NAME UNIVERSITY OF CALIFORNIA Spring 2023

Question 1	32	/ 32
Question 2	32	/ 32
Question 3	36	/ 36
Total	100	/100

CE 60 PROPERTIES OF CIVIL ENGINEERING MATERIALS EXAMINATION

Please show your work (when applicable)

Question 1 (32 points)

I)	What are some of the reactants that make up Portland cement? (8 points) Select all
	that apply:

a) C₃A b) C-S-H c) C₄AF d) CH e) C₃S

Cement A (%): C₃S= 50, C₂S= 35, C₃A= 5, C₄AF= 10 Cement B (%): C₃S = 65, C₂S= 15, C₃A= 10, C₄AF= 10 Cement C (%): C₃S = 58, C₂S= 25, C₃A= 7, C₄AF= 10 C3S and C3A nigher early strength

Which cement should you select? (8 points)

a) Cement A b) Cement B

c) Cement C

Question 2 (32 points)

When you perform a compression test on aggregates and cement paste separately you get an elastic behavior until fracture for both materials. However, when you test concrete which contains both aggregates and cement paste you get a non-linear behavior. What causes this behavior? (8 points)

when the aggregates and cement paste are mixed the ITZ causes nonlinear

behavior.

At 3 days, the degree of hydration was 30% with a 0.5 water-to-cement ratio. The initial cement volume, at 0 days, was 100 cm³. Assume 3.14 g/cm³ for the density of cement and 1 g/cm³ for the density of water. What is the volume of water at 3 days? (8 points) Select the correct answer from the following (8 points) Select the correct answer from the following:

(8 points) Select the	correct answer from the following:	Carlow at
a) 60 cm ³	W/c = 0.5 = Pw Vwi	=> Vw. = (0.5)(3.14)(100)
b) 257 cm ³ c) 70 cm ³	don= .30	Vw. = 157
(d) 127 cm ³ e) 157 cm ³	Vci = 100	VT = 157 + 100 = 257
	Pc = 3.14	
	money has produced the same of	Vc+=100(13)
	Vwf = ? = VT-VC	E-V2 VC+=70
delice on order	Vw+ - 257-70	-60 VP=100(2)(.3)
		18-60

III) Using the fine aggregate gradation shown below, determine the fineness modulus. (8 points)

Sieve Size	Total (Cumulative) Retained, %
3/8 in.	0
No.4	10
No. 8	20
No. 16	35
No. 20	60
No. 30	85
No. 50	95
No. 100	100
No. 200	100

Select the correct answer from the following:	2 androng	SSD MIK Pro
a) 4.65	11/2	D to all total
b) 5.05 c) 3.45	3/4	ne Age, los Ol yd
d) 3.05 e) None of the above	3/8	6
calculate me air content in decentage. Please show the	No.4	to die
	No. 8	20
sum: 345	No.16	35
SUM 5 (3	No.30	85
	No.50	95
	No. 100	100

- IV) As engineers, we must find ways to impact the environment less. Regarding concrete, which of the following helps reduce the environmental impact? (8 points). Select one of the following.
 - a) Mineral Admixtures (by-product of other industries) to replace cement
 - b) Use local aggregates
 - c) Use mobile ready-mix plants
 - d) Train ourselves to be more environmentally concise
 - e) All the above

Question 3: (36 points)

Using the material properties, the SSD mix proportions, and the tables found at the end of this exam, answer the following questions.

Convert	N	Iaterial Properties		
Coarse Aggregate Density, lbs / cu ft DRUW, lbs / cu ft MSA, inch	170 100 1/2	Fine Aggregate Density, lbs / cu ft Fineness Modulus	160 3	
Cement Density, lbs / cu ft	196.6	Water Density, lbs / cu ft	62.4	

SSD Mix Proportions

Cement, lbs / cu yd
Water, lbs / cu yd
Coarse Agg, lbs / cu yd
Fine Agg, lbs / cu yd
1431
1408.03

I) Using the mix proportions above, calculate the <u>air content in percentage</u>. Please show the

MSA = ½ in

Using 1st table (Non-Air entrained)

Air (i.) = 2.5 i.

Cement $640.35 \frac{10}{4} \frac{3}{100.000} \frac{3}{100.0000} = 3.26 \frac{113}{4} \frac{3}{4} \frac{3}{100} = 3.26 \frac{113}{4} \frac{3}{100} = 3.85$ CA $\frac{1431 \frac{10}{4} \frac{3}{100} \frac{10}{100} = 8.42}{1408.03 \frac{10}{4} \frac{3}{100} \frac{10}{100} = 8.8}$ Sum $\frac{26.33}{100}$

AIV: 27-26.33 ×100

Air (1.)=2.5 1/

II) Calculate the SSD water-to-c	ement ratio	(9: -)			
cement = 64	0.35 (1	05/49.	3 Wat	tev = 3	65 165/4d
W/c = 365	165/4d3	/443	1.57	wic	
			Lans sales		
III) Using the information provide	ed to you, a	pproximate	the compre	ssive streng	gth. (8 points)
Using second	table	- (Non	- Aur ei	ntrain	ed)
W/c = .51					
Compressive	C+-010	ml a :	HOOO	1:20	
Contractor	SIVEV	givi	1000	421	
IV) Using the information provide	ed to you, de	etermine th	ne slump for	this mixtu	re. (8 points)
Using first to	able 1	Non-	Aure	netvall	red)
MSA = 1/2 in					
10(3) 12 (4	Wate	v - 54	03	da.	
Slump) = 3 to	4 in	14.0		
V True False: Concrete is Life. (73.0		
dun.					

stemant is the brunes	Water, pounds per cubic yard of concrete, for indicated sizes of aggregate*							
Chima la	% In.	½ In.	% In.	1 In.	1½ ln.	2 ln.**	3 ln.**	6 ln.**
Slump, In.	1000	Non-air-entrained concrete						
1 to 2 3 to 4 6 to 7	350 985 410	335 365 385	315 340 360	300 325 340	275 300 315	260 285 300	220 245 270	190 210 —
Approximate amount of entrapped air in non-air- entrained concrete, percent	3	2.5	2	1.5	1	0.5	0.3	0.2
				Air-entrair	ned concret	e		1
1 to 2	305	295	280	270	250	240	205	180
3 to 4	340	325	305	295	275	265	225	200
6 to 7	365	345	325	310	290	280	260	U(E
Recommended average total air content, percent, for level of exposure:†	MA	Kal		Afril	876.13	100	102/01	
Mild exposure	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0
Moderate exposure	6.0	5.5	5.0	4.5	4.5	3.5	3.5	3.0
Severe exposure	7.5	7.0	6.0	6.0	5.5	5.0	4.5	4.0

* These quantities of mixing water are for use in computing cement factors for trial batches. They are maximums for reasonably well-shaped angular coarse aggregates graded within limits of accepted specifications.

**The slump values for concrete containing aggregates larger than 1½ in. are based on slump tests made after removal of particles larger than 1½ in. by wet screening.

† The air content in job specifications should be specified to be delivered within –1 to +2 percentage points of the table target value for moderate and severe exposures.

Adapted from ACI 211.1. Hover (1995) presents this information in graphical form.

Compressive	Water-cementitious materials ratio by m				
strength at 28 days, psi	Non-air-entrained concrete	Air-entrained concrete			
7000	0.33				
6000	0.41	0.32			
5000	0.48	0.40			
4000	0.57	0.48			
3000	0.68	0.59			
2000	0.82	0.74			

Strength is based on cylinders moist-cured 28 days in accordance with ASTM C 31 (AASHTO T 23). Relationship assumes nominal maximum size aggregate of about % in. to 1 in. Adapted from ACI 211.1 and ACI 211.3.

Nominal maximum size of	Bulk volume of dry-rodded coarse aggregate per unit volume of concrete for different fineness moduli of fine aggregate			crete for
aggregate, mm (In.)	2.40	2.60	2.80	3.00
9.5 (%)	0.50	0.48	0.46	0.44
12.5 (1/2)	0.59	0.57	0.55	0.53
19 (%)	0.66	0.64	0.62	0.60
25 (1)	0.71	0.69	0.67	0.65
37.5 (1½)	0.75	0.73	0.71	0.69
50 (2)	0.78	0.76	0.74	0.72
75 (3)	0.82	0.80	0.78	0.76
150 (6)	0.87	0.85	0.83	0.81

*Bulk volumes are based on aggregates in a dry-rodded condition as described in ASTM C 29 (AASHTO T 19). Adapted from ACI 211.1.