Name: Solution
Hints for success:

- Do your own work
- If your work is not your own, your entire exam will be given zero credit and you will be referred to Student Judicial Affairs
- Express all components of vector quantities
- You can do this by giving 3 components or by giving resultant magnitude and direction.
- Keep units throughout your solution
- Make assumptions when needed, and state them clearly.
- Explain your work clearly enough that a student who took CE100 two years ago could easily understand what you are doing.
- Breathe

Reference information

Physical Properties of Water (SI Units) ${ }^{\text {a }}$

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { Density } \\ \rho \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \text { Specific } \\ \text { Weight }{ }^{b}, \\ \gamma \\ \left(\mathrm{kN} / \mathrm{m}^{3}\right) \end{gathered}$	Dynamic Viscosity,$\underset{\left(N \cdot \mathrm{~s} / \mathrm{m}^{2}\right)}{\mu}$		$\begin{gathered} \text { Kinematic } \\ \text { Viscosity, } \\ \nu \\ \left(\mathrm{m}^{2} / \mathrm{s}\right) \end{gathered}$		Surface Tension ${ }^{\text {e }}$, σ (N/m)		$\begin{gathered} \text { Vapor } \\ \text { Pressure, } \\ p_{v} \\ {\left[\mathrm{~N} / \mathrm{m}^{2}(\text { abs })\right]} \end{gathered}$		$\begin{aligned} & \text { Speed of } \\ & \text { Sound }^{\mathrm{d}}, \\ & c \\ & (\mathrm{~m} / \mathrm{s}) \end{aligned}$
0	999.9	9.806	1.787	$E-3$	1.787	$E-6$	7.56	$E-2$	6.105	$E+2$	1403
5	1000.0	9.807	1.519	$E-3$	1.519	$E-6$	7.49	$E-2$	8.722	$E+2$	1427
10	999.7	9.804	1.307	$E-3$	1.307	$E-6$	7.42	$E-2$	1.228	$E+3$	1447
20	998.2	9.789	1.002	E-3	1.004	$E-6$	7.28	$E-2$	2.338	$E+3$	1481
30	995.7	9.765	7.975	E-4	8.009	$E-7$	7.12	E-2	4.243	$E+3$	1507

1) There is a panel shaped like an equilateral triangle (base $\mathrm{b}=70 \mathrm{~cm}$, height $\mathrm{d}=60 \mathrm{~cm}$) in a tank wall. The tank is full of static and constant-density freshwater at 20 Celsius.

A) Calculate the force due to water on the panel.

Centroid of triangle is $\frac{2}{3}$ down from the top (see info on cover page)
y-location of centroid is $y_{c}=c+\frac{2}{3} d=20 \mathrm{~cm}+\frac{2}{3}(60 \mathrm{~cm})=60 \mathrm{~cm}$.
x-location of centroid is $x_{c}=a$ (which you need to define in the problem because it wasn't given).
Force on panel $\left\|E_{R}\right\|=\bar{P} A=$ average pressive $*$ panel area
$\bar{P}=\left.P\right|_{(x, y c)}=$ pressure at centroid $=P_{\text {atm }}+\gamma y_{c}$ working in syce, $P_{\text {atm }}=0, \quad \bar{P}=\gamma_{y}$
$\left\|E_{E_{R}}\right\|=\gamma y_{c} A=\left(9,789 \mathrm{~m}^{3}\right)(0.6 \mathrm{~m})\left(\frac{1}{2} * 0.6 \mathrm{~m} * 0.7 \mathrm{~m}\right)=1,233.4 \mathrm{~N}$
Force acts from water onto the panel, which is the $-z$ direction

$$
F_{R}=1,233.4 \mathrm{~N} \text { in }-z \text { direction or } F_{R}=(0,0,-1233.4) \mathrm{N}
$$

B) Calculate the torque about point (a) due to water on the triangular panel.

Resultant Force F_{R} acts at center of pressure $\left(x_{R}, y_{R}\right)$
$y_{R}=y_{c}+\frac{I_{x c}}{y_{c} A}=60 \mathrm{~cm}+\frac{\frac{1}{36}(70 \mathrm{~cm})(60 \mathrm{~cm})^{3}}{(60 \mathrm{~cm})\left(\frac{1}{2} * 70 \mathrm{~cm} * 60 \mathrm{~cm}\right)}=60 \mathrm{~cm}+3 \frac{1}{3} \mathrm{~cm}=0.633 \mathrm{~m}$
$X_{R}=X_{c}+\frac{I_{x_{c c}}}{y_{c} A}=a+\frac{0}{y_{c A}}=a$
moment arm with respect to (a) goes from $(a, 0,0)$ to $\left(x_{R}, y_{R}, 0\right)$ $r=(0,0.633,0) \mathrm{m}$

Force at center of pressure was found in part A

$$
F_{R}=(0,0,-1233.4) \mathrm{N}
$$

Torque $=\underline{r} \times \underline{E}_{R}=\left|\begin{array}{ccc}i & j & k \\ 0 & 0.633 & 0 \\ 0 & 0 & -1233.4\end{array}\right|=(-780.75,0,0) \mathrm{N} \cdot \mathrm{m}$

$$
I=780.75 \mathrm{~N} \cdot \mathrm{~m} \text { in }-x \text { direction, or }(-780.75,0,0) \mathrm{N} \cdot \mathrm{~m}
$$

CE100 Fall 2017 Exam 1

2) Calculate the force due to oil and water on wall 1 . The oil is static and constant-density with $\rho_{\mathrm{o}}=800 \mathrm{~kg} / \mathrm{m}^{3}$. The water is static and constant-density with $\rho_{\mathrm{w}}=1000 \mathrm{~kg} / \mathrm{m}^{3}$. Use any method.

pressure prism decomposition forces on Wall 1

$F_{R_{3}}=\frac{1}{2} \gamma_{\omega} d(b d)=\frac{1}{2}(1000 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{m}^{2}\right)(0.9 \mathrm{~m})(0.6 \mathrm{~m})(0.9 \mathrm{~m})=2381 \mathrm{~N}$ in $-z$ direction acts at $x_{k}=30 \mathrm{~cm} \quad y_{k}=90 \mathrm{~cm} z_{k}=0$

$$
F_{R_{T}}=F_{R_{1}}+F_{R_{2}}+F_{R_{3}}=212+1270+2381=3863 \mathrm{~N} \text { in -z direction }
$$

Direct integration method: $\quad d F=P d A \quad P= \begin{cases}\gamma_{0} y & \text { for } y<c \\ \gamma_{0} c+\gamma_{w}(y-c) & \text { for } y>c\end{cases}$

$$
\begin{aligned}
& F=(60 \mathrm{~cm})\left[\gamma_{0} \frac{y^{2}}{2}\right]_{0}^{30 \mathrm{~cm}}+(60 \mathrm{~cm})\left[\gamma_{0} c y+\gamma_{\omega} \frac{y^{2}}{2}-\gamma_{\omega} c y\right]_{30 \mathrm{~cm}}^{120 \mathrm{~cm}}=(60 \mathrm{~cm})\left(800 \mathrm{~kg} \mathrm{~m}^{3}\right)\left(980 \mathrm{~cm} / \mathrm{s}^{2}\right) \frac{1}{2}(30 \mathrm{~cm})^{2}+(60 \mathrm{~cm})\left(800 \frac{\mathrm{ks}}{\mathrm{~m}^{3}}\right)\left(980 \mathrm{~cm} / \mathrm{s}^{2}\right)(30 \mathrm{~cm})(120 \mathrm{~cm}-30 \mathrm{~cm}) \\
& (60 \mathrm{~cm})\left(\left(000 \frac{\mathrm{ks}}{\mathrm{~m}^{3}}\right)\left(980 \mathrm{~cm} / \mathrm{s}^{2}\right) \frac{1}{2}\left[(120 \mathrm{~cm})^{2} \cdot(30 \mathrm{~cm})^{2}\right]-(60 \mathrm{~cm})\left(1000 \frac{\mathrm{ks}}{\mathrm{~m}^{3}}\right) 980 \mathrm{~cm} / \mathrm{s}^{2}\right)(30 \mathrm{~cm})(120 \mathrm{~cm}-30 \mathrm{~cm}) \\
& =3.863 \times 10^{11} \mathrm{~cm}^{4} \frac{\mathrm{~kg}}{\mathrm{~m}^{3} \mathrm{~s}^{2}}=3863 \frac{\mathrm{~kg} m}{\mathrm{~s}^{2}}=3863 \mathrm{~N} \text { in the }-z \text { direction. }
\end{aligned}
$$

3) During Lab 1 we filled the "pressurized inflow box." This question explains why. Consider:

Box is not Full, flow is in steady state Box is full, flow is in steady state

- $\mathrm{a}=2.0 \mathrm{~m} ; \mathrm{b}=0.2 \mathrm{~m} ; \mathrm{c}=0.1 \mathrm{~m}$
- head loss between 1 and 2 is $h_{L 12}=0.01 \mathrm{~m}$; head loss between 3 and 4 is $h_{L 34}=0.3 \mathrm{~m}$
- surface area of constant-head tank $A_{L}=1 \mathrm{~m}^{2}$; surface area of water in box $A_{M}=0.16 \mathrm{~m}^{2}$
- cross-sectional area under sluice gate $\mathrm{A}_{\mathrm{S}}=0.0014 \mathrm{~m}^{2}$
- uniform velocity over areas $\mathrm{A}_{\mathrm{L}}, \mathrm{A}_{\mathrm{M}}$, and A_{S}.
- constant-density water with $\gamma_{\mathrm{w}}=9800 \mathrm{~N} / \mathrm{m}^{3}$ and constant-density air with $\gamma_{\mathrm{a}}=10 \mathrm{~N} / \mathrm{m}^{3}$
- the constant head tanks are refilled at the necessary $\mathrm{Q}_{\text {in }}$ to achieve steady state

Given the above information, calculate the water velocities V_{2} and V_{4}.
Assume steady flow along a streamline from 1 to 2. Constant water density is given, so we can use energy equation $\frac{P_{1}-P_{2}}{\gamma_{\omega}}+\frac{V_{1}^{2}-V_{2}^{2}}{2 g}+Z_{1}-Z_{2}-h_{L}-h_{T}+h_{P}=0$
Mass conservation with constant density from I inlet to 1 other gives $\left.\bar{V}_{M} A_{M}=\bar{V}_{S} A_{S}\right\}$
Given uniform velocity over A_{M} and $A_{s}, V_{1}=\bar{V}_{M}$ and $V_{2}=\bar{V}_{S}$

$$
\} V_{1} A_{M}=V_{2} A_{s} \text { or } V_{1}=V_{2} \frac{A_{s}}{A_{M}}
$$

Observe: $P_{1}=$ Patmospherc $=O$ (in gage pressure)
Extended Pascal's Principle from river surface across straight parallel streamlines to location (2) gives $P_{2}=\gamma_{w} C$ Z_{1} has higher elevation than z_{2}, so $z_{1}-z_{2}=(b+c)>0$

$$
\begin{aligned}
& \text { Combining all equations, } \\
& \frac{0-\gamma_{w} c}{\gamma_{w}}+\frac{V_{2}^{2}}{2 g}\left(\frac{A_{s}}{A_{M}}\right)^{2}-\frac{V_{2}^{2}}{2 g}+b+c-h_{L_{12}} \overbrace{-h_{T}+h_{p}}^{\text {No pump or turbine be }}=0
\end{aligned}
$$

$$
\underbrace{-C-\frac{V_{2}^{2}}{2 g}\left(1-\left(\frac{A s}{A_{m}}\right)^{2}\right)+b+c-h_{L 12}}_{\text {cancel }}=0 \rightarrow \frac{V_{2}^{2}}{2 g}=\frac{b-h_{L 12}}{\left(1-\left(A s s / A m^{2}\right)^{2}\right.} \Rightarrow V_{2}=\sqrt{\frac{2 g\left(b-h_{L 12}\right)}{\left(1-\left(A_{s} / A m\right)^{2}\right)}}
$$

CE100 Fall 2017 Exam 1

$$
V_{2}=\sqrt{\frac{2 g\left(b-h_{L 12}\right)}{\left(1-\left(A_{s} / \mathrm{Am}\right)^{2}\right)}}=\sqrt{\frac{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.2 \mathrm{~m}-0.01 \mathrm{~m})}{1-\left(\frac{0.0014 \mathrm{~m}^{2}}{0.16 \mathrm{~m}^{2}}\right)^{2}}}=1.93 \mathrm{~m} / \mathrm{s}
$$

Assume steady flow along a streamline from 3 to 4 . Constant water density is given, so we can use energy equation

$$
\frac{P_{3}-P_{4}}{\gamma_{L}}+\frac{V_{3}^{2}-V_{4}^{2}}{2 g}+z_{3}-z_{4}-h_{L}-h_{T}+h_{P}=0
$$

$\left.\begin{array}{l}\text { Mass conservation with constant density from I inlet to } 1 \text { orth gives } \overline{V_{L}} A=\bar{V}_{S} A_{S} \\ \text { Given uniform velocity over } A_{L} \text { and } A_{S}, V_{3}=\overline{V_{L}} \text { and } V_{2}=\bar{V}_{S}\end{array}\right\} V_{3} A_{L}=V_{4} A_{S}$ or $V_{3}=V_{4} \frac{A_{S}}{A_{L}}$
Observe: $P_{3}=P_{\text {atmospheric }}=O$ (in gage pressure)
Extended Pascal's Principle from river surface across straight parallel streamlines to location (2) gives $P_{4}=\gamma_{w} C$ z_{3} has higher elevation than z_{4}, so $z_{3}-z_{4}=(a+b+c)>0$
Combining all equations,
No pump or turbine between $3 \$ 4$

$$
\begin{aligned}
& \frac{0-\gamma_{W} c}{\gamma_{W}}+\frac{V_{4}^{2}}{2 g}\left(\frac{A_{S}}{A_{L}}\right)^{2}-\frac{V_{4}^{2}}{2 g}+a+b+c-h_{L 34}-\overbrace{-h_{T}+h_{p}}^{\text {No pump or turbine }}=0 \\
& -c-\frac{V_{4}^{2}}{2 g}\left(1-\left(\frac{A_{S}}{A_{L}}\right)^{2}+a+b+c-h_{L 34}=0\right.
\end{aligned}
$$

cancel

$$
V_{4}=\sqrt{\frac{2 g\left(a+b-h_{L 34}\right)}{\left(1-\left(A_{s} / A_{L}\right)^{2}\right)}}=\sqrt{\frac{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(2.0 \mathrm{~m}+0.2 \mathrm{~m}-0.3 \mathrm{~m})}{1-\left(\frac{0.0014 \mathrm{~m}^{2}}{1 \mathrm{~m}^{2}}\right)^{2}}}=6.11 \mathrm{~m} / \mathrm{s}
$$

4) During class, we saw a demonstration of a pitot-static tube that measured air velocity. A simplified version of this setup is as follows:

- $a=0.40 \mathrm{~m} ; \mathrm{b}=0.20 \mathrm{~m} ; \mathrm{c}=0.05 \mathrm{~m}$
- head loss between 1 and 2 is $h_{L 12}=0.01 \mathrm{~m}$
- constant-density water with $\gamma_{\mathrm{w}}=9800 \mathrm{~N} / \mathrm{m}^{3}$; constant-density air with $\gamma_{\mathrm{a}}=10 \mathrm{~N} / \mathrm{m}^{3}$

Given the above information, calculate the air velocity V_{1}.
Constant-density air (given) is an important consideration, because it allows us to use extended Pascal's Principle and also the energy equation.
extended Pascal's Principle and regular Pascal's Principle together give: $P_{1}+\gamma_{a} a+\gamma_{a} b+\gamma_{w} c=P_{2}+\gamma_{a} a+\gamma_{a} b+\gamma_{a} c$

$$
\Rightarrow P_{1}-P_{2}=\left(\gamma_{a}-\gamma_{w}\right) c
$$

assuming that the streamline from (1) to (2) is steady, energy equation can be used: $\frac{P_{1}-P_{2}}{\gamma_{a}}+\frac{V_{1}^{2}-V_{2}^{2}}{2 g}+z_{1}-z_{2}-h_{L}-h_{T}+h_{p}=0$ $V_{2}=0$ because stagnation streamline stops at the piton tube
$\left.\begin{array}{l}z_{1}=z_{2} \text { (no elevation change from 1 to 2) } \\ h_{T}=0 \text { and } h_{P}=0 \text { (no pumpor turbine) }\end{array}\right\} \Rightarrow \frac{P_{1}-P_{2}}{\gamma_{a}}+\frac{1}{2 g} V_{1}^{2}-h_{L}=0$
Combining, $\frac{V_{1}^{2}}{2 g}=h_{L}-\frac{\left(\gamma_{a}-\gamma_{N}\right) c}{\gamma_{a}} \Longrightarrow V_{1}=\sqrt{2 g\left(h_{L}+\frac{\gamma_{\omega} c}{\gamma_{a}}-c\right)}=\sqrt{\left(2 * 9.8 \mathrm{~m}_{\mathrm{s}}\right)\left(0.01 \mathrm{~m}+\frac{9800 \mathrm{~N} / \mathrm{m}^{3}}{10 \mathrm{~N} / \mathrm{m}^{3}}(0.05 \mathrm{~m})-0.05 \mathrm{~m}\right)}$

$$
V_{1}=30.98 \mathrm{~m} / \mathrm{s}
$$

5) In this laminar flow, the velocity profile has a parabolic shape at cross-sections 1 and 2.

- $\mathrm{P}_{1}=2 \mathrm{kPa} ; \mathrm{V}_{1}=2 \mathrm{~m} / \mathrm{s} ;$
- $\mathrm{A}_{1}=0.09 \mathrm{~m}^{2} ; \mathrm{A}_{2}=0.03 \mathrm{~m}^{2}$
- head loss between 1 and 2 is $h_{L 12}=0.10 \mathrm{~m}$
- constant-density water with $\gamma_{\mathrm{w}}=9800 \mathrm{~N} / \mathrm{m}^{3}$
A) Calculate P_{2}
given: Corresponding velocity pattern at $A_{1} \frac{\dot{1}}{} A_{2}$, thus $\frac{V_{1}}{\overline{V_{1}}}=\frac{V_{2}}{\overline{V_{2}}}$
flow from one inlet $\left(A_{1}\right)$ to one inlet $\left(A_{2}\right)$ with constant density (green) and flow perpendicular to inlet $\$$ outlet, thus $\bar{V}_{1} A_{1}=\bar{V}_{2} A_{2}$ combining these, $V_{1} A_{1}=V_{2} A_{2}$
assume steady flow on streamline from 1 to 2, thus we can use energy equation
Combining all equations: $\frac{P_{2}}{\gamma}=\frac{P_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}-\frac{V_{1}^{2}\left(\frac{A_{1}}{2}\right)^{2}}{2 g}-h_{L}$

$P_{2}=P_{1}+\frac{\gamma}{2 g} V_{1}^{2}\left(1-\left(\frac{A_{A}}{A_{2}}\right)^{2}\right)-\gamma h_{L}$
$P_{2}=2 \mathrm{kPa}+\frac{(9.8 \mathrm{kv} / \mathrm{m})(2 \mathrm{~m} /)^{2}}{2(9.8 \mathrm{~m} / \mathrm{s})}\left(1-\left(\frac{0.09 \mathrm{~m}^{2}}{0.03 \mathrm{~m}^{2}}\right)^{2}\right)-(9.8 \mathrm{kl} / \mathrm{m})(0.10 \mathrm{~m})$
$P_{2}=2 \mathrm{kPa}+2 \mathrm{kPa}(1-9)-0.98 \mathrm{kN}$
$P_{2}=-15.02 \mathrm{kPa}$
B) Is P_{2} greater or less than atmospheric pressure?

Engineering convention is to work in gage pressure, and this question dossn't seem to be an exception (no mention of absolte, ideal gas,
or rapor pressure).
In gaje, negative pressures are allowed (in absolite they are not) and they indicate pressures less than atmospheric.

1 A	1 B	2	3	4	5 A	5 B	Total (28)

