ME C85 / CE C30 Midterm 2 Spring 2023

Name:

Please write your name at the top of each page as indicated. Write answers in the space provided. Show additional work on the back side if necessary. Box your final answers where applicable, or else you may not receive full credit for your work. Do not remove or add any pages.

In all questions, when drawing free body diagrams, do not simply draw over the provided images - instead, draw a new schematic of the free body and add the appropriate loading.

Good luck!

Question 1	Question 2	Question 3	Question 4	Total	
	$/ 25$		$/ 25$		$/ 25$
			$/ 25$		$/ 100$

For grading purposes only: do not mark.

1. Stress and Design (25 Points)

The vertical bolt is made of material having a failure shear stress of 160 MPa and supports the assembly as shown, under a horizontal force of 80 kN . In the following question, ignore the mass of any elements and assume that shear stress in the bolt is uniform within any transverse cross-section.
A. [8 points] Draw a free body diagram of the bolt.

$$
\begin{aligned}
\sum F_{x}=0 & =80 \mathrm{kN}-2 \mathrm{~V} \\
& \rightarrow V=40 \mathrm{kN} \text { (2) }
\end{aligned}
$$

B. [9 point] Determine the minimum required bolt diameter (to the nearest millimeter) so that it will not fail in shear under the loading shown.

(2)

$$
\longrightarrow d=\sqrt{\frac{4 \times 40 \mathrm{kN}}{\pi \times 160 \mathrm{MPa}}}=0.0178 \mathrm{~m}=18 \mathrm{~mm}
$$

C. [4 points] What would be the minimum required bolt diameter if the design specifications required a factor of safety of 3.0 ?
(1) F.S. $=\frac{\tau_{\text {fail }}}{\tau_{\text {allow }}} \rightarrow \tau_{\text {allow }}=\frac{\tau_{\text {fail }}}{F . S .}=\frac{160 \mathrm{MPa}}{3}=53.33 \mathrm{MPa}$

From part B,

$$
\begin{equation*}
d=\sqrt{\frac{4 V}{\pi \tau_{\text {allow }}}}=\sqrt{\frac{4 \times 40 \mathrm{kN}}{\pi \times 53.33 \mathrm{MPa}}}=0.0309 \mathrm{~m}=31 \mathrm{~mm} \tag{2}
\end{equation*}
$$

D. [4 points] Assume the material has a Young's modulus of 200 GPa and a Poisson's ratio of 0.3 . For a bolt diameter of 15 mm , what is the average shear strain developed in the bolt for this loading?

$$
G=\frac{E}{2(1+\nu)}=\frac{200 \mathrm{GPa}}{2(1+0.3)}=\frac{76.92 \mathrm{GPa}}{1}
$$

(1)

$$
\tau=G \gamma=\frac{V}{A} \longrightarrow \gamma=\frac{V}{A G}=\frac{40 \mathrm{kN}}{\frac{\pi}{4}(0.015 \mathrm{~m})^{2} \times 76.9 \mathrm{GPa}}
$$

$$
\begin{equation*}
\gamma=2.94 \times 10^{-3} \mathrm{rad} \tag{1}
\end{equation*}
$$

2. Thermal Expansion (25 Points)

Two rods (one aluminum, one copper) are joined at B and are fully supported by rigid walls at each end, as shown. If initially there is no stress in either rod, derive the equation for the reaction force at end A after the two rods are uniformly heated to a temperature change of ΔT. Your solution must be in terms of only the following: the Young's modulus ($E_{a^{\prime}} E_{c}$), coefficient of thermal expansion $\left(\alpha_{a^{\prime}} \alpha_{c}\right)$, cross-sectional area $\left(A_{a^{\prime}} A_{c}\right)$, and length $\left(L_{a^{\prime}} L_{c}\right)$ of each rod and the change in temperature ΔT. As part of your derivation, explain all assumptions and your logic.

$$
\begin{align*}
& R_{\text {ibid }} \text { Walls } \longrightarrow \delta_{A B}+\delta_{B C}=0 \tag{5}\\
& \text { Static Equilibrium } \longrightarrow \Sigma F_{b}=0=F_{A}-F_{c} \longrightarrow F_{A}=F_{c}=P \\
& \delta_{A B}=\alpha_{\Delta} \Delta T L_{n}-\frac{P L_{n}}{A_{a} E_{n}} \quad, \delta_{B C}=\alpha_{c} \Delta T L_{c}-\frac{P L_{c}}{A_{c} E_{c}} \\
& \delta_{n}+\delta_{s c}=\alpha_{a} \Delta T L_{n}-\frac{P L_{n}}{A_{n} E_{n}}+\alpha_{c} \Delta T L_{c}-\frac{P L_{c}}{A_{c} E_{c}}=0 \\
& \left(\alpha_{n} L_{n}+\alpha_{c} L_{c}\right) \Delta T=P\left(\frac{L_{n}}{A_{n} E_{-}}+\frac{L_{c}}{A_{c} E_{c}}\right) \\
& P=\frac{\left(\alpha_{\alpha} L_{n}+\alpha_{c} L_{c}\right) \Delta T}{\left(\frac{L_{n}}{A_{n} E_{0}}+\frac{L_{c}}{A_{c} E_{c}}\right)}
\end{align*}
$$

3. Axial Deformation (25 Points)

The rod ACDB is rigid and is attached to two equal vertically oriented elastic cables (cross sectional area A, length L , and Young's modulus E) at C and D. At end B, a known vertical force P is applied, as shown. Assume the support at A is a hinge joint, ignore the mass of all elements and the rod ACDB, and assume all deformations are small. For this statically indeterminate system:

A) [10 points] Draw a fully labeled free body diagram of rod ACDB and write out the corresponding three equations of static equilibrium. Identify and label all unknown forces.

ME C85/ CE C30 Midterm 2
B) [15 points] Describe how you would solve for all the forces from part A. There is no need to solve the equations, but write out any additional equations that are needed and explain the principles and your logic. [Hint: number all of your independent equations, the total number of which needs to be the same as the number of unknowns].

4. Torsion (25 Points)

A uniform shaft $C D$ has a diameter of 40 mm and shear modulus of elasticity $\mathrm{G}=100 \mathrm{GPa}$. The shaft is rotating at a constant angular speed, is loaded as shown by the belts at A and B, and is supported by frictionless bearings at C and D .
A. [7 points] Draw a graph of the internal torsion in the shaft along its length, x, between C and D .

FAD:

Spring 2023
ME C85/ CE C30 Midterm 2
B. [5 points] What is the maximum shear stress (from torsion) in this shaft and where does it occur?

$$
a=\frac{T r}{\bar{J}} \Rightarrow \frac{600^{\mathrm{N.m}} * 20 * 10^{-3} \mathrm{~m}}{\frac{\pi}{2} * 2^{4} * 10^{-8} \mathrm{~m}^{4}}
$$

$Z_{\text {man }}$ is at $p=r=20 \mathrm{~mm}$ and between $A-B$
C. [7 points] Gears G and D are rotating at constant angular speed, driven by the torque T_{F} applied to shaft F, as shown. Derive an equation that relates the torque in shaft E, T_{E}, in terms of T_{F} and the gear radii r_{D} and r_{G}.

$$
\frac{T_{E}}{T_{E}}=\frac{r_{G}}{r_{D}}
$$

$$
\text { and } \begin{aligned}
\omega_{G} & =\frac{v_{G}}{r_{G}} \\
\omega_{D} & =\frac{v_{D}}{r_{D}}
\end{aligned}
$$

Spring 2023
ME C85/ CE C30 Midterm 2
D. [6 points] For the gears of part C, derive a relation between the rotating speeds of each gear, ω_{G} and ω_{D}, in terms of the respective gear radii r_{G} and r_{D}.

$$
\frac{\omega_{D}}{\omega_{G}}=\frac{r_{G}}{r_{D}}=\frac{T_{F}}{T_{E}}
$$

