
Why linear program? Answered! 

The objective function must be a linear function of the 
decision variables and the constraints must be a linear 
inequality 

Thus Linear 
 Inequality. 

This is a linear function 

min  <c,x>
s.t Ax ≤ b



EVERY LP HAS AN OPTIMAL 
SOLUTION AT A VERTEX OF 
ITS FEASIBLE POLYTOPE 
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Optimum is found by moving 
as far along the c direction.  
The movement halts at a point 
on the boundary of the feasible 
set. The boundary point must 
be on a face of the polyhedron. 
If the halting point is not a  vertex 
there is another optimal point  
that is also a vertex. 

A vertex point lies on one or more 
faces and is a boundary point. 



THE SIMPLEX METHOD FOR 
SOLVING AN LP JUMPS 
CLEVERLY FROM VERTEX TO 
VERTEX 



Different cost functions 

Minimize Total Inventory Level: min x1 + x2 + x3

Minimize Worst Case Inventory Level: 

min  max x1 , x2 , x3{ }
Minimize Sum of Deviations from an Inventory Level: 

min  x1 − d + x2 − d + x3 − d{ }
si ≥ 0

https://en.wikipedia.org/wiki/Taxicab_geometry
https://math.stackexchange.com/questions/2589887/how-can-the-infinity-norm-minimization-problem-be-
rewritten-as-a-linear-program
https://math.stackexchange.com/questions/1639716/how-can-l-1-norm-minimization-with-linear-equality-
constraints-basis-pu



min 𝑓𝑓 𝑥𝑥 , s.t. 𝑔𝑔1 𝑥𝑥 ≤ 𝑏𝑏1,𝑔𝑔2 𝑥𝑥 ≤ 𝑏𝑏2, … … .

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1 = 𝑝𝑝1 = �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑏𝑏1 𝑥𝑥=𝑥𝑥∗

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2 = 𝑝𝑝2 = �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑏𝑏2 𝑥𝑥=𝑥𝑥∗

and so on.

The marginal improvement in the optimal cost for
marginal relaxation of the constraint.

Relaxation: 𝑥𝑥 ≥ −2 𝑝𝑝𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑆𝑆𝑝𝑝𝑐𝑐𝑐𝑐. 𝑥𝑥 ≥ −3 𝑝𝑝𝑐𝑐 𝑆𝑆 𝑝𝑝𝑝𝑝𝑟𝑟𝑆𝑆𝑥𝑥𝑆𝑆𝑐𝑐𝑝𝑝𝑆𝑆𝑐𝑐. 𝑥𝑥 ≥ −1 𝑝𝑝𝑐𝑐 𝑐𝑐𝑆𝑆𝑐𝑐. 
You relax when you move the constraint in the direction of the cost 
function.

Shadow prices are always zero or negative for minimization problems. 
Zero for inactive constraints.

𝜕𝜕𝑏𝑏

𝜕𝜕𝑥𝑥∗
∇𝑓𝑓 𝑥𝑥∗

𝑥𝑥∗

The shadow price of a constraint at the point of optimality is the value of its lagrange 
multiplier.  By the KKT conditions the shadow price of an inactive constraint is zero.

rajas
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rajas
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Finding the minimum of f(x) by gradient descent 

Start with a point (guess)    guess = x 
Repeat 

 Determine a descent direction    direction = D 
 Choose a step size in the direction   step = h > 0  
 Update      next x:=x+hD  

Until stopping criterion is satisfied   ||next x - x||~0 
 

Called gradient descent 
when direction is the  
gradient or derived 
from it. 



Problem 3: The right starting guess 

f 

x 

f(x) 

f(m) 

m 

“global min” guess 

“local min” guess 



Convex functions definition 1: 

[S. Boyd, L. Vandenberghe, Convex Convex Optimization lect. Notes, Stanford Univ. 2004 ] 



Positive definite matrix 

• XTQx > 0 for all non-zero x : Positive definite
– All eigenvalues positive

• XTQx < 0 for all non-zero x : Negative definite
– All eigenvalues negative

• Semidefinite when the inequality is not strict

https://www.gaussianwaves.com/2013/04/tests-for-
positive-definiteness-of-a-matrix/



Convex function definition 2: First order conditions 

[S. Boyd, L. Vandenberghe, Convex Convex Optimization lect. Notes, Stanford Univ. 2004 ] 

graph of f above the tanget surface at (x,f(x))



Convex function definition 3: Second order conditions 

[S. Boyd, L. Vandenberghe, Convex Convex Optimization lect. Notes, Stanford Univ. 2004 ] 



Newton step descent algorithm 

General algorithm: 

Will find global optimum if x is in some set S in dom f s.t. f locally 
convex in S And S itself is a convex .
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Choosing the step size t: Backtracking methods 

[S. Boyd, L. Vandenberghe, Convex Convex Optimization lect. Notes, Stanford Univ. 2004 ] 

f(x) 



Karush-Kuhn-Tucker (KKT) Conditions

General Constrained Optimization Problem

min f(x)

s. to gi(x) ≤ 0, i = 1, · · · ,m
hj(x) = 0, j = 1, · · · , l

If x∗ is a local minimum, then the following necessary conditions hold:

∇f(x∗) +
m∑
i=1

µ*i∇gi(x∗) +
l∑

j=1

λ*j∇hj(x∗) = 0, Stationarity (1)

gi(x
∗) ≤ 0, i = 1, · · · ,m Feasibility (2)

hj(x
∗) = 0, j = 1, · · · , l Feasibility (3)

µ*i ≥ 0, i = 1, · · · ,m Non-negativity (4)

µigi(x
∗) = 0, i = 1, · · · ,m Complementary slackness (5)

Prof. Moura | UC Berkeley CE 191 | LEC 13 - KKT Slide 8
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Remarks

Non-zero µi indicates gi ≤ 0 is active (true with equality).

Conditions are necessary, only.

If problem is convex, then the conditions are necessary and sufficient.

Lagrange multipliers λ, µ are sensitivity to perturbations in constraints

In economics, this is called the “shadow price”

In control theory, this is called the “co-state”

Prof. Moura | UC Berkeley CE 191 | LEC 13 - KKT Slide 9

GGoGo through KKT in lecture 8.



Lecture 10: Lower bounds & Projected Gradient Descent– September 22 10-5

10.3 Projected Gradient Descent

So far, we were concerned with finding the optimal solution of an unconstrained optimization problem. In
real life, optimization problems we are likely to come across constrained optimization problems. In this
section, we discuss how to solve constrained optimization problem:

min
x∈X

f(x)

where f is a convex function and X is a convex set.

If we wish to use gradient descent update to a point xt ∈ X, it is possible that the iterate xt+1 = xt− ∇f(xt)
L

may not belong to the constraint set X. In the projected gradient descent, we simply choose the point

nearest to xt − ∇f(xt)
L in the set X as xt+1 i.e., the projection of xt − ∇f(xt)

L onto the set X.

Definition 10.3 The projection of a point y, onto a set X is defined as

ΠX(y) = argmin
x∈X

1

2
‖x− y‖22.

Projected Gradient Descent (PGD): Given a starting point x0 ∈ X and step-size γ > 0, PGD works
as follows until a certain stopping criterion is satisfied,

xt+1 = xt − γΠX(xt −∇f(xt)),∀t ≥ 1.

In this lecture, for an L smooth convex function, we fix the step-size to be γ = 1
L .

Proposition 10.4 The following inequalities hold:

1. If y ∈ X, then ΠX(y) = y.

2. The projection onto a convex set X is non-expansive.
‖ΠX(x)−ΠX(y)‖2 ≤ ‖x− y‖2,
‖ΠX(x)−ΠX(y)‖22 ≤ 〈ΠX(x)−ΠX(y), x− y〉 ≤ ‖x− y‖22.

Proof:

1. We first note that the 1
2‖x − y‖22 is strictly convex since ∇2f(x) = 1. Hence the solution to the

optimization problem is unique. If y ∈ X, then we have 1
2‖y − y‖

2
2 = 0. Since 1

2‖x − y‖
2
2 ≥ 0, zero is

the optimal value of the function and y is it’s unique minimizer, thus giving ΠX(y) = y.

2. For any feasible x∗, the optimality conditions are given by

〈∇f(x∗), z − x∗〉 ≥ 0,∀z ∈ X.

Hence for x, y, we have
〈ΠX(y)− y,ΠX(x)−ΠX(y)〉 ≥ 0,

〈ΠX(x)− x,ΠX(y)−ΠX(x)〉 ≥ 0,

since ΠX(y),ΠX(x) ∈ X.

Read

Read

Read
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The Mixed Integer Linear Program (MILP) 

€

min  cT x + c'T x '
s.t. 
Ax ≤ b
A' x '≤ b'
x'∈ Integers
x∈ Reals



Branch and Bound Procedure 
•  Problem = real valued relaxation + integer constraints 

–  solution to relaxation is bound on solution to problem 
•  Solve real valued relaxation 

–  if solution satisfies integer constraints, solution is optimal 
•  Otherwise, create sub-problems by branching. 

–  Each sub-problem is problem plus some integer constraints  
–  Sub-problems must be created intelligently. This is the art. 
–  Union of feasible sets of sub-problems must be subset of 

feasible set of branched problem but superset of Problem 
•  Keep track of Best Solution found for Problem 

–  Continue while there are active problems 
•  A sub-problem becomes inactive when 

–  it is infeasible, or 
–  Its solution solves the Problem 
–  it is branched on 
–  it can be pruned because it is worse than Best Solution 



Example: summary 

1 2 3 

1 

3 

P1 
ø 

Z*=ø 

P2 
(0.75,2) 
Z*=-3.25 

P3 
(0,1.5) 
Z*=-3 

P4 
(1,2) 
Z*=-3 

P0 
(1.5,2.5) 
Z*=-3.5 
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Total Unimodularity of a Matrix 
 A matrix A is totally unimodular (TU) if every square 
submatrix has determinant -1, 0 or 1 
 
If A is TU and b is integer all the vertices of the polyhedron  
Ax <= b are integral 
 
https://en.wikipedia.org/wiki/Unimodular_matrix#Total_unimodularity  



Does this give us a solution 
method for TM IP’s? 

If A is TU and b is integer all the vertices of the polyhedron Ax 
<= b are integral 

Consider the optimization problem min <c,x>, Ax <= b, 
 x element of the Integers. 

Does solving its LP relaxation solve the IP 

YES – if we use simplex 

Is this a polynomial time method of solving TM IP’s? 

https://youtu.be/jh_kkR6m8H8



Shortest Path Integer Program 

Integer Constraint 

LP 



Assignment Problem: Mathematical Formulation 

€ 

min cij xij
j=1

n

∑
i=1

n

∑

with constraints

xij =1
i=1

n

∑ ,  for each job j

xij =1
j=1

n

∑ ,  for each engineer i

xij ∈{0,1}

Each task must have a worker 

Each worker must have a task 

Minimize the total time to complete all tasks 



€ 

Minimize Z = cexe
e∈E
∑

xe
e∈δ v( )

n

∑ = 2, for all v ∈V

xe
e∈δ U( )

n

∑ ≥ 2, for all U ⊆V ,2 ≤ U ≤ V −1

xe ∈{0,1}, e∈ E

Symmetric TSP Formulation 

Note: For a set K, |K| denotes the cardinality of K (the number of elements in K) 
  



Asymmetric TSP Formulation 

http://iris.gmu.edu/~khoffman/papers/trav_salesman.html  

xij
j∈K
∑ ≤ K −1,  for all K ⊂ 1, 2,…,m{ }

i∈K
∑



TSP MTZ formulation
https://medium.com/swlh/techniques-for-subtour-elimination-in-traveling-salesman-problem-theory-and-
implementation-in-71942e0baf0c

The assignment problem constraints plus
𝑡𝑡𝑗𝑗 > 𝑡𝑡𝑖𝑖 − 𝐵𝐵 1 − 𝑥𝑥𝑖𝑖𝑗𝑗 , i,j∈ 2, … . ,𝑁𝑁 , B large

𝑡𝑡𝑖𝑖 ∈ 1, … . ,𝑁𝑁 − 1
𝑡𝑡1=0



Traveling Salesman Problem 

•  Note that there are a tremendous number of 
constraints 

•  For the 20-city problem, there are 524,288 
constraints  

•  For the 300-city problem, there are 
101851798816724304313422284420468908052573
419683296812531807022467719064988166835309
1698688 constraints  

•  Try putting that into Matlab! 
•  Is there a more efficient way to solve this problem? 
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