Final Exam: CE132
Tuesday May 12

8:10am-11am

Problem	Score
$\# 0$	$\{0,-2\}$
$\# 1$	$/ 25$
$\# 2$	$/ 25$
$\# 3$	$/ 15$
$\# 4$	$/ 15$
$\# 5$	$/ 10$
$\# 6$	$/ 10$
Total	$/ 100$

Name

SID

Permitted Materials: Open book, open notes, open Matlab and Mathematica.
Prohibited: Use of the internet and any and all communication devices (except to access bCourses and gradescope)

Honor Code: I have not given or received aid in this examination. I have taken an active part in seeing to it that others as well as myself uphold the spirit and letter of this Honor Code.

(Signature)

No questions permitted during exam. If you have a concern about the wording of a question, explain your concern along with your answer.
0. (0 pts) Copy the honor code at the top of your first answer page and sign your name to it, failure to do both (-2 pts).

1. (25 pts) An $L=5 \mathrm{~m}$ long beam with Young's modulus $E=200 \mathrm{GPa}$ has been loaded at its ends with possibly moments and shear forces.

The curvatures of the beam κ_{x} and κ_{y} have been measured as a function of z to be constants:

$$
\begin{align*}
& \kappa_{x}=0.001 \mathrm{~m}^{-1} \tag{1}\\
& \kappa_{y}=0.003 \mathrm{~m}^{-1} \tag{2}
\end{align*}
$$

The beam has the following moments of inertia

$$
\begin{equation*}
I_{x}=8.0 \times 10^{-3} \mathrm{~m}^{4} \quad I_{y}=5.0 \times 10^{-3} \mathrm{~m}^{4} \quad I_{x y}=3.0 \times 10^{-3} \mathrm{~m}^{4} \tag{3}
\end{equation*}
$$

Determine the end moments and shear forces that have been applied to the beam.
2. (25 pts) Shown is the cross-section of a thin-walled torsional member. The outer walls have thickness t and the inner wall has a thickness of $t / 4$.

Assume $t=1 \mathrm{~mm}, a=300 \mathrm{~mm}, b=400 \mathrm{~mm}$, and $G=100 \mathrm{kN} / \mathrm{mm}^{2}$.
(a) Find the effective torsional stiffness of the structural member; i.e., find $T / \bar{\theta}=$ $(G J)_{\text {eff }}$.
(b) Find the max shear stress and the location where it occurs.
3. (15 pts) Consider a pin-pin column subjected to an axial load P of length L and radius of gyration r. Assume the column is made of an elastic-plastic material with the following stress-strain relation

$$
\sigma=\left\{\begin{array}{lr}
E \epsilon & \epsilon<\epsilon_{Y} \tag{4}\\
\left(Y_{\infty}-Y_{o}\right)\left(1-e^{-\left(\epsilon-\epsilon_{Y}\right)}\right)+Y_{o} & \epsilon>\epsilon_{Y}
\end{array}\right.
$$

where E is the Young's modulus, Y_{o} is the initial yield stress, Y_{∞} is the yield stress at large strain, and ϵ_{Y} is the initial yield strain.

Assume that the column slenderness L / r is such that the critical buckling stress

$$
\begin{equation*}
\sigma_{\mathrm{cr}}>Y_{o} \equiv E \epsilon_{Y} \tag{5}
\end{equation*}
$$

Determine the (critical) buckling stress for the column in terms of the material parameters and the slenderness ratio, L / r.
4. (15 pts) Consider an axisymmetric conical hopper which is supported by a ring support at half-height. The shell wall is uniform of thickness t.

The hopper is filled with a granular material that generates normal and tangential wall pressures

$$
\begin{align*}
p_{n}(z) & =-k\left(1-e^{-z / \zeta}\right) \tag{6}\\
p_{t}(z) & =k\left(1-e^{-z / \zeta}\right) \tag{7}
\end{align*}
$$

where k and ζ are given constants.
Find the hoop and meridional membrane resultants, $N_{\theta}(z)$ and $N_{\varphi}(z)$.
Express your answer in terms of k, ζ, z, H, and α.
Useful facts:
(a) $\varphi=\frac{\pi}{2}+\alpha$;
(b) $\sin (\varphi)=\cos (\alpha)$;
(c) $\cos (\varphi)=-\sin (\alpha)$.
5. (10pts) An open-ended thick-walled cylinder of inner radius $a=40 \mathrm{~mm}$ and outer radius $b=60 \mathrm{~mm}$ is subjected to a time varying internal sawtooth pressure $p_{i}(t)$ with maximum pressure $p_{\text {max }}$.

The cylinder also has a detected crack-like flaw of size $a_{i}=1 \mathrm{~mm}$ oriented orthogonal to the hoop direction. Determine
(a) the magnitude of $p_{\max }$ such that the cylinder will not fail before $N=10^{6}$ pressurization/depressuriztion cycles;
(b) the critical crack size for the pressure that you computed in part (a).

Assume
(i) the configuration correction factor for the crack is $Q=1.8$, i.e., $K_{\mathrm{I}}=Q \sigma_{\text {hoop }} \sqrt{\pi a}$;
(ii) the Young's modulus $E=200 \mathrm{kN} / \mathrm{mm}^{2}$;
(iii) the critical stress intensity factor is $K_{\mathrm{Ic}}=10 \mathrm{MPa} \sqrt{\mathrm{m}}$;
(iv) the Paris crack growth exponent $m=4$;
(v) the Paris crack growth coefficient $C=5.0 \times 10^{-13}(\mathrm{~m} / \mathrm{cycle}) /(\mathrm{MPa} \sqrt{\mathrm{m}})^{4}$.
6. (10 pts) Consider a clamped circular plate of radius R with plate modulus D, both given. The plate is subjected to a pressure

$$
\begin{equation*}
p(r)=p_{o}\left(1-\frac{r}{R}\right) \tag{8}
\end{equation*}
$$

where p_{o} is a given constant.
(a) Determine the expression $w(r)$ for the deflection of the plate, specialized for the given pressure loading; write your answer in a format that still includes the 4 (four) integration constants.
(b) State why you may a priori assume one of the integration constants to be zero.
(c) State the 3 (three) boundary conditions that you would use to solve for the remaining integration constants. Be reasonably specific but there is no need to actually solve for the constants - its just messy algebra.

