCA serves to summarize 
the most significant information of every period. Later, the PCs of every date are 
combined to facilitate a better discrimination of land covers with distinct seasonal 
profiles. Several authors have taken advantage of this technique to perform mul-
titemporal classification (Maselli et  al. 1995; Siljeström and Moreno 1995), or to 
analyze a temporary series of images for global vegetation monitoring (Eastman 
and Fulk 1993). PCA provided in this case, in addition to the general patterns of the 
land covers, very useful residual information for detecting anomalies. Later, a more 
detailed use of the PCA as a technique for change detection between two images 
with different dates will be discussed (see Section 7.3.4.3).

In another context, the PCA has also been suggested as an alternative to merg-
ing data from sensors with different resolutions (Chavez et al. 1991). In this case, 
instead of replacing the SPOT panchromatic channel for the intensity component, 
it is replaced by the first PC, which is the one that gathers the brightness or gen-
eral intensity of the image, returning later to the original variables with the inverse 
transformation. Also, other authors have used this technique to enhance the visual 
analysis of colored composites (Chavez and Kwarteng 1989).

An inherent problem of PCA is the difficulty of establishing an a priori interpreta-
tion of the components, since the transformation is scene dependent. In most cases, 
the first component is an indicator of the general brightness of a scene and the second 
one is related to the greenness in an image (Ingebritsen and Lyon 1985). However, in 
areas of low vegetation cover, the greenness component axis may not show up until 
the third or even fourth component. Actually, this is what happens in the Tucson 
image, which has a sparse vegetation cover, with significant influence of soils and 
lithological changes, and for that reason the greenness component was not found 
among the first three components.

Therefore, general physical rules for the interpretation of images derived from 
PCA cannot be applied. As will be discussed later in this chapter, PCA is a precursor 
step to unmixing techniques (SMA) and generally reveals the level of spectral infor-
mation content, or dimensionality, of an image. In other words, PCA may reveal that 
there are n uniquely reflecting features in an image, and the task of SMA is to iden-
tify these unique landscape elements and assess their relative amounts in each pixel.

PCA1 PCA2 PCA3

FIGURE 7.3 Results of principal component analysis on the Tucson study area.
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A particular application of PCA in the context of processing hyperspectral images 
is named minimum noise fraction (MNF) transformation (Pinzón et al. 1998). MNF 
is used to reduce the dimensionality of hyperspectral data by separating the noise 
in the data. The MNF transform is a linear transformation that is essentially two 
cascaded PCA transformations. The first transformation decorrelates and rescales 
the noise in the data. This results in transformed data in which the noise has unit 
variance and no band-to-band correlations. The second transformation is a standard 
PCA of the noise-whitened data.

7.1.3 SpeCtral veGetation indiCeS

VIs are simple and robust techniques to extract quantitative information on the 
amount of vegetation, or greenness, for every pixel in an image. They typically 
involve spectral transformations of two or more bands, one in the chlorophyll-
absorbing R spectral region (0.6–0.7 µm) and the other in the nonabsorbing NIR 
(0.7–1.1 µm), where there is significant leaf scattering. This feature is quite unique 
to photosynthetically active vegetation, since senescence vegetation tends to reduce 
NIR while increasing R reflectance (Figure 7.4). Soils regularly have little or no con-
trast between the R and NIR bands.

The R and NIR reflectance are combined in spectral VIs to enhance the vegeta-
tion signal while minimizing nonvegetation influences. In contrast to PCA and other 
techniques, VIs are designed to provide information on only one feature in an image, 
namely, vegetation greenness. As a result of their simplicity, VIs have proved to be 
among the most robust techniques in remote sensing, yielding consistent spatial and 
temporal comparisons of green vegetation at local to global scales.

VIs not only are used as a direct optical measure of greenness but are also use-
ful as a proxy measure of biophysical variables, including LAI, fAPAR, green 
vegetation fraction (Fv), biomass, and photosynthesis (Kerr and Ostrovsky 2003; 
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Pettorelli et  al. 2005). The term greenness itself may be defined as a composite 
signal of leaf chlorophyll content, leaf area, canopy cover, and canopy structure. In 
effect, a VI is an “integrator” of many variables that together determine the pho-
tosynthetically active vegetation signal (Baret and Guyot 1991; Huete et al. 2002; 
Myneni et al. 1995). The term greenness recognizes both the strengths and limita-
tions of VIs for directly retrieving specific biophysical variables. On the one hand, 
VIs exhibit high sensitivity to spatial and temporal variations in greenness. On the 
other hand, they generally cannot differentiate between the multiple causes respon-
sible for a change in greenness as, for example, whether variations in the VI signal 
are due to a change in LAI or in leaf chlorophyll content. VIs are constrained in their 
ability to directly retrieve specific biophysical variables since they represent a com-
posite of many vegetation and leaf canopy properties. Nevertheless, for local areas 
and specific land cover types, many have found VIs useful in constructing empirical 
and semiempirical models for the extraction of biophysical vegetation information.

When land surface pixels are plotted in red and NIR space, a triangular pattern of 
points is observed, which may be physically defined by (1) a lower baseline of sub-
strate background spectra (with no green vegetation) that extends linearly outward 
from the origin, commonly known as the soil line (Figure 7.5), and (2) a green apex 
of maximum NIR reflectance and minimum red reflectance, indicative of very dense 
green vegetation. The soil line encompasses bright soil pixels (furthest away from 
the origin), dark soils (closer to the origin), and water (closest to the origin) and is 
defined as

 NIRsoil Redsoil= * +a b  (7.5)

where a and b are the best fit soil line slope and intercept, respectively, for a range 
of soil backgrounds at different stages of wetting and drying, roughness, and 

0

0.15

0.3

0.45

0.6

0.75

0 0.15 0.3 0.45

N
IR

 re
�e

ct
an

ce

Red reflectance

Soil
Corn
Cotton
Wheat
Alfalfa

Soil line
y = 1.098x + 0.0265

R2 = 0.985

Peak vegetation

FIGURE 7.5 Structure of vegetation spectra plotted in the red–near-infrared reflectance 
space. (Courtesy of Alfredo Huete.)



271Digital Image Processing (II)

litter content. Different land cover types and biomes will follow the triangular pat-
tern of pixels in the red–NIR space, but with slightly different soil lines or apices of 
maximum greenness. Note that the majority of pixels will plot inside the triangular 
cloud of spectra, indicating open canopies consisting of soil, water, and vegetation. 
The task of the VI is to quantify the amount of vegetation present, or greenness, in a 
pixel, based on its position in red–NIR space. For example, the closer a pixel is to the 
soil line, the lower will be the amount of vegetation present in that pixel.

There are a variety of ways one can model the cloud of pixels present in the red–
NIR spectral space to estimate greenness or a specific biophysical variable. This has 
resulted in a multitude of VI equations, in which the red and NIR bands are com-
bined differently, including band ratios (Gallo and Eidenshink 1988), normalized 
differences (Tucker 1979), linear band combinations (Crist and Cicone 1984b; Kauth 
and Thomas 1976), and optimized band combinations (Gobron et al. 2000; Huete 
1988; Pinty and Verstraete 1992). Many of the VIs depict similar information and 
may be considered functionally equivalent to each other (Perry and Lautenschlager 
1984), and so here we will discuss only a few examples of the different types of 
VIs available for satellite vegetation studies, namely, the (1) ratio-based indices, as 
in the simple ratio (SR), normalized difference vegetation index (NDVI), and veg-
etation water indices; (2) optimized VIs, such as the soil-adjusted vegetation index 
(SAVI), the global environment monitoring index (GEMI), and the enhanced vegeta-
tion index (EVI); and (3) linear orthogonal indices, which include the perpendicular 
vegetation index (PVI) and the tasseled cap green vegetation index (GVI). Although 
all VIs have been related to some extent with various vegetation canopy properties, 
there are significant differences in how they depict greenness and are, therefore, 
potentially useful and complementary.

7.1.3.1 Ratio-Based VIs
The first VIs were formed by spectral ratioing of the NIR with red band using field 
radiometers (Jordan 1969; Tucker 1979). The greater the amount or vigor of green 
vegetation present in a given pixel, the larger the contrast between NIR and red 
values and the higher the resulting NIR-to-R ratios (Figure 7.6). This index is often 
called the simple ratio:

 
SR NIR

R

= r
r

 (7.6)

where ρNIR and ρR indicate the reflectances of a pixel in the NIR and R bands, respec-
tively. The SR values may be calculated from bands 2 and 1 in the Advanced Very 
High Resolution Radiometer (AVHRR) and MODIS instruments, bands 4 and 3 with 
thematic mapper (TM) and ETM+, bands 5 and 4 with OLI, and bands 3 and 2 in the 
SPOT-HRV, SPOT-VGT, and ASTER sensors.

The SR values in a digital image allow one to separate healthy vegetation from 
soil, snow, mulch, water, and other nonvegetation cover types. The SR values also 
estimate, pixel by pixel, the amount of vegetation present, from sparse to dense foli-
age cover (Figure 7.6). As vegetation undergoes stress (drought, disease, nutrients), 
its NIR reflectance decreases while the red reflectance increases because of lower 
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chlorophyll absorption, thus reducing the overall ratio or spectral contrast of the 
pixels containing the stressed vegetation. A lower NIR/R spectral contrast, how-
ever, may indicate either a lower quantity of vegetation present in a pixel or a higher 
amount of vegetation but in stressed condition. Quite often, the cause of a change in 
the NIR/R ratio may be deduced from additional knowledge such as the temporal 
pattern of SR values, in which, for example, the reduced spectral contrast may be a 
result of less vegetation, senescing vegetation, or vegetation under stress.

Ratios are useful in their ability to reduce many forms of multiplicative noise, 
such as illumination differences, atmospheric attenuation, cloud shadows, and topo-
graphic variations (slope, aspect), all of which influence multiple bands similarly 
and, hence, may be minimized through band ratioing. Ratios, however, are sensitive 
to the soil background underneath vegetated canopies with values that are positively 
biased when soils are dark or wet (Major et al. 1990).

NDVI is a functional variant of the SR, with a dynamic range from −1 to +1:
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or
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SR has no upper bound, since as the denominator approaches zero, the SR value 
would increase without bound, approaching infinity. NDVI is a normalized but 
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functionally equivalent version of the SR. By functional equivalence we mean that 
for any SR value, there can be only one predefined value of NDVI in accordance with 
Equation 7.8 (Figure 7.6). However, note that this nonlinear transformation results in 
NDVI being highly sensitive to low vegetation amounts and sparse vegetation condi-
tions over which the SR is largely insensitive, while the opposite is true for the SR in 
which most of the dynamic range encompasses the high biomass vegetation range, 
with very little variation reserved for the lower biomass regions (grassland, semiarid, 
and arid biomes). Thus, NDVI values from 0 to 0.5 (half the positive dynamic range) 
only translate into SR values from 1 to 3, while the NDVI values from 0.5 to 0.9 
translate into SR values from 3 to 19.

NDVI is successful as a vegetation measure in that it is sufficiently stable to 
permit meaningful comparisons of seasonal and interannual changes in vegetation 
growth and activity. As a ratio-based index, NDVI maintains the benefits of band 
ratios and normalizes multiplicative sources of extraneous noise to produce more 
stable values. Figure 7.7 shows the NDVI of the Tucson image. In spite of the low 
vegetated cover of this region, this VI clearly emphasizes the most vigorous green 
sectors of the city, such as the Reid Park, the irrigated areas near the Santa Cruz 
River, and the numerous golf courses, with the Randolf Golf course in the city 
center being depicted with special clarity. The forested areas of the Santa Catalina 
Mountains to the north of the city and the irrigated fields to the south (Sahuarita 
sector) are also clearly displayed. By contrast, the mining sectors to the south of 
the image and the industrial area near the airport show the darkest tones (lowest 
NDVI values).

FIGURE 7.7 Normalized difference vegetation index of the Tucson OLI image.
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NDVI is used extensively to estimate several biophysical and ecologic variables 
of particular value in landscapes and for global analysis. Among the parameters that 
have been related to NDVI are the following:

 1. LAI, which has a positive relationship with the NDVI, especially at low LAI 
values between 0 and 2. The sensitivity of NDVI to LAI, however, becomes 
increasingly weak with increasing LAI beyond values typically between 2 
and 3, and becomes saturated (Baret and Guyot 1991; Tian et al. 2002).

 2. Fractional vegetation cover, Fv (Carlson and Ripley 1997; Hansen et al. 2002; 
Jiang et  al. 2006). In contrast to LAI, there is a much higher correlation 
between NDVI and percentage of green cover with minimal saturation issues.

 3. Fraction of photosynthetically active radiation absorbed by the plant ( fAPAR), 
given by

 
fAPAR = APAR

PAR
 (7.9)

where
APAR is the absorbed photosynthetically active radiation
PAR is the incident photosynthetically active radiation

  This radiation involves only the VIS portion of the spectrum (400–700 nm), 
and the amount absorbed is strongly related to vegetation productivity. NDVI 
has been shown to be strongly linearly correlated with fAPAR (Asrar et al. 1984; 
Goward and Huemmrich 1992), especially when the leaves are planar and the 
soil substrates are dark (Sellers 1989). In a multibiome study across North 
America, Sims et al. (2006) estimated a global NDVI and fAPAR relationship as

 f NDVIAPAR = *124 0 168- .  (7.10)

 4. Chlorophyll content in the leaf, through direct and linear relationships with 
NDVI (Blackburn 2002; Broge and Leblanc 2001).

 5. Water content in the leaf, through indirect relationships between water defi-
cit and amount of foliage (Yebra et al. 2013b). In addition, VIs, including 
NDVI, have also been found useful in estimating landscape biophysical 
processes, such as photosynthesis, ET, and phenology events.

 6. Net CO2 flux, at local and global levels (Hall et al. 1991a; Tucker et al. 1986).
 7. Gross and net primary productivity of the vegetation, as related to APAR 

through a light use efficiency (LUE) term, specific to vegetation type 
(Sellers 1989; Sims et al. 2006), following

 
LUE

GPP

APAR
=  (7.11)

  where GPP is gross primary productivity (photosynthesis) and GPP and 
APAR are expressed in the same molar units.

 8. ET, related to NDVI directly or through leaf vigor, and leaf water stress 
(Yebra et al. 2013b).
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Global coarse-resolution (8 km resolution) satellite NDVI datasets derived from the 
NOAA-AVHRR have been operationally implemented since 1981 and are routinely 
used for drought monitoring, for assessments of ecosystems and agricultural areas, and 
as key variables in global change studies (Myneni et al. 2002). The Global Inventory 
Modeling and Mapping Studies (GIMMS) and Pathfinder AVHRR Land (PAL) data 
sets are derived from imagery obtained from the AVHRR instrument onboard the 
NOAA satellite series 7, 9, 11, 14, 16, and 17 and have been available since 1981. These 
AVHRR-NDVI datasets have been corrected for sensor calibration, view geometries, 
volcanic aerosols, and other effects not related to vegetation change (Tucker et  al. 
2005). Later, the U.S. Geological Survey made available AVHRR-NDVI datasets at 
1 km resolution over the United States (Eidenshink 2006; Millington et al. 1994).

Annually averaged NDVI time series images, acquired over several years, have 
also enabled improved discrimination of land cover types for use in global land 
cover classifications. These classifications are based on NDVI measurements of 
seasonal phenologic profiles and are supported with ancillary information, such as 
topography, soil maps, and biogeographical data (Hansen et al. 2000; Townshend 
et al. 1991). Phenomena such as desertification and the advance of deserts (Eva and 
Lambin 1998; Tucker et  al. 1991), tropical deforestation (Eva and Lambin 1998; 
Shimabukuro et al. 1994), impacts of forest fires (Chuvieco et al. 2008a), and bio-
mass characterization at continental scales (Goward and Dye 1987) have been stud-
ied effectively with the AVHRR VI images.

The long-term time series NDVI data record has also been recently extended to 
include newer sensor systems such as MODIS and SPOT-VEGETATION (Tucker 
et  al. 2005). AVHRR and MODIS VIs are used in near-real-time and interactive 
monitoring tools for Famine Early Warning Systems (USAID, http://www.fews.net, 
last access November 2015). Zha et al. (2005) used MODIS NDVI to monitor locust 
infestation and outbreaks in East China. MODIS VI data are used for operational 
early warning deforestation detection in the Amazon (Ferreira et al. 2007) and inva-
sive species forecasting systems. An increasing number of natural resource manag-
ers are using web-based geospatial decision support tools that utilize both historical 
and current NDVI data for planning and management decisions.

7.1.3.2 Optimized VIs
Despite the usefulness of NDVI for vegetation studies, as with most remote sensing 
data, it is subject to errors and uncertainties. There are also many disadvantages to 
the use of ratio-based indices that limit their extension, scaling, and use in quantita-
tive studies. These include the nonlinear behavior of ratios, their sensitivity to soil 
background and additive atmosphere influences, and saturation of the NDVI signal at 
moderate to high vegetation densities (Huete et al. 2002; Jiang et al. 2006). Some of 
these influences can be best handled with corrections to the spectral reflectances prior 
to computation of the NDVI, and some of the corrections can be designed into the 
equation itself, based on physical theory. Optimized VIs are an example of the latter 
case, in which the VI equation itself is designed to measure the NIR and red spectral 
contrast of a pixel while removing unwanted nonvegetation or extraneous influences.

The NDVI, although a vegetation measure, also responds to spatial and temporal 
variations in the soil underneath open vegetation canopies, rendering it difficult to 
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reliably distinguish vegetation changes from those caused by the soil. Soils are very 
heterogeneous spatially but vary to a smaller extent temporally (usually through drying 
and wetting events). In field studies, NDVI–biophysical relationships have been shown 
to vary significantly with the brightness of the underlying soil background, with darker 
soils and wet soils resulting in much higher NDVI values (up to twofold) than brighter 
or drier soils for equivalent vegetation conditions (Huete et al. 1985; Figure 7.8).
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FIGURE 7.8 Influence of soil substrate brightness on (a) normalized difference vegeta-
tion index and (b) soil-adjusted vegetation index. (Adapted from Huete, A.R., Remote Sens. 
Environ., 25, 295, 1988.)



277Digital Image Processing (II)

This effect is a result of first-order soil–vegetation optical interactions, which are 
most pronounced over intermediate vegetation amounts. Huete (1988) found that such 
interactions can be approximated with a first-order Beer’s law application, which 
allows the influence of the backscattered soil signal to be removed. Consequently, 
the NDVI equation could be corrected by incorporating a parameter (L) related to 
the differential optical penetration of R and NIR light through a vegetation canopy, 
resulting in the SAVI:

 
SAVI

L
L= -

+ +
+r r

r r
NIR R

NIR R

( )1  (7.12)

where L is the soil adjustment factor. In field experimental studies over agriculture 
crops and grasslands, an L value of 0.5 was found to best model soil influences 
across all vegetation types and amounts (Figure 7.8b). In contrast to NDVI, SAVI 
provides the opportunity to more accurately measure greenness through the use 
of local-, regional-, or global-based soil lines as zero vegetation reference base-
lines. In the case of NDVI, the soil line is simply taken to be NIR = R (slope = 1, 
intercept = 0, and NDVI = 0). Baret et al. (1989) developed the transformed SAVI 
(TSAVI) based on SAIL model simulations (Verhoef 1984), which explicitly use 
the soil line:

 
TSAVI

a a b

a ab
= - -

+ +
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r r

NIR R

NIR R

 (7.13)

where a and b are the coefficients of the soil line as in Equation 7.5. Other variants of 
SAVI include the generalized SAVI (GESAVI; Gilabert et al. 2002) and the modified 
SAVI (MSAVI; Qi et al. 1994).

Another source of noise that can greatly influence NDVI values is atmospheric 
contamination, primarily associated with aerosols, water vapor, and molecular scat-
tering. As a ratio, the NDVI is particularly sensitive to additive noise influences, 
such as atmospheric path radiances. Overall, atmospheric effects lower NDVI values 
by reducing the contrast between the red and NIR reflected signals. Atmospheric 
water vapor attenuates the reflected NIR signal from vegetation, particularly with the 
AVHRR-NIR bandwidth that overlaps with water absorption regions. Rayleigh and 
aerosol scattering tend to add and increase the very low red reflected signals from 
vegetated surfaces. Thus, NIR attenuation and red reflectance increases lower the 
NIR to red contrast and will lower VI values.

The most accurate and rigorous way to compute VIs is by using atmosphere-
corrected surface reflectance values. An alternative method of minimizing atmo-
spheric influences on VIs is to design the VI equation to self-correct for atmospheric 
effects. The atmospherically resistant vegetation index (ARVI) was developed to 
remove the influence of aerosols through the use of the blue band (which is the most 
sensitive to atmosphere) to correct for aerosol effects in the red band (Kaufman and 
Tanré 1992):
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ARVI = -

+
r r
r r

NIR RA

NIR RA

* *

* *
 (7.14)

where
rNIR

*
 indicates the top-of-the-atmosphere (ToA) reflectance in the NIR

rRA
*  is a factor that considers the difference of reflectance between blue and the 

red bands, as defined by

 r r - g r - rRA R B R
* * *( )=  (7.15)

where
rB

*  and rR
*  indicate the ToA reflectances in the B and R bands, respectively

γ is a calibration parameter that depends on the type of atmosphere, although in 
most cases it is equal to 1

In the case of ARVI, the ToA reflectances are corrected for Rayleigh scattering and 
ozone absorption, which are relatively straightforward. Another self-corrected VI 
is the GEMI, which was designed to be resistant to atmosphere effects in NOAA-
AVHRR data sets (Pinty and Verstraete 1992):
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GEMI has been found particularly useful for burned land mapping with coarse-reso-
lution data, being more robust than NDVI to AVHRR radiometric noises (Chuvieco 
et al. 2008a; Pereira 1999).

The EVI was formulated as a new satellite VI product for the MODIS sensor. The EVI 
was designed to minimize soil and aerosol influences and render the VI signal more sen-
sitive in high-biomass areas. The EVI gains its heritage from the SAVI and the ARVI 
and is an optimized combination of blue, red, and NIR bands, designed to extract can-
opy greenness, independent of the underlying soil background and atmospheric aerosol 
variations. The blue band in the EVI is primarily used to stabilize aerosol influences in 
the red band resulting from residual and miscorrection of aerosols (Xiao et al. 2003):
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where
ρNIR, ρR, ρB are reflectances in the NIR, R and B bands, respectively
L is the canopy background adjustment factor
C1 and C2 are the aerosol resistance weights (Liu and Huete 1995)
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The coefficients of the MODIS EVI equation are L = 1, C1 = 6, and C2 = 7.5 (Huete 
et al. 2002). The EVI becomes increasingly sensitive to the NIR band at moderate to 
high vegetation amounts with a greater optical depth penetration into canopies. Thus, 
the EVI better depicts biophysical canopy structural variations and is less prone to 
saturation in high biomass areas. Figure 7.9 shows an example of the global MODIS 
EVI product, showing the spatial differences in vegetation amount and productivity.

The EVI, along with NDVI, is a standard MODIS vegetation product on both Terra 
and Aqua platforms, and has been selected as a standard product for the VIIRS sensor 
on board the NPOESS mission (Murphy et al. 2006). A good example of EVI sensitiv-
ity in high biomass conditions was encountered in Brazilian Amazon and Southeast 
Asian tropical forests, in which pronounced seasonal patterns in satellite EVI data 
were observable and were highly seasonally correlated with seasonal flux tower mea-
surements of photosynthesis or gross primary productivity (GPP; Huete et al. 2006). 
Other studies involving the coupling of flux tower measurements of GPP and ET with 
MODIS satellite EVI have also revealed strongly linear relationships (Sims et al. 2006).

Reduction of saturation effects and improvement of linearity add to the observed 
accuracy in estimating biophysical parameters from VI values and provide a mecha-
nism for multisensor scaling of VI values. There have been several other studies 
aimed at mitigating the saturation problem of NDVI. One approach is to use alter-
native narrow bands, away from maximum chlorophyll absorption wavelengths at 
680 nm, for the R band in the NDVI (Gitelson et al. 2002). However, this approach 
requires sensors designed with additional narrow bands or hyperspectral sensors, 
which are not yet available for operational applications. In fact, the saturation prob-
lem in MODIS NDVI is more serious than that encountered with the AVHRR instru-
ment, partly due to the much narrower MODIS red band, which is more sensitive to 
chlorophyll absorption and hence saturates more quickly. Gitelson (2004) noted the 
lack of sensitivity of NDVI to the NIR with increasing levels of vegetation and sug-
gested the use of weighting coefficients to enhance NDVI sensitivity. He proposed 
the wide dynamic range vegetation index (WDRVI)

 
WDRVI

aN R
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+
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FIGURE 7.9 MODIS enhanced vegetation index global image computed from the Terra 
satellite. (From http://visibleearth.nasa.gov, last accessed November 2015.)
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and suggested a = 0.2 as the value of the weighing coefficient. WDRVI was found to 
have a more linear relationship with vegetation fraction, the fAPAR, and much higher 
sensitivity to change in LAI over crops in comparison with NDVI.

An example of the two standard MODIS VI products for the Southwestern United 
States and California is shown in Figure 7.10. The agricultural regions along the 
United States–Mexico border display large cross-border differences in VI values. 
The Colorado River and Gila River riparian corridors show up as bright areas 
(lighter-color tones) with much more vigorous vegetation that has access to year-
round water. The forested mountain areas show up as brighter areas (higher VI 
values) surrounded by desert soils that are fairly dark (low vegetation conditions). 
Comparing the NDVI and the EVI, the former appears brighter overall because of 
high NDVI sensitivity in sparsely vegetated regions.

7.1.3.3 Orthogonal-Based VIs
Besides ratios, one can also design a VI that measures the contrast between the R 
and NIR spectral regions by subtracting or linearly combining the R and NIR bands 
(C1 × R + C2 × NIR). These VIs include the PVI (Richardson and Wiegand 1977) 
and the “tasseled cap” transform (TCT) GVI (Crist and Kauth 1986; Kauth and 
Thomas 1976) and are sometimes referred to as orthogonal indices because they 
measure the perpendicular distance of a pixel in the R–NIR space to the soil line 
(Figure 7.11). The simplest orthogonal VI is the difference vegetation index, DVI = 
NIR − R, which is a measure of the perpendicular distance of a pixel in R–NIR space 
to the 1:1 line. In contrast, the PVI calculates the orthogonal distance of a pixel to 
the “soil line”:
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FIGURE 7.10 Image of normalized difference vegetation index (a) and enhanced vegetation 
index (b) for the MODIS image of the Southwestern United States.
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where a and b are the slope and intercept of the soil line, respectively, as defined in 
Equation 7.5. The soil line generally has a slope that is slightly greater than one (~1.1 
to 1.2). As with SAVI, PVI provides the opportunity to more accurately measure 
greenness through the use of local-, regional-, or global-based soil lines, whereas in 
the case of DVI, the soil line is simply taken to be NIR = red (slope = 1, intercept = 
0, and DVI = 0). Orthogonal indices such as DVI, PVI, and GVI are generally more 
linear and scalable and have less saturation problems than NDVI; however, they do 
not ratio out extraneous sources of noise and thus require accurate surface reflec-
tance inputs.

TCT is a multidimensional interpretation of the spectral structure of pixels in 
an image incorporating additional spectral bands besides the R and NIR. This 
transform was developed by Kauth and Thomas (1976) in the framework of the 
joint NASA–USDA (U.S. Department of Agriculture) Large Area Crop Inventory 
Experiment (LACIE) project in the 1970s, with the aim of improving the prediction 
of grain harvests. Using a temporal series of Landsat MSS images over agricultural 
areas, the fundamental spectral components of crop development were modeled to 
characterize green-up, senescence, and crop fallow periods (Figure 7.12). As such, 
the spectral–temporal structure of crop development resembled a 3D tasseled cap 
shape represented by a soil brightness axis, a greenness axis, and a yellowness axis. 
The base of the tasseled cap consists of a reference “soil plane” in which bare soils 
with variable colors and brightness are found (Figure 7.13). Crop green-up and devel-
opment proceeds from a specific location on the soil plane, based on the soil type, 
along the greenness axis away from the soil plane, and toward the point of maximum 
greenness. Finally, with crop senescence and yellowing, the crop pixels migrate back 
toward the soil plane, but along a separate yellowness axis. TCT extends the 2D PVI 
framework into four dimensions in the case of Landsat MSS data, and six dimensions 
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FIGURE 7.11 Concept of orthogonal indices in near-infrared–red reflectance space. In this 
example, the perpendicular vegetation index is illustrated as the orthogonal distance of a 
vegetated pixel, o, from the soil line. (Courtesy of Alfredo Huete.)
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for Landsat TM data, and enables simultaneous extraction of multiple biophysical 
features. The yellowness feature has been studied with interest for atmosphere haze 
analysis as well as for estimating vegetation senescence.

As in PCA, this transformation is used to obtain a multiple set of component 
features derived from linear combinations of the original bands, to quantify the 
unique features in a landscape. However, in contrast to PCA, the TCT generates a set 
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FIGURE 7.12 Temporal trends of crop reflectance plotted in near-infrared and red band space.
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of unique spectral feature components with more precise physical meaning, which 
are largely independent of the type of image that is being analyzed. These features 
typically include brightness, greenness, wetness, and yellowness. The TCT tends to 
show the spectral behavior of the vegetation and the soil well, by creating new axes 
that are better adjusted to that physical space. In that new system of coordinates, the 
separation between both covers is meant to be clearer. In the case of MSS images, 
this transformation was developed, with new axes obtained from

 
u R x cj i i= ¢ +  (7.20)

where
uj indicates the vector corresponding to the transformed image
xi is the input vector

¢Ri is the vector of transformation coefficients
c is a constant to avoid negative values (the authors suggested a value of c = 32)

At first, this transformation was not widely accepted by the user community, in con-
trast to NDVI and other ratios. In the 1980s, however, it began to be used more, as 
Crist and Cicone adapted this approach to the Landsat TM bands (Crist and Cicone 
1984a,b; Crist and Kauth 1986) as well as to AVHRR data. Table 7.3 includes the 
coefficients for Landsat TM images. The three main axes of variation are named 
brightness, greenness, and wetness:

 1. Brightness reflects the changes in the total reflectance of the scene. As 
seen in Table 7.3, it is a weighted sum of all the channels, excluding the 
thermal one.

 2. Greenness indicates the contrast between the VIS and the NIR bands. Band 
4 stands out and there are negative weights in the VIS bands and a mutual 
cancellation of the VIS and NIR bands in the SWIR region.

 3. Wetness is related to the water content in the vegetation and the soil and is 
marked by the contrast between the SWIR, where the absorption of water 
is strong, and the VIS and NIR bands. This is a new component that was 

TABLE 7.3
Coefficients to Obtain the Tasseled Cap Transform for 
Landsat Thematic Mapper Images

 B1 B2 B3 B4 B5 B7 

Brightness 0.3037 0.2793 0.4743 0.5585 0.5082 0.1863

Greenness −0.2848 −0.2435 −0.5436 0.7243 0.0840 −0.1800

Wetness 0.1509 0.1973 0.3279 0.3406 −0.7112 −0.4572

Source: Crist, E.P. and Cicone, R.C., IEEE Trans. Geosci. Remote Sens., GE22, 
256, 1984.
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not available in the original Landsat MSS data due to the lack of an SWIR 
band. Other authors have proposed calling the third TCT component matu-
rity instead of wetness, since it has been related to the age and density of the 
vegetation cover (Cohen and Spies 1992). In addition, it was observed that 
this component was the least affected by the topography.

The combination of the TCT components provides several planes of variation 
(Figure  7.13), which are interesting for a detailed study of soils and vegetation. 
In this sense, three planes are usually distinguished: the vegetation plane, formed by 
the greenness and brightness axis; the plane of soils, formed by the brightness and 
the moisture; and the plane of transition, formed by the moisture and the greenness. 
Lobser and Cohen (2007) formulated the TCT for use with the seven primary land 
bands in MODIS data.

One of the advantages of this transformation compared to the PCA is that it can 
be physically interpreted. The components deduced from TCT have a precise mean-
ing, regardless of the conditions of the scene, since they are supported by the char-
acteristics of the spectral bands considered. Therefore, the proposed coefficients 
can be applied to different images from the same sensor. However, we should take 
into account that they were extracted from the agricultural characteristics of the 
American Midwest and may not be suitable for our particular target region. Another 
factor to be considered would be the scaling of the resulting image, which remark-
ably varies depending on the time of year and the conditions of illumination. For 
this, some of the procedures applied previously for ratios and VIs can be used.

Using the coefficients proposed by Crist and Cicone, the TCT components were 
calculated for the Tucson image (Figure 7.14). The first of the output components, 
brightness, displays spatial variations of albedo, and it is similar to a panchromatic 
image. The second one, greenness, is similar to the NDVI previously commented 
on. It also shows the vegetated areas of the city and surrounding mountains, with 
reduced contrast between built-up areas and bare soils. Finally, the wetness com-
ponent shows mainly shade effects, since there are very few open water areas. The 
higher values for this component are observed in the volcanic regions of the western 
and southern sectors of the city, as well as paved areas, while the lower values cor-
respond to bright soils.

Brightness Greenness Wetness 

FIGURE 7.14 Tasseled cap transform components of the Tucson image.
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7.1.3.4 Fluorescence Indices
Most vegetation indices are usually interpreted as estimating chlorophyll activity. 
However, recent studies have shown that NDVI, EVI, and the most common vegeta-
tion indices are in fact associated with canopy structure but have little sensitivity to 
short-term physiological changes, particularly to those associated to heat and water 
stress (Zarco-Tejada et al. 2013). For this reason, new indices are based on chloro-
phyll fluorescence, which have been shown to be more directly associated to diurnal 
changes in photosynthetic activity.

Fluorescence is a biophysical process that implies that part of the absorbed pho-
tosynthetically active radiation (APAR) occurring mostly in the 0.4–0.7 µm spectral 
region is reradiated at longer wavelengths (0.66–0.8 µm). Several studies have shown 
the relation between fluorescence and gross primary production and CO2 assimila-
tion by plants, and therefore this information may be very useful to monitor global 
vegetation productivity (Frankenberg et al. 2011).

The detection of plant fluorescence requires sensors with very narrow spectral 
bands. Several methods to retrieve plant fluorescence from hyperspectral sensors 
have been published (Meroni et al. 2009), the most common being those based on 
the reduction of irradiance occurring at different narrow spectral bands in the region 
between 0.66 and 0.76 µm (commonly referred to as Fraunhofer lines), caused by 
hydrogen and oxygen absorption.

A specific satellite mission funded by the European Space Agency, called FLEX, 
intends to measure fluorescence at the global scale using high-resolution spec-
tra. Previous estimations based on the narrow red bands recorded by the TANSO 
Fourier transform spectrometer (FTS), on board the Japanese satellite GOSAT, have 
shown promising results in analyzing global patterns of vegetation productivity 
(Frankenberg et al. 2011).

7.1.4 other SpeCtral indiCeS

In addition to VIs, other combinations of input bands can be used to emphasize dif-
ferent image features. Spectral vegetation indices are always based on the radiance/
reflectance contrast in two or more spectral bands between a certain target feature 
and others. One of the most widely used spectral ratio is the normalized difference 
snow index (NDSI), arithmetically similar to NDVI but using two different spectral 
bands (Hall et al. 1995):

 
NDSI =

+
r - r
r r

G SWIR

G SWIR

 (7.21)

The G and SWIR bands are used in this case, as the snow has a high reflectance 
in the former and a low value in the latter, which makes it possible to discriminate 
snow from clouds (visually very similar), as clouds have high reflectance in both 
bands. NDSI has been extensively used in snow monitoring (Kelly and Hall 2008), 
and it is still the basis for the snow mapping algorithm of the MODIS sensor (Hall 
and Riggs 2007).
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Figure 7.15 shows the calculation of the NDSI over the MODIS image of SW 
USA, along with the infrared color image of the same date. Using the NIR, R, and 
G bands, it is difficult to discriminate between snow, clouds, and bright soils, while 
NDSI provides a clear separation. Visually, however, this index provides certain 
confusion with the water bodies (particularly the coastal areas), probably due to the 
impact of the atmospheric correction on low reflectances.

Other spectral indices have been applied to detect burned areas (Chuvieco et al. 
2002; Martín and Chuvieco 2001) or improve the discrimination of water content on 
plants (Ceccato et al. 2002). The latter may even combine the solar spectrum with 
thermal bands, to estimate the water content by monitoring variations in air and 
surface temperatures (Sandholt et al. 2002; Yebra et al. 2013a).

7.1.5 extraCtion of Subpixel inforMation

Spectral measurements made over terrestrial surfaces can be modeled as spectral mix-
tures involving two or more surface-reflecting features. The ground surface is rarely 
spectrally pure; most commonly, it contains complex vegetated canopies with leaves, 
stem, bark, litter, soil background, and shadows. Approximately, 70% of the Earth’s ter-
restrial surface consists of open canopies (deserts, grasslands, savannas, open forests, etc.) 
with vegetation overlying significant amounts of exposed soil, litter, and even understory 
vegetation that will contribute to the spectral signal observed by a satellite sensor. Even 
in areas containing only soil or only dense vegetation, the satellite-observed reflected 
signal may be considered as mixtures, with the soil consisting of mineral and organic 
components and the dense vegetation containing sunlit and shaded leaves and young and 
old leaves. Thus, remotely sensed spectral responses of the Earth’s surface are related to 
the number and type of reflecting elements, their individual spectral signatures, and their 
relative proportions within a given pixel. These mixtures will further vary seasonally and 
with land cover disturbance. Unmixing the spectral response and resolving the presence 
and amount of the individual components, such as vegetation and soil, are important in 
understanding hydrologic and biogeochemical processes within ecosystems.

FIGURE 7.15 Color infrared image and normalized difference snow index of the MODIS 
image of Southwestern United States.
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Traditionally, the classification of satellite images has the objective of assigning 
each pixel to one, and only one, category as defined in the legend; for example, a 
pixel may be labeled soil, water, grass, or forest. Most commonly, the end users want 
to have such assignment, as the standard land cover maps include a single category. 
However, for certain applications, this “hard classification” may be quite limited. 
For instance, when trying to survey a certain vegetation species, the user may be 
interested to find out how much dense that species is in the study area, instead of 
mapping just only those areas where it is the most extended. In this case, the output 
of the classification analysis would be a map with the density of occurrence of that 
species (from 0% to 100%).

In addition to this advantage, a “soft classification” may be the most convenient 
alternative for heterogeneous areas, whereas most pixels are a mixed of two or more 
land covers. A hard classification assumes categorization of each pixel of the image 
with an exclusive code and assumes that such pixel is homogeneous, and therefore, 
the category covers the whole pixel. When in fact a mixture exists and it is beyond 
the minimum map unit at a certain scale, the mixture is simplified either by eliminat-
ing the least significant category or by generating a new mixed category, acknowl-
edging the difficulty in separating its components. The denominations crop mosaic 
or mixed forest are examples of this second approach.

An alternative to both approaches is the use of techniques that make it possible 
to estimate the degree of mixing present in each pixel. These techniques output the 
proportion of each basic category in each pixel, assuming that the pixel reflectance 
is a combination of reflectances from those pure categories. The retrieval of that 
subpixel information has been extensively developed in the last decades. The pio-
neering studies on unmixing models were proposed in the late 1970s (Marsh et al. 
1980), although they were extended during the 1990s with the massive use of coarse-
resolution images such as those required by AVHRR, VEGETATION, or MODIS, 
where mixed pixels are very common.

One of the most extended techniques for subpixel classification is the SMA, 
which tries to obtain images with the proportion of each pixel occupied by a cer-
tain category. In other words, as a result of this technique, we obtain as many 
output images as there are categories under study. In each one of them, the DL of 
a certain pixel indicates the percentage of surface being occupied by that category 
(Figure 7.16).

SMA assumes certain conditions that are worth considering in assessing the full 
potential of this technique, since it will also help us to evaluate its limitations. The 
most relevant assumption states that the reflectance of a mixed pixel is a direct com-
bination of the reflectances of the basic covers of that pixel, in proportion to the area 
they occupy. This also implies that radiation from neighbor covers does not affect the 
reflectance of the target pixel (Settle and Drake 1993). The linearity of the mixture 
is assumable only in the bands of the optical spectrum, not in the thermal ones. It is 
also assumed that there are pure spectral signatures valid for all the analyzed zones 
(Quarmby et al. 1992).

If these assumptions are met, we can state that the reflectance of a mixed pixel 
is a linear combination of the reflectance of individual pure covers (usually named 
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endmembers), in a proportion equivalent to the surface areas they occupy. Therefore, 
the following formula is fulfilled (Shimabukuro and Smith 1991):
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where
ρi,j,k indicates the reflectance observed in the pixel i,j in the k band
Fi,j,m is the fraction or proportion of the m component in that pixel for each of the 

p pure categories
ρm,k corresponds to the reflectance of the m component in the k band
ei,j,k is a term of the error associated with the estimation of the proportions in each 

pixel i,j

The proportion of each pure component (Fm) must be as follows:

 
0 1£ £Fi j m, ,  (7.23)

that is, there cannot be negative proportions, and
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that is, the sum of the proportions for all the components is equal to the total surface 
of the pixel.

Equation 7.22 can also be expressed in terms of raw DLs, instead of reflec-
tances, as long as the linearity of the information initially detected by the sensor 

Class 1

Class 2

FIGURE 7.16 Fundamentals of spectral mixture analysis. Two pure classes (reds and 
greens) are mixed in the images in different proportions. The challenge is extracting those 
proportions to obtain unmixed images.
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is not modified. The interest in using physical values is related to the first and most 
important part of SMA: the accurate definition of the endmembers that will be the 
pure components to unmix. These endmembers are the basic covers present in the 
image area. It is assumed that all pixels of the image have different proportions 
of those endmembers. The pure components of an image could be healthy veg-
etation, soil, and shade for deforestation studies (Adams et  al. 1995; Holben and 
Shimabukuro 1993); analysis of forest plantations, recently cut and with active 
regeneration (Hlavka and Spanner 1995); analysis of healthy vegetation, involving 
burned areas and shade classes for burned cover mapping (Caetano et al. 1996); or 
crop identification for crop inventories (Quarmby et al. 1992). An important limita-
tion of SMA is that the number of endmembers of an image cannot surpass the num-
ber of bands plus the one used for the calculation of the fractions. This is explained 
by the mathematical requirements of the method to solve the problem, as we will 
soon see.

The basic input of SMA consists of calibrated image reflectances and end-
member reflectances (ρm,k). These can be obtained from laboratory spectral mea-
surements, from spectral libraries, from the image, or from simulation models. 
Ideally, they should come from spectral measurements, to avoid noise factors 
such as topography or substrate conditions. Nevertheless, this option has some 
inconveniences in assuming that atmospheric and topographic effects have been 
properly corrected in an image, which is not a trivial task (see Section 6.7.3.3). For 
this reason, in published studies, the extraction of endmembers is done from the 
image itself. The interpreter chooses areas that may be considered fully homoge-
neous representations of the different covers to be unmixed. When working with 
coarse-resolution images, it may be difficult to extract homogeneous pixels. In 
this case, some authors recommend extracting the endmembers from higher-reso-
lution images, once they are registered and calibrated with the coarser- resolution 
images. The endmember reflectances can be generated by using regression tech-
niques or degrading artificially the high-resolution images until the pixel size 
equals that of the coarse-resolution image (Foody and Cox 1994; Kerdiles and 
Grondona 1995).

Once the spectral signatures (in reflectance or DLs) of each endmember are 
obtained, the proportion images can be generated (Fi,j,m) by solving Equation 7.23 for 
each pixel. Normally, the proportions are obtained by minimizing the residual error 
of each pixel (ei,j,k). Hence, Equation 7.23 can be rewritten based on the error
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This criterion is known as minimum square fitting and has two modalities of solu-
tion: the adjustment with restriction and the weighted adjustment (Shimabukuro and 
Smith 1991).

Let us illustrate the process by using a very simple example (Figure 7.17). Consider 
that we have two bands (R and NIR) and try to deduce for each pixel the propor-
tions of two categories (c1 and c2). The reflectances for those categories are 0.35 and 
0.4 (R and NIR, respectively) for class 1 and 0.75 and 0.7, respectively, for class 2. 
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With these data, two images with the proportion of c1 and c2 for each pixel have to be 
generated. Assuming the estimations have no error term, it is necessary to solve for 
each pixel a simple system with two equations (i.e., two bands) and two unknowns 
(i.e., two classes). For example, for the first pixel (top, left), we would have

 

0 43 0 35 0 75

0 46 0 40 0 70
1 2

1 2

. . .

. . .

= +
= +

F F

F F

that is, the reflectance values observed for that pixel in the two bands (0.43, 0.46) are 
produced by a linear combination of the reflectances of the c1 and c2 in proportion 
(F) to the area they occupy in those two bands. Since the proportions (F) are the 
same in all bands (as they account for the area occupied by each category), we can 
easily obtain F1:
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from which we deduce that F1 is 0.8. Since there are only two categories, F2 is 0.2. 
We then proceed in a similar way with the rest of the pixels of this image, obtaining 
the resulting matrix of proportions (Figure 7.17). In this case, assuming that there is 
no residual error in the estimation of the proportions, a single equation would be suf-
ficient since if the restrictions of nonnegative values and exhaustivity that the SMA 
require are fulfilled, F2 can be cleared from F1 (F2 = 1 − F1). In sum, we could obtain 
the value of F1 from a single band:

 0 43 0 35 0 75 11 1. . . ( )= + -F F

0.35
0.40

0.75
0.70

R NIR

0.43 0.51 0.55
0.47 0.55 0.59

0.51 0.63 0.80

0.46 0.52 0.50
0.49 0.55 0.58
0.52 0.61 0.64

R NIR

Proportions

Class 1 Class 2

0.8 0.6 0.5
0.7 0.5 0.4
0.6 0.3 0.2

0.2 0.4 0.5
0.3 0.5 0.6
0.4 0.7 0.8

Visual output

Reflectances

ρ

FIGURE 7.17 Example of obtaining unmixed images of two endmembers.
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Since it is necessary to have as many equations as there are unknown quantities, 
we select as many endmembers as available bands. Nevertheless, if we include the 
exhaustivity requirement (the sum of the proportions is equal to 1), an additional 
equation is available; this is why we can include up to a maximum of k + 1 end-
members, k being the number of bands. All this is applicable as long as we assume 
the error is null. Should this not be the case, another unknown quantity would be 
added, and it would be necessary to limit the number of endmembers to the number 
of bands.

The method of solving those systems of equations is logically more complicated 
than in our example. Consequently, it is necessary to apply more refined criteria to 
solve the system of equations previously mentioned. Among the several procedures 
that have been proposed, the simplest estimator is the minimum squares fitting with-
out restrictions. In matrix annotation, this estimator is expressed as follows (Gong 
et al. 1994; Settle and Drake 1993):

 
ˆ ( )f M M M XT T= -1  (7.26)

where
f̂  indicates the vector with the proportions calculated for each pixel
M indicates the vector with the average values of the endmembers in the bands 

of analysis
X is the vector with the values of the pixel for those same bands
superscript T indicates the transpose of the matrix
−1 is the inverse one

This algorithm is relatively fast, but it does not satisfy the restrictions mentioned pre-
viously. In order to solve this, we must make the negative values of f̂  equal to zero and 
scale the rest so they add up to 1. For other solution criteria that include these restric-
tions directly, consult Settle and Drake (1993) and Shimabukuro and Smith (1991).

The techniques of SMA were initially proposed in the 1970s but did not receive 
much attention until the early 1990s, initially with coarse-resolution sensors (mainly 
AVHRR) and then with the first hyperspectral sensors (both airborne and satellite-
borne, such as Proba CHRIS or EO-1 Hyperion). The perspectives of the new sen-
sors with high spectral resolution can lead to a remarkable growth in the use of this 
technique. The SMA has already shown excellent results in agriculture (Kerdiles 
and Grondona 1995; Quarmby et al. 1992), deforestation studies (Adams et al. 1995; 
Shimabukuro et al. 1994; Souza et al. 2005), estimation of the fraction of vegetation 
cover density (Gong et  al. 1994; Hlavka and Spanner 1995), vegetation mapping 
(Roberts et al. 1998), and monitoring of burned areas (Caetano et al. 1996; Martín 
and Chuvieco 1998; Riaño et al. 2002b). In addition, it has been widely used in soil 
and mineral mapping (Palacios-Orueta and Ustin 1998; Smith et al. 1990).

The spectral unmixing of three basic endmembers for the Tucson image is shown 
in Figure 7.18. The endmembers delimited are soil, vegetation, and shade using six 
reflective bands of the Landsat OLI sensor. The comments of these subpixel images 
are quite similar to those provided by PCA and TCT, since they reflect the three 
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dimensions of information included in the image, although since the vegetation cover 
has a low global proportion in this area, this component was not extracted in the 
PCA. Comparing the SMA results and those of the PCA, in this case each compo-
nent has a physical sense—the proportion of soil, vegetation, and shade—in a con-
tinuous way from the maximum amount (100%) that appears in areas where the pure 
member was defined to those in which they show a practically null proportion. The 
shade component shows the highest values in built-up areas and volcanic regions. 
The vegetation component is evident in irrigated land crops, golf courses, and ripar-
ian vegetation, as well as in gardens. The soil offers the highest values in arid areas 
of the center south and north of the image, with very sparse vegetation. Finally, the 
error component is higher in areas that share different covers, being very low in irri-
gated crops and water bodies where the endmembers were collected.

(a) (b)

(c) (d)

FIGURE 7.18 Results of spectral mixture analysis for the Tucson image: (a) soil proportion, 
(b) vegetation proportion, (c) shade proportion, and (d) error term.
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7.1.6 lidar data proCeSSinG

As previously mentioned (see Section 3.4.2), lidar systems emit laser pulses to the 
ground and record both the intensity and the time delay of the reflected signal. The 
former element provides similar information to other remote sensors working on 
the solar spectrum, while the time recordings provide ranging measurements to 
extract vertical information that is quite unique from other sensor systems. These 
measurements on the vertical structure of observing targets make lidar systems par-
ticularly useful for a wide range of environmental applications, such as estimating 
vegetation biomass and geometrical properties, terrain slope and aspect analysis, 
coastal transformations, or ice accumulation, as well as monitoring infrastructures 
and urban areas.

Even though the intensity of the lidar signal can also be useful for detailed ground 
characterization, we will cover in this section only those methods dealing with the 
coordinates of the laser returns. While lidar intensity is not exactly the same as 
reflectance, digital methods to process lidar intensity have many similarities to other 
sections of this chapter, while those oriented toward extracting information from 
lidar ranges are more distinctive, as they deal with irregularly spaced X,Y,Z point 
coordinates. This section is based on the analysis of current airborne lidar systems 
but includes some references to the ICESat-GLAS sensor, which is so far the only 
lidar ranging space-borne system. The main differences are the use of discrete 
returns (airborne systems) versus full waveform recordings (ICESat, as well as some 
airborne systems) and obviously the footprint size (10–30 cm airborne versus 70 m 
for ICESat).

Once the lidar campaign has been carried out, the survey company should pro-
vide different files with the raw and corrected acquisitions, making sure that the 
target area is properly covered (no gaps), that flight lines are well registered to a 
common reference, and that repeated pulses caused by flight-line overlapping are 
removed. A common format for distributing lidar data is the LASer file exchange 
format (LAS), proposed by the American Society for Photogrammetry and Remote 
Sensing (ASPRS) Lidar Subcommittee. This format is acceptable by most commer-
cial and public domain software and includes the data coordinates (X,Y,Z) along with 
the intensity, return number (first, last, or intermediates), scan angle, a classification 
of the cover type, and GPS time, as well as a public header to record metadata.

Depending on the flight conditions and lidar specifications, the target area will 
have been covered at a certain density of observations (number of pulses per square 
meter, for instance). However, that density will not be uniform throughout the area, 
since some sections may have more observations in certain sections or less in rough 
terrain, for instance. A simple way to better understand spatial differences is to com-
pute the return density within a certain grid size. For instance, Figure 7.19 shows the 
area observed by a lidar survey carried out in western Washington near Olympia.* 
One can notice the impact of the flight lines in the density distribution (long green 

* This dataset is provided by the developer of a freely accessible lidar analysis software (FUSION/
LDV: http://forsys.cfr.washington.edu/, last accessed: February 2015). This section includes examples 
extracted from this dataset.
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or blue strips, indicating different point density), along with small sectors without 
observations (in yellow).

Displaying 3D representations of X,Y,Z lidar measurements greatly helps in 
understanding the vertical structure of the target area. In forested areas, this vertical 
structure may be quite complex, as different tree stands may have different heights, 
with different understory stratification. To simplify the analysis, most authors rec-
ommend discriminating three vertical layers (Figure 7.20):

(a) (b)

FIGURE 7.19 Density of observations for the lidar survey of Olympia (Washington): (a) grid 
size 4 m2 and (b) grid size 16 m2. Yellow, cells with no points; red, cells with less than 1 point; 
green, cells with 1–3 points; and blue, cells with more than 3 points.
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FIGURE 7.20 Digital elevation model, digital surface model, and digital canopy model over 
a section of the Olympia dataset.
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• Digital elevation model (DEM), which is the underlying surface that repre-
sents the elevation of the ground at any particular area. This would be the ele-
vation of the surface after removing all objects (vegetation, buildings, etc.).

• Digital surface model (DSM), which includes elevations of the upper part of 
the canopy, that is, the maximum elevation at any particular area.

• Digital canopy model (DCM), which gives the height of any particular area 
from the ground and is computed as the difference between the DSM and 
the DEM.

Figure 7.20 includes a section of the Olympia dataset that shows the distinction 
between these three surfaces. DEM corresponds to the standard definition of eleva-
tion, and it is the common dataset provided when the ground elevation is required, as 
most topographic maps do not take into account vegetation heights. It can be consid-
ered as the base line for measuring heights of any object in the target scene, since all 
estimations will be based on the Z differences between any return and the ground Z 
value for the same X,Y coordinate. For this reason, generating accurate estimations 
of the DEM is critical to obtain reliable estimations of object heights.

There are different approaches to estimate the ground baseline from lidar mea-
surements. The simplest way would be to keep the last return from a system collect-
ing several discrete pulses for the same position. Assuming the target cover is not 
opaque, the pulses will hit the top of the tree canopy, will be then transmitted to the 
branches, and finally will hit the ground. However, when the vegetation is dense or 
the target is opaque (such as a building roof), the first and last pulses will be in the 
same Z position (the canopy), and the ground elevation will be confused with the 
canopy height and therefore overestimated.

A more elaborate method consists in finding the lowest elevations for a coarse grid 
size, which is later used to estimate ground elevations at a denser grid, using different 
interpolation algorithms (Bolstad 2008, chapter 12). First, the frequency distribution 
of Z values in the coarse grid is computed from the last returns. This grid size should 
have sufficient returns so as to be very likely that some of them hit the ground. For 
instance, for a lidar flight acquiring an average of 4 pulses m−2, this auxiliary grid 
may be 25 m2, so an average of 100 pulses will be available at each location. The ele-
vation found for 1%–2% of the lowest elevations is considered to hit the ground and it 
is retained as the baseline for that particular cell. Later, the grid is densified by spatial 
interpolation to a better spatial resolution (1–4 m2 in this case) to improve estimations 
of ground baseline variability. This simple method provides good results if the area 
is diverse and the lidar pulses are dense enough. Information from lidar intensity or 
from a simultaneously acquired ortophoto may also be used to better discriminate 
ground from vegetation hits (Riaño et  al. 2007). More sophisticated methods are 
available in the literature (Ackermann 1999; Kraus and Pfeifer 1998; Magnussen and 
Boudewyn 1998; Pfeifer et al. 1999; Vosselman 2000; Wehr and Lohr 1999).

The DSM is simple to derive, as the first return pulse should hit the surface can-
opy. In this case, the critical parameters are the pulse density and the scanning pat-
tern. Depending of both, some areas may not have any pulses, and therefore the 
DSM for these areas will be just an estimation from nearby elevations. Similar to the 
DEM, the DSM surface is created by spatial interpolation. Special care should be 
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taken in urban areas, as standard interpolation algorithms typically assume smooth 
gradients, while buildings have sharp elevation changes. The use of break lines and 
modeling surfaces (cubes, cylinders, cones) may be very useful to properly approxi-
mate building shapes (Vosselman and Maas 2010).

Once the DEM and DSM are obtained, the DCM can be easily computed as the 
elevation difference between the two. The output will be the heights of each cell 
from the ground. If the DCM is computed from the second, third, or fourth return, 
it will provide information on the vertical characterization of that particular cell 
(height distribution), providing the object has enough transmittance. Alternatively, 
the analysis of height distribution can be based on plots of a certain radius (e.g., 5 m 
for a 4 pulses m−2 campaign) or those that have been measured on the ground. From 
these plots, a full waveform may be simulated by computing the frequency distribu-
tion of the returns. From them, several parameters may be computed: average, stan-
dard deviation, percentiles, bias, density, etc. These parameters are very useful in 
estimating different vegetation parameters. Some of those parameters are estimated 
directly, for example, maximum height, while others are modeled through statistical 
analyses, such as biomass. The specialized literature on using lidar data for for-
est inventory, carbon estimation, or fuel properties is very vast (Drake et al. 2002; 
Garcia et al. 2010; Morsdorf et al. 2004; Riaño et al. 2003, 2004b; Sun et al. 2008). 
Reliable estimations of tree crown height, crown base height, fraction of tree cover, 
LAI, crown bulk density (Figure 7.21), biomass or biomass fractions, and analysis 
of single tree have been obtained. In addition, lidar data have been combined with 
those from optical sensors to improve classifications of urban and forested areas, by 
including elevation or derived parameters as additional variables in image classifica-
tion (Garcia et al. 2011; Wulder et al. 2009).

Infrared digital 
photo

0 100 m
N

Flight line

CBD (kg m–3)

1.2

0

FIGURE 7.21 Crown bulk density generated from a lidar flight in Central Spain. (After 
Riaño, D. et al., Remote Sens. Environ., 92, 345, 2004.)
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7.2 DIGITAL IMAGE CLASSIFICATION

7.2.1 introduCtion

In spite of the growing interest in retrieving biophysical variables from EO images, 
the generation of thematic maps is still a very common objective of digital image 
processing. The goal is assigning each pixel to one of the target categories (crop or 
vegetation types, urban covers, etc.). Although recent developments in fuzzy clas-
sification techniques make it possible to assign more than one category to each pixel, 
most commonly the classification results provide a single assignment for each pixel, 
since most thematic maps still consider the space as homogeneous entities.

Classifying land covers has been traditionally carried out using visual image inter-
pretation, either from aerial photography or satellite images. As previously mentioned 
(Section 5.3), visual analysis is a powerful tool to incorporate a wide diversity of inter-
pretation criteria. However, digital classification techniques provide more robust and 
spatially consistent tools to generate thematic maps, particularly when working over 
large areas. Classification techniques can be applied to raw data, but most authors 
recommend first carrying out geometric and radiometric corrections, to avoid the 
impact of external factors of noise (atmospheric influences, topographic shades, etc.). 
Moreover, when working with physical values (e.g., reflectance or temperature), clas-
sification rules can be extended beyond the specific sensor or period of that particular 
image, and provide methods that can be generalized to a wider range of situations.

Once the classification method is completed, the output image will have the same 
spatial structure as the input one, although the DLs will no longer represent a quan-
titative measurement but a numeric label that identifies a category (evergreen forest, 
grass, corn, wheat, etc). Therefore, even though the pixel values will still be numeric, 
they should be considered a qualitative rather than a quantitative measurement scale, 
and so the classified images cannot be used for analytic operations such as filtering 
or PCA, for instance. However, statistical metrics designed for categorical variables 
can be properly applied to classified images, such as mode or majority filters. In the 
case of classifying a single variable in grades (e.g., low, medium, and high density of 
forest), some ordinal-scale techniques can be used in the output images.

The classified images can be easily transformed to thematic maps by assigning a 
proper patch or color key to each DL, while the histogram of those DLs will provide 
an inventory of the number of pixels (and the area if it is geometrically corrected) 
assigned to each class (Figure 7.22).

The first experiences of digital classification of satellite images were based exclu-
sively on the spectral values of the input images. Spectral information is not always 
able to separate end-user categories, since different target classes may exhibit similar 
spectral behavior. For this reason, classification methods are also based on the spatial 
and the temporal dimensions of the images. The former refers to the spatial properties 
that may identify a target category, such as its shape or size (large or small patches), 
its spatial pattern (arrangement in rows, such as olive trees), or which categories are 
nearby. The temporal variability involves using the seasonal trends of each class, which 
is especially relevant for discriminating between vegetation covers. For instance, 
evergreen and deciduous trees can be easily discriminated in winter or early spring.
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FIGURE 7.22 Fundamentals of digital classification.
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If none of these three dimensions (spectral, spatial, and temporal) provides a clear 
discrimination of a target category, auxiliary information may be used, such as eleva-
tion, aspect, or soil maps. In this approach, the synergy between remote sensing inter-
pretation and geographical information systems (see Chapter 9) is greatly beneficial.

The process of classifying digital images is analogous to that used in visual analy-
sis. For photo interpretation, the analyst identifies the visual pattern associated with 
each cover from a set of control areas. Once the interpreter is trained to recognize 
the different covers, the learnt experience is extended to the whole study area, based 
on their similarity with the previously identified visual patterns. Finally, this visual 
interpretation needs to be assessed from groundwork or other external sources. In 
digital classification, the phases are similar, but the analog criteria are translated 
into digital criteria. Therefore, three phases can be distinguished: (1) digital defini-
tion of the categories based on sample pixels (training phase), (2) allocation of the 
whole image to one of the previously defined categories (assignment phase), and (3) 
assessment of results. We will deal here with the first two, while the third one will be 
covered in another chapter (Chapter 8), since verification techniques are applicable 
to both digital processing and visual analysis.

7.2.2 traininG phaSe

7.2.2.1 Basic Concepts
The first and most important phase of digital classification is the proper characteriza-
tion of the different categories to be discriminated. Since the classification is based 
on pixels’ numerical values, that definition must also be numerical. Therefore, the 
purpose of the training phase is obtaining the DLs, or better still the range of DLs 
that identifies each category for all the bands that will be used in the classification.

Since the radiometric response of each cover is not unique because of the impact 
of external factors (illumination conditions, density, phenological state, etc.), the 
digital characterization of each class cannot be achieved with average DL values. 
Rather, the dispersion trends around the mean should be considered as well, which 
will be more or less significant depending on the class and landscape complexity.

The goal of the training phase is to properly characterize that variability, based 
on sampling representative pixels within the study or similar areas. As in any other 
sampling, the objective of this phase is to obtain the most accurate results with the 
minimum sample size. An incorrect selection of the sample will lead inexorably to 
poor results in the final classification (Gong and Howarth 1990a; Hixson et al. 1980; 
Story and Campbell 1986). Therefore, the training phase constitutes the backbone of 
the numerical classification.

Traditionally, the classification methods have been divided into two groups: super-
vised and unsupervised, based on the methods used to collect training statistics. The 
supervised method implies a previous knowledge of the area that helps in selecting 
the samples for each category. The unsupervised method makes automatic searches 
to find the clusters of homogeneous values within the image. Later on, the user needs 
to find correspondences between those spectral groups and the target categories.

In this regard, we could consider two types of categories: those that are required 
by the end user and those that correspond to unique spectral characteristics. 
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The former can be named end-user categories, while the latter are called spectral 
categories. Ideally, these two groups should have a two-way correspondence: that is, 
each end-user category should correspond to just one spectral class, and vice versa 
(Figure  7.23a). Unfortunately, this two-way relation is infrequent, and normally 
either of the following situations occurs:

 1. A target category could be defined by several spectral classes (Figure 7.23b). 
For example, pine trees in the Sun-facing slopes have a different spectral 
category than those in shaded slopes. Water with different depth or turbid-
ity may also imply two or more spectral groups. When this situation occurs, 
the solution depends on the interpreter’s ability to identify those contrasting 
spectral properties and create different spectral groups that will be fused 
after the classification ends. Otherwise, some end-user categories would 
have very heterogeneous spectral signals and be easily subject to confusion 
with other classes.

 2. The opposite situation occurs when two or more informational categories 
share a single spectral class (Figure 7.23c). This implies that some target 
categories cannot be discriminated spectrally from the input data set. In 
this case, the interpreter may decide to unify the problematic categories 
into a single, more general one, if that is agreeable to the end user. For 
example, a coniferous cover category may replace two named “pine trees” 
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FIGURE 7.23 Relationships between spectral and end-user classes. (a) One spectral class 
for each end-user class, (b) two spectral classes in one end-user class, and (c) two end-user 
classes in one spectral class.
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and “fir trees.” When the end user cannot accept that combination or the 
confusion is created between two categories that have completely differ-
ent thematic meanings (urban gardens and forest, for instance), then other 
options should be considered, such as adding spatial criteria or auxiliary 
variables (relief, soils, etc.) or imagery from other dates.

Following the previous groups of training methods that were commented on, the 
supervised method tries to define end-user classes while the unsupervised method 
tends to identify the spectral classes of the image. From previous paragraphs, we can 
conclude that neither of the two methods provides an immediate solution to all the 
problems that digital classification involves. On the one hand, the supervised method 
can be criticized for being biased and artificial, since the computer can be forced to 
discriminate between categories that do not have a clear spectral meaning. On the 
other hand, the unsupervised method may provide results that are difficult to inter-
pret or have little connection with the end user’s needs.

7.2.2.2 Supervised Classification
A supervised classification assumes previous knowledge of the study area acquired 
either by external sources or fieldwork. This familiarity with the study zone allows 
the interpreter to identify on the image sufficiently representative areas of each one 
of the target categories. These areas are known as “training fields.” The term indi-
cates that such areas are used to train the computer in recognizing the different 
categories. In other words, from pixels in the training fields the computer calculates 
the DLs that define each of the classes, and later assigns the rest of the pixels of 
the image to one of those categories based on their DLs. The selection of training 
fields may be based on known optical properties of each category, field observations 
at known locations, and aerial and ground photographs, among other sources of 
information. It is strongly recommended to have the reference information as close 
as possible to the time of image acquisition, to avoid misallocation of pixels based 
on outdated reference data. Whenever possible, it is also recommended to make 
field radiometric measurements (Figure 7.24), which give the interpreter relevant 
information regarding potential factors of noise or to help properly select the most 
suitable bands for the classification (Barret and Curtis 1999; Milton et al. 1995).

Most image processing software (IPS) facilitate the interactive location of train-
ing fields. Using a digitizer or an electronic mouse, the interpreter introduces on the 
screen the vertices that define each of those areas, assigning them to one of the cate-
gories defined previously in the key. The auxiliary fieldwork and other documents—
such as aerial photography or conventional cartography—can greatly help a more 
precise location of these areas, bearing in mind that they must be sufficiently repre-
sentative and homogeneous examples of the class that we are trying to define. Once 
the boundary of a training field is completed, other fields for the same category can 
be selected. It is advisable to select several areas per category in order to suitably 
reflect its variability in the study zone.

Another alternative to select training fields is called “seeding.” The interpreter 
inputs single pixels, and a region-growing algorithm creates the field by adding up 
the neighboring pixels that have similar spectral values with the one initially selected. 
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The direction and distance to which new pixels will be added, as well as the degree 
of heterogeneity of those new pixels from the seed pixel can be controlled by the 
user. This method guarantees that the training fields are sufficiently homogeneous 
and avoids including border pixels between two categories, which would imply an 
artificial increase of the variance (Figure 7.25).

Once the selection of training fields is completed, the basic statistics of each cat-
egory, mean, rank, standard deviation, variance–covariance matrix, etc. are com-
puted from the DLs of all the pixels included in the training fields assigned to that 
class. These statistics will be used later on for categorizing the rest of the image 
pixels. Therefore, the measurements extracted from the training fields are assumed 
to be good representatives of each class. Otherwise, the interpreter would be forc-
ing the computer to classify heterogeneous areas, and the classification would be 
inaccurate.

Since the training phase is the most relevant in image classification, the selection 
of training pixels should be done with great detail and accuracy. When the catego-
ries are homogeneous, a single training field per category may be enough to avoid 
confusion with other covers (Figure 7.26a). Special attention should be paid to avoid 
selecting fields in transitional areas, as the resulting class statistics may not be good 

FIGURE 7.24 Portable radiometers are very useful in the training phase.
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representatives of the target cover (Figure 7.26b). The opposite error would be to 
select training sites only in those places where the category is very homogeneous, 
missing the real spectral variation of that cover (Figure 7.26c). For example, when 
trying to classify oak trees, areas with different canopy cover should be selected, 
either as a single class or as two or more spectral oak classes, to join them in the 
final map. From this we can infer that the supervised method requires a previous 
knowledge of the features of the study area, as well as the categories we want to 
discriminate between.

The last aspect to consider in the selection of the training sites is the statistical 
requirements that ensure they are good representatives of the different categories. As 
mentioned, this process implies a peculiar form of spatial sampling. For that reason, 
it is better to use some of the usual criteria in this type of technique to choose the 
size and the most suitable distribution of the sample, as well as to make estimations 
from it.

Regarding the size, it is required to select a minimum of m + 1 pixels per cat-
egory, m being the number of bands that integrate the analysis. However, it is very 
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FIGURE 7.25 Training pixels, selected by either (a) digitizing polygons or (b) automatic 
seeding algorithms.
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FIGURE 7.26 Problems of selecting training fields: (a) homogeneous areas, (b) heteroge-
neous areas in field 4, and (c) heterogeneous categories not properly sampled.
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convenient to exceed this minimum limit. Several authors recommend selecting a 
number of pixels between 10m and 100m per category (Mather 1998). This mini-
mum number is related closely to the degree of spatial association between the DLs 
of the image. Conventional sampling considers the selected samples to be random 
and independent. This assumption is not valid in this case because training fields 
have neighboring pixels affected by spatial autocorrelation (Congalton 1988b). 
Therefore, it is more advisable to choose several small-sized fields than one larger 
one, since the latter will tend to underestimate the variability of that category. Some 
authors recommend selecting random pixels, within fields of a greater size, instead 
of including them all (Campbell and Wyme 2011).

Regarding the distribution, it is best to consider the characteristics of the image 
itself and to try to include the spatial variations of each category: slope, aspect and 
gradient cover, density, moisture content, type of soil, etc. Thus, several authors have 
emphasized that the variability of a cover is directly proportional to the resolution 
of the sensor (Cushnie 1987). In other words, the greater the spatial detail regis-
tered in the image, the greater its sensitivity in detecting the internal variations of 
a category, which would be hidden under a larger pixel. Since greater heterogeneity 
means greater mixing with similar classes and   greater risk of confusions in the 
later assignments, an increase in spatial resolution can complicate digital classifica-
tion. This fact, which seems to contradict common sense (greater spatial resolution, 
greater accuracy), has been proven by several authors and is known as “scene noise” 
(Markham and Townshend 1981). The effect has been verified in the more heteroge-
neous cover types, as in the case of urban areas, where a larger pixel makes it easier 
to acquire an average signal of different components, whereas the more the pixel 
is reduced, the more intense the border effects become (Toll 1984). However, in 
agricultural and forest categories, that effect is less clear, and thus, higher-resolution 
images are more advisable for digital classification (Irons and Kennard 1986). As a 
result of greater spatial complexity of high-resolution images, new object-oriented 
classification systems have been developed that take better advantage of spatial fea-
tures (Ferro and Warner 2002; Tso and Mather 2001). We will later review those 
methods (Section 7.2.3.8).

To illustrate the classification process, we will use in this section the MODIS 
image of Southwestern United States, acquired on February 19, 2001. The first seven 
bands of this sensor will be used in this exercise. All have 500 m of spatial resolution 
and cover from the blue to the SWIR bands. Figure 7.27 includes the training sites 
that were used for supervised classification. To simplify the procedure, only seven 
categories have been defined: soil, snow, water, herbaceous green vegetation, shrubs 
and brown vegetation, forested areas, and built-up areas. The location of the training 
sites was aided by higher-resolution images.

7.2.2.3 Unsupervised Classification
This method tries to define the spectral classes present in the image by finding clus-
ters of pixels with similar DLs. No prior knowledge of the study area is required, and 
the work of the interpreter is more focused on the labeling of the resulting groups 
than on providing input information to the clustering algorithm. The basic assump-
tion behind unsupervised methods is the existence of unique clusters of pixels with 
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similar spectral characteristics and, therefore, similar cover. As stated earlier, how-
ever, the spectral similarity does not necessarily imply homogeneous cover because 
the same cover may have different spectral responses, while the same spectral signal 
may refer to more than one cover. Consequently, the interpreter needs to make sense 
of the resulting classes, mainly by labeling them, but also by combining them or 
splitting them according to the end-user needs.

The unsupervised training is based on selecting the discrimination space (set of 
bands that will be used for the grouping) and the clustering algorithm. The variables 
used for the clustering may be the original bands or the result of some transforma-
tion, such as PCA or VIs. Eventually, auxiliary variables such as DEMs or rainfall 
maps could also be used in clustering, provided these variables are measured in a 
quantitative scale.

The clustering method of finding those homogeneous clusters can be illustrated 
with the simplest case, that is, when working with just two bands (NIR and R, e.g., 
Figure 7.28). In this bivariate graph, clusters of pixels with similar DLs in those two 
bands are clearly observable. Those groups may be related to thematic classes of 
interest. Finding the clusters of the image requires deciding on two factors: how to 
measure the similarity between pixels and how to group them. The former has been 
commonly based on the Euclidean distance:
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FIGURE 7.27 Training sites selected for classification of the MODIS study area.
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where
da,b indicates the distance between two given pixels a and b
DLa,i and DLb,i are the digital values of those pixels in band i
m is the number of bands

Other criteria, such as the block distance or the Mahalanobis distance (Mather 1998), 
can also be used to measure the distance between pixels, although the Euclidean 
distance is the most common.

Regarding the clustering algorithm, the options also are very numerous. One of 
the most extended is known as ISODATA (Duda and Hart 1973), which provides an 
iterative scheme that is very flexible and robust. This algorithm can be described by 
the following phases (Figure 7.28):

 1. A series of cluster centers are initiated randomly, with a number commonly 
specified by the interpreter.

 2. The pixels of the image are assigned to the cluster with the closest center, 
following the distance criterion previously selected. This clustering may 
be performed with all image pixels or, most commonly, with a systematic 
sample (1 out of every 10, for instance) to reduce processing time.
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FIGURE 7.28 Phases of the ISODATA algorithm: (a) random selection of cluster centers; 
(b) pixels are assigned to the closest cluster center; (c) cluster centers are recalculated from 
the pixels assigned in the first iteration; (d) A second iteration changes pixel assignments as a 
result of center displacements in (c).
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 3. Once the first iteration is completed, the class centers are recalculated, consider-
ing the DLs of all the pixels that have been incorporated in the previous phase.

 4. A second iteration starts. Again, all pixels are classified under the nearest 
center class. Because of the displacement registered in step 3, the classifica-
tion of many pixels will change from the previous cycle.

 5. Again, the centers are recalculated and a new iteration starts. The process con-
tinues until the number of pixels that changed categories from one iteration to 
the previous one is below a certain threshold indicated by the interpreter.

Before each iteration starts, the centers of classes may be arranged following a set of 
parameters indicated by the interpreter (Figure 7.29). The most common are the mini-
mum distance between clusters to be distinguished (below that threshold, the clusters 
are combined), the minimum size of a cluster (below that threshold, the cluster is elim-
inated), the maximum variance of a cluster (above that limit, the group is split), and 
the maximum number of clusters (above that number, the closest groups are joined).

The most critical point of this algorithm is the decision on the control parameters 
that are appropriate for each classification problem, since there are no universal rules 
to follow. Commonly, the interpreter does not know the number of spectral clusters 
present in the image, or the convenient thresholds of maximum variance, or the 
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appropriate distance between clusters. In this way, the unsupervised analysis may be 
considered an exploratory process in which the user selects arbitrary values that are 
modified after seeing the results (Tso and Mather 2001). The unsupervised analysis 
may indicate, for instance, whether the end-user classes are spectrally separable or 
not, or their spectral variability, or whether they will have a bimodal or multimodal 
distribution.

In the case of the MODIS image, the unsupervised analysis was made on the 
seven reflectance bands. The following control parameters were used: 20 iterations, 
between 12 and 20 clusters, 5 as the minimum size threshold of each group, 2 stan-
dard deviations as the maximum dispersion in a group to be divided, and 1 as the 
minimum distance between clusters to be united. With this scheme, 13 thematic 
classes were generated and compared with the statistics generated by the supervised 
process to proceed with the assignment phase.

7.2.2.4 Mixed Methods
Both the supervised and unsupervised methods have advantages and disadvantages 
(Thomas et  al. 1987a; Tso and Mather 2001). The former method is often biased 
because the user decides a priori categories without considering the spectral charac-
teristics of the image. The latter method does not guarantee that the output classes 
have a meaning for the end user. In order to offset the disadvantages of both meth-
ods, several alternatives have been proposed that combine both methods. These 
mixed methods can be grouped into two blocks:

 1. Methods that use supervised analysis to “guide” the unsupervised analyses. 
In this case, the knowledge of the interpreter is used to lead the search 
for those homogeneous spectral clusters. For example, the unsupervised 
method can be applied to areas with a well-known cover, which would 
facilitate the spectral definition of this cover (Justice and Townshend 1981). 
Another way to guide the unsupervised analysis would be to introduce the 
average DLs derived from supervised training as the initial centers of clus-
ters. Thus, the iterative process of the search is remarkably reduced and at 
the same time influences the formation of clusters with a thematic meaning.

 2. Methods that combine statistics generated from supervised and unsuper-
vised training. Categories deduced by the two methods can be complemen-
tary, since they will include both thematic and spectral meaning. Some 
authors, for example, use the unsupervised analysis to stratify the image, 
leaving the supervised one for the areas that were not classified previously. 
Categories can also be combined using automatic classification routines 
such as hierarchical clustering (Chuvieco and Congalton 1988). This joint 
classification facilitates three types of clusters: those consisting of super-
vised and unsupervised categories; those consisting of only supervised 
categories; and those consisting of only unsupervised categories. The first 
group identifies those classes selected by the interpreter that have a clear 
spectral meaning. The second group corresponds to thematic classes that 
are with little spectral meaning and are therefore difficult to discriminate. 
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Finally, the third group indicates spectral classes that cannot be assimilated 
by the classification key proposed by the user. From the analysis of these 
last two clusters, the interpreter can refine the scheme of classification or 
the selection of training statistics.

7.2.2.5 Analysis of the Training Statistics
Regardless of the method used in defining the training phase, before carrying out the 
classification of the whole image, it is recommended to analyze the training statistics 
to determine whether the selected categories are really discriminable. In the negative 
case, the interpreter should find out whether the training process needs revision or the 
input variables or categories are relevant to the final goal. In the case of the MODIS 
image that we are using as a classification example, Table 7.4 displays the mean and 
standard deviation of the selected categories, based on the pixels included in the 
training classes. The mean provides information on the average spectral behavior of 
each category, while the standard deviation contains its internal homogeneity. In this 
case, the highest values of standard deviation are for the snow cover, while the lower 
values are for water. In spite of the great spectral complexity of urban areas, they 
do not show high standard deviations, probably due to the homogenization effect 
produced by having a coarse-resolution pixel size.

TABLE 7.4
Mean and Standard Deviation of Classes Selected in the MODIS Image

Mean 

Center 
Wavelength 
(nm) Soil Snow Herbaceous Shrublands Forested Urban Water 

645 3830.22 5311.49 1101.05 1972.30 614.49 1717.44 49.83

858.5 4574.02 5560.14 4504.79 2731.78 2511.85 2851.25 20.10

469 1780.79 5122.43 624.37 969.00 343.08 788.01 208.76

545 2799.26 5400.31 1150.96 1488.57 627.10 1441.01 240.66

1240 5097.45 1896.74 4043.67 3276.94 2478.55 2882.10 14.46

1625 5595.74 485.26 2797.17 2923.14 1595.88 2340.04 43.91

2130 5397.28 229.46 1629.87 3430.46 842.72 1826.89 25.79

Standard Deviation
645 174.94 1939.56 241.35 394.40 278.28 210.61 53.83

858.5 210.80 1271.24 472.64 398.34 248.68 216.17 43.03

469 164.66 1920.62 130.45 270.48 196.52 103.07 143.73

545 180.76 1936.10 146.35 329.58 253.82 166.99 120.86

1240 206.99 398.49 319.46 587.30 220.77 242.97 36.52

1625 213.10 106.68 276.43 702.23 234.75 175.16 37.69

2130 209.87 67.54 325.44 806.42 210.30 191.95 25.59

Note: Values are expressed in reflectance × 10,000.
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Both graphical and numerical methods have been developed to assess train-
ing statistics. Among the former, the most basic is a spectral signature plot, which 
shows the bands in the x-axis and the average DLs of each category in the y-axis 
(Figure 7.30). When classifying with corrected reflectances, this plot will be similar 
to the spectral curves shown in Chapter 2. This is the case of our example based 
on the first seven reflective bands of the MODIS sensor. The spectral signature plot 
provides a first assessment on the spectral tendencies of each category. Parallel and 
close lines indicate probable overlaps between categories, while the intersections 
between lines show those bands that are more likely to separate between categories.

The spectral signature graph shows only the average tendency of each category. 
To find out whether they can be discriminated from others, it is necessary to con-
sider the dispersion values as well, since they will yield information about potential 
overlaps with similar categories. A graphical tool to evaluate those potential over-
laps is the spectral dispersion graph. This is a bar chart that includes the digital 
range covered by each category, commonly expressed as the average ±1 or 2 stan-
dard deviations from the mean. In Figure 7.31, four examples of these graphs are 
included, showing the category overlaps between four contrasting bands (1, 2, 5, 
and 7) for the MODIS image. We observe how certain covers show clear overlaps in 
some bands (for instance, soil and snow in band 1), but are clearly separate in others 
(those two covers in band 7, especially), while others show a greater similarity in all 
of them (urban and herbaceous), and water is clearly discriminated from the rest in 
all four bands.

In addition to the graphical procedures, there are some quantitative criteria that 
provide more information to discriminate between the input categories. The simplest 
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index is the normalized distance (ND), which is calculated as the absolute difference 
between the averages of two categories, as a fraction of its standard deviation (Swain 
and Davis 1978):
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This calculation is applied to each pair of bands that take part in the classification, 
averaging its value to obtain a separability matrix.

A little more complicated, but also more versatile, is the statistical divergence 
(Swain and Davis 1978; Thomas et al. 1987a). It assumes that the DLs are normally 
distributed in each category and considers the separability as a measure of overlap 
between neighboring categories. Since it is a question of calculating that value for a 
multivariate space (as many variables as bands taking part in the process), the vector 
of means and the matrix of variance–covariance between pairs of categories need to 
be considered. The calculation is done as follows:
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where
DivAB indicates the divergence between the categories A and B
Tr refers to the trace or sum of the elements of the diagonal of the indicated matrix {}
VA and VB are the variance–covariance matrices of A and B
MA and MB are the vectors of means for the same categories
T indicates the transposed matrix of the one indicated in parenthesis

The greater the value of the divergence, the greater the separability between classes, 
based on the input bands. This metric increases with the number of input bands, 
which implies that the discrimination ability of the classification would constantly 
increase when increasing the number of bands. Since this is not very realistic, the 
divergence is scaled within known margins, using a simple transformation (Kumar 
and Silva 1977):
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where TD is the transformed divergence, c indicates the maximum value of the 
divergence, which usually takes the value of 2, although some authors recommend 
using a value of 100, so that the results can be interpreted in percentages.
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The divergence has also been used as a measure to select the set of bands that pro-
vides the best separation between classes. This way, an average value of divergence 
is calculated, according to Richards and Xia (1999):
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where
p(wi) and p(wj) indicate the a priori probabilities of classes i and j, respectively
m is the number of classes
Divi,j is the value of the divergence between those classes

The average divergence is calculated for any combination of m bands, the ideal 
combination being the one that maximizes the global value of separation between 
classes. In addition to divergence, other measurements of separability have been pro-
posed, such as the Bhattacharyya or Mahalanobis distances (Mather and Coch 2011; 
Thomas et al. 1987b):
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with the same meaning as in Equation 7.29.
Table 7.5 includes the calculation of the statistical separability for the classes 

selected on the MODIS image. This table offers high values for all categories, mean-
ing that a clear separation was observed in the training statistics. The maximum 
limit was obtained in most cases, with a minor reduction in the urban-forested and 
herbaceous-forested categories.

As mentioned earlier, the divergence can also be used to indicate the suitable 
combination of bands for the classification. In our case, it was calculated for all 
the combinations of three bands, and what was obtained was that bands 1, 2, and 5 
offered the greatest average separability between categories.

TABLE 7.5
Transformed Divergence for Classes of the MODIS Image

Soil Snow Herbaceous Shrublands Forested Urban 

Snow 2.0000 

Herbaceous 2.0000 2.0000 

Shrublands 2.0000 2.0000 2.0000 

Forested 2.0000 2.0000 1.9999 2.0000 

Urban 2.0000 2.0000 2.0000 2.0000 1.9989 

Water 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
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The analysis of the training statistics should provide some ideas regarding the 
convenience of the classification key used, the training methods adopted, or the input 
bands to discriminate between the target categories. Once these aspects are solved, 
different classification algorithms can be used to group the complete image, but 
results should not be very different from those deduced in the preceding analysis.

7.2.3 aSSiGnMent phaSe

This phase aims to classify the whole image by assigning each pixel to one of the 
previously selected categories. This categorization is carried out on the basis of the 
DL values of each pixel, for all input bands selected by the interpreter. As a result of 
this process, a new image will be created, where the DL will identify the thematic 
category assigned to each pixel.

Several algorithms have been proposed to carry out the categorization process. 
From a statistical point of view, they all define discriminant functions that provide a 
rule to assign each pixel to any of the previously trained categories. The most com-
mon approaches to establishing these functions have been the minimum distance, 
parallelepiped, and maximum likelihood (ML), but many other methods have been 
suggested in the last couple of decades. These methods may be grouped in two cate-
gories, parametric and nonparametric, based on whether or not they assume normally 
distributed classes. A more detailed analysis of most common algorithms follows.

7.2.3.1 Minimum-Distance Classifier
The simplest approach to classify a pixel is to allocate it to the closest category, 
that is, the one that minimizes the distances between that pixel and the class center 
(Figure 7.32). The most common definition of similarity is the Euclidian distance:

R

NIR

a

c

b

px

FIGURE 7.32 Minimum-distance classifier.
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where
dx,A is the distance between the pixel x and the category A
DLx,i is the value of the target pixel in the band i

DL A i,  is the mean DL of category A in the same band
m is the number of input bands

The pixel is assigned to the category that minimizes dx,A. Since the goal is to com-
pare between categories, the previous formula can be simplified by eliminating the 
square root. This algorithm does not consider the dispersion of each category or 
the correlation between bands. Therefore, the discriminant functions have circular 
shapes around the class centers.

This algorithm is quite simple and fast, and offers good results when the cat-
egories have little overlap. The method ensures that all pixels are classified (always 
there is a nearest class, even if it is far away). This may cause important commission 
errors, particularly when the training phase has not identified a relevant category in 
the study area.

Some authors have proposed modifications in the calculation of the distance in 
a way that is considered the variance of the classes (Lo et al. 1986; Schowengerdt 
2007).

7.2.3.2 Parallelepiped Classifier
This algorithm is based on defining a dispersion area around the center of each 
category, which accounts for its spectral variability. Therefore, this assignment 
approach establishes multidimensional polygons of parallel sides (that is the reason 
for its name) around the center of each category. The classification criterion is based 
on including a pixel in a certain category when its DLs are within the limits of that 
class, in all the input bands (Figure 7.33). Schematically

 DL R DL DL RA i A i x i A i A i, , , , ,- £ £ +  (7.34)

where RA,i indicates the dispersion range for the class A. The criterion is run for all 
input bands i. In summary, a pixel is assigned to a certain class if its DLs are within 
a certain distance of the center of that class. That distance is established by the 
interpreter and is commonly a multiple of the standard deviation. Other approaches 
such as the interquartilic deviation or class range can be used as well. In any case, it 
is worth considering that the broader the dispersion value, the more likely it is that 
pixels of neighboring categories (commission error) will be included, and the nar-
rower the dispersion value, the more likely it is that pixels of the actual category will 
be missed (omission errors).

The parallelepiped algorithm is easy and quick to implement, since it requires 
only simple logical operations (IF … THEN …). It has frequently been used as the 
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first approach to class variability or to obtain a first stratification of the image, iso-
lating the most unique categories and then applying another algorithm on the most 
problematic pixels.

The main problems of this algorithm are related to the way the domain areas are 
established. First, there might be overlapping areas and, therefore, pixels can be clas-
sified in two or more categories. If the program does not have other criteria, it will 
include the pixel in the first category that fulfills the requirements given in Equation 
7.34. As a consequence, the order of categories may have an important impact on 
the results. Some authors have suggested modifying the criterion for these conflict 
areas by introducing a minimum-distance rule, by adjusting the borders interactively 
(Mather 1998) or by creating mixed classes.

The second problem is unclassified areas, which will occur for those pixels whose 
DLs are outside any of the defined boxes. In this case, the interpreter may decide 
to extend the dispersion range, establishing a balance among the unclassified pixels 
and creating overlapping regions. Another option is to improve the definition of input 
classes, including new ones adapted to nonassigned areas.

7.2.3.3 Maximum Likelihood Classifier
This algorithm assumes that DLs are normally distributed within each class, and so 
the actual frequency can be estimated using the Gaussian probability function, based 
on the mean vector and variance–covariance matrix. This method is more complex 
than the two previously reviewed and requires more computing time. However, it is 
the most widely used in remote sensing applications, since it provides a more consis-
tent approach to data variability.

The basis of this algorithm can be illustrated using an example proposed by Swain 
and Davis (1978). Let us consider that the interpreter needs to discriminate between 
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FIGURE 7.33 Parallelepiped classifier: px can be assigned to two categories, while py will 
remain unclassified.
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a specific outcome obtained by throwing a normal pair of dice, numbered from 1 to 
6, from another result obtained from dice with a couple of additional points added to 
each face (numbered from 3 to 8). A reasonable way of solving the problem would be 
to calculate the probability that any specific outcome was obtained with the normal 
or the modified dice, assigning the unknown results to the most probable pair of dice. 
For example, with a throw of 7, the probability of having used the normal dice is 6/36 
(6 + 1, 1 + 6, 3 + 4, 4 + 3, 5 + 2, and 2 + 5). For the augmented dice, the probability is 
smaller, just 2/36 (3 + 4 and 4 + 3), and therefore the “result” is assigned to the normal 
pair of dice. The same philosophy would apply to other outcomes, and the criterion 
to assign to one or the other pair would be the value of the expected probability. For 
the normal pair of dice, this function would be centered about the value 7 (maximum 
probability), with a minimum of 2 and a maximum of 12 (Figure 7.34a). For the 
modified pair, the most probable value would be 11, being the probability distribution 
from 6 to 16. From this graph, we can conclude that the probability of having used the 

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Pr

ob
ab

ili
ty

(a)

0
2

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

Pr
ob

ab
ili

ty

(b)

Normal
Augmented

3 4 5 6 7 8 9 10 11 12 13 14 15 16

FIGURE 7.34 Basis of the maximum likelihood classifier. (a) Distribution functions for 
a normal and augmented pair of dice and (b) distribution functions for a modified and aug-
mented pair of dice.
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normal dice is larger than the augmented one when outcomes are equal to or below 8. 
It is smaller when they are equal to or higher than 10, and it is identical when they are 
equal to 9. In other words, the threshold to assign any specific outcome to each pair of 
dice lies at the intersection between their respective probability functions.

This criterion does not imply that outcomes larger than 9 cannot be obtained 
from the normal dice, or lower than 9 with the augmented one. The probability is 
lower, but it is not zero. In other words, the ML rule is not fully accurate when there 
is overlap in the probability functions. It is completely reliable only when values are 
lower than 6 or higher than 12, since these values can be obtained only with one pair 
and never with the other. In summary, if natural overlap exists among classes, it is 
not possible to separate them with total reliability.

Extending this example, let us suppose that the normal pair of dice are also modi-
fied, but in this case to reduce the range of outcomes from 2 to 5, eliminating 1 and 6 
and repeating the punctuations 3 and 4. This would not modify the mean value of the 
probability distribution, which would still be 7. However, this action would change 
the spread of the distribution, since the punctuations would tend to be closer to the 
average value. Consequently, the assignments to this pair of dice would be safer. The 
assignment threshold would continue to be 9, but the probability of having lower or 
higher outcomes to that value decreases with respect to the previous distribution 
(Figure 7.34b). Therefore, the more homogeneous a distribution (i.e., the lower the 
variance), the more accurate the discrimination of categories will be.

Applying this example to the context of digital classification, the interpreter needs 
to estimate the probability functions of the different thematic categories to be dis-
criminated. The probability of obtaining a certain value when playing with two dices 
can be estimated before the actual results are obtained, since we know the number 
of possible combinations for each outcome and the total number of combinations. 
In other words, we can compute the a priori probability of obtaining each outcome. 
In the case of digital classification of thematic categories, we should find out a pro-
cedure to estimate their probability distributions. Assuming that the categories are 
normally distributed, the Gaussian function can be used to estimate the probability 
that a pixel with a certain DL is assigned to each category, providing we know the 
mean and standard deviation of that category following
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where
DLA is the mean DL for class A
sA

2  is the variance of that class

Both the mean and the variance are taken from the training statistics. Once this 
function is computed for all categories for a single pixel, that pixel is assigned to the 
category that maximizes the function
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for any B category. To speed up the calculation of the exponential function, 
some authors suggest using a logarithm transformation to obtain lineal functions 
(Schowengerdt 1983):
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The expression can be simplified even more if we eliminate the first term (−0.5 ln (2π)), 
which is constant for every category. For the same reason, the second term (0 5 2. ln sA) 
can be calculated initially for each category, instead of computing it for each pixel.

Returning to the previous example, it could also occur that the outcomes were 
obtained with two pairs of normal dice and one pair of augmented dice. In this case, 
we should also consider in our classification criterion that it is more likely to get certain 
outcomes from the normal pair of dice than the augmented one, simply because they 
are more numerous, independent of the actual results. This difference in weight of two 
categories is also applicable to digital image classification because some categories may 
be more abundant in a certain area and therefore are more likely to occur in the image 
than others. This criterion of “a priori” probability can also be considered in the ML 
rule, by modifying the decision rule of Equation 7.36, which becomes (Strahler 1980)
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where p(A) and p(B) are weight factors (or a priori probabilities) that take into 
account the abundance of each category in the study area. The threshold to discrimi-
nate between categories moves toward one side or another of the original value, as 
a function or a priori probability of each category. Remember that the intersection 
between curves marks the boundary in the area assigned to each category; this factor 
can modify the results significantly.

Although of great interest, the use of this option involves practical difficulties, 
since commonly there is no previous information on the land cover of the area 
to classify. When this is available, for instance, from a previous inventory, those 
weights may help solve confusing problems between spectrally similar categories. 
Otherwise, the interpreter may just introduce the same weights to all.

So far, we have considered the ML criterion with just a single band. Most com-
monly, this algorithm is applied to several bands. Therefore, we should extend the 
formulas previously presented to a multivariate space:
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where
m is the number of bands
|VA| is the determinant of the variance–covariance matrix for class A
Mx is the vector of DLs for pixel x
MA is the vector of mean values for class A
T and −1 indicate the transpose and inverse of the matrix, respectively
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This formula can also be expressed in logarithmic form:
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once the constant terms are eliminated from Equation 7.39. For the case of two 
bands, the limits of the categories have an ellipsoidal shape (Figure 7.35). As in other 
classification criteria, the more the overlap between probability functions, the more 
the potential confusion between categories.

In principle, the ML algorithm classifies every pixel into one category, even when 
the probability is low. Since classification with low likelihoods commonly is associ-
ated with high commission errors, a postclassification filter can be applied to reject 
the assignment of those pixels with low probability of membership (Figure 7.36). In 
case of many pixels with low probability, the interpreter should consider whether the 
selected classes are really representative of the study area, or whether the training 
statistics were properly generated.

The ML method assumes that the categories follow a normal distribution, which is 
frequently the case in remotely sensed data. However, Swain and Davis (1978) showed 
that the results of this algorithm are consistent even if this condition is violated.

For the MODIS image used in this section, the ML criterion provides good results 
as was expected from the separability analysis. However, problems were found in 
distinguishing between irrigated crops and grasslands, which have also photosyn-
thetic activity at this time of the year, and therefore a common herbaceous category 
was selected. Minor problems were also observed in distinguishing water in the 
Colorado River delta area from soil because of water turbidity. Urban areas were 
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FIGURE 7.35 Isolines of the Gaussian probability function. The unknown pixel is assigned 
based on probability distribution functions.
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mixed with semiarid vegetation, even though the large metropolitan areas (Phoenix, 
Tucson, Las Vegas, Mexicali, etc.) were well classified. In addition, frequent confu-
sion between grassland and shrubland was observed (Figure 7.37a).

Comparing these results with the unsupervised ISODATA training, an improve-
ment in the definition of transitional areas was observed, especially in semiarid veg-
etation. Soil background effects were also noticeable in the definition of spectral 
classes. Urban areas were not identified in this case, as they were confused with 
irrigated crops or grasslands (Figure 7.37b).

(a) (b)

FIGURE 7.37 Results from the (a) maximum likelihood classifier and (b) unsupervised 
ISODATA methods: blue, water; yellow-orange, soil, shrub, and sparse vegetation; light 
green, grassland and irrigated areas; dark green, forested; red, urban areas.
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FIGURE 7.36 Impact of applying postclassification probability filtering.
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7.2.3.4 Decision Tree Classifier
One of the simplest alternatives to traditional classification systems is decision tree 
classification. This approach is based on establishing a set of binary rules that are 
applied sequentially to discriminate between different target categories. Those rules 
include thresholds on spectral bands, but also on auxiliary information, such as 
soil maps, slope, or elevation, and therefore are very adaptable to different types 
of input data. The algorithm is built after identifying the most sensitive bands for 
category discrimination. Each category may be classified using different input vari-
ables, instead of using all simultaneously. For example, water can be separated in the 
NIR or SWIR reflectance, green vegetation using the normalized ratio of R and NIR 
bands plus elevation and slope, and residential areas using a combination of texture 
and NIR reflectance. This classification approach is very robust, easy to interpret, 
and flexible enough to handle a broad range of response types (De’ath and Fabricius 
2000). For these reasons, the decision tree classifiers have been extensively used in 
the last few years, especially in global land cover classification studies (Friedl and 
Brodley 1997; Friedl et al. 1999; Hansen et al. 1996; Zhan et al. 2002). Algorithms 
developed to discriminate between single categories based on a set of sequential 
rules can also be considered tree classifiers. This is the case with the different cloud 
detection (Saunders and Kriebel 1988), active fires (Giglio et al. 2003), or burned area 
discrimination algorithms (Bastarrika et al. 2011; Chuvieco et al. 2008a).

The set of rules may be created from the interpreter’s experience or based on 
statistical approaches, which try to find the linear functions that better discrimi-
nate between specific input categories. The former are difficult to generate, since 
the interpreter needs to identify the best discrimination space for each category. 
However, once the system is properly trained, it provides a quick and robust way 
to classify a broad range of categories, provided there is at least an input band that 
provides a unique response for each category. In this regard, the tree classifier can 
be considered a simple example of an expert system (Skidmore 1989). The decision 
rules are defined in terms of logical operators (IF condition1 AND condition2 OR 
condition3 … THEN action). These conditionals can involve all kinds of input vari-
ables, including spectral, textural, and auxiliary information:

 

IF / AND Texture Rough THEN Forest

IF / AND

DL DL

DL DL
NIR R

NIR R

> =
>

2

2   Texture Smooth THEN Grasslands=

To create the decision rules, the user should consider the spectral, spatial, and tempo-
ral characteristics of the different target categories. In the case of vegetation covers, 
in addition to the spectral values, the seasonal trends may be critical in discriminat-
ing among different species, as well as elevation ranges or soil types. Following this 
logic, Skidmore (1989) carried out an inventory of eucalyptus forests in Australia, 
based on satellite images and auxiliary information. He observed a significant 
improvement in the classification after considering the ecological gradients of euca-
lyptus in the region, which were introduced as a set of discriminant rules. Other 
authors have used contextual rules, considering the vicinity or each cover as a deci-
sion criterion (Middelkoop and Janssen 1991). Decision trees can also be integrated 
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with other classifiers to obtain a more automatic discrimination of thematic classes 
(Garcia et al. 2011).

To illustrate the creation of a decision tree, a simple classification structure has 
been included in Figure 7.38. In this case, the exploratory analysis was carried out with 
four spectral bands: G, R, NIR, and SWIR, as well as elevation data (DEM). The first 
branch of the tree addresses the separation of water, which is easily discriminated in 
the NIR band. Those pixels with low NIR reflectance (ρNIR ≤ 10) were labeled as water 
and eliminated from further analysis. The second step discriminates healthy vegeta-
tion (irrigated areas and deciduous trees) based on the green reflectance (ρGreen ≤ 30%). 
Urban land and cereal crops were more difficult to differentiate because they present a 
significant overlap. For this reason, two bands were used for this threshold, based on the 
SWIR and red reflectance. Finally, the classes deciduous and irrigated crops were dis-
criminated using elevation data, assuming that crops will occur only at low elevations.

Automatic algorithms for building decision trees have been proposed in the last 
few years. One of the most versatile is named classification and regression tree 
(CART) analysis (Lawrence and Wright 2001). This algorithm has been imple-
mented in several commercial statistical packages and, therefore, is easily available 
for remote sensing applications. CART operates by repetitively splitting the data 
based on the input variables until a certain degree of homogeneity is found in the 
terminal nodes. Each branch of the tree is created after specific functions of the 
input variables to ensure maximum intragroup homogeneity and intergroup separa-
bility. To improve the generalization power of the final result, the splitting criteria 
are cross-validated with samples that are not used in the building of the tree. This 
assessment is commonly known as “pruning” and involves comparison of differ-
ent sets of decision rules created from the training pixels against validation pixels, 
selecting the most accurate and simple set as possible. The CART algorithm has 
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FIGURE 7.38 Example of a simple decision tree classifier.
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been used in several remote sensing applications, such as land cover (Lawrence and 
Wright 2001), forest fire risk assessment (Amatulli et al. 2006), and burned area clas-
sification (Stroppiana et al. 2003).

Another variation of decision tree classifiers is named random forest (RF), which 
uses an iteratively random set of the input variables to build a large set of trees 
(a forest) (Breiman 2001). Each tree is built so as to maximize separation between 
categories. Instead of using the best variables for each node of the trees, RF uses a 
random subset, thus minimizing the generalization error. In addition, the algorithm 
uses different samples of the input dataset, and therefore trees are generated from 
different subsets. Averaging tree outputs provides the most suitable set of rules to 
discriminate the input samples, part of which are not used to create the trees and, 
therefore, they can be used as unbiased predictors of classification error. This is an 
important feature of RF, as the traditional decision trees may be affected by overfit-
ting. In the last years, RF has been extensively used in classification of EO images 
(Gislason et al. 2006; Lawrence et al. 2006; Rodriguez-Galiano et al. 2012).

7.2.3.5 Neural Networks
Artificial neural networks (ANNs) have been extensively used for pattern recogni-
tion and classification analysis in a wide range of applications. Within the remote 
sensing community, ANNs have been mainly used for digital image classification, 
but there are also examples of using these systems for estimating physical param-
eters such as the LAI, water, or chlorophyll content (Fang and Liang 2003; Fourty 
1997; Riaño et al. 2005), as well as for fitting prediction models (Vega-García et al. 
1996) and multitemporal change detection (Liu and Lathrop 2002).

In essence, ANNs are used to predict a complex behavior (output) based on a set 
of input variables that can be multiply interrelated. They try to simulate the behav-
ior of the human brain (hence, their name) by means of multiple interconnections 
among activation units (called “neurons”). An ANN is a set of connections between 
simple elements (neurons, processing units) distributed in layers (Figure 7.39). The 
units of a layer are connected with those of the neighboring layer through a certain 

Hidden layer Output layerInput layer

FIGURE 7.39 Structure of an artificial neural network.
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function. These equations (named “activation functions”) can be linear or nonlinear 
(most commonly, sigmoid). They are used to estimate a value in the output layer 
from the values of the input layers.

Since the neurons are connected to other neurons through the intermediate layers 
(named “hidden layers”), the value of the output units depends on the values of all 
input variables. However, those input values may have more or less importance in 
the estimation of the output, according to the weights (wi,j) calculated for each acti-
vation function. The calculation of those weights is carried out through an iterative 
process called “training” (or “learning”) the network. In this process, the weights 
are changed iteratively from a set of random values, comparing in each step the 
estimated output with the actual output value with the final goal of reducing the 
estimation error. In summary, the outputs values are calculated as (Richards 1993)

 o f w x= +( )q  (7.41)

where
o indicates the output vector
θ is a threshold (in many occasions it is zero)
w is the vector of weights
x is the input vector

The output vector can in turn be the input vector of other layers, depending on the 
network structure. This structure can be very diverse, and the level of complexity 
is adapted to the classification needs. In image classification, the ANNs are usu-
ally structured in three layers (input, hidden, and output). The hidden layer serves 
to provide more flexible discrimination functions. The number of the input units 
depends on the input bands for classification and the radiometric resolution of those 
input bands (ranging code) (Benediktsson et al. 1990). The number of output units 
commonly is the number of categories to be classified, while the number of units in 
the hidden layer is usually at least similar to that of the input layer (Richards 1993).

The most critical point in the ANN is the learning or training phase, which 
includes the definition of the network structure and finding out the weights of the 
activation functions. Among the diverse learning algorithms, one of the most com-
mon is named “backpropagation.” The basis of this algorithm is comparing the out-
put of the ANN with the actual output values provided by the interpreter, and finding 
out which set of weights of the different activation functions provides the least errors. 
In summary, the algorithm proceeds as follows (Rumelhart et al. 1986):

 1. First, it assigns random weights to the initial network. The computed out-
puts (in our case, the predicted membership, tk,m) using those weights are 
compared to the actual category of the training sample (introduced by the 
user). As a result, an initial error is computed, following
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  for all expected outputs m (in our case, for the c categories) in all the input 
units k (in our case, the number of input bands, n).

 2. The weights are modified iteratively in the different layers to reduce the 
final error. This process starts from the output layer to the input layer, and 
therefore, the error is spread to the previous stages (backpropagated). Once 
the weights are readjusted, the estimated output values are compared again 
to the actual output values and a new error is computed.

 3. The process is repeated until the error is very small or null (in that case, all 
the samples would be well classified), or until the number of iterations indi-
cated by the interpreter has been completed. That number of iterations can 
vary widely depending on the complexity of the problem (in land cover clas-
sification problems, they may be as high as 250,000 iterations; Civco 1993).

To illustrate how the learning phase evolves, a simple classification example pro-
posed by Richards (1993, pp. 219–223) can be used. In this example, a simple ANN 
will be derived for six elements classified in two categories (c1 and c2) that we want to 
discriminate using linear functions (Figure 7.40). The values of these six elements are
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We can conclude from Figure 7.40b that these two classes cannot be discriminated 
using linear equations without errors. To solve that problem, a simple ANN with 
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FIGURE 7.40 Example of using an artificial neural network for classification of two catego-
ries. (a) Basic ANN structure, (b) units to discriminate, (c) discriminant function, and (d) new 
cases to classify. (Adapted from Richards, J.A., Remote Sensing Digital Image Analysis: An 
Introduction, Springer-Verlag, Berlin, Germany, 1993.)
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three layers (input, hidden, and output) is created. Since the problem only includes 
two classes, two units will be used in the input and hidden layer and just a single 
one in the output layer. Therefore, the problem requires computing six weights: 
four to connect the two input units to the two units of the hidden layer, and two 
more to connect the hidden layer to the single unit of the output layer. Following 
the backpropagation criterion, the process starts by assigning random weights and 
computing the final error (0.461: Table 7.6). As the iterative process progresses, the 
weights are recalculated and the final error is reduced. In the last step, the weights 
are used to calculate the final linear equations that will be used in this problem. 
Three equations are computed, two from the input layer to the hidden layer
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and one from the hidden layer to the output layer

 o o o3 1 24 785 4 784= +. .

The final classification is based on the value of the output unit (o3). When this value 
is lower than 0.5, it is assigned to class 1, and when it is higher, it is assigned to 
category 2. The two equations of the hidden layer serve to separate the discrimina-
tion space, which is finally applied in the output layer. Those intermediate equations 
can be conceived as a means of transforming the space of the original measure to 
achieve a suitable separation among the members of each class (Figure 7.40c). Linear 
equations are not commonly used to obtain the output values of exit of a neuron, 
but more complex functions such as sigmoids (the output value ranges from 0 to 1), 
or hyperbolic-tangent (output value from −1 to +1; Civco 1993). Among the many 
methods available for training an ANN, some do not require a previous definition 

TABLE 7.6
Variation of Weights of the Neural Network Alters 
Different Iterations

Iteration w1 w2 w3 w4 w5 w6 Error 

0 0.050 0.100 0.300 0.150 1.000 0.500 0.461

1 0.375 0.051 0.418 0.121 0.951 0.520 0.424

5 0.606 0.007 0.570 0.117 1.240 0.909 0.391

10 0.642 −0.072 0.641 0.196 1.464 1.034 0.378

50 2.224 −2.215 2.213 2.216 3.302 3.259 0.040

150 2.810 −2.834 2.810 2.835 4.529 4.527 0.007

250 2.901 −2.976 2.902 2.977 4.785 4.784 0.005

Source: After Richards, J.A., Remote Sensing Digital Image Analysis: An 
Introduction, Springer-Verlag, Berlin, Germany, 1993.
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of output classes, and therefore, ANN can also be used as an alternative to unsuper-
vised training.

Once the learning is completed, new unknown cases can be easily classified, using 
the previously calibrated equations. In this example, some cases are added in the 
vicinities of those initially introduced, with good classification results (Figure 7.40d).

ANN classification has been used in different applications of remotely sensed 
images (Benediktsson et al. 1990; Foody 1995; Trombetti et al. 2008). They have 
been found to be robust when the normality assumption cannot be met or when the 
input data are very heterogeneous. Several authors have proved the robustness of 
this technique, which is not very sensitive to extreme values, and has the ability to 
include textural elements (Bischof et al. 1992; Civco 1993; Hepner et al. 1990).

Although ANNs have advantages, this classification approach involves some prac-
tical difficulties. First, there are no clear criteria for selecting the most appropriate 
network structure (number of layers, units in each layer) or training algorithm for a 
particular problem. Frequently, these choices are based on trial and error because uni-
versal rules are not generally available. The second problem is more connected with 
the training procedure. Since the activation functions can be very sophisticated, ANNs 
may be overtrained; that is, they fit the training dataset well but perform poorly in other 
situations. To avoid this, the training is commonly performed with two samples: one 
used to modify the function weights and the other to validate the generalization power.

7.2.3.6 Fuzzy Classification
In our previous discussion of spectral unmixing methods, we discussed the interest in 
considering a pixel as a mix of several land covers, which is especially true in medium- 
and coarse-resolution sensors. Traditional classifiers assign one single category to each 
pixel, by assuming that either the pixel is homogeneous or at least has a highly domi-
nant class. This approach can lead to remarkable errors when mixing is observed in 
similar proportions. For example, if 90% of the pixel is occupied by forest and 10% 
by water, the assignment of that pixel to forest might be considered accurate enough. 
However, if the proportions are 55% and 45%, the error would be significant. For these 
situations, a multiple-assignment classification approach would be more appropriate. 
These approaches are generally termed as soft classifiers; hard classifiers allow only 
one category for each pixel (Mather 1999; Schowengerdt 2007).

Fuzzy classification is one of the most common approaches to soft classifiers. 
This approach makes it possible to assign a degree of membership to each category 
instead of a single value for each pixel (Figure 7.41). Conventionally, the function of 
membership is binary (0/1), but it may also be a real number between 0 (absence of 
a certain category) and 1 (full pixel covered by that category). Therefore, the output 
image may include a simultaneous assignment to several categories, with different 
grades of membership (Townsend 2000; Wang 1990b):

 
U DLi j x, ( )= f  (7.43)

where Ui,j would indicate the grade of membership of the pixel x to the class i and 
can be a real number between 0 and 1.
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In remote sensing applications, the most common methods of obtaining those val-
ues of ownership are the fuzzy variant of ML (Maselli et al. 1995; Wang 1990b) and 
a variety of the unsupervised analysis, called fuzzy c-means (Fisher and Pathirana 
1990; Foody 1992). To simplify the text, we will focus on the first approach, since it 
is based on the ML algorithm previously analyzed. For a complete formulation of the 
c-means algorithm, the reader may refer to the article by Fisher and Pathirana (1990).

The ML algorithm can be used to compute the degree of membership in a fuzzy 
classification algorithm by changing the definition of the vector of means and the 
variance–covariance matrix. The alternative formulas are (Wang 1990a)
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where
UA is the degree of membership to class A
M is the vector of DL values for the n sampled pixels
VA the variance–covariance matrix for the same class
the asterisk (*) indicates that the MA vector and the VA matrix are calculated for 

a fuzzy space

From those two metrics, one can estimate the membership probability, using formu-
las similar to the ML algorithm:
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FIGURE 7.41 Basis of fuzzy classification system.
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This equation provides for each pixel the probability of being a member of cate-
gory A, and it is output to the resulting image. This image will have as many bands 
as the number of categories considered. For each of those classified bands, the pixel 
value would indicate the degree of expected membership for a particular category.

The training areas for fuzzy classification can be homogeneous, as in hard classi-
fiers, or heterogeneous, with mixed components, provided their mix proportions are 
known. Fuzzy logic is especially suitable when dealing with applications involving 
frequently mixed covers, such as forest or vegetation inventories (Maselli et al. 1995) 
and maps (Townsend 2000), fuel classification (Nadeau and Englefield 2006), or 
analysis of urban areas (Fisher and Pathirana 1990).

The results of fuzzy classification can be compared with those of SMA. Even 
though both techniques have a different basis, they share the idea of mixing covers, 
by considering either a degree of membership (fuzzy classifiers) or proportions of 
cover (SMA). A few studies have compared the advantages and inconveniences of 
both techniques, considering their reliability in solving mixtures, computer time, and 
data limitations. When they have been compared, the results were found to be similar 
(Foody and Cox 1994). Fuzzy techniques can also be used for multitemporal change 
detection, making it possible to detect different intensities of change (Foody 2001).

On the other hand, fuzzy classifications require special methods for accuracy 
assessment, as multiple memberships are assigned to each pixel (Stehman et al. 2007).

Figure 7.42 shows an example of fuzzy classification of the MODIS image. Four 
categories have been included in this figure to illustrate the process. The output val-
ues provide an estimation of the membership function of each pixel to the user cat-
egories. Soil and vegetation are very well defined, but water and snow show some 
coincidences, in spite of their strong spectral contrast, especially in the VIS bands.

7.2.3.7 Hyperspectral Classification
Similar classification methods can be applied to both multispectral and hyperspec-
tral data, although some algorithms may require previous selection of most relevant 
variables, since they may have limitations in the number of input variables.

However, the use of standard classification techniques with hyperspectral data 
may reduce the potential of these images to identify special features of interest. For 
this reason, alternative methods of classification have been proposed, making bet-
ter use of the hyperspectral dimensions. While in multispectral systems reference 
statistics are computed from training fields or unsupervised training derived from 
the same image to be classified, the hyperspectral reference data are commonly col-
lected from spectral libraries or spectroradiometer measurements. If image values 
are to be compared with these spectral measurements to train the classifier, DL to 
reflectance conversion needs to be performed before the classification. Otherwise, 
the comparison between pixel values and reference spectra will be meaningless.

A simple way of assigning an unknown pixel to a reference category is by com-
paring how both the pixel and the reference reflectances change throughout the spec-
trum. This is the basis of the classification named “binary encoding,” which converts 
the actual reflectance of a continuous spectrum to a set of 0/1 values, depending on 
whether the reflectance of a single band is above or below the average reflectance for 
the whole spectrum. The band is coded with 1 when reflectance is higher than the 
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average, or with 0 otherwise. When two spectra have similar covers, we can assume 
that the sequence of 0s and 1s along the spectrum will be similar. To obtain a more 
quantitative evaluation of this similarity, the index of spectral agreement (ISA) is 
computed as follows (Mazer et al. 1988):
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where
BCi,k is the binary encoding of spectrum i (the one to be classified) in band k
BCj,k is the binary encoding of the reference spectrum for the same band
m is the number of bands considered

Whenever ISA is close to 0, the spectra are more similar, and when it is close to 1, 
they are more different. In Figure 7.43, we can observe three spectra extracted from a 

(a) (b)

(c) (d)

FIGURE 7.42 Examples of fuzzy classification of the MODIS image: (a) soil, (b) water, 
(c) green vegetation, and (d) snow.
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hyperspectral image acquired by the Hymap airborne sensor. The target spectrum is 
compared with two known spectra: vegetation and soil. Even though visually it is clear 
that the unknown spectrum is more similar to the vegetation spectrum, we need to 
quantify this similarity. Using the ISA metrics, the value between the target spectrum 
and vegetation is 0.039 while that between the target and the soil spectrum is 0.5625. 
Therefore, the greater similarity to the vegetation spectrum is numerically confirmed.

A second technique of classifying hyperspectral images is based on comparing 
the differences in two spectra between the reflectance of each band and the average 
trend of that spectrum, defined by the local maxima. The analysis of these differ-
ences has been named “continuum removal” (Kruse et al. 1993a) and can be con-
sidered as the study of the absorption features that are present in a single spectrum. 
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FIGURE 7.43 Classification of spectra by binary encoding.



333Digital Image Processing (II)

These features characterize the specific absorption properties in a material such as 
chlorophyll, water, iron, or yeast. To analyze these absorption features, we need first 
to find the maximum locals (the continuum) and then compute the difference of 
each band reflectance against that line (Figure 7.44). Each absorption feature can be 
defined by the central wavelength where it occurs, its width, depth, and shape (Kruse 
et al. 1993b). Absorption features of an unknown pixel can be compared with those 
of a reference category, and therefore the target pixel can be classified (Tsai and 
Philpot 2002) or its biophysical properties extracted (Tian et al. 2001).

Finally, a widely used method of classifying hyperspectral images is the spectral 
angle mapper (SAM). SAM bases the classification on the angular distance between 
a target and a reference spectrum, assuming that each spectrum is a vector in the 
m-dimensional spectral space (m being the number of available bands; Figure 7.45). 
The formula is
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DLi,k being the values of the target spectrum and DLj,k the values of the reference 
spectrum. In this case, DL should be expressed in reflectance, since most commonly 
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the reference spectrum will be extracted from an external source (spectral measure-
ments). The target spectrum will be assigned to the category that minimizes the 
angle θ.

This technique measures the similarity between spectra by measuring the spec-
tral contrast (direction) rather than their absolute differences (intensity). Therefore, 
the algorithm is fairly insensitive to different illumination conditions. This property 
is very useful not only to classify hyperspectral images but also as an inversion strat-
egy to assign biophysical values to pixels by comparing observed reflectances with 
simulated data. This approach has been successfully tested in the estimation of burn 
severity and water content from medium-resolution sensors (Chuvieco et al. 2007; 
De Santis and Chuvieco 2007; Jurdao et al. 2013).

7.2.3.8 Object-Oriented Classifiers
In several parts of this book, we have stated that land covers do not present unique 
spectral signatures, but rather, there are external and internal factors that introduce 
a certain variability within the spectral signature of a particular cover and create 
potential confusion with other categories. Consequently, it will be difficult to dis-
criminate them based just on the spectral values. Additional variables may need to 
be taken into account to complement spectral information.

Among those additional variables, the textural and contextual factors are very 
relevant. As in visual interpretation, the spatial properties of covers are very help-
ful in differentiating them from similar categories. The use of spatial variables 
is less frequent in digital than in visual interpretation, but there is growing inter-
est in using these features, especially in the context of classifying high-resolution 
images.

The distinction between the concepts of texture and context refers to the area that 
is used to measure the spatial relationships (Gurney and Townshend 1983). Texture 
should be associated with the spatial variations inside contiguous groups of pixels, 
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FIGURE 7.45 Calculation of the spectral angle mapper.



335Digital Image Processing (II)

while context refers to the spatial relations between a certain group of pixels and 
the rest of the image. To simplify the discussion, we will consider both aspects here, 
since both aim to include spatial variables in digital image interpretation.

Three groups of spatial classifiers can be identified: those algorithms that include 
textural bands as inputs into traditional classification systems, those procedures that 
use the spatial context in the definition of the classification algorithm, and those 
methods that consider the spatial context after the classification to improve the 
results.

The first group will be covered in a later section (Section 7.4.2), where different 
methods to compute texture will be reviewed. At this point, it should be enough to 
say that those methods generate new bands by measuring the spatial contrast of DL 
within certain distances and directions (Ferro and Warner 2002; Maillard 2003). 
They have been extensively used in classifying urban areas (Barr and Barnsley 2000; 
Gong and Howarth 1990b; Moller-Jensen 1990) and in forest inventories (Drake and 
Weishampel 2000; Souza et al. 2005).

The use of texture in the classification phase was explored during the late 1970s, 
but has received greater attention more recently. One of the first attempts of con-
textual classification was the extraction and classification of homogeneous objects 
(ECHO) algorithm (Ketting and Landgrebe 1975), which proposed classifying on 
the basis of groups of pixels rather than using single pixels. Those groups should be 
areas of contiguous and homogeneous pixels that would serve as single entities for 
classification purposes. The algorithm first created those groups based on the spatial 
and spectral metrics of the image. After the groups were created, all pixels within 
each group were classified into a single category following one of the standard clas-
sification algorithms (Hoffer and Swain 1980).

These pioneering proposals have been extensively developed within the frame-
work of the so-called object-oriented classification systems (Gitas et al. 2004; Zhang 
et al. 2005). An object in this context is a group of homogeneous and contiguous 
pixels. These systems are especially suitable for high-resolution images, since real-
world objects are commonly formed by a spatial cluster of pixels. In addition, high-
resolution images may have a significant amount of spatial noise, which makes 
identification of heterogeneous land covers difficult when considering per-pixel clas-
sification methods (Schiewe et al. 2001).

As in the case of the ECHO classifier, the object-oriented methods operate in 
two phases: in the first one, the image pixels are spatially grouped to form the 
objects (spatial segmentation: Figure 7.46), while in the second one, those objects 
are assigned to any of the target categories. A wide range of algorithms for spatial 
segmentation are available (Lobo 1997; Schiewe et al. 2001). Some of the control 
parameters for segmentation include the average size of objects (smaller, larger), 
their uniformity (homogeneous, heterogeneous), and their shape (circular, elon-
gated). Once the objects are defined, all pixels within each object will be assigned 
to the same cover, and therefore the final classification will have a more coherent 
spatial structure. In addition to this advantage, unlike pixels, which all have the 
same size and shape, objects can vary in shape, size, and position, and therefore the 
classification may use not only spectral but also spatial properties as input variables 
to discriminate covers.
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7.2.3.9 Contextual Classifiers
Contextual classifiers comprise those methods that incorporate the context in the 
classification algorithm itself but still using a pixel-to-pixel approach. Most com-
monly, those methods assume that the assignment of a single pixel is a function 
not only of its DL but also of the DLs of the neighboring pixels. A simple way to 
include this criterion is by modifying the ML criterion to include the probability of 
the nearby pixels (Richards 1993):
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where
p(x/ci) indicates the probability that the pixel x belongs to the category c in band 

i, for all the m categories
q(x/ci) is a vicinity function, defined by the user, which is commonly related to the 

distance between pixels

This approach was successfully used in different thematic classifications (Danjoy 
and Sadowski 1978; González and López 1991).

The context may also be considered to discriminate objects that show a clear spa-
tial difference with the background. For instance, the thermal difference between an 
active fire and the surrounding forested area is a key variable to discriminate a hot 
spot (Giglio et al. 2003), or the greenness change between recently cut trees and sur-
rounding forest is relevant to monitoring deforestation processes (Souza et al. 2005). 
Context criteria are very useful for cloud detection (Khlopenkov and Trishchenko 
2007; Latifovic et  al. 2005) or discriminating burned scars (Alonso-Canas and 
Chuvieco 2015; Chuvieco et al. 2008b).

7.2.3.10 Postclassification Generalization
The spatial context can also be considered after image classification. In this case, 
the processing aims to refine classification results based on spatial properties. 

(a) (b) (c)

FIGURE 7.46 (a) Original image split into (b) smaller or (c) larger objects depending on the 
segmentation criteria.
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In traditional per-pixel classification approaches, results commonly show an exces-
sive fragmentation. Pixels labeled with a certain category may be surrounded by 
other nonrelated categories, missing the geographical consistency that is found in 
thematic maps. This phenomenon is colloquially named “salt and pepper” and cre-
ates excessive discontinuity in the output classified image. Even though the assign-
ment of those isolated pixels is accurate, it does not have a real cartographic meaning 
because it does not make much sense to map spatial units below a certain size.

Postclassification filtering techniques can be used to reduce the spatial fragmenta-
tion of classified images. Since the output images are measured in a categorical scale 
(the DLs are only labels of categories), analytical filters cannot be used in classified 
images. Instead, filters based on categorical statistics are used, most commonly the 
mode and majority (Thomas 1980). As in the case of arithmetic filters, they are applied 
to mobile windows of a certain size (3 × 3 to 7 × 7 pixels are the most common). The 
assignment of the central pixel of that window is compared with the assignments of the 
surrounding pixels (Figure 7.47). In the case of the mode filter, the central pixel changes 
its class to the most frequent class within that window. The majority filter changes its 
assignment only when there is one category with at least half plus one of all the pixels 
within the window. Otherwise, the central pixel maintains its original assignment.
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FIGURE 7.47 Methods for postclassification filtering.
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The selection of the postclassification filter depends on the desired generalization level 
and the complexity of the target area. For homogeneous landscapes, the spatial noise will 
be low and only minor transformations should be required. The mode filter implies a more 
intense transformation of original assignments and should be used with very complex 
landscapes or at regional or global scales. Several authors have proved that postclassifi-
cation filtering increases the accuracy of results, by eliminating errors caused by border 
pixels (Booth and Oldfield 1989). However, this method can also create errors for catego-
ries that have a very limited spatial representation. For instance, rivers or small lakes can 
disappear after mode filtering, especially when window sizes are large (Figure 7.48). To 
cope with this problem, some categories may be excluded from filtering, or some poly-
gons filtered according to a certain spatial threshold (Barr and Barnsley 2000).

7.2.4 ClaSSifiCation outputS

The results of digital classification are typically stored in a new image. Though simi-
lar in structure and size to the original one, the main difference with the original 
data is the meaning of the DL, which now will code the class assigned to each pixel. 
This file can be converted to a thematic map or exported to a GIS to be integrated 
with other spatial variables. The former process requires some transformations of 
the output file (Figure 7.49):

 1. Geometric correction. In case the input image was not previously corrected, 
the output file needs to be georectified so that the classification results have 
cartographic coordinates. Since the classified image will lack some of the 
spatial features of the original bands, it is more advisable to select the con-
trol points for geometric correction from the original bands and then apply 
the transformation to the classified image. It is important to note that the 
resampling phase should be done using the nearest neighbor algorithm; 
otherwise, the assignments will be changed without user control.

 2. Once the image is geometrically rectified, the classification should be gen-
eralized to eliminate very small polygons. This generalization can be based 
on modal or majority filters, as previously explained, or on eliminating 
groups of pixels smaller than a certain size.

Original 3 × 3 7 × 7

FIGURE 7.48 Classes with small and elongated patches, such as rivers, may be removed as a 
result of postclassification filtering. The effects are more severe as the filter window is larger.
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 3. The third phase focuses on generating a color code for each category, by 
creating a lookup table (see Section 6.5.3). Colors have a cartographic 
meaning, following semantic rules. Therefore, the assignment of colors to 
the categories should consider those conventions: for example, red for urban 
areas, green for forested ones, and yellow for crops (Anderson et al. 1976; 
Coleman 1968), instead of assigning arbitrary colors. In thematic classifi-
cations, 15 or 20 colors, clearly distinguishable from one another, will be 
enough to visualize the output file. A larger number of categories would 
complicate the legibility of the final document.

 4. When working with a vector-based GIS, the classification may be converted 
from raster to vector format. Different automatic algorithms are available 
for this task (see, e.g., Bolstad 2008).

 5. For cartographic reference, the map should have a scale bar, a symbol to 
indicate northern orientation, and a class color key. Names of rivers, roads, 
or cities can also be added.

The area covered by each category is an important output of digital classification, 
especially in some applications such as forest or crop inventories. In this regard, 
digital classification is more powerful than visual analysis, since area inventory is as 
simple as computing the number of pixels included in each category. Given that the 
pixel size is known (after geometric correction), the area covered by each category 
is easily calculated. Area statistics may be obtained for the whole image or for sets 
of polygons extracted from external databases. In a crop inventory, for example, it 
will be useful to obtain area statistics for certain administrative boundaries (coun-
ties, states) to compare with other sources of agricultural data. Table 7.7 compares 
the area covered by each category in the classification of our study area, using ML 
and neural networks. The differences are significant, especially in the shrubland 
category, which is overestimated in the neural network classifier.

TABLE 7.7
Area Covered by the Different Categories Following Two Different 
Classification Criteria

Maximum Likelihood Classification Neural Networks 

Pixels km2 % Pixels km2 % 

Soil 73,945 18,486.25 4.68 160,282 40,070.50 10.14

Snow 110,697 27,674.25 7.00 30,550 7,637.50 1.93

Herbaceous 686,120 171,530.00 43.41 141,361 35,340.25 8.94

Shrublands 438,187 109,546.75 27.72 969,185 242,296.25 61.31

Forested 166,335 41,583.75 10.52 15,593 3,898.25 0.99

Urban 89,905 22,476.25 5.69 68,377 17,094.25 4.33

Water 15,517 3,879.25 0.98 195,358 48,839.50 12.36

Total 1,580,706 395,176.50 100.00 1,580,706 395,176.50 100.00
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7.3 TECHNIQUES OF MULTITEMPORAL ANALYSIS

7.3.1 teMporal doMain in reMote SenSinG StudieS

Monitoring dynamic processes is one of the most important contributions of EO 
satellites to environmental studies. Since images are acquired by a sensor mounted 
on a spacecraft with a stable and repetitive orbit, they constitute a precious source 
of information about how Earth landscapes are changing, related to either seasonal 
trends, climatic cycles, human intervention, or catastrophic events.

To better understand the components of temporal changes, we can consider two 
temporal dimensions in environmental dynamics (Robin 1998): on the one hand, the 
speed with which the phenomenon takes place and, on the other hand, the persistence 
of the resulting change (Figure 7.50). The first aspect refers to the duration of any 
particular phenomenon, while the second affects the length at which impacts will 
still be observed (persistence). From the duration perspective, the required frequency 
to monitor environmental phenomena ranges from a few hours (tropical hurricanes, 
earthquakes, volcanic eruptions, etc.) to several years (desertification, urban growth, 
etc.). The persistence is related to the actual intensity of the transformation caused 
by that event. Persistence can also vary from a few days (low-intensity hurricane, 
for instance) to several years or even centuries (soil degradation, landslides, etc.). 
The temporal footprint of a natural disaster is closely related to its negative impacts: 
a flood can be brief when it is superficial or have permanent effects when it causes 
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FIGURE 7.50 Temporal dimensions in environmental monitoring. (Adapted from Robin, 
M., La Télédétection, Nathan, Paris, France, 1998.)
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changes in geomorphologic features (alluvial fans, for example). Both aspects, that 
is, the speed of the phenomenon and the persistency of its effects, are not necessar-
ily related, since a quick event may have a long impact (volcanic eruption), and vice 
versa (Figure 7.50).

These thoughts may be useful when deciding on the most appropriate frequency to 
observe a phenomenon of interest. The most suitable temporal resolution will depend 
on both speed and persistency. Some natural events require continuous observation 
(weather monitoring), while for others an annual observation (urban growth) or even 
longer cycles (5 years for land cover) are sufficient.

As reviewed in Chapter 3, the observation frequency of a satellite observation 
system depends mainly on the orbital height and speed and the sensor’s field of 
view. In practical terms, the nominal temporal resolution of a sensor is not the same 
as the actual observation cycle, since cloud coverage reduces the time frequency 
of useful observations when working with optical sensors. Other factors may also 
hinder multitemporal observation, such as sensor acquisition problems or lack of 
ground downloading coverage. Current sensor systems provide different observa-
tion frequencies, from a few minutes for geostationary satellites to several weeks 
for those oriented toward observing natural resources. During the first years of EO, 
spatial resolution was more appreciated, but nowadays temporal resolution is also 
considered critical to monitor many environmental variables, particularly when 
updated monitoring is decisive. For example, observing hurricanes with very fine 
spatial resolution imagery every week would be virtually worthless. Since clouds 
are very dynamic, their monitoring requires very high observation frequency even 
at the cost of losing spatial detail. The same will apply to other natural hazards: 
fire, floods, icebergs, etc.

To ensure multitemporal coherence in satellite observation of dynamic phe-
nomena, the sensor should provide periodic images of the same spectral bands and 
under similar observation conditions (height, hour, angle of acquisition, etc.). These 
requirements are met by most natural resource satellites (Landsat, SPOT, IRS, etc.). 
Manned mission of the Space Shuttle or the International Space Station does not 
offer systematic observation, but their photographs can be used for visual–qualitative 
comparisons. Airborne sensors do not provide systematic observations either, but 
they can be used to detect changes between fixed dates, and they are of particular 
interest in analyzing long-term changes, since aerial photographs are a much older 
technology than satellite observation (Adeniyi 1980).

Two dimensions of temporal change can be analyzed from EO images: seasonal 
trends and land cover variations. In the first case, the interpreter tries to follow the 
phenology changes associated with vegetation dynamics throughout the year (Willis 
2015). This seasonal contrast may be very useful in improving the discrimination of 
certain target categories, by including images from different periods of the year in 
the classification process (Latifovic et al. 2004; Lo et al. 1986). A seasonal separabil-
ity analysis will help in identifying which season is more appropriate to discriminate 
particular land covers (Schriever and Congalton 1995). Seasonal analysis can also be 
used to monitor vegetation regeneration after a major disturbance (fire, wind storms, 
drought, etc.), or as a result of climatic variations (Alcaraz-Segura et al. 2010; Fraser 
et al. 2003; Goetz et al. 2005).
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The second temporal approach aims to detect land cover changes, caused either 
by short-duration catastrophic events (floods, earthquakes, volcano eruptions, hurri-
canes, fire, etc.) or by slow-duration phenomena (urban sprawl, crop change, deserti-
fication, etc.). Images acquired in two reference periods (before and after the sudden 
event or separated by a fixed time span) are compared visually or digitally (Gopal 
and Woodcock 1996; Lucas et al. 1993; Sader and Winne 1992; Zhan et al. 2002). 
Most commonly, images for change detection analysis are acquired under similar 
observation conditions (close in the same year, or in the same season of different 
years) to avoid identifying as cover change those transformations caused by different 
phenological conditions.

7.3.2 prerequiSiteS for MultiteMporal analySiS

Most multitemporal analyses involve pixel-to-pixel comparisons of DLs from dif-
ferent dates. One of the critical issues in temporal analysis is the discrimination of 
actual ground changes from those caused by other factors of potential variations 
between input images, such as calibration or georectification issues. For this reason, 
radiometric and geometric corrections are particularly critical for temporal analy-
sis, as otherwise comparisons would be affected by external factors of change. In 
other words, the interpreter needs to be sure that the same variable and the same 
area are being compared for all the dates involved, or else the comparison would be 
meaningless.

7.3.2.1 Multitemporal Matching
Multitemporal comparisons require that input images be precisely coregistered to 
ensure that the exact area is being compared. Otherwise the interpreter would identify 
changes between images that are in fact displacements. This effect can be quite serious 
for the case of heterogeneous landscapes with great spatial variability, such as in urban 
areas (Gordon 1980), especially with high-spatial-resolution sensors (Nelson and 
Grebowsky 1982; Roy 2000). Even in the case of coarse-resolution sensor imagery, it 
has been shown that up to 50% of the change observed between two images can be due 
to displacements when the mean registration residual among images exceeds 1 pixel 
(Townshend et al. 1992). Several studies have shown that to ensure errors less than 
10% in multitemporal image comparisons, geometrical matching accuracy among 
them should be better than 0.2 pixels (Dai and Khorram 1998; Townshend et al. 1992).

To illustrate the importance of geometrical matching, we carried out a simple 
exercise to simulate the change in the classification of land cover types following 
an intentional displacement of two images. A Landsat TM image was classified into 
four categories. Then, the output classification was shifted a pixel toward the west 
and the south. A cross-tabulation was performed between the two classifications. 
Pixels along the diagonal of this matrix are unchanged areas, and outside the diago-
nal are pixels marked as change (Table 7.8). The percentage of cover change is quite 
high, reaching 34% of the total area. Obviously, in this case all changes are exclu-
sively due to the systematic displacement that was introduced, since the same clas-
sification is being compared. In other words, more than 30% of change is spurious, 
not caused by actual cover change but simply by misregistration.
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The amount of change caused by geometric rectification is reduced when the 
comparison is made after previous generalization of classification results, since 
this process eliminates small isolated groups that are more likely to change by dis-
placements. In fact, when comparing the original and the displaced classifications 
after generalizing the original with a 5 × 5 pixel modal filter, the detected change 
decreases by almost half from the previous detection, reaching 19% of the image 
(Table 7.9). Although real displacements in images are not as systematic as those 
introduced here, this exercise may provide a better awareness of the importance of 
ensuring a precise multitemporal matching between images to avoid noise in multi-
temporal comparisons. The exercise also shows the interest in generalizing the clas-
sifications before comparing them. Some authors have even suggested comparing 
classifications after segmenting the images in homogeneous patches instead of using 
individual pixels (Bruzzone and Fernández-Prieto 2000).

Multitemporal matching of images is based on the same principles as ordinary 
geometric correction. In this case, the reference coordinates are those of the image 
with which we try to compare. That image may have been previously rectified or 
not, since multitemporal comparisons do not need to be in cartographic coordinates. 
It is enough that both employ the same reference system. The selection of common 

TABLE 7.8
Impact of Misregistration on Multitemporal 
Comparisons of the Original Classifications

 Displaced Image 

Original Image 1 2 3 4 Total 

1 94 247 42 6 389

2 251 20,653 9,315 897 31,116

3 43 9,512 51,449 15,337 76,341

4 3 755 15,560 27,897 44,215

Total 391 31,167 76,366 44,137 152,061

TABLE 7.9
Impact of Misregistration on Multitemporal 
Comparisons after Both Classifications Were 
Smoothed Using a 5 × 5 Modal Filter

Displaced + Filtered Image

Original Image 1 2 3 4 Total 

1 98 100 30 41 269

2 132 23,556 4,954 387 29,029

3 39 5,196 66,982 8,681 80,898

4 0 259 8,962 32,361 41,582

Total 269 29,111 80,928 41,470 151,778
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control points between the target and reference images is simpler than using a stan-
dard base map as a reference, since there are many common features between two 
images that will not be clearly observable in topographic maps (vegetation shapes, 
parcel borders, rivers or streams, etc.). Some authors have suggested semiautomatic 
methods of selecting control points in multitemporal images, such as dynamic cor-
relation analysis based on the detection of common features (Eugenio and Marqués 
2003; Gao et al. 2009).

7.3.2.2 Radiometric Calibration
The second factor to be controlled in multitemporal comparisons is radiometric 
consistency. If DLs are compared, we need to be sure that they are equivalent 
in the different input images. Obviously, reflectance values cannot be compared 
with raw digital values, for instance, or digital values from different sensors or 
even from the same sensor through time, because calibration changes between 
sensors and dates. As a consequence, the conversion of DLs to physical units 
(reflectance or temperature) is a critical requisite of multitemporal analysis, to 
ensure radiometric consistency between images. When using a long time series 
of satellite data, such as those built from NOAA-AVHRR or Landsat TM/ETM+/
OLI images, calibration coefficients need to be adapted to the different platforms. 
In some cases, even the spectral characteristics of a sensor may change throughout 
time (e.g., the AVHRR sensor was modified from the NOAA-14 to the NOAA-
15 satellites). Therefore, correction algorithms need to be adapted to the differ-
ent spectral bands (Khlopenkov and Trishchenko 2007; Latifovic et  al. 2005; 
Trishchenko et al. 2002).

An alternative to using reflectance or temperature values involves a relative cor-
rection between input images. In this case, the goal is not to perform absolute cor-
rection but just to make the images comparable. In doing so, a radiometric matching 
between dates may be performed, based on a series of control pixels that are assumed 
invariant through time. These points should preferably be chosen from high-contrast 
reflectance areas (low- and high-reflectivity targets), such as shades, clear and deep 
waters, bare soils, or parking lots. A regression line can be computed from those 
points, yielding the following transformation:

 DL b DL go k k i k k, ,= +  (7.50)

where
DLo,k is the output pixel value in band k
DLi,k is the input value in the same band
bk and gk are the bias and gain coefficients, respectively, of the fitting function

Bias and gain coefficients may be obtained from dark and clear pixels on the target 
and reference images, following
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and
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where
DLd,r,k and DLcl,r,k indicate the mean DL of the darkest and brightest pixels, respec-

tively, of the reference image
DLd,c,k and DLcl,c,k indicate the same for the target image

The method has been proven to be efficient at homogenizing the atmospheric effect 
between images. Additionally, it reduces the atmospheric contribution of the target 
images (Hall et al. 1991b). When invariant areas are not clearly observable, some 
authors suggest using pixels with lower and higher NDVI (Hill and Sturm 1991). 
More sophisticated is the method proposed by Heo and Fitzhugh (2000), which 
includes algorithms for selecting invariant areas with similar topographic condi-
tions, preferably smooth and sparsely vegetated.

7.3.3 MethodS for SeaSonal analySiS

When multitemporal analysis aims to improve the discrimination of some land cov-
ers, the interpretation is based on images acquired at different climatic seasons, pref-
erably from the same year. The goal is to emphasize the seasonal contrast between 
input images to complement spectral with phenological information. For instance, 
to discriminate between crops that may be similar spectrally in one particular date, 
images from other periods of the year when those crops have a greater contrast in 
terms of density or degree of maturity may be used.

Multiseasonal interpretation may be carried out by comparing classification out-
puts from the two seasonal images, or by including two or more seasonal images 
in the same classification run. In the former approach, the process is the same as in 
traditional classification methods. After generating the results, the interpreter needs 
to build a seasonal table to account for transitions of the different covers of interest. 
For instance, when comparing spring and summer images (Figure 7.51), grasslands 
would have green vegetation in the former and dry vegetation in the latter, while bare 
soils would have soils in both dates and evergreen trees would have green signal in 
both. Consequently, spectral and temporal curves may be drawn for the same pixel.

When the analysis is done with two or more images simultaneously, the number 
of input bands for classification increases substantially. Therefore, before the clas-
sification, it is common to apply a data reduction technique such as PCA. In this way, 
only the most significant information of each date is included in the classification, 
saving time and avoiding data redundancy problems (Maselli et al. 1996).

The high temporal sampling provided by meteorological or global observation 
sensors, such as NOAA-AVHRR, SPOT-VEGETATION, or Terra-MODIS, offers 
many opportunities for seasonal analysis. These sensors acquire daily images over 
the whole planet. Therefore, the interpreter may follow subtle changes in surface 
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conditions, compare seasonal trends, and extract patterns of interannual variability. 
Some examples of the potentials of this approach are the monitoring of snow cover 
(Kelly and Hall 2008), analyzing impacts of climate change on vegetation produc-
tivity (Nemani et al. 2003), estimating crop yields (Doraiswamy et al. 2005), and 
estimating ET (Yebra et al. 2013b). The increasing accessibility to the Landsat his-
torical archive has also made it possible to apply trend analysis to medium-resolution 
images, improving the detection of smaller features. Specific methods to retrieve 
changes from temporal trajectories of TM/ETM+/OLI historical images have been 
proposed in this regard (Cohen et al. 2010; Kennedy et al. 2010).

Sensors with coarse spatial resolution usually provide high temporal observation 
frequency (1–2 days), and therefore seasonal trends can be estimated by analyzing a 
large number of images (commonly several hundreds). Consequently, interpretation 
techniques have been developed to extract short-term indicators of change.

Daily images from these coarse-resolution sensors (such as MODIS or AVHRR) 
are acquired from different observation and Sun angles and are affected by clouds 
and cloud shadows or other atmospheric effects. Therefore, the trends of the daily 
observations may be quite noisy. To reduce this variability, making the selection of 
significant changes difficult, different techniques may be used, such as smoothing 
filters, window operations, logistic curve-fitting, and frequency-domain transforma-
tions (Sakamoto et al. 2005).

A simple way to characterize temporal trends is calculating descriptive statis-
tics of the time series. Central tendency metrics (such as the mean or the median) 
would refer to the regular conditions of the measured parameter, while the standard 

5/05/98

23/09/97

T 1
T 2

FIGURE 7.51 Analysis of seasonal changes. Landsat thematic mapper images acquired in 
May (left) and September (right) over the Cabañeros National Park in Central Spain.
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deviation or interquartile range would be associated with the temporal variability. 
These measures can be computed for the whole time series or, more commonly, for 
specific periods. An example would be using the NDVI as an indicator of vegetation 
activity. The average NDVI would be computed as
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where
NDVIi,k indicates the value of NDVI for a specific year i and period k
n is the number of years available for the period considered

This parameter can refer to the whole time series or just to specific periods of time, 
such as spring or summer biweekly composites. Similarly, the variability (standard 
deviation, sk), defined as
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can be computed for all periods or just for the number of times a specific time period 
occurs (commonly, the number of years of the time series). Mean and variability 
indices are useful in detecting anomaly periods, which are episodes with higher or 
lower than usual values. The anomalies can be expresses as standard scores (z-values) 
(Yool 2001):
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The z-value provides an estimation of the probability that a specific value is above or 
below the mean, assuming the NDVI temporal trends are normally distributed. This 
index would be computed for every pixel of the images, and the time period could be 
the whole series or just composites of m days. The NDVI anomaly of each pixel for 
a single period can also be expressed as a percentage of that pixel value and period 
with respect to the mean NDVI value for the same period:
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The same or similar metrics can also be used with other vegetation indices, or even 
with STs. For instance, Figure 7.52 shows a heat wave affecting almost the whole 
European continent at the beginning of July 2015. The figure was built by com-
paring land STs of a 10-day period with the average ST of the same period for the 
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2001–2010 historical series. Red colors imply higher temperatures and blue shades 
cooler. In early July, 2015, country historical maximum temperatures were regis-
tered in the Netherlands, Germany, and Switzerland.

Another approach to a temporal series of images is to use indices of relative 
change, which attempt to standardize the temporal variation within the spatial vari-
ability of the image. They have been frequently used with vegetation indices, most 
commonly the NDVI. The simplest metric of comparative change is the relative 
greenness (GR), defined as (Kogan 1990)
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where NDVImin and NDVImax are the minimum and maximum NDVI values of each 
pixel for the whole time series, respectively. RG values have been shown to be more 
related to seasonal changes than absolute NDVI values since they emphasize the 
temporal variability within the variation of a single pixel (Figure 7.53). In fact, 
the absolute NDVI is associated not only with the vegetation seasonal activity but 
also with vegetation abundance/turgidity. For instance, an NDVI value of 0.4 may 
imply either a sparsely healthy vegetated area or a densely stressed vegetated area. 
Therefore, variations caused by weather conditions are more difficult to distinguish 
in absolute than in relative NDVI values. For this reason, RG has been used to moni-
tor vegetation stress conditions, such as those leading to fire risk (Burgan et al. 1998) 
and drought susceptibility (Peters et al. 1991).

≤–10 0 ≥10
Land surface temperature anomaly (°C)

FIGURE 7.52 Daytime land surface temperature anomalies in Europe from June 30 to 
July 9, 2015, computed from MODIS images. (From visibleearth.nasa.gov.)
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Other authors have suggested computing the temporal slope of NDVI values to 
detect sudden changes in vegetation conditions that may indicate either an important 
increase in productivity (spring greening up) or a rapid decrease (browning), perhaps 
caused by severe storms or heat waves. The temporal slope is computed as follows 
(Illera et al. 1996):
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where
PTi indicates the slope of the period i
ti is the period of time considered

As a surrogate of vegetation phenology, different methods to extract critical dates in the 
seasonal trend of VI have been proposed. These methods try to account for the dates 
when significant changes in temporal trends of VI occur. For instance, Zhang et al. 
(2003) suggest using a series of logistic functions to estimate VI at a certain time in the 
year, finding later the dates when the fitted function present significant rates of change.

Detection of long-term changes in vegetation seasonality is quite relevant to better 
understand the impacts of climate change, particularly in Northern latitudes (Goetz et al. 
2005). Several authors have used time series statistical techniques (such as the seasonal 
Mann–Kendal trend test) to describe VI trends and relate their significance to the impact 
of disturbing factors, such as fire or climate warming (Alcaraz-Segura et al. 2010).

Finally, PCA has also been used to analyze time series. The input images are the 
different periods of the index considered, and the output components would indi-
cate average trends (the first ones) or variability aspects (the secondary components). 
Some of the components may be associated with phenological features and subtle 
changes in vegetation productivity (Eastman and Fulk 1993).

7.3.4 ChanGe deteCtion teChniqueS

Change detection techniques have been widely used with remotely sensed images, 
since they are applicable to a broad range of disciplines (Mouat et al. 1993). They aim 
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FIGURE 7.53 Absolute and relative variation of normalized difference vegetation index 
values.
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to identify what features were modified between two or more dates. A remarkable 
example of environmental monitoring from satellite images is the Atlas of Our 
Changing Environment, released in 2010 by the UN Environment Program (UNEP), 
which includes Landsat multitemporal images of areas where striking landscape 
changes have occurred in the last 30 years. A similar initiative is the Google Earth 
engine, which incorporates the historical Landsat archive from 1984 to 2012 to itera-
tively observe changes anywhere on Earth.

As in other phases of image interpretation, the detection of changes usually 
implies a compromise between omission and commission errors, trying to avoid both 
missing a real change and misidentifying as change something that is stable, respec-
tively. The importance of one or another type of error for a specific application will 
define the most convenient technique to use. For some studies, avoiding false alarms 
(commission errors) will be the main objective, for instance, in the case of applying 
chemical treatments to crop plots that are not in fact affected by a certain plague. 
Most commonly, though, the omission errors are more important, especially in the 
area of natural disasters, when it is critical to provide help to all areas that have been 
affected by a certain phenomenon.

Changes detected by remotely sensed images are mainly associated with alter-
ations of terrestrial spectral properties (reflectance, temperature, etc.), but spatial 
features can also be observed, for instance, changes in plot size, shape, or fragmenta-
tion, using segmentation and object-oriented classification techniques (Bruzzone and 
Fernández-Prieto 2000; Hazel 2001; Smits and Annoni 1999).

Several authors have summarized the main techniques used for change detection 
studies (Eastman et al. 1994; Jensen 1981; Mouat et al. 1993; Singh 1986). In this 
section, we will review and update those studies with recent developments in this 
field. This section is organized around two groups of techniques: those that assume 
a quantitative scale in the input images (interval scale of DLs) and those that are 
applicable to classified images (nominal scale of DLs). In the first case, several arith-
metic techniques can be used: differences, ratios, regression, principal components, 
etc., while in the second, only category comparisons, such as cross-tabulation, are 
pertinent. Before describing those techniques in more detail, a color composition 
technique for change detection will be discussed.

We will illustrate this section with the multitemporal pair of Landsat TM images 
acquired over the state of Acre, on the Brazilian Amazonia, which shows a striking 
example of an area affected by severe deforestation processes.

7.3.4.1 Multitemporal Color Composites
As was previously reviewed (Section 5.3.2), a color composition can be created by 
assigning three spectral bands to the three basic colors: red, green, and blue (RGB). 
When a single band is displayed, it is usually observed in gray levels, because all RGB 
color guns have the same amount of brightness. Similarly, when mixing three bands, 
they would be shown in gray tones if they had the same DLs and in color otherwise.

Following the same logic, if we mixed three dates of the same spectral band in 
RGB, those areas with similar DLs in all dates would appear in gray levels, while areas 
affected by change would display in color tones. This technique has been success-
fully used in several change detection studies (Martin 1989; Sader and Winne 1992). 
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The interpretation of the resulting colors will depend on what bands were combined and 
what the color assignment was (which date was assigned to which color gun). To sim-
plify matters, we can analyze the composition of two dates, the first one displayed in the 
red tones and the second one in green and blue (Figure 7.54). The grey tones correspond 
to stable areas, while those pixels that reduced their DLs from the first to the second 
date would be displayed in red, and those with increased DLs in cyan (green + blue).

In case of comparing NDVI values, as is the case of Figure 7.54, gray tones rep-
resent areas that have maintained their vegetation (both dense or sparse), while red 
tones indicate areas that have lost vegetation cover (lower NDVI in the second date), 
and cyan those that increased vegetation cover (higher NDVI in the second date). For 
instance, in areas affected by deforestation, mid-gray tones identify areas that keep 
forest cover and dark gray zones that are treeless in both dates, while red areas would 
identify deforested areas and cyan those being reforested.

When using other spectral bands, this color interpretation has to be adapted to the 
meaning of reflectance changes in the bands compared. Obviously, when three dates 
are combined, the color combinations become more complex to interpret. If the first 
date is assigned to red, the second to green, and the third to blue, the resultant color 
palette could be interpreted as follows:

 1. Red, green, or blue: A feature with high values in one date and low in the 
others. This is the case of a feature that changed from one date to the other 
and was invariant afterward.

 2. Yellow (R + G), cyan (G + B), or magenta (R + B): A feature with high 
values in two dates and low in the other. This situation represents changes 
from two dates to the third one.

 3. Gray levels (R + G + B): Indicate features that are stable in all dates.

1990

2010

FIGURE 7.54 Multitemporal color composite of normalized difference vegetation index 
values computed from thematic mapper images acquired in the Acre state of Brazil.
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7.3.4.2 Image Differencing
A simple way to identify the changes between two images that are properly calibrated 
and georectified is to compute the pixel-to-pixel difference in single bands or derived 
spectral indices. The stable areas will present a value close to zero, while those with 
high positive or negative values will identify areas with significant change:

 DL DL DLc t t= -2 1  (7.59)

where DLt2 and DLt1 are the values of the second and first date, respectively, being 
compared. DL can be either reflectance or temperature (Pilon et al. 1988) or cross-
calibrated digital values or any kind of spectral indices. In fact, the use of vegeta-
tion indices is quite common in vegetation change analysis to detect deforestation, 
clear-cuts, or fires (Coppin and Bauer 1994; Martín and Chuvieco 1995). Negative 
values will categorize areas with decreasing values and positive values regions with 
increasing values. The histogram of the output image will usually have a Gaussian 
distribution, with the maximum frequencies for the stable areas (in the center of the 
histogram) and the dynamics occupying the tails of the distribution.

Figure 7.55 includes an example of using temporal differencing to detect defor-
estation processes. The output image shows dark grays for areas where the decrease 
of NDVI has been more intense (those being deforested), while the medium grays 
correspond to areas where grassland, soil, or vegetation was maintained. Along with 
deforested areas, the image of Figure 7.55 shows also sectors that have been burned, 
and most probably will be deforested in the following years.

1990

2010

FIGURE 7.55 Multitemporal difference of normalized difference vegetation index values 
in the Acre state of Brazil.
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7.3.4.3 Multitemporal Ratios
Temporal differencing reflects absolute changes between two dates, but this absolute 
value may not properly reflect the significance of the observed increases or decreases. 
For instance, a decrease of 0.1 in NDVI may be very critical when the original value 
is 0.2 or almost irrelevant when the original value is 0.7. To correct this problem, an 
alternative to the temporal difference is the use of ratios, either absolute or normal-
ized ones, as follows:
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with the same meanings as in Equation 7.59. In the normalized index, the result is 
scaled between 0 and 255 (8 bits). Multitemporal ratios have been used in agricul-
tural inventories (Lo et al. 1986), deforestation studies (Singh 1986), and detection of 
areas affected by forest fires (Kasischke et al. 1993).

It should be noted that these ratios are asymmetrical, which means that the result 
is dependent on what date is in the numerator. An increase of twice the DL (from 
50 to 100) would give a value of 2 or 0.5 depending on whether the numerator is the 
first or the second date. In summary, the ratio is a nonlinear transformation of the 
temporal relationships. To solve this problem, some authors recommend applying a 
logarithmic conversion of the result (Eastman et al. 1994).

7.3.4.4 Principal Components
The use of PCA in change detection analysis has a particular scope with respect 
to the traditional use of this transformation. As previously stated (Section 7.1.2), 
PCA is generally used to summarize a wide set of variables by preserving the com-
mon information found in the input variables. However, when using PCA in change 
detection, the input bands are acquired at different dates, and the main components 
are precisely those that refer to invariant information (features that do not change), 
while secondary components show the transformations (“dynamic” components). 
Therefore, in this case, we should be interested on the less important vectors, instead 
of the main ones, which would include the stable information.

PCA has been frequently used in change detection analysis. As for Landsat 
TM/ETM+, some authors interpret the first two components as portraying stable 
brightness and greenness, while the third indicates brightness change and the fourth, 
greenness changes (Fung and LeDrew 1987, 1988; Ingebritsen and Lyon 1985).

Since the PCA is a statistical transformation, the interpretation of the resulting 
components cannot be done until the actual eigenvectors are computed. Depending 
on the spectral (and in this case temporal change) characteristics of the target area, 
the outputs may be quite diverse. We have computed the PCA transformation of the 
12 bands of the Brazil multitemporal images (bands 1–7 of both dates, excluding 
the thermal band). In this case, the interpretation of the multitemporal PCA is not 
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very common, as the area is mostly covered by two categories (forest or grass–soil), 
and the amount of change between the two images is very high. Consequently, the 
resulting eigenvectors do not show first the common brightness, but rather the tree-
less area, with strong and negative contrast between the NIR and other bands in the 
2010 image, while it shows brightness in the 1990 image (Table 7.10). The second 
component shows vegetation changes between the two images, although the spectral 
contrast is not very clear, with negative values for the B–R–SWIR bands and posi-
tive in the NIR in the most recent image, and vice versa. It should be related to area 
changes from soil to vegetation. The third component also corresponds to changes, 
but in this case mainly those related to vegetation loss, while the forth implies moder-
ate reforestation. In terms of the relative importance of each principal component, the 
first one accounts for 85.5% of variance, the second one 6.23%, the third 4.55%, and 
the fourth 2.25% (all sum up to 98.54% of the original information of the 12 bands).

Figure 7.56 confirms the interpretation of the eigenvector matrix. The first com-
ponent shows a similar image to the deforested area at the second period, with higher 
values for those plots converted to grasslands or crops in both periods. The sec-
ond one displays in brighter tones those areas that have maintained crops in both 
dates and darker tones for those areas that have lost more vegetation, particularly 
those with brighter soils. The third component shows in brighter tones those areas 
that have been burned (from vegetation to dark signal) with medium tones for those 
maintaining forest cover. Finally, the fourth component shows with brighter tones 
agricultural areas of the first date while keeping other areas in mid-gray.

7.3.4.5 Regression Analysis
Linear regression is a well-known technique to estimate values of a dependent variable 
from the values of another variable when both are strongly correlated. The regression 
coefficients are computed from a set of common observations of the dependent and 
independent variables. In the change detection context, these common observations 
are stable pixels between the two dates. Once the regression model has been fit, the 
DLs of the second date may be estimated from DLs of the first date, as

 DL a b DLt t
�

2 1= + *  (7.62)

When the second image has not been altered, the predicted DLs will be similar to the 
actual ones, but when transformations have occurred, there will be a significant dif-
ference between the estimated and real values (Figure 7.57). Therefore, the residuals 
of the regression can be used as a change detection index:

 DL DL DLc tt= -�
2 2  (7.63)

7.3.4.6 Change Vector Analysis
This technique tries to identify the magnitude and the direction of change by using 
a bivariate space of transitions between the two dates. The vector that links the 
location of pixels in that bivariate and multitemporal space will contain informa-
tion about the intensity and orientation of change. Figure 7.58 represents several 
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TABLE 7.10
Eigenvectors of the Multitemporal Analysis of the Acre Image (Brazil)

2010 1990 

B1 B2 B3 B4 B5 B7 B1 B2 B3 B4 B5 B7 

PCA1 0.168 0.136 0.266 −0.029 0.841 0.408 0.023 0.016 0.024 0.018 0.074 0.032

PCA2 −0.020 −0.004 −0.040 0.367 −0.025 −0.086 0.138 0.126 0.178 0.355 0.758 0.298

PCA3 −0.003 −0.043 0.031 −0.887 −0.109 0.068 0.103 0.079 0.130 −0.092 0.348 0.174

PCA4 0.028 0.040 0.020 0.230 0.003 −0.047 0.060 0.020 0.090 −0.924 0.215 0.171
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transitions between two images in the R–NIR space. The locations of specific pixel 
transitions between the two dates are marked. For instance, an increase in NIR 
reflectance while reducing R reflectance indicates a trend toward increasing veg-
etation in that pixel. However, a decrease of both reflectances may indicate a trend 
toward flooding (as water has low reflectance in both bands). Therefore, the angle of 

PC1 PC2

PC3 PC4

FIGURE 7.56 Principal component analysis of a change detection analysis for the Brazil 
multitemporal image.

t1

t2
t2 = a + b * t1

t1

t2

Change = t2 – t2

FIGURE 7.57 Change detection by multitemporal regression analysis.



358 Fundamentals of Satellite Remote Sensing: An Environmental Approach

the change vector indicates the meaning of the change, while the magnitude of the 
vector indicates the importance of that particular change.

The components of change vector analysis can be computed from simple geomet-
ric rules. The intensity (I) of the change vector will be obtained through

 
I DL DL DL DLi j c i t i t j t j t, , , , , ,= -( ) + -( )1 2

2
1 2

2
 (7.64)

while the direction will be defined by the angle (α), given by
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for the spectral band i,j between the two periods of interest (t1 and t2). Change vector 
analysis has been widely used in the last years (Chen et al. 2003), especially in the 
context of global land cover change (Friedl et al. 2002), and it is the basis of one of 
the standard products of the MODIS program.

Figure 7.59 shows an example of the change vector analysis computed from the 
Brazil multitemporal TM pairs. The direction of change shows lower angles for those 
areas affected by deforestation processes, particularly those where soils are domi-
nating (the burned area does not show such a clear trend). The intensity of change 

R

N
IR

t1
t2

Fire

Growing
vegetation

Flood

FIGURE 7.58 Example of multitemporal transitions in the red and near-infrared space. 
Change vectors indicate the magnitude and direction of the change.
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shows higher values for areas converted from forest to crop soils, but also the burned 
area (with lower values), while the areas remaining as forested show low values of 
change, as well as the plots deforested before the first image.

7.3.4.7 Defining Change Thresholds
All methods reviewed so far produce continuous images of change. In other words, 
the output images show a continuous scale of change, from low to high DL values. 
However, often, the interpreter seeks to generate a categorized image that distinguishes 
changed areas from stable ones. It is therefore necessary to segment the change images 
generated by the aforementioned techniques to create significant groups of change.

Theoretically, the histogram of the change image should facilitate that segmenta-
tion, by offering three modes corresponding to stable, increased, and decreased pixel 
values. In practical terms, usually the histograms do not provide such a clear dis-
crimination of change, as a result of the transitional stages of natural changes, which 
generally do not include sharp contrasts. Therefore, alternative methods should be 
considered to detect stable and dynamic areas.

Among the statistical approaches, the most common option is to base the thresh-
olds on the mean and the standard deviation, but there is no objective way to fix appro-
priate threshold values. Some authors recommend gradually changing the multiple 
of standard deviation around the mean and assessing the most convenient threshold 
value after analyzing how many pixels of known change are included in the different 
thresholds (Fung 1992; Fung and LeDrew 1988). Other proposals include establish-
ing thresholds following the sensor signal-to-noise ratio. That factor is estimated 
from a library of historical images of change. Once the sensor noise is removed, the 
remaining change can be more easily controlled (Smits and Annoni 2000).

A second approach to establishing change thresholds is based on physical val-
ues extracted from external sources. For instance, to detect an active fire, we can 
establish a threshold of thermal difference between the potential fire pixel and the 
background, based on the physical measurements of fires in different ecosystems.

Direction Intensity

FIGURE 7.59 Direction and intensity of the change vectors in the Brazil Acre study site.
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A third option focuses on extracting the thresholds from spatial differences of 
the potential change pixel and the neighboring characteristics. The spatial context 
is commonly estimated from a moving window of different size, which serves to 
account for the background trend. When a pixel has a strong contrast with the sur-
rounding areas, it is labeled as potential change. This spatial context has been exten-
sively used for cloud detection (Saunders and Kriebel 1988).

Regardless of which approach is used, it should be emphasized that having more 
flexible or more rigid thresholds will imply increasing or reducing omission errors, 
or conversely, commission errors. For this reason, the user should have a clear idea of 
which error is more relevant for that particular application. For instance, in a burned 
land mapping exercise, very demanding (hard) thresholds reduce the detected burned 
areas, while relaxing (soft) thresholds would increase the burned areas at the risk of 
including unaffected surfaces. For this reason, it might be appropriate to follow a 
two-step procedure. In the first phase, the goal would be to eliminate commission 
errors by finding out the most clearly burned pixels, while in the second phase, omis-
sion errors are reduced by analyzing the spatial context of only those areas identi-
fied as burned in the first phase (Alonso-Canas and Chuvieco 2015; Chuvieco et al. 
2008b).

Figure 7.60 shows the histogram of the NDVI difference for the Brazil study 
site. The mode of the histogram shows values of 0 (no change), but there is a strong 
dispersion around that value, particularly toward negative values (as most of the 
changes imply deforestation and therefore decrease in NDVI). Using simple thresh-
olds of −0.1 (deforestation), −0.1 to 0.1 (stable), and >0.1 (increase), we can make a 
first stratification of the main areas affected by change.

7.3.4.8 Multitemporal Analysis of Classified Images
The identification of changes can also be handled using classification techniques. In 
this case, it is not required to define a change threshold, since classification already 
implies transformation of the continuous scale of DLs into a nominal scale of catego-
ries. Therefore, the change analysis can be based on analyzing transitions between 
classes in two or more dates.

The first approach to using classification techniques for change detection analysis 
is based on classifying two or more dates simultaneously. Using either supervised or 
unsupervised methods, the interpreter needs to identify both the significant covers 
and the relevant cover changes. In other words, the resulting classification should 
include categories that include somehow the multitemporal component. “Stable 
urban” and “transition from rural to urban” or “from rainfed to irrigated agricul-
ture” are good examples of such categories. Since the classification legend needs to 
be dynamic when performing supervised classification, the interpreter should select 
training areas in both stable and dynamic areas to make an appropriate sample of all 
relevant classes. In the case of unsupervised classification, the automatic algorithm 
will identify the most significant change/stability groups within the multitemporal 
images, and later the interpreter should assign those spectrotemporal groups to the-
matic categories of interest.



361Digital Image Processing (II)

Another approach to multitemporal change detection analysis is to classify two 
dates of the same area and then compare those classifications to detect which areas 
have maintained or have changed the land cover (Figure 7.61). For doing so, the 
same categories should be used in both dates; otherwise the comparison will be 
meaningless. Land cover changes can be obtained by cross-tabulation analysis, in 
which all transitions between the two dates are clearly presented (Table 7.11). In the 
diagonal of this table appear the stable pixels (those with the same category in both 
dates), while the dynamic pixels occupy the other cells of the matrix. The analysis 
of this matrix provides critical information on the transitions between the two dates. 
When comparing just the total areas covered by certain categories in the two dates, 
the net difference provides a first insight into the evolution of that cover (increase or 
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FIGURE 7.60 Histogram of the change image and image segmentation for the Brazil study site.
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decrease), but the multitemporal table facilitates determination of the categories to 
which or from which these transitions have occurred. Actually, the total difference in 
area covered does not reveal the full set of transitions, since in the same area, there 
might be gains and losses of the same category that are cancelled by considering 
only the totals (Pontius et al. 2004).

The multitemporal table also provides an excellent framework for computing change 
metrics. For instance, the Kappa or other agreement indices, which will be discussed 
in greater detail in Chapter 8, used to measure the strength of the association between 
two set of categories, could facilitate a quantitative evaluation of temporal stability 
between two dates. Transitions of each category may be accounted for by computing 
the initial and final areas covered by that category. For instance, in Table 7.11, the tran-
sitions of the sample area between 1990 and 2010 account for 40% of the total area, 
from which the vast majority was changed from forest to crops (net loss 41%); 32% of 
original forested area is now crops, while 8.6% is burned. The crop area of 1990 has 
been mostly maintained (93% remained as crops) with a very low percentage changing 
to forested area (4.5%). Total crop area of 2010 was mainly forested in 1990 (92%).

Multitemporal transition tables are as confident as the accuracy of individual clas-
sification is. If the classes have not been properly discriminated in either of the dates, 
the temporal comparisons will be erroneous as well, offering poor information on 
change. In fact, the accuracy of the temporal comparisons is the product of the indi-
vidual classifications, as errors are propagated when the comparison is done.

T1

T2

Change
Stable

FIGURE 7.61 Multitemporal comparison of classified images.

TABLE 7.11
Cross-Tabulation of the Brazil Images

2010→
1990↓

Forest Crops Water Burned Total

Forest 346,888 192,349 1,745 51,048 592,030 

Crops 794 16,233 47 260 17,334

Water 371 66 477 44 958

Total 348,053 208,648 2,269 51,352 610,322
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A final remark on change detection concerns to the complexity of displaying 
clearly changes in dynamic maps. Even with a small number of input categories (say, 
8 per date), the number of potential transitions (64) exceeds the number of readable 
classes in a map. Even though some of those transitions will not exist (since some 
changes are very unlikely or impossible), the cartographic representation of changes 
is always a challenge. An alternative to representing changes would be to show them 
in a series of maps, one for each category on the first date, and each showing the 
output category in the second date. Figure 7.62 illustrates two different approaches 
to mapping land cover changes. The former relies in simple cross-tabulation, which 
in this case provides an efficient way of displaying changes, as the number of input 
categories is small (Figure 7.62a). When this is not the case, it may be preferable to 
create a series of maps (one for each input category, showing the transitions between 
the two dates). In this case (Figure 7.62b), three transitional maps have been created, 
one for each category of the first date, showing in thematic colors the final cover at 
the second date. With this representation, a clearer view of the relevance of stable 
and transition covers is perceived.

7.4 ANALYSIS OF SPATIAL PROPERTIES

7.4.1 reMote SenSinG and landSCape eColoGy

Landscape ecology emphasizes the importance of considering the impacts of spatial 
patterns in critical environmental processes, such as the distribution and alteration 
of species, regeneration trends, and succession cycles (Forman and Godron 1986; 
Haines-Young et al. 1993). EO images provide critical information for this spatial-
oriented ecological approach, since they facilitate a quantitative measure of spatial 
pattern (Hoffer 1994; Wilkie and Finn 1996), while GIS facilitates the processing 
tools needed to perform the required spatial analysis (Davis and Goetz 1990; Haines-
Young et al. 1993).

A satellite image can be considered a digital representation of the landscape 
mosaic, and therefore, spatial relationships can be extracted from image informa-
tion. Several authors have explored the use of satellite images for landscape ecology 
studies. The topics are very diverse, including habitat suitability (Congalton et al. 
1993; Longmire and Stow 2001); the spatial spread of certain alterations, such as 
those caused by fires or plagues (Hargrove et al. 2000; Muchoki 1988; Sample 1994); 
relations between landscape pattern and vector diseases (Hay et al. 2000); and biodi-
versity studies (DeFries 2013; Hansen et al. 2001; Roy and Tomar 2000). In addition, 
other studies have focused on analyzing spatial structures at different spatial scales 
and their relations to spatial resolution (Quattrochi and Goodchild 1997; Woodcock 
and Strahler 1987).

In summary, remote sensing images provide an assessment of spatial aggregation 
of features at different spatial scales (Figure 7.63), imply a spatial representation of 
landscape structure, and facilitate an analysis of spatial autocorrelation for different 
landscape variables and can be used to compute landscape metrics.

The measurement of image spatial properties, in addition to being of interest for 
landscape ecological studies, is also relevant for image interpretation. As previously 
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Forest–Forest
Forest–Crops
Forest–Water
Forest–Burned
Crop–Forest
Crops–Crops
Crops–Water
Crops–Burned
Water–Forest
Water–Crop
Water–Water
Water–Burned

(a)

T1 Forest T1 Crops

T1 Water

Forest
Crops
Water
Burned

T2

(b)

FIGURE 7.62 Two approaches to land cover change mapping for the Brazil study case: 
(a) single cross-analysis and (b) transitional land covers.
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stated, the classification of target categories may need to take into consideration 
spatial features, such as shape, size, or neighbor relations. Therefore, computing 
spatial metrics is useful to generate additional bands that can be input into digital 
classification.

The revision of the spatial metrics is grouped in two broad categories. On the 
one hand, we will comment those methods suitable for continuous interval-scale 
variables and, on the other hand, those oriented toward nominal or categorical-scale 
variables. The former are applicable to raw DLs or those resulting from any quantita-
tive transformation (physical transformations, PCA, vegetation indices, etc.), while 
the latter refer to classified images.

7.4.2 Spatial MetriCS for interval-SCale iMaGeS

7.4.2.1 Global Metrics for Continuous Data
The objective of these techniques is to measure the texture or spatial variability of 
the image. They try to calculate the spatial complexity of pixels at certain neigh-
boring distances. Some of these metrics operate on the whole image and provide 
a single measure of the spatial variability, while others calculate the local texture, 
usually comparing the DL of a pixel with those that surround it. The former are 
useful in comparing the spatial complexity of different areas, or in analyzing the 
temporal evolution of landscape patterns for a certain area. The latter output texture 

FIGURE 7.63 Landscape structure of an area affected by a large forest fire in Eastern 
Spain as observed by thematic mapper (top) and Advanced Very High Resolution Radiometer 
(bottom) images.



366 Fundamentals of Satellite Remote Sensing: An Environmental Approach

images, and they can be used as input for digital classification or in predictive models 
(Vega-Garcia and Chuvieco 2006; Vega-García et al. 2010).

Fractal analysis is a sound alternative to measure the spatial properties of the 
whole image, since it provides an estimation of the spatial complexity of the inter-
nal shapes that account for that area. In classic geometry, an object’s dimension 
could only be an integer (1 = line; 2 = plane; 3 = volume), but in fractal geometry 
objects have real-number dimensions (between 1 and 2 or between 2 and 3), depend-
ing on their grade of spatial complexity. The more complex the surface, the closer the 
dimension is to 3, while the more complex the line, the closer it is to 2.

Although fractal geometry has been extensively used in the last few decades 
(Dimri and Turcotte 2005; Mandelbrot 1982), its calculation is not very evident on 
interval-scale images, since the objects are not explicitly defined. In a pioneering 
application of fractal geometry to the analysis of Landsat images, Lam (1990) pro-
posed methods to compute fractal dimension from images, finding higher fractal 
values for urban than for rural landscapes. The most heterogeneous bands were the 
visible ones (B, G, R), and the most homogeneous was the TIR band. In all cases, 
the fractal dimension of a raw image was found to be high, exceeding 2.6 (except 
for the thermal one, with a value of 2.2). Some studies have used fractal measures to 
characterize the spatial variation of the tree heights for forest inventory (Drake and 
Weishampel 2000) and to analyze postfire regeneration patterns from NDVI images 
(Ricotta et al. 1998).

Another method of measuring the spatial complexity of landscapes is the spatial 
autocorrelation (SA), proposed some decades ago in the context of understanding the 
spatial associations of geographical phenomena (Cliff and Ord 1973). Since natural 
variables are gradually distributed on the Earth’s surface, the values for a single loca-
tion tend to be more similar to those nearby than to those far away. Two indices have 
been commonly used to measure the strength of this spatial association: the Moran 
I metric and the semivariogram. The former was proposed by Moran (1948) and is 
based on the standard correlation index, although in this case it considers the vari-
ance of neighboring observations:
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where
n indicates the number of considered pixels
A is the number of possible unions among those pixels
zi is the deviation of the pixel i from image mean (DLi − DLx)
zj is the deviation from the image mean of the adjacent pixels

The Moran index oscillates between −1 and +1, increasing when the spatial unifor-
mity is greater. It can be calculated for a particular direction (only vertical or hori-
zontal links, for instance) or for all directions. This index has been used to measure 
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the degree of spatial correlation in order to select the most appropriate sampling or 
to estimate the landscape complexity (Congalton 1988b; Henebry 1993).

The semivariogram is a graph that shows how spatial variance changes at differ-
ent distances, and it is based in the following function (Chica 1988):
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where
γ(h) indicates the spatial variance for a distance h
NP(h) is the number of pixels included in that radius h
DL(xi + h) and DL(xi) are the values corresponding to the target pixel and those 

at distance h

The semivariogram can be computed for all directions or just for specific ones. The 
graphic representation of the semivariogram shows how the variance increases as 
distances become higher, up to a certain threshold when the variance stabilizes 
(Figure 7.64). That means that the spatial autocorrelation is lost after a certain dis-
tance (named range), beyond which the new observations would not affect the vari-
ability. The value at which the variance stabilizes is named sill and should be related 
to the general complexity of the input image. Range and sill are important in under-
standing the spatial structure of an image (Woodcock et al. 1988a,b).

Semivariograms of high-resolution images have been used in forest inventory to 
discriminate between different species (Cohen et al. 1990). These authors observed 
that the range was related to the crown width, being higher for plots with old growths, 
while the sill made reference to the stratification of the forest canopy. However, these 

γ(h)

(h)
Range

Sill

FIGURE 7.64 Semivariogram.
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observations were very dependent on the relation between object size and image 
resolution, because the results were different when using images with coarser resolu-
tion (Cohen et al. 1990). In this sense, the semivariogram has been shown to be of 
great interest in describing the relationships between the size of the objects and the 
spatial resolution of the sensor, the maximum of local variance taking place between 
one-half and three-fourths of the mean size of the objects (Woodcock and Strahler 
1987). They have also been used to analyze the impact of a large fire on landscape 
structure (Chuvieco 1999).

7.4.2.2 Local Metrics for Continuous Data
These metrics estimate the local variation of spatial properties and provide texture 
bands that can be later use as inputs for classification (Riaño et al. 2001; Smits and 
Annoni 1999). One of the simplest ways to compute local texture is to calculate the 
standard deviation of the DLs within a certain window size. Similar to the filter-
ing process previously described, that window moves systematically to all image 
pixels, and the output is a standard deviation matrix. This first-order texture metric 
has proved very effective in forest inventory studies, as an indicator of density and 
homogeneity of vegetation species, providing significant improvements over raw 
classifications (Strahler et al. 1978).

An alternative to the simple measures of texture is those based on the gray-level 
co-occurrence matrix (Haralick et al. 1973), which measures, for a specific vicinity 
window, how many times a certain DLi is contiguous to another DLj. The co-occur-
rence matrix is square and theoretically should have the same number of columns 
and rows as the number of different DLs the image has (the radiometric resolution). 
However, to simplify the calculation, a previous reduction of the original scale is 
performed (commonly from 256 to just 16 different DLs). The matrix counts the 
number of spatial connections between each DL value (Figure 7.65). The connection 
(angle between the central pixel of the window and the neighbors) can be counted 
in different directions or be averaged for all possible connections (0°, 45°, 90°, and 
135°). The vicinity distance can also be altered.

From the co-occurrence matrix, various second-order metrics of texture can 
be computed (Gong et  al. 1992; Moller-Jensen 1990; Smits and Annoni 1999; 
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FIGURE 7.65 Sample image and its corresponding co-occurrence matrix.
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Vega-Garcia and Chuvieco 2006). The most common in remote sensing applications 
have been the following:
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where
pi,j indicates the relative frequency of co-occurrence for DL values i,j
R and C indicate the matrix position in rows and columns, respectively
n the number of columns and rows of the matrix

In summary, pi,j measures the probability that a pixel with a DL value i is contiguous 
to another with a value j.

Two examples of these metrics over the Tucson image are displayed in Figure 7.66. 
Homogeneity is higher in volcanic features and natural areas to the east and west, 
while it is lower in the urbanized areas and nearby transportation routes. The oppo-
site is true for the contrast image, with higher values for the central urban area and 
lower values for natural areas, gardens, and golf courses.

7.4.3 Spatial MetriCS for ClaSSified iMaGeS

Several authors have proposed metrics to compute the spatial complexity of the-
matic maps (Frohn 1998; O’Neill et al. 1988; Riitters et al. 1995). As in the case 
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of quantitative images, some of those metrics are computed for the whole image, 
while others are computed from local moving windows. Both rely heavily on the 
concept of spatial patch, which is very common in landscape ecology. A patch can 
be defined as an object on a thematic map that is a homogeneous and contiguous 
group of cells/pixels. A classified image defines each category by a certain numeri-
cal code, but the same code (category) may occur in different areas of the image, not 
necessarily contiguous. Patches can be obtained from classified images using spatial 
aggregation algorithms (clumping). These programs label each pixel with the same 
number if they are included in the same thematic category, sequentially, until pixels 
from another category are found, after which a new label is issued (Figure 7.67). 

(a) (c)(b)

FIGURE 7.66 Texture images of the Tucson image. (a) Original band 4, (b) homogeneity, 
and (c) contrast computed from the same band 4.

1 1 1 3 3 3
1 1 2 4 3 3
2 1 2 4 3 3
2 1 2 4 2 1
2 1 2 2 2 1
4 4 2 2 2 1
4 4 4 2 1 1

1 1 1 2 2 2
1 1 3 4 2 2
5 1 3 4 2 2
5 1 3 4 3 7
5 1 3 3 3 7
6 6 3 3 3 7
6 6 6 3 7 7

FIGURE 7.67 The original classified image (top) is converted to patches (bottom) by 
segmenting contiguous pixels with the same category.
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In summary, clumping algorithms transform the original classified image (with as 
many DLs as classification categories) into a new file where there are as many DLs as 
there are different polygons. It is important to note that pixels with the same thematic 
category will have a different patch number if they are not in the same polygon. 
Therefore, the new image facilitates additional spatial information to better under-
stand landscape patterns. For instance, an agricultural classification would discrimi-
nate between different crops, and therefore estimations of total area under a certain 
crop can be derived. However, we do not know from such classification whether 
those crops are in single or different lots, or whether the area has crop concentration 
or not. Therefore, to analyze agricultural spatial patterns, we should convert first the 
agricultural map to a patch map.

7.4.3.1 Global Metrics for Classified Data
Once we have a patch map, simple metrics can be used to analyze the landscape 
pattern of a certain region. For instance, the number and density of patches are two 
simple indices of spatial complexity. Patch density can be used as a fragmentation 
index (Dillworth et al. 1994; Ricotta and Retzlaff 2000). An area with a high den-
sity of patches will indicate a very fragmented territory. The average size and the 
size distribution of patches are complementary measures of complexity and provide 
a view on regional diversities within the study area. Landscape fragmentation is 
critical to understanding the spatial effects in species mobility (Ripple et al. 1991) 
and has been commonly associated with studies of vulnerability with respect to 
the impacts of potential disturbances (climate change, wind storms, fire: Chuvieco 
et al. 2014).

Patch shape may also be relevant for different studies because they may indicate 
temporal trends (expansion or regression) or patch function (connectivity will be 
higher for elongated than circular patches). Several indices of shape have been used, 
but the most common is compactness, which tries to measure the similarity of a 
patch to a circular area. Compactness has been defined as the relation between area 
(A) and perimeter (P), using the F index (Gulinck et al. 1991):
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or the circularity ratio (C), which relates the area of a patch (Ap) to the area of a circle 
with the same perimeter (Ac):

 
C
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=  (7.76)

When increasing C, the polygon would be more compact and less elongated. Shape 
can also be computed from the fractal dimension, which measures the average degree 
of complexity of the patches in the study area. A simple method of calculating the 
image fractal dimension (D) is by finding out the relationship between the perimeter 
and area of every patch (Ripple et al. 1991):
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 P A» D /2  (7.77)

The average value of the image can simply be obtained by averaging D for all 
patches. Other authors have proposed using the coefficients of the regression line 
between logs of patch perimeter and area (O’Neill et al. 1988):

 log P = a D A + ( /2) log 
 (7.78)

where a is a constant of proportionality. Some authors have observed that D is 
directly associated with landscape complexity. In a wide sector of the eastern United 
States, it was shown that D offered a numeric assessment of land use patterns: when 
D was small, the forms were quite geometric, which was a consequence of prevalent 
human land use, whereas other areas with higher D have more presence of natural 
landscapes (O’Neill et al. 1988; Ricotta et al. 1998).

A similar analysis of area–perimeter relations has been explored in the theory 
of self-organizing criticality (SOC: Bak et  al. 1987), which explores the scale-
invariant properties of many natural phenomena by using a power-law model. 
This model relates the frequency and area of the distribution of a certain fea-
ture, and the exponent of the power-law model indicates the relevance of large 
or small objects in the target region. For instance, the power-law model can be a 
good approximation of fire regime characterization, as it accounts for the relation 
between the frequency of certain fire sizes and the proportion of the area they burn 
(Hantson et al. 2015).

A third aspect of patch patterns in the image refers to the average distance 
between patches. This aspect is measured using dispersion indices computed from 
the centroids of the different patches (Figure 7.68).

7.4.3.2 Local Metrics for Classified Data
In addition to global metrics, the internal spatial variation of patch conditions should 
also be very valuable in landscape ecology studies. As for continuous data, the anal-
ysis is based on moving windows of different size (commonly 3 × 3 pixels).

+

+

+
+

+

+

+

FIGURE 7.68 Dispersion indices.
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One of the most popular local indices is diversity (D), which attempts to measure 
the variability of categories within a certain window. It was defined as (Turner 1989)
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where
pk is the proportion of category k in the window 
m is the number of categories in that window

The more diversity, the more spatial variation in categories’ distribution or, to put it 
in another way, the area will present a more varied mosaic (Figure 7.69). The diver-
sity is directly related to the scale of the images, being smaller when lowering the 
resolution (Turner et al. 1994).

Complementary to diversity is dominance, which measures the deviation of the 
estimated value versus the maximum diversity (O’Neill et al. 1988):
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with the same significance as Equation 7.79. The higher the dominance, the larger 
the prevalence of one of the categories over the other ones in that window.

To measure the degree of spatial fragmentation of different patches, differ-
ent indices have been suggested. A simple one is named contagion and measures 
the degree of adjacency among categories versus the potential maximum (Li and 
Reynolds 1993; O’Neill et al. 1988):
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where
pik indicates the proportion of pixels in the window where category i meets cat-

egory k
m is the number of classes

1 1 1 1
0 0 0 0
1 1 1 1
0 0 0 0

Div = 0.6365 
Dom = 0.0566 

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

Div = 0.4900
Dom = 0.0299 

1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0

Div = 0.3183
Dom = 0.0283 

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

Div = 0.6870
Dom = 0.0062

FIGURE 7.69 Diversity and dominance for test images.
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7.4.4 landSCape StruCtural dynaMiCS

Landscape metrics can be used to compare various landscapes on a reference date, 
or to analyze trends of a particular area through time. In this second approach, 
the spatial impact of certain human activities or natural events may be assessed 
(Ne’eman et al. 1999; O’Neill et al. 1988; Reinhardt and Ringleb 1990; Turner et al. 
1994). For instance, the spatial impacts of a large fire may be analyzed at different 
scales (Chuvieco 1999), or the spatial arrangements of sand dunes may be monitored 
(Collado et al. 2002). Figure 7.70 shows changes in compactness associated with soil 
degradation processes in a semiarid area. The more compact dunes show expansion 
processes (in this case, as a result of short-term agricultural practices), while the 
elongated ones display regression trends, as a result of greater water availability.

These studies are complementary to the spectral change detection analysis 
described in Section 7.3, since environmental impacts of changes are associated not 
only with alterations in cover (spectral changes) but also with spatial arrangement.

7.5 REVIEW QUESTIONS

 1. Which one of the following characteristics favors the use of simulation ver-
sus empirical models?

 a. Simplicity
 b. Accuracy
 c. Generalization power
 d. None of the above
 2. Identify which of these processes does not benefit from the use of simula-

tion models.
 a. Classification
 b. Identification of the most sensitive spectral bands

1962 1992

N

0 10 km

0.01–0.33
0.33–0.66
0.66–1.00

C ratio

FIGURE 7.70 Changes in compactness in the central region of San Luis (Argentina). (From 
Collado, A.D. et al., J. Arid Environ., 52, 121, 2002.)
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 c. Estimation of a quantitative parameter
 d. Reduction of the atmospheric effects
 3. The main objective of using spectral vegetation indices is to
 a. Reduce the topographic effect in image interpretation
 b. Facilitate multitemporal comparisons
 c. Estimate the leaf area index
 d. Improve separation of vegetation and soil
 4. Which of the following indices should be more suitable to estimate chloro-

phyll content?
 a. NIR/R
 b. SWIR/NIR
 c. SWIR/B
 d. R/B
 5. Which of the following indices improves the separation of water and soil?
 a. NIR/R
 b. SWIR/NIR
 c. B/SWIR
 d. R/B
 6. The relationship between NDVI and plant water content is
 a. Linear
 b. Exponential
 c. Quadratic
 d. None of the above
 7. Spectral mixture analysis is more convenient for
 a. High spatial resolution images
 b. High radiometric resolution images
 c. High angular resolution images
 d. High spectral resolution images
 8. Where can endmembers be derived from?
 a. Input image
 b. Spectral libraries
 c. Simulation models
 d. All of the above
 9. Calculation of object heights from lidar data mainly depends on
 a. Estimating the elevation of the ground
 b. Performing atmospheric correction
 c. Retrieving the canopy cover
 d. Estimating the overlapping between lidar flights
 10. The supervised training is preferable to unsupervised training when
 a. Classes are heterogeneous
 b. The area has rough terrain
 c. The area is well known
 d. The area is very complex
 11. What is the main difference between traditional and object-oriented classifiers?
 a. Use of hyperspectral data
 b. Use of pixels versus polygons
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 c. Use of neural network classifiers
 d. Use of high-resolution images
 12. Which of the following parameters is not required for maximum likelihood 

classification?
 a. Normal distribution
 b. Extract training fields
 c. Quantitative input variables
 d. Include textural bands
 13. Which of the following algorithms leaves unclassified pixels?
 a. Parallelepiped
 b. Minimum distance
 c. Maximum likelihood
 d. Random Forest
 14. Which filters can be used with classified images?
 a. Low pass
 b. High pass
 c. Median filters
 d. Modal filters
 15. Multitemporal comparison requires
 a. Using digital images
 b. Applying low-pass filters
 c. Ensuring geometric and radiometric matching
 d. Classifying the images
 16. Which of the following techniques can be used to detect changes in classi-

fied images?
 a. Temporal color composites
 b. Temporal regression
 c. Temporal cross-tabulation
 d. Temporal vectors
 17. Which of the following multitemporal techniques would be more suitable 

for burn scar mapping?
 a. Subtraction of classified images
 b. Cross-tabulation of classified images
 c. Subtraction of principal component analysis
 d. Subtraction of vegetation indices
 18. The analysis of temporal anomalies is especially suitable for
 a. Landsat OLI images
 b. SAR images
 c. MODIS images
 d. SPOT-HRV images
 19. Which of the following textural techniques is not suitable for interval-scale 

images?
 a. Patch size
 b. Co-occurrence matrix
 c. Autocorrelation analysis
 d. Semivariogram
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 20. To compute patch analysis metrics, we should first
 a. Apply multitemporal matching
 b. Apply atmospheric correction
 c. Clump classifications
 d. Apply spatial filters
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8 Validation

8.1 RELEVANCE OF VALIDATING RESULTS

The final goal of visual or digital interpretation is to provide an estimation of 
ground truth conditions. Checking whether results are close to the actual ground 
 conditions is a critical part of any EO analysis. “Validation” is defined by the 
Committee on Earth Observing Satellites Working Group on Calibration and 
Validation (CEOS-WGCV) as “the process of assessing, by independent means, the 
quality of the data products derived from the system outputs” (CEOS-WGCV 2012). 
Validation commonly includes estimating different aspects (Figure 8.1):

 1. Accuracy, defined in terms of distance between the estimated and actual 
measurement. It can also be termed as “error” or “bias”.

 2. Precision, expressed as the dispersion of estimations around the average 
estimated value, commonly in units of standard deviation (σ).

 3. Stability, or consistency of accuracy throughout time, measured as tem-
poral variations of accuracy or whether significant trends throughout time 
exist.

Validation helps in evaluating the utility and limitations of using any particular 
remote sensing product. For example, when estimating crop yields, validation pro-
vides an idea of how close our results are to the actual yields. As is the case of 
any statistical inference, the estimates are based on probabilistic assumptions that 
provide a certain confidence level around the estimated value. Depending on the 
significance of the results, the agricultural manager can make decisions on future 
actions; for instance, whether to commercialize that crop or not. In addition to test-
ing the significance of the results, accuracy assessment is also critical for evaluating 
a certain methodology, as it provides an objective criterion to determine whether that 
method provides (significant) better or worse results than others.

Frequently, accuracy assessment is considered the last step in digital classifica-
tion. However, this process should also be included in visual interpretation, as well 
as in other kinds of digital analysis, such as generating biophysical variables (tem-
perature, chlorophyll, leaf area index [LAI], etc.), or multitemporal change detec-
tion. For this reason, we have dedicated a separate chapter to this topic, instead of 
embedding it into the digital classification section.

We should not confuse accuracy assessment with uncertainty characterization. 
The latter implies estimating how confident the interpreter is about his or her estima-
tion. Uncertainty is estimated by taking into account the errors associated with the 
different phases of the interpretation processes. It includes modeling errors related 
to the sensitivity of the sensor system, the geometric and radiometric correction pro-
cesses, and the classification algorithms. For instance, if we are using a balance to 
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weigh a leaf sample, the precision of the balance is an important source of error, as 
the uncertainty of our measurement could never be below the inherent error of the 
balance. In other words, we cannot weigh a sample with accuracy higher than 1 g 
if we are using a medium-precision balance with a sensitivity of 10 g. Precision of 
the final estimation is commonly computed as an error integration of the different 
sources of potential errors, and it is measured as a dispersion value (commonly in ±σ, 
where σ is the standard deviation of errors).

Uncertainty can be characterized without ground measurements of the target vari-
able, but accuracy assessment cannot, as it implies estimating the average deviation 
between our estimations and the true value. It is commonly expressed as averaged 
bias and can be positive or negative depending on whether the estimations are above 
or below the reference. Obviously, the reference measurement should be acquired 
as close as possible to the ground conditions when the satellite observed the target 
area. This is particularly important for dynamic variables, such as soil temperature 
or humidity, which may vary quite rapidly.

Logically, the interpreter will not have those ground conditions for the whole 
target area, as otherwise, one would not need any remote sensing interpretation, but 
only a sample area that is assumed to be representative of the ground conditions. In 
this regard, accuracy assessment relies on sampling techniques that provide a good 
balance between the information retrieved and low cost. As most assessment exer-
cises are based on 2D results, spatial sampling techniques should be used to select 
plots that can objectively represent the ground conditions. Once the ground condi-
tions are obtained, they are compared with classification results to compute different 
metrics of errors.

In summary, the verification of results includes the following phases (Congalton 
and Green 1999):

 1. Sampling design, indicating how many plots must be sampled and how they 
should be selected.

 2. Collecting reference data and results over the selected plots to be sampled.
 3. Extracting the interpretation results for the same plots used with the refer-

ence data.
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FIGURE 8.1 Concepts involved in validation.
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 4. Comparing reference and interpreted data using appropriate statistical 
techniques.

 5. Analyzing the causes and distribution of errors and, eventually, comparing 
results from different interpretation techniques.

8.2 SOURCES OF ERROR

The reliability of the results depends on different factors of potential error, both 
related to the acquisition and interpretation phases. They should be considered in 
order to explain, on one hand, the confidence of the results and, on the other, the 
accuracy found in the validation process. Actually, the validation process has also 
potential sources of errors, for instance, those related to the sampling design and ref-
erence data collection. In the following sections, we will focus on the former factors 
and leave the interested reader to consult sampling statistics textbooks (Berry and 
Baker 1968; Cochran 1977; Congalton and Green 1999) for the latter factors.

8.2.1 SenSor liMitationS

Various errors are possible in the acquisition of an image, such as those caused by 
failures in the sensor, platform, or reception systems. Sensor limitations, however, 
refer to the technical capabilities of the system (spatial, spectral, radiometric, or 
temporal resolution), which constrain the use of the collected data. When the user is 
unaware of these limitations, he or she may try to use the images for applications that 
may exceed the sensor’s potential. For instance, if we try to estimate urban growth 
from MODIS data, we should realize that omission errors will be likely, considering 
the coarse pixel size of this sensor. Similar errors are also likely when trying to use 
Landsat images for active fire detection. In this case, the limitation would stem from 
the temporal resolution.

As mentioned in Chapter 4, it is critical to make a proper selection of the sensor to 
meet project requirements. Otherwise, the risk of errors will increase. Logically, the 
selection of the most adequate sensor will be a compromise between the investment 
needed and the level of acceptable error.

8.2.2 Method of analySiS

We have reviewed throughout this book a wide variety of visual and digital tech-
niques to extract thematic information from images. The choice of one or the other 
will depend on the interpreter’s resources and technical preparation. Obviously, 
some of the errors in the final product should be attributed to the interpretation pro-
cedures. For instance, when using RapidEye images to map urban areas, simple clas-
sification algorithms may offer significant errors, as many pixels would have mixed 
covers. However, those errors should be reduced when using contextual or textural 
classifiers, which take greater advantage of fine spatial resolution than pixel-based 
classifiers. In the same way, errors in temperature calculation are related not only to 
the sensor sensitivity but also to the consistency of the methods used for atmospheric 
or emissivity correction.
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In a broad sense, we can include among the deficiencies of the interpretation 
method those errors that occur because of an incorrect selection of image acquisition 
dates. In the case of vegetation covers, when seasonal dynamics are not carefully 
considered, the interpreter may find assignment errors that are otherwise solvable. 
For example, in rural sites, dry-season images may present confusions between 
buildings and recently harvested plots. This is caused by the spectral similarity of 
roof tiles and bare soil. However, when using images from the growing plant season, 
the cultivated areas will show a greater spectral contrast with built-up areas.

8.2.3 landSCape CoMplexity

Homogeneous landscapes are easier to classify than complex ones, where more bor-
ders, and therefore mixed pixels, exist. The spectral contrast between neighboring 
categories is also related to landscape pattern as well as to the degree of mixture of 
land cover types.

The effect of patch size and shape is especially evident in regions with a long 
history of human occupation. These regions frequently have tiny patches, smaller 
than the pixel size in most medium- and coarse-resolution sensors. The digital 
levels (DLs) of the border pixels will be a mixture of two or more covers, mak-
ing its classification quite complex (Figure 8.2). This effect is known as boundary 
error; it is very common in agricultural or land cover mapping in very traditional 
landscapes.

Closely connected with this problem is the spatial arrangement of cover types. 
When there is a clear spectral contrast among neighboring covers, they are easier 
to separate than if they offer similar radiance (Figure 8.3). For example, a rural 
settlement when surrounded by green vegetation is easier to discriminate than when 
bounded by bare soils.

Another potential source of error is related to the target categories. Some end 
users may be interested to include in the final land cover map categories that include 
two or more covers. For instance, in Mediterranean areas it is very traditional to 
combine forest and agricultural uses in the so-called Dehesa, where grasslands and 
evergreen oaks occupy the same plot. They are used for extensive cattle grazing 
(frequently pigs or bulls). These categories are difficult to classify because they are 

Border pixels

FIGURE 8.2 Consequences of border errors: the border pixels will register an intermediate 
radiometric signal between two or more cover types.
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intrinsically mixed and their signal is an average of pure signatures. Spectral unmix-
ing or fuzzy classification may be a good alternative to discriminate them.

The influence of landscape pattern in classification errors is evident when study-
ing the spatial distribution of error patterns. These studies have proved that there is 
a significant spatial autocorrelation in the erroneous pixels (Congalton 1988b). That 
means that a misclassified pixel has more chances to be close to another erroneous 
pixel than to a correct one because errors are highly influenced by the landscape 
structure. This tendency is more evident in those images that show less spatial com-
plexity, that is, images with more systematic patterns of distribution, such as agri-
cultural areas (Figure 8.4). On the other hand, in more complex landscapes, such as 
urban areas or natural vegetation, the errors are less systematic.

Finally, we mention a group of assignation errors that occur due to the environ-
mental conditions of a given cover. As we have seen, the different orientation, slope, 
density, and phenological state in which a thematic cover appears imply spectral 
variability about the typical behavior of that category. Such dispersion hinders the 
spectral characterization of a class, generating overlap and confusion with similar 
spectral categories.

8.2.4 verifiCation proCeSS

Some of the errors found in the accuracy assessment process may be caused by the 
validation process itself (Congalton and Green 1999). Some examples of potential 
noise factors are related to the mechanisms of data collection, errors in the geometric 
rectification, and the subjectivity of human samplers.

DL

DL

FIGURE 8.3 Effect of radiometric contrast between neighboring covers: this can be 
observed in the profiles of areas with high and low contrasts.
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The process of ground data collection is commonly named “ground truth,” but in 
fact what is collected cannot be fairly considered “the truth.” In some cases, there 
are also errors associated with the ground measurement, such as those caused by the 
field equipment (precision of the thermometer of soil moisture meter, for instance), or 
by the need to simplify some data collection procedures. For example, when estimat-
ing LAI on the ground, all leaves of the tree should be cut and scanned to compute 
the area of all leaves. This is unfeasible, and therefore, either a small sampling of the 
leaves is taken or an estimation of LAI is done through allometric equations or using 
field sensors measuring the radiation that penetrates the plant canopy (such as the 
Licor LAI or fish-eye photography: Bréda 2003). Obviously, all these methods have 
estimation errors, which introduce uncertainty in their use for validation studies.

Problems in accuracy assessment may also occur when ground data collection is 
conducted by different people, because they may be inconsistent. For this reason, 

FIGURE 8.4 Spatial distribution of the error in digital classifications: the upper part cor-
responds to errors from classifying an agricultural area, and the lower portion from a forested 
area. (Reprinted from Congalton, R.G., Photogram. Eng. Remote Sens., 54, 587, 1988. With 
permission from the American Society for Photogrammetry and Remote Sensing.)
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when several surveyors are involved, it is very important to define precisely the dif-
ferent thematic categories and sampling procedures in order to reduce the margins 
of error. In a forest inventory, all samplers should have the same understanding of 
what a tree is (a wood species taller than 2 m, for instance) to make the measure-
ments fully comparable among the different teams involved. In any case, the lack of 
full correspondence between a ground-measured and satellite-measured biophysical 
parameter does not necessarily mean errors in the latter.

With regard to thematic errors, the interpreter should be aware of potential prob-
lems caused by using documents from different dates. For example, when using aerial 
photography as the reference data, the acquisition should be from a date close to the 
satellite imagery; otherwise, errors may be confused with temporal changes. Finally, 
the reference data might also include geometric or thematic errors. Geometric loca-
tion is critical when validating results from high-resolution images, since small 
displacements may severely affect the assessment process. In this regard, a high-
precision global positioning systems (GPS) receiver (Figure 8.5) or topographic 
equipment is required to locate control plots for airborne lidar applications (Riaño 
et al. 2004a); otherwise, the potential errors may be caused by displacements of target 
and reference plots.

FIGURE 8.5 High-precision GPS receivers. These are important for ensuring a precise 
geometrical location in ground-truth surveys, particularly when working with high-
spatial-resolution data.
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8.3 METHODS TO ESTIMATE ACCURACY

The estimation of the quality of results has been approached from different perspectives. 
Obviously, the simplest way is a pure subjective evaluation coming from the interpreter 
or end user who knows the study site. We can summarize this procedure as the judgment 
“It looks good,” which is in practical terms a common way of interpreting the results, 
since this subjective validation is evidently less expensive and faster than a rigorous 
verification. However, few practical and scientific conclusions can be deduced from this 
simple appraisal, and therefore, it cannot be accepted as a sound validation procedure.

A more adequate alternative is comparing the results with external  statistical 
sources. For instance, the results of a crop classification can be compared with 
agricultural statistics to estimate whether the total acreages are similar for the two 
sources. This assessment is known as non-site-specific assessment. It is simple to 
obtain and provides a numerical estimation of accuracy, but it involves two impor-
tant problems. First, it is assumed that the statistical source is the ground truth, 
which is obviously not the case, since it may be based on estimations. The second 
problem is related to the nonspatial character of the evaluation, since the agreement 
of the total area does not imply that the class is properly mapped, as omission and 
commission errors may balance each other (Figure 8.6).

A third approach for accuracy assessment relies on using as reference data the 
same observations that are used to train the classifier. This option reduces the cost 
of fieldwork, since no additional validation plots are required, but introduces a bias 
in the assessment process. Training observations will have a greater probability of 
being correctly classified than other pixels of the image, since the classification rules 
are based on those training statistics. In the same way, a regression model should 
not be validated with the same data used to fit the equation, since the adjustment is 
generated by minimizing the distances to those points. Additional independent data 
need to be considered for testing the robustness of the model (Figure 8.7).

Finally, the most reliable assessment involves selecting a series of independent 
samples not used for producing the results. Logically, the selection and collection 
of additional samples will raise the cost of the project, and this increase is not used 
to improve the results but only to validate them. In spite of the problems associated 
with this process, we should emphasize the need to undertake it with a sound meth-
odology, to obtain a quantitative estimation of the potentials and limitations of our 

FIGURE 8.6 Problems caused by non-spatial verification: the total number of gray pixels is 
the same, but the spatial distribution is totally different.
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final product. Performing a proper validation implies developing a solid strategy for 
sample selection, collection of ground data, and comparison of those reference data 
with the EO results.

The CEOS Land Product Validation (LPV) subgroup has defined four stages in 
the validation of an EO variable (http://lpvs.gsfc.nasa.gov/, last accessed November 
2015), which have increasing levels of confidence in the estimation results:

 1. Product accuracy is assessed from a small (typically <30) set of locations 
and time periods by comparison with in situ or other suitable reference data.

 2. Product accuracy is estimated over a significant set of locations and time 
periods by comparison with reference in  situ or other suitable reference 
data.

 3. Uncertainties are characterized in a statistically rigorous way over multiple 
locations and time periods representing global conditions. Spatial and tem-
poral consistency of the product and with similar products has been evalu-
ated over globally representative locations and periods.

 4. Validation results for stage 3 are systematically updated when new product 
versions are released and as the time series expands.

In summary, validation may be carried out at different levels of spatial and temporal 
sampling, depending on product maturity and the extent it covers. We will review 
briefly some principles of sampling design to better adapt the LPV stages to our 
particular product.

8.4 SAMPLING DESIGN

The design and development of sampling is the basis of the assessment process. 
Spatial sampling helps in making a suitable selection of plots to be surveyed. The 
two main characteristics of a sound sampling scheme are to provide an unbiased 
estimation of the target variable (in this case, the error of the results) and, at the 
same time, to be efficient; that is, it must provide the maximum information at 
the lowest possible cost. Both properties imply that the sampling scheme should 
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FIGURE 8.7 Impact of changing the observations to compute the explained variance of a 
regression model: the white circles are points not used to compute the determination coef-
ficient (r2).
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follow a statistical design that is easy to implement and analyze, and provide a sound 
estimation of the spatial variability of errors. The selection of the type of sampling 
technique depends on a series of factors (Congalton and Green 1999; Stehman 1999): 
how the error is distributed in the study area, what the most adequate sampling unit 
is, how the samples should be selected, and how many samples should be collected.

8.4.1 error diStribution

Any sampling scheme must consider the characteristics of the target variable, that 
is, whether it is a discrete or continuous variable, and its spatial distribution. In our 
case, most validation exercises are applied to thematic classifications, and there-
fore, the interpreter should use statistical techniques adapted to nominal variables. 
Categorical distributions are the most common in this regard, and their valida-
tion requires the use of a binomial distribution (truth/error). When the assessment 
is intended for continuous variables, such as the temperature or vegetation water 
content, sampling can be based on continuous distributions, such as the normal or 
Poisson distribution (Biging et al. 1998; Stehman 1999).

The spatial distribution of errors is a critical consideration when selecting the 
most appropriate spatial sampling. For instance, the presence of high spatial auto-
correlation precludes the use of systematic sampling (Congalton 1988b). The spatial 
association of an error tends to present diverse patterns based on landscape complex-
ity, which is frequently associated with the natural or man-made character of areas. 
Agricultural landscapes tend to offer geometrical patterns, while natural areas tend 
to follow a more random distribution.

8.4.2 SaMplinG unit

The sampling unit refers to the element in which the reference information will be 
collected. Most commonly, but not always, it is identified with the pixel. In fact, on 
many occasions, it is more convenient to use a group of pixels (e.g., a 3 × 3 window) 
as a sampling unit, which may reduce potential georeferencing errors. The thematic 
polygons derived from the classification process or the objects in contextual classi-
fiers can also be considered as sampling units.

8.4.3 SaMplinG StrateGieS

This concept refers to the different ways of selecting the cases that will be part of 
the validation sample. The most common are the following (Congalton 1988a, 1991; 
Rosenfeld 1982; Rosenfeld et al. 1982; Stehman 1992, 1999; Figure 8.8):

 1. Simple random: The elements to be verified are chosen in such a way that all 
of them have the same probability of being selected, since the selection of one 
does not influence the selection that follows. Random sampling is very solid 
statistically, but it presents practical problems, as it can imply high transpor-
tation costs. Besides, it may not be suitable for the spatial variation of the clas-
sified image because the low-frequency categories may not be represented.
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 2. Stratified random: The sample is selected by dividing the population into 
regions or strata, according to an auxiliary variable (e.g., elevation or the 
same thematic variables used in the classification). This method is more 
complex to design than the first one, but it gives information on subpopula-
tion categories while reducing the sampling error as long as the stratifica-
tion variable is closely related to error distribution.

 3. Systematic: The cases are selected at regular intervals from a starting point 
randomly selected. It guarantees complete coverage of the target area but can 
generate erroneous estimations if errors are distributed systematically as well 
(e.g., geometry of parcels). On the other hand, it does not ensure a probabilistic 
estimation because there is no randomness in the selection of the observations.

 4. Systematic unaligned: This modifies the previous scheme by changing 
randomly—for each line and column of the sampling—one coordinate, 
keeping the other one fixed. This allows certain randomness in the selec-
tion of the samples, while it reduces the bias due to regularity. At the same 
time, it ensures complete coverage of the territory.

 5. Cluster sampling: A group of observations, known as a cluster, is selected 
as a sampling unit instead of using single pixels. In other words, on each 
randomly selected point to be verified, several samples are collected in the 
neighboring points, following a predetermined pattern. For example, a clus-
ter can consist of five points at a certain distance from the central point and 
forming an L shape. This method reduces the cost of transportation, but it 
is more complex and less accurate than the previous ones.

Of these schemes, systematic unaligned sampling has been widely used in clas-
sification verification tasks (Dozier and Strahler 1983; Rosenfeld et  al. 1982; 

(1) (2) (3)

(4) (5)

FIGURE 8.8 Types of sampling schemes applied in verification. (1) Random, (2) stratified 
random, (3) systematic, (4) unaligned systematic, and (5) cluster.
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Stehman 1992). Other authors recommend alternative methods such as the simple 
random (Hord and Brooner 1976), stratified sampling by categories (Ginevan 
1979), and cluster sampling (Todd et  al. 1980). The experimental works by 
Congalton and collaborators (Congalton 1984, 1988a, 1991) provided a more rig-
orous evaluation of different sampling schemes. On the basis of errors associated 
with classification of three different types of landscapes (agricultural lands, for-
ests, and grasslands), simple random sampling was found to be the most effec-
tive method, followed by the stratified random sampling. Cluster sampling also 
showed good results, being especially useful in verifying large areas, where the 
cost of transportation is critical. The use of systematic or systematic unaligned 
sampling is not recommended, especially when the image presents a systematic 
error, as is the case with agricultural zones or pastures.

In a recent study to validate global burned area maps, Padilla et al. (2014) used 
stratified random sampling to select the set of reference sites. In this case, two criteria 
were used to select the strata: the biomes and the relevance of fire occurrence. Two 
categories were discriminated: high and low occurrence based on burned area maps 
from 2008, resulting in 14 strata (7 biomes × 2 fire occurrence conditions). Sample 
size for each stratum was selected proportionally to fire occurrence. Sampling units 
were the Thiessen scene areas (TSAs: Cohen et  al. 2010) instead of the Landsat 
frames, since they do not overlap, and therefore, the selection is not biased toward 
Northern latitudes with higher repeating overpasses.

8.4.4 SaMple Size

As in any statistical sampling, the sample size depends on the confidence level to 
be assigned to the estimation, the tolerable estimation error, and the variability of 
the target variable itself. The sample size will increase as the level of confidence 
increases, the margin of error decreases, and the target variable becomes more 
heterogeneous.

When validating a quantitative variable, such as plant water content, sea surface 
temperature, or water turbidity, the sample size can be estimated by using the general 
sampling inference equation as follows:

 x x z= ± ´ˆ SE  (8.1)

where
x is the mean of the population (in this case, the actual error in the image)
x̂ is the estimated error from the sampling
z is the x-axis of the standard normal curve (the level of probability) assigned to 

the estimation
SE is the sampling error, calculated differently for each type of sampling

The term (z × SE) indicates the confidence interval, that is, the value below and above 
the mean at which one can expect to find the true value of the variable with a certain 
level of confidence. To calculate the sample size, we need to fix the confidence level 
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in accordance with the desired precision of the sampling. Assuming that maximum 
acceptable error is L, then for a simple random sampling,
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where
s2 is the sampling variance
N is the size of the population
n is the sample size

For large samples (n > 30), the last term (known as correction for finite populations) 
can be ignored. From the previous equation, the sample size can be computed as 
follows:
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The most difficult parameter to estimate in this equation is the sampling variance 
(s2), since before performing the sampling, the variability of the target variable is 
unknown. As a first approximation, s can be estimated from previous samplings 
of the same variable or from a variable range (rg). Different authors have proposed 
s = 0.29 × rg for a regular distribution and s = 0.21 × rg for a biased one. For example, 
if we want to estimate the precision of calculating the temperature over an area 
of 5000  km2 with a level of probability of 95% (z = 1.96) and an accepted esti-
mated error of 1.5°C, having observed a range in temperatures of 20.69°C (therefore, 
s = 0.29 × 20.69 = 6), we would have
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which means that we have to sample 61 points of 1 km2 area to obtain the expected 
level of confidence.

In the case of a classified image, where the variable is not quantitative but categorical, 
it is advised that the bimodal distribution of probability be used. The simplest expres-
sion (without considering the correction for finite populations) would be as follows:

 
n

z pq

L
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2

2  (8.4)

where
p is the estimated percentage of successes
q is the percentage of errors (q = 1 − p)
L is the level of error allowed
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The values of p and q can be estimated from auxiliary data, or they can be simply 
made equal to 50.

For example, if we want to know the required number of test points to estimate 
with a 95% probability the error of a certain map, supposing that the estimated suc-
cess is 85% and the maximum error allowed is ±5%, we would have

 
n = ´ ´ =1.96 85 15

5

2

2 195 92.

which indicates that at least 196 samples would have to be taken to achieve the accu-
racy levels established. This size can be very small if we refer to the total number of 
pixels in the image. We have to consider that in this application, we need not follow 
the classic rules of statistics because the reference number of pixels (total area clas-
sified) is very high. As a result, some authors suggest a minimum number of samples 
to obtain a reliable estimation of the error. This threshold is located at 50 pixels per 
thematic class (Congalton 1991; Hay 1979). It is also recommended to carry out the 
sampling separately for each class, starting with the class having the smallest size. 
This will mark the proportion of area to be sampled for the rest of the classes.

8.5 GATHERING INFORMATION

Once the sampling design is set, the next step is acquiring the data from the ground 
or from a reference document (typically, a higher-resolution image). Ground mea-
surement or direct observation requires fieldwork to be done simultaneously with the 
collection of the image. This is especially critical for very dynamic variables (e.g., 
surface temperature or soil moisture), while in other cases (e.g., vegetation species), 
a temporal discrepancy can be accepted.

When measuring biophysical variables, the ground sensors should be well cali-
brated to avoid errors in estimation. Additionally, the protocol for data measure-
ment should be standardized when several sampling teams are working on the same 
project. For instance, direct measurement of LAI on the ground is very complex 
and costly, and therefore, ground methods are based on sampling. Indirect methods 
rely on measuring the light passing through the canopy and generate a model of leaf 
distribution to estimate the number of leaves present (Figure 8.9). Since this is an 
estimation, the comparison with satellite-estimated LAI is not always fully reliable 
(Bréda 2003; Wang et al. 2004).

Another problem is the spatial uncertainty of locating the exact area observed 
by the sensor’s instantaneous field of view (IFOV). In other words, we do not know 
exactly the limits of the area observed by the sensor, and therefore, it is difficult to 
measure the same area included in the image. An alternative is to use field radiom-
eters and take simultaneous measurements of reflectance and the target parameter 
on the ground.

In the case of validating classified maps, the interpreter on the field has to apply 
the same definition of thematic categories used to classify the image. As previously 
mentioned, this is crucial when several people work on the ground (Congalton and 
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Green 1999). An adequate coordination can avoid subjectivities in assigning classes, 
especially when they are heterogeneous: crop mosaics, pasture-scrub, low-dense 
vegetation, etc. These terms are often too vague to collect adequate ground information.

An alternative to fieldwork, particularly for continental or global studies, is the 
extraction of reference data from higher-resolution images. In the case of quantita-
tive variables, it is important that the sensors be well calibrated and have good tem-
poral resolution, in order to extract the data closest to the time of image acquisition.

Regarding which image value should be compared with the reference value, many 
authors recommend the use of average or median values of a window around the 
sample point (usually, a 3 × 3 window) to reduce the impact of small georeferencing 
errors in the image. In the case of classified images, the extraction is done from the 
sampling point, but it is more common to extract the entire polygon observed in the 
field and not just single pixels, which are more difficult to locate.

8.6 VALIDATING INTERVAL-SCALE VARIABLES

Once the reference data are obtained, we can compute several statistical metrics to 
estimate the error of our results. For interval-scale variables, the most common index 
to estimate errors is the root-mean-square error (RMSE), defined as
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where
x̂i is the estimated value from the image
xi is the reference value

FIGURE 8.9 Field sensors for collecting LAI information.
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As previously mentioned, RMSE will really be an estimation of the error present 
in a variable since it has been obtained by sampling. We should apply the sampling 
inference equation (Equation 8.1) to estimate the confidence interval around the esti-
mated error.

A rigorous estimation of the error requires points that were not used in calibrating 
the model. In some cases, only a few ground observations are available; therefore, 
splitting the observations into one set for validation and another set for calibration 
may imply having few cases in both sets. In these situations, a cross-validation pro-
cedure can be implemented. The empirical function is calibrated several times, leav-
ing out one observation at a time (“jackknife” is the term commonly used for this 
resampling procedure). This case is used for validation of the fitted model. The pro-
cess is repeated as many times as there are observations minus one (McGwire 1996). 
An average error is then computed as follows:

 
RMSE*

( )
=

( )
=å i n

i if x x

n
1

2

,
ˆ -

 (8.6)

where f xi( )ˆ  is the fitting function without using case i.

8.7 VALIDATING CLASSIFIED IMAGES

8.7.1 ConfuSion Matrix

In the case of evaluating a classified image, the result of collecting the ground data 
will be a list of observations with their classified (satellite) and reference (ground) 
categories. From this list, we can create the “confusion matrix,” which is a cross-tab-
ulation of assignments done from the image versus the real assignments of the same 
classes. The confusion matrix reflects the agreements and disagreements between 
the classification and reference sources. Usually, the columns indicate the reference 
classes, and the rows the classification categories. Logically, both will have the same 
number of observations and meaning; it is a square matrix: n × n, where n is the num-
ber of categories (Figure 8.10). The diagonal of this matrix represents the sampled 
points at which there is agreement between both sources (image outputs and refer-
ence), whereas the marginal ones represent classification errors.

The relationship between the number of pixels correctly classified and the 
total number of pixels sampled expresses the global accuracy of the map. The 
column residuals indicate true assignments that were not identified in the map, 
while the row residuals indicate classified pixels that do not correspond to reality. 
They represent the omission and commission errors, respectively (Aronoff 1982; 
Story and Congalton 1986). The confusion matrix shows not only the general 
accuracy of the process but also the accuracy of each category and the conflicts 
between categories.

Tables 8.1 and 8.2 include two confusion matrices derived from a fuel-type clas-
sification using two different algorithms. The area covers around 500 km2 in Central 
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Spain, and the fieldwork was based on 144 sample plots. More than 9500 pixels were 
included in the validation process, collecting a minimum of 50 pixels per category. 
Fuel maps were generated from a digital classification of a Landsat TM image in 
the context of a fire-risk mapping project (Chuvieco and Salas 1996). The fieldwork 
was carried out within a few months of the satellite acquisition. Fuel types refer to 
groups of vegetation species classified according to their fire propagation potential. 
The numbers refer to the fuel models developed by the U.S. National Forest Fire 
Laboratory in Missoula, Montana (Burgan and Rothermel 1984). The main confu-
sions observed in Tables 8.1 and 8.2 are the overlapping of different types of scrub 
(fuel models 4, 5, and 6 are separable only by their height; it is a complex task to 
discriminate them in Landsat images); the difficult discrimination of the forested 
scrubland (model 7, only present in the classification Table 8.1); and the confusion 
between scrub, pasture, and the mixture between forest and high dense scrub.

8.7.2 Global aCCuraCy

A series of accuracy metrics can be derived from the confusion matrix. The simplest 
one is a ratio of the diagonal cells (those samples well classified) to the total number 
of validation samples. The index is called the overall accuracy (OA), defined as
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where
xii is the diagonal of each column
xij is any cell in the confusion matrix

Class 1 Class 2 Class 3 Class n Total User’s
accuracy

Commission
error 

Class 1 X11 X1+ X11/X1+ 1–X11/X1+

Class 2 X22 X2+ X22/X2+ 1–X22/X2+
Class 3 X33 X3+ X33/X3+ 1–X33/X3+

Class n Xnn Xn+ Xnn/Xn+ 1–Xnn/Xn+

Total X+1 X+2 X+3 X+n ΣXij

Producer’s 
accuracy X11/X+1 Xnn/X+n

Omission 
error 

1–X11/X+1 1–X22/X+2 1–X33/X+3 1–Xnn/X+n

Reference

Cl
as

si
fic

at
io

n

X22/X+2 X33/X+3

FIGURE 8.10 Structure of a confusion matrix.
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TABLE 8.1
Confusion Matrix for a Fuel-Type Classification Map Using Nonsupervised Algorithms

Reference 

Classification 1 2 4 5 6 7 9 A B Total User’s Accuracy Commission Error

1 551 4 17 12 48 23 128 783 70.4 29.6

2 71 543 190 193 24 75 75 1171 46.4 53.6

4 57 75 209 3 67 55 145 17 628 33.3 66.7

5 7 3 2 525 49 2 19 9 616 85.2 14.8

6 207 31 57 273 3 5 576 47.4 52.6

7 0.0 100

9 116 751 46 107 393 2507 9 3929 63.8 37.2

A 255 61 31 1 31 57 84 1145 1665 68.7 31.3

B 147 147 100 0

Total 1148 833 1240 592 732 582 2858 1383 147 9515

Producer’s Accuracy 48.0 65.2 16.9 88.7 37.3 0.0 87.7 82.8 100.0

Omission Error 52.0 34.8 83.1 11.3 62.7 100.0 12.3 17.2 0.0

Note: Numbers 1–9 refer to the fuel models defined by the Spanish Forest Service: 1, pastures; 2, wooded pastures; 4, dense and tall scrubs; 5, thin scrubs; 
6, medium height scrubs; 7, wooded low scrubs; 9, tree cover with clean underbrush. Class A identifies the agricultural and urban zones, and B water 
bodies.
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TABLE 8.2
Confusion Matrix for a Fuel-Type Classification Map Using Supervised Algorithms

Reference 

Classification 1 2 4 5 6 7 9 A B Total User’s Accuracy Commission Error

1 927 49 63 42 5 87 1173 79 21

2 35 575 74 70 6 34 58 852 67.5 32.5

4 6 7 812 39 104 145 1113 73 27

5 590 19 1 610 96.7 3.3

6 11 192 77 489 1 6 776 63 37

7 2 11 93 51 157 59.2 40.8

9 99 5 181 59 329 2273 2945 77.2 22.8

A 70 3 22 2 14 49 343 1238 1741 71.1 28.9

B 147 147 100 0

Total 1148 833 1240 592 732 582 2858 1383 147 9515

Producer’s Accuracy 80.7 69.0 65.5 99.7 66.8 16.0 79.5 89.5 100.0

Omission Error 19.3 31.0 34.5 0.3 33.2 84.0 20.6 10.5 0.0
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For the data included in our example confusion matrices, the estimated global accu-
racy is 62% (Table 8.1) and 75% (Table 8.2). To estimate the actual OA, the confi-
dence levels need to be computed. From Equation 8.1, we have

 OA OA z SE= ± ´�  (8.8)

The standard error for this estimation can be generated from the simple random 
sampling equation:

 
SE = pq

n
 (8.9)

For the matrix in Table 8.2, the number of pixels correctly assigned was 5900 out of 
9515 in the sample. This indicates an estimated global accuracy of 62%. The stan-
dard error would be as follows:

 
SE = ´ =62 38

9515
0 497.

With a level of significance of 0.05 (95% probability), the confidence interval can be 
calculated as follows:

 
Ag = ± ´ = ±62 1 96 0 497 62 0 975. . . (%)

Thus, the actual global accuracy would be between 61.02% and 62.98% with a 95% 
probability. In case of using other sampling strategies, the formulas to compute the 
SE would differ. For instance, in the stratified random sample, the relative impor-
tance of each stratum in both the sample and the population need to be taken into 
account (Padilla et al. 2014).

8.7.3 uSer and produCer aCCuraCy

Overall accuracy is an initial estimation of the performance of results, but it can 
obscure important differences between categories. A more rigorous analysis should 
also consider the marginal cells of the matrix. In the case of columns, the margins 
indicate the number of pixels that, in spite of belonging to a given category, were not 
assigned to that category. The proportion of these unassigned pixels versus the total 
number of pixels that are in that category defines the omission error (OE). For each 
class, it is calculated as follows:
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where X+i represents the total of column i.
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Similarly, the marginal cells in the rows express the commission errors (CE), that 
is, pixels that are included in a given category when they are not in fact part of that 
category:

 
CE

X X

X
i

i ii

i

= -+

+
 (8.11)

where Xi+ represents the total of row i.
OE and CE express two approaches to the same problem. The former refers to an 

underestimation of a particular category. The latter is caused by an overestimation. 
In terms of accuracies, these two types of error can be related to two different types 
of accuracies: user accuracy (UA) and producer accuracy (PA) (Aronoff 1982; Story 
and Congalton 1986). The first is inversely related to commission errors, whereas the 
second is inversely related to omission errors:
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for each of the n categories of the classification. The importance of this distinction 
can be shown with a simple example. If the omission error for a particular forest spe-
cies is low, there is a high probability that the area actually covered by that species is 
included as such in the map. This was the main objective of the person who produced 
the map. However, simultaneously a high commission error for the same category 
may occur, which implies that many areas mapped as having that cover will in fact 
be covered by another category. Since the user of a map expects that everything 
included is well mapped, high commission errors imply low user accuracy.

In the case of the confusion matrix in Table 8.1, model 9 (tree cover with clean 
underbrush) offers a producer’s accuracy of 87.7%. This means that approximately 9 
out of 10 times the actual cover was correctly included in the classification. However, 
the user’s accuracy is just over 60%, which means that only three-fifths of the area 
classified as such cover are really so. Here, the omission error is low but the commis-
sion error is medium high. Both measurements are complementary and very impor-
tant. The first one is important from the perspective of the map producer and the 
second one from the user’s perspective.

8.7.4 kappa StatiStiC

This index measures the agreement between map and reference categories, removing 
the effects of random factors. The estimation of κ can be computed from the follow-
ing equation (Hudson and Ramn 1987):
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where
n is the sample size
Xii indicates the observed agreement
the product of the total row and column (Xi+, X+i) estimates the expected agree-

ment for each category i

In the case of the confusion matrices we have been analyzing in this section, the 
estimated values of κ are 0.53 (Table 8.1) and 0.70 (Table 8.2), which indicate that the 
classifications are 53% and 70% better than chance agreement, respectively. A value 
of κ = 1 indicates total agreement between map and reference, whereas values close 
to 0 suggest that the agreements observed are due to random effects. A negative 
value also indicates a poor classification due to other external factors, such as the 
size of the sample.

The kappa index can also be computed for specific classes (named conditional κ) 
or can weigh the importance of specific errors in the confusion matrix. This option 
may be useful for specific applications. For instance, in a forest inventory analysis, 
confusion between water and urban areas is much less relevant than that between 
water and coniferous species. The new κ value will be computed as follows:
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where wij indicates the weights assigned to the confusion of classes i and j.
One of the most obvious applications of the κ index is to compare classifica-

tions obtained by different methods in order to test whether they differ significantly 
(Fitzegarld and Lees 1994). In this case, we can use a normal distribution to estimate 
the confidence intervals (Skidmore 1989):
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The variance of κ can be calculated from the following equation (Congalton and 
Green 1999):
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where θ1, θ2, θ3, and θ4 are calculated as follows:
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This test can be used to contrast the effective validity of different classification meth-
ods (Chuvieco and Congalton 1988; Fitzegarld and Lees 1994). For example, in the 
case of the two classification methods mentioned earlier (Tables 8.1 and 8.2), the esti-
mated values of κ are 0.53 and 0.70, and the variances are 0.000034 and 0.0000282, 
respectively. Therefore, the z value after applying Equation 8.16 will be 20.40. This 
value exceeds the one expected for a random scenario with a high confidence level 
(the threshold for 99% would be 2.56). Therefore, we can conclude that both clas-
sifications are significantly different, or, in other words, the second one is better than 
the first one.

Similar approaches can be computed for other metrics of accuracy, such as OA, 
OE, or CE, but the actual computation of metrics variance will be different depend-
ing on the sampling strategy and the actual metrics used (see Padilla et al. 2015 for 
an example of testing significant differences in the accuracy of global burned-area 
products).

8.7.5 norMalizinG the ConfuSion Matrix

When comparing two confusion matrices—generated from different assignation 
methods, different images, or different individuals—κ can indicate which of them is 
the most effective as a whole. However, when comparing the reliability of two maps 
of different sample sizes, the statistical κ does not offer an adequate comparison 
because it depends on the sample size. In this context, Congalton (1984) proposed 
the application of a multivariate procedure to standardize a square matrix (Bishop 
et al. 1975). It is an iterative method to adjust the total number of rows and columns 
to a fixed value (+1) through successive increments or reductions of the cells of the 
matrix. The process stops when the margins of each row and column add up to 
+1.00, or close to it. Tables 8.3 and 8.4 show the normalized matrices of the previous 
analysis.
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This process offers a new measure of global reliability. It is sufficient to calculate 
the mean value of the elements in the diagonal still indicating the agreement between 
rows and columns. Obviously, the ideal case would be to have the diagonal values 
equal to 1. This would indicate a perfect agreement between reference and map, 
whereas very low values in the diagonal would indicate a poor classification.

In this case, the average value of the diagonal offers an average percentage of 
accuracy between 57% and 78%. The values contributed by the original tables are 
better clarified by classes, especially in the case of perfectly estimated agreements, 
for example, agricultural areas that range from 100% accuracy to values close to 94%.

It is convenient to consider that these measurements represent a low estimation 
of reliability because of the characteristics of the normalization process itself. It is 

TABLE 8.3
Normalization Matrix Corresponding to Table 8.1

Reference 

Classification 1 2 4 5 6 7 9 A B

1 0.528 0.010 0.001 0.029 0.021 0.194 0.038 0.180 0.000

2 0.030 0.527 0.166 0.000 0.137 0.042 0.052 0.046 0.000

4 0.044 0.137 0.340 0.005 0.089 0.179 0.187 0.020 0.000

5 0.007 0.008 0.005 0.847 0.080 0.010 0.030 0.013 0.000

6 0.231 0.082 0.135 0.001 0.523 0.016 0.010 0.001 0.001

7 0.058 0.137 0.123 0.101 0.100 0.244 0.097 0.085 0.054

9 0.000 0.034 0.199 0.010 0.023 0.207 0.525 0.002 0.000

A 0.099 0.056 0.026 0.001 0.021 0.093 0.055 0.649 0.000

B 0.003 0.008 0.007 0.006 0.006 0.014 0.006 0.005 0.944

TABLE 8.4
Normalization Matrix Corresponding to Table 8.2

Reference

Classification 1 2 4 5 6 7 9 A B

1 0.804 0.040 0.031 0.001 0.042 0.000 0.002 0.080 0.001

2 0.046 0.692 0.054 0.001 0.103 0.006 0.016 0.080 0.001

4 0.010 0.011 0.708 0.002 0.069 0.115 0.083 0.001 0.001

5 0.000 0.000 0.000 0.978 0.019 0.000 0.001 0.001 0.001

6 0.015 0.225 0.055 0.001 0.698 0.001 0.003 0.001 0.001

7 0.005 0.024 0.066 0.010 0.006 0.680 0.194 0.005 0.009

9 0.074 0.004 0.076 0.001 0.050 0.174 0.621 0.000 0.001

A 0.045 0.002 0.008 0.003 0.010 0.022 0.080 0.830 0.001

B 0.002 0.002 0.001 0.004 0.002 0.001 0.001 0.002 0.986
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necessary to view the confusion matrix as a very particular case of a contingency 
table, since it is common to find cells with very low or zero values because there 
are very unlikely confusions between categories. The normalization process adds a 
very small amount to each cell to avoid zeros; thus, the cells that express success are 
underrated with respect to the rest. This is the case of the fuel model 5, with 99.7% 
reliability in the original table (mixed classification test) but reduces to 97% in the 
normalized version, as a consequence of the small size of the sample.

For this problem, the normalization process offers a complementary perspective 
to the one obtained in the original matrix. It provides a simultaneous estimation of 
global and category accuracies and makes possible the comparisons of matrices with 
different numbers of samples.

Table 8.5 shows a summary of the reliability values, according to the criteria dis-
cussed in this chapter for analyzed matrices.

8.7.6 validation of binary ClaSSeS

In the case of assessing the results of classifying just two categories (forested/unfor-
ested, burned/unburned, cloudy/cloud free, etc.), additional analysis can comple-
ment the measures of confusion matrices. When using a high-resolution image to 
assess the accuracy of a product generated with a sensor with coarser resolution, 
the confusion matrix includes the effects of the different pixel sizes (Boschetti 
et al. 2006; Morisette et al. 2005). Some of the areas classified as errors may be, in 
fact, the product of different generalizations that imply various spatial resolutions 
(Figure 8.11). To reduce this effect, an alternative method of assessing a binary 
product is based on comparing the area proportions covered by the target category 
in the high- and low-resolution document. The total study area is divided into grids 
of 5–10 times the size of the coarse-resolution image. Then, we register for each 
cell the proportion covered by the two sources. Finally, a scatter graph is created 
with these two proportions in all cells, and a regression model can be computed to 
find out whether there is a consistent over- or underestimation of the target variable 
(Figure 8.12).

TABLE 8.5
Comparison of the Validation Metrics of Several Digital 
Classifications of Fuel Types 

Classification OA κ Index Normalized Accuracy 

Nonsupervised (TM + ancillary data) 62 53 57

Nonsupervised (TM) 60 50 56

Supervised 62 54 60

Mixed 75 70 78

Source: Salas, F.J. and Chuvieco, E., Revista de Teledetección, 5, 18, 1995.
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8.7.7 verifiCation in MultiteMporal analySiS

The validation of multitemporal analysis is especially challenging, as it complicates the 
comparison of reference and classified data with an additional time dimension. This implies 
errors associated with proper overlapping between the two images, as well as the difficulty 
of gathering reference information for historical periods. Summarizing these aspects, we 
can name the main differences in verification applied to change detection studies:

 1. Increase in the number of categories in the error matrix. The potential num-
ber of categories (“stable,” “from,” and “to”) for two dates is the square of 
the number of categories in one date. All these classes must be considered 
during error evaluation, and at the end the confusion matrix will have n4 
cells, n being the starting number of classes for one date (Table 8.6).

 2. More complexity in the sampling scheme, due to the great increase in num-
ber of categories to be verified. Since some of the potential changes will be 
uncommon or impossible (e.g., two urban areas to water bodies), we have to 
considerably increase the sample size to verify these intersections. In these 
cases, stratified sampling or one based on auxiliary information can be a 
better alternative (Biging et al. 1998).

 3. Difficulty in obtaining the reference information for past dates. In most 
cases, we will not have detailed information of terrestrial covers for distant 
past dates, which complicates the assessment of the oldest image. Aerial 
photography or cartographic documents of similar dates can solve this 
problem, although they may not be always reliable.

TABLE 8.6
Confusion Matrix for Change Detection Analysis

Reference

Stable Change

Classification AA BB CC AB AC BA BC CA CB

Stable AA 1 3 3 5 5 5 5 5 5

BB 3 1 3 5 5 5 5 5 5

CC 3 3 1 5 5 5 5 5 5

Change AB 4 4 4 2 6 6 6 6 6

AC 4 4 4 6 2 6 6 6 6

BA 4 4 4 6 6 2 6 6 6

BC 4 4 4 6 6 6 2 6 6

CA 4 4 4 6 6 6 6 2 6

CB 4 4 4 6 6 6 6 6 2

Source: Adapted from Congalton, R.G. and Green, K., Assessing the Accuracy of Remotely 
Sensed Data: Principles and Applications, Lewis Publishers, Boca Raton, FL, 
1999; Biging, G. et  al., Remote Sensing Change Detection. Environmental 
Monitoring Methods and Applications, Ann Arbor Press, Chelsea, MI, 1998.

Note: A, B, C are different thematic categories. See text for explanation.
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When we attempt to verify change detection, the confusion matrix gets notably com-
plicated. To illustrate this process, we will use a simple example of validation: a change 
detection product (taken from Biging et al. 1998). Let us assume that we have three 
classes in two different dates. This would imply nine possible categories of change. To 
verify these transitions, we would need a confusion matrix of 81 cells (the 9 true × the 
9 estimated changes), which includes both the permanent classes (those with the same 
category between dates) as well as the dynamic classes. All these potential transi-
tions/permanencies require verification. Therefore, the confusion matrix will include 
the tabulation of pixels, which our map of changes presents as “from class X to class 
Y,” while in reality they may be that or some other kind of transition. As in the case 
of simple confusion matrices, the diagonal will include the true detections of change 
(those sampled pixels that were correctly detected as stable or as affected by a real 
change), and outside the diagonal the incorrect changes will be present.

By being more specific, we can better explain the structure of a confusion matrix 
using the notation described by Biging et al. (1998) in Table 8.6. The cells annotated 
with 1 are estimated stable areas that really are constant, while the cells with 2 are 
accurately classified as changes. The addition of 1 and 2 indicates the global accu-
racy of the change detection performed by the interpreter. The rest are errors due 
to several possibilities: 3 indicates stable areas incorrectly classified to other stable 
categories; 4 indicates changes when the cells maintained their category (i.e., com-
mission errors, identified as a change for something did not); 5 marks real changes 
that were not detected as such (i.e., omission errors); and 6 denotes inaccurately 
identified changes (detected changes, but assigned to an another class, i.e., omission 
or commission errors, depending on the class considered).

8.8 REVIEW QUESTIONS

 1. Which one of the following options would you consider more reliable for 
assessing a digital classification of crops?

 a. Comparison with crops statistics
 b. Comparison with training fields
 c. Comparison with test fields
 d. Comparison with previous crop maps
 2. Which one of the following sampling strategies is more appropriate to 

assess the classification of a remote area?
 a. Cluster sampling
 b. Systematic sampling
 c. Stratified sampling
 d. Random sampling
 3. Which one of the following sampling strategies is more appropriate to 

assess the classification of an easily accessible area?
 a. Cluster sampling
 b. Systematic sampling
 c. Stratified random sampling
 d. Simple random sampling
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 4. Which one of the following metrics is not used with classified images?
 a. Global accuracy
 b. Residual mean square
 c. User’s accuracy
 d. Producer’s accuracy
 5. User’s accuracy is complementary to
 a. Omission errors
 b. Commission errors
 c. Global errors
 d. None of the above
 6. Producer’s accuracy is complementary to
 a. Omission errors
 b. Commission errors
 c. Global errors
 d. None of the above
 7. To test whether two classifications have significant differences, we can 

compute
 a. The RMSE
 b. The normalized accuracy
 c. The global accuracy
 d. The variance of kappa
 8. Normalized error matrices are useful to
 a. Compare classifications
 b. Reduce omission errors
 c. Compare classes
 d. None of the above
 9. The assessment of a change detection map requires
 a. Evaluation of errors of dynamic areas
 b. Evaluation of errors of static areas
 c. Evaluation of errors of both
 d. Evaluation of errors in the first date
 10. The main obstacle in multitemporal accuracy assessment is
 a. Estimating errors for the first date
 b. Complexity
 c. Matrix size
 d. Estimating errors for the second date
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9 Remote Sensing 
and Geographic 
Information Systems

The final objective of most users of satellite remote sensing (RS) is to combine 
their results with other geographic variables for different purposes: forest inventory, 
agricultural suitability, natural hazard assessment, analysis of climate patterns, etc. 
In this regard, image interpretation is not the final goal of the user but just a source of 
input information in the framework of an integrated spatial analysis. This integration 
is carried out with geographical information systems (GIS) technologies. GIS can 
be defined as a set of programs that store, manage, manipulate, and represent data 
with some kind of spatial component (Bolstad 2008; Burrough and McDonell 1998; 
Longley et  al. 2005). This geographically referenced information includes maps, 
statistics, or climatic data (Figure 9.1). With a common location, all these variables 
can be mutually related in diverse ways. Since the information is stored in digital for-
mat, a GIS takes advantage of a very diverse range of computer analytical capabili-
ties, facilitating multiple operations that are impossible to perform by conventional 
means: cartographic generalization, path analysis, variable overlaying, slope, aspect, 
or visibility calculations, neighbor analysis, etc.

The wide availability of GIS manuals (Aronoff 1989; Bolstad 2008; Burrough 
and McDonell 1998; Clarke 2003; IDRISI 1992; Jensen and Jensen 2012; Juppenlatz 
and Tian 1996; Longley et al. 2005; Maguire et al. 1991; Star and Estes 1990; Tomlin 
1990) makes it unnecessary to detail the fundamentals of this technique. Therefore, 
we will concentrate on presenting the relationships between GIS and RS technolo-
gies, focusing on the process of transferring the information from one to the other.

9.1 TRENDS IN GIS AND REMOTE SENSING DEVELOPMENT

RS and GIS followed, to some extent, a parallel trajectory during their early stages of 
development. Both techniques appeared as independent disciplines, connected only 
by their environmental approach. The first GIS, designed in Canada in the 1960s, 
tried to facilitate environmental conservation by focusing on the integration of spa-
tial data from different sources. However, how those input data were generated was 
considered a different field.

On the other hand, satellite RS interpretation was growing during the 1960s as a 
discipline oriented toward generating environmental information. It aimed to assist 
in the mapping and inventory of critical phenomena such as natural disasters or agri-
cultural inventories. The development of digital interpretation techniques, especially 
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after the launch of the first Landsat satellites in 1972, extended this approach and 
increased the connection of satellite data with other geographic variables. Initially, 
the integration of both techniques intended to support digital classification through 
the use of auxiliary data (Strahler et al. 1978). During the next few decades, the quick 
propagation of GIS in planning and academic institutions led to centering the man-
agement of spatial data around this technology. In the 1990s, RS was starting to be 
considered as an auxiliary technique of GIS, providing input variables to the spatial 
database. In those years, GIS textbooks started including chapters on RS essentials, 
although those focused more on urban or socioeconomic applications were skepti-
cal about using satellite data within that context. The growing availability of high-
spatial-resolution sensors at the beginning of this century has further blurred the 
borders between these technologies.

These days, GIS is considered to be the backbone of geographic information anal-
ysis since it can integrate all sources of spatial data. RS is considered in this context 
as just a source of information for a GIS, along with other techniques (global posi-
tioning systems [GPS], ground sensors, census, etc.). The multiple relations between 
all these techniques and the applications to which they are directed have reshaped the 
initial concept of GIS toward a more integrated view, which also includes the mod-
els and processes applied to geographical data. In this context, some authors favor 
renaming GIS as geographic information science (Longley et al. 2005; McMaster 
and Usery 2004). The increasing convergence between RS and GIS is justified, 
among others, for the following reasons:

 1. Both have a clear territorial interest.
 2. They have similar hardware and software requirements.

MeteorologyVegetation types

Topography/DEM
Grass 

moisture

Management model

Demography
sociologyEconomic

evaluation 

GIS

Soils

FIGURE 9.1 Management model of spatial information for a grazing assessment.



411Remote Sensing and Geographic Information Systems

 3. Many professionals commonly use both technologies.
 4. They have similar research demands, as in the case of error analysis, the 

structure of and access to the data, the development of computer hardware, 
and the interpretation methodology (Star et al. 1991).

The integration of GIS and RS also has problems, mainly related to data availability 
(costs, level of spatial, spectral, and temporal resolution), education, and hardware costs 
(Lauer et al. 1991), but a trend toward the convergence of both technologies is evident.

GIS and RS interpretation require hardware and software that have many simi-
larities, especially when GIS programs are designed for raster structures. Vector GIS 
processes information in a different way and requires specific input units (digitizer) 
that are unusual in digital image processing although most input data come from 
external databases or spatial data infrastructures (Granell et al. 2007).

9.2 GIS AS INPUT FOR RS INTERPRETATION

Throughout this book, we have emphasized the importance of auxiliary information 
to correct potential errors associated with image acquisition as well as to improve 
the classification of different categories. Digital elevation models (DEMs), soil or cli-
matic maps, and property or administrative boundaries are examples of cartographic 
variables that can significantly benefit the digital analysis of images. This nonspec-
tral information can be incorporated before, during, or after image classification, 
thereby greatly benefiting the discrimination in problematic categories.

Prior to classification, the auxiliary data can be valuable for geometric and radio-
metric preprocessing of images. For instance, a DEM is critical to correct topo-
graphic shades, which impact reflectance in rough terrains (see Section 6.7.3.3). 
Auxiliary data can also be beneficial to stratify the image in more homogeneous 
sectors (following bioclimatic or terrain characteristics). In this way, automatic clas-
sification may avoid potential errors by reducing the natural variability of some of 
the thematic categories (Rollins et al. 2004; Ustin and Xiao 2001).

During the classification stage, auxiliary data can be used to refine the location of 
training sites or to help the thematic labeling of unsupervised groups, particularly for 
global land cover mapping (Loveland et al. 2000). Auxiliary variables are valuable as 
new input bands for the classification, providing additional non-spectral information 
to discriminate certain classes. An example is the use of elevation, slope, or aspect 
to classify vegetation types (Figure 9.2), thereby reducing the effect of the local 
topography (Riaño et al. 2002a). In conventional classifiers, including topographic 
variables is straightforward, because they are measured on an interval scale. Other 
geographic variables, such as soils or biogeographic regions, are more complex to 
incorporate in statistical classifications. Alternative methods, such as decision trees 
or neural networks, should be used in those cases.

After the classification, auxiliary data may be very helpful for accuracy assess-
ment or to refine some assignments that may not have been correctly achieved with 
spectral information (Hutchinson 1982). For example, some crops or forest species 
with similar spectral behavior could be discriminated on the basis of the types of 
soils on which they grow. Another interesting aspect refers to the boundary error, 
mentioned in Chapter 8. It is very common in transition areas where the definition 
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of a pixel can be ambiguous since it is in fact the average reflectance of two or more 
covers. A solution to reduce the influence of this error would be to include the plot 
boundaries from a cadastral database, determining from it the edge pixels and modi-
fying the assignment of those pixels to any of the boundary covers.

Finally, the display of results is a clear field of integrating auxiliary data and RS. 
The use of 3D perspectives or flight simulations provides a realistic view of land-
scape characteristics (Figure 9.3).

9.3 RS AS INPUT FOR GIS

9.3.1 availability of GeoGraphiC inforMation

Within the acronym GIS, the second letter, denoting information, is the most impor-
tant, since geographic only qualifies it and system can also refer to many other 
computer applications. Several authors have shown that the cost of generating and 
maintaining geographic information is the highest in establishing a corporate GIS 
(Lachowski et al. 1992) and certainly is the most relevant. When a GIS has unreli-
able, outdated, or incomplete information, it is useless in practical terms, regardless 
of the quality of the hardware and software it comprises. A GIS without high-quality 
information cannot provide good solutions to real problems. Albert Einstein used to 
say, “Information is not knowledge,” which is certainly true, but it is also true that 
good knowledge requires good information.

Satellite RS is not the only source of geographic information for a GIS, but it is 
one of the most beneficial, as it provides updated standardized data in digital for-
mat from a wide range of geographical variables. Given the high cost of generating 
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FIGURE 9.2 Integrated classification with RS images and GIS variables for vegetation 
mapping. (Courtesy of David Riaño.)
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good-quality geographic information, the cost of satellite images can be justified, 
particularly when high spatial resolution is required. We were recently asked to 
help the design of a national agricultural census for a developing African country. 
Without good cartography or aerial sensors, the recourse to satellite high-resolution 
images was the most logical, both in terms of cost and operation. The growing trend 
toward low-cost or free access to satellite data will promote the use of RS to generate 
GIS variables for a wide set of applications.

9.3.2 Generation of input variableS

RS can be an ideal tool to map certain variables: sea surface temperature, chloro-
phyll content, snow or ice cover, crop yields, landslides, flooding areas, etc., and the 
list grows with the availability of new sensors with higher spatial, temporal, and 
spectral resolution.

In some cases, RS satellites are the only reasonable way to retrieve environmen-
tal variables, which are very costly or unfeasible to obtain using ground sampling. 
Detection of oil spills, mapping water quality, and monitoring ozone, ice, or soil 
moisture are routinely done with satellite information. Ground sampling is important 
to calibrate or validate EO-based estimations, but generating those variables from 
ground survey would not be feasible and would require interpolation/extrapolation 
techniques, which always incur a certain range of errors (Burrough and McDonell 
1998; Chapters 5 and 6). Satellite information is also particularly critical for remote 
areas where other ground or aerial sensors may not be available.

Even coarse-resolution satellite images provide a more complete spatial sampling 
than those sparse ground observations and therefore can give more accurate estima-
tions of biophysical variables such as evapotranspiration (Choudhury 1994; Nieto 
et al. 2010; Yebra et al. 2013b), vegetation water content (Jurdao et al. 2013; Yebra 
et al. 2013a), or biomass spatial distribution (Anaya et al. 2009; Steininger 2000).

FIGURE 9.3 Three-dimensional view of Tucson and the Catalina mountains integrating 
satellite images and DEM.
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Another clear contribution of RS to GIS is the generation of global databases. As 
is well known, global databases are very difficult to create when they come from 
national sources because of thematic and geometric inconsistencies (Unninayar 
1988). Satellite images cover almost the whole earth, with the same or a similar 
sensor, at regular time intervals. This facilitates the generation of global coverage, 
which is especially valuable with regard to essential climate variables (Hollmann 
et al. 2013). For this reason, the Global Climate Observing System (GCOS) strongly 
recommends the use of satellite information as a basic component of the climate 
monitoring system (Bojinski et al. 2014). Many examples are available on the use 
of RS information to monitor global ice or snow resources (Kelly and Hall 2008; 
Shepherd et al. 2012), soil moisture (Wagner et al. 2013); land cover (Bontemps et al. 
2012; Figure 9.4), sea height (Ablain et al. 2015), fire activity (Mouillot et al. 2014), 
and water conditions (Oki and Kanae 2006).

9.3.3 updatinG the inforMation

As previously commented, the practical utility of a GIS greatly depends on having 
accurate and up-to-date information. This implies keeping track of environmental 
changes with a reasonable periodicity depending on the variable’s dynamism. When 
the original inventory is accurate but the information has not been updated, the prac-
tical use of that information becomes riskier.

Satellite images offer great advantages for updating geographic data because of 
the systematic acquisition of images taken under comparable conditions in space 
and time (as seen in Section 7.3). This facilitates an updated view of the territory 
as well as the temporal monitoring of certain dynamic phenomena: urban growth, 
crop status, and natural hazards (floods, volcanic eruptions, etc.). Since the images 
are transmitted in real time, the end user may receive the interpretation very close 
in time to the acquisition of the image; thus, quick evaluation of the phenomenon 
is possible. This factor is very important in the management of natural hazards 

FIGURE 9.4 Global land cover map derived from Envisat-MERIS observations. (Courtesy 
of Pierre Defourny, ESA Landcover_cci project.)
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(Nourbakhsh et al. 2006). In fact, the urgency of data access in these emergencies 
has led to the creation of the International Charter of Space and Major Disasters, an 
international treaty among space agencies to help quickly disseminate RS data in 
case of natural or man-made hazards.

9.4 INTEGRATION OF SATELLITE IMAGES AND GIS

The importation of satellite data to a GIS can be done in several ways. The easiest 
procedure is using the satellite image as a background for data already stored in the 
system. The new features may be digitized on the screen (Figure 9.5). This simple 
visual overlay facilitates the updating of attributes that are difficult to define from 
automatic algorithms, such as urban features (new buildings, roads, streets, etc.), 
parcel limits, highways, and dams. To avoid positional errors, it is critical that the 
image be well georectified before manual digitizing.

When importing an RS-derived variable to a GIS, the user has several options, 
which would depend on whether the interpretation was done visually or digitally 
(Figure 9.6). The former requires prior digitizing of the limits extracted from visual 
interpretation, either using a semi-manual procedure or a line-search algorithm. 
Then, if the GIS has a vector structure, the integration finishes, while if the GIS is 
raster, a rasterization process needs to be carried out, using the same pixel size as 
other variables in the database.

When the interpretation is done digitally, the export of the results is much sim-
pler. As we have seen in Chapter 7, digital classification outputs a numerical matrix 
in which each pixel value indicates the assigned category. Therefore, the resulting 

+

FIGURE 9.5 Satellite image used as a background source to update geographic information 
by manual digitizing.



416 Fundamentals of Satellite Remote Sensing: An Environmental Approach

file can be exported to the GIS, taking into account the conversion of formats and 
structures if needed (Figure 9.7). When the GIS is raster, the structure is the same as 
in the image, and the interpreter only needs to georeference the image with the same 
cartographic projection, covering the same area, and with the same pixel size of the 
other variables in the target GIS database.
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FIGURE 9.6 Methods of connection between RS and GIS.
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When the image is not previously georectified, a full geometric correction pro-
cess needs to be applied (see Section 6.6). When the image is already georectified, it 
may occur that it has a different cartographic projection to the target GIS database. 
In this case, the user should make a coordinate projection transformation. As most 
GIS programs include automatic projection conversions, this step should be fairly 
simple. In the process of resampling to the new projection system, the user should 
select exactly the same coordinate limits (Xmin, Xmax, Ymin, Ymax) and pixel size to the 
other variables stored in the target GIS, so the resulting files have the same size and 
occupy the same geographical area. When resampling the pixel size, the interpreter 
should use the nearest-neighbor algorithm, as a digital classification is a categorical 
variable and other interpolation algorithms would produce incorrect results.

When the results of RS interpretation overlap cartographically with the other 
GIS variables, the process is done as in the case of working with a raster-based 
GIS. When working with a vector-based GIS, image results need to be converted 
to the vector format. Different algorithms are available for this task (Bolstad 2008). 
They commonly extract the borders between thematic categories and then create the 
topological structure of the resulting polygons. These algorithms are automatic, but 
they are not error free, and therefore a close supervision by the interpreter is recom-
mended, especially in areas of multiple intersections in the image. To perform this 
task satisfactorily, it is essential to previously smooth the image using modal filters 
or similar techniques.

Independently of the problems associated with the integration of satellite images 
and GIS, the interaction between these technologies is evident and should be fos-
tered (Figure 9.7). It offers enormous possibilities for environmental studies, evalu-
ation of resources, environmental impact analysis, allocation models, etc. With the 
support of information technologies, environmental studies can focus on analyzing 
rather than obtaining information. Much effort is still needed to understand envi-
ronmental systems, the impacts of different factors, the relevance of data accuracy, 
and the assessment of explicative models, but these challenges will, in any case, 
benefit from having broader perspectives and access to data from many different 
sources.

9.5 REVIEW QUESTIONS

 1. Which of the following remote sensing processes does not require auxiliary 
geographic information?

 a. Topographic correction
 b. Stratification
 c. Sensor calibration
 d. Assessment
 2. Which of the following applications should be most favored by using geo-

graphic information external to RS?
 a. Multitemporal comparison
 b. Classification
 c. Filtering
 d. Spatial metrics



418 Fundamentals of Satellite Remote Sensing: An Environmental Approach

 3. Which GIS application field is more demanding of RS data?
 a. Crop monitoring
 b. Water pollution
 c. Urban growth
 d. Global change
 4. Connection of GIS and RS data requires which of the following?
 a. Digital raw data
 b. Digital interpreted data
 c. Visually interpreted data
 d. All of the above
 5. What is the main strength of using satellite data for a GIS?
 a. Information is updated
 b. Input information is digital
 c. Images are multiband
 d. Scaling-up processes are feasible
 6. When exporting digital classification outputs to a GIS, we should primarily 

be concerned with
 a. Generalizing the results
 b. Performing raster to vector conversion
 c. Assuring geometric consistency
 d. Resolving the images
 7. When the raster image has the same projection as the GIS, then
 a. The user should adjust frame limits and pixel size
 b. The user should adjust classification categories
 c. The user should adjust geographical coordinates
 d. All of the above
 8. The main advantage of using GIS information in the classification phase is
 a. Use of spectral information
 b. Use of spatial context
 c. Use of radiometric resolution
 d. Include nonspectral bands
 9. GIS information is useful in post-classification to
 a. Reduce errors of border pixels
 b. Reduce the spatial desegregation
 c. Fuse similar classes
 d. Eliminate small polygons
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Appendix

A.1 ACRONYMS USED IN THIS TEXTBOOK

AATSR Advanced along track scanning radiometer
ALI Advanced land imager
ALOS Advanced land observing system
AMI Active microwave instrument
ANN Artificial neural network
ARVI Atmospherically resistant vegetation index
ASAR Advanced synthetic aperture radar
ASTER Advanced spaceborne thermal emission and reflection radiometer
ATS Applications technology satellite
ATSR Along-track scanning radiometer
AVHRR Advanced very high resolution radiometer
AVIRIS Airborne visible/infrared imaging spectrometer
BIL Band interleaved by line
BIP Band interleaved by pixel
BRDF Bidirectional reflectance distribution factor
BSQ Band sequential
BV Brightness value
CASI Compact airborne spectrographic imager
CCD Charge coupled devices
CERES Clouds and the Earth’s Radiant Energy System
CLUT Color lookup table
CNES Centre National d’Etudes Spatiales, France
CZCS Coastal zone color scanner
DAAC Distributed Active Archive Center
DAIS Digital airborne imaging spectrometer
DEM Digital elevation model
DL Digital level; each pixel’s numeric value
DLR Deutschen Zentrum für Luft-un Raumfahrt, Germany
DMSP Defense Meteorological Satellite Program
EIFOV Effective instantaneous field of view
EO-1 Earth Observing-1
EOS Earth Observing System
EOSDIS Earth Observation System Data and Information System
ERBE Earth radiation budget experiment
ERE Effective resolution element
ERS European Remote Sensing Satellite
ESA European Space Agency
ESC Electronic still camera
ETC Earth terrain camera
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ETM Enhanced thematic mapper
EWT Equivalent water thickness
FBA Foreground/background analysis
FC Filter coefficients
FMC Fuel moisture content
FTP File transfer protocol
GAC Global area coverage
GARP Global Atmospheric Research Programme
Gb Gigabyte; 109 bytes
GCP GCPWorks
GEMI Global environment monitoring index
GHz Gigahertz; 109 Hz
GIF Graphics interchange format
GIS Geographic information systems
GMT Greenwich Mean Time
GOES Geostationary Operational Environmental Satellite
GOME Global ozone monitoring experiment
GOMOS Global ozone monitoring by occultation of stars
GPS Global positioning system
GVI Global vegetation index
HCMR Heat capacity mapping radiometer
HH Horizontal-horizontal
HIRIS High-resolution imaging spectrometer
HIRS/3 High-resolution infrared radiation sounder
HRPT High-resolution picture transmission
HRV Haute resolution visible
HV Horizontal-vertical
Hz Hertz
IFOV Instantaneous field of view
IGBP International Geosphere Biosphere Program
IHS Intensity, hue, saturation
INPE Instituto Nacional de Pesquisas Espaciais, Brasil
IPS Image processing software
IRSS Indian Remote Sensing Satellite
JPEG Joint Photographic Experts Group
JPL Jet Propulsion Laboratory
kb Kilobyte; 103 bytes
LAC Local area coverage
LAD Leaf angle distribution
LAI Leaf area index
LFC Large format camera
LISS Linear imaging self-scanning
Mb Megabyte; 106 bytes
MERIS Medium-resolution imaging spectrometer
MISR Multi-angle imaging spectroradiometer
MNF Minimum noise fraction
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MODIS Moderate-resolution imaging spectroradiometer
MOPITT Measurements of pollution in the troposphere
MOS Marine Observation Satellite
MSG Meteosat second generation
MSI Multispectral Scanner Instrument (Sentinel-2)
MSS Multispectral scanner
MSU Microwave sounding unit
NASA National Aeronautics and Space Administration
NASDA National Space Development Agency, Japan
NDII Normalized difference infrared index
NDVI Normalized difference vegetation index
NGDC National Geophysical Data Center, United States
NIR Near infrared band, from 0.7 to 1.2 µm
NOAA National Oceanic and Atmospheric Administration Satellite
NPOESS National Polar-Orbiting Operational Environmental Satellite System
NRSA National Remote Sensing Agency, India
OLI Operational line imager 
OLS Operational Linescan System
PCA Principal component analysis
PDUS Primary data user stations
PNG Portable network graphics
POAM Polar ozone and aerosol measurement
POLDER Polarization and directionality of the Earth’s reflectance
PPI Pixel purity index
PPU Patch per unit
RBV Return beam vidicon
RGB Red, green, blue
RMSE Root-mean-square error
SAIL Scattered by arbitrarily inclined leaves
SAM Spectral angle mapper
SAR Synthetic aperture radar
SAVI Soil-adjusted vegetation index
SBUV/2 Solar backscatter ultraviolet spectral radiometer
SEVIRI Spinning enhanced visible and infrared imager
SIR Shuttle imaging radar
SLA Specific leaf area
SLAR Side-looking airborne radar
SMA Spectral Mixing Analysis
SMMR Scanning multichannel microwave radiometer
SPOT Satellite Pour l’Observation de la Terre
SRTM Shuttle Radar Topography Mission
SSM/I Special sensor microwave imager
SSU Stratospheric sounding unit
ST Surface Temperature
SWIR Short wave infrared band; 1.2–2.5 µm
TCT Tasseled cap transformation
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TIR Thermal infrared band; 8–14 µm
TM Thematic mapper
TOVS Tiros operational vertical sounder
TRMM Tropical Rainfall Measuring Mission
VCL Vegetation canopy lidar
VH Vertical-horizontal
VI Vegetation Indices
VIIRS Visible/Infrared Imager/Radiometer Suite
VIS Visible spectrum; 0.4–0.7 µm
VV Vertical-vertical

A.2 ANSWERS TO REVIEW QUESTIONS

Chapter 1: 1b 2c 3d 4b 5a
Chapter 2: 1d 2a 3c 4b 5c 6b 7a 8c 9b 10b
Chapter 3: 1a 2b 3c 4c 5b 6a 7b 8b 9b 10a
Chapter 4: 1a 2b 3b 4b 5d
Chapter 5: 1d 2a 3c 4b 5d 6a 7c 8d 9a 10d
Chapter 6:  1b 2d 3a 4c 5a 6a 7a 8c 9c 10c 11d 12b 13a
 14a 15b 16b
Chapter   7:  1c 2a 3d 4a 5c 6d 7d 8d 9a 10c 11b 12d 13a
 14d 15c 16c 17d 18c 19a 20c
Chapter 8: 1c 2a 3d 4b 5b 6a 7d 8c 9c 10a
Chapter 9: 1c 2b 3d 4d 5a 6c 7a 8d 9a
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