Final Exam: CE132 Tuesday May 12 8:10am-11am

Problem	Score
#0	$\{0, -2\}$
#1	/25
#2	/25
#3	/15
#4	/15
#5	/10
#6	/10
Total	/100

Name

SID

Permitted Materials: Open book, open notes, open Matlab and Mathematica. **Prohibited:** Use of the internet and any and all communication devices (except to access bCourses and gradescope)

Honor Code: I have not given or received aid in this examination. I have taken an **active part** in seeing to it that others as well as myself uphold the spirit and letter of this Honor Code.

⁽Signature)

No questions permitted during exam. If you have a concern about the wording of a question, explain your concern along with your answer.

0. (0 pts) *Copy* the honor code at the top of your first answer page and *sign* your name to it, failure to do *both* (-2 pts).

1. (25 pts) An L = 5 m long beam with Young's modulus E = 200 GPa has been loaded at its ends with possibly moments and shear forces.

The curvatures of the beam κ_x and κ_y have been measured as a function of z to be constants:

$$\kappa_x = 0.001 \text{ m}^{-1}$$
(1)

$$\kappa_y = 0.003 \text{ m}^{-1}$$
(2)

The beam has the following moments of inertia

 $I_x = 8.0 \times 10^{-3} \text{ m}^4$ $I_y = 5.0 \times 10^{-3} \text{ m}^4$ $I_{xy} = 3.0 \times 10^{-3} \text{ m}^4$. (3)

Determine the end moments and shear forces that have been applied to the beam.

2. (25 pts) Shown is the cross-section of a thin-walled torsional member. The outer walls have thickness t and the inner wall has a thickness of t/4.

Assume t = 1 mm, a = 300 mm, b = 400 mm, and G = 100 kN/mm².

- (a) Find the effective torsional stiffness of the structural member; i.e., find $T/\bar{\theta} = (GJ)_{\text{eff.}}$
- (b) Find the max shear stress and the location where it occurs.

3. (15 pts) Consider a pin-pin column subjected to an axial load P of length L and radius of gyration r. Assume the column is made of an elastic-plastic material with the following stress-strain relation

$$\sigma = \begin{cases} E\epsilon & \epsilon < \epsilon_Y \\ (Y_{\infty} - Y_o) \left(1 - e^{-(\epsilon - \epsilon_Y)}\right) + Y_o & \epsilon > \epsilon_Y \,, \end{cases}$$
(4)

where E is the Young's modulus, Y_o is the initial yield stress, Y_{∞} is the yield stress at large strain, and ϵ_Y is the initial yield strain.

Assume that the column slenderness L/r is such that the critical buckling stress

$$\sigma_{\rm cr} > Y_o \equiv E \epsilon_Y \,. \tag{5}$$

Determine the (critical) buckling stress for the column in terms of the material parameters and the slenderness ratio, L/r. 4. (15 pts) Consider an axisymmetric conical hopper which is supported by a ring support at half-height. The shell wall is uniform of thickness t.

The hopper is filled with a granular material that generates normal and tangential wall pressures

$$p_n(z) = -k\left(1 - e^{-z/\zeta}\right) \tag{6}$$

$$p_t(z) = k \left(1 - e^{-z/\zeta} \right) , \qquad (7)$$

where k and ζ are given constants.

Find the hoop and meridional membrane resultants, $N_{\theta}(z)$ and $N_{\varphi}(z)$. Express your answer in terms of k, ζ , z, H, and α . Useful facts:

- (a) $\varphi = \frac{\pi}{2} + \alpha;$
- (b) $\sin(\varphi) = \cos(\alpha);$
- (c) $\cos(\varphi) = -\sin(\alpha)$.

5. (10pts) An open-ended thick-walled cylinder of inner radius a = 40 mm and outer radius b = 60 mm is subjected to a time varying internal sawtooth pressure $p_i(t)$ with maximum pressure p_{max} .

The cylinder also has a detected crack-like flaw of size $a_i = 1$ mm oriented orthogonal to the hoop direction. Determine

- (a) the magnitude of p_{max} such that the cylinder will not fail before $N = 10^6$ pressurization/depressurization cycles;
- (b) the critical crack size for the pressure that you computed in part (a).

Assume

- (i) the configuration correction factor for the crack is Q = 1.8, i.e., $K_{\rm I} = Q\sigma_{\rm hoop}\sqrt{\pi a}$;
- (ii) the Young's modulus $E = 200 \text{ kN/mm}^2$;
- (iii) the critical stress intensity factor is $K_{\rm Ic} = 10 \text{ MPa}\sqrt{\rm m}$;
- (iv) the Paris crack growth exponent m = 4;
- (v) the Paris crack growth coefficient $C = 5.0 \times 10^{-13} (\text{m/cycle}) / (\text{MPa}\sqrt{\text{m}})^4$.

6. (10 pts) Consider a *clamped* circular plate of radius R with plate modulus D, both given. The plate is subjected to a pressure

$$p(r) = p_o \left(1 - \frac{r}{R}\right) \,, \tag{8}$$

where p_o is a given constant.

- (a) Determine the expression w(r) for the deflection of the plate, specialized for the given pressure loading; write your answer in a format that still includes the 4 (four) integration constants.
- (b) State why you may a priori assume one of the integration constants to be zero.
- (c) State the 3 (three) boundary conditions that you would use to solve for the remaining integration constants. Be reasonably specific but there is no need to actually solve for the constants – its just messy algebra.