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0. (0 pts) Copy the honor code at the top of your first answer page and sign your name
to it, failure to do both (-2 pts).

1. (25 pts) An L = 5 m long beam with Young’s modulus E = 200 GPa has been loaded
at its ends with possibly moments and shear forces.
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The curvatures of the beam κx and κy have been measured as a function of z to be
constants:

κx = 0.001 m−1 (1)

κy = 0.003 m−1 (2)

The beam has the following moments of inertia

Ix = 8.0× 10−3 m4 Iy = 5.0× 10−3 m4 Ixy = 3.0× 10−3 m4 . (3)

Determine the end moments and shear forces that have been applied to the beam.
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2. (25 pts) Shown is the cross-section of a thin-walled torsional member. The outer walls
have thickness t and the inner wall has a thickness of t/4.

Assume t = 1 mm, a = 300 mm, b = 400 mm, and G = 100 kN/mm2.

(a) Find the effective torsional stiffness of the structural member; i.e., find T/θ̄ =
(GJ)eff .

(b) Find the max shear stress and the location where it occurs.
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3. (15 pts) Consider a pin-pin column subjected to an axial load P of length L and
radius of gyration r. Assume the column is made of an elastic-plastic material with
the following stress-strain relation

σ =

{
Eε ε < εY
(Y∞ − Yo)

(
1− e−(ε−εY )

)
+ Yo ε > εY ,

(4)

where E is the Young’s modulus, Yo is the initial yield stress, Y∞ is the yield stress at
large strain, and εY is the initial yield strain.
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Assume that the column slenderness L/r is such that the critical buckling stress

σcr > Yo ≡ EεY . (5)

Determine the (critical) buckling stress for the column in terms of the material param-
eters and the slenderness ratio, L/r.
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4. (15 pts) Consider an axisymmetric conical hopper which is supported by a ring support
at half-height. The shell wall is uniform of thickness t.
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The hopper is filled with a granular material that generates normal and tangential wall
pressures

pn(z) = −k
(
1− e−z/ζ

)
(6)

pt(z) = k
(
1− e−z/ζ

)
, (7)

where k and ζ are given constants.

Find the hoop and meridional membrane resultants, Nθ(z) and Nϕ(z).

Express your answer in terms of k, ζ, z, H, and α.

Useful facts:

(a) ϕ = π
2

+ α;

(b) sin(ϕ) = cos(α);

(c) cos(ϕ) = − sin(α).
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5. (10pts) An open-ended thick-walled cylinder of inner radius a = 40 mm and outer
radius b = 60 mm is subjected to a time varying internal sawtooth pressure pi(t) with
maximum pressure pmax.
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Flaw

The cylinder also has a detected crack-like flaw of size ai = 1 mm oriented orthogonal
to the hoop direction. Determine

(a) the magnitude of pmax such that the cylinder will not fail beforeN = 106 pressurization/de-
pressuriztion cycles;

(b) the critical crack size for the pressure that you computed in part (a).

Assume

(i) the configuration correction factor for the crack is Q = 1.8, i.e., KI = Qσhoop

√
πa;

(ii) the Young’s modulus E = 200 kN/mm2;

(iii) the critical stress intensity factor is KIc = 10 MPa
√

m;

(iv) the Paris crack growth exponent m = 4;

(v) the Paris crack growth coefficient C = 5.0× 10−13(m/cycle)/(MPa
√

m)4.
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6. (10 pts) Consider a clamped circular plate of radius R with plate modulus D, both
given. The plate is subjected to a pressure

p(r) = po

(
1− r

R

)
, (8)

where po is a given constant.

(a) Determine the expression w(r) for the deflection of the plate, specialized for the
given pressure loading; write your answer in a format that still includes the 4
(four) integration constants.

(b) State why you may a priori assume one of the integration constants to be zero.

(c) State the 3 (three) boundary conditions that you would use to solve for the re-
maining integration constants. Be reasonably specific but there is no need to
actually solve for the constants – its just messy algebra.
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